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Abstract

APPLIED COMPUTATIONAL GEOMETRY FOR SMOOTHED PARTICLE HYDRO-
DYNAMICS

Van S. Jones, PhD

George Mason University, 2022

Dissertation Director: Dr. Leigh McCue

Smoothed Particle Hydrodynamics (SPH) is a Computational Fluid Dynamics method

that has significantly increased in capability in recent years. The advent of general-purpose

computing on graphics processing units (GPGPU) has helped to enable large-scale SPH

simulation outside of supercomputer environments. However variable resolution methods

for free-surface and multiphase SPH simulations remains limited. The lack of robust and

efficient variable resolution methods for free-surface and multiphase simulations limits the

potential computational efficiency and accuracy of SPH when used to model these flows.

Recent work has made steps towards solving these issues and has improved the capability

of SPH in these areas. This thesis seeks to add to these growing capabilities by presenting

new computational geometry algorithms to improve the accuracy and efficiency of SPH

simulations. These methods include a boundary condition for flexible walls, a spatial filter to

reduce particle disorder, and a modified Voronoi tessellation method for determining particle

volumes. These methods provide a basis for future work to increase the computational

efficiency of SPH and will facilitate further improvements to the accuracy and scalability of

SPH simulations involving free-surface and multiphase flows.



Chapter 1: Introduction

1.1 Motivation

Smoothed particle hydrodynamics (SPH) is a Lagrangian computational fluid dynamics

(CFD) method. It was first developed by Gingold, Monaghan, and Lucy for the simulation

of astrophysics phenomena [1] [2]. It was later extended to applications in fluid dynamics

by Monaghan [3] and was adapted to include structural simulation capability by Libersky

and Petschek [4] and others. Since its development, SPH has gained widespread use in

astrophysics simulations [5]. It is utilized in high velocity impact (HVI) simulations [6]

[7] and high explosive simulations [8]. The method is widely used for computer-generated

imagery (CGI) and in realtime simulation of fluids [9]. It is also well suited to mixed media

simulations such as sediment transfer [10].

However, despite Smoothed Particle Hydrodynamics’ use for many specialized engineer-

ing and scientific applications, the utilization of SPH for general purpose single-phase and

multiphase CFD simulations remains limited compared to Finite Volume Methods (FVM)

and Finite Element Methods (FEM) [11]. With the primary goal of improving SPH for

multiphase simulations, this thesis seeks to identify areas for potential improvement to ex-

isting SPH methods when applied to multiphase flows. Then new methods to enhance SPH

capabilities in these identified areas are proposed.

1.2 Thesis Structure

The primary SPH issues addressed in this thesis are thin and flexible boundaries, parti-

cle disorder and clumping, and domain property transfer to facilitate dynamic resolution

adaptation. These issues were selected through work done to identify areas for potential

1



improvement to SPH. This was done by analyzing a multiphase underwater deflagration test

case both experimentally and numerically. This test case was designed to include multiple

flow features which are difficult to simulate. These features include large pressure varia-

tions, a multiphase interface, large discontinuities in bulk deformation across interfaces, and

fluid-structure interaction. By analyzing such a complicated fluid flow, specific deficiencies

in the SPH method become apparent. With deficiencies in the base SPH method identified,

new computational geometry algorithms are proposed to address the identified deficiencies.

This thesis is broken into several distinct sections. Chapter 1 provides an overview

of Smoothed Particle Hydrodynamics and presents validation case results using an SPH

code developed for this work. Chapter 2 details the experimental design and results of the

multiphase test case. Chapter 3 outlines numerical simulation results of the multiphase test

case and discusses identified deficiencies in the SPH methods used. Chapter 4 details a new

numerical method to address thin or deformable boundaries without the utilization of ghost

particles. Chapter 5 presents a spatial filtering method that reduces particle disorder and

clumping and has potential application to domain resolution adaptation. Chapter 6 presents

an iterative scheme to transfer conserved properties between two domain discretizations.

Chapter 7 outlines a new finite-radius Voronoi algorithm that supports the iterative scheme

introduced in chapter 6 by determining particle volumes for arbitrary particle distributions.

1.3 Smoothed Particle Hydrodynamics Overview

The core numerical mechanism of SPH is the approximation of a field value through a finite

weighted integration of the surrounding field. This is based on the exact reproduction of a

field value by the integration of the product of the Dirac delta function and a field variable

(eq. 1.1). In this exact formulation, the Dirac delta function evaluates to unity at x = x′

and is zero for all other points. This yields an integration that exactly reproduces the value

of a function at any point in space.

2



f(x) =

∫ ∞

−∞
δ(x− x′)f(x′)dx′ (1.1)

This equivalency by itself is of little use. However, if an approximation for the discon-

tinuous Dirac delta function is introduced, then a useful approximation of a function may

be obtained (eq. 1.2).

f(x) ≈
∫
Ω

W (x− x′)f(x′)dx′ (1.2)

Here the Dirac delta function is replaced by a kernel function (W ) which possesses simi-

lar properties to the delta function but is non-zero over a finite volume Ω. A kernel function

has units of inverse volume and must be chosen such that in the limit as Ω approaches zero

the kernel function approaches the Dirac delta function. This ensures that the SPH approx-

imation will, in the limiting sense, regain the exact function equivalency of eq. 1.1. One of

the initial kernel functions developed by Monaghan and Lattanzio is the Piecewise Cubic

Spline kernel [12] (Figure 1.1). The Cubic Spline smoothing function displays Gaussian

behavior which is a common characteristic, but not a requirement, of smoothing functions.

Finally, in order to transform the continuous definition of eq. 1.2 into a discrete form,

the integration is discretized into a sum of volume-weighted function values, yielding the

final form of the standard SPH particle representation of a field function (eq. 1.3). This

reduces to eq. 1.4 when solving for field properties at a particle’s position.

f(x) ≈
∑
Ω

W (xj − x)f(xj)Vj (1.3)

fi ≈
N∑
j=1

W (xj − xi)fjVj (1.4)

3



(a) Cubic Spline and First Derivative (b) 2D Cubic Spline

Figure 1.1: Cubic Spline Kernel Function

In both eq. 1.3 and eq. 1.4 the support domain Ω is the set of all particles j which

lie within the non-zero region of the kernel function of a subject particle i and Vj is the

volume of particle j. The scale of the non-zero support region about a particle is a tunable

parameter and is typically presented in terms of a smoothing length h. The radius of the

support region is then defined as a multiple of the length, where this multiple is dependent

upon the selected kernel function. In this thesis, the radius which defines a particle’s support

domain will be referred to as the influence radius, which is defined as 2h for the kernel used

in all simulation results. Figure 1.2 illustrates an example support domain for a particle in a

random particle field. In this thesis, a particle that is referenced for property calculations is

referred to as a subject particle and interacting particles are designated as support particles.

To obtain spatial derivatives of field functions using SPH, a gradient may be substituted

into the base SPH formulation (eq. 1.2). This leads to equation 1.5. Then, using a chain

rule identity (eq. 1.6), the integrand may be may be modified to obtain equation 1.7.

∇ · f(x) ≈
∫
Ω

[
∇ · f(x′)

]
W (x− x′)dx′ (1.5)

4



Figure 1.2: SPH Particle Support Domain

[
∇ · f(x′)

]
W (x− x′) = ∇ ·

[
f(x′)W (x− x′)

]
− f(x′) · ∇W (x− x′) (1.6)

∇ · f(x) ≈
∫
Ω

∇ ·
[
f(x′)W (x− x′)

]
dx′ −

∫
Ω

f(x′) · ∇W (x− x′)dx′ (1.7)

By the divergence theorem (eq. 1.8), the first term of eq. 1.7 can be transformed into

a surface integral over the integrated volume in order to obtain equation 1.9. For integral

volumes which are defined such that ||x− x′|| ≥ 2h the kernel function in the first term of

eq. 1.9 will be zero over the surface. It follows that in all cases where an integral volume

extends to at least the limit of the kernel function eq. 1.9 will reduce to equation 1.10.

∫
(∇ · f(x)) dx =

∮
(f(x) · n̂) ds (1.8)

∇ · f(x) ≈
∮
Ω

∇ ·
[
f(x′)W (x− x′)

]
dx′ −

∫
Ω

f(x′) · ∇W (x− x′)dx′ (1.9)

5



∇ · f(x) ≈ −
∫
Ω

f(x′) · ∇W (x− x′)dx′ (1.10)

However for cases in which the volume integral does not extend to the extent of the

kernel function the simplification used to obtain eq. 1.10 may not be performed. Cases in

which the integral is truncated in this manner may occur at fluid surfaces or boundaries.

These cases are said to be integral deficient and corrections must be made to approximate

the non-zero additional term in eq. 1.9. Integral deficiency is further discussed in section

1.3.3.

To obtain the SPH formulation for the gradient of a field function, the continuous

integral of eq. 1.10 must be discretized into finite form. Replacing the continuous volume

integral with a finite summation and defining x⃗ij = x⃗i− x⃗j and
∂Wij

∂x⃗ij
= ∂W

∂r (||x⃗i− x⃗j ||) x⃗ij

||x⃗ij ||

leads to equation 1.11. This is the standard, non-symmetrized, SPH form for the gradient

of a field function.

(∇ · f(x))i = −
N∑
j=1

fj ·
∂Wij

∂x⃗ij
Vj (1.11)

1.3.1 Smoothed Particle Hydrodynamics for Liquid Simulation

The SPH method can be adapted to fluid dynamics equations of motion in a number of

ways. The most common approach for applying SPH to fluid dynamics is the Weakly Com-

pressible Smoothed Particle Hydrodynamics (WCSPH) method. In WCSPH fluids typically

considered nearly incompressible are allowed a small degree of compressibility. This yields

a finite speed of sound for the fluid and changes the characteristic of the governing equa-

tions to allow for uncoupled solving of particle properties. Particle pressures for water are

derived from an empirical equation of state. Parameters of the equation of state determine

the numerical speed of sound in that medium. The Cole Equation of State (eq. 1.12) is used
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in this thesis. In 1.12 β is a compressibility constant defined as β = cρ0
γ , c is the speed of

sound in the medium, ρ0 is a reference density, and γ is an empirically determined constant

set to 7 for water in simulations used in this thesis.

P = β(
ρ

ρ0
− 1)γ + P0 (1.12)

This and similar equations of state are often erroneously referred to as the Tait Equation

of State. Tait proposed an empirical model for related water density and pressure in 1888

[13]. However, work by Murnaghan [14], Cole [15], MacDonald [16], and others have since

added to and refined Tait’s original work on the subject.

Methods of calculating SPH particle density vary, but most techniques fall under two

principle approaches. These are the summation-density and continuity-density formula-

tions. In the summation density formulation, density is directly determined by summing

the kernel-weighted densities of all support domain particles (eq. 1.13), where Wij =

W (||x⃗i − x⃗j ||) and Vj is the volume of particle j. Substituting the definition of density (eq.

1.14) into eq. 1.13 yields eq. 1.15 and transforms the formula into a mass summation over

a volume (as the kernel function has units of inverse volume).

ρi =
∑
Ω

WijρjVj (1.13)

ρ ≡ m

V
(1.14)

ρi =
∑
Ω

Wijmj (1.15)

The continuity density formulation is obtained by discretizing the continuity equation

(eq. 1.16). The SPH discretized form of the divergence operator is shown in eq. 1.17.

Substituting eq. 1.17 into eq. 1.16 yields eq. 1.18. This can be simplified by eq. 1.14 and
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the definition of v⃗ij := v⃗i − v⃗j to obtain equation 1.19, the SPH discretized form of the

continuity equation [8].

∂ρ

∂t
= −∇ · (ρv⃗) (1.16)

∇ · u⃗i =
N∑
j=1

(u⃗i − u⃗j)
∂Wij

∂x⃗ij
Vj (1.17)

Dρi
Dt

= −
N∑
j=1

ρj(v⃗j − v⃗i)
∂Wij

∂x⃗ij
Vj (1.18)

Dρi
Dt

=
N∑
j=1

mj v⃗ij
∂Wij

∂x⃗ij
(1.19)

The SPH momentum equation can be obtained from the Lagrangian form of the Cauchy

Momentum Equation (eq. 1.20). The general stress tensor in the Cauchy Momentum Equa-

tion can then be separated into pressure forces, viscous forces, and body forces to obtain

Equation 1.21. Equation 1.22 shows a symmetrized form of the SPH gradient formula-

tion. For particle interactions involving conserved fluid properties (such as momentum),

it is desirable that particle interactions are symmetrized. By enforcing symmetric parti-

cle interactions in the momentum equation any loss of momentum from one particle in a

particle-particle interaction will be accompanied by an equivalent gain of momentum for

the other particle in the interaction. This ensures momentum transfer between particles

is precisely conserved. Applying eq. 1.22 to the pressure term in eq. 1.21 yields the SPH

formulation for the pressure term for the discretized momentum equation [17]. To complete

the momentum equation an approximation of viscous force must be determined. Multi-

ple viscous stress models exist for determining shear forces for the momentum equation.
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Cleary’s viscosity model (eq. 1.23) has been selected for use in this thesis as the model

ensures continuous viscous stress across dissimilar fluid interfaces [18]. Cleary’s viscosity

method approximates viscous stress as a function of particle relative velocity modified by

a calibrated empirical factor ζ. The kernel function used in this thesis is the Wendland C2

kernel [19]. For this kernel function Cleary suggests ζ = 4.96333. This empirical factor is

independent of viscosity. The value η is a small, non-zero value to prevent the denominator

from approaching zero and causing near singular behavior for very short-range interac-

tions. Equation 1.24 shows the SPH discretized form of the momentum equation with both

pressure terms and Cleary’s viscosity model.

ρ
Dv⃗i
Dt

= ∇ · σαβ + ρg⃗ (1.20)

ρ
Dv⃗

Dt
= −∇p+∇ · τ + ρg⃗ (1.21)

(∇u)i =
N∑
j=1

mj(
ui
ρ2i

+
uj
ρ2j

)
∂Wij

∂x⃗ij
(1.22)

(
∇ · τ
ρ

)ij ≈
ζ

ρiρj

4µiµj

µi + µj

v⃗ij · r⃗ij
r2ij + η2

∂Wij

∂x⃗ij
(1.23)

Dv⃗i
Dt

= −
N∑
j=1

mj(
pi
ρ2i

+
pj
ρ2j

)
∂Wij

∂x⃗ij
− ζ

ρiρj

4µiµj

µi + µj

v⃗ij · r⃗ij
r2ij + η2

∂Wij

∂x⃗ij
+ g⃗ (1.24)

1.3.2 Boundary Conditions for SPH

A variety of solutions for modeling boundaries in SPH exist. Chapter 4 provides a detailed

analysis of SPH boundary conditions and presents a new boundary deficiency correction
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(a) Negative Pressure Gradient (b) Net Positive Acceleration

(c) Uniform Pressure (d) Zero Net Acceleration

Figure 1.3: SPH Acceleration - Pressure Term

method.

For the simulations shown in this thesis, fluid boundaries are primarily modeled as spa-

tially locked fluid particles (ghost particles), as proposed by Monaghan [3]. Ghost particles

are allowed to evolve fluid properties but are fixed to an object or in space. Several rows

of ghost particles are typically required to emulate a solid surface and prevent particle

penetration into the boundary.

1.3.3 Weaknesses of Smoothed Particle Hydrodynamics

Integral Deficiency

The basic SPH method described by eq. 1.2 requires the assumption that a continuous fluid

domain exists within the bounds of a particle’s support domain. When this condition is

not met, the domain is integral deficient and SPH formulations may break down, leading to

nonphysical results. Because fluid interfaces and boundaries can break this key assumption,

it is often necessary for SPH simulations to address integral deficiency.
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(a) Full Support (b) Balanced Acceleration

(c) Truncated Support (d) Unbalanced Acceleration

Figure 1.4: Boundary Deficiency

An integral deficiency in any gradient-based SPH formulation results in a vector rather

than scalar imbalance. Because the pressure terms of the momentum equation predomi-

nantly create a repulsive inter-particle force based on pressure, any particle near an interface

will experience a net force towards the area of integral deficiency, and subsequently towards

the interface. Similar corrections exist for the kernel gradient but are beyond the scope of

this thesis. For an in-depth analysis of kernel correction methods see Bonet and Lok [20].

The most basic integral deficiency occurs in the summation density approach (eq. 1.15)

and other summed properties. An integral deficiency for summed SPH values results in

an error in the total kernel weight in the formulations. Because Kernel function weights

are normalized to sum to unity for a full support domain, any integral deficiency will fall

short of this sum and cause a proportional drop in the summed value. This can cause (eq.

1.15) to produce nonphysical reductions in density near a boundary or free surface. A simple

solution to errors of this nature was proposed by Monaghan [3]. In this solution the kernel is

renormalized by the sum of the kernel weights, effectively adjusting the kernel normalization

factor to the volume of each particle’s true support domain. The renormalized formulation
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for eq. 1.15 is shown in eq. 1.25.

ρi =

∑
ΩmjWij∑
Ω VjWij

(1.25)

Clumping

Just as in FVM and FEM formulations, discretization geometry can have a large effect on

the consistency of SPH formulations. Asymmetric fluid deformation can cause particles to

elongate on a single axis while being condensed on a transverse axis. This clumping of SPH

particles can lead to anisotropy in the fullness of particle support domains. This can lead

to an effective reduction in resolution along any sparsely populated axis, and in severe cases

complete breakdown of the SPH formulations. Several methods to preemptively prevent or

correct particle clumping exist. An artificial viscosity force proposed by Monaghan [21] is

a popular choice for preventing clumping. This method is useful in that it can also prevent

non-physical particle-particle penetration and provide numerical damping of shockwaves

when no energy model is present.

Fluid Interfaces

Fluid interfaces also break the underlying SPH assumption of a continuous property field.

Densities and other properties are often discontinuous across a fluid interface. This can

result in a breakdown of some forms of the continuity equation. The continuity formulation

used in this thesis (eq. 1.19) is restricted to similar fluids, with cross-interface particle

interactions ignored in density calculations.

Similarly, the momentum equation suffers a breakdown of the expected pressure-based

force balance used to distribute momentum. The primary solution for correcting the mo-

mentum equation for dissimilar fluid interfaces is to introduce a pairwise repulsive force

between any such particles. This prevents non-physical particle-particle penetration and

allows the fluids to interact across an interface through this dominant repulsive force. In

all cases, the repulsive force must be strong enough to prevent fluid penetration across the
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interface by particles on either side. Monaghan suggests a cross-interface repulsive term

Rij [22]. This repulsive term (eq. 1.26) is a function of fluid pressure and density and is

added to the momentum equation 1.24. In the repulsion term, ρ0i and ρ0j are the reference

densities of any two interacting particles, Pi and Pj are particle pressures, and ρi and ρj

are particle densities. The simulations in this thesis utilize this formulation to correct the

momentum-equation interfacial error.

Rij = 0.08|ρ0i − ρ0j
ρ0i + ρ0j

| · |Pi + Pj

ρiρj
| (1.26)

1.3.4 SPH Validation Cases

Couette Flow

To validate the viscosity model used in this thesis, a Couette flow simulation was run. Here

a periodic domain of fluid with height 1e-3m is started at rest. The domain is discretized

by 40 particles in the x-direction and 80 particles across the vertical span of the fluid (not

including boundary particles). The smoothing length was set to h = 1.4∆x, where ∆x is

the initial particle spacing in the uniform rectangular particle distribution. At time t = 0,

the upper boundary of the domain is prescribed a velocity of 1.25e-5m/s while the bottom

boundary remains fixed. The flow is allowed to evolve and velocity profiles for times 0.01s,

0.1s and 1.0s are plotted against a series solution by Morris et al. [23]. Figure 1.5 shows

the resultant velocity profiles. SPH velocity profiles are plotted by points with theoretical

velocity profiles shown with dotted lines. Boundary particles for the upper and lower surface

are not shown. It is notable that for larger values of h the SPH results slightly overpredict

viscous forces. It is possible that making the empirical factor ζ a function of smoothing

length rather than a constant might be able more accurately reproduce physical viscosity

values over a range of smoothing lengths.
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Figure 1.5: Couette Flow SPH Simulation

Rising Bubble

To test basic multiphase flow simulation capability, a viscous rising-bubble test case was run.

Following the work of Colagrossi and Landrini [24] and Meister and Rauch [25] a bubble in

a domain measuring 6R by 10R was generated. The fluid density was set to ρw = 1000 kg
m3

with the gas density as ρa = 1 kg
m3 . The bubble diameter was set to 2.3e−3m and gravity set

to 9.8m
s2
. The speed of sound in the two fluids was set to cw = 2.1m

s and ca = 14.1cw. This

non-physical inversion of the speed of sound ratio in the gas and liquid phases is used to

aid in the stabilization of the gas-liquid interface following recommendations of Monaghan

and Colagrossi and Landrini [22] [24]. Kinematic viscosities were set to νw = 1× 10−6 m2

s

and νa = 128× 10−6 m2

s respectively.

Figure 1.6 shows simulation results for non-dimensional time values (t
√

g
R) of 0, 3.1,

and 4.7. The pressure difference due across the bubble causes the fluid at the bottom of

the bubble to bow upwards. As the bubble rises, a strong velocity gradient between the
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(a) t
√
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R = 0 (b) t

√
g
R = 3.1 (c) t

√
g
R = 4.7

Figure 1.6: Density Driven Flow: Rising-Bubble - Detail

rising column of liquid behind the bubble and downward moving liquid on the sides of the

bubble causes viscous forces which lead to strong circulatory flow at the edges of the bubble.

This circulation causes the bubble to elongate and eventually leads to the separation of two

smaller bubbles.

Figure 1.7 shows a comparison of simulation results (left subfigures) with a simulation

performed by Yang [26] (right subfigures). Non dimensional times t
√

g
R of 0 through 0.9

are shown. Water in the simulation has a density of ρw = 1000kg/m3, air has a density

of ρa = 1kg/m3. The numerical speed of sound for water is set to cH2O = 28.28m/s.

While this speed is significantly lower than the true speed of sound for water, so long as

the numerical speed of sound in the simulation is significantly higher than the maximum

flow-velocity, simulation results will be insensitive to the numerical speed of sound. Liu [8]

recommends a numerical speed of sound 20 times that of the largest expected fluid velocity

in a flow to minimize non-physical compressibility effects on simulation results.

Both simulations show an asymmetry that forms despite symmetric initial conditions.

This suggests the possibility of sensitivity to perturbations inherent to the bubble-rise case.
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Figure 1.7: Rising-Bubble Simulation (current work left, Yang right)
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If there is a high sensitivity to initial conditions, even the small rounding errors accumulated

from the non-symmetric traversal pattern of particle-particle interactions may be the source

of this observed oscillation. Density-driven bubble simulations of this type are sometimes

observed to be performed with symmetric half-plane conditions. Doing this would obfuscate

the chaotic nature of the flow, however, to ensure repeatability this may be desirable.
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Chapter 2: Underwater Deflagration Experiment1

Experimental datasets are a critical component for the validation of Computational Fluid

Dynamics (CFD) codes. CFD is increasingly being utilized as a primary analysis tool

for cases in which experimental analysis is cost-prohibitive or otherwise impractical. The

analysis of underwater explosions (UNDEX) is a case that often meets these parameters.

To provide a dataset to add to the library of validation data, an experiment consisting

of a simple underwater deflagration impinging on fixed and flexible targets is presented.

While deflagration is a fundamentally distinct combustion mechanism from detonation, the

resultant multiphase flow of underwater deflagration shares the central characteristic trait of

high-pressure gas interacting with fluid. The experiment presented in this thesis is designed

to provide a validation dataset for CFD codes simulating similar flows. Photographic data

and pressure time histories for the experiment are presented in this thesis.

2.1 Experiment Overview

The study of underwater explosions (UNDEX) is critical for damage survivability and many

other topics in the field of naval engineering [27, 28]. It is also an important subject for

underwater construction, demolition, harbor maintenance, and studies of the resultant envi-

ronmental impacts of these activities [29–31]. Increasingly, Computational Fluid Dynamics

(CFD) is augmenting or replacing experiments for applied UNDEX analysis. A recent

survey of state-of-the-art UNDEX simulation and experiments by de Camargo concludes

that ”[...] numerical simulation software is a well-established time-saving tool for yielding

precise UNDEX results, leaving aside the need for resource costly experimental tests” [32].

1Work from this chapter has been submitted to the journal Ocean Engineering and is currently pending
revisions.
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This increased utilization of CFD as a primary prediction tool makes the validation of the

numerical methods used in CFD software ever more critical. Validation of CFD codes is

most often performed by choosing representative test cases and comparing numerical and

experimental results to those cases [33–40]. This process allows developers to establish ap-

proximate bounds on the expected accuracy and robustness of numerical results. While a

large library of experimental UNDEX data exists in the context of naval vessels [41–44], the

data from these experiments may be difficult to utilize for applications unrelated to naval

vessels. More generalized experimental UNDEX datasets such as those generated by Cuio et

al [45], De et al [46], Yang et al, [47] expand on the available library of UNDEX data. These

and similar datasets form a basis for experimental work in UNDEX. This work seeks to add

to the existing library of generalized experimental UNDEX data by providing a dataset for

a low-intensity underwater deflagration with fluid-structure interaction (FSI). Some years

ago, the original experiment design and initial results were published in [48, 49]. In the

years since, additional video data has been published [50]. This thesis provides further

information on the experiment design and provides additional quantitative and qualitative

data for those in the simulation community wishing to use it for validation purposes.

To obtain quantitative data for a small-scale underwater deflagration, an experiment

consisting principally of a submerged, low-aspect-ratio, vertically-oriented cylinder with

one open end was devised. Premixed propane and air were selected for the combustible

reactants. Earlier work identified a slightly fuel-rich mixture as desirable to reduce un-

certainties in the limiting reactant in the combustion process [49]. In this low-pressure,

unconstrained configuration, the combustion of air and propane propagates via thermal

conduction (a process known as deflagration). Combustion in a deflagration reaction differs

substantially from combustion in detonation. In detonation, the combustion reaction prop-

agates by a compression wave moving through the reacting material. The high-speed reac-

tion of detonation typically results in much higher gas pressure in a post-combustion state.

Furthermore, the compression wave of a detonation after exiting the reactants continues to

propagate into the surrounding fluid as a strong shock. However, even with these significant
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differences, post-combustion underwater deflagration and detonation both share the central

characteristic of a high-pressure gas bubble surrounded by water. Studying deflagration in-

stead of detonation provides several key advantages. Most notably, the lack of a shockwave

in underwater deflagration facilitates data gathering in several ways. The lack of a shock

allows for experiments to be performed housed in an un-reinforced tank. This simplifies the

acquisition of visual data. Another advantage is the longer timescale and lower peak pres-

sures inherent to deflagration reactions. Detonation reactions progress extremely rapidly

and generate strong shockwaves and very large pressure spikes. Deflagration reactions in

contrast progress at timescales orders of magnitude slower than that of detonations. The

lower peak pressures, slower reaction rate, and longer timescales of a deflagration simplify

the acquisition of high fidelity pressure data. This is because the reduced peak pressures

and longer timescales of a deflagration do not necessitate high-frequency hardened pressure

sensors -such as piezoelectric pressure transducers- to accurately resolve pressure changes

throughout the reaction. While deflagration is a fundamentally different mechanism of fuel-

oxidizer reaction compared to detonation, the high-pressure gas generated in deflagration is

characteristically similar to those generated in detonation. Considering this and the advan-

tages deflagration presents over detonation for ease of data acquisition, it is proposed here

as a method for obtaining high-pressure gas dynamics which may be useful for validation

of CFD simulations focused on the non-shock-related effects of underwater explosions. The

data generated in this study is designed to focus in detail on the bubble dynamics and

pressure of underwater deflagration and is intended to provide data for validation of CFD

codes focused on these effects.

2.2 Materials and Methods

To provide data on the forces and displacements experienced by a flexible membrane under

the influence of a low-intensity underwater deflagration, a two-part experiment was per-

formed. Both stages of the experiment used a vertically oriented acrylic cylinder, sealed

on the upper end to contain a mixture of air and propane. In the first stage a deflagration
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from the cylinder was allowed to impinge on a rigid plate target (Fig. 2.1a). In the second

stage, the rigid plate was replaced with a flexible rubber membrane (Fig. 2.1b).

Pressure Transducer

Pressure Transducer

(a) Flat Plate Target

305x305mm Plate

178mm Diameter

76mm Inner Diameter

(b) Flexible Membrane Target

Figure 2.1: Deflagration Targets

The acrylic cylinder measured 100± 1 mm in length with an inner diameter of 76± 1 mm

(Fig. 2.2a). It was mounted in a rigid structure 24 ± 1 cm above the rigid plate target (Fig.

2.2b). The assembly was placed in a 1.2 m × 1.2 m × 1.2 m water tank. The tank was filled

with 67.5 ± 2 cm of water, submerging the upper surface of the rigid plate target to a depth

of 53 ± 2 cm. Two electrodes were embedded in the top-center of the cylinder to provide

spark-ignition (Fig. 2.2a). An OMEGA PX26-030DV pressure transducer was mounted off-

center within the top of the cylinder to measure cylinder pressure. To minimize variation

in the total energy output of the combusting gases, a target fuel-air equivalence ratio (ϕ)

of 1.21 ± 0.07 was selected. This ratio yields a rich air-fuel mixture with oxygen as the

limiting reactant. Experimental work performed by Ebaid et al. [51] suggests that propane

combustion at this equivalence ratio will have a laminar flame speed of approximately 26
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cm/sec.

100 mm

6 mm

10 mm

Ø83 mm OD

Ø76 mm ID

(a) Inverted Cylinder

235 mm

529 mm

675 mm

Pressure Transducer

Pressure Transducer

(b) Test Stand with Flat Plate Target

Figure 2.2: Experiment Assembly

To prepare the system for ignition, air and propane volumes were measured at atmo-

spheric pressure and were mixed before being added to the cylinder. This was done by

adding 434 ± 5 ml air and 22 ± 1 ml propane gas (an air-fuel ratio of 20:1) to a balloon.

Then a small amount of water was introduced to the balloon reservoir and the system was

agitated to mix the gasses. A positive displacement pump was then used to move the fuel-air

mixture from the reservoir into the inverted combustion cylinder. Water was then added to

the inlet line to displace any remaining fuel-air mixture and prepare the system for ignition.

In the first stage of the experiment, a deflagration impinging on a flat plate was analyzed.

The rigid plate target was fixed 235 mm ± 5 mm below the bottom of the cylinder and was

instrumented with an OMEGA PX26-005DV pressure transducer. The pressure transducer

was fixed in the center of the plate in line with the cylinder axis. The gas mixture was

then ignited with a piezoelectric spark generator. This procedure was repeated five times

to obtain a set of video and pressure time histories for the experimental results.

In the second configuration of the experiment, the rigid plate target was replaced with
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a target that included a circular 178 ± 0.5 mm diameter, 2.4 ± 0.1 mm thick, 50 DURO

flexible silicon membrane (Fig. 2.3). To integrate the membrane into the target plate, a

circular cutout was made through a 12.7 mm thick acrylic plate. The membrane was then

placed on top of this base plate and secured by affixing a 1.6 mm thick acrylic plate with

a matching circular cutout on top of the flexible membrane. The top plate was affixed to

the base plate by twelve evenly spaced bolts in a 216 mm diameter circular pattern (Fig.

2.1b). To obtain a stereoscopic view of the membrane a pair of Edgertronic SC1 high-

speed cameras were placed approximately two meters from the target with a one-half meter

spacing (Fig. 2.4). The gas mixing and ignition procedure was repeated and video data of

the membrane response was recorded. The membrane’s center-point vertical displacement

history was calculated by pixel tracking and strain data was obtained through Digital Image

Correlation (DIC) using LaVision DaVis software [52].

Figure 2.3: Flexible Membrane

2.3 Results

As described above, the experiment was broken into two parts. Section 2.3.1 presents the

results from the experiment using an instrumented rigid plate target and Section 2.3.2
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Figure 2.4: Stereoscopic Camera View of Flexible Membrane Target

presents results using a flexible-membrane target.

2.3.1 Rigid Plate Target

For the rigid plate case, all five experiment runs yielded characteristically similar behavior,

though with noticeable variability in the resultant combustion rate due to variations in the

composition of the fuel-air mixture. However, the behavior of the system can be broken into

a sequence of characteristically distinct stages, with the data from post-combustion stages

exhibiting very little variability. A time history of a single run of the rigid plate experiment

is shown in Fig. 2.5.

For the selected test (Run 4) of the rigid plate target case, the following behavior

was observed. After ignition, a flame-front propagates radially outwards from the ignition

electrodes. As the fuel-air mixture combusts, pressure in the cylinder increases slowly. (Fig.
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2.8a). As the flame-front propagates through the cylinder, a Poiseuille-like velocity profile

causes the flame-front to transition from its initial spherical shell to a progressively sharper

parabolic form. This behavior is expected in a premixed flame propagating in a tube prior

to Shelkin acceleration [53][54]. Fourteen to twenty milliseconds after ignition, the air-water

interface begins to form an oblate bubble centered with the plane of the cylinder outlet.

The bubble maintains approximate radial symmetry about the vertical axis and expands

approximately equally above and below the plane of the cylinder outlet. Between 22 and

36 ms after ignition, the flame-front reaches the lower outlet of the cylinder (2.8b). As

the flame-front travels past the cylinder outlet and into the primary bubble, its surface

area expands greatly. Because the fuel combustion rate is proportional to the surface area

of the flame front, this expansion leads to a rapid increase in the combustion rate of the

fuel-air mixture. This causes a rapid increase in the cylinder and bubble pressure (visible

as the first pressure spike in Fig. 2.9). Maximum bubble diameter occurs 20 ± 2 ms after

the flame front reaches the cylinder outlet (Fig. 2.8d). At its maximum diameter, inertial

forces have caused the bubble to over-expand. In this state, the gas pressure in the cylinder

and bubble has dropped below the original hydrostatic pressure at the cylinder outlet.

This pressure imbalance between the gas and surrounding fluid slows and then ultimately

reverses the bubble’s expansion, causing the bubble to collapse. Through the majority of

the bubble’s collapse, its shape remains approximately vertically symmetric. However, this

vertical symmetry is broken as the air-water interface on the top half of the bubble nears

the cylinder wall. This is likely a result of the presence of the combustion cylinder’s walls,

and their action to disrupt the gas flow in the upper half of the bubble. This loss of vertical

symmetry occurs 10 ± 1 ms after the maximum observed bubble diameter (2.8e). Inwards

moving fluid in the plane of the cylinder outlet converges on the cylinder impinging on its

sides. This moving fluid separates the two vertical halves of the original bubble. Fluid

striking the cylinder wall bifurcates, and fluid moving upwards along the cylinder outer

wall pulls the upper bubble with it. The separated upper portion of the bubble becomes

turbulent and rises upwards under the combined effects of this moving water on the cylinder
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and buoyancy. Portions of the inwards moving fluid that are deflected downwards from the

bifurcation on the cylinder are directed downwards at high velocity. This rapidly moving

fluid leads to cavitation appearing on the outer edge of the cylinder visible in Fig. 2.8f.

This downwards moving fluid is redirected into the center of the separated lower bubble

imparting rotational motion to the fluid in the region. The separated lower bubble then

undergoes a further collapse. This secondary bubble collapse leads to a high-pressure region

in the fluid directly below the cylinder outlet. This leads to the formation of a pair of axial

water jets (visible in Fig. 2.5k, 2.5l). The upper jet is unimpeded until it strikes the upper

boundary of the cylinder at which point pressure data in the cylinder sensor becomes chaotic

due to the highly turbulent flow.

Pixel tracking from video data was analyzed to obtain time histories of the resultant

bubble radii. Figure 2.6 shows the bubble radii from each of the five test runs. While

the maximum bubble radius observed in the cases varies only slightly (with a difference

of 9 mm between the smallest and largest bubble radii), the bubble expansion rates vary

significantly. The maximum bubble diameter occurs in the most rapid case within 34 ms of

initial gas emergence from the cylinder while the slowest expansion case required 49 ms to

reach maximum diameter.

Cylinder and bottom-plate pressure histories for the five experiment test-runs are shown

in Figures 2.9 and 2.10 respectively. During the initial combustion phase, prior to the flame-

front reaching the outlet, cylinder pressure rises nearly linearly. When the flame-front passes

the cylinder outlet the surface area of the flame-front expands greatly. This leads to an

increase in the combustion rate and causes a rapid increase in measured pressure. After

combustion completes the bubble continues to expand. The measured pressure continually

decreases in this stage, eventually decreasing below gauge pressure as inertial forces cause

the bubble to over-expand. The over-expanded bubble then collapses, leading to a steady

increase in cylinder pressure. Finally, in all cases, a rapid and chaotic pressure rise in the

cylinder is observed after bubble collapse. This is most likely due to a jet of water impinging

on the upper surface of the cylinder.
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Figure 2.6 shows time histories of the radius of the gas bubble about the vertical axis. A

significant degree of variability is observable in resultant behavior. This variability however

appears primarily in the rates of bubble growth. There is an observable trend between the

rate of bubble growth (initial slope of the bubble radius) and the maximum observed bubble

diameter for each run. However, despite significant variance in the time between ignition and

maximum bubble diameter, the largest observed bubble radius (Run 1) is only 14% larger

than the minimum observed radius at maximum expansion (Run 3). Differences in air-fuel

mixture homogeneity and water-vapor content are likely significant factors in this observed

variability. However, it is notable that combustion occurs only early in the experiment.

By observation, post-combustion bubble-radius exhibits similar characteristics. To further

highlight this trend, it is useful to align the experiment data by the time of the maximum

observed bubble diameter. To do this, the time from ignition to maximum-bubble-diameter

for each case was tabulated and data was offset by these values. Ignition times for each run

are shown. Figure 2.7 shows the bubble radius time-history aligned in this manner. The

experiment can then be separated into five discrete stages. These are (I) combustion in

the cylinder, (II) combustion in the bubble, (III) inertial expansion, (IV) collapse, and (V)

post-collapse. The visual state of the initial and final stages and transitions between each

of the stages is detailed in Figure 2.8.

Figures 2.9 and 2.10 show pressure time histories of the cylinder and lower-plate pressure

sensors. The pressures have been aligned by the minimum observed cylinder pressure (to

correspond with the maximum bubble diameter). After the first pressure peak, the pressure

in the bubble rapidly decreases as its volume grows. After the bubble has reached pressure

equilibrium with the surrounding fluid inertial forces continue to cause the bubble to expand,

reaching a lower than hydro-static pressure at maximum bubble volume. The bubble then

collapses, with pressure in the cylinder rising to a peak of similar magnitude to that of the

initial expansion.

To facilitate validation for simulations without combustion dynamics, bubble geometry
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for the maximum expansion state is presented. At maximum bubble expansion, fluid ve-

locities in the tank are expected to be negligible. This should allow simulations to begin

from this state, bypassing combustion and expansion phases. Figure 2.11a illustrates the

oblate spheroid shape of the bubble at maximum expansion. Equation 2.1 with parameters

from Table 2.11b provides a fit of the bubble’s surface in cylindrical coordinates for each

run of the experiment at maximum bubble expansion. The bubble center is offset from the

cylinder outlet by a distance h. Because buoyant forces cause the bubble to translate up-

wards through the duration of the experiment, this value is negative at maximum expansion

(indicating the bubble center is above the plane of the cylinder outlet).

Figure 2.12 shows the mean as well as minimum and maximum envelope time-histories

of the flame-front vertical distance from the closed upper end of the cylinder. Times are

relative to the first visible presence of ignition. Significant variations in the flame-front

propagation rate are visible. As noted earlier, this is likely due to both variations in the

mixing of the fuel-air mixture as well as variability in the water vapor content of the gas

mixture.

2.3.2 Flexible Membrane Target

Figure 2.13 shows the deflagration impinging on the flexible membrane target. A time

history of vertical displacement for the center of the circular membrane was generated by

pixel tracking. Figure 2.14 shows the membrane center-point track alongside the rigid plate

pressure time histories. The center-point track shows the combined effect of multiple modes

of membrane vibration. Because of this, the center point time history exhibits a somewhat

complicated response behavior.

To better visualize the strain experienced by the membrane, a 2D planar strain visual-

ization was generated using Digital Image Correlation (DIC) software and stereoscopic video

data (Fig. 2.15). It is important to note that the two-dimensional strain analysis does not

accurately depict true membrane strain (as the membrane oscillation includes significant

out-of-plane deformation violating the planar assumption used by the analysis). However,
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the visualization provides a useful qualitative approximation of the strain experienced by

the membrane during deformation.

In Fig. 2.15e there is visible evidence of a secondary mode of membrane oscillation.

This suggests imperfect radial symmetry in the experiment or a misalignment of the shared

axis of the cylinder and membrane. However, because the asymmetry in the membrane

behavior appears late in the membrane response, any alignment error is likely minor.

2.4 Discussion

As noted, significant variability in resultant combustion rates was observed. A possible

source of the variability in the flame-front speed visible in Fig. 2.12 is the homogeneity

of the fuel-air mixture. Figure 2.16 shows detailed images of the flame-front at equivalent

states for two separate experiment runs. The flame-front visible in Figure 2.16a appears

smooth, indicating the reacting gases are likely well mixed and largely homogeneous. This

is contrasted by the flame-front visible in figure 2.16b which exhibits noticeable irregular-

ities. These irregularities suggest the presence of localized variations in the fuel-air ratio

of the mixture. Changes in the local equivalence ratio may increase or decrease the local

combustion rate depending on the local mixture properties.

An additional factor leading to combustion rate variability is the method utilized to mix

the combustion gases. It is likely that the method of mixing the gases by agitating the air

and propane with a small volume of water increased the humidity of the fuel-air mixture. It

is well documented that hydrocarbon combustion rates are reduced with increasing water

vapor content [55].

Furthermore, the chosen fuel-equivalence ratio may have contributed to combustion-rate

variability. A downside of the chosen equivalence ratio is that a small change in the fuel

mixture at the chosen equivalence ratio results in a significant change in the expected linear

flame speed. Combustion of a gas mixture nearer to a stoichiometric ratio would exhibit a

lower flame-speed sensitivity to fuel mixture variation.

However despite the variations in flame-front propagation speed and bubble growth rate,

29



the low variations in the maximum bubble diameter of each experiment run visible in (Fig.

2.7) suggests that the choice of a rich fuel mixture achieved the desired low-variability in

total energy released.

2.5 Summary

An experiment to generate a dataset for low-intensity underwater deflagration impinging

on a rigid surface and flexible membrane was performed. Visual data and pressure time

histories for the cylinder and rigid plate were recorded. Center-point displacement and

qualitative strain data for the response of a flexible membrane were obtained using pixel

tracking digital image correlation. Variations in the observed combustion rate caused vari-

ability in the initial deflagration stage in the cylinder. However post-combustion system

behavior, including maximum bubble diameter, exhibited very little variability.
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(a) t = 0 ms (b) t = 10 ms (c) t = 20 ms

(d) t = 30 ms (e) t = 40 ms (f) t = 50 ms

(g) t = 60 ms (h) t = 67 ms (i) t = 70 ms

(j) t = 80 ms (k) t = 90 ms (l) t = 100 ms

Figure 2.5: Deflagration and Bubble History (Run 4)

31



Figure 2.6: Bubble Radius

Figure 2.7: Bubble Radius (Aligned at Maximum Diameter) and Deflagration Stages, I:
Combustion in Cylinder, II: Combustion in the Bubble, III: Inertial Expansion, IV: Collapse,
V: Post-Collapse
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(a) Stage I: Ignition, Combus-
tion in the Cylinder

(b) Transition I→II: Flame-
Front Reaches the Bubble

(c) Transition II→III: Com-
bustion Completes

(d) Transition III→IV: Maxi-
mum Expansion

(e) Transition IV→V: Sym-
metry Breakdown

(f) Stage V: Post Bubble Col-
lapse Behavior

Figure 2.8: Deflagration Stage Transitions
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Figure 2.9: Cylinder Pressure

Figure 2.10: Bottom Plate Pressure
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h

b

a

z

r

(a) Bubble Shape at Maximum Expansion

Run # a (mm) b (mm) h (mm)

1 124 74 -4.5
2 120 72 -3.5
3 114 67 -4.5
4 119 69 -4.0
5 114 68 -6.0

(b) Shape Parameters at Maximum Expan-
sion

Figure 2.11: Bubble Shape at Maximum Expansion

r3.7

a3.7
+

z2

b2
= 1 (2.1)

Figure 2.12: Flame-Front Distance From Origin
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Figure 2.13: Deflagration Impinging on Flexible Membrane Target

Figure 2.14: Membrane Displacement & Rigid Plate Pressure
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(a) t ≈ 34ms (b) t ≈ 37ms (c) t ≈ 47ms

(d) t ≈ 57ms (e) t ≈ 67ms (f) t ≈ 77ms

Figure 2.15: Qualitative DIC Visualization of 2D Planar Membrane Displacement

(a) Uniform Premixed Flame (b) Cellular Premixed Flame

Figure 2.16: Combustion Detail
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Chapter 3: Underwater Deflagration Simulation

In order to assess the ability of SPH to simulate an underwater deflagration using basic

SPH formulations, a first approximation of the experimental cylinder test case was run.

Several simplifications were made to the simulation, most centrally that the simulation is

restricted to 2-dimensions. However, because the goal of this simulation is to identify defi-

ciencies in stability and overall behavior, matching the experimental results is not necessary

or expected. An additional simplification to the simulation is made by modeling the com-

bustion process as a linear reference-density ramp over a timespan of 30ms. By altering the

reference density in eq. 1.12 by a factor of k, the pressure of the combustible gas mixture

in the cylinder can be indirectly influenced. Equation 3.1 shows this modified form of the

equation of state for the combustible gas mixture. This approach can be used to loosely

approximate the pressure rise due to combustion.

P = β(
ρ

kρ0
− 1)γ + P0 (3.1)

For the simulation, the reference density k was linearly changed from 1.0 to 0.5 over

30ms. The motivation for choosing this simplified reference-density target was to ensure

that after the cylinder gas had expanded by a factor of two, the gas would be at the initial

equilibrium pressure. By analysis of Equation 3.1, the theoretical increase in pressure from

this density change in a static system starting at its reference density can be determined.

In this case Equation 3.1 reduces to β( 1k − 1)γ With k = 0.5, β = 57715 Pa, and γ = 1.4

this reduces to a pressure rise of β, or 57.7 kPa (22.1 psi).

However, because the gas in the simulation will expand during the pressure ramp, the

true pressure rise will be significantly lower than this upper-bound estimate.
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3.1 Simulation Results

Figure 3.1 shows a time history of the results of the SPH simulation of the underwater

deflagration experiment. The left sub-figures are colored by pressure while the right sub-

figures are colored by density. The simulation exhibits qualitative characteristics of the

experiment. Pressure in the cylinder rises before the pressure in the fluid near the bottom

plate increases. However, the simulation does not form a bubble in the shape of an oblate

sphere. Instead, air is forced to the outside of the cylinder and begins rising due to buoyancy

before additional expanding gas can form an oblate bubble shape. This is likely both a

consequence of the inexact modeling and calibration of the combustion model as well as the

fundamental difference between a 2-dimensional simulation and a full 3-dimensional flow.

Figures 3.2 and 3.3 show pressure histories of the simulation compared to those of the

experiment. While the total combustion period observed in experimental results varied from

between 30ms and 50ms, the highly simplified 30ms pressure ramp used in the simulation

is a poor analog to the true combustion process. Additionally, though combustion in the

experiment occurs over a period ranging in duration from 35ms to 45ms, the observed

combustion rate of the gas is highly variable throughout the deflagration. While combustion

is confined within the cylinder the net combustion rate is relatively uniform for any single

experiment run. However, once combustion reaches the bubble, the rate of combustion

increases rapidly due to the large increase in the flame-front within the expanding gas

bubble. This causes the majority of combustion for all experiment runs to occur during

a narrow 10ms time period after this occurs. This non-linear combustion behavior is not

modeled in the simulation. Future work to either fully model combustion or develop a more

accurate low-order combustion model is planned.
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(a) t=0ms (b) t=0ms

(c) t=5ms (d) t=5ms

(e) t=12.5ms (f) t=12.5ms

(g) t=22.5ms (h) t=22.5ms

(i) t=30ms (j) t=30ms

(k) t=37.5ms (l) t=37.5ms

Figure 3.1: Deflagration Simulation Results (Left: Pressure, Right: Density)
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(m) t=56ms (n) t=56ms

(o) t=83ms (p) t=83ms

(q) t=101ms (r) t=101ms

(s) t=143.5ms (t) t=143.5ms

(u) t=185ms (v) t=185ms

(w) t=445ms (x) t=445ms

Figure 3.1: Deflagration Simulation Results (Left: Pressure, Right: Density)
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Figure 3.2: Simulation and Experiment Cylinder Pressure
Plotted Relative to Peak Cylinder Pressure

Figure 3.3: Simulation and Experiment Bottom Plate Pressure
Plotted Relative to Peak Cylinder Pressure

42



Discussion

Because the fluid behavior is highly three-dimensional, no direct comparison between the

2-dimensional simulation and 3-dimensional experiment can be made. Additionally, while

the model meant to approximate combustion functioned as intended, the uniform rate of

reference density change did not match the true variable combustion rate of the experiment.

Future work aims to implement a full 3-dimensional simulation of this flow. However, even

with fundamental differences between the simulation and experiment, the original goal of

analyzing the core capabilities of SPH to simulate the system was achieved.

During the development of the code, several areas of interest for further development

of SPH became apparent. In cases where the local fluid support radius is larger than the

thickness of a boundary two issues arise. The first is that in this situation, traditional

ghost particles are insufficient to prevent boundary deficiency artifacts. Secondly, when

the support radius is larger than the cylinder wall fluid on the outside of the cylinder is

able to non-physically interact with gas on the interior of the cylinder. Careful control of

particle smoothing length was performed to ensure no support radius would extend across

a cylinder wall. This allowed for the simulation to proceed without non-physical fluid

interaction across the cylinder. However, ideally, boundary methods should be developed

which prevent cross-interface interaction and affect boundaries of any wall thickness. Work

towards this goal is detailed in Chapter 4.

The next issue identified is the potential particle scale discontinuity at the fluid-gas

interface which can emerge from the bulk expansion or contraction of the gas. As the gas

expands, the initial particle representation of that gas rarifies, in extreme cases, this can

cause the particle spacing in the gas to drop low enough to destabilize the simulation. Work

done to simulate a pneumatic air-gun (a characteristically similar fluid flow) using SPH by

de Graaf noted this instability for large bubble diameters [56]. A solution to this instability,

proposed by Liu and Liu [17] and others, is to initialize a gas that is expected to expand with

a significantly higher particle number-density than would otherwise be necessary or ideal.

In this way when the gas expands, the particles will rarify and the local particle spacing
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will reduce to a desirable level. This is the approach used in this simulation. However, this

approach is inefficient in that it initially requires more particles than otherwise desirable

to represent the gas discretization. A second drawback to this approach is that it requires

advanced knowledge of the extent to which the gas will expand. A more ideal approach

would be to dynamically add or remove particles to the deforming gas to enforce the local

particle spacing in the gas is maintained at a prescribed level. This requires a method

to vary resolution throughout a simulation. Chapters 5 and 6 discuss current methods of

variable resolution using SPH and propose algorithms to expand this capability. Chapter 7

outlines a new algorithm to support the methods proposed in chapter 6.
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Chapter 4: Boundary Deficiency Correction1

4.1 SPH Boundary Behavior

In SPH simulations with uniformly distributed particles in an unbounded region, the SPH

particle-discretized formulations approach the Navier Stokes governing equations as smooth-

ing length approaches zero. The unbounded assumption is required to satisfy that fluid field

values exist at all points within a particle’s support domain. When a particle’s support do-

main has an insufficient number of particles to adequately approximate the fluid field values

within its support radius it is said to be integral or boundary deficient. One way in which

this can occur is if the particle smoothing radius is set to a small value such that very few

particles fall within a support radius, in this case, the SPH governing equations will yield

poor approximations of field functions. Because of this, the smoothing radius is typically

empirically related to particle mass and density such that an acceptable influence radius

is maintained. A second more complicated manner in which integral deficiency can occur

is observable when a particle is within close proximity to a fluid boundary. This situa-

tion is shown in Fig. 4.1, which plots particle acceleration of a finite 1D constant pressure

fluid. While there exists no pressure gradient in the fluid, near-boundary particles exhibit

a non-zero acceleration or boundary deficiency in acceleration.

This behavior is desirable at free surfaces for single-phase simulations as the boundary

deficiency behaves identically to a zero gauge pressure fluid. However, boundary deficiency

leads to difficulties at fluid-object boundaries. Relatively robust boundary conditions can

be created by using repulsion forces based on spatial proximity (see [3][58][59]). However,

1The work presented in this chapter was published in the journal Ship Science and Technology : Ciencia
y Tecnoloǵıa de Buques [57] in 2010
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Figure 4.1: Boundary Deficiency in Acceleration (influence radius=1, length is unitless)

because of the lack of a pressure term to correct for boundary deficiency, proximity-based

repulsion boundaries tend to yield a non-physical varying fluid particle to wall spacing at

equilibrium. Typically this boundary deficiency is addressed by populating boundary re-

gions with virtual particles whose properties are either fixed or derived from nearby fluid

particles (see [60][61]). Robust boundary conditions which do not exhibit varying particle

wall separation distance can be obtained by combining a spatial repulsive boundary with

virtual particles [17][62][63]. However, for cases in which large boundary deformations can

occur, virtual particle placement can become problematic due to virtual particle clumping.

Clumping is a particle artifact in which particle spacing becomes skewed such that a di-

rectional spacing bias is present. This can result in an integral deficiency or surplus which

increases the error of calculated field values. Fig. 4.2 shows an example of fixed virtual

particle clumping due to boundary deformation. Visible in Fig. 4.2 is clumping resultant

from deforming a boundary (shown in red). In the convex deformation case, near-boundary

fluid particles experience a virtual particle integral surplus. Likewise, concave deformations

lead to an integral deficiency.

It is therefore desirable to provide an alternative to virtual particles for boundary de-

ficiency correction of highly deformable objects. While various correction methods exist

which achieve similar results, they are often computationally expensive. Feldman and Bonet

developed one such method to correct boundary deficiency for straight and corner bound-

aries by generating a curve-fit to boundary-deficiency accelerations [64]. While the goal is

to achieve a boundary deficiency correction for arbitrary boundaries, it is advantageous to
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Figure 4.2: Clumping of Virtual Particles due to Deformation

first consider the simple case of a 1-dimensional boundary. By observation of the boundary

deficiency of a one-dimensional fluid as in Figure 4.1, it is apparent that the boundary

deficiency is similar in shape to the smoothing function. Analyzing equation 1.24 acting at

a boundary and assuming constant pressure, density, and mass, the momentum equation

can be reduced as shown in equation 4.1.

Dvni
Dt

= −
N∑
j=1

mj(
pi
ρ2i

+
pj
ρ2j

)
∂Wij

∂x⃗ij
= −2mp

ρ2

N∑
j=1

∂Wij

∂x⃗ij
= −2Ap

ρ
Wij ∝ CWij (4.1)

Equation 4.1 shows that the acceleration boundary deficiency is proportional to the

total area of the deficiency as well as fluid pressure. Because cases of interest typically

involve non-constant pressures equation 4.1 is not strictly suitable for use as a boundary

correction. However, proportionality to the kernel function for boundary deficiency can still

be observed even in cases in which a pressure gradient is present. Figure 4.3 illustrates one

such case. Shown in figure 4.3 is the vertical acceleration of a unity density fluid influenced

by a downward body acceleration of unity magnitude.

The pressure at the top of the water column is zero (gauge pressure), with pressure in

the fluid varying as dp
dz = −ρg. The boundary deficiency in acceleration at the bottom of

the water column still strongly correlates to the kernel function even in the presence of a
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Figure 4.3: Clumping of Virtual Particles due to Deformation (length is unitless)

pressure gradient. It is interesting to note that a boundary deficiency exists not only at

the bottom boundary but also at the free surface. However, the low magnitude boundary

deficiency at the free surface does not introduce substantial error as it typically results in

only minor particle clumping.

4.2 Acceleration Boundary Deficiency Correction

While an exact acceleration boundary deficiency correction could be gained by discerning the

pressure gradient normal to a surface and analyzing the geometry of the deficiency, such an

approach would increase computational complexity. Instead a simple -if inexact- correction

is suggested in which the pressure is assumed to be nearly constant over the scale of the

smoothing length. Then by assuming a known boundary acceleration, the relative fluid-

boundary acceleration in the absence of boundary forces can be calculated. If this relative

acceleration is assumed to be the result of a boundary deficiency then it can be corrected

by applying a repulsive acceleration distributed as CWij away from the boundary. Where

C is determined by choosing a sample particle, determining the relative particle-boundary

normal acceleration, and dividing by Wij (Eq. 4.3). To improve robustness it is advisable
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to average C over a small sample of near-boundary particles. This reduces correction error

due to spurious pressure fluctuations. Equation 4.2 shows this one dimensional acceleration

boundary deficiency correction with j representing a boundary particle index.

Dvni
Dt correction

= −CjWij (4.2)

Cj =
1

Wij

Dvni
Dt uncorrected

(4.3)

The assumption that a boundary acceleration is known is suitable for fixed boundaries

but requires an approximation when applied to freely moving boundaries. For objects with

much greater density than the surrounding fluid, forward interpolation of acceleration is

acceptable as object acceleration will change only slowly relative to the simulated timescales

when acted on by fluid forces alone. However, as relative object-fluid density decreases, this

approximation worsens. Further work is necessary to assess the impact of this assumption

on low-density object dynamic behavior. While the correction presented in equation 4.2 is

sufficient for one-dimensional cases where a single boundary particle governs a boundary

deficient region, extension to higher dimensions requires a blending of corrections from

multiple boundary particles. With Ω∗ representing the set of all boundary particles within

rinfluence of a boundary particle j. An empirical weighting function to blend correction

values for two dimensional cases is shown in equation 4.4. Figure 4.4 shows a visualization

of the resultant weights.

Dvni
Dt correction

= −CjWijweightj,normalized (4.4)

Where
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weightj,normalized =
weightjk∑

Ω∗

weightjkn̂jn̂k

weightjk = ActivationParameter2jk + (GlancingParameter2jk +
1

2
)DistanceParameterjk

ActivationParameterjk =
spacing

||r⃗ij ||

GlancingParameterjk =
r⃗ij

||r⃗ij ||
· n̂boundary

DistanceParameterjk = 1− ||r⃗ij ||
rinfluence

Figure 4.4: 2D Boundary Correction Weight Blending Visualization
(influence radius=0.775, boundary spacing=0.25, boundary radius of curvature=1)
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Figure 4.4 illustrates the weighting scheme applied to simple concave and convex bound-

aries. The weights of the three boundary particles are shown by the blue, green, and red

shades respectively. The boundary deficiency correction is applied to two test cases (one

with a rectangular boundary, and one with an elliptical boundary) each with constant

pressure fluid. Figure 4.5 shows the rectangular tank case. Fluid properties are set to rep-

resentative values without units. Pressure and density are set to p = 1.0 (force per area)

and ρ = 1000 (mass per volume, unitless). Particle influence radius set to 0.5 (length). The

unmodified acceleration field is presented on the left and the corrected acceleration field is

shown on the right. The normalized acceleration correction magnitude for each boundary

particle is shown in blue and is plotted against boundary particle index (the zeroth bound-

ary particle is located in the lower left with subsequent indexes moving counterclockwise

about the rectangular tank). Figure 4.6 shows the elliptical tank case with identical fluid

and simulation parameters.

Figure 4.5: Rectangular Tank Boundary Correction Test Case
(influence radius=0.5 spacing=rinfluence/10)

The four dips in correction acceleration visible in figure 4.5 (rectangular case) are due

to the change in boundary deficiency due to the reduced volume of fluid present near the
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Figure 4.6: Elliptical Tank Boundary Correction Test Case
(influence radius=0.5 spacing=rinfluence/10)

four tank corners. The correction slightly over corrects the boundary deficiency in the sharp

corners of the rectangular case. For the elliptical tank case, the acceleration present after

boundary deficiency correction near the high curvature sides of the elliptic tank represents an

under correction of the boundary deficiency and is likely a result of the weighting function.

Further refinement of the weighting function may reduce the error in the correction due

to geometry. The low curvature and straight sections show good correction of acceleration

boundary deficiency.

Because the correction presented emulates virtual particles, it alone is insufficient to act

as a boundary condition. A secondary repulsion force such as the spatial repulsion force

developed by Monaghan in 2009 [59] is necessary to prevent fluid-boundary penetration.

The presence of virtual particles or a boundary acceleration deficiency corrective force can

improve the behavior of spatial repulsive boundary forces. This is especially noticeable in the

transient behavior present at the start of most simulations involving spatial repulsive forces

alone. By correcting the boundary acceleration deficiency immediately, near-boundary fluid

particles do not have to re-orient to allow for a spatial change to correct the boundary

repulsion force.
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Similar boundary acceleration correction work performed by Feldman and Bonet [64]

does not require an assumption of a known boundary acceleration, but instead determines

an acceleration correction by calculating the fluid pressure gradient and assuming a known

boundary geometry (straight or straight-corner). Further work is required to compare the

relative performance of the two methods when applied to various cases.

4.3 Summary

Virtual particles are normally used to correct errors due to integral deficiencies that appear

in the governing equations near boundaries. Virtual particle behavior for deformable objects

can be difficult to implement due to particle clumping after deformation. A simple repulsive

correction that loosely emulates the presence of virtual particles in the momentum equation

has been derived. An empirical weighting function to extend the theoretical boundary

correction to higher dimension cases has been presented. Results obtained by applying the

boundary correction to two constant pressure test cases were presented. The method yields

good correction of acceleration boundary deficiency in regions of low curvature but tends

to slightly overcorrect at sharp corners and undercorrect near regions with high curvature.

Since this work was published in 2010 [57] other researchers have developed alternate

methods of addressing this issue. Notably work by Ferrand et al [65] in 2013 and Mayrhofer

et al [66] in 2015 have provided highly adaptable algorithms for boundaries that correct for

boundary deficiency errors.
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Chapter 5: Spatial Filtering for Variable Spatial Resolution

5.1 Overview of Variable Spatial Resolution

As noted earlier, when a gas expands in a simulation in which there is a liquid-gas interface,

the SPH particles representing the gas may rarefy. This the can lead to lowering of local

resolution, a loss of accuracy and, in extreme cases, instability. In order to prevent this

from occurring, as well as improve computational efficiency throughout the domain, it is

highly desirable to be able to modify fluid resolution throughout a simulation.

Modifying resolution in SPH requires several distinct steps. The first of these is to

determine the desired local resolution throughout a domain. Once a target resolution is

known, the task of generating a new discretization of domain volume can begin. While it

is possible to generate a new discretization of a domain’s volume using only information

defining fluid boundaries, in many cases a resolution-adapted domain may be largely similar

to a pre-existing discretization. Because of this, there exists a significant potential perfor-

mance benefit to utilizing an existing domain discretization when generating a resolution

adapted domain discretization. To capitalize upon the potential increase in performance,

this approach is developed in this thesis.

When modifying an existing domain discretization to generate a discretization that

adheres to the new target resolution it is necessary to determine and map the resolution

of the existing domain discretization. Then, using the difference between the target and

current resolutions, particles may be added or removed from the domain to yield the desired

resolution.

Adding or removing particles however is a non-trivial task. If an additional particle is

placed too close to an existing particle in a domain, then the information added by the

new particle would largely be redundant and provide little effective increase in simulation
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accuracy. Similarly, removing a particle in a given region without adjusting the positions of

surrounding particles would leave a gap in an otherwise uniform distribution of datapoints

describing the fluid. Both redundant particles or voids in particle distribution are undesir-

able. To address this, when adding or removing particles to a domain, it is desirable that

the positions of the surrounding particles are adjusted in a manner to ensure similar local

spacing between particles. In this thesis, spatial filtering is utilized to perform this task.

5.2 Spatial Filtering

Spatial filtering in SPH is the practice of changing the positions of particles to improve the

numerical conditioning or physical consistency of a simulation. One of the most widespread

spatial filtering methods is the XSPH algorithm. XSPH was developed by Monaghan to

prevent non-physical particle-particle penetration [67]. It addresses cases where inadequate

resolution or undamped numerical error causes a breakdown of continuity, leading to a

domain state where an individual particle’s velocity is such that it would overtake and pass

through a neighboring particle. This non-physical behavior is undesirable. XSPH prevents

particle penetration by updating particle locations by an averaged group velocity rather

than from individual particle velocities.

Spatial filtering can also be used to prevent disordered or undesirable particle distri-

butions. Disorder in particle spacing can decrease the computational efficiency, accuracy,

and stability of a simulation [68] [69]. Ordered, but undesirable, particle distributions can

similarly negatively affect simulation accuracy by overly packing particles along an axis and

rarefying particles along a perpendicular axis. The mechanic which leads to this state is

known as tensile instability. Tensile instability is a phenomenon in SPH which can lead

to poor particle distributions. It describes a tendency for particles to directionally cluster

together during a simulation. Figure 5.1 illustrates the directional clumping due to tensile

instability in comparison to ordered and disordered particles.

Tensile instability (and particle penetration) primarily occur when using kernel func-

tions that have a first derivative that decreases in magnitude at short range. This kernel
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Figure 5.1: Ordered and Disordered Particles and Clumping Due to Tensile Instability

function characteristic is generally desirable in SPH as it prevents rapid fluctuations in in-

terparticle forces as particles pass near one another. This can be seen by considering the

Euler governing equation in discretized using SPH (eq. 5.1).

Dvαi
Dt

= −
N∑
j=1

mj(
pi
ρ2i

+
pj
ρ2j

)
∂Wij

∂x⃗ij
(5.1)

The acceleration from interparticle forces in this governing equation is weighted by

the first derivative of the kernel function Wij . Because Gaussian-like kernel functions are

designed with a reducing first derivative as inter-particle distance approaches zero (see Fig.

1.1) the
∂Wij

∂x⃗ij
term in eq. 5.1 will likewise approach zero for short-range particle interactions.

While this design decision in the selection of the kernel function imparts desirable numerical

characteristics for stability and continuum behavior, it allows for the undesirable emergence

of particle penetration and tensile instability.

Tensile instability most commonly appears when ordered particles undergo non-symmetric

deformation or shearing. Disordered particles do not exhibit tensile instability as tensile

instability is itself an ordered particle topology. The directionally clustered particles which

arise from tensile instability are undesirable as while they might provide high resolution

along a clustered direction, resolution in the transverse direction may be greatly reduced.
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In extreme cases, this local directional loss of resolution can lead to catastrophic instability.

Multiple mechanisms have been proposed to address tensile instability. Monaghan pro-

posed a short-range inter-particle repulsive force to address this issue [70]. However, another

approach is to perturb particle positions by a small fraction of their smoothing length with-

out altering their simulated velocities. This approach has the advantage of not altering fluid

compressibility but comes with disadvantages in that it could potentially introduce small

variations in angular momentum.

5.3 Expanded Circle Filter

To address tensile instability and particle disorder while maintaining continuity, the Ex-

panded Circle Filter algorithm was created by the author. However, because the addition

or removal of particles to a domain can lead to the emergence of local regions of poorly

distributed particles, the filter also has application to resolution adaptation. The method

also provides free surface particle identification. This added capability is important to spa-

tial filtering and resolution adaptation, as in both cases it is desirable to minimize any

alteration of a fluid’s free surface profile when perturbing particle positions. Many methods

to identify free surface particles have been developed. Works devoted specifically to SPH

include Marrone et al [71], Zheng et al [72], and others. Additional methods have been

developed for free surface identification in the context of other particle methods, creating a

large array of methods aimed at this task. However, the Expanded Circle Filter algorithm is

novel in that it both identifies free surface SPH particles and determines updated positions

for improved particle distribution in a single method.

The principle objective of the Expanded Circle Filter algorithm is to identify the local

position at which the minimum distance of a subject particle to all of its neighbors is

maximized. Moving a particle towards this position will equalize the spacing between it

and its neighbors at a local level.

Because the filter is applied in an uncoupled manner, any update to a single particle

will invalidate the solution for its neighboring particles. Because of this particle movements
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must be made with a relaxation factor. Once the desired positions (xc,i) for all particles in

a domain have been determined, particles are moved towards these positions by Equation

5.2, where α is a relaxation factor. Future work is required to determine optimal relax-

ation values for convergence, however, values as high as 0.95 yield stable convergence. The

algorithm is repeated throughout the domain until convergence is detected. In this way,

particles will move towards the local positions in which the distance to any nearest neighbor

is maximized.

x⃗i
k+1 = x⃗ki + α(x⃗c,i − x⃗ki ) (5.2)

An alternate description of the algorithm’s objective of maximizing the distance to

all particle neighbors is finding the maximum circumscribed circle which includes only

the subject particle. Thus, the algorithm may be visualized by considering a circle that

originates at a subject particle’s position and then grows until it is tangent to the subject

particle’s neighbors and is constrained by those points such that no further increase in

diameter is possible. Figure 5.2 illustrates this concept for a single particle surrounded by

four neighbors. In each iteration, the circle expands either radially outward or along a vector

perpendicular to a search plane. The algorithm concludes when the circle is constrained by

surrounding points and cannot expand further without circumscribing at least one point

other than the subject particle. The function’s output is the center of this maximum

circumscribed circle. This approach shares some characteristic similarities to Delaunay

triangulation. However in Delaunay triangulation circumscribed circles contain no interior

points, while in the Expanded Circle Filter precisely one point is required to be interior to

the circumscribed circle.

Figure 5.3a demonstrates the Expanded Circle Filter when applied to a random particle

distribution. In each subfigure, free surface particles are shown in red. In the initial domain

state, the particles are highly disordered. Within five iterations of the filter the particles

domain exhibit nearly uniform particle spacing, with only small variations in particle num-

ber density visible. However, it is notable that multiple regions show small-scale defects in
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Figure 5.2: Expanded Circle Filter Example

the otherwise ordered particle distribution. These defects are loosely analogous to vacancy

defects in 2D crystal lattice structures and emerge as a consequence of the design of the

filter. By thirty iterations nearly all local variance in particle number density has vanished,

though the particle vacancy defects remain.

In order to track the filter’s convergence the magnitude of the distance between each

particle and the center of that particle’s maximum circumscribed circle is considered. This

distance is non-dimensionalized by the radius of the circumscribed circle determined by the

Expanded Circle Filter algorithm. Figure 5.3b shows the maximum and L2 norm of this non-

dimensionalized particle movement for each iteration of the filter. While localized particle

translations are observable even after multiple iterations of the filter, the domain-wide L2

norm of particle movement exhibits rapid convergence.

The Expanded Circle Filter may also be applied to particle distributions with spatially

varying resolution. This is illustrated in Figure 5.4. In Figure 5.4, a highly disordered set of

particles is considered. However in this case the distribution is not random. But includes an

increasing gradient of particle number density in the horizontal direction. Three iterations

of the Expanded Circle Filter are shown. With each iteration, the local spacing between

particles is maximized, providing a favorable distribution of particles. After three iterations

the gradient in number density is visible, with an increasing number of particles per area on

the rightmost edge of the domain. Despite the Circle Filter driving particles towards a local

uniform spacing, the filter effect acts at a local level and does little to disrupt large-scale

patterns in particle number density.
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(a) Filter Iterations

(b) Convergence Behavior

Figure 5.3: Expanded Circle Filter Spatial Conditioning
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In each iteration, particle positions are updated by eq. 5.2, where x⃗c,i is the center of

the expanded circle determined the filtering algorithm for particle i. Three iterations of the

updated particle positions are shown. Free surface particles are plotted in red.

Figure 5.4: Expanded Circle Filter Spatial Conditioning - Gradient of Particle Number
Density

Figure 5.2 provides a detailed analysis of the algorithm when applied to a single particle

surrounded by four neighbors. In each step of the algorithm a new tangent point is identified

and the position of the expanded circle is updated. The process continues until a maximum

diameter circumscribed circle is found. This condition is reached when the center point of

the circle is enclosed within a polygon constructed from the tangent points. In this state,
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the angle between any two tangent points must be less than 90 degrees and no direction

exists in which the circle could expand without a neighboring particle becoming interior to

the circle.

Figure 5.5: Expanded Circle Filter Detailed Iterations

To find the maximum circumscribed circle the Expanded Circle Filter employs an it-

erative scheme detailed in Algorithm 1. Figure 5.5 provides a detailed illustration of the

algorithm iterations applied to an example case. In the example, the method begins by

identifying the nearest neighbor to the subject particle by eq. 5.3. This nearest neighbor

defines the first potential tangent point of the expanded circle and its position and index

are stored as xt,1 and jt,1. The circle center is defined as xc and is at this step coincident

with the subject particle. Next, a plane is defined by the position of xt,1 with a normal

(n̂) oriented towards the circle center. Algorithm 2 is then used to determine the mini-

mum circle which is tangent to any neighboring point j and this search plane. Particles

behind the search plane are ignored. This particle then defines the second tangent point of

the expanded circle as xt,2. With two potential tangent points xt,1 and xt,2 known, a new

search plane is defined by these points with its origin at the midpoint of these points and a

surface normal n̂ perpendicular to the surface and pointing towards the current circle center

xc. Algorithm 2 is again used to identify the smallest circle which is tangent to xt,1 and a

neighbor particle and lies along the line created by xp and n̂. The algorithm is continued

until a triangle that encloses the subject particle is generated by the set of tangent points

or no valid expansion point exists. A max iteration constraint is also included, however

in most instances a particle will be declared unbounded or constrained within four to five
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iterations. In the case that a subject particle is enclosed by a set of tangent points that

particle is deemed to be interior to the fluid domain. Particles not enclosed are considered

free surface particles.

Algorithm 1 Circle Filter

Require: N is the number of neighboring particles
Require: [x⃗] is an array of the positions of neighboring particles
Require: x⃗s is the position of the subject particle
Require: rsearch is the search radius that contains all neighbors
if N < 3 then

return: Subject Particle is Freesurface
end if
Find nearest neighbor and designate it as xt,1 (eq. 5.3)
Set expansion plane position xp to that of the nearest neighbor x⃗t,1
Set expansion plane normal vector to xt,1 − x⃗s
while iteration < MAX ALLOWED ITERATIONS do

Find Minimum Tangent Circle From Points and Plane Origin (Alg. 2)
if No Valid Tangent Point Exists then

return: No Valid Circle, Subject Particle is Free Surface
end if
Store New Tangent Point xt,k and Radius rk (where k is the number of tangent points)
if The expanded circle extends beyond rsearch then

return: No Valid Circle, Subject Particle is Free Surface
end if
if Three tangent points have been found then

if The circle center lies within triangle [xt,1, xt,2, xt,3] then
return: Circle Coordinates, Subject Particle is Interior

else
Remove the tangent point on the far side of triangle [xt,1, xt,2, xt,3]

end if
end if
set x⃗p to the midpoint between the two most recent tangent points xt,k, xt,k−1 and n̂

as the surface normal of the plane defined by these points
end while

r1 = min (
√
(xj − xp)2 + (yj − ys)2) (5.3)

r2 =
(r1 +

√
(xj − xt,1)2 + (yj − yt,1)2)

2
(5.4)
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(xs − xp)(xj − xp) + (ys − yp)(yj − yp) > 0 (5.5)

Algorithm 2 Minimum Circle Tangent to a Point and Plane at a Point

Require: N is the number of neighboring particles
Require: n̂ is a vector normal of the search plane
Require: x⃗p is the origin point of the search plane

Initialize:
rmin = 0.0 ▷ Minimum radius of tangent circle
jmin = −1 ▷ Index of minimum radius particle

for j = 1 : N do
if Particle j lies in front of the search plane (eq. 5.5) and within circle x⃗c, rj (if it

exists) then
Find circle x⃗c, rj , tangent to plane origin x⃗p and point j (eq. 5.6)
if jmin == −1 or rj < rmin then

rmin = ri
jmin = j

end if
end if

end for
return: Minimum-radius and particle index

xc,j = −
−nxx

2
t,1 + nxx

2
j − 2nyxpyt,1 − nxy

2
t,1 + 2nyxpyj + nxy

2
j + 2nxyt,1yp − 2nxyjyp

2(nxxt,1 − nxxj + nyyt,1 − nyyj)

(5.6a)

yc,j = −
−nyx

2
t,1 + nyx

2
j + 2nyxt,1xp − 2nyxjxp − nyy

2
t,1 + nyy

2
j − 2nxxt,1yp + 2nxxjyp

2(nxxt,1 − nxxj + nyyt,1 − nyyj)

(5.6b)

rj =
√
(xj − xc,j)2 + (yj − yc,j)2 (5.6c)
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5.4 Additional Notes and Future Work

It can be observed that the movement of interior particles near the free surface can occa-

sionally cause particles near the free surface to change their classification between interior or

free surface. This leads to very slight changes in the free surface profile in concave sections

of the free surface. However, overall free surface particle positions remain fixed and the

profile of the free surface is maintained.

Currently, an edge case exists for a uniform rectangular grid. In this configuration,

any three surrounding particles define a polygon that does not enclose the subject particle.

Instead in this edge case, the subject particle will lie directly on an edge of any triangle

defined by three of its neighbors. This causes interior particles in this configuration to

be misidentified as free surface particles. Future work will seek to handle this edge case,

however, this edge case can be avoided by perturbing particles in a random direction with

a magnitude near to the machine working precision.

This algorithm adds to the capability of SPH to simulate multiphase flows such as the

underwater deflagration test case by removing local particle disorder and clumping due to

tensile instability. It also has potential application to re-positioning particles after variable

resolution algorithms have added or removed particles to a domain. Future work in this

area will seek to utilize this functionality to both maintain a constant resolution while a

gas rarefies as well as locally vary simulation resolution to match locally desired simulation

accuracy.

The Expanded Circle Filter provides a robust mechanism for re-positioning disordered

or clumped particles in a domain. The filter has applications both for addressing the loss

of accuracy due to particle disorder or tensile instability and for the spatial filtering of

domains after the addition or removal of particles. However, to be useful in engineering

applications it must be expanded to three-dimensional space. This will expand the triangle

which is circumscribed by an expanded circle to a tetrahedron circumscribed by a sphere.

This expansion to three-dimensional space will require little modification to the algorithm

itself, however, a new formulation for the sphere center will need to be developed to replace
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the formula presented in eq. 5.6.
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Chapter 6: Interdomain Property Transfer for Variable

Resolution

6.1 Domain Discretization

One approach to restoring lost resolution due to particle rarefaction in cases of expanding

gas, such as the underwater deflagration simulation, is to reinitialize the entire domain.

This section presents an overview of SPH domain discretization and presents a new method

to transfer information from an initial to a resolution modified domain.

In order to apply numerical methods to any continuum, a finite representation of the

continuum must be made. The first step in this process is to reduce an infinitely bounded

region in space or time to a finite computational domain with known boundary conditions.

This computational domain can then be discretized by subdividing it into a finite number

of points, particles, volumes, or elements which together represent an approximation of the

continuum in the computational domain.

(a) Single Phase Domain (b) Multiphase Domain

Figure 6.1: Example SPH Domain Discretizations
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Domain discretization schemes for CFD methods broadly fall into two categories, with

each requiring a solver tailored to the approach. For single-phase CFD methods (Fig. 6.1a),

only the movement of a single material is considered. Regions of the domain not filled with

the tracked liquid or deformable solid are assumed to be filled with vacuum or a low-density

gas at a constant reference pressure. The dynamics of any assumed gas in these regions is

ignored. In multiphase domains (Fig. 6.1b), all fluids within a domain are discretized and

modeled.

Single phase methods are well suited for astrophysics simulations, as treating far-field

regions of the domain as empty is largely consistent with the near vacuum of space. When

applied to terrestrial fluid flows, single-phase methods can often model fluid flows at a

reduced computational cost compared to equivalent multi-phase methods. This computa-

tional cost reduction is a consequence of both the reduced complexity of single-phase solvers

relative to an equivalent multi-phase method as well as the reduced size of the modeled do-

main.

However, if single-phase methods are used to simulate flows where gas dynamics have a

significant factor in overall system behavior then any simulation results will poorly model

to true behavior of the flow. Additionally, because single-phase solvers typically utilize an

assumed reference pressure in empty regions, empty regions of the domain which might

emerge due to cavitation may be non-physically modeled.

Particle-based domain discretizations for SPH can be performed using many different

methods. One of the simplest approaches is to distribute particles in a region using an

ordered pattern. With this method, each particle volume is determined by the known

volume associated with the spacing used in the distribution. Figure 6.2 illustrates a volume

filled with two sets of regularly spaced particles of varying volume. The boxes around each

particle show the volume assigned to each particle in the region. Because SPH is a mesh-free

method, the misalignment of the spacing used to distribute particles has no negative effect

on any resultant simulation.

Another method of generating initial domain discretizations for SPH simulations is to
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Figure 6.2: Particles Generated using Uniform Rectangular Distributions

use a Finite Volume mesh to discretize the computational domain and then transform

that mesh into a particle discretization by generating particles at mesh nodes or element-

centroids and using element volumes to determine particle volumes. Figure 6.3 shows an

example this approach.

(a) Meshed Domain (b) Particles from Mesh Nodes

Figure 6.3: Particle Generation from a Mesh

While these and other methods of domain discretization are useful for generating initial

particle distributions for an SPH simulation, they are not well suited for altering an existing

fluid discretization.

6.2 Dynamic Domain Adaptation

Methods to dynamically modify an SPH domain discretization broadly follow one of two

approaches. In the first, properties from an existing domain discretization are projected

onto a modified discretization. Chaniotis et al first proposed a method to dynamically

modify an SPH domain discretization in this manner [73]. In their Remeshed Smoothed
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Particle Hydrodynamics (rSPH) method, particles are allowed to convect a short distance

from their initial positions before domain properties are interpolated back onto a domain

discretization using the original particle positions. In this way, properties can propagate and

convect through the domain can, but particle topology remains fixed. Koumoutsakos later

adapted this approach to allow for a domain composed of regions of differing resolutions

[74]. This approach is highly flexible, but may not strictly conserve fluid properties.

An alternate method to modify an existing domain is to discretely split or coalesce par-

ticles. Vacondio et al [75] and Xiong et al [76] developed and applied methods to discretely

split particles when moving into a region of higher desired resolution. This approach has

an advantage in that mass, linear momentum, and similar properties are intrinsically con-

served as these properties are distributed or combined when particles are split or merged.

Winchenbach et al developed a hybrid method that utilizes particle splitting as well as

conserved property distribution to strictly conserve mass and momentum [77].

6.3 Iterative Conserved Property Transfer

In order to facilitate the transfer of information from an existing domain discretization to a

resolution-adapted domain discretization while strictly conserving the sum of discrete fluid

properties, a new iterative property transfer method was developed by the author. The

method involves two stages. In the first stage, continuous fluid properties are interpolated

onto the modified domain discretization yielding target continuous properties for that dis-

cretization. Then, discrete, conserved fluid properties are distributed such that the local

error between calculated continuous particle properties and target properties is minimized.

This algorithm has the same end objective of variable resolution with strictly conserved

properties as demonstrated by Winchenbach et al, however, in Winchenbach’s work, no

target continuous property is used to guide the distribution of conserved properties to

neighboring resolution-adapted particles.

A continuous property U in the iterative conserved property transfer method must be

related to two corresponding discrete fluid quantities u and d, where Uj for any discrete
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particle j is defined by the ratio of the two conserved fluid properties (eq. 6.1). Here i

will be used to indicate particles in the initial domain discretization (A) and j will indicate

particles in the new discretization (B). Continuous properties U in this context describe

fluid properties such as density, velocity, or temperature. For a single particle, density is

the ratio of that particle’s mass and volume. Likewise, velocity is the ratio of a particle’s

momentum and mass. And temperature is the ratio of internal energy and mass.

Uderived,j =
uj
dj

(6.1)

The method requires an initial domain A and a blank domain discretization B with

known particle volumes. Figure 6.4 illustrates an initial domain A with an approximately

Gaussian distribution (eq. 6.4) of density and a higher resolution empty discretization B of

the same domain.

The first property transfer using the iterative method must be mass/density, as the

only known quantity in the blank discretization is particle volume. A target density Ub,i

is interpolated from the initial domain to the modified discretization by Equation 6.2 and

6.3. Here ΩA,i is the support domain in discretization A of particle i (which resides in

discretization B).

UB,target,i =
1

Wij,sum,B,i

∑
j∈ΩA,i

UA,jW (||x⃗i − x⃗j ||)VA,j (6.2)

Wij,sum,B,i =
∑

j∈ΩA,i

W (||x⃗i − x⃗j ||)VA,j (6.3)

ρ(x, y) = e−(x2+y2) (6.4)

With the target density interpolated onto the new domain discretization, weight values

for particles in the target domain are set to an initial value of unity. Particle weight sums
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Figure 6.4: Initial and Blank Domain Discretizations

Figure 6.5: Continuous Property Target U Interpolated to Domain B

are determined by eq. 6.5. Mass is then distributed from particles in the original domain to

the new domain using weights and weightsums by eq. 6.6. However, the mass transferred

using these initial, uniform weight-values will result in a density field which does not match

the desired target density.

XferWeightSumA,i =
∑

j∈ΩB,j

W (||x⃗i − x⃗j ||)XferWeightj · VB,j (6.5)

uB,i =
1

XferWeightSumA,i

∑
j∈ΩA,i

ui,A ·W (||x⃗i − x⃗j ||)XferWeightj · VB,j (6.6)

It is therefor necessary to adjust the particle weights in discretization B such that mass

transferred using the weights will result in a density field which more closely approximates

the target density. Modifying particle weights by eq. 6.7 increases weights, and subsequently
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mass-transfer, to particles which are at a lower derived density than their density target.

XferWeightk+1
j = XferWeightkj · (1−

Uderived,j − Utarget,j

Utarget,j
) (6.7)

(a) Derived Density (b) Particle Transfer Weights

(c) Density Target Error (d) Density Error Exact Distribution

Figure 6.6: Expanded Circle Filter Spatial Conditioning

This process is repeated iteratively, until convergence is detected in the change to prop-

erties. Figure 6.6 shows the results of density transferred from discretization A to discretiza-

tion B after 20 iterations. Particle weights (Fig. 6.6b) near boundaries converge to higher

values than those of particles in the interior of the domain to attain a similar quantity of

distributed conserved properties. Future work should utilize this known characteristic to

generate a better initial particle weight estimate. Because the initial domain is a coarse

discretization of the density distribution function (6.4) the total amount of mass added to

the initial domain is an imperfect representation of the initial density function. This can

be seen in 6.6d, where a domain-wide density deficiency is visible.

Transfer of further conserved properties follows the same process, though with the sub-

stitution of mass instead to relate velocity and momentum or temperature and internal
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energy.

Figure 6.7: L2 Norm of Density Target Error

Figure 6.7 shows the L2 norm of the derived density error relative to the target density.

Because the interpolated target density is not necessarily attainable with the total amount

of mass in the domain, it is expected that L2 target error will be impossible to drive to zero.

The point iteration scheme used to alter local particle weights also does not guarantee an

always reducing L2 error. To apply this to practical flows, a methodology is required to infer

particle volumes throughout the domain, thus providing the motivation for the algorithm

detailed in chapter 7.
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Chapter 7: Voronoi Tessellation

7.1 Voronoi Tessellation Overview

The Iterative Conserved Property Transfer algorithm of section 6.3 requires known particle

volumes. However, not all methods of producing particle distributions throughout a domain

include particle volume values. Additionally, while mass is strictly conserved in a weakly

compressible SPH simulation, volume is not. Because of this, it is desirable to have a method

of determining non-overlapping particle volumes for any distribution of points throughout a

domain. This is a requirement for many numerical methods and researchers have developed

multiple algorithms for this purpose. One of the oldest numerical methods for partitioning

space between a set of points is Voronoi tessellation. Voronoi tessellation dates back to at

least 1644 when Descartes used the method to describe regions of vortices. Many other

researchers utilized functionally identical approaches, including Kepler, Snow, Dirichlet,

and Gauss [78]. However, the method is named for Voronoi who formalized and expanded

the method to n-dimensional space in 1908 [79].

In a classical Voronoi tessellation, space is partitioned by assigning points in a domain

to a cell associated with the nearest particle to that point. The bounds of these emergent

regions define a convex hull around each particle. Equation 7.1 shows the mathematical

form of this definition. Where X is a defined space, d(x, Pk) is the distance function of any

point in space x from the point associated with region Pk.

Rk = {x ∈ X|d(x, Pk) ≤ d(x, Pj) for all j ̸= k} (7.1)

Figure 7.1 shows a classical Voronoi tessellation of a set of random points, as well as

the centroids of each resultant Voronoi cell. While very useful for discretizing space in
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Figure 7.1: Voronoi Tessellation of Space from Points

a domain between a set of points, Voronoi discretizations are defined in a manner such

that cells may be infinitely large. This has significant drawbacks when applied to SPH.

When determining the Voronoi partition of any given particle any other particle in the

domain may define a cell boundary. Because of this, unless special precautions are made

to ensure closed Voronoi cells are formed, Voronoi methods have non-compact support and

require the analysis of every point in the domain when generating a single cell. When

parallelizing particle codes compact support is a highly desirable feature, as it guarantees

consistency when considering only a limited set of points. To this end, it is desirable to

create a modified Voronoi tessellation method that exhibits compact support behavior. If

complete tessellation of space is not required -or desirable- then a simple modification of a

Voronoi algorithm may be made to ensure compact support. This modification is to limit

any particle’s Voronoi region to a space within a finite radius.

7.2 Finite Radius Voronoi

The Finite Radius Voronoi algorithm is a new method developed by the author which

performs this modified discretization of space. The method works by identifying bisection

planes that separate the space in a domain between any two particles. Then, any regions
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(a) Search and Exclusion Radius (b) Bisection Plane and Initial Trimmed Face Be-
tween Two Points

(c) Triangle Volume and Arc Volume (d) Multiple Particle Example

Figure 7.2: Finite Radius Voronoi Algorithm

of a cell not bounded by a bisection plane are limited to a volume defined by a subsection

of the circle defined by the region’s finite radius. Figure 7.2 illustrates this algorithm.

Here the particle associated with the current cell is referred to as the subject particle (xs).

Because bisection planes are defined by all points in space equidistant to two particles, to

ensure all particles which could generate a bisection plane within a finite exclusion radius,

points within a distance of twice this radius must be considered (see Fig. 7.2a). This larger

radius is referred to as the search radius and is related to the volume exclusion radius by

rsearch = 2 · rexclusion. Because any valid bisection plane intersects the exclusion radius,

it may be reduced to a finite line segment or face. Figure 7.2b shows a bisection plane

between two particles and the face generated by the intersection of the plane with the

space interior to the finite radius. Area not enclosed by a triangle defined by a face and

the subject particle is partitioned into arc volumes (see Fig. 7.2c). Face intersections with

other bisection planes must also be considered, as the bisection plane of a separate point will

occlude space that would otherwise be associated with an individual triangle volume. Figure
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7.2d shows the generation of a Finite Radius Voronoi region between a subject particle and

three neighboring points.

Figure 7.3: Finite Radius Voronoi Tessellation from Points

Figure 7.3 shows an example domain discretization using the Finite Radius Voronoi

algorithm. A notable feature of the method is that it is not space-filling. This is intended

behavior as in cases of single-phase domain discretizations volume far from free surface

particles should not be associated with an SPH particle which is itself defined as existing

within a region with finite bounds. The Finite Radius Voronoi algorithm is detailed in

Algorithm 3.

7.3 Future Work

In order for this new Voronoi method to be applied to engineering fluid simulations, two

advancements must be made. First, the method must be expanded to three-dimensional

space. Moving to three-dimensional space will change the finite line segments generated

from the intersection of bisection planes between points and the bounding radius to a

convex polygon. This change will also complicate the tracking of individual arc sections

of cell volumes. A possible solution to this issue is to no longer explicitly determine arc

volumes and instead to determine the total volume removed from the potential full bounding
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radius by each triangle volume. Then, by using boolean volume operations, subtract this

removed volume from the total potential volume of the cell. In this way, the net arc section

volume and moment can be determined.

Additional work will be done to explicitly include object boundaries into the cell genera-

tion algorithm. This is complicated by the potential non-convex nature of object boundaries.

Early work towards this goal has utilized projected rays from object edges to transform non-

convex cell features into convex cells. This adds a new requirement that space in a modified

Voronoi cell must not lie on the opposite side of a boundary from the cell point. Figure 7.4

illustrates this feature. However, enforcing this ”line of sight” requirement can result in an

incomplete tessellation of the space within the bounded radius of domain points. Additional

work is required to ensure that this volume is fully distributed to domain points, with no

orphaned space.

Figure 7.4: Finite Radius Voronoi with Boundaries (section centroids shown)
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Algorithm 3 Finite Radius Voronoi

Require: N is the number of neighboring particles
Require: x⃗s is the position of the subject particle
Require: rsearch is the search radius which contains all neighbors
Require: Ω is the set of neighboring particles within rsearch distance of x⃗s
Require: [x⃗] is an array of the positions of neighboring particles

rexclusion = 0.5 · rsearch
if N == 0 then

return: x⃗c = x⃗s, V = πr2exclusion
end if
for Each particle i in Ω do ▷ Generate bisection planes for all particles

Generate bisection plane planei with planei.x⃗ = 0.5(x⃗i + x⃗s)

Let planei.n̂ = x⃗i−x⃗s

||x⃗i−x⃗s|| be the surface normal of the plane

Trim planei by its intersection with the rsearch to generate facei
Set the face’s endpoints to circle intersections
facei.x⃗1 = Intersection1

facei.x⃗2 = Intersection2

Set face’s plane-intersections to none
facei.sharedplane1 = None
facei.sharedplane2 = None

end for
for each face facei do ▷ Trim faces by bisection planes

for each bisection plane planej do
Trim facei by its intersection with planej
Update trimmed endpoint facei.x⃗1 or facei.x⃗2
Update trimmed face endpoint plane intersection
facei.sharedplanetrimmed = planej

end for
end for
Order faces by angle or pseudo-angle
Generate a list of open sections between face endpoints without shared planes
Sum volumes and moments of each face and open-section

return: x⃗c =
∑

x⃗c,iVi

V , V =
∑

Vi
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Chapter 8: Conclusions

Smoothed Particle Hydrodynamics is a powerful computational fluid dynamics method.

In this thesis, a high-pressure multi-fluid deflagration test case was analyzed both by ex-

periment and using a simplified 2D simulation. Chapter 2 presented and discussed the

experimental results of the multi-fluid test case. Chapter 3 detailed the results and analysis

gained from the simplified 2D simulation. Deficiencies were observed in the SPH method

related to thin boundaries and gas rarefaction. These deficiencies were identified as oppor-

tunities to add to the capability of SPH and were used to guide the development of new

computational geometry algorithms to improve the accuracy and efficiency of SPH simula-

tions. Chapter 4 presented a new boundary condition for flexible and thin walls. Chapter 5

detailed a new algorithm for spatial filtering to reduce particle disorder. This method has

the potential both to address disorder and clumping as well as potentially to condition the

particle spacing of domain discretizations after resolution adaptation. Chapter 6 presented

an iterative inter-domain property transfer method intended to facilitate copying domain

properties to alternate fluid discretizations while strictly conserving the net quantity of

conserved fluid properties. Chapter 7 detailed a finite-radius Voronoi tessellation method

meant to be used in conjunction with the iterative property transfer method presented in

chapter 6. The new Voronoi method allows for the parallel generation of Voronoi cells which

are clipped to a finite radius. This modification allows for compact particle support to be

used when generating Voronoi cells.

An immediate and expected deficiency lies with the highly simplified pressure ramp to

mimic gas combustion. By analyzing figures 3.2 and 3.3, it is clear that using a simple

pressure ramp cannot accurately model the highly non-linear behavior of the pressure in

the true system. This suggests that either a full combustion model must be fully simulated

or a much more capable low-order combustion model must be implemented. Future work
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is necessary to address this issue.

With further development of these computational geometry methods, it is hoped that

meaningful contributions to the capability of SPH can be made.
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