
A Side Channel Delay Analysis for Hardware Trojan Detection

A proposal submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Ashkan Vakil

Director: Dr. Avesta Sasan
Department of Electrical and Computer Engineering

Fall Semester 2020
George Mason University

Fairfax, VA

2

Table of Contents

Page

List of Tables . 3

List of Figures . 4

Abstract . 6

1 Introduction . 1

2 Background . 4

3 Threat Model and Challenges . 6

3.1 Trojan Threat Model . 6

3.2 Trojan Detection Challenge: Variability . 6

4 Proposed HW Trojan Detection Solutions . 10

4.1 Modeling and Tracking the Process Drift . 10

4.2 Modeling and Mitigating process variation 12

4.2.1 Modeling Timing Impact of Voltage Noise 13

4.2.2 Delay Equivalent Voltage . 14

4.2.3 Using VDEV for STA annotation . 17

4.3 Trojan Detection Flow . 22

5 Results and Discussion . 27

5.1 Proposed Voltage Modeling Accuracy . 27

5.1.1 Verification of Delay Equivalent Voltage 27

5.1.2 Improvement in STA accuracy . 30

5.2 NN-Watchdog Accuracy . 31

5.3 HW Trojan Detection Accuracy . 32

5.4 Conclusion . 36

Bibliography . 37

3

List of Tables

Table Page

4.1 Description for each of 48 features, extracted from each timing-path for build-

ing the NN training set. (LP: Launch portion of timing-path, CP: Capture

portion of timing-path, DP: Data portion of timing-path, M: Metal Layer, x:

drive strength of the gate) . 11

5.1 The Accuracy of the NN-Watchdog regression model trained for different

benchmarks. The µ and σ are the Mean and Standard deviation of the

regression error over the validation set. As discussed in Section 4.1, the Fast,

Typical and Slow process are simulated using skewed Spice model with (X,Y)

= (5,5), (0,0), (-5,-5), respectively. 31

5.2 Threshold values used for TT and TP Trojan detection in Fast-bin in Algo-

rithm 2 . 33

5.3 Percentage of False Positives (FPo) and True Positives (TPo) when the pro-

posed model (as described in Alg. 2) with NGTM-10 is used for detection of

TP in Slow, Typical, and Fast speed bins. 36

4

List of Figures

Figure Page

3.1 (left): Trojan taxonomy, (right): Trojan trigger circuit types 7

3.2 The impact of random process variation on the delay of a timing-path when

sampled across multiple dies (after fabrication). 8

3.3 Improvement in the process over time non-linearly changes the delay of dif-

ferent timing-paths (process drift). The process drift affects each timing-path

differently. 9

4.1 The configuration of the feed-forward fully-connected NN trained in this work

to serve as a test-time process watchdog. 11

4.2 Computing the mean delay of a path using CFST delay measurements with

step size S, clock period T, over m samples (dies). 13

4.3 Inverter chain delay based on individual cell voltages when modeled by actual

and VDEV voltages. 14

4.4 (left): Larger error for linear interpolation of a cell delay when using three

timing session; (right): Generating two additional timing sessions using CCS

non-linear interpolation followed by non-linear interpolation of the cell delay

which resulting in a smaller interpolation error. 16

4.5 (left) The naming convention for different sections of timing path, (right):

Delay components of a timing path . 17

4.6 Modeling rail voltages, considering IR drop across board, package and die,

for STA annotation. 20

4.7 Trojan Detection Flow: The model includes changes in the design and test

stages. The test stage divides the timing-paths into long and short paths.

The short paths are subjected to power side-channel Trojan detection as

described in [1] (not covered in this paper), and the long paths are subjected

to delay side-channel analysis using GTM as reference timing model, adjusted

by a NN that is trained as a process watchdog and by using CFST to find

the start-to-fail frequencies for timing-paths under test. 23

5

5.1 setup for a) the SPICE simulation when using actual voltages obtained from

Redhawk; b) the SPICE simulation when using computed VDEV voltages for

LP and CP; c) the SPICE simulation when using hard margins (using 10%

IR drop and 5% uncertainty) . 28

5.2 The timing slacks in three nearly timing closed design (Ethernet, AES128

and S38417) using conventional margin based and VDEV flow for generation

of GTM . 29

5.3 VDEV based slacks v.s. margin-based slacks 30

5.4 Histogram of NN-Watchdog Error trained for different benchmarks. 32

5.5 Trojan Payload detection results for 3 benchmarks. (top): Detection rate,

(middle): False positive rate, (bottom): Associated ROC curve capturing the

True Positive Rate (TPR) versus True False Positive Rate. The SSTA bar

represents the HW Trojan Payload detection using a (Mean shifted) STA.

The SGTM represents Trojan detection when VDEV voltage modeling flow

is deployed. The NGTM bars represent the Trojan Payload detection when

both VDEV voltage modeling approach and the NN-Watchdog are combined.

Each bar shows the NN trained when X Trojans are included in the training

set, with X ∈ {0, 20, 40}. 34

5.6 Trojan Trigger detection results for 3 benchmarks. (top): Detection rate,

(middle): False positive rate, (bottom): Associated ROC curve capturing

the True Positive Rate (TPR) versus True False Positive Rate. 35

Abstract

A SIDE CHANNEL DELAY ANALYSIS FOR HARDWARE TROJAN DETECTION

Ashkan Vakil, PhD

George Mason University, 2020

This research proposal introduces a learning assisted modeling technique for the purpose

of Hardware Trojan detection. Our proposed model, unlike the prior art, does not require

a Golden fabricated chip as a fingerprint to compare the side channel signals. Instead, by

modeling the voltage drop and voltage noise pre-fabrication, and with training a Neural

Network post-fabrication, our proposed technique can improve the timing model collected

during timing closure and produces a Neural assisted Golden Timing Model (NGTM) for

side channel delay-signal analysis.

The Neural Network acts as a process tracking watchdog for correlating the static timing

data (produced at design time) to the delay information obtained from clock frequency

sweeping test. Proposed modeling technique enables Hardware Trojan detection close to

90% in the simulated scenarios.

This page intentionally left blank

Chapter 1: Introduction

In the past decade, to reduce the fabrication cost and for economic feasibility, the manu-

facturing supply chain of Integrated Circuits (IC) has adopted a globally distributed model

[2]. The use of untrusted entities in this global supply chain has raised pressing concerns

about the security of the fabricated ICs with threats including IP theft, counterfeiting [3],

over-production of ICs [4,5], and hardware Trojan insertion. There has been research works

to both improve the threat models, and also provide a better remedy for each aspect of

hardware security [4,6,7]. To protect ICs against first three threats, logic encryption meth-

ods have been investigated [4]. Although, these techniques are vulnerable to attacks using

Boolean satisfiability (SAT) solvers [8]. Several methods have been proposed to create SAT

resilient logic encryption [9–15]. These methods work by increasing the number of SAT

iterations or by inserting elements such as cycles that make the SAT solver stuck in an

infinite loop [16,17].

The last security threats is the adversarial infestation of fabricated ICs with a Hard-

ware (HW) Trojan which usually targets devices with sensitive applications. A Trojan can

be broadly defined as a malicious modification to a circuit to control, modify, disable, or

monitor its logic. The spectrum of harm caused by HW Trojans is broad. It can range from

passive Trojans for activity monitoring or stealing information to weaponized Trojans that

could cause catastrophic consequences in the critical military, space, or medical applica-

tions [18]. Thereby, detecting HW Trojans is highly crucial, and it has become a significant

concern for governments and industries.

One solution for detecting HW Trojan is through destructive reverse-engineering schemes

to check and ensure that the manufactured chips’ logical structure and functional integrity

1

2

is untouched. Relying on Reverse Engineering (RE) to produce a golden model from fab-

ricated ICs has severe limitations. The destructive process of de-layering, combined with

advanced image processing techniques could be used for the generation of a netlist, but not

a golden model containing all process information (such as doping levels and the extent of

parametric variation in that process) as such information can not be extracted using imag-

ing techniques. Besides, IC reverse engineering requires significant investment, is extremely

challenging in advanced geometries, and is quite time and resource consuming. One may ar-

gue that a Trojan-induced logic-change can be detected during Manufacturing test process.

However, HW Trojans are stealthy in nature, and are designed such that they are rarely

activated. This makes detecting the Trojans during manufacturing testing highly difficult

if not impossible.

Conventional manufacturing VLSI test and verification methodologies fall short in de-

tecting HW Trojans due to the different and un-modeled nature of these malicious alter-

ations. This has led many researchers to investigate solutions for detection of HW Trojans

through statistical analysis of side-channel information collected from ICs, including side-

channel power analysis [1, 19–23], power supply transient signal analysis [24, 25], regional

supply currents analysis [26], temperature analysis [27], wireless transmission power analysis

[28], and side-channel delay analysis [29–35].

The problem with many of the previous HW Trojan detection solutions is a need for

some sort of a golden model from which the parametric signature of the fabricated ICs

are collected and used to define a decision boundary (power, delay, temperature, etc) for

separating the Trojan-infested ICs. However, building a golden IC is extremely difficult or

even impossible: In many cases, especially in advanced technology node, the choice of the

foundry is limited to one or a very few, none of which may be trusted. Even if a trusted

foundry exists, fabrication of a small volume of ICs for obtaining a golden IC is usually

cost prohibitive[22]. Moreover, the process used in each foundry is quite different and a

golden IC that is fabricated in one foundry can not be used for assessing an IC fabricated

in another foundry.

3

For these reasons, we do not assume the existence of a golden IC. Instead, we develop

and train a learning-assisted timing-adjustment model post-fabrication that combined with

a voltage variation modeling during Static Timing Analysis (STA) and make a golden model.

This work is motivated by two previous papers: The side-channel power analysis in [22] and

side-channel delay analysis in [29], a short description of which is given next:

The side-channel statistical power analysis solution for Trojan detection in [22] proposed

that the trusted region for the operation of a Trojan free IC can be learned using a com-

bination of a trusted simulation model, measurements from the carefully engineered and

distributed Process Control Monitor (PCM) structures, and advanced statistical tail mod-

eling techniques. This work, however, relies on side-channel power analysis for the detection

of hardware Trojan. For observing a meaningful change in leakage or dynamic power, the

size of HW Trojan has to be large. Hence, this technique falls short of detecting Hardware

Trojans implemented using a small number of gates. This is when our proposed solution

can detect even a single added logic gate in a tested timing path. Besides, [22] relies on

the usage of PCMs (with a defined structure that is repeated and distributed over the IC)

for extracting the process parameters. However, the number and accuracy of PCMs are

limited. Although PCM can roughly track the process corner from chip to chip and could

be used for the rough calibration of timing and spice models, they fall short of accurately

characterizing the behavior of different gates and metal layers. This is when in our proposed

solution, every timing path could be used as a PCM for training the neural assisted timing

augmentation engine, and therefore the impact of different timing path topology, different

gate types/sizes, and the change in the capacitive or resistive load of different metal layers

are taken into account.

The side channel delay analysis solution in [29] uses Clock Frequency Sweeping Test

(CFST) to detect the hardware Trojan. However, it relies on the existence of a Golden

IC for delay comparison. Our proposed side-channel Trojan detection scheme is inspired

by this work (and used CFST for the generation of label data points for each feature set),

however, our proposed mechanism does not need a Golden IC.

Chapter 2: Background

In practice, a HW Trojan can be inserted at any stage of the design flow[37–41]. Upon

activation of the Trojan, the Trojan delivers its payload which can result in a denial of service

in the whole or part of the circuit, corruption of the circuit’s functionality, an alteration in

the characteristic of the circuit such as aging factors, or leaking secret information [40,41].

Countermeasures against HW Trojans can be categorized into the design-for-security,

run-time monitoring, and detection solutions [41]. The design-for-security approaches opt

to reduce the chances of Trojan insertion (e.g., through hardware obfuscation). However,

they can neither guarantee a Trojan free IC nor detect them. The run-time techniques

monitor the functionality of the IC (usually through snapshots of its operation) at run-time

[42], and compare it against known behavior signatures. However, if the Trojan impact does

not persist, it does not create the expected signature, or affects the IC’s behavior in a way

that is not modeled (in the monitoring solution), the monitoring schemes will fail to detect

the Trojan. On the other hand, detection approaches aim to directly or indirectly detect

the presence of HW Trojans. Detection solutions could be destructive or non-destructive

[41]. The destructive solutions, that could provide an ultimate proof for Trojan’s presence

in the selected IC, require full reverse engineering of the IC.

The non-destructive detection approaches can detect the Trojans by either activating

them or via side-channel signal analysis [40,41,43]. The former relies on finding a set of input

patterns that trigger the possible Trojan such that the Trojan results in a noticeable impact

(e.g., change in expected output). On the other hand, the side-channel based detection

methods attempt to identify the Trojan presence through side-channel information obtained

from an IC, e.g., power consumption [1,20,21,44], electromagnetic emanations [45], or path

delays [29–31].

4

5

Detecting Trojans by activating them during manufacturing test is significantly chal-

lenging. In principal, Trojans are designed to be activated through a rare sequence or

combination of events, only known to the adversary [29, 41]. Testing an IC exhaustively

using all sets of possible patterns is not practically feasible [29]. Note that not all HW

Trojans alter the functionality. For example, a HW Trojan may be designed to leak se-

cret information (with antenna or noise); making such Trojan immune to activation-based

solutions as the functional impact of such HW Trojan is not observable.

Trojan activation solutions’ limited coverage has encouraged the research to focus on

side-channel analysis-based detection techniques. One widely studied Trojan detection di-

rection is through side-channel power analysis [1,46–49] that focuses on power consumed by

The Trojan Circuit (TC). However, for side-channel power analysis, TC should be partially

or fully activated. Therefore it is better suited for Trojans, trigger of which is connected to

shorter timing paths with a higher degree of controllability. At the same time, the power

signature of the TC should be significant enough to stand out (make a noticeable change in

the power consumption of the IC) as the demanded current of an IC can be monitored with

limited precision (through package balls or, at best case, through power delivery networks

pads). Hence, the observed current signature is the accumulation of the transistors’ cur-

rent needed for the normal function of the IC and those added for implementation of TC.

Therefore, the size of a TC should be large enough to be observable using such techniques.

The delay side-channel test, on the other hand, focuses on the change of the delay and

measures path delays to detect a Trojan [19]. The delay analysis proposed in [30] monitors

the critical timing-paths to detect Trojans. However, it fails to consider the near-critical

or shorter timing paths. The authors of [31] insert shadow registers to measure the delay

of each timing-path. However, this results in a large area overhead. Finally, the solution

suggested by [29] uses Clock Frequency Sweeping Test (CFST) to detect Trojans. However,

it relies on the existence of a Golden IC for delay comparison. This work inspires our

proposed side-channel Trojan detection scheme; however, our proposed solution relaxes the

need for the presence of a Golden (trusted) fabricated IC.

Chapter 3: Threat Model and Challenges

3.1 Trojan Threat Model

The adversary in this paper is an untrusted foundry with access to GDSII (Graphic Database

System format). The goal of the adversary is to insert a Trojan that is triggered based on

a combination, or a sequence of rare events. A Trojan, As illustrated in Fig. 3.1, consists

of 1) Trojan’s Trigger inputs (TT), 2) Trojan’s Triggering (which could be sequential or

combinational) Circuit (TTC), and 3) Trojan Payload (TP). Upon activation, the TP alters

the circuit functionality. We assume that no Golden IC exists, and the Trojan is inserted

in all fabricated ICs.

3.2 Trojan Detection Challenge: Variability

The TT of an HW Trojan poses an additional capacitive load on its driving cell, resulting

in a slower rise and fall, while its TP adds a gate delay to its victim timing path. In a

perfect world, A Trojan can be detected by tracking and analyzing the changes in the delay

of timing-paths compared to that predicted by STA. The challenge for this solution is that

STA suggested delay information can be significantly different from delay information that

is collected at the test time. This is due to several factors most notable of which are: 1-

voltage noise, 2- Process Variation (random and systematic variations), and 3- process drift.

Voltage Noise: In an ASIC chip, the current flow to and return from transistors via

the Power Delivery Network (PDN), which consist of a sequence of resistive, inductive and

capacitive elements. A flow of current through a resistive element manifests a voltage (IR)

drop that is proportional to the current flow (I) and element’s resistance (R). Furthermore,

the current flow is orchestrated by the die switching activity that changes per clock cycle

6

7

Figure 3.1: (left): Trojan taxonomy, (right): Trojan trigger circuit types

[50]; Hence, due to inductive nature of PDN, transistors also experience an inductive voltage

drop which is proportional to the PDN’s inductance profile (L) and the rate of change in

the current, denoted by d(i)/d(t), which exacerbates at scaled geometries with increased

current demand and higher frequencies [51]. In addition, there are both intentional and

device/metal topology related decoupling capacitance (DECAP), that decouple the power

and ground lines. This results in the PDN to act as an RLC network. In the result, the

voltage that a transistor experience is below the voltage supplied from the voltage regulator

and also changes dynamically from cycle to cycle causing variation in the delay of timing

paths [52]. The cycle to cycle voltage variation, which in physical design flow is denoted

by voltage noise, causes clock jitter [53] leading to uncertainty in clock arrival time to the

clock pin of registers.

During STA the IR drop and voltage noise are modeled by (1) specifying a rail voltage

value below supplied voltage to account for IR drop, and (2) using register-endpoint un-

certainty to guard against voltage-variation-induced clock network jitter [53]. The chosen

values for the rail-voltage and uncertainty should be pessimistic to capture the worst-case

(to prevent setup/hold timing failure). However, the majority of timing-paths experience

smaller IR-drop and voltage noise [54]. This poses a security threat; the pessimistic margins

build large unused timing slack into the majority of timing-paths, which is not visible to the

physical designer and test engineer. The unused timing slacks can be used by an adversary

in an untrusted foundry to design a Trojan and hide its delay impact.

Random Process Variation: The random process variation refers to the variations

in the physical and electrical properties of transistors due to the physical limitations faced

8

during the fabrication process [55]. The random process variation impacts the delay and

drive strength of fabricated transistors and makes Trojan detection more difficult as the test

engineer needs to differentiate between the delays imposed by random process variation and

the timing impact of an HW Trojan. Figure 3.2 illustrates the effect of the random process

variation on the slack of timing paths.

Figure 3.2: The impact of random process variation on the delay of a timing-path when sampled across
multiple dies (after fabrication).

Systematic Process Variation: Systematic Process Variation is the result of imper-

fection in one or several process steps, as a result of which, a systematic shift occurs in the

behavior of transistors or wires. For example, the systematic shift may speed up all NMOS

transistors, increase the capacitance of a given metal layer, or reduce PMOS transistors’

strength. Unlike random process variation (mitigation of which is disclosed when we de-

scribe our IC classification methodology), the systematic (inter-die) process variation affects

all devices similarly. Therefore, systematic process variation behaves similarly to process

drift, with the difference that process drift is the intended consequence of improving the

fabrication process. On the other hand, the systematic process variation is an unintended

consequence of imperfection in one or several processing steps. For example, if during the

Chemical Mechanical Polishing step, the height of a specific metal layer, e.g., M4, was less

or more than the process defined height, the expected resistance, and capacitance of all M4

9

net segments systematically shifts. In practice, the systematic process drift can be treated

similarly to process drift.

Process Drift: The SPICE model for the fabrication process in a new technology node

is released soon after the process is stabled and is used to characterize the standard cell

libraries deployed in a physical design house. The SPICE model and standard cell libraries

are padded with carefully crafted margins to guarantee a high yield. Furthermore, the

foundry keeps improving the process over time to improve yield and reduce cost and may

update the process by deploying newer and more capable stepping devices. Hence, the

fabrication process and the released SPICE model drift apart over time. The improvement

in the process builds large unused slacks in a fabricated IC that is designed using the older

SPICE model. This practice poses a security problem as these unused and hidden timing

slacks (to the test engineer) can be used by an adversary in the untrusted foundry to design

stealthy HW Trojan(s). Figure 3.3 illustrates the impact of the Process Drift on the slack

of timing paths.

Figure 3.3: Improvement in the process over time non-linearly changes the delay of different timing-paths
(process drift). The process drift affects each timing-path differently.

Chapter 4: Proposed HW Trojan Detection Solutions

Proposed modeling technique integrates multiple variation modeling and mitigation tech-

niques into a side-channel delay analysis solution for the purpose of HW Trojan testing.

Using our proposed model, we characterize and mitigate the impact of voltage noise, pro-

cess variation, and process drift to improve the correlation between the adjusted timing

model and the fabricated ICs’ timing behavior. We first describe how each of these varia-

tion sources is modeled and mitigated, and then explain how each mitigation technique is

integrated into the proposed scheme to improve the chances of detecting an HW Trojan.

4.1 Modeling and Tracking the Process Drift

Process drift results in a non-uniform shift in the delay of different timing-paths. To model

the timing impact of process drift, we design and train a Neural Network (NN) to act as

a process tracking watchdog (NN-Watchdog) [56]. This NN-Watchdog is used to predict

the difference between the slack reported by STA at design time and that sampled from

fabricated IC at test time. To train the NN-Watchdog, we need a labeled data-set. Each

data point in our data-set is a collection of 48 input features and a label value. The input

features, detail of which is in Table 4.1, are extracted from physical design EDA and the

STA engine. The label for each data point is the difference between the slack reported by

STA (at design time), and that obtained by CFST [29] (at test time).

To assess the effectiveness of NN-Watchdog (and for lack of access to fabricated ICs),

we modeled the process drift by extracting the shift in delay values from SPICE simulations

performed using a skewed SPICE model. For this purpose, we first extracted the SPICE

model for each timing-path in the input training. Then, to mimic a systematic process

drift, the SPICE model was skewed such that the NMOS and PMOS transistors were ∼X%

10

11

Table 4.1: Description for each of 48 features, extracted from each timing-path for building the NN training
set. (LP: Launch portion of timing-path, CP: Capture portion of timing-path, DP: Data portion of timing-

path, M: Metal Layer, x: drive strength of the gate)

Total of 48 Features, 3 Feature Extracted from each timing-path

Setup Time Path delay reported in STA Sum of fanout over cells in DP

45 Feature Extracted, 15 from each sub-path (CP, LP and DP)

number of gates subpath Delay # cells of x0 strength

cells of x1 strength # cells of x2 strength # cells of x4 strength

cells of x8 strength # cells of x16 strength # cells of x32 strength

Total Length of M1 Total Length of M2 Total Length of M3

Total Length of M4 Total Length of M5 Total Length of M6

faster, and the Metal capacitance for Metal layers 1 to 7 was derated by Y%. Selection of

X and Y gives us a consistently faster or slower process model. For example, the selection

of (X,Y) = (5, 5), (0, 0), (−5,−5) produces Fast, Typical, and Slow process models in our

simulations. The resulting database was then divided into 1) training-set for training the

NN (60% of timing-paths), 2) verification-set used for assessing the trained model accuracy

while training (20% of timing-paths), and 3) test-set used for reporting the results (20% of

timing-paths).

We then design and train a fully connected feed-forward NN (Fig. 4.1.(left)) as a process

tracking watchdog that predicts the difference between the slack reported by STA and slack

measured by the tester. To find a NN architecture with high accuracy, we utilized Keras

[57] and trained a large number of models by sweeping various model parameters. The

number of hidden layers was swept between 1 to 3, and the number of nodes in each hidden

N1

N2

N23

N1

Feature1

Feature2

Feature38

Input Layer Hidden Layer Output

Input Layer Hidden Layer Output

Feature Selection
Number of Input features from Table. 2 48
Number of Output Neurons (regression model) 1
Number of hidden layers 1
Number of Neurons in the hidden layer 23
Activation function tanH
Optimizer Adam
Loss function MSE
Utilized Machine Learning Library Keras

Figure 4.1: The configuration of the feed-forward fully-connected NN trained in this work to serve as a
test-time process watchdog.

12

layer was swept from [input+output2 to 2×(input+output)
3]. We also tested different activation

functions including: tanH, Sigmoid, ReLU , PReLU , Power, Log, and Exp. The object of

the training was defined to reduce the sum of squared distances (MSE) between the model’s

(slack shift) prediction and labeled data. The latency of the model can be also improved

by designing dedicated accelerators like TCD-NPE [58] and NESTA [59].

We separately trained each model for AES128, Ethernet, and S38417 (from IWLS bench-

mark suit[60]) benchmarks using 21K, 20K, and 4K timing-paths for training, respectively.

Data collected from the training of over 5K models revealed that the configuration that is

shown in Fig. 4.1.(right) achieves the highest regression accuracy in most cases. When using

a single ”NVIDIA Tesla k80” GPU, the training time of this network for s38417, Ethernet

and AES128 was approximately 1,4 and 5 hours respectively.

4.2 Modeling and Mitigating process variation

We divide the process variation into two categories: 1) Random Class that includes the

independent intra-die process variation, and 2) systematic class including all forms of inter-

die and correlated intra-die variation. We use two different mechanisms to deal with random

and systematic process variation: (1) We perform speed binning on fabricated ICs and

divided them into different speed bins (Fast, Normal, and Slow), arguing that ICs in the

same bin are similarly affected by the systematic process variation. Then for each bin, we

train an NN-Watchdog. (2) To reduce the impact of random process variation, using the

formulation presented in Fig. 4.2, we collect the delay of each timing path (in our test set)

from many ICs and compute their average delay to be used in our HW Trojan detection

solution. When the timing-path delay is averaged across N different dies, the standard

deviation of the random variable representing the average delay is N times smaller than the

standard deviation of individual samples (σAV G = σsample/N). Note that the mean value is

computed from discrete delay samples obtained from CFST test, and the tester’s size (S),

as illustrated in Fig. 4.2, affects the value of the computed mean.

13

Actual Path Delay
Recorded Path Delay

Sa
m

p
le

 C
o

u
n

t

Step Size and Start to Fail Freq. … T-4S T-3S T-2S T-S T
… C4=2 C3=5 C2=1 C1=0 C0=0

𝑪𝒊 = 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑺𝒂𝒎𝒑𝒍𝒆𝒔 𝒊𝒏 𝑺𝒕𝒆𝒑 𝒊

𝑺 = 𝑺𝒕𝒆𝒑 𝑺𝒊𝒛𝒆 𝑻 = 𝑪𝒍𝒐𝒄𝒌 𝑷𝒆𝒓𝒊𝒐𝒅

𝒎 = 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑺𝒕𝒆𝒑𝒔

𝝁 =
 𝒊=𝟏
𝒎 𝑪𝒊 × (𝑻 − 𝒊 × 𝑺)

 𝒊=𝟏
𝒎 𝑪𝒊

𝝁

Figure 4.2: Computing the mean delay of a path using CFST delay measurements with step size S, clock
period T, over m samples (dies).

To emulate the systematic process variation (within the same process corner), we created

2 additional derivatives (slightly modified copy) for each of our skewed SPICE models. Each

skewed SPICE model was altered to make the transistors in the first derivative 1% slower,

and in the second derivative 1% faster. To model Random process variation, each SPICE

simulation is subjected to 100 Monte Carlo simulations (modeling CFST performed on 100

different dies in the same speed-bin), where the threshold voltage (Vth), Oxide thickness

(Tox) and channel Length (L) are varied (based on a normal distribution) to model the

variation of path delays from chip to chip according to the expected variation in 32nm

technology node.

4.2.1 Modeling Timing Impact of Voltage Noise

To improve the accuracy of our timing model (GTM), we utilize a methodology [54] that

models the voltage drop and voltage noise. The voltage modeling flow models the voltage

drop and endpoint uncertainty (due to the voltage-induced clock jitter) using a differential

voltage pair (different voltages for launch and capture path of a timing-path). The differen-

tial voltage pair is obtained based on a statistical analysis performed on the design-specific

IR simulation results. By using this voltage modeling scheme, the voltage-induced clock

jitter uncertainty becomes path specific. This removes the need for a large hard margin,

resulting in the majority of timing-paths to benefit from the smaller and dynamically com-

puted margins. We first introduce a new metric, coined as Delay Equivalent Voltage

(VDEV) that could be used to express the effective voltage of a timing path. Then we

14

illustrate how we can extract and use this metric to margin a design against IR drop and

voltage noise, and illustrate how the computed IR drop and voltage noise generated from

this flow track the physical and PDN changes.

(V1, D1) (V2, D2) (Vn, Dn)
(VDEV, d1) (VDEV, d2) (VDEV, dn)
Stage 1 Stage 2 Stage n

Physical delay model
DEV delay model

Model

Figure 4.3: Inverter chain delay based on individual cell voltages when modeled by actual and VDEV voltages.

4.2.2 Delay Equivalent Voltage

Consider the inverter-chain in Fig. 4.3. Each inverter, after physical placement, is connected

to a different point of the on-chip PDN and experience a unique voltage signature. The

Timing Window (TW) of a cell is defined as the time interval in which the cell propagates

an arriving input signal to its output. The supplied voltage to a cell can only affect the delay

of a cell during its TW. Let’s assume that during its TW the inverter at stage i experiences

the average voltage Vi, and accumulated delay of the inverter and next stage wire when

voltage Vi is supplied, is Di. Hence, the total delay of the inverter chain is
∑
Di. The

VDEV is now defined as a single voltage that when applied to all inverters in the chain, the

delay of the chain remains unchanged. In another word, the application of VDEV changes

the delay of inverter i from Di to a new delay di, such that:
∑N

i=1Di =
∑N

i=1 di.

Using the alpha power model, the delay of a cell is defined as:

Di ≈
kiVi

(Vi − Vth(i))α
(4.1)

In this equation ki is a technology dependent constant, Vi and Vth(i) are respectively

the voltage and threshold voltage of ith cell, and α is the velocity saturation constant,

where based on choice of technology node and process is bounded by 1 < α < 2 [61]. By

differentiating this equation over voltage, the delay impact of small variation in the supplied

15

voltage can be expressed as:

dDi = −
ki − αkiVi

Vi−Vth(i)
(Vi − Vth(i))α

dVi (4.2)

Let’s consider dDi as the difference in delay of a cell when instead of Vi, the voltage

VDEV is applied. Additionally, let’s define dVi as:

dVi = VDEV − Vi (4.3)

Based on its definition, when applying the voltage VDEV to all cells in a logic path we

expect the same delay (dpath) as of when each cell is annotated with its own unique voltage.

More precisely, if the application of VDEV to ith cell in a logic path causes delay variation

dD(i), the overall path delay variation should be zero. Hence:

∆dpath =
N∑
i=1

dDi =
N∑
i=1

−
(ki − αkiVi

Vi−Vth(i)
)× (VDEV − Vi)

(Vi − Vth(i))α
= 0 (4.4)

Let’s define voltage headroom as Ωi = Vi
Vth(i)

. After simplification and by using (4.1), we

can rewrite the equation for VDEV as:

VDEV =

∑N
i=1

Di[Ωi(1−α)−1]
Ωi−1∑N

i=1
Di[Ωi(1−α)−1]

Vi(Ωi−1)

(4.5)

Based on this equation, the VDEV of a timing path, by knowing the individual voltages

of each cell could be calculated. In this equation, the Vth(i) and Vi are known, and we only

need the Di, which is the delay of a cell when voltage Vi is applied. In order to compute the

Di quickly and effectively, we could use linear interpolation between delays specified in the

library at different voltages. However, to improve the accuracy of the result, as illustrated

in Fig. 4.4, we use non-linear interpolation between PVT corners defined using Composite

16

Current Source (CCS) delay libraries [62]. In order to enable CCS non-linear interpolation,

we need to have at least 3 CCS-enabled standard cell libraries at different voltages (for the

same process and temperature). With this setup, we can generate timing sessions for each

voltage within the range of voltages covered by CCS libraries. Using this setup, we perform

timing analysis for multiple voltages in the desired range of IR drop and generate additional

voltage-delay reference points. Now, let’s consider that after IR analysis we obtain a cell

voltage to be Vi. We first identify two closest timing sessions whose applied rail voltage

value encapsulates the Vi. Then we obtain the delay of the desired cell in each of the timing

session. Let’s denote the two timing sessions’ voltages by VSlow and VFast and the delay of

the desired cell in each timing session by DSlow and DFast respectively. The delay of the

desired cell with voltage Vi could be obtained using the linear interpolation in equation 4.6.

As illustrated in Fig. 4.4, by generating additional timing sessions (generated using CCS

nonlinear interpolation), the error of the final linear interpolation for Di is considerably

reduced.

Di = DFast +
DSlow −DFast

VSlow − VFast
× (Vi − VFast) (4.6)

V1 V2 V3

DV3

DV2

DV1

Dn

Dx

Vn

Error

V1 V2 V3

DV5

DV3

DV1

Dn

Vn

Error

V3 V4

DV2

DV4

Dx

A

Real delay
Non-linear model

B

PV1T

PV2T

PV3T PV4T PV5T

PV1T

PV2T PV3T

Figure 4.4: (left): Larger error for linear interpolation of a cell delay when using three timing session;

(right): Generating two additional timing sessions using CCS non-linear interpolation followed by non-linear
interpolation of the cell delay which resulting in a smaller interpolation error.

17

tcs-cr

tpd
tsetup

tcs-lr

tcqB

GND

VDD

Capture

Data
Launch

Common

A

Figure 4.5: (left) The naming convention for different sections of timing path, (right): Delay components of
a timing path

4.2.3 Using VDEV for STA annotation

In order to improve the accuracy of GTM, we replace the IR drop and uncertainty hard

margins, with a statistical representation of VDEV , and bound the voltage of launch and

capture sub-paths in each timing path separately. To do this, we rely on a recently supported

feature of modern timing engines that support two different voltages for launch and capture

paths when performing setup and hold timing checks.

The most contributing factor to clock Jitter is the dynamic change of voltage (voltage

noise) from cycle to cycle. Hence, by providing a set of two different voltage for launch and

capture path, we can capture the worst case clock jitter effectively and remove the related

endpoint register’s uncertainty altogether. Let’s consider the timing path in Fig. 4.5 during

a setup check in two consecutive clock cycles; In the first clock cycle, the voltage of the

cells in the common, and launch portion of clock path, leading to the launch register, will

determine how fast the clock reaches the clock pin of launch register. In the second cycle,

the voltage of the cells in the common and capture portion of the clock, determine how fast

the clock signal reaches the capture register’s clock pin. Considering that voltage changes

from cycle to cycle, the arrival time of the clock to the launch and capture registers changes

at each cycle. The worst-case arrival time of the clock, leading to the worst-case jitter is

when the voltage in the first cycle is low (late lunch), and in the next cycle is high (early

capture). Hence, if based on a dynamic IR drop analysis, we can provide the expected

worst-case rail voltage values (the IR drop), and could statistically determine the worst-

case change in rail voltage value from a cycle to the next, we could completely remove the

18

uncertainty for the endpoint register, relying on the two (min and max) voltages to compute

the worst-case jitter for each timing path. In this case, instead of using a fixed uncertainty

value for the entire design, the amount of jitter is automatically computed for each timing

path based on its launch and capture topology (the type and number of cells in each sub-

path). Note that the original formulation for protecting the timing path against voltage

noise jitter is overly pessimistic, as the degree of uncertainty was computed when worst

case voltage noise was applied to the worst case topology (longest clock path). However, in

our proposed formulation, the impact of voltage noise on clock jitter is determined based

on topology of each timing path, reducing the extent of pessimism by avoiding the double

margining (worst case voltage noise + worst case path) against voltage noise.

In order to derive the proper voltages to perform the setup and hold check in a timing

engine, we need to set up an IR simulation. For this, the IR drop is divided into that of

the package+ die, and that of the board. The IR drop in the board is of both resistive and

inductive nature. However, the frequency of the RLC oscillation of the board is usually in

the range of KHz to few MHz, which is much smaller than die frequency. Additionally, due

to the large difference in their time constant (and frequency), the cycle to cycle variation on

the die and RLC oscillation on the board could be considered as independent. Hence, using

ANSYS Redhawk [63] we only simulated the package + die and used the worst-case of IR

drop in the board as a constant IR drop. The worst-case IR drop in the board, in typical

industrial designs, based on the quality of board and DECAP engineering, is between 2%

to 4% [64]. The package s-parameter model is then extracted and used in IR simulation.

The starting voltage for IR analysis (at package balls) was then set to voltage regulator’s

voltage minus 4% drop in the board.

For IR simulation, due to time-consuming nature of IR analysis, we are constrained to

perform the IR analysis for no more than a couple of hundreds of cycles. Hence, in order

to capture the worst-case scenarios in our IR simulation (worst case IR drop and cycle to

cycle voltage variation), we resort to the following methodology: For a given netlist, we

find its max-power vector, and fast profile the power consumption across thousands of cycle

19

using PrimeTime PTPX or Redhawk. From the obtained cycle-accurate power trace, we

identify the following 5 scenarios: the part of the trace that contains (1) cycles resulting

in the highest sustained power consumption (for at least 5 cycles), (2) cycles with largest

increase in the power consumption from one cycle to the next, (3) cycles with largest drop

in power consumption from one cycle to the next, (4) cycles with largest increase in the

average power over two 10 cycles segments of the trace, and (5) cycle trace containing

the largest decrease in the average power over two 10 cycle segments of the power trace.

These 5 scenarios are chosen to detect the worst case IR drop and worst case cycle to cycle

voltage variation (possibly due to phase change in the input vector) of the design. Each

of this scenarios is padded with 30 cycles of pre-simulation (10 of which is ignored when

computing the VDEV resulting in a total simulation of less than 200 cycles). By simulating

a netlist for 200 cycles, we will obtain an effective voltage per cell per cycle. Using this

simulation environment, the timing engine’s voltages for launch and capture rail values

could be computed as follows:

Using taxonomy in Fig. 4.5.(right) the Common+Launch+Data portion was considered

as Launch-Path (LP) and the Common+Capture portion was considered as Capture-Path

(CP). Using methodology described in section 4.2.2, we extracted the VDEV for each of LP

and CP of each timing path. Let VDEVL(Ci, LPj) be the VDEV of the LP of the jth timing

path at cycle i− > (i+ 1). The mean value of VDEV across all cycles for all measured paths

is obtained from:

µVDEVL
=

1

C × P

C∑
i=1

P∑
j=1

VDEVL(Ci, LPj) (4.7)

In this equation, C is the number of simulated cycles; and P is the number of timing

paths. The standard deviation of VDEVL is then used to capture the extent of launch voltage

variation, which is obtained from:

20

σVDEVL
=

√√√√√ C∑
i=1

P∑
j=1

(VDEVL(Ci, LPj)− µVDEVL
)2

C × P
(4.8)

Voltage Regulator

C4 Balls

BOARD

PACKAGE

DIE

Package Bumps

Transistor Level

1
0

%
 M

ar
gi

n 5
%

 M
ar

gi
n

Conventional Proposed

𝝁𝑰𝑹𝑫𝒓𝒐𝒑

𝟑 × 𝝈𝑽𝑫𝑬𝑽𝑳
𝑨𝒈𝒊𝒏𝒈 𝟑 × 𝝈(𝑽𝑫𝑰𝑭𝑭𝑳𝑪)

𝑽𝑫𝑰𝑭𝑭𝑳𝑪 = 𝑽𝑫𝑬𝑽𝑳 𝑵 − 𝑽𝑫𝑬𝑽𝑪(𝑵 + 𝟏)

𝑴
𝒊𝒏
𝑫
𝒓
𝒐
𝒑
(𝑽

𝒎
𝒊𝒏
)

𝑰𝑹
𝑫
𝒓
𝒐
𝒑

𝑴
𝒂
𝒙
𝑫
𝒓
𝒐
𝒑
(𝑽

𝒎
𝒂
𝒙
) 𝑴

𝒐
𝒅
𝒆
𝒍𝒆
𝒅
𝑰𝑹

𝑽
𝒂
𝒓
𝒊𝒂
𝒕𝒊𝒐

𝒏

𝝁
𝑽
𝑫
𝑬
𝑽
𝑳

𝑽 = 𝟎

Figure 4.6: Modeling rail voltages, considering IR drop across board, package and die, for STA annotation.

To protect the circuit against aging effects such a Negative-Bias and Positive-Bias Tem-

perature Instability (NBTI and PBTI) and Hot Carrier Injection (HCI), we could also

include a measure VAging = VNBTI + VHCI + VPBTI to account for this phenomenon. At

this point, as illustrated in Fig. 4.6, we compute the voltage representing the largest drop

on a sub-path (Vmax) using:

Vmax = µVDEVL
−K × σVDEVL

− VAging (4.9)

Where K (e.g. K=3) is the guardband factor. We then, need to determine the extent of

the voltage noise. The voltage noise of timing path P, from cycle i to cycle i+ 1 is obtained

from:

VDiff [Ci, Pj] = VDEVL [Ci, Pj]− VDEVC [Ci+1, Pj] (4.10)

Considering P timing paths, and C cycles, there exist P × (C − 1) data points for

the voltage noise for all investigated timing paths. Using this data points the σVDiff
and

µVDiff
, similar to equations (4.7) and (4.8) are extracted. Using these values, the voltage

21

representing the maximum recovery from Vmax within one cycle, denoted by Vmin (minimum

voltage drop) is obtained from:

VMin = VMax + 3σVDiff
+ µVDiff

(4.11)

Note that Vmin represents the maximum voltage departure of a timing path from Vmax

that is achievable in a single clock cycle. By using Vmin and Vmax as voltage values for

LP and CP of a timing path, both IR drop and voltage noise are modeled. The voltage

difference allows the timing engine to effectively compute the jitter per timing path and there

is no longer a need for using an uncertainty margin for register endpoints for this purpose.

Additionally, the jitter will be unique for each timing path depending on its topology, reducing

the unnecessary jitter margin for the majority of timing paths. Note that if we had input test

vectors covering all worst scenarios, and we were able to simulate the IR drop for very large

input vectors, we could have annotated each timing paths, based on its own distribution of

VDEV . However, in reality, for IR analysis and for practical purposes, we are limited to IR

simulation for 100s of cycles. For this reason, we still need to statistically margin the voltage

drop and voltage variation. However, in this case, the computed voltages (1) are computed

based on realistic worst-case values observed in the design and not the rule of thump. (2)

track the changes in PDN and physical design. Hence, not only the physical designer can

safely reduce the margins to voltages suggested by proposed voltage modeling scheme, but

could also observer the IR and timing impact of changes in PDN and physical design, and

make more informed decisions. Algorithm1 captures the process explained previously.

Algorithm 1 Computing Vmax and Vmin Rail Voltage Values

1: µVDEVL
← mean of (VDEVL [Paths][Cycles]); K ← 3;

2: σVDEVL
← Standard deviation of (VDEVL [Paths][Cycles]);

3: Vmax ← µVDEVL
− (k × σVDEVL

)− VAging;

4: for all C in (Cycles− 1) do
5: for all P in Paths do
6: Vdiff [P][C]← VDEVL [P][C]− VDEVC [P][C + 1];

7: µVDiff ← mean of (Vdiff [Paths][Cycles]);

8: σVDiff ← Standard deviation of (Vdiff [Paths][Cycles]);

9: Vmin ← Vmax + (K × σVDiff) + µVDiff ;

22

Usage of computed voltages is straightforward; State-of-the-art timing engines support

dual rail voltages for LP and CP. For example, using Synopsys PrimeTime [65], the Vmax

and Vmin could be applied using the following command:

PT > set rail voltage − dynamic − vmin < Vmin > (4.12)

PT > set rail voltage − dynamic − vmax < Vmax > (4.13)

Note that the proposed rail voltage modeling is far less pessimistic that annotating

each cell with its worst case and best case voltage (as adopted by recent EDA tools) for

the purpose of setup and hold timing check. This is because by using VDEV we have

accounted for the accumulated impact of delay variation due to individual cell voltage drops

across all cells in a timing path. In addition, this voltage modeling technique accounts

for the maximum voltage difference between the launch and capture portion of a timing

path that could be developed within one clock cycle. Whereas if the cell voltage is

annotated with their highest and lowest observed voltage (as adopted by several EDAs),

such differential voltage is substantially exaggerated and is not based on physical reality, as

such differential voltage could not be developed within one clock cycle.

4.3 Trojan Detection Flow

Fig. 4.7 shows the overall flow of the proposed Trojan detection flow. We augment the

design stage with an additional step for statistical modeling of the voltage noise and IR

drop using proposed voltage modeling. Accordingly, the STA reports the timing slack of

each timing path based on its estimate of voltage drop and voltage noise (as opposed to a

global pessimistic margin). This, as we will illustrate in the result section, will improve the

correlation between timing slack predicted by timing engine, and the timing slack observed

at test time using CFST. The final GDSII is then sent to the foundry for fabrication. The

fabricated ICs may be tested in the untrusted foundry for functionality. The working ICs

are then sent to a trusted facility for Trojan detection.

23

Trojan Detection TestsFabricationDesign

Netlist

Physical
Design

Voltage Noise
Modeling

Timing Closure

Met
Spec?

Configuration

TDF Pattern

Feature
Extraction

Nodes on
short or

long path?

Trojan
Analyzer

TDF Test
Pattern

With Trojan Trojan Free

Chip Finishing

Tester CFST

NN Training

NN-Watch-Dog

Configuration
Trojan Signature

Power based HT
Detection

N
o

t in
 th

e
 s

c
o

p
e

o
f th

is
 w

o
rk

No

Yes

Long Path

Short Path

Speed
Binning

Train or
Test?

Train

Test

Slack adjustment

M
o

d
e

l

G
D

SI
I

G
TM

D
ie

Figure 4.7: Trojan Detection Flow: The model includes changes in the design and test stages. The test stage
divides the timing-paths into long and short paths. The short paths are subjected to power side-channel
Trojan detection as described in [1] (not covered in this paper), and the long paths are subjected to delay
side-channel analysis using GTM as reference timing model, adjusted by a NN that is trained as a process
watchdog and by using CFST to find the start-to-fail frequencies for timing-paths under test.

To detect a Trojan, we need to find the TT/TP induced slack change. As Fig. 3.1

shows, a TT adds capacitive load to driving cell of its observed net, and the TP appends

an additional gate delay to every timing path that passes through its victim net. To detect

a victimized or a monitored net (by a TP or TT), and for having no prior knowledge on

which nets are affected, we need to include all nets in our delay analysis. We define a

P2P-wire as a net that connects the output pin of a driver cell (or a primary input) to the

input pin of one of its fanout cells (or a primary output). Hence a gate with a fanout of

4 has 4 P2P-wires. Each P2P-wire will be tested for rise and fall transitions. To increase

the detection rate and to account for process variation, this process may be repeated for

N different timing-paths passing through that net. The second criteria for selecting the

timing-paths is the maximum frequency of the tester equipment; The delay of the selected

paths should be larger than the limit imposed by the maximum reachable frequency of

the tester equipment. If the P2P-wire in no timing-path is long enough for CFST, it is

24

regarded as a candidate for Trojan detection via power-based detection schemes. Note that

timing-paths with a small number of gates (in their data sub-path) have high controllability,

making them ideal for the power-based Trojan detection schemes (e.g. [19–21,44]) that rely

on full or partial activation of such paths. For all other timing-path candidates, we generate

the Path Delay Fault (PDF) test vectors using an Automatic Test Pattern Generation tool

(ATPG). If ATPG cannot generate a test pattern for a path, the path selection changes. If

ATPG cannot generate a test vector for any path through that P2P-wire, it is discarded.

Algorithm 2 Trojan Detection Flow

1: N = # paths to be tested through each net in the design
2: Nets ← all nets in the design.
3: for all net in Nets do . net selection of Path Delay Fault (PDF) test

4: T imingPaths + = select N timing-paths passing through net

5: Perform speed binning on all dies and assign them to B bins.
6: for all bin in B do . NN training
7: NNbin ← Train a NN-Watchdog according to the algorithm 3
8: σNNbin

← the standard deviation of NNbin

9: for all die in bin do
10: Slack = 0
11: for all path in T imingPaths do
12: CFST(bin,die,path) ← path slack measured by CFST die in the bin

13: Slack(bin,path) += CFST(bin,die,path)

14: for all path in T imingPaths do
15: µS(bin,path) = Slack(bin,path)/sizeof(bin);

16: TTh= 4×σNNbin
. Detection Threshold = 4σ to reduce false positive

17: for all path in T imingPaths do
18: GTM(path) ← query the slack of path from GTM

19: NNSD(path) ← slack shift suggested by NNbin(path)

20: AS(path) = GTM(path) + NNWatchdog(path) . Adjusted Slack

21: δ = µS(bin,path) - AS(path) . Shifted delay after adjustment

22: if (δ > TTh) then . Trojan Classifier

23: Likely Trojan Set ← path

The Alg. 2 describes our proposed Trojan detection flow. As described in this algorithm,

after selecting the set of timing paths for PDF testing, we speed-bin the fabricated dies.

In the next step, we collect the NN-Watchdog training data using the flow described in

algorithm 3. Then, we train a process tracking NN-Watchdog for each bin and extract the

standard deviation of each NN-Watchdog in predicting the shifted delays. For each bin,

we perform CFST and measure the start to fail frequencies for the selected timing-paths.

The slack difference (δ) between the mean of slacks reported by the CFST and the NN-

Watchdog adjusted slack from GTM (in the same bin) represents the likelihood of a timing

25

path being affected by a Trojan. To make a binary decision, we use a threshold to assess

the significance of δ and classify the timing paths into benign or malignant (Trojan) classes.

Algorithm 3 Generating a training set for the NN-Watchdog

1: NP ← mR2 . R is the registers count, and m is a large number (e.g. 10)

2: T imingPaths ← Select NP timing-paths (min of m path per endpoint)

3: for all path in T imingPaths do
4: feature(path) ← Extract path features from GTM . input feature

5: GTM(path) ← Extract path slack from GTM

6: Slack(path) = 0

7: for all die in Dies do
8: for all path in T imingPaths do
9: CFST(die,path) ← Slack of path in CFST test of die

10: Slack(path) += CFST(die,path)

11: for all path in T imingPaths do
12: Slack(path) = Slack(path)/NP ;

13: ∆slack(path) = Slack(path) - GTM(path) . label

14: data-points(path) ← (features(path),∆slack(path))

When choosing a value for Trojan-detection threshold, we face a trade-off between the

false positive rate and the accuracy of Trojan detection. The false positive could be the

result of 1) inaccuracy in the GTM, 2) inaccuracy of NN, and 3) random process variation

for sampling over a small number of ICs. To reduce the false positive rate, the threshold

used for detection should be large enough, to account for these. Since we average the

delay of each timing-path over many IC samples, the impact of random process variation

in the average delay could be reduced to a desirable range. However, we still have to

account for the inaccuracy of the NN and systematic variation. Hence, we define the

detection threshold to be TTh = n×max(σNN , σprocessvariation), in which the σprocessvariation

is the expected variance of systematic process variation (excluding random) and σNN is

the standard deviation of the NN. Since σNN is the aggregated impact of NN inaccuracy

(for under-fitting or over-fitting of the trained model) and impact of systematic process

variation, the variance of σNN tends to be larger than σprocessvariation, and we can simply

use TTh = n× σNN (n is selected as 4 in Alg. 2).

To verify the choice of threshold values TTh, we utilized Youden[66] method to extract

the threshold value from a Receiver Operating Characteristic (ROC) curve that we generate

over our SPICE simulation data (details in chapter 5). Note that at test time, we do not know

26

which timing-paths are affected by HW Trojan. Hence, the optimal threshold of detection

cannot be determined using the Youden method.

Change in the temperature affects the speed of transistors and alters the RC characteris-

tics of the connecting wires. But, the temperature change is an extremely slow phenomenon.

That’s why one can design temperature sensors with sampling frequencies far lower than

operational clock frequency [67,68]. At test time, a test vector is loaded into the scan chain

using a slow clock, then the circuit operates at-speed for two cycles (launch and capture)

using a fast clock. Finally, the scan is offloaded using a slow clock. The heat dissipation

when using a slow clock is quite low, and the duration of at-speed test is only two cycles

for each test pattern, limiting the extent of temperature changes to a fraction of a degree

Celsius. Hence, at test time the die temperature can be tightly controlled to discount the

delay impact of temperature variations.

Chapter 5: Results and Discussion

In this chapter, we first look at the improvements obtained by employing proposed voltage

modeling, then we look at the accuracy of the NN-Watchdog in tracking the process drift,

and then we present the result of applying our proposed test flow, for Trojan detection.

5.1 Proposed Voltage Modeling Accuracy

In this section, the accuracy of our flow in modeling the voltage noise and improvement in

the timing closure are quantified.

5.1.1 Verification of Delay Equivalent Voltage

For the verification purpose, we used Ethernet, S38417 and AES128 netlists from IWLS

benchmark suit [60]. Using Synopsys Design and IC Compiler, we first hardened these IPs

using 32nm cell libraries. Then we run a dynamic vectorless IR simulation using Ansys

Redhawk and extracted cell voltages for 100 cycles of dynamic simulation, padded with 10

cycles of pre-simulation using a toggle rate of 10% and 100% for data and clock cells respec-

tively. Subsequently, we collected 4K timing paths from the routed design and calculated

the VDEV for each timing path. To accurately model the behavior of a timing path for

setup timing check, the voltages applied to the launch and capture path should come from

two consecutive cycles. For this reason, for each cycle of simulation, we have computed the

VDEV for each of launch and capture segment of each timing path for every cycle. In the

SPICE simulation of a timing path, when its LP is annotated with the VDEV of cycle n,

the CP is annotated with VDEV of cycle n+ 1. For the base case, we also annotate the LP

and CP of each timing path with voltage observed in two consecutive cycles from Redhawk

analysis. Hence, when IR simulation for C cycles is available, the setup check could be

27

28

constructed C − 1 times. The hold check, on the other hand, uses the voltage of the launch

and capture in the same cycle.

Monte Carlo
Uncertainty =

0
(pSec)

CMargin based
Uncertainty =

x
(pSec)

VRail

VRail

VDEVD

VDEVC

VDEVLBV7 V8V5 V12
V3

V1 V2

V4

V6

V9 V10V11

A

Figure 5.1: setup for a) the SPICE simulation when using actual voltages obtained from Redhawk; b) the

SPICE simulation when using computed VDEV voltages for LP and CP; c) the SPICE simulation when using

hard margins (using 10% IR drop and 5% uncertainty)

Fig. 5.1 (A and B) illustrate our setup for two sets of SPICE simulation, one when

VDEV is used and one when individual cell voltages are applied, and the resulting slack is

compared. In order to further illustrate the accuracy of VDEV , a third SPICE simulation is

set up where the timing paths slacks are computed using the 10% IR drop rule for the cell

voltages and 5% rule for the uncertainty. For verification, we computed the difference in

the computed slacks when actual voltages are applied to that of when the modeled voltages

(VDEV or voltage obtained from 10% drop) is applied. In the SPICE simulation, the slack

is computed using:

Slack = tcs−cr + Tclk − tcs−lr − tclk−q − tp − tsetup − U (5.1)

where tcs−lr and tcs−cr are the delays of clock path from its source to the launch and

capture register respectively, tp is the longest propagation delay of data path, Tclk is the

clock period, tclk−q and tsetup are the inherent clock to Q, and setup delay for the launch

and capture registers respectively, and U is the applied uncertainty. Using this equation,

the slack differences are obtained from equations:

∆DEV = |SlackActual − SlackVDEV
| (5.2)

29

∆Conv = |SlackActual − SlackVConv
| (5.3)

In this equations, SlackActual is the slack obtained from the application of actual voltages

in each cycle, the SlackVDEV
is the slack obtained from application of VDEV values where

uncertainty constraint is set to zero, and SlackVConv
is the slack obtained by application of

a rail voltage and voltage noise related uncertainty (similar to Synopsis PrimeTime). The

histogram obtained from SPICE simulations of the timing paths for ∆slack is illustrated in

Fig. 5.2. As illustrated, for both benchmarks the ∆DEV is a zero-mean distribution with

much smaller standard deviation compared to the ∆Conv. Smaller difference verifies the

smaller error. Considering the Ethernet, S38417 and AES128 were designed for 1.4 GHz

of frequency, the maximum path delay error for both benchmarks is reduced from ∼ 10%

when using the conventional model, to around ∼ 1% when using VDEV .

Figure 5.2: The timing slacks in three nearly timing closed design (Ethernet, AES128 and S38417) using
conventional margin based and VDEV flow for generation of GTM

30

-0.2 -0.1 0 0.1
Slack di,erence (nSec)

0

50

100
C
ou

n
t

(a) Histogram of Slack difference "Ethernet"

-0.1 0 0.1 0.2
Slack di,erence (nSec)

0

50

100

C
ou

n
t

(c) Histogram of Slack difference "AES"

-0.04 -0.02 0 0.02 0.04
Slack di,erence (nSec)

0

50

100

C
ou

n
t

(e) Histogram of Slack difference "S38417"

0 100 200 300 400 500
Path count

0

0.1

0.2

S
la

ck
(n

S
ec

) (b) Slacks for both modelings, "Ethernet"

GTM
DEV

GTM
conv

0 100 200 300 400 500
Path count

-0.1
0

0.1
0.2

S
la

ck
(n

S
ec

) (d) Slacks for both modelings, "AES128"

GTM
DEV

GTM
conv

0 100 200 300 400 500
Path count

0

0.2

0.4
S
la

ck
(n

S
ec

) (b) Slacks for both modelings, "S38417"

GTM
DEV

GTM
conv

Figure 5.3: VDEV based slacks v.s. margin-based slacks

5.1.2 Improvement in STA accuracy

To illustrate the timing impact of using rail voltages driven from VDEV modeling flow,

we performed a case study on Ethernet, S38417 and AES128 benchmarks. The STA was

once obtained based on conventional flow (STAConv) and once using the proposed voltage

modeling flow (STAVDEV
) for IR drop and voltage noise.

Fig. 5.3 illustrates the available slack for the critical timing path in STAConv and the

recalculated slack based on STAVDEV
. The slacks are sorted in ascending order as reported

by STAConv. Hence, at each X location of this graph, the black dot represents the available

timing slack based on the conventional hard-margin-based timing analysis flow, and the

red dot represents the new timing slack obtained by using the proposed voltage modeling

scheme. As illustrated, most timing paths see an additional timing slack, some as large as

100 pSec. From this graph, we can easily observe that the conventional flow, has penalized

many timing paths with unnecessary margins. These margins, if available during physical

31

Table 5.1: The Accuracy of the NN-Watchdog regression model trained for different benchmarks. The µ
and σ are the Mean and Standard deviation of the regression error over the validation set. As discussed in
Section 4.1, the Fast, Typical and Slow process are simulated using skewed Spice model with (X,Y) = (5,5),

(0,0), (-5,-5), respectively.

Benchmarks Gate Count Size Fast Typical Slow
Train Test µ(ps) σ(ps) µ(ps) σ(ps) µ(ps) σ(ps)

AES128 114K 21K 4K -0.14 7.45 0.04 8.12 -0.02 7.15
Ethernet 40K 20K 4K 0.79 9.65 0.28 9.13 -0.65 8.36
S38417 6K 4K 1K 0.12 6.87 0.08 7.07 0.25 6.38

design flow, could be used for improving the Power, Performance and Area (PPA) of design

by means of introducing additional VT swapping or cell downsizing. In addition, in both

benchmarks, there are several timing paths that are timing closed in STAConv, however, we

see violation in STAVDEV
, indicating that the original margins were not pessimistic enough.

Hence, using STAVDEV
could discover and fix this types of violations.

5.2 NN-Watchdog Accuracy

Table 5.1 depicts the mean and standard deviation of the NN-Watchdog in predicting the

shift in the delay of timing-paths when subjected to process drift. As shown, the stan-

dard deviation is reasonably small. To put this in perspective, we can compare the error

distribution of NN-Watchdog with the error distribution obtained by finding the difference

between delay of timing-paths reported by SPICE (dSPICE) and that obtained from STA

(dSTA). Fig. 5.4 depicts the distribution of NN-Watchdog error and mean-shifted delay-

difference model (∆SPICE−STA = dSTA − dSPICE) over a large selection of timing-paths.

As illustrated, the mean shifted SPICE-STA difference, for all benchmarks, has a much

larger standard deviation compared to the NN-Watchdog error. This reveals the strength

of NN-Watchdog and justifies why an NN-Watchdog could significantly enhance our Trojan

detection flow by accurately adjusting the STA reported delay information to account for

the impact of process drift.

32

AES128

Ethernet S38417

-250-100 -100-125 125 00 100
Error Error Error

C
o
u
n
t

C
o
u
n
t

C
o
u
n
t

20k 20k 2k

100 0

Figure 5.4: Histogram of NN-Watchdog Error trained for different benchmarks.

5.3 HW Trojan Detection Accuracy

Setup: We selected 720 timing-paths from non-critical to critical range, covering a range of

400 ps of slack from 3 largest IWLS benchmarks [60] (Ethernet, S38417 and AES128). Each

benchmark is hardened (physical design) and timing closed at 1.4 GHz in 32nm technology.

For each benchmark, we divided the selected timing-paths into two groups (360 each) for

inserting TTs and TPs. We further divided each subgroup into three smaller groups of 120

paths each to implement small, medium, and large size Trojans. The TP size is controlled

by the selection of logic gates with different inherent delays. The TT size is controlled by

the distance it is placed from the triggering net. During NN-Watchdog training, we do not

know if a timing-path selected for training contains a Trojan. Hence, we also evaluated

the impact of including Trojans affected timing paths in the training; We trained 3 NN-

Watchdogs with 0, 20 and 40 Trojan paths included in their training set. The rest of the

Trojans are used for evaluating the proposed Trojan detection accuracy as a part of its

test-set.

To model the voltage variation, we used Redhawk [63] and simulated 50 cycles of vec-

torless IR simulation when clock and data toggle rates are 100% and 10% respectively. In

the SPICE simulation, each timing-path is assigned a random value from a normal distri-

bution for the Vth of its transistors (to model the process variation), and each of its gates

is annotated with the gate voltage reported by Redhawk in one simulation cycle. Note that

each SPICE simulation presents a CFST test performed on a different die at a different

time. Furthermore, the slack reported by the SPICE simulation for each timing-path was

adjusted to the neighboring larger clock sweeping frequency step, modeling the CFST step

33

Table 5.2: Threshold values used for TT and TP Trojan detection in Fast-bin in Algorithm 2

Benchmarks
TP TT

Youden 4× σNN Youden 4× σNN
AES128 27.1 29.86 16.3 29.86

Ethernet 35.5 38.67 15.4 38.67

S38417 24.7 27.46 17.2 27.46

size. The step size in the state-of-the-art tester equipment can be as small as 10-15ps.

Hence, we selected the step size of the tester as 15ps.

In our simulations, we assessed the effectiveness of Trojan detection using 3 approaches.

1) Shifted STA (SSTA): when STA results are used as Golden Timing Model to detect

HW Trojans. The process drift makes the direct usage of STA results quite ineffective. To

account for process drift in SSTA, we have computed a static shift value, obtained from

averaging the observed shift from many sampled timing-paths, and have shifted all reported

slacks by STA using this value. For this approach, we have set the detection threshold to the

fixed value of 45ps which is the delay of a 2-input NAND gate in our standard cell library.

2) Shifted GTM (SGTM): which is similar to SSTA with the exception that the voltage

noise and IR-drop are modeled using VDEV voltage modeling, and the Trojan detection

threshold is set to 45ps. 3) Neural shifted Golden Timing Model (NGTM) in which the

voltage noise is modeled using VDEV voltage modeling, while the process drift is modeled

using NN-Watchdog. The NGTM represents the proposed and utilized detection model.

Furthermore, we have investigated the accuracy of NGTM when the training set includes

0, 20 and 40 timing-paths affected by HW Trojans. In all of SSTA, SGTM and NGTM, the

effectiveness of the selected threshold is assessed by extracting the optimal threshold from

the ROC curve using Youden[66] method.

Fig. 5.5 captures the result of TP detection in Fast (X,Y)=(5,5) speed bin. The top row

compares the accuracy of SSTA, SGTM, and NGTM in detecting TPs, and the middle row

reports the false positive rate of detection for each model across different benchmarks. The

NGTM model is reported 3 times, corresponding to a model having 0, 20 and 40 Trojan

paths included in its training set. The bottom row illustrates the ROC curve from which

34

S
S
T
A

S
G

T
M

N
G

T
M

-0

N
G

T
M

-2
0

N
G

T
M

-4
0

0

25

50

75

100

%
 T

ru
e
 P

o
s
.

AES128

S
S
T
A

S
G

T
M

N
G

T
M

-0

N
G

T
M

-2
0

N
G

T
M

-4
0

Ethernet

S
S
T
A

S
G

T
M

N
G

T
M

-0

N
G

T
M

-2
0

N
G

T
M

-4
0

S38417

σNN

Youden

45 ps

S
S
T
A

S
G

T
M

N
G

T
M

-0

N
G

T
M

-2
0

N
G

T
M

-4
0

0

15

30

45

%
 F

a
ls

e
 P

o
s
.

S
S
T
A

S
G

T
M

N
G

T
M

-0

N
G

T
M

-2
0

N
G

T
M

-4
0

S
S
T
A

S
G

T
M

N
G

T
M

-0

N
G

T
M

-2
0

N
G

T
M

-4
0

σNN

Youden

45 ps

0.00 0.25 0.50
True False Positive

0.0

0.5

1.0

T
P

R

AES128 ROC

0.00 0.25 0.50
True False Positive

0.0

0.5

1.0

T
P

R

Ethernet ROC

0.00 0.25 0.50
True False Positive

0.0

0.5

1.0

T
P

R

S38417 ROC

Figure 5.5: Trojan Payload detection results for 3 benchmarks. (top): Detection rate, (middle): False

positive rate, (bottom): Associated ROC curve capturing the True Positive Rate (TPR) versus True False

Positive Rate. The SSTA bar represents the HW Trojan Payload detection using a (Mean shifted) STA.
The SGTM represents Trojan detection when VDEV voltage modeling flow is deployed. The NGTM bars
represent the Trojan Payload detection when both VDEV voltage modeling approach and the NN-Watchdog
are combined. Each bar shows the NN trained when X Trojans are included in the training set, with
X ∈ {0, 20, 40}.

the Youden threshold (as described in Section 4.3) is extracted. The threshold values used

for detection using each of these methods is reported in Table 5.2. As illustrated, the usage

of VDEV voltage modeling in SGTM model improves the TP detection rate compared to the

SSTA at the expense of higher false positive. However, the use of VDEV voltage modeling

and NN-Watchdog in the NGTM not only results in a significantly higher increase in the

TP detection rate (to over 88%), but also significantly depresses the false positive rate. This

confirms the ability of NN-Watchdog in modeling the complicated, non-linear, path-specific

shift of delays resulting from process drift. Finally, note that the presence of a small number

35

Figure 5.6: Trojan Trigger detection results for 3 benchmarks. (top): Detection rate, (middle): False positive

rate, (bottom): Associated ROC curve capturing the True Positive Rate (TPR) versus True False Positive
Rate.

of Trojans in the training set does not affect the accuracy of trained NN-Watchdog as the

impact of a few samples in a large training set is statistically insignificant.

Figure 5.6 depicts the result of our TT detection in the FAST speed bin with (X,X)

= (5,5). As shown, NGTM has a lower rate for detecting TTs compared to TPs due to

the smaller impact of TT on the delay of affected observed nets compared to TP (which

is at least equal to one gate delay). Similar to the TP case, we observe that contamina-

tion of the training set with few HW Trojan data points does not impact the accuracy of

trained NN-Watchdog. This is because the number of HW Trojan infested timing paths is

statistically insignificant and does not affect the training results. As illustrated, the Trojan

trigger detection using our proposed approach closely tracks the Yuden model. Note that

36

Table 5.3: Percentage of False Positives (FPo) and True Positives (TPo) when the proposed model (as

described in Alg. 2) with NGTM-10 is used for detection of TP in Slow, Typical, and Fast speed bins.

Benchmarks
Slow Typical Fast No-Binning

TPo FPo TPo FPo TPo FPo TPo FPo

AES128 88.6 0.11 87.8 0.17 86.1 0.18 0.78 0.31

Ethernet 87.3 0.17 85.5 0.12 88.6 0.15 0.80 0.48

S38417 83.7 0.19 82.2 0.23 80.3 0.39 0.77 0.45

extracting the Yuden threshold requires a Trojan oracle database that is not available and

is only presented to illustrate the effectiveness of our proposed solution. Finally, note that

a hardware Trojan can have multiple TT and TP; although we have separately reported

the result of TT and TP detection, detection of a single TT or TP is enough to detect the

hardware Trojan. Therefore the overall detection rate of a hardware Trojan is larger than

the results reported for TT or TP detection.

Table 5.3 captures the results of TP Trojan detection in all speed bins. As reported,

the speed binning provides more accurate results for TP detection compared to the No-

speed-binning case. This is due to the larger standard deviation of the NN-Watchdog when

training over extracted delays from all dies without considering the impact of systematic

process variation.

5.4 Conclusion

In this proposal, we presented a novel variation modeling and timing signature, and a

promising methodology for Trojan detection based on side-channel delay analysis, that does

not require the availability and usage of a Golden IC. For Trojan detection, The proposed

scheme relies on 1) improving the timing model at design time to account for voltage noise,

and 2) training a Neural Network at test time that is used as a process tracking watchdog

to model the process drift (while accounting for process variation). We have reported

that our Trojan detection flow could achieve close to 90% Trojan detection in the selected

benchmarks.

Bibliography

[1] M. Lecomte et al., “An on-chip technique to detect hardware trojans and assist coun-

terfeit identification,” IEEE Trans. on VLSI Systems, vol. 25, no. 12, pp. 3317–3330,

2017.

[2] A. Yeh, “Trends in the global ic design service market,” DIGITIMES research, 2012.

[3] A. Vakil, F. Niknia, A. Mirzaeian, A. Sasan, and N. Karimi, “Learning assisted side

channel delay test for detection of recycled ics,” in Asia and South Pacific Design

Automation Conf., 2021.

[4] K. Zamiri Azar, H. Mardani Kamali, H. Homayoun, and A. Sasan, “Threats on logic

locking: A decade later,” in Proceedings of the 2019 on Great Lakes Symposium on

VLSI, 2019, pp. 471–476.

[5] K. Z. Azar, H. M. Kamali, H. Homayoun, and A. Sasan, “Smt attack: Next gener-

ation attack on obfuscated circuits with capabilities and performance beyond the sat

attacks,” IACR Transactions on Cryptographic Hardware and Embedded Systems, pp.

97–122, 2019.

[6] K. Z. Azar, F. Farahmand, H. M. Kamali, S. Roshanisefat, H. Homayoun, W. Diehl,

K. Gaj, and A. Sasan, “Coma: Communication and obfuscation management archi-

tecture,” in 22nd International Symposium on Research in Attacks, Intrusions and

Defenses (RAID 2019), 2019, pp. 181–195.

37

38

[7] K. Z. Azar, H. M. Kamali, H. Homayoun, and A. Sasan, “Nngsat: Neural network

guided sat attack on logic locked complex structures,” in 2020 IEEE/ACM Interna-

tional Conference On Computer Aided Design (ICCAD). IEEE, 2020, pp. 1–9.

[8] S. Roshanisefat, H. K. Thirumala, K. Gaj, H. Homayoun, and A. Sasan, “Benchmark-

ing the capabilities and limitations of sat solvers in defeating obfuscation schemes,”

in 2018 IEEE 24th International Symposium on On-Line Testing And Robust System

Design (IOLTS). IEEE, 2018, pp. 275–280.

[9] H. M. Kamali, K. Z. Azar, K. Gaj, H. Homayoun, and A. Sasan, “Lut-lock: A novel

lut-based logic obfuscation for fpga-bitstream and asic-hardware protection,” in 2018

IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE, 2018, pp.

405–410.

[10] H. M. Kamali, K. Z. Azar, H. Homayoun, and A. Sasan, “Full-lock: Hard distribu-

tions of sat instances for obfuscating circuits using fully configurable logic and routing

blocks,” in Proceedings of the 56th Annual Design Automation Conference 2019, 2019,

pp. 1–6.

[11] H. M. Kamali et al., “On designing secure and robust scan chain for protecting obfus-

cated logic,” Great Lakes Symposium on VLSI (GLSVLSI), 2020.

[12] H. M. Kamali, K. Z. Azar, S. Roshanisefat, A. Vakil, and A. Sasan, “Extru: A

lightweight, fast, and secure expirable trust for the internet of things,” 14TH IEEE

Dallas Circuits and System Conference (DCAS), 2020.

[13] H. M. Kamali, K. Z. Azar, H. Homayoun, and A. Sasan, “Interlock: An intercorrelated

logic and routing locking,” in 2020 IEEE/ACM International Conference On Computer

Aided Design (ICCAD). IEEE, 2020, pp. 1–9.

[14] H. M. Kamali et al., “SCRAMBLE: The state, connectivity and routing augmentation

model for building logic encryption,” arXiv preprint arXiv:2005.11789, 2020.

39

[15] S. Roshanisefat, H. M. Kamali, K. Z. Azar, S. M. P. Dinakarrao, N. Karimi, H. Homay-

oun, and A. Sasan, “Dfssd: Deep faults and shallow state duality, a provably strong

obfuscation solution for circuits with restricted access to scan chain,” in 2020 IEEE

38th VLSI Test Symposium (VTS). IEEE, 2020, pp. 1–6.

[16] S. Roshanisefat, H. M. Kamali, H. Homayoun, and A. Sasan, “Sat-hard cyclic logic ob-

fuscation for protecting the ip in the manufacturing supply chain,” IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 4, pp. 954–967, 2020.

[17] S. Roshanisefat, H. Mardani Kamali, and A. Sasan, “Srclock: Sat-resistant cyclic logic

locking for protecting the hardware,” in Proceedings of the 2018 on Great Lakes Sym-

posium on VLSI, 2018, pp. 153–158.

[18] N. Karimi, J.-L. Danger, and S. Guilley, “On the effect of aging in detecting hardware

trojan horses with template analysis,” in International Symposium on On-Line Testing

And Robust System Design (IOLTS). IEEE, 2018, pp. 281–286.

[19] D. Agrawal et al., “Trojan detection using IC fingerprinting,” in Security and Privacy,

2007. SP’07. IEEE Symp. on. IEEE, 2007, pp. 296–310.

[20] R. Rad, et al., “A sensitivity analysis of power signal methods for detecting hard-

ware trojans under real process and environmental conditions,” IEEE Trans. on VLSI

Systems, vol. 18, no. 12, pp. 1735–1744, 2010.

[21] H. Salmani et al., “New design strategy for improving hardware trojan detection and

reducing trojan activation time,” in IEEE Int. Workshop on Hardware-Oriented Secu-

rity and Trust, 2009, pp. 66–73.

[22] Y. Liu et al., “Hardware trojan detection through golden chip-free statistical side-

channel fingerprinting,” in Proceedings of the 51st Annual Design Automation Confer-

ence. ACM, 2014, pp. 1–6.

40

[23] C. Lamech et al., “Rebel and tdc: Two embedded test structures for on-chip mea-

surements of within-die path delay variations,” in Proceedings of the International

Conference on Computer-Aided Design. IEEE Press, 2011, pp. 170–177.

[24] R. Rad et al., “Sensitivity analysis to hardware trojans using power supply transient

signals,” in 2008 IEEE International Workshop on Hardware-Oriented Security and

Trust. IEEE, 2008, pp. 3–7.

[25] R. M. Rad et al., “Power supply signal calibration techniques for improving detec-

tion resolution to hardware trojans,” in 2008 IEEE/ACM International Conference on

Computer-Aided Design, 2008, pp. 632–639.

[26] D. Du et al., “Self-referencing: A scalable side-channel approach for hardware tro-

jan detection,” in International Workshop on Cryptographic Hardware and Embedded

Systems. Springer, 2010, pp. 173–187.

[27] K. Hu et al., “High-sensitivity hardware trojan detection using multimodal character-

ization,” in Proceedings of the Conference on Design, Automation and Test in Europe.

EDA Consortium, 2013, pp. 1271–1276.

[28] Y. Liu et al., “Hardware trojans in wireless cryptographic ics: silicon demonstration

& detection method evaluation,” in 2013 IEEE/ACM International Conference on

Computer-Aided Design (ICCAD). IEEE, 2013, pp. 399–404.

[29] K. Xiao et al., “A clock sweeping technique for detecting hw trojans impacting circuits

delay,” IEEE Design Test, vol. 30, pp. 26–34, 2013.

[30] Y. et al., “Hw trojan detection using path delay fingerprint,” in IEEE Int. Workshop

on HW-Oriented Security & Trust, 2008, pp. 51–57.

[31] J. Li et al., “At-speed delay characterization for ic authentication and trojan horse

detection,” in Int. Workshop on Hardware-Oriented Security and Trust, 2008, pp. 8–

14.

41

[32] Y. Jin et al., “Hardware trojan detection using path delay fingerprint,” in Hardware-

Oriented Security and Trust, 2008. HOST 2008. IEEE Int. Workshop on. IEEE, 2008,

pp. 51–57.

[33] X. Cui et al., “Hardware trojan detection using the order of path delay,” ACM Journal

on Emerging Technologies in Computing Systems (JETC), vol. 14, no. 3, p. 33, 2018.

[34] I. Exurville et al., “Resilient hardware trojans detection based on path delay measure-

ments,” in 2015 IEEE International Symposium on Hardware Oriented Security and

Trust (HOST). IEEE, 2015, pp. 151–156.

[35] D. Ismari et al., “On detecting delay anomalies introduced by hardware trojans,”

in 2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

IEEE, 2016, pp. 1–7.

[36] M. Heidari and S. Rafatirad, “Using transfer learning approach to implement convo-

lutional neural network model to recommend airline tickets by using online reviews,”

in 2020 15th International Workshop on Semantic and Social Media Adaptation and

Personalization (SMA. IEEE, 2020, pp. 1–6.

[37] H. Li, Q. Liu, and J. Zhang, “A survey of hardware trojan threat and defense,” Inte-

gration, vol. 55, pp. 426–437, 2016.

[38] N. Jacob, D. Merli, J. Heyszl, and G. Sigl, “Hardware trojans: current challenges and

approaches,” IET Computers & Digital Techniques, vol. 8, no. 6, pp. 264–273, 2014.

[39] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor, “Hardware tro-

jans: Lessons learned after one decade of research,” ACM Transactions on Design

Automation of Electronic Systems (TODAES), vol. 22, no. 1, pp. 1–23, 2016.

[40] M. Tehranipoor et al., “A survey of hw trojan taxonomy and detection,” IEEE Design

Test of Computers, vol. 27, no. 1, pp. 10–25, Jan 2010.

42

[41] S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan, “Hardware trojan attacks:

threat analysis and countermeasures,” Proceedings of the IEEE, vol. 102, no. 8, pp.

1229–1247, 2014.

[42] S. R. Hasan, C. A. Kamhoua, K. A. Kwiat, and L. Njilla, “Translating circuit behavior

manifestations of hardware trojans using model checkers into run-time trojan detection

monitors,” in 2016 IEEE Asian Hardware-Oriented Security and Trust (AsianHOST).

IEEE, 2016, pp. 1–6.

[43] F. Wolff et al., “Towards trojan-free trusted ics: Problem analysis and detection

scheme,” in Design, Automation and Test in Europe, 2008, pp. 1362–1365.

[44] S. Wei et al., “Scalable hardware Trojan diagnosis,” IEEE Trans. on VLSI Systems,

vol. 20, no. 6, pp. 1049–1057, 2012.

[45] O. Söll, T. Korak, M. Muehlberghuber, and M. Hutter, “Em-based detection of hard-

ware trojans on fpgas,” in 2014 IEEE International Symposium on Hardware-Oriented

Security and Trust (HOST). IEEE, 2014, pp. 84–87.

[46] H. Salmani and M. Tehranipoor, “Layout-aware switching activity localization to en-

hance hardware trojan detection,” IEEE Transactions on Information Forensics and

Security, vol. 7, no. 1, pp. 76–87, 2011.

[47] R. Rad, J. Plusquellic, and M. Tehranipoor, “Sensitivity analysis to hardware tro-

jans using power supply transient signals,” in 2008 IEEE International Workshop on

Hardware-Oriented Security and Trust. IEEE, 2008, pp. 3–7.

[48] M. Potkonjak, A. Nahapetian, M. Nelson, and T. Massey, “Hardware trojan horse de-

tection using gate-level characterization,” in 2009 46th ACM/IEEE Design Automation

Conference. IEEE, 2009, pp. 688–693.

43

[49] D. Du, S. Narasimhan, R. S. Chakraborty, and S. Bhunia, “Self-referencing: A scalable

side-channel approach for hardware trojan detection,” in International Workshop on

Cryptographic Hardware and Embedded Systems. Springer, 2010, pp. 173–187.

[50] P. Vuillod, L. Benini, A. Bogliolo, and G. De Micheli, “Clock skew optimization for

peak current reduction,” in Proceedings of the 1996 Int. Symp. on Low power electronics

and design. IEEE Press, 1996, pp. 265–270.

[51] S. Pant and D. Blaauw, “Static timing analysis considering power supply variations,”

in ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design,

2005., Nov 2005, pp. 365–371.

[52] R. Ahmadi and F. N. Najm, “Timing analysis in presence of power supply and ground

voltage variations,” in ICCAD-2003. International Conference on Computer Aided De-

sign (IEEE Cat. No.03CH37486), Nov 2003, pp. 176–183.

[53] K. Arabi et al., “Power supply noise in socs: Metrics, management, and measurement,”

IEEE Design & Test of Comp., vol. 24, no. 3, 2007.

[54] A. Vakil, H. Homayoun, and A. Sasan, “IR-ATA: IR annotated timing analysis, a flow

for closing the loop between PDN design, IR analysis & timing closure,” in Asia and

South Pacific Design Automation Conf., 2019, pp. 152–159.

[55] V. Wang et al., “A design model for random process variability,” in Int. Symp. on

Quality Electronic Design, 2008, pp. 734–737.

[56] A. Vakil, F. Behnia, A. Mirzaeian, H. Homayoun, N. Karimi, and A. Sasan, “Lasca:

Learning assisted side channel delay analysis for hardware trojan detection,” in 2020

21st International Symposium on Quality Electronic Design (ISQED), 2020, pp. 40–45.

[57] F. Chollet et al., “Keras,” https://keras.io, 2019.

[58] A. Mirzaeian, H. Homayoun, and A. Sasan, “Tcd-npe: A re-configurable and effi-

cient neural processing engine, powered by novel temporal-carry-deferring macs,” in

44

2019 International Conference on ReConFigurable Computing and FPGAs (ReCon-

Fig). IEEE, 2019, pp. 1–8.

[59] A. Mirzaeian et al., “Nesta: Hamming weight compression-based neural proc. engine,”

25th Asia and South Pacific Design Automation Conference (ASP-DAC), 2020.

[60] IWLS-org. (2005) Iwls 2005 benchmarks. Accessed July 10, 2019. [Online]. Available:

http://iwls.org/iwls2005/benchmarks.html

[61] T. Sakurai and A. R. Newton, “Alpha-power law mosfet model and its applications to

cmos inverter delay and other formulas,” IEEE Journal of solid-state circ., vol. 25, pp.

584–594, 1990.

[62] Synopsys. Composite current source delay modeling. Accessed July 10, 2019. [Online].

Available: https://news.synopsys.com/index.php?s=20295&item=122723

[63] ANSYS-Apache. (2020) Redhawk. Accessed Jan 10, 2020. [Online]. Available:

https://www.ansys.com/products/semiconductors/ansys-redhawk

[64] E. Bogatin, Signal and Power Integrity - Simplified, 3rd ed. Prentice Hall, 2018.

[65] Synopsys. (2019) Primetime. Accessed July 10, 2019. [Online]. Available:

http://synopsys.com/implementation-and-signoff/signoff/primetime.html

[66] N. Perkins et al., “The inconsistency of optimal cutpoints obtained using two criteria

based on the receiver operating characteristic curve,” American journal of epidemiol-

ogy, vol. 163, no. 7, pp. 670–675, 2006.

[67] S. Chen et al., “Fully on-chip temperature, process, and voltage sensors,” in Proceedings

of 2010 IEEE Int. Symp. on Circuits and Systems, May 2010, pp. 897–900.

[68] M. Sasaki et al., “A temperature sensor with an inaccuracy of −1/+0.8 ◦ c using 90-nm

1-v cmos for online thermal monitoring of vlsi circuits,” IEEE Trans. on Semiconductor

Manufacturing, vol. 21, no. 2, pp. 201–208, May 2008.

45

[69] Synopsys. (2019) Synopsys toolset. Accessed July 10, 2019. [Online]. Available:

https://news.synopsys.com/

