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As of 2020, climate models include traditional Global Circulation/Climate Models (GCMs), 
Regional Climate Models (RCMs) and, more recently, Earth System Models (ESMs). All these 
models are different from Numerical Weather Prediction (NWP) models in that they are 
intended to provide estimates of the climate rather than meteorological forecasts: they produce 
“climates”, that is, mean values and other statistical moments of the distribution, but not 
realistic sequences of the actual weather. The World Meteorological Organization (WMO)’s 
standard length for constructing climatologies is 30 years, with the standard period being the 
1960–1990 interval (the “historical climate”). More recently, the 1980–2010 period is used, 
which is more into the “satellite-era” of meteorological observations.  

Climate model outputs are generically named “simulations”. They are deemed “projections” 
when they aim to gauge the climates of the future based on a set of assumptions of 
anthropogenic forcings and therefore ultimately of social behavior (scenarios). Working in 
hindsight or to derive estimates of past geological eras, climate models produce “present-
climate climatologies” and “paleoclimates” respectively. By going back in time, they can benefit 
from ancillary data and historical information to fine-tune the simulations, but in the case of 
experiments on future climate change, such advantage is naturally absent, so different 
challenges appear.  

Validation of climate models is mostly circumscribed to simulations of the present-day 
climatologies (say 1960–1990) and comparison with meteorological observations. While 
paleoclimates can also be validated, the absence of an instrumental record obliges us to rely 
on proxies, which are indirect. Assuming the “rosy” and ceteris paribus assumptions (Smith, 
2002), simulations of future climates are useful to understand our changing climate. 
Nonetheless, the first step to trust such simulations is ensuring models provide a faithful picture 
of current climate.  

Model developers routinely compare their partial results in the developing phase with 
observations and adjust their models accordingly (Voosen, 2016). While this is unavoidable, it 
can hardly be considered as scientific validation. First, validation requires independence both in 
data not used to develop the model, and in the group of people who do the validation. However 
important self-validation by the developers is for model consistency, it is not a substitute for 
proper scientific scrutiny by independent, unrelated teams. Secondly, there is a set of protocols 
and standards that make validation a field in itself. Quality Control (QC) standards have been 
proposed for this field to address the increasingly pressing requirement as climate becomes 
more and more interwoven with activities of mitigation and adaptation to global warming. The 
public and the decision makers demand that the science behind policies is traceable, 
transparent and auditable, and that includes the validation of climate model outputs.  

A major issue in the field of validating present climates is that in the development stage, climate 
models are tuned to current conditions. The empirical values and assumptions implied in the 
procedure may vary in the future due to ongoing human emissions and land use changes, and 
therefore must be fully documented.  
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Quality Control is now an integral part of climate model validation, as it has long been in the 
remote sensing field where International Organization for Standardization (ISO) requirements 
are strictly followed. Failure to do so may result in catastrophic mission failures. International 
standardization techniques are slowly permeating the procedures of climate validation. It needs 
to be noted that providing confidence that quality requirements will be fulfilled (e.g., ISO 9000) 
implies not only that the product is suited for the specific purpose it was conceived in the first 
place (a dataset or a climate model in our case), but also that the product has been created 
following a well-defined set of rules and methods that builds confidence in the whole production 
process. Quality Assurance (QA) procedures are designed to minimize errors and mistakes, 
setting double-blind evaluations and sanity checks and providing a traceable flow of several 
stages of the process of generating the product.  

To achieve a QA-standard, each step of the production process has to be clearly defined and 
subject to auditing. This is not a problem for most merged precipitation datasets, since these 
are carefully-designed products whose science can be traced back to an Algorithm Theoretical 
Basis Document (ATBD). The ATBDs are the cornerstone of the confidence in merged 
precipitation datasets, in the same way that metadata and technical notes perform for pure 
observational datasets. They provide the rationale of the many decisions taken over the 
process of developing the product, and allow users to trace back each step, also permitting 
duplication of the product by another party. Reputable climate models also have the equivalent 
to the ATBD in the form of model documentation describing the physics of the dynamical core, 
the numerical methods employed, the parameterizations and the empirical choices used to 
fine-tune the model.  

Validating climate model outputs of prognostic variables such as temperature is a difficult 
exercise per se and becomes even more problematic when dealing with diagnostic variables 
such as precipitation. Precipitation has been considered “the ultimate test” for validating models 
for a number of reasons (Tapiador et al., 2019). However, it is difficult to find homogeneous 
precipitation datasets over reasonably long time periods that cover the whole globe. These are 
hard to find among ground-based observing systems, which are obviously limited to land areas. 
Indeed, until 2010 validations of climate models were done by the same teams that develop the 
software and for grid-point, rain gauge measurements only. Moving to independent, satellite 
and gauge-satellite combined data, Tapiador (2010) (see Figure 2.3.1) relied on increased 
availability of robust and public datasets such as those described in Tapiador et al. (2017). The 
latest published Intergovernmental Panel on Climate Change (IPCC) report, the Fifth 
Assessment Report (AR5) (IPCC, 2015), acknowledged that the detection and attribution of 
regional precipitation changes had generally focused on continental areas using in situ data 
because observational coverage over oceans was limited to a few island stations, although 
model-data comparisons over continents also illustrated large observational uncertainties. The 
report also noted that available satellite datasets that could supplement oceanic studies are 
short and their long-term homogeneity is still unclear, and that accordingly they have not yet 
been used for detection and attribution of changes. The IPCC concluded in 2014 that 
“continuing uncertainties in climate model simulations of precipitation make quantitative 
model/data comparisons difficult (e.g., Stephens et al., 2010), which also limits confidence in 
detection and attribution.” 
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Figure 2.3.1. An example of the first validation of regional climate outputs using several precipitation 
datasets instead of gauge-only data. From Tapiador, 2010 

Tapiador et al. (2017) first conducted a thorough analysis of the existing satellite-based 
precipitation datasets in view of their application for climate model validation. The authors 
provide guidance on the use of precipitation datasets for climate research, including model 
validation and verification for improving physical parameterizations. Strengths and limitations of 
the datasets for climate modeling applications are presented, underlining that not all datasets 
are suitable for this purpose. The checklist of items that must be considered in the field of 
validation of precipitation outputs from climate models includes several crucial points that we 
will now try to separate between facts and recommendations. 
 

 Facts 
1. Rain gauges provide pointwise measurements that may not be fully representative of 

the area, especially for large areas with few observations (for example, the Amazon 
basin). 

2. Rain gauges have known technical limitations and biases and the spatial 
distribution/length record of the instruments is highly variable. 

3. Ground radars are characterized by many sources of uncertainty that have diverse 
natures (beam blockage, attenuation, anomalous propagation, etc.). 

4. Precipitation (solid, liquid and mixed phase) has a large spatial and temporal 
variability. 

5. Satellite estimates are indirect and have limited temporal sampling. 

6. Satellite estimates over land, coast and ocean are derived using different methods 
and assumptions. 
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7. Merged precipitation databases are not intended for trend analyses as sensor drifts 
are present over limited time spans. 

8. Many of the techniques used in Level-2 products are built upon Bayesian estimates 
(that is, they require an a priori estimate). 

9. The quality of Level-3 precipitation products is driven by microwave observations and 
therefore is dependent on their availability and quality. 

10. There are significant latitudinal differences in the satellite and ground-based 
estimates in terms of known biases and uncertainties. 

11. The error characteristics resulting from the merging of disparate datasets are not well 
known. 

12. There are known uncertainties in the estimation of diabatic heating fields that affect 
how models represent some precipitation processes. 

13. Model outputs that have been bias-corrected or that are the results of model output 
statistic techniques cannot be validated. 

14. Series derived from global circulation model (GCM)-driven regional climate models 
(RCMs) cannot be directly compared with time series of observations. 

15. High-resolution global cloud-resolving models (G-CRM) are becoming better suited 
than RCMs to inform policies and advance our knowledge of the physics of 
precipitation. 

16. End-to-end characteristics of the satellite-based retrieval process are not yet fully 
understood. 

17. There is less agreement among satellite products in trends and variability at global 
scale than in regional variability. 

 Recommendations 
i. Uncertainty figures from ground radars should be considered when assimilating data. 

ii. Challenges posed to the validation of precipitation by its spatiotemporal variability 
need to be considered, paying attention when using precipitation datasets in model 
validation. 

iii. The indirect character of satellite estimates and their limited temporal sampling 
should be considered in the comparisons. 

iv. The tuning of the models with specific datasets must be considered for ensuring a 
truly independent validation. 

v. Parameterizations must be validated with data not used in their development and 
tuning. 

vi. Global measurements of microphysics are important to avoid overfitting models to 
empirical parameters. 

vii. Ground validation campaigns are essential for improving the representation of 
precipitation in models. 
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viii. “Scope principle”: a model cannot claim performances at better resolutions that those 
at which it has been validated. 

ix. Blending methods in deriving global precipitation products involves subtleties than 
must be considered in any validation process. 

x. Parameters and techniques used in the estimation process using satellites and rain 
gauges may not be universally applicable, both in space and time. 

xi. The precise measurement of shallow and very light precipitation still represents a 
scientific challenge and more research is needed in this direction. 

xii. While precipitation is a key variable to validate models, there is no agreement on the 
reference to be compared with. More research and targeted observations are 
required to fill this gap. 

xiii. Public auditing of model code and precipitation database algorithms is required if 
models are used for policy-making and societal applications other than pure 
research. 

xiv. Every aspect of model and database development should be subject to QC methods 
and be fully traceable, transparent and auditable. 

xv. Models must be independently validated by scientists not involved in their 
development or belonging to the same research network. 

xvi. Users should be made fully aware of the confidence level that can be attributed to 
model outputs and observational databases. 

 
When considering the need for validation campaigns that produce new insights for a correct 
representation of precipitation processes in the models, under-represented areas and 
processes come first. This is particularly true for tropical forests. In this latter case, the problem 
is still to make sure that the correct microphysics is understood for its inclusion into the 
precipitation estimation algorithms prior to conducting any meaningful validation exercise. 
Recently the project Cloud Processes of the Main Precipitation Systems in Brazil: A 
Contribution to Cloud-Resolving Modeling and to the Global Precipitation Measurement 
(CHUVA), held in Brazil, has substantially contributed to improving our level of understanding in 
this direction (Machado et al., 2014). Another key example is the need for characterizing the 
relation of mid-latitude frontal precipitation mechanisms and their modification by terrain to 
rainfall estimation uncertainties. The Olympic Mountain Experiment (OLYMPEX) (Houze et al., 
2017) assessed satellite measurements made by the GPM along the northeastern Pacific 
coastline. At the same time, warm rain processes are still not completely understood, and the 
Integrated Precipitation and Hydrology EXperiment (IPHEX) sought to characterize warm 
season orographic precipitation regimes and the relationship between precipitation regimes 
and hydrologic processes in regions of complex terrain (Erlingis et al., 2018). 
 
There are a number of considerations that need to be made before approaching satellite 
precipitation datasets for model validation. Validation can be performed on the precipitation 
model means, which are those most used for applications, or on other first-order statistics. 
These include the modeling of the ENSO phenomenon (Neale et al., 2008), the representation 
of the diurnal cycle of rainfall (Betts and Jakob, 2002) and the frequency of occurrence of high- 
and low-intensity rainfall events (Sun et al., 2006). Validation can also be performed on more 



 

  	
 

63 

physical quantities such as latent heat (LH) and in the intricacies of the microphysics of 
precipitation in models. 
 

1. Latent heat release. It is a consequence of phase changes between the vapor, liquid 
and frozen states of water, which cannot be measured or detected using present 
observational instruments. The vertical distribution of LH has, however, a strong 
influence on the atmosphere, controlling large-scale tropical circulations, exciting and 
modulating tropical waves, maintaining the intensities of tropical cyclones, and even 
providing the energetics of midlatitude cyclones and other midlatitude weather systems 
(Li et al., 2017). The launch of the Tropical Rainfall Measuring Mission (TRMM) satellite 
in November 1997 provided a much-needed and accurate measurement of rainfall as 
well as the ability to estimate the four-dimensional (4D) structure of LH over the global 
tropics (Simpson et al., 1988, 1996). The success of TRMM made it possible to have 
another major precipitation measuring mission from the National Aeronautics and Space 
Administration (NASA), the Global Precipitation Measurement (GPM) mission. GPM is 
considered by NASA to be the centerpiece mission of its Global Water & Energy Cycle 
research program. On the modeling side, Cloud resolving models (CRMs) have been 
identified as being a valuable tool for algorithm developers and are considered a key 
component for one of the major GPM ground validation (GV) sites. In addition, CRMs are 
one of the most important tools used to establish quantitative relationships between 
diabatic heating and rainfall. Thus, simulated data from the Goddard Cumulus Ensemble 
(GCE) model have been used extensively in TRMM for the development of both rainfall 
and heating retrieval algorithms (Simpson et al., 1996; Tao et al., 2006). Five different 
TRMM LH algorithms designed for application with satellite-estimated surface rain rate 
and precipitation profile inputs have been developed, compared, validated and applied 
for over two decades (Tao et al., 2001, 2006, 2016b). They are the: (1) Goddard 
Convective-Stratiform Heating (CSH) algorithm, (2) Spectral Latent Heating (SLH) 
algorithm, (3) Goddard Trained Radiometer (TRAIN) algorithm, (4) Hydrometeor Heating 
(HH) algorithm, and (5) Precipitation Radar Heating (PRH) algorithm. The strengths and 
weaknesses of each algorithm are discussed in Tao et al. (2006). Ling and Zhang (2011) 
compared the heating profiles between TRMM retrieved (CSH, SLH and TRAIN) and 
global reanalyses [(ERA-I, Japanese 25-year ReAnalysis (JRA-25) and Climate Forecast 
System Reanalysis (CFSR)]. All heating data exhibit three longitudinal maxima but with 
different amplitudes; for example, heating over South America and Africa is much 
stronger in three models (CSH, SLH, and CFSR) than in the others. Heating is weaker 
over the Maritime Continent than over the eastern Indian Ocean and western Pacific in 
some data [for example, apparent heat source Q1 (Q1), TRAIN LH, ERA-I Q1, and JRA25 
Q1], but not so in others. Among all, TRAIN has the largest low-level heating over the 
east Pacific, which might be an overestimate owing to shallow convection (Grecu et al., 
2009). Low-level heating over the eastern Pacific is also present with smaller amplitudes 
in Q1 from ERA-I and LH from CFSR. The distribution of boundary heating of the LH 
from CFSR is almost the same, and it may also be related to precipitating marine stratus 
clouds over the ocean (vanZanten and Stevens, 2005). It is reasonable to say that the 
upper peak is related to precipitation by cold (ice or mixed phase) clouds and the lower 
one to precipitation by warm (liquid phase) clouds. LH in TRAIN and CFSR and Q1 in 
JRA25 do not have any obvious double-peak structure. Ling and Zhang (2011) also 
pointed out that the discrepancies among the heating datasets are not merely between 
the TRMM and reanalysis datasets or between LH and Q1. Differences within the TRMM 
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and reanalysis products, respectively, and within various products of LH or Q1 are no 
less than those between the TRMM and reanalysis data and between LH and Q1. These 
differences reflect our current level of estimating diabatic heating fields: we may get 
some basic properties of the heating field (for example, longitudinal locations of maxima) 
correct, but there are many details with large uncertainties. These uncertainties should 
by no means stop us from cautiously using the currently available heating products to 
provide as much information as they may credibly provide. 

2. Microphysics of precipitation. This is the framework through which to understand the 
links between interactive water vapor, aerosol, cloud and precipitation processes. Global 
measurements of microphysics are important to avoid overfitting the models to specific 
places when tuning the empirical parameters, which is the standard procedure to adjust 
models to observations (Voosen, 2016). CRMs with advanced microphysical schemes 
have been used to study the interactions between aerosol, cloud and precipitation 
processes at high resolution. These processes play a critical role in the global water and 
energy cycle. Validation of CRMs with observational databases is important both to 
ascertain the fidelity of the outputs and to improve the models. The interest in this topic 
lies in the many uncertainties associated with various microphysics schemes. In part, 
this reflects the fact that microphysical processes cannot always be measured (or 
observed) directly. Herein cloud properties, which can be estimated, have been used to 
validate model results. The spectral bin microphysical (SBM) schemes represent the 
most sophisticated representations of microphysical processes. They generally perform 
better in simulating realistic cloud properties and surface precipitation compared with 
bulk microphysical schemes (Li et al., 2010). SBM schemes have helped to improve the 
bulk scheme [Lang et al., 2014; Tao et al., 2016a also used the microphysics bin 
scheme from the Regional Atmospheric Modeling System (RAMS) to parameterize their 
cloud activation]. However useful, SBM schemes are not perfect, though they are more 
direct (and realistic) than the bulk MP parameterizations used in GCMs. Uncertainties in 
these can be expected to be larger. 

There are also additional considerations to be made to validate climate models with 
precipitation datasets drawing on recent results. Apart from time span, spatial resolution and 
calibration quality of the data, there are very important subjects that need attention: 
 

1. First, we need to consider the way the retrieval of precipitation was conducted. As 
stated by Stephens and Kummerow (2007), precipitation retrievals from space are 
highly sensitive to the specific radiative and microphysical model used in the retrieval 
process. Identifying a cloud as precipitating is not a trivial exercise and can result in 
large errors that make the dataset almost useless. This is the reason why most recent 
datasets including observations from passive and active sensors are necessary for 
improving cloud and precipitation retrievals (Levizzani et al., 2020a, 2020b). 

2. The second crucial aspect concerns the precipitation phase. When validating climate 
models, precipitation type should be known, but this is a kind of knowledge that is far 
from being totally achieved. For the time being, only data from the MODerate resolution 
Imaging Spectroradiometer (MODIS) were used to verify climate model outputs such as 
in the case of Matiu et al. (2020) within the European Coordinated Regional 
Downscaling Experiment (EURO-CORDEX).  
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3. However, failure to accurately predict the location, magnitude and frequency of 
precipitation, including snowfall, heavily impacts climate modeling (for example, Field 
and Heymsfield, 2015). This is why a number of studies have recently started using 
observations and climate models to identify deficiencies in the actual modeling and 
validation approaches. Fowler et al. (2020), for example, show results that underscore 
the importance of evaluating clouds, their optical properties, and the top-of-the-
atmosphere radiation budget in addition to precipitation when performing mesh 
refinement global simulations. Heymsfield et al. (2020) have been the first to produce a 
global view of the precipitation process partitioning, using a combination of satellite and 
global climate modeling data (Figure 2.3.2). They showed that significant differences 
between satellite- and model-based results are found and the reasons require 
investigations far more complex than the simple traditional surface precipitation 
differences. Note also that increasing temperatures may also imply increasing melting 
level height, which obviously impacts surface precipitation phase and intensity and thus 
model verification (Prein and Heymsfield, 2020). At the same time, care must be taken 
in improving frozen hydrometeors representation in the climate models (especially at 
the regional scale) since large discrepancies (up to 5 times) are found between 
modeled and observed brightness temperatures in the microwave that may undermine 
the value of intercomparison results (for example, Rysman et al., 2018). 

4. Precipitation intensity at the ground is thus not sufficient to characterize the changing 
climate. The mean and the other statistical moments are just a first step in validation. 
Trenberth et al. (2003) argued that advancing understanding and the ability to model 
and predict the character of precipitation is vital and requires new approaches to 
examining data and models. The timing, duration and intensity of precipitation can be 
explored via the diurnal cycle (Betts and Jakob, 2002), whose correct simulation in 
models remains an unsolved challenge of vital importance in global climate change. 
This can only be done with truly global datasets such as those derived from satellite 
observations. Here, reanalyses are expected to play a dominant role in the near future.  

5. Observational uncertainty quantification is essential for climate studies, climate model 
evaluation and statistical post-processing. Recently, Tang et al. (2020) have shown 
variable performance of the IMERG product with respect to other precipitation datasets 
and reanalyses. Prein and Gobiet (2017) have in turn demonstrated that differences 
between global precipitation datasets have the same magnitude as precipitation errors 
found in regional climate models. 

6. Finally, precipitation is the most important process for a deeper understanding of 
climatic changes, but it is linked to several other processes within the water cycle and 
thus a combined use of precipitation datasets with other datasets (for example, soil 
moisture, sea surface temperature, evapotranspiration, wind fields, etc.) is unavoidable 
when assessing climate model outputs (Levizzani and Cattani, 2019). 

After considering all possible caveats in using satellite precipitation datasets for climate model 
validation, nonetheless we register their increasing use in this field.  
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Figure 2.3.2. Mean surface precipitation rate retrieved from CloudSat, Global Precipitation Measurement 

(GPM) mission, Goddard Profiling (GPROF) algorithm, and Tropical Rainfall Measurement Mission 
(TRMM), derived from output from the Community Atmosphere Model (CAM) and the Met Office models, 

and from the Global Precipitation Climatology Project (GPCP) product. These are for land and ocean 
areas. [from Heymsfield et al. 2020; courtesy American Meteorological Society]. Note that model results 

are not independent from the satellite observations.  

In the RCMs realm, satellite precipitation datasets were widely used during the Coordinated 
Regional Climate Downscaling Experiment (CORDEX) and the Coupled Model Intercomparison 
Project (CMIP) both sponsored by the World Climate Research Programme (WCRP) of the 
WMO. Target areas have been mostly Africa and Asia with special attention to the Tropics 
using a range of RCMs. Before that, data from the Ensemble-based Predictions of Climate 
Changes and their Impacts (ENSEMBLES) and Prediction of Regional scenarios and 
Uncertainties for Defining EuropeaN Climate change risks and Effects (PRUDENCE) projects 
were used to compare satellite datasets with RCM outputs. Biases of the single model 
depending on the African region and season were identified during CORDEX while simulating 
the West African summer monsoon (Akinsanola et al., 2015). In a previous study during 
CORDEX-Africa, Nikulin et al. (2012) showed that a multimodel average generally outperforms 
any individual simulation, showing biases of similar magnitude to differences across a number 
of observational datasets. At the same time, the authors confirmed that a common problem in 
the majority of the RCMs is that precipitation is triggered too early during the diurnal cycle with 
differences among the models as first suggested by Dai (2006). More recently, Wu et al. (2020) 
results show that improvements in the ability of RCMs to simulate precipitation in Africa 
compared to their driving reanalysis in many cases are simply related to model formulation and 
not necessarily to higher resolution. Such model formulation-related improvements are strongly 
model dependent. 
 
The precipitation datasets have proved instrumental also in identifying deficiencies in the 
simulation of the CMIP5 models. Figure 2.3.3 shows the climatologies of 40 CMIP5 models and 
several precipitation reference data. Over the Tropics, model output and satellite precipitation 
dataset intercomparisons represent a substantial added value in identifying strengths and  
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Figure 2.3.3. An example of the use of satellite-derived precipitation datasets in order to validate 40 
Global Climate Models (GCMs) and Earth System Models (ESMs). The data represents the 1980–2000 

climatology of the mean precipitation. From Tapiador et al. (2018) 

weaknesses of the approaches of the various models to predict water cycle changes. For    
example, when considering one of the key convective areas of the planet, the Congo basin in  
Central Africa, there appears to be little agreement as to the distribution and quantity of rainfall 
across the basin with datasets differing by an order of magnitude in some seasons 
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(Washington et al., 2013). Higher-resolution satellite data can surely help in disentangling 
persisting uncertainties in the area. Over the ocean, the satellite precipitation datasets have 
contributed to find that precipitation in CMIP5 models is overestimated in most areas (Yang et 
al., 2018). This is consistent with the previous results of Hirota and Takayabu (2013), who 
concluded that a proper representation of the sensitivity of deep convection to humidity and 
higher resolution of the ocean models with better equatorial trades are important for reducing 
the double ITCZ and the cold tongue biases. 
 
Another key aspect of climate model studies is the need for verifying improvements among 
different versions of the models and of their ensembles. An example of the application of 
satellite precipitation datasets is provided by Kumar et al. (2014), whose results show little 
change in the central tendency, variability, uncertainty of historical skills or consensus across 
CMIP3 and CMIP5. At the same time, there are regions and seasons where significant 
changes, performance improvements and even degradation in skills are suggested. This fact 
clearly demonstrates the potential of using satellite-derived datasets at the global as well as the 
regional scales. In fact, Pathak et al. (2019) have found that over the south Asian region, some 
of the convective and large-scale precipitation biases are common across CMIP5 model 
groups, emphasizing that although on a global scale the bias patterns may be sufficiently 
different to cluster the models into different groups, regionally, it may not be true. 
 
Substantial work is still needed in examining the ability of both satellite observations and 
models in capturing extremes, droughts and floods. While observations need to be done at very 
high resolution and for long time periods, posing problems for using the available global 
datasets, models need to better represent convection. Kendon et al. (2019) argue that with a 
more accurate representation of convection in the models, projected changes in both wet and 
dry extremes over Africa may be more severe than they are actually predicted. Such 
conclusions need, however, to be linked to the way we conduct intercomparisons and 
numerical experiments. Recently, Yosef et al. (2020) have concluded that the use of percentile-
based indices, such as those of the Expert Team on Climate Change Detection and Indices  
(ETCCDI), gives very different results when choosing a base period that included records from 
the last two decades (e.g., 1981–2010, 1988–2017) over Israel. At the same time, Alexander et 
al. (2019) argue that to advance the use of satellite precipitation data in the applications on 
extremes differences between data products, limitations in satellite-based estimation 
processes, and the inherent challenges of scale need to be better understood. Several efforts 
are on their way in recent times to come to the production of global datasets able to account for 
extremes (for example, Beck et al., 2020). We will most surely witness an intense activity in this 
field because it is crucial for climate change studies and to make sure that global precipitation 
datasets contain the necessary information for all types of events, especially the most severe 
ones that should be linked to changed climatic conditions. 
 
Alongside research for clarifying the number and intensity of extremes per se, one more 
subject has come up in recent times. The understanding of short-duration rainfall extremes is 
also crucial, but data are often subject to errors and inhomogeneities and these events are 
poorly quantified in projections of future climate change. Consequently, knowledge of the 
processes contributing to intense, short-duration rainfall is less complete compared with those 
on daily timescales as argued by Blenkinsop et al. (2018) who launched the project INTENSE 
to overcome this lack of knowledge via sub-daily gauge dataset collection. Satellite datasets 
should help in this direction as they acquire higher temporal resolution. 
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