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ABSTRACT 

COMPUTATIONAL ANALYSIS OF BOVINE MIRNAS ACROSS DIFFERENT 

TISSUES AND SPECIES 

Naga Sridhar Betrapally 

George Mason University, 2012 

Thesis Director: Dr. Donald Seto 

 

MicroRNAs (miRNAs) are small non-coding RNA molecules of approximately 22 

nucleotides in length. They are present as genome-encoded stem-loop precursors that 

recognize target mRNAs by base pairing, which then regulates their expression. Due to 

their influence in the expression of hundreds of genes, they play a role in regulation of 

gene expression for numerous biological processes such as in animal development, 

apoptosis, fat metabolism and hematopoietic differentiation.  Initial studies showed that 

most miRNAs are conserved among related species. However, recent studies have shown 

that newly identified miRNAs tend to be species specific. miRNAs are known to have 

differential expression patterns during development and across tissues but there is not 

much known about relative abundance and specificity of expression patterns among 

tissues for most bovine miRNAs. Profiling of bovine miRNAs and evaluation of their 

expression patterns were carried out in this study for a total of 64 different tissues from 
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bovine Calf and Fetus. The study was carried out to identify tissue specificity and tissue 

class specificity. Analysis based on this principle revealed tissue specificity for a certain 

class of miRNAs. Further analysis and deep sequencing of the data shall help us identify 

the functional role of miRNAs in these tissues.  
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1. INTRODUCTION 

miRNAs are described as ~22-nt RNA molecules that originate from fold-back 

precursors and can regulate the expression of genes [1]. They are an emerging class of 

gene regulators that are endogenously produced as small non-protein coding RNAs. They 

negatively regulate gene expression at the post transcriptional level by homologous 

interactions with the 3’ UTR (untranslated region) and more rarely with the coding region 

of the target mRNA [2,3]. Numerous biological processes in animal development, 

apoptosis, fat metabolism and hematopoietic differentiation have been reported to be 

regulated by miRNAs [4-8]. In addition, miRNAs can increase protein translation by 

binding to complementary promoter sequences, extending the important function of 

miRNA to protein expression [8-10].    

miRNAs are transcribed as long transcripts which are called primary miRNA or 

pri-miRNA [11]. pri-miRNAs are characterized by the presence of loop and stem 

structures with imperfect complimentary region. pri-miRNAs on being transcribed 

undergo their first maturation reaction in the nucleus. In the first step of processing the 

reaction, the pri-miRNA is processed to a 60-70 nucleotides intermediate precursor called 

pre-miRNA [12]. The pre-miRNA is exported to the cytoplasm for further processing 

[13]. In the cytoplasm, the loop structure is cleaved to yield a double stranded miRNA 

with two 5’ phosphates and 3’ two nucleotide overhang structure. Upon further 
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processing and the destruction of the complimentary strand, the mature miRNA is 

incorporated into RISC (RNA Induced Silencing Complex) to form an active RISC 

complex, and directs either translational repression or site-specific cleavage of the mRNA 

target (Figure 1). 

 

 
Figure 1. An example of miRNA structure and its processing steps. (a) The precursor structure and mature 

microRNA (miRNA) sequence of lin-4. (b) Processing of pri-miRNA to pre-miRNA (blue). Maturation of the 

pre-miRNA occurs in the nucleus to form a mature miRNA [14]. 
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In order to identify miRNAs, the following three criteria need to be fulfilled. The 

mature miRNA should be expressed as a distinct transcript of ~22 nucleotides. Mature 

miRNA should originate from a precursor with a characteristic secondary structure, such 

as a hairpin or fold-back, which does not contain large internal loops or bulges. Mature 

miRNA should occupy the stem part of the hairpin and mature miRNA should be 

processed by Dicer, as determined by an increase in accumulation of the precursor in 

Dicer-deficient mutants [15]. 

Reported here is the analysis of tissues from bovine calf and fetus. A total of 32 

different tissues were obtained for Calf and 32 different tissues were obtained for Fetus. 

Table 1 shows the different tissues used for the study. The tissues were grouped into their 

tissue classes based on Brenda Tissue Ontology [15].  The sequences obtained from both 

the species were run on an Illumina Genome Analyzer [35] and the obtained miRNA 

sequences were then used for carrying out clustering analysis and data exploration study. 

The motivation to carry out this analysis was to identify relative abundance and 

specificity of expression patterns among tissues for most bovine miRNAs. Elucidation of 

the expression patterns of different miRNAs among different tissues will help in 

understanding the roles of miRNAs in gene expression.  
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Table 1. Grouping of tissues in different tissue classes based on Brenda Tissue Ontology. 

Tissue class Tissues classified in the tissue class 

Viscus Abomasum, Cecum, Duodenum, Ileum, Jejunun, Large Intestine, 

Omasum, Reticulum, Rumen, Stomach Omasum 

Reproductive 

System 

Oviduct, Uterus intercaruncular, Vas deferens 

Muscular System Biceps fem, Infra Spin, Longisimus Dorsi Muscle, Semitend, 

Sternomandibuilaris Skeletal, Tongue Muscle 

Nervous System Frontal Cortex, Basal Ganglia, Cerebellum, Hippocampus, Medulla, 

Midbrain, Pons, Spinal Cord 

Integument Nasal Epithelium, Outer tongue surface, Oral mucosa 

Glands Adrenal, Adrenal Cortex, All pituitary, Anterior pituitary 

Embryonic 

Structure 

Umbilical Cord, Placenta 

Connective Tissue Marbling, SubQ, White fat, Bone, Paracardial 
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2. MATERIALS AND METHODS 

In order to study the miRNAs data from the bovine Calf and Fetus, it was 

necessary to identify tools which help in the analysis process. It was important to identify 

tools which shall allow for aligning the reads to the genome, carry out cluster analysis 

and identify their statistical significance. 

2.1 Flicker 3.0 
Flicker is an in house tool developed by Illumina [16]. It has been developed in order to 

carry out analysis of small RNA data. Flicker first aligns the reads to the 3’ adapter 

sequences and aligns them using the Smith-Waterman algorithm [17]. Once it has aligned 

the reads to the adapter sequences, it trims the reads in order to remove the adapter 

sequences. These reads are then aligned to different elements such as mitochondrial 

RNA, rRNA and primers by using the BLAST principle [18]. After filtering the reads for 

these contaminant elements, the reads are then aligned to the genome sequences, hairpin 

loop sequences, and mature miRNAs. These alignments are then stored in a BAM 

alignment file which contains all the alignment results and chromosomal co-ordinates 

[19]. This alignment file can then be visualized using Integrative Genomics Viewer [20] 

in order to visually inspect the alignments of the reads to the bovine genome.  
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2.2 Hits Normalized Abundance  
Hits normalized abundance was used to measure the abundance ratios of miRNA 

expression in this study.  Next Generation Sequencing has various popular standardized 

technologies that have developed in a short period of time offering cost effective 

solutions for sequencing large number of sequences [21,22]. In order to sequence for 

small RNAs including mRNA and small RNA transcriptome profiling, Illumina has 

developed a new technology called Sequence by Synthesis (SBS) [23]. This method uses 

reversible nucleotide terminators to sequence short DNA fragments (signatures). The 

sequence length is about ~33-35 bases and is long enough to capture the full length 

sequence of the small RNA molecules such as miRNA. The total number of signatures 

sequenced by SBS differs from library to library. In order to compare the expression level 

of a particular signature across the libraries, abundance levels which are the total number 

of hits to the gene must be normalized. For example, abundance levels of a particular 

miRNA in the library Liver will be different from the abundance levels of the same 

miRNA in the library Kidney.  Thus in order to measure all of the abundance levels on 

the same common scale, the values have to be normalized, i.e., adjusting the different 

abundance levels from libraries to the common scale in order to be comparable to other 

libraries.   This calculation is performed for each signature and for each library, based on 

the total abundance of the libraries. In order to normalize them, a round number that is 

close to the total number of sequences is used.  This number is called total raw 

abundance. The abundance levels are considered as a raw value. Each raw value is 

divided by the total number of sequences, i.e., total raw abundance and multiplied by a 

normalization factor. The normalization factor is a value that is close to the adjusted total 
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raw abundance and is rounded off to a multiple of a million. These normalized values 

allow us to accurately compare the expression levels of signatures across libraries. These 

normalized values are referred to as Hits Normalized Abundance [23]. The hits 

normalized abundance is computed as follows:  

Equation 1. Hits Normalized Abundance 

                          
 

 
     

where x = abundance values of each miRNA in the library, 

 y = total number of sequences in the library,  

N = Normalization factor which is a multiple of a million.  

 

2.3 Clustering analysis using PermutMatrix 
Cluster analysis groups data based on information found in the data that describes 

the objects and their relationships. The goal is that the objects within a group be similar 

to one another and different from the objects in other groups. Hierarchical clustering is a 

clustering approach that produces subclusters which is a set of nested clusters that are 

organized as a tree. The trees are formed by starting with each point as a singleton cluster 

and then repeatedly merging the two closest clusters based on the shortest distance 

between them until a single, all-encompassing tree is formed [37]. PermutMatrix is a tool 

which can be used to implement hierarchical clustering [24]. It provides for a graphical 

environment and has been designed to graphically explore gene expression data. 

PermutMatrix approaches to simultaneously display the clustering tree, colored 

representation of the data matrix and supplements them with several optimal linear 

reordering methods such as reorganization of the leaves of a clustering tree, 



8 

 

unidimensional scaling and seriation [8,24,25]. The reorganization of the leaves of a 

clustering tree by PermutMatrix has been used in the clustering analysis of the dataset in 

order to sort the miRNA hits normalized abundance values in the descending order. The 

use of this characteristic is explained in more detail in 3.2.  

2.4 Detection of differentially abundant features  
In order to identify the differential expression based on hits normalized 

abundance among different tissues, it is necessary to use a statistical method to quantify 

the significance of the results. Metastats is a statistical method which is designed to 

identify differentially abundant features in a dataset [26]. It takes in an input file 

containing hits abundance values for 2 sets of data. It provides an output file containing 

the mean, variance, standard error and p-value as an output. Here, the mean is defined as 

the central tendency of a collection of numbers taken as the sum of the numbers divided 

by the size of the collection.  

The variance of a random variable is the squared deviation of that variable from 

its mean. If a variable, X has the mean µ; the variance of X is given by: 

Equation 2. Variance 

                 2 

The standard error is the standard deviation of the sample from the mean and is 

given by: 

Equation 3. Standard error 

               
 

  
 

where, s is the sample standard deviation and n is the size of the sample.  

 In statistics, p-value for any hypothesis test is the α level at which we would be 

indifferent between accepting or rejecting the null hypothesis given the sample data at 
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hand. That is, the p-value is the α level at which the given value of the test statistic (such 

as t) is on the borderline between the acceptance and rejection regions. The p-value is 

important because it tells us exactly how significant our results are without performing 

repeated significance tests at different α levels. The p-value results obtained here are then 

used to quantify the results which in turn shall help in identifying the significance of the 

miRNA expression in the dataset.   

2.5 Brenda Tissue Ontology 
Brenda Tissue Ontology represents a comprehensive structured encyclopedia of 

tissue terms [15]. Brenda Tissue Ontology contains more than 4600 different anatomical 

structures, tissues, cell types and cell lines, classified under generic categories 

corresponding to the rules and formats of the Gene Ontology Consortium [34]. The 

parent-child relationship permits the depiction of the hierarchical structure of the 

ontology which contains terms at various levels of detail such as tissues falling under 

particular tissue classes [15]. Figure 2 shows an example of the parent-child relationship 

for an animal. The animal is categorized as the parent and the tissue classes under its tree 

are the child nodes. Further exploration of the child node will give us the details of the 

sub nodes of the child node which shall give information regarding the tissues under the 

tissue classes. This information was used to define the tissue classes for the bovine 

species under this study.  
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Figure 2. Brenda Tissue Ontology for an animal and its child terms [15]. 
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3 RESULTS AND DISCUSSION 

3.1 Data analysis 
For this study, the 32 different tissue samples of bovine Calf and 32 different 

tissue samples of Fetus were sequenced by using the Illumina Genome Analyzer [35].A 

total of 790 (786,318,569) million sequence reads were sequenced for all the tissues. 120 

(120,123,642) million reads from the total sequence reads aligned to the miRBase [27-30] 

database which is 15.2% reads that aligned to the miRBase. Table 2 shows an example of 

different lengths and the total counts of sequence reads for the hypothalamus tissue 

obtained from the bovine Calf.  Table 2 shows read lengths ranging from 12 to 26. For 

these reads, we observe that the length of the majority of the reads range from 18 to 22 as 

compared to other lengths. These results were observed to be consistent for all the tissues 

indicating that our dataset contained a lot of miRNAs since for a read to be categorized as 

a miRNA, it should range from 18 to 22 nucleotides [1] and thus a very good dataset was 

obtained for the analysis.  

3.2 Clustering analysis 
Clustering analysis of all the tissues was carried out using PermutMatrix. A 

hierarchical clustering was carried out for all the tissues by using squared Pearson 

distance [36] for the measure of the distance between data points and complete linkage 

for the measure of dissimilarity between data points. The squared Pearson measures the 
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similarity in shape between two profiles and can also capture inverse relationships [36]. 

The formula for the squared Pearson distance is given by: 

Equation 4. Squared Pearson Distance 

       

where d is the squared Pearson distance and r is the Pearson correlation.  

The Pearson correlation is given by: 

              

The Pearson correlation is the dot product of the z-scores of the vectors x and y. The z-

score of x is constructed by subtracting from x its mean and dividing by its standard 

deviation [36].  

 A tab delimited file with hits normalized abundance values were submitted to 

PermutMatrix. The rows were sorted to order the miRNAs in descending order. The 

hierarchical clustering results are as shown in Figure 3. Figure 3 displays the forming of a 

hierarchical cluster for the tissues for a subset of 25 miRNAs showing high hits 

normalized abundance values. The hierarchical clustering tree data was analyzed using 

Brenda Tissue Ontology as a reference. The tissue systems were found to have 

conformity to Brenda Tissue Ontology. For example, the tissues that falls under the 

connective tissue system, Marbling, Sub-cutaneous and Paracardial all fall under a single 

tree. There was however an exception for the embryonic tissue system, where Umbilical 

cord and Placentome don’t fall under a single tree. Since we observe that most of the 
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tissue systems cluster in accordance to the Brenda Tissue Ontology, we conclude that we 

had a good clustering result for the dataset.    

Table 2. Table showing different lengths and respective counts of sequence reads obtained for Hypothalamus 

tissue of bovine calf. 

Length Count 

12 8909 

13 14469 

14 21251 

15 36120 

16 33846 

17 130451 

18 376532 

19 45728 

20 311231 

21 390484 

22 652661 

23 353479 

24 126212 

25 32965 

26 17249 
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Figure 3. : A hierarchical clustering of the 64 tissues from bovine Calf and Fetus. The color scale varies from 

black to bright red where black represents low HNA value and bright red represents high HNA value. 
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3.3 Calf vs. Fetus 
Comparison study of tissues present in both Calf and Fetus was carried out. Three 

different tissues, Abomasum, Kidney and Liver miRNA datasets were available for the 

analysis. In order to study these tissues, a one against one comparison analysis was done 

using a bar plot for the top 50 well expressing miRNAs. The miRNAs were first sorted to 

arrange them in descending manner and the top 50 well expressing miRNAs were used as 

a subset. When this comparison was carried out, we could see the difference in 

expression between the developmental stage of a tissue and a fully developed tissue. 

Figure 4 shows us the differential expression in Kidney of bovine Calf and Fetus. We 

observe that only four miRNAs express better in Calf as compared to Fetus which has 21 

better expressing miRNAs (Table 3). This shows that the miRNAs in Kidney of Fetus are 

more active and play an important role in developmental stage.  The same expression 

pattern was seen for Abomasum of bovine Calf and Fetus (Figure 5). We observe that 4 

miRNAs express better in Abomasum of Calf and 5 miRNAs express better in 

Abomasum of Fetus (Table 4). However, for the Liver of Calf and Fetus expression 

results were observed to be different. We could observe that there were 10 miRNAs 

express better in Calf and only 8 miRNAs expressed better in Fetus (Table 5). Thus we 

observe variable expression patterns in these tissues and this could be attributed to the 

regulatory role of the miRNAs in the tissues at different stages of development. In order 

to identify whether these results occurred randomly or whether they are statistically 

significant, p-values for the tissue pairs were calculated and plotted. For example, the 

tissue pair of Kidney in Calf and Fetus was studied for their p-values in order to identify 
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their significance. The hits normalized abundance values for these pairs of tissues were 

saved in a text file and submitted to Metastats to calculate their p-values. In statistics, the 

p-value is the probability of obtaining a test statistic at least as extreme as the one that 

was actually observed, assuming that the null hypothesis is true. In statistical testing, a p-

value of 0.05 or less is said to be statistically significant [39]. p-value is used here in 

order to ascertain whether the obtained results here have occurred randomly or to find out 

if they have a statistical significance. If they have values lower than 0.05, they show us 

that the miRNAs are variably expressed in the different tissue pairs. From the obtained 

results, it could be seen that the p-values were significantly lesser and shows us that the 

variable expression for the tissue pairs was not randomly obtained. Figure 7 shows us the 

low p-values obtained for the different tissue pairs for miRNAs. For miR-92b, miR-26, 

miR-99b and miR-30f all the three tissue pairs showed a low p-value score indicating that 

there is variability in expression for all the three tissue pairs. This shows that these 

miRNAs play a regulatory role and variably express in developmental stages and fully 

developed stage (Table 6).  
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Figure 4. Kidney expression in Calf and Fetus. x-axis displays the different miRNAs expressed in both Calf and 

Fetus kidney, y-axis displays the different hits normalized abundance values. Blue bars represent kidney of Calf 

and red bars represent kidney of Fetus. 
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Table 3. Tables showing differentially expressing miRNAs in Calf and Fetus for the tissue Kidney. 
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Figure 5. Abomasum expression in Calf and Fetus. x-axis displays the different miRNAs expressed in both Calf 

and Fetus abomasum, y-axis displays the different hits normalized abundance values. Blue bars represent 

abomasum of Calf and red bars represent abomasum. 
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Table 4. Tables showing differentially expressing miRNAs in Calf and Fetus for the tissue Abomasum. 

 
 

 

 

 

 
Table 5. Tables showing differentially expressing miRNAs in Calf and Fetus for the tissue Liver. 
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Figure 6. Liver expression in Calf and Fetus. x-axis displays the different miRNAs expressed in both Calf and 

Fetus kidney, y-axis displays the different hits normalized abundance values. Blue bars represent Liver of Calf 

and red bars represent Liver of Fetus. 
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Figure 7. A plot showing the p-values of different tissue pairs for different miRNAs. x-axis represents the 

miRNAs and the y-axis represents the p-value. 
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Table 6. Table showing a subset of miRNAs with significant p-values for the tissue pairs. 

Name of 

microRNA 

Abomasum p-

value 

Kidney p-value Liver p-value 

mir.fa/bta-miR-

92b  

6.56E-32 4.16E-11 9.56E-110 

mir.fa/bta-let-7a  6.70E-20 0 9.98E-166 

mir.fa/bta-miR-

25  

4.62E-10 9.18E-144 3.18E-248 

mir.fa/bta-miR-

30f  

5.25E-18 7.91E-296 2.64E-255 

mir.fa/bta-miR-

432  

0 0 2.25E-260 

mir.fa/bta-miR-

99b  

1.02E-20 2.19E-156 9.00E-303 

 

3.4 Well-expressed miRNAs 
Well-expressed miRNAs are those miRNAs which have a high hits normalized 

abundance value across all the tissues. Another criterion to define them as well-

expressing miRNAs was that the lowest expressing miRNA should have a hits 

normalized abundance value of atleast 10% of the highest expressing miRNA for that 

particular tissue. On filtering based on this criterion, 15 different miRNAs were found to 

satisfy the criterion. These 15 different miRNAs are as shown in Table 7. Also, these 15 

miRNAs are the most conserved miRNAs among the total miRNAs that hit the miRBase 
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Table 7. Table shows well-expressing miRNAs across all tissues. Table shows the miRNAs and the tissues which 

have the highest expression for the miRNA and the lowest expression for the same miRNA. 

No. miRNA Highest Expression Tissue Lowest Expression 

Tissue 

 

1 miR-26a Cerebellum (210885.5) Sternomandibuilaris 

Skeletal(20347) 

2 miR-27b Oral Mucosa(128262.5) Nucleated Blood 

Cells(2171.5) 

3 miR-27a-3p 3rd eyelid necrotic 

(104943.5) 

Retina (3737.66) 

4 let-7a Cerebellum (78931) Long. Dorsi (3983) 

5 miR-30d Cheek lymph (42568.41) Healthy 3rd Eyelid (1148) 

6 miR-151* Placentome(30826.5) Oral Mucosa (1544.5) 

7 miR-186 Thyroid_Pool1(19238.67) Coronary Band(1459.5) 

8 let-7f Mesenteric lymph 

node(24770) 

Oral Mucosa (1544.5) 

9 miR-30f Stomach Rumen (10449) Healthy 3rd Eyelid (586) 

10 miR-423-5p Nucleated Blood 

Cells(5111) 

SubQ(299.67) 

11 let-7g Cerebellum(12267.75) Nasal Epithelium(575.83) 

12 let-7d Umbilical Cord(3419) Healthy 3rd Eyelid(253) 

13 miR-26b Paracardial (8652) Diaphragm(792.33) 

14 miR-23a Spleen(4632) Retina (184) 

15 miR-361 Oral Mucosa(1544.5) Spleen(142.5) 
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database. All the other miRNAs did not show the same conservation across tissues. 

Cerebellum has the highest hits normalized abundance value for 3 different miRNAs.  

This shows that Cerebellum has a lot of regulatory control handled by the miRNAs. Brain 

being one of the complex organs of the body and being involved in decision making 

process, a further study into why there is high expression of miRNAs in the Cerebellum 

shall help in understanding the functional role of the miRNAs.  For miR-27a-3p, we see 

that it expresses highest in an infected necrotic eye and expresses the lowest in the retina. 

This again displays the regulatory role of the miRNAs in the tissues and the role they 

play in functional regulation.  

 In order to identify the top occurring tissues which have the highest hits 

normalized abundance values in well-expressed miRNAs, the top 10 highest hits 

normalized values for each well-expressing miRNA were selected and their occurrences 

were counted. Based on this count, there were 28 tissues which had high expression 

values for the well-expressed miRNAs. The results are as shown in Table 8. Cheek lymph 

occurs in 11 different well-expressing miRNAs, Placentome occurs in 10 different well-

expressing miRNAs, Cerebellum occurs in 8 different well-expressing miRNAs. These 

results show the regulatory role by miRNAs in these tissues since there is a high 

expression of miRNAs in these tissues [6]. Thus due to the higher the expression of these 

miRNAs in these tissues, they clearly play a regulatory role [2,6,38].  The occurrence of 

10 different well-expressing miRNAs in Placentome indicates the regulatory role played 

by miRNAs in the developmental stage [6,38]. To understand the occurrence of 8 

different well-expressing miRNAs in Cerebellum needs deep-sequencing in order to 
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identify the role played by these miRNAs and to detect if the tissue specificity of these 

miRNAs contributes in the decision making process of the brain. The results from the 

Table 8 also show different gland tissues: cheek lymph, mesenteric lymph node, salivary 

gland and thyroid. Glands function by secreting hormones into the body which in turn 

affects the cell metabolism. Presence of high expressing miRNAs in the gland tissues 

shows the regulatory role performed by these miRNAs. A deep sequencing study can 

help to validate these findings.  
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Table 8. Top occuring tissues in well-expressing miRNAs with the count of their occurrences as the highest 

occurring tissue for different miRNAs. 

No. Top Occuring Tissues 

in Well Expressing 

miRNAs 

No. of occurrences as 

highest expressing 

tissue 

1 Cheek lymph 11 

2 Placentome 10 

3 Cerebellum 8 

4 Mesenteric lymph node 7 

5 Salivary Gland 7 

6 Omasum  7 

7 Thyroid - Pool1 7 

8 Ventricle 7 

9 Adrenal Cortex 6 

10 Stomach rumen 6 

11 Oral Mucosa 6 

12 Paracardial  5 

13 Umbilical Cord 5 

14 Stomach Omasum  4 

15 Thyroid fetus 3 

16 Body lymph node 3 

17 Liver - Pool 2 3 

18 Hippocampus 3 

19 Spinal Cord 3 

20 Duodenum 3 

21 Outer tongue surface 3 

22 Frontal Cortex 3 

23 Liver - Pool 4 2 

24 Kidney Pool3 2 

25 Nucleated Blood Cells 2 

26 Spleen 2 

27 Semitend 2 

28 Stomach Reticulum 2 
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4 SUMMARY AND CONCLUSION 

The hierarchical clustering analysis on the 64 different tissues of bovine Calf and 

Fetus was carried out to see if certain tissue classes grouped together and showed 

conformity in accordance to the Brenda Tissue Ontology. It was seen that most of the 

tissue classes showed conformity to the Brenda Tissue Ontology except for one tissue 

class, embryonic tissue. These results show us that the dataset followed a Brenda Tissue 

Ontology. On confirmation of these results, the different tissue classes were grouped 

according to Brenda Tissue Ontology and studied to see tissue specificity of miRNAs. 

Even though we observed many miRNAs being highly conserved across different tissues, 

there are certain miRNAs which showed tissue specificity. Studying the tissues in its 

different developmental stages showed higher expression in early stages of development 

in comparison to fully developed tissue. These results hence show the relative abundance 

and tissue specificity of miRNAs. Further analysis by deep sequencing will allow for 

understanding of their regulatory role in physiology or function modification in these 

tissues.  
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5 FUTURE DIRECTIONS 

A pipeline for prediction of novel miRNAs is being implemented. In order to 

identify novel miRNAs, miRDeep a computational prediction tool is being used which 

allows carrying out the prediction by using the bovine genome as a reference [31,32]. The 

alignment files of all the tissues generated using Flicker are submitted to miRDeep and 

possible novel miRNAs are identified. These predictions shall help us in identifying 

microRNA genes. Identification and validation of these novel microRNA genes shall 

allow for better understanding of the regulatory role of miRNAs played in bovine Calf 

and Fetus.  
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