

Using Multi-Task Learning For Large-Scale Document Classification

A thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science at George Mason University

By

Azad Naik
Bachelor of Technology

Indian School of Mines, 2009

Director: Dr. Huzefa Rangwala, Professor
Department of Computer Science

Spring Semester 2013
George Mason University

Fairfax, VA

Copyright c© 2013 by Azad Naik
All Rights Reserved

ii

Dedication

I dedicate this thesis to my family members for being there for me throughout my life.
I would also like to dedicate this thesis to many of my friends who have supported me
throughout the process.

iii

Acknowledgments

I would like to thank my thesis director, Dr. Huzefa Rangwala for the immense help
throughout the project, advice given by Dr. Rangwala has been of great help in solving
the challenging problem. I am grateful for his countless hours of reading, encouraging and
patience throughout the entire process.

I would also like to extend my thanks to the committee member, Dr. Daniel Barbará and
Dr. Carlotta Domeniconi for the valuable guidance and precious time in reviewing. I am
also thankful to Anveshi Charuvaka for the fruitful discussion and suggestion during the
course of my thesis work.

Finally, I would like to thank my parents, friends, relatives, and supporters who have made
this happen.

iv

Table of Contents

Page

List of Tables . vii

List of Figures . viii

List of Abbreviations . x

Abstract . xi

1 Introduction . 1

1.1 Problem Statement . 1

1.2 Contributions . 3

1.3 Thesis Outline . 3

2 Background . 4

2.1 Multi-Task Learning . 4

2.2 Transfer Learning . 6

2.3 Semi-Supervised Learning . 7

2.4 Random Projections (Hashing) . 8

2.4.1 Locality Sensitive Hashing . 9

2.4.2 b-bit Minwise Hashing . 9

2.4.3 One Permutation Hashing . 11

3 Methods . 12

3.1 k-Nearest Neighbor . 12

3.2 STL method for parameter learning . 14

3.3 SSL method for parameter learning . 15

3.4 TL method for parameter learning . 16

3.4.1 Neighborhood Pooling Approach (TL-NPA) 17

3.4.2 Individual Neighborhood Approach (TL-INA) 17

3.5 MTL method for parameter learning . 19

3.5.1 Neighborhood Pooling Approach (MTL-NPA) 19

3.5.2 Individual Neighborhood Approach (MTL-INA) 21

4 Evaluation and Result . 24

4.1 Dataset . 24

v

4.2 Metrics . 25

4.2.1 Micro-Averaged F1 . 25

4.2.2 Macro-Averaged Precision, Recall and F1 26

4.2.3 Average Matthews Correlation Coefficient score 27

4.3 Accuracy Comparison . 27

4.3.1 Category 1: Low distribution sample DMOZ dataset 28

4.3.2 Category 2: Medium distribution sample DMOZ dataset 29

4.3.3 Category 3: High distribution sample DMOZ dataset 31

4.4 Runtime Comparison . 34

4.5 Use of Random Projections . 35

4.5.1 Accuracy Comparison . 35

4.5.2 Runtime Comparison . 36

5 Conclusion and Future Work . 50

5.1 Future Work . 50

5.1.1 Accuracy Improvement . 50

5.1.2 Runtime Improvement . 51

5.1.3 Other Loss Function . 51

A Appendix A: . 53

A.1 Appendix A: . 53

Bibliography . 55

vi

List of Tables

Table Page

4.1 Low distribution sample DMOZ average performance across five runs for all

models . 29

4.2 Medium distribution sample DMOZ average performance across five runs for

all models . 32

4.3 High distribution sample DMOZ average performance across five runs for all

models . 33

4.4 Average runtime (in sec.) performance across five runs for all models in low,

medium and high distribution . 34

4.5 Low distribution sample DMOZ average performance across five runs after

LSH (parameter, K = 4000) for all models 36

4.6 High distribution sample DMOZ average performance across five runs after

LSH (parameter, K = 4000) for all models 37

4.7 Low distribution sample DMOZ average performance across five runs after

b-bit minwise hashing (parameters, b = 4, nP = 500) for all models 39

4.8 High distribution sample DMOZ average performance across five runs after

b-bit minwise hashing (parameters, b = 4, nP = 500) for all models 40

4.9 Low distribution sample DMOZ average performance across five runs after

OPH (parameters, b = 4, nB = 500) for all models 42

4.10 High distribution sample DMOZ average performance across five runs after

OPH (parameter, b = 4, nB = 500) for all models 43

4.11 Average runtime (in sec.) comparison of all models after applying LSH (pa-

rameter, K = 4000) for low and high distribution 45

4.12 Average runtime (in sec.) comparison of all models after applying b-bit min-

wise hashing (parameters, b = 4, nP = 500) for low and high distribution . . 47

4.13 Average runtime (in sec.) comparison of all models after applying one per-

mutation hashing (parameters, b = 4, nB = 500) for low and high distribution 48

vii

List of Figures

Figure Page

1.1 Task: Testing various models and selecting the best one based on accu-

racy/runtime . 2

2.1 Information flow in Multi-Task Learning . 6

2.2 Knowledge transfer in Transfer Learning . 7

2.3 Semi Supervised Learning Method . 8

2.4 Hashing Method: N = No. of Instance, D = No. of features before hashing,

K = No. of features after hashing, D > K 9

2.5 Locality Sensitive Hashing Method . 10

3.1 Various Classification Models . 14

3.2 SSL for increasing the number of positive example for each class, k = 2 and

N11, N12 are the nearest neighbor for class C1 of DMOZ and so on 16

3.3 TL-NPA method for parameter learning of each class, k = 2 18

3.4 TL-INA method for parameter learning of each class, k = 2 20

3.5 MTL-NPA method for learning parameter together for related class, k = 2 . 22

3.6 MTL-INA method for learning parameter together for related class, k = 2 . 23

4.1 DMOZ Dataset distribution plot with example count in x-axis, frequency

count of no. of class with given example count in y-axis, arranged in de-

scending order . 25

4.2 Sample dataset representation . 25

4.3 AUC comparison graph . 30

4.4 Average runtime (in sec.) comparison of all models for low, medium and high

distribution . 35

4.5 µAF1 and MAF1 graph after applying LSH for different values of param-

eter K, Topleft: LD µAF1, Topright: HD µAF1, Bottomleft: LD MAF1,

Bottomright: HD MAF1 . 38

viii

4.6 µAF1 and MAF1 graph after applying bMH for different values of parameter

(b, nP), Topleft: LD µAF1, Topright: HD µAF1, Bottomleft: LD MAF1,

Bottomright: HD MAF1 . 41

4.7 µAF1 and MAF1 graph after applying OPH for different values of parameter

(b, nB), Topleft: LD µAF1, Topright: HD µAF1, Bottomleft: LD MAF1,

Bottomright: HD MAF1 . 44

4.8 Average runtime (in sec.) comparison of all models after applying LSH for

different values of parameter K for low distribution sample DMOZ dataset 46

4.9 Average runtime (in sec.) comparison of all models after applying LSH for

different values of parameter K for high distribution sample DMOZ dataset 46

4.10 Average runtime (in sec.) comparison of all models after applying bMH for

different values of parameter (b, nP) for low distribution sample DMOZ dataset 47

4.11 Average runtime (in sec.) comparison of all models after applying bMH

for different values of parameter (b, nP) for high distribution sample DMOZ

dataset . 48

4.12 Average runtime (in sec.) comparison of all models after applying OPH for

different values of parameter (b, nB) for low distribution sample DMOZ dataset 49

4.13 Average runtime (in sec.) comparison of all models after applying OPH

for different values of parameter (b, nB) for high distribution sample DMOZ

dataset . 49

5.1 Hirerarchy relationship - for learning more accurate model 51

5.2 GPU Architecture for parallel parameters learning 52

ix

List of Abbreviations

µAF1 Micro Average F1

AMCC Average Matthews Correlation Coefficient
bMH b-bit Minwise Hashing
DMOZ Directory Mozilla
GPU Graphics Processing Unit
HD High Distribution
INA Individual Neighborhood Approach
kNN k-Nearest Neighbor
LD Low Distribution
LSH Locality Sensitive Hashing
MAF1 Macro Average F1

MAP Macro Average Precision
MAR Macro Average Recall
MCC Matthews Correlation Coefficient
MD Medium Distribution
MTL Multi-Task Learning
nB Number of Bins
nP Number of Permutatiosn
NPA Neighborhood Pooling Approach
OPH One Permutation Hashing
sd Standard Deviation
SE Standard Error
SSL Semi-Supervised Learning
STL Single-Task Learning
TL Transfer Learning

Abstract

USING MULTI-TASK LEARNING FOR LARGE-SCALE DOCUMENT CLASSIFICA-
TION

Azad Naik

George Mason University, 2013

Thesis Director: Dr. Huzefa Rangwala

Multi-Task Learning (MTL) involves learning of multiple tasks, jointly. It seeks to im-

prove the generalization performance of each task by leveraging the relationships among

the different tasks. It is an advanced concept of Single-Task Learning (STL), most widely

used in classification. In STL, each task is considered to be independent and learnt in-

dependently whereas in MTL, multiple tasks are learnt simultaneously by utilizing task

relatedness. The main intuition is that the training signal present in related tasks can help

each of the tasks learn better models. It also allows for learning of better models with fewer

labeled examples.

In this thesis our focus is on improving the classification performance for a database

categorized as a hierarchy and archiving large number of documents. We focus on improving

the classification performance of this database (source) by developing a MTL based model.

In this model we use an external database to facilitate the classification process for the

source database. We have used the logistic regression model for multiple classification

tasks and k-nearest neighbor approach for finding the similarities between the classes in

two hierarchical databases. The kNN allows us to define task relationships. Experiment

on sampled DMOZ dataset has been done to evaluate the performance of MTL with STL,

Semi-Supervised Learning (SSL) and Transfer Learning (TL). We have also used random

projections for achieving better runtime performance at a minimal effect on classification

accuracy.

xii

Chapter 1: Introduction

Large volume of document data is generated by users every day. With increasing data,

it has become an essential need to automatically categorize the related documents into

groups/classes. Classifying this document/text data can be useful in several ways. One

of the most common use being - information retrieval of related document in response to

user query in search engine. Many algorithms [1][2] have been proposed for classifying

documents. Recently, the hierarchical structure for document categorization at multiple

granularity levels has been explored in [3][4][5]. The main idea behind hierarchical classi-

fication models is to capture the parent-child relationship and achieve better classification

performance. Although taking hierarchy into account gives better results, the time taken

to learn the model is very high.

Multi-Task Learning (MTL) is used to capture the intrinsic relatedness between the task

and hence achieve better generalization performance, especially when the number of training

examples is less. MTL has been successfully applied in the field of medical informatics [6],

structural classification [7], sequence analysis [8], web image and video search [9] and many

more applications [10][11][12]. Overall, MTL helps to learn the better predictive models for

each of the multiple related task. In text classification, for each of the class labels we define a

binary one-versus-rest classification a task. We find the related tasks corresponding to each

task using k-nearest neighbor, which is then learned together to find the better parameters

for the model corresponding to each task.

1.1 Problem Statement

Automatically categorizing document data into relevant group, accurately and fastly, is a

challenging problem. In this thesis, our task is to develop the best model(s) which can

1

Figure 1.1: Task: Testing various models and selecting the best one based on accu-
racy/runtime

classify a given master source database (DMOZ) with accuracy and efficiency (refer to

Figure 1.1). To improve the model accuracy, we use an external source in the form of

the wikipedia dataset in conjunction with DMOZ dataset. Using external source helps in

learning the better model parameters for source classes, by increasing the number of positive

examples, especially when the number of training examples for a given class is less. We

have evaluated various models by dividing the DMOZ dataset into three different categories,

namely, low distribution (containing less positive examples per class), medium distribution

(containing average positive examples per class) and high distribution (containing huge

positive examples per class). We have also evaluated the models performance by using

various random projections (hashing) technique, which leads to better runtime for learning

model parameters but at the cost of reduced accuracy.

2

1.2 Contributions

We have contributed towards developing new MTL based models for integrating two large

document archieves i.e. DMOZ and wikipedia. We treat the DMOZ database as the master

source database and wikipedia as the external source database. Depending upon how we

make use of the external source database, we can categorize our contribution as,

1) MTL model based on Neighborhood Pooling Approach (MTL-NPA),

2) MTL model based on Individual Neighborhood Approach (MTL-INA).

In MTL-NPA we pool all the k-nearest external source neighbors for each class of main

database as one neighbor and then learn the model parameters whereas in MTL-INA we

consider each of the k-nearest neighbors from the external source database for each class of

master database as individual task and then learn the model parameters.

1.3 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 provides a thorough review of various

methods for learning model parameters along with various hashing techniques. Chapter 3

covers the various methods we have used for designing the models. Chapter 4 provides the

result of all the models discussed in Chapter 3, in terms of accuracy and runtime. This

chapter also provides the hashing result, in terms of accuracy and runtime. Chapter 5

describes several directions for improving the models accuracy and runtime.

3

Chapter 2: Background

2.1 Multi-Task Learning

Multi-Task Learning (MTL) [13] is designed to simultaneously learn models for multiple

tasks (refer to Figure 2.1), as opposed to Single-Task Learning (STL), where for each task,

the model parameter are learned independently. The main motivation behind using MTL

is that training signal present in related tasks can help each of the tasks learn better model

parameters[13][14]. It has been shown [15][16] that MTL improves the performance of the

model, especially when the number of training examples is less and when the tasks are

related. There has been huge research exploration in the MTL research and the literature

about the MTL survey can be found in Zhou et. al [17].

Given a training set, with n input-output pairs (x1, y1), (x2, y2), ... (xn, yn), the goal

is to learn a mapping function f : X → Y between the input domain xi ∈ X and output

domain yi ∈ Y . X and Y are input and output domain, respectively. The objective is to

learn a model that minimizes the loss function on the training data while constraining the

model complexity with a regularization penalty. The learning objective for the regularized

STL can be given as,

min
θ

n∑
i=1

L(θ, xi, yi)︸ ︷︷ ︸
loss

+λ R(θ)︸︷︷︸
Regularization

(2.1)

where θ represents the model parameters. The regularization term controls the model

complexity, thus safeguarding against the model over-fitting. Extension of STL is MTL

which learns the model parameters of the related task together. In MTL we are given T

tasks with training set defined for each of the t = 1...T tasks, given by (xit, yit) : i = 1...nt,

4

and the combined learning objective is given by,

T∑
t=1

nt∑
i=1

L(θt, xit, yit)︸ ︷︷ ︸
loss

+λ R(Θ)︸ ︷︷ ︸
Regularization

(2.2)

where nt is the number of training instances for the tth task, θt denotes the model

parameters for the tth task, (xit, yit) represents the ith input and output pair for tth task,

and Θ = {θt}Tt=1 is the combined set of model parameters for all the related tasks. Various

multi-task learning methods take this general approach to build combined models for many

related tasks. In Evgeniou et. al [18] the model for each task is constrained to be close to

the average of all the tasks. In multi-task feature learning and feature selection methods

[19][20][21][22], sparse learning based on lasso [23], is performed to select or learn a common

set of features across many related tasks. However, a common assumption made by many

methods [18][24][25] is that all tasks are equally related. This assumption does not hold in

all situations.

Therefore, it is sensible to take the task relationships into account in multi-task learning.

Kato et. al [26] and Evgeniou et. al [27] propose formulations which use an externally pro-

vided task network or graph structure. However, these relationships might not be available

and may need to be determined from the data. Clustered multi-task learning approaches

assume that tasks exhibit a group structure, which is not known a-priori and seeks to learn

the clusters of tasks that are learned together [28][29][30]. Another set of approaches, mostly

based on Gaussian Process models, learn the task co-variance structure [31][32] and are able

to take advantage of both positive and negative correlations between the tasks.

In this thesis we have focused on the MTL based models for the purpose of multi-class

text classification. We use nearest neighbor based approach to find the related tasks within

a different domain (database).

5

Figure 2.1: Information flow in Multi-Task Learning

2.2 Transfer Learning

Transfer Learning (TL) is designed to learn the parameters of the main task (also know

as parent task) based on the trasferred parameters from the related task(s) (also known as

children tasks) (refer to figure 2.2). Main intuition behind using TL is that the information

contained in the children task can help in learning the better predictive models for the

main task. When transferred parameters from the child task assist in better learning the

predictive models of the parent task than it is referred to as positive transfer. However, in

some cases if related task(s) are not found correctly than TL may lead to the predictive

models which is worse than the original predictive models without transfer and this type of

transfer is known as negative transfer. It has been shown in the work of Pan et. al [33] that

TL improves the generalization performance of the predictive models provided the related

task(s) are simliar to each other.

Goal of TL is to learn the mapping function f : X → Y from n input-output pairs (x1,

y1), (x2, y2), ... (xn, yn) in such a way so as to minimize the objective function given by,

min
θ

n∑
i=1

L(θ, xi, yi)︸ ︷︷ ︸
loss

+λ R(θ)︸︷︷︸
Regularization

+λ∗ R(θ∗)︸ ︷︷ ︸
Regularization

(2.3)

6

Figure 2.2: Knowledge transfer in Transfer Learning

where θ is the model parameters, θ∗ is the learned parameter that is transferred from

the children task, regularization term R(θ) control the models from over-fitting, and regu-

larization term R(θ∗) take into account the parameters of the related task to capture the

information present in the related task.

TL differ from MTL in terms of parameters learning behavior. In MTL, all related task

parameters are learned simultaneously whereas in TL related task parameters are learned

first which is then trasferred to the main task of interest. TL has also been referred to as

Assymetric Multi-Task Learning because of it’s focus on one of the tasks, referred to as the

parent/main task.

2.3 Semi-Supervised Learning

Semi-Supervised Learning (SSL) involves use of both labeled and unlabeled data for pre-

dicting the parameters of the model. SSL approaches between unsupervised (no labeled

training data) and supervised learning (completely labeled training data) [34]. SSL works

on the principle that more the training examples, better the generality. However, the result

of SSL is largely dependent on how accurately we group the unlabeled data with the labeled

data. More accurate the grouping of unlabeled data with labeled data better the result.

7

Figure 2.3: Semi Supervised Learning Method

For developing models for DMOZ class dataset classification using SSL method we have

used kNN with tanimoto similarity to find the groupings of unlabeled wikipedia dataset

with each of the DMOZ class. We have tested SSL models performance by using k value as

2 and 5.

2.4 Random Projections (Hashing)

Random projections are gaining popularity for reducing the dimension of a huge dataset. It

is used for improving the runtime performance of the model and also helps in reducing the

memory required for learning the model parameters. Many literature related to different

hashing algorithm can be found in [35][36][37][38]. In this thesis we focus on three hashing

algorithms namely, Locality Sensitive Hashing (LSH) [35], b-bit Minwise Hashing (bMH)

[36], and One Permutation Hashing (OPH) [37].

8

Figure 2.4: Hashing Method: N = No. of Instance, D = No. of features before hashing, K
= No. of features after hashing, D > K

2.4.1 Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) works by randomly choosing K feature indices i1, i2, ..., iK

from the D dimensional feature data, where D > K (refer to Figure 2.5), to define a hash

function f(s) given by:

f(s) =< s[i1], s[i2], ..., s[iK] > (2.4)

The function f(s), given in Equation 2.5 produces a concatenated features of length K.

Function f(s) is called “locality hashing” because the probability that pair of choosen

feature vectors f1 and f2 have the same hash value varies directly with their similarity. For

improving the accuracy we repeat the experiment l times with different random values of K.

We have tested our algorithm with different values of K and l to obtain the best possible

accuracy.

2.4.2 b-bit Minwise Hashing

b-bit Minwise Hashing (bMH) is similar to the minwise hashing [38] with the only difference

that the former uses b-bits as compared to 64 bits used by the minwise hashing. Minwise al-

gorithm works by choosing n min-wise independent permutations, represented as π1, π2, ...,

πn. The problem with this approach is that it is not feasible to permute a large dimensional

dataset, since drawing random permutations is time consuming and practically inefficient.

So to overcome this problem we have used universal hashing functions to simulate the effect

of random permutations. This requires storing few hash values [39]. The standard universal

9

Figure 2.5: Locality Sensitive Hashing Method

hash function [40] is defined as,

hi(x) = ((aix+ bi) mod p) mod m, i = 1, 2, ..., n (2.5)

where, m is the dimension of the dataset, p is a prime number (p > m) and n is the number

of hash functions. The parameters ai and bi are chosen uniformly from {0, 1, ..., p − 1}.

Instead of storing πi, we now only need to store 2n numbers, a and b for each hash function.

So now, instead of doing n random permutations, we choose n universal hashing functions

{h1, h2, ..., hn} to approximate the random permutations. To compute the minwise hash

values for a given dataset having feature set I, we iterate over all non-zero features and

map them to their hash values hi(x). We then iterate over all the hash values to find

their minimum, which will be the ith min-wise value for that feature set. We formulate a

minHash function as the smallest element of a set I under ordering induced by the universal

hashing function h, given by,

minHash(h(I)) = argmin
x∈I

h(x) (2.6)

10

Using the min-wise hashing property, the probability of hashing collision for two sets is equal

to their Jaccard similarity. b-bit minwise hashing is very efficient in terms of the storage

and computation cost. This is due to the fact that it uses only b-bits instead of 64 bits used

by minwise hashing. It has been shown in Li et. al [36] that bMH can be easily integrated

with logistic regression. bMH apply k random permutations on each feature vector xi and

store the lowest b bits of each hashed value. Thus, we obtain a new dataset which can be

stored using merely nbk bits. At run-time, we expand each new data point into a 2bk-length

vector with exactly k 1′s. For example, suppose k = 4 and the hashed values are originally

{20, 24, 33, 39}, whose binary digits are {010100, 011000, 100001, 100111}. Consider b = 3

, then the binary digits are stored as {100, 000, 001, 111}(which corresponds to {4, 0, 1, 7}

in decimals). At run-time, we need to expand them into a vector of length 2bk = 32, to be

{0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0}, which

will be the new feature vector. We have tested our algorithm with different values of k and

b.

2.4.3 One Permutation Hashing

One of the main disadvantage of b-bit minwise hashing is it’s expensive preprocessing time.

One Permutation Hashing (OPH) [37] overcomes large preprocessing time by reducing n

number of permutation to single permutation, thus reducing preprocessing time by huge

fold. In one permutation hashing each example is viewed as a 0/1 vectors in D dimensions

to get collection of sets as a binary data matrix in D dimensions. After that randomly

permute the features (columns) of the data matrix followed by dividing the columns into k

parts (bins) and then for each data vector take the smallest nonzero element in each bin.

Next step after this is similar to bMH.

11

Chapter 3: Methods

This chapter discusses in detail the various approaches and methods used in selecting the

models for large-scale text classification. Our task is to design model for categorizing the

DMOZ dataset (master source) by leveraging wikipedia dataset (external source). To make

use of wikipedia dataset for improving the model performance to categorize DMOZ dataset

we use k-nearest neighbor (kNN) approach to find the similarity between each of DMOZ

classes with the wikipedia classes. Depending upon how we use the similarity class from

wikipedia dataset to improve model performance, we can divide model learning into three

major categories, namely Semi-Supervised Learning (SSL), Transfer Learning (TL) and

Multi-Task Learning (MTL).

3.1 k-Nearest Neighbor

k-Nearest Neighbor (kNN) [41][42] is non parametric lazy learning algorithm which does

not make any assumptions on the underlying data distribution. It is used for grouping

similar objects at the cost of expensive runtime. In this thesis, kNN method is used for

finding the similar classes between the DMOZ and wikipedia datasets. We seek to improve

classification models for our master source dataset (DMOZ) by using neighboing class found

in our external source dataset (wikipedia). For finding nearest neighbor, we represent each

of the class of DMOZ and wikipedia dataset by its representative vector, which is calculated

by taking average of all examples in the particular class. We than use tanimoto similarity

measure for finding the similarity between the classes. Tanimoto similarity between the two

class is given as,

Tsim(A,B) =
NAB

(NA +NB −NAB)
(3.1)

12

where, NAB is the dot product of number of features common to both A and B, NA is

the number of non-zero features in document A, NB is the number of non-zero features in

document B.

SSL method considers all the k-nearest wikipedia neighbor to be the positive examples

for respective DMOZ class and than learns the parameters of the model, essentially we are

increasing the number of positive examples of each class of DMOZ dataset. We have tested

the SSL model performance by choosing the value of k as 2 and 5.

TL method makes use of wikipedia dataset by first learning the parameters of the k

nearest neighbor and than transferring the learned parameters to respective DMOZ classes.

Idea behind using this method is that, being nearest neighbor there model parameters

should be close to each other. Based on how we learn the parameters of the nearest neighbor

we can further categorize TL method into two categories, neighborhood pooling approach

(NPA) and individual neighborhood approach (INA). In NPA we consider all the k nearest

wikipedia neighbors of each DMOZ class to be one neighbor and than learn the parameters

of the neighbor whereas in INA we learn the parameters of each of the k nearest neighbor

individually before transferring. DMOZ model improves its performance by making use of

the transferred parameters. We have tested the model performance by choosing k value as

2 and 5.

MTL method simultaneously learns the parameters of the DMOZ class and its k-nearest

neighbor respectively. Idea behind learning the model parameters together (often referred to

as joint training) is that each of the related task can help learning better model parameters

of each other by capturing the intrinsic relatedness between the task. Based on how we

use the neighbor we can divide in further into two categories, NPA and INA. In NPA

all k nearest neighbors are pooled together as one neighbor whereas in INA all k nearest

neighbors are considered as individual task while learning. Again we tested MTL method

model performance by choosing the k value as 2 and 5.

To sum up we have implemented ten different models (refer to Figure 3.1), namely, SSL

(k = 2 and k = 5), TL-NPA (k = 2 and k = 5), TL-INA (k = 2 and k = 5), MTL-NPA

13

Figure 3.1: Various Classification Models

(k = 2 and k = 5), and MTL-INA (k = 2 and k = 5). Each of the model performance

is compared to the baseline Single-Task Learning (STL) model. Detail implementation of

parameter learning for each of this model is discussed below,

3.2 STL method for parameter learning

As discussed in Chapter 2, learning objective for the regularized Single-Task Learning is

represented as,

min
θ

n∑
i=1

L(θ, xi, yi)︸ ︷︷ ︸
loss

+λ R(θ)︸︷︷︸
Regularization

(3.2)

14

In this thesis logistic regression is used as the loss function. Logistic regression make use of

logistic loss function which is given by,

P (x) =
1

1 + exp(−x)
(3.3)

where, x ∈ R is the variable of the function and P (x) ∈ [0, 1]. One advantage of using this

loss function is that it is convex and hence is differentiable at all points. Logistic regression

is given by,

P (y|θ, x) =
1

1 + exp(−yθTx)
(3.4)

where, y ∈ {±1} is the label for data item x, θ is the model parameters. More detail

theory behind logistic regression can be found in [43] [44]. For preventing the model from

overfitting we have used the regularization term
∑d

j=1
λ
2 ||θj ||

2, where, λ is the regularization

parameter. Thus the final equation for learning objective of STL can be written as,

min
θ

n∑
i=1

1

1 + exp(−yiθTxi)
+

d∑
j=1

λ

2
||θj ||2 (3.5)

3.3 SSL method for parameter learning

SSL method works the same way as the STL method with only difference in the number of

positive examples. SSL method increases the number of positive examples for each class by

some mechanism. In this thesis number of positive example for each DMOZ class is increased

by finding the nearest neighbor of each class of DMOZ with the Wikipedia dataset using the

kNN approach. Each of this nearest neighbor are labeled as the positive examples for that

particular class, thus making it semi-supervised learning (refer to Figure 3.2). Evaluation

has been done for SSL with k value as 2 and 5 i.e. with 2 and 5 nearest neighbor. Although

the number of positive examples is increased in SSL, there has been no guarantee that the

15

Figure 3.2: SSL for increasing the number of positive example for each class, k = 2 and
N11, N12 are the nearest neighbor for class C1 of DMOZ and so on

accuracy will improve.

3.4 TL method for parameter learning

TL method makes use of the nearest neighbor learned parameters in the regularization

term for learning the parameters for each class. Motivation behind using nearest neighbor

parameters is that being nearest neighbor their parameters should be close to each other.

Depending upon how we learn the parameter of the nearest neighbor we can divide TL in

two categories: Neighborhood pooling approach and Individual neighborhood approach.

16

3.4.1 Neighborhood Pooling Approach (TL-NPA)

Parameters of the nearest neighbor are learned using the logistic regression as the loss

function and regularization term as
∑d

j=1
λ
2 ||θj ||

2 (λ being the regularization parameter).

However we consider all k neighbor of the class as single neighbor and consider all examples

present in this k neighbor as positive examples for training (refer to Figure 3.3). We evaluate

the result by taking k value as 2 and 5. Equation for learning the neighborhood parameter

can be expressed as,

min
θn∗

N∑
i=1

1

1 + exp(−yiθTn∗xi)
+

d∑
j=1

λn
2
||θn∗j ||2 (3.6)

where, θn∗ is the neighborhood parameters of the nth class of DMOZ dataset and λn is the

regularization parameter preventing the model from overfitting.

After calculating the neighborhood parameters we can learn the parameter of the DMOZ

class as,

min
θ

n∑
i=1

1

1 + exp(−yiθTxi)
+

d∑
j=1

λ

2
||θj ||2 +

d∑
j=0

λ∗

2
||θj − θn∗j ||2 (3.7)

where, λ and λ∗ are the regularization parameter, λ prevents the model from overfitting

and λ∗ controls the degree by which model parameters should be close to neighborhood

parameters.

3.4.2 Individual Neighborhood Approach (TL-INA)

In this approach, each of the k nearest neighbor model parameters of the DMOZ class are

learned individually (refer to Figure 3.4). Equation for learning each of the neighborhood

17

Figure 3.3: TL-NPA method for parameter learning of each class, k = 2

18

model parameters can be expressed as,

min
θnk

m∑
i=1

1

1 + exp(−yiθTnkxi)
+

d∑
j=1

λn
2
||θnkj ||2 (3.8)

where, k is the number of nearest neighbor into consideration and θnk is the parameter

of kth neighbor of the nth class of DMOZ dataset. Once we have the parameters of the

neighborhood class of the DMOZ dataset we can calculate the parameters of the class of

DMOZ dataset as,

min
θ

n∑
i=1

1

1 + exp(−yiθTxi)
+

d∑
j=1

λ

2
||θj ||2 +

nk∑
k=1

d∑
j=0

λnk
2
||θj − θnkj ||2 (3.9)

where, λ and λnk are the regularization parameter, λ prevents the model from overfitting

and λnk controls the degree by which model parameters should be close to each of the nk

model parameters of the neighborhood.

3.5 MTL method for parameter learning

In MTL method all the related class model parameters are learned simultaneously. Motiva-

tion behind using MTL is that each of the related class can help learn the parameters of the

each other better. Depending upon how we learn the parameter of each other we can di-

vide MTL in two categories: Neighborhood pulling approach and Neighborhood individual

approach.

3.5.1 Neighborhood Pooling Approach (MTL-NPA)

In this approach, all k neighboring parameters of DMOZ class are considered as single

neighbor, same as in case of TL-NPA. However, MTL-NPA diifers from TL-NPA in the

paramameter learning. In MTL-NPA parameters are learned in parallel(refer to Figure 3.5)

19

Figure 3.4: TL-INA method for parameter learning of each class, k = 2

20

while in TL-NPA first neighborhood parameters are learned then DMOZ class paramaters

are learned making use of learned neighborhood parameters. MTL-NPA goal is to minimize

the objective function given by,

T∑
t=1

nt∑
i=1

1

1 + exp(−yitθTt xit)
+

T∑
t=1

λt
2

d∑
j=1

||θtj ||2 +
λ∗

2

T∑
t=2

d∑
j=0

||θ1j − θtj ||2 (3.10)

where, θt are the model parameter of the tth task (θ1 is the model parameter for DMOZ

class, θ2 is the parameter for neighbor class of DMOZ), λt is the regularization parameter

preventing the model from overfitting and λ∗ is the parameter controlling the degree of

relatedness between DMOZ class and its neighbor. Note that number of task T in this

method is equal to 2, T = 1 being for DMOZ and T = 2 being for its neighbor.

3.5.2 Individual Neighborhood Approach (MTL-INA)

This approach is similar to TL-INA except in TL-INA first individual neighbor parameters

are learned which is then used in learning the parameters of DMOZ class, while in MTL-INA

all the individual neighbor parameters and DMOZ class parameters are learned in parallel

(refer to Figure 3.6). Goal of MTL-INA is to minimize the objective function given by,

T∑
t=1

nt∑
i=1

1

1 + exp(−yitθTt xit)
+

T∑
t=1

λt
2

d∑
j=1

||θtj ||2 +
λ∗

2

T∑
t=2

d∑
j=0

||θ1j − θtj ||2 (3.11)

where, θt are the model parameter of the tth task (θ1 is the model parameter for DMOZ class,

θt is the parameter for neighbor class of DMOZ, where t = 2...(k+1)), λt is the regularization

parameter preventing the model from overfitting and λ∗ is the parameter controlling the

degree of relatedness between DMOZ class and its individual neighbor. Note that number

of task T in this method is equal to (k+1), T = 1 being for DMOZ and T = 2...(k + 1)

being for its neighbor.

21

Figure 3.5: MTL-NPA method for learning parameter together for related class, k = 2

22

Figure 3.6: MTL-INA method for learning parameter together for related class, k = 2

23

Chapter 4: Evaluation and Result

4.1 Dataset

DMOZ and Wikipedia dataset are needed in this thesis. The dataset has been taken from

the ECML/PKDD 2012 discovery challenge on Large Scale Hierarchical Text Classification

(LSHTC) - Track 2 challenge website1. Since, we don’t know the label for theDMOZ test

dataset and the challenge is over, we have used DMOZ train dataset for training as well as

testing our model. Distribution plot of DMOZ training dataset, sorted in descending order,

is shown in Figure 4.1 (a) and (b) respectively, wikipedia dataset is used as supplementary

dataset in TL and MTL for better learning the parameters of the models associated with

DMOZ classes. We have divided the train dataset into 3:1:1 ratio to be used as train (for

training the model), validation (for determining the best value of unknown paramater) and

test (for testing the model) dataset for our model testing. Also, to explore which algorithm

performs best depending upon the number of examples in each class we have categorized

the training dataset into three different parts. First part contains the DMOZ classes with

very few positive examples (also referred as category 1 or low distribution), second part

contains the classes with average number of positive examples (also referred as category 2

or medium distribution) and the last part contains classes with huge number of positive

examples (also referred as category 3 or high distribution). We tested all of our models

mentioned in chapter 3 for accuracy and runtime. We have also tested our model after

applying various hashing techniques explained in chapter 3.

Each example in DMOZ and Wikipedia dataset is represented as sparse format. Format

of each example is < labelfeat : val...feat : val >, where, label is an integer that corre-

sponds to a category in which the vector belongs. Each vector belongs to only one category

1http://lshtc.iit.demokritos.gr/LSHTC3 DATASETS

24

i.e. single label, pair feat : value corresponds to a non-zero feature with index feat and

value val. feat is an integer and val is a double that corresponds to the term’s count.

Snapshot of dataset representation is shown in Figure 4.2.

(a) DMOZ Dataset Distribution Plot (b) Sampled DMOZ Dataset Distribution Plot

Figure 4.1: DMOZ Dataset distribution plot with example count in x-axis, frequency count
of no. of class with given example count in y-axis, arranged in descending order

4.2 Metrics

In this thesis, we have used three standard metrics for evaluating the classification decisions

that take into account True Positives (TP), False Positives (FP), True Negatives (TN) and

False Negatives (FN) for each of the class respectively.

4.2.1 Micro-Averaged F1

Micro-Averaged F1 (µAF1) is a conventional metric for evaluating classifiers in category

assignments to test instances [45][46]. This metric gives the performance on each instance

Figure 4.2: Sample dataset representation

25

an equal weight in computing the average. The system made decisions on test set D with

respect to a specific category c ∈ C ≡ {c1, c2, ..., cNc} can be divided into four groups: True

Positives (TPc), False Positives (FPc), True Negatives (TNc) and False Negatives (FNc),

respectively. The corresponding evaluation metrics are defined as:

GlobalPrecision P =

∑Nc
c=1 TPc∑Nc

c=1(TPc + FPc)
(4.1)

GlobalRecall R =

∑Nc
c=1 TPc∑Nc

c=1(TPc + FNc)
(4.2)

Micro− averaged F1(µAF1) =
2PR

P +R
(4.3)

where, Nc is the number of DMOZ classes.

4.2.2 Macro-Averaged Precision, Recall and F1

Macro-Averaged Precision, Recall and F1 (MAF1) is another conventional metric for eval-

uating classifiers in category assignments [47]. This metric gives the performance on each

category an equal weight in computing the average, defined as:

Category − specific Precision Pc =
TPc

TPc + FPc
(4.4)

Category − specific Recall Rc =
TPc

TPc + FNc
(4.5)

Macro− averaged Precision(MAP) =
1

Nc

Nc∑
c=1

TPc
TPc + FPc

(4.6)

26

Macro− averaged Recall(MAR) =
1

Nc

Nc∑
c=1

TPc
TPc + FPc

(4.7)

Macro− averaged F1(MAF1) =
1

Nc

Nc∑
c=1

2PcRc
Pc +Rc

(4.8)

where, Nc is the number of DMOZ class.

4.2.3 Average Matthews Correlation Coefficient score

Matthews Correlation Coefficient (MCC) score [48] is another method for evaluating the

classifiers result. It returns a value between -1 and +1. A coefficient of +1 represents a

perfect prediction, 0 no better than random prediction and -1 indicates total disagreement

between prediction and observation. MCC score for each class is defined as:

MCCc =
(TPc ∗ TNc)− (FPc ∗ FNc)√

(TPc + FPc)(TPc + FNc)(TNc + FPc)(TNc + FNc)
(4.9)

Average MCC (AMCC) =
1

Nc

Nc∑
c=1

MCCc (4.10)

4.3 Accuracy Comparison

In this section we report the result of all models described in Chapter 3 in terms of metrics

defined in section 4.2. We evaluated the performance of the models in three different

categories. First category contains the sampled DMOZ dataset with each class having low

distribution positive examples (number of classes = 75), second category corresponds to

the sampled DMOZ dataset with medium distribution positive examples per class (number

of classes = 53) and the last category corresponds to the DMOZ dataset containing high

distribution positive examples per class (numberof classes = 18). For the purpose of testing

27

our model in each of these categories we have divided the DMOZ dataset into three parts

in the ratio 3:1:1, to be used as train, validation and test dataset. Train dataset is used

for training the model, validation dataset is used to determine the best parameters of the

model and test dataset is used for testing the model.

4.3.1 Category 1: Low distribution sample DMOZ dataset

Table 4.1 shows the average performance across five runs on sampled DMOZ dataset with

each class having low distribution examples. Following comparison result can be concluded

from the result Table 4.1.

• STL v/s SSL v/s TL v/s MTL: From the Table 4.1 it can be seen that MTL

models perform much better than all the other models. This is expected for low

distribution DMOZ class because when number of training examples are less MTL

method learns the model parameters jointly with the related task in parallel resulting

in better model. SSL models are slightly better than the STL model, this is due to

the fact that number of positive examples increases in case of SSL and hence learns

the model parameters better than STL. TL models accuracy is approximately same

as that of STL model stating that there is no significant knowledge transfer from

related task, reason for this is that there are less examples in the related task and

hence learned parameters are not so good and so is the transfered parameters.

• NPA v/s INA: NPA models are better compared to its INA models counterpart.

Reason for this is that there are less number of examples in case of each related class

of INA compared to NPA.

• k = 2 v/s k = 5: k = 5 gives better models compared to k = 2 models in case of

SSL, reason being more number of positive examples in case of k = 5 and hence better

model, but in case of TL and MTL k = 2 models perform better, this may be due

to the fact that 3rd, 4th and 5th neighbor are not closely related to its corresponding

DMOZ class.

28

Table 4.1: Low distribution sample DMOZ average performance across five runs for all
models

Model µAF1 MAP MAR MAF1 AMCC

STL 0.5758
(0.0121)

0.7914
(0.0267)

0.6167
(0.0115)

0.6486
(0.0060)

0.6732
(0.0074)

SSL (k = 2) 0.6178
(0.0160)

0.8064
(0.0413)

0.6649
(0.0125)

0.6789
(0.0231)

0.7048
(0.0263)

SSL (k = 5) 0.6719
(0.0540)

0.8091
(0.0406)

0.7093
(0.0314)

0.7045
(0.0152)

0.7359
(0.0064)

TL-NPA (k = 2) 0.5739
(0.0044)

0.7987
(0.0278)

0.6247
(0.0091)

0.6481
(0.0062)

0.6732
(0.0074)

TL-NPA (k = 5) 0.5755
(0.0030)

0.8027
(0.0314)

0.6262
(0.0077)

0.6504
(0.0083)

0.6757
(0.0097)

TL-INA (k = 2) 0.5736
(0.0038)

0.7967
(0.0262)

0.6246
(0.0184)

0.6478
(0.0040)

0.6728
(0.0054)

TL-INA (k = 5) 0.5712
(0.0034)

0.8024
(0.0226)

0.6212
(0.0091)

0.6467
(0.0034)

0.6724
(0.0047)

MTL-NPA (k = 2) 0.7442
(0.0201)

0.7819
(0.0356)

0.7840
(0.0169)

0.7373
(0.0349)

0.7527
(0.0335)

MTL-NPA (k = 5) 0.7394
(0.0219)

0.7720
(0.0421)

0.7814
(0.0140)

0.7293
(0.0318)

0.7488
(0.0298)

MTL-INA (k = 2) 0.7208
(0.0180)

0.7583
(0.0503)

0.7664
(0.0211)

0.7052
(0.0520)

0.7326
(0.0367)

MTL-INA (k = 5) 0.7079
(0.0136)

0.7352
(0.0306)

0.7508
(0.0085)

0.6949
(0.0255)

0.7147
(0.0243)

*Table shows mean and (sd) in bracket, Standard Error (SE) for MTL-NPA (k = 2): 0.005413

Figure 4.3 (a) gives the AUC comparison for the STL and best MTL method i.e. MTL-NPA

(k = 2) for low distribution sample DMOZ dataset. It can be clearly seen that MTL-NPA

(k = 2) method performs better compared to baseline STL method. Figure 4.3 (b) and 4.3

(c) shows the AUC comparison of best MTL method with best SSL (k = 5) and best TL

method (TL-NPA (k = 2)) respectively. Clearly, in all of the cases MTL method performs

better.

4.3.2 Category 2: Medium distribution sample DMOZ dataset

Table 4.2 shows the average performance across five runs on sampled DMOZ dataset with

each class having medium distribution examples. Comparison result that is worth noting

from the table 4.2 is,

29

(a) STL v/s MTL-NPA (k = 2) (b) SSL (k = 5) v/s MTL-NPA (k = 2)

(c) TL-NPA (k = 5) v/s MTL-NPA (k = 2)

Figure 4.3: AUC comparison graph

30

• STL v/s SSL v/s TL v/s MTL: From the Table 4.2 it can be seen that MTL

models perform better than all the other models. Reason being the same as explained

for low distribution examples. However, the margin of difference between the models

accuracy is less than the low distribution examples, this is due to the fact that as the

number of training example increases, effect of better model parameter learning by

increasing positive examples (in case of SSL), transferring learned parameter (in case

of TL) and joint parameter learning (in case of MTL) diminishes.

• NPA v/s INA: INA models are better compared to its NPA models counterpart in

case of MTL because of high task relatedness between the DMOZ class and each of its

corresponding neighbors and hence simultaneous learning of parameters by consider-

ing the neighbors individually perform better. However in case of TL, NPA models

are better compared to its INA models because of less significant learned parameter

transfer in case of INA models, possibly due to less number of positive examples.

• k = 2 v/s k = 5: k = 5 gives better model compared to k = 2 models in case of SSL

model, reason being more number of positive examples in case of k = 5 and hence

better model, but in case of TL and MTL k = 2 models perform better this is due to

the fact that 3rd, 4th and 5th neighbor are not very well related to its corresponding

DMOZ class.

4.3.3 Category 3: High distribution sample DMOZ dataset

Table 4.3 shows the average performance across five runs on sampled DMOZ dataset with

each class having high distribution examples. It can be noted from the Table 4.3 that all

the models perform nearly same, this is because of the fact that as the number of examples

become huge, increasing positive examples (in case of SSL), learned parameter transfer (in

case of TL) and joint parameter learning (in case of MTL) does not influence much the

model parameters learning or in other words when training examples are huge even the

simpler models can perform as good as the complex models.

31

Table 4.2: Medium distribution sample DMOZ average performance across five runs for all
models

Model µAF1 MAP MAR MAF1 AMCC

STL 0.7592
(0.0120)

0.7947
(0.0068)

0.7618
(0.0056)

0.7567
(0.0085)

0.7626
(0.0075)

SSL (k = 2) 0.7535
(0.0040)

0.7938
(0.0065)

0.7601
(0.0011)

0.7547
(0.0052)

0.7609
(0.0048)

SSL (k = 5) 0.7545
(0.0027)

0.7948
(0.0060)

0.7610
(0.0018)

0.7559
(0.0039)

0.7619
(0.0034)

TL-NPA (k = 2) 0.7536
(0.0042)

0.7936
(0.0054)

0.7588
(0.0015)

0.7546
(0.0048)

0.7610
(0.0043)

TL-NPA (k = 5) 0.7533
(0.0038)

0.7937
(0.0063)

0.7584
(0.0024)

0.7542
(0.0052)

0.7605
(0.0046)

TL-INA (k = 2) 0.7529
(0.0040)

0.7958
(0.0054)

0.7591
(0.0011)

0.7540
(0.0048)

0.7603
(0.0043)

TL-INA (k = 5) 0.7527
(0.0038)

0.7957
(0.0046)

0.7590
(0.0010)

0.7538
(0.0036)

0.7602
(0.0042)

MTL-NPA (k = 2) 0.7572
(0.0080)

0.7961
(0.0063)

0.7637
(0.0058)

0.7587
(0.0087)

0.7644
(0.0076)

MTL-NPA (k = 5) 0.7569
(0.0043)

0.7969
(0.0058)

0.7627
(0.0012)

0.7581
(0.0053)

0.7639
(0.0048)

MTL-INA (k = 2) 0.7579
(0.0103)

0.7978
(0.0076)

0.7644
(0.0079)

0.7599
(0.0111)

0.7657
(0.0099)

MTL-INA (k = 5) 0.7657
(0.0067)

0.8017
(0.0073)

0.7717
(0.0037)

0.7678
(0.0081)

0.7726
(0.0072)

*Table shows mean and (sd) in bracket, Standard Error (SE) for MTL-INA (k = 5): 0.0052

32

Table 4.3: High distribution sample DMOZ average performance across five runs for all
models

Model µAF1 MAP MAR MAF1 AMCC

STL 0.8414
(0.0112)

0.8417
(0.0086)

0.8420
(0.0106)

0.8378
(0.0105)

0.8308
(0.0106)

SSL (k = 2) 0.8404
(0.0103)

0.8407
(0.0080)

0.8411
(0.0098)

0.8367
(0.0095)

0.8297
(0.0096)

SSL (k = 5) 0.8404
(0.0099)

0.8413
(0.0076)

0.8414
(0.0098)

0.8367
(0.0093)

0.8299
(0.0095)

TL-NPA (k = 2) 0.8411
(0.0108)

0.8414
(0.0082)

0.8419
(0.0102)

0.8374
(0.0101)

0.8304
(0.0101)

TL-NPA (k = 5) 0.8412
(0.0119)

0.8416
(0.0084)

0.8420
(0.0108)

0.8375
(0.0100)

0.8304
(0.0096)

TL-INA (k = 2) 0.8410
(0.0108)

0.8414
(0.0080)

0.8419
(0.0104)

0.8374
(0.0101)

0.8305
(0.0101)

TL-INA (k = 5) 0.8211
(0.0109)

0.8414
(0.0080)

0.8419
(0.0100)

0.82372
(0.0102)

0.8304
(0.0098)

MTL-NPA (k = 2) 0.8414
(0.0107)

0.8417
(0.0081)

0.8422
(0.0101)

0.8377
(0.0100)

0.8307
(0.0101)

MTL-NPA (k = 5) 0.8414
(0.0108)

0.8415
(0.0084)

0.8421
(0.0104)

0.8376
(0.0104)

0.8306
(0.0104)

MTL-INA (k = 2) 0.8400
(0.0107)

0.8406
(0.0078)

0.8408
(0.0100)

0.8360
(0.0098)

0.8292
(0.0098)

MTL-INA (k = 5) 0.8418
(0.0110)

0.8423
(0.0084)

0.8366
(0.0189)

0.8384
(0.0102)

0.8314
(0.0103)

*Table shows mean and (sd) in bracket, Standard Error (SE) for MTL-INA (k = 5): 0.0067

33

Table 4.4: Average runtime (in sec.) performance across five runs for all models in low,
medium and high distribution

Model Low Distribution Medium Distribution High Distribution

STL 2.7227 44.7567 33.3769

SSL (k = 2) 4.5738 62.4305 46.1241

SSL (k = 5) 5.5787 62.7890 48.2801

TL-NPA (k = 2) 4.6570 48.6839 36.5657

TL-NPA (k = 5) 6.3166 52.6703 38.0725

TL-INA (k = 2) 4.5414 48.4921 36.4817

TL-INA (k = 5) 6.4049 50.3760 38.2257

MTL-NPA (k = 2) 5.5127 49.6016 36.4456

MTL-NPA (k = 5) 7.5563 54.3671 40.2081

MTL-INA (k = 2) 9.8754 56.7204 41.7689

MTL-INA (k = 5) 15.3910 78.6765 56.5831

4.4 Runtime Comparison

This section compares the models performance in terms of average runtime per class (in sec.).

In Table 4.4, we report the average time (in sec.) needed to learn the model parameters of

each class in each of the three categories discussed above, namely, low distribution, medium

distribution and high distribution. Figure 4.4 represents the runtime graphical format.

Clearly, it can be noted from table that STL model parameter learning takes the least time

of all the other models because no overheads are involved. SSL models takes more time than

its corresponding STL model because the number of examples is increased in case of SSL

and hence the runtime. TL model runtime increases due to the fact that some time is spent

in learning the neighborhood parameters. Finally, MTL method takes the maximum time

of all the other models, reason behind this is that joint parameter learning leads to learning

parameter updates in each of the class and its neighbor parameters together resulting in

more time in each iteration and hence overall runtime. It can also be noted from table that

medium distribution takes more time comparison to high distribution this is due to the fact

that there are more classes in medium distribution compared to high distribution.

34

Figure 4.4: Average runtime (in sec.) comparison of all models for low, medium and high
distribution

4.5 Use of Random Projections

4.5.1 Accuracy Comparison

Table 4.5 and 4.6 gives the average performance across five runs after applying LSH (pa-

rameter, K = 4000) on low and high distribution sampled DMOZ dataset respectively.

Accuracy drops by ≈ 6% between the best model (MTL-NPA (k = 2)) without hashing

and corresponding hashing models after applying LSH (parameter, K = 4000) in case of

low distribution while in case of high distribution it drops by ≈ 16%. Figure 4.5 shows the

result for accuracy performance by varying the parameter K). Table 4.7 and 4.8 gives the

average performance across five runs after applying b-bit minwise hashing (parameters, b

= 4, nP = 500) on low and high distribution sampled DMOZ dataset respectively. From

the table it can be seen that accuracy drops by ≈ 27% in case of low distribution while it

drops by ≈ 7% in case of high distribution sample DMOZ dataset. Figure 4.6 shows the

result for accuracy performance by varying the parameter (b, nP). Finally, Table 4.9 and

4.10 gives the average performance across five runs after applying one permutation hash-

ing (parameters, b = 4, nB = 500) on low and high distribution sampled DMOZ dataset

35

Table 4.5: Low distribution sample DMOZ average performance across five runs after LSH
(parameter, K = 4000) for all models

Model µAF1 MAP MAR MAF1 AMCC

STL 0.4934
(0.1158)

0.6925
(0.0392)

0.5316
(0.1220)

0.5443
(0.0852)

0.5706
(0.0835)

SSL (k = 2) 0.5067
(0.1016)

0.6908
(0.0469)

0.5470
(0.1064)

0.5559
(0.0717)

0.5804
(0.0732)

SSL (k = 5) 0.5234
(0.1120)

0.7118
(0.0403)

0.5658
(0.1173)

0.5761
(0.0802)

0.6004
(0.0801)

TL-NPA (k = 2) 0.4934
(0.1158)

0.6925
(0.0392)

0.5316
(0.1220)

0.5443
(0.0852)

0.5706
(0.0835)

TL-NPA (k = 5) 0.4934
(0.1158)

0.6925
(0.0392)

0.5316
(0.1220)

0.5443
(0.0852)

0.5706
(0.0835)

TL-INA (k = 2) 0.4927
(0.1162)

0.6925
(0.0392)

0.5311
(0.1224)

0.5438
(0.0856)

0.5702
(0.0838)

TL-INA (k = 5) 0.4900
(0.1161)

0.6857
(0.0433)

0.5289
(0.1224)

0.5409
(0.0859)

0.5667
(0.0848)

MTL-NPA (k = 2) 0.4800
(0.1279)

0.6714
(0.0594)

0.5158
(0.1365)

0.5298
(0.1027)

0.5545
(0.1012)

MTL-NPA (k = 5) 0.6714
(0.0055)

0.7274
(0.0178)

0.7155
(0.0009)

0.6733
(0.0038)

0.6921
(0.0050)

MTL-INA (k = 2) 0.6660
(0.0130)

0.7295
(0.0177)

0.7112
(0.0060)

0.6691
(0.0095)

0.6889
(0.0076)

MTL-INA (k = 5) 0.6727
(0.0144)

0.7446
(0.0066)

0.7160
(0.0107)

0.6774
(0.0117)

0.6981
(0.0082)

*Table shows mean and (sd) in bracket

respectively. It can be observed from the table that accuracy drops by ≈ 30% in case of

low distribution while it drops by ≈11% in case of high distribution. Figure 4.7 shows the

result for accuracy performance by varying the parameter (b, nB)

It can be concluded from the hashing accuracy results that b-bit minwise hashing per-

forms well in case of high sample DMOZ distribution dataset while in low distribution

DMOZ dataset, LSH performs well.

4.5.2 Runtime Comparison

Table 4.11, 4.12 and 4.13 gives the runtime comparison for low and high distribution sam-

pled DMOZ dataset after applying LSH (parameter, K = 4000), b-bit minwise hashing

(parameters, b = 4, nP = 500) and one permutation hashing (parameters, b = 5, nB =

500) respectively. Clearly, in all the case STL runtime performance is best compared to all

36

Table 4.6: High distribution sample DMOZ average performance across five runs after LSH
(parameter, K = 4000) for all models

Model µAF1 MAP MAR MAF1 AMCC

STL 0.6826
(0.0199)

0.6963
(0.0244)

0.6855
(0.0192)

0.6732
(0.0194)

0.6642
(0.0213)

SSL (k = 2) 0.6810
(0.0210)

0.6961
(0.0250)

0.6839
(0.0204)

0.6711
(0.0206)

0.6626
(0.0224)

SSL (k = 5) 0.6777
(0.0227)

0.6941
(0.0282)

0.6807
(0.0219)

0.6673
(0.0228)

0.6593
(0.0248)

TL-NPA (k = 2) 0.6822
(0.0201)

0.6959
(0.0247)

0.6851
(0.0194)

0.6728
(0.0198)

0.6637
(0.0216)

TL-NPA (k = 5) 0.6823
(0.0200)

0.6960
(0.0246)

0.6853
(0.0193)

0.6729
(0.0197)

0.6639
(0.0215)

TL-INA (k = 2) 0.6823
(0.0200)

0.6960
(0.0246)

0.6853
(0.0193)

0.6729
(0.0197)

0.6639
(0.0215)

TL-INA (k = 5) 0.6827
(0.0198)

0.6963
(0.0243)

0.6856
(0.0191)

0.6733
(0.0194)

0.6643
(0.0212)

MTL-NPA (k = 2) 0.6810
(0.0203)

0.6946
(0.0250)

0.6840
(0.0195)

0.6713
(0.0202)

0.6624
(0.0220)

MTL-NPA (k = 5) 0.6802
(0.0208)

0.6944
(0.0252)

0.6832
(0.0200)

0.6703
(0.0208)

0.6616
(0.0224)

MTL-INA (k = 2) 0.6783
(0.0219)

0.6929
(0.0272)

0.6814
(0.0211)

0.6682
(0.0222)

0.6587
(0.0223)

MTL-INA (k = 5) 0.6758
(0.0235)

0.6922
(0.0291)

0.6789
(0.0227)

0.6644
(0.0241)

0.6568
(0.0258)

*Table shows mean and (sd) in bracket

37

Figure 4.5: µAF1 and MAF1 graph after applying LSH for different values of parameter K,
Topleft: LD µAF1, Topright: HD µAF1, Bottomleft: LD MAF1, Bottomright: HD MAF1

38

Table 4.7: Low distribution sample DMOZ average performance across five runs after b-bit
minwise hashing (parameters, b = 4, nP = 500) for all models

Model µAF1 MAP MAR MAF1 AMCC

STL 0.4653
(0.0522)

0.4499
(0.0729)

0.4393
(0.0426)

0.4279
(0.0729)

0.4578
(0.0094)

SSL (k = 2) 0.4660
(0.0931)

0.4346
(0.0063)

0.4544
(0.0529)

0.4412
(0.0625)

0.4660
(0.0195)

SSL (k = 5) 0.4547
(0.0437)

0.4319
(0.0600)

0.4684
(0.0421)

0.4394
(0.0382)

0.4560
(0.0083)

TL-NPA (k = 2) 0.4510
(0.0643)

0.4612
(0.0872)

0.4218
(0.0753)

0.4192
(0.0634)

0. 4319
(0.0436)

TL-NPA (k = 5) 0.4493
(0.0478)

0.4616
(0.0754)

0.4327
(0.0764)

0.4283
(0.0473)

0.4283
(0.0426)

TL-INA (k = 2) 0.4523
(0.0721)

0.4562
(0.0635)

0.4333
(0.0856)

0.4294
(0.0856)

0.4318
(0.0454)

TL-INA (k = 5) 0.4494
(0.0764)

0.4492
(0.0812)

0.4281
(0.0528)

0.4162
(0.0542)

0.4214
(0.0654)

MTL-NPA (k = 2) 0.4700
(0.0051)

0.4844
(0.0428)

0.4713
(0.0092)

0.4691
(0.0301)

0.4780
(0.0062)

MTL-NPA (k = 5) 0.4600
(0.0873)

0.4755
(0.0713)

0.4604
(0.0728)

0.4261
(0.0365)

0.4589
(0.0371)

MTL-INA (k = 2) 0.4360
(0.0642)

0.4783
(0.0542)

0.4570
(0.0753)

0.4497
(0.0209)

0.4301
(0.0264)

MTL-INA (k = 5) 0.4347
(0.0627)

0.4561
(0.0764)

0.4415
(0.0921)

0.4360
(0.0520)

0.4239
(0.0093)

*Table shows mean and (sd) in bracket

39

Table 4.8: High distribution sample DMOZ average performance across five runs after b-bit
minwise hashing (parameters, b = 4, nP = 500) for all models

Model µAF1 MAP MAR MAF1 AMCC

STL 0.7632
(0.0103)

0.7830
(0.0092)

0.7666
(0.0103)

0.7475
(0.0082)

0.7461
(0.0184)

SSL (k = 2) 0.7648
(0.0118)

0.7819
(0.0014)

0.7679
(0.0283)

0.7493
(0.0442)

0.7475
(0.0147)

SSL (k = 5) 0.7658
(0.0110)

0.7785
(0.0042)

0.7691
(0.0532)

0.7521
(0.0169)

0.7490
(0.0083)

TL-NPA (k = 2) 0.7595
(0.0318)

0.7714
(0.0092)

0.7616
(0.0175)

0.7555
(0.0732)

0.7492
(0.0992)

TL-NPA (k = 5) 0.7594
(0.0027)

0.7616
(0.0099)

0.7598
(0.0384)

0.7524
(0.0372)

0.7428
(0.0538)

TL-INA (k = 2) 0.7691
(0.0283)

0.7613
(0.0529)

0.7714
(0.0421)

0.7512
(0.0031)

0.7448
(0.0531)

TL-INA (k = 5) 0.7609
(0.0382)

0.7600
(0.0284)

0.7692
(0.062)

0.7497
(0.0106)

0.7434
(0.0714)

MTL-NPA (k = 2) 0.7711
(0.0428)

0.7978
(0.0209)

0.7746
(0.0093)

0.7546
(0.0205)

0.7530
(0.0582)

MTL-NPA (k = 5) 0.7700
(0.0301)

0.7912
(0.0072)

0.7734
(0.0092)

0.7528
(0.0140)

0.7523
(0.0081)

MTL-INA (k = 2) 0.7695
(0.0712)

0.7771
(0.0095)

0.7729
(0.0428)

0.7541
(0.0182)

0.7524
(0.0072)

MTL-INA (k = 5) 0.7663
(0.0071)

0.7737
(0.0158)

0.7696
(0.0092)

0.7519
(0.0099)

0.7497
(0.0105)

*Table shows mean and (sd) in bracket

40

Figure 4.6: µAF1 and MAF1 graph after applying bMH for different values of parameter
(b, nP), Topleft: LD µAF1, Topright: HD µAF1, Bottomleft: LD MAF1, Bottomright: HD
MAF1

41

Table 4.9: Low distribution sample DMOZ average performance across five runs after OPH
(parameters, b = 4, nB = 500) for all models

Model µAF1 MAP MAR MAF1 AMCC

STL 0.4000
(0.0093)

0.4680
(0.0094)

0.4617
(0.0092)

0.382
(0.0098)

0.4124
(0.0091)

SSL (k = 2) 0.4124
(0.0061)

0.4680
(0.0071)

0.4528
(0.0059)

0.4196
(0.0062)

0.4324
(0.0063)

SSL (k = 5) 0.4073
(0.0095)

0.4736
(0.0074)

0.4287
(0.0062)

0.4314
(0.0070)

0.4383
(0.0068)

TL-NPA (k = 2) 0.4000
(0.0106)

0.4711
(0.0105)

0.4617
(0.0172)

0.3837
(0.0109)

0.4140
(0.0108)

TL-NPA (k = 5) 0.4000
(0.0105)

0.4717
(0.0108)

0.4617
(0.0102)

0.3841
(0.0094)

0.4144
(0.0131)

TL-INA (k = 2) 0.3973
(0.0105)

0.4710
(0.0129)

0.4595
(0.0102)

0.3822
(0.0104)

0.4126
(0.0103)

TL-INA (k = 5) 0.3947
(0.0108)

0.4623
(0.0946)

0.4578
(0.0103)

0.3798
(0.0091)

0.4093
(0.0103)

MTL-NPA (k = 2) 0.4413
(0.0048)

0.4782
(0.0042)

0.4862
(0.0059)

0.4328
(0.0052)

0.4641
(0.0058)

MTL-NPA (k = 5) 0.4368
(0.0093)

0.4714
(0.0058)

0.4261
(0.0060)

0.4108
(0.0058)

0.4312
(0.0050)

MTL-INA (k = 2) 0.4193
(0.0102)

0.4624
(0.0112)

0.4352
(0.0109)

0.4001
(0.0092)

0.4112
(0.0088)

MTL-INA (k = 5) 0.3947
(0.0083)

0.4350
(0.0063)

0.4048
(0.0059)

0.3964
(0.0079)

0.4047
(0.0069)

*Table shows mean and (sd) in bracket

42

Table 4.10: High distribution sample DMOZ average performance across five runs after
OPH (parameter, b = 4, nB = 500) for all models

Model µAF1 MAP MAR MAF1 AMCC

STL 0.7192
(0.0018)

0.7536
(0.0102)

0.7235
(0.0094)

0.6973
(0.0089)

0.7017
(0.0079)

SSL (k = 2) 0.7187
(0.0102)

0.7572
(0.0182)

0.7238
(0.0062)

0.6968
(0.0101)

0.7019
(0.0092)

SSL (k = 5) 0.7123
(0.0076)

0.7537
(0.0091)

0.7175
(0.0093)

0.6883
(0.0084)

0.6938
(0.0052)

TL-NPA (k = 2) 0.7192
(0.0103)

0.7532
(0.0062)

0.7237
(0.0092)

0.6975
(0.0102)

0.7017
(0.0120)

TL-NPA (k = 5) 0.7192
(0.0103)

0.7532
(0.0092)

0.7237
(0.0098)

0.6975
(0.0109)

0.7017
(0.0132)

TL-INA (k = 2) 0.7192
(0.0100)

0.7532
(0.0173)

0.7237
(0.0093)

0.6975
(0.0098)

0.7017
(0.0102)

TL-INA (k = 5) 0.7182
(0.0909)

0.7524
(0.0104)

0.7226
(0.0101)

0.6962
(0.0129)

0.7006
(0.0100)

MTL-NPA (k = 2) 0.7213
(0.0027)

0.7532
(0.0024)

0.7259
(0.0068)

0.7002
(0.0080)

0.7038
(0.0103)

MTL-NPA (k = 5) 0.7235
(0.0082)

0.7547
(0.0059)

0.7279
(0.0042)

0.7025
(0.0054)

0.7060
(0.0082)

MTL-INA (k = 2) 0.7314
(0.0088)

0.7638
(0.0062)

0.7358
(0.0073)

0.7133
(0.0080)

0.7159
(0.0069)

MTL-INA (k = 5) 0.7167
(0.0082)

0.7528
(0.0030)

0.7215
(0.0072)

0.6944
(0.0049)

0.6988
(0.0094)

*Table shows mean and (sd) in bracket

43

Figure 4.7: µAF1 and MAF1 graph after applying OPH for different values of parameter
(b, nB), Topleft: LD µAF1, Topright: HD µAF1, Bottomleft: LD MAF1, Bottomright: HD
MAF1

44

Table 4.11: Average runtime (in sec.) comparison of all models after applying LSH (pa-
rameter, K = 4000) for low and high distribution

Model Low Distribution:
Avg. Runtime(in sec)

High Distribution:
Avg. Runtime (in sec)

STL 2.2726 14.6553

SSL (k = 2) 2.7668 20.2678

SSL (k = 5) 3.6739 20.9485

TL-NPA (k = 2) 3.0117 15.6856

TL-NPA (k = 5) 3.4435 17.8078

TL-INA (k = 2) 3.2147 15.7990

TL-INA (k = 5) 5.0216 18.4281

MTL-NPA (k = 2) 3.1034 15.2258

MTL-NPA (k = 5) 4.6382 15.2609

MTL-INA (k = 2) 6.7340 16.2862

MTL-INA (k = 5) 11.1680 18.1390

Preprocessing time: Low distribution ≈ 10 seconds, High distribution ≈ 40 seconds

the other models. When comparing the best runtime result of LSH with the best runtime

no hashing models, there is an improvement of ≈ 0.5 sec per class in case of low distribu-

tion and ≈ 19 sec. per class in case of high distribution. Similar comparison in case of

bMH gives an improvent of ≈ 0.1 sec. and ≈ 5 sec. in case of low and high distribution

respectively. While for OPH results are ≈ 0.3 sec. and ≈ 7 sec. improvement for low and

high distribution respectively.

Figure 4.8 and 4.9 shows the runtime comparison after applying LSH with different

values of parameter K. Figure 4.10 and 4.11 shows the runtime comparison after applying

bMH with different values of parameter (b, nP). Figure 4.12 and 4.13 shows the runtime

comparison after applying OPH with different values of parameter (b, nB).

45

Figure 4.8: Average runtime (in sec.) comparison of all models after applying LSH for
different values of parameter K for low distribution sample DMOZ dataset

Figure 4.9: Average runtime (in sec.) comparison of all models after applying LSH for
different values of parameter K for high distribution sample DMOZ dataset

46

Table 4.12: Average runtime (in sec.) comparison of all models after applying b-bit minwise
hashing (parameters, b = 4, nP = 500) for low and high distribution

Model Low Distribution:
Avg. Runtime (in sec)

High Distribution:
Avg. Runtime (in sec)

STL 2.6074 28.0018

SSL (k = 2) 3.1787 35.7084

SSL (k = 5) 3.8888 38.6752

TL-NPA (k = 2) 4.5597 30.0832

TL-NPA (k = 5) 5.9805 31.0087

TL-INA (k = 2) 4.3894 30.1320

TL-INA (k = 5) 6.0980 32.0916

MTL-NPA (k = 2) 3.9125 28.2946

MTL-NPA (k = 5) 4.4109 30.2840

MTL-INA (k = 2) 9.6608 30.7150

MTL-INA (k = 5) 13.6485 48.7282

Preprocessing time: Low distribution ≈ 3 minutes, High distribution ≈ 15 minutes

Figure 4.10: Average runtime (in sec.) comparison of all models after applying bMH for
different values of parameter (b, nP) for low distribution sample DMOZ dataset

47

Figure 4.11: Average runtime (in sec.) comparison of all models after applying bMH for
different values of parameter (b, nP) for high distribution sample DMOZ dataset

Table 4.13: Average runtime (in sec.) comparison of all models after applying one permu-
tation hashing (parameters, b = 4, nB = 500) for low and high distribution

Model Low Distribution:
Avg. Runtime (in sec)

High Distribution:
Avg. Runtime (in sec)

STL 2.4774 27.9316

SSL (k = 2) 3.1747 35.7084

SSL (k = 5) 3.8639 37.6752

TL-NPA (k = 2) 4.4597 29.1948

TL-NPA (k = 5) 5.9405 31.0087

TL-INA (k = 2) 4.3487 30.1320

TL-INA (k = 5) 5.9377 32.0916

MTL-NPA (k = 2) 3.8125 28.2946

MTL-NPA (k = 5) 4.4109 29.2640

MTL-INA (k = 2) 8.6608 29.6150

MTL-INA (k = 5) 11.6485 45.7282

Preprocessing time: Low distribution ≈ 1 minutes, High distribution ≈ 5 minutes

48

Figure 4.12: Average runtime (in sec.) comparison of all models after applying OPH for
different values of parameter (b, nB) for low distribution sample DMOZ dataset

Figure 4.13: Average runtime (in sec.) comparison of all models after applying OPH for
different values of parameter (b, nB) for high distribution sample DMOZ dataset

49

Chapter 5: Conclusion and Future Work

In this thesis MTL based models has been developed for text document classification. Per-

formance of the developed MTL models has been evaluated and compared with other well

known model development techniques, such as STL, SSL and TL. Performance measure-

ment is done in terms of accuracy of classifying the documents and runtime for learning the

parameters of the models. MTL learns the parameters of the models more accurately than

other models because it captures the intrinsic relationship between the tasks by jointly

learning the model parameters, especially when the number of training examples is less.

However, when the number of training examples is huge, all the models discussed in Chap-

ter 3 performs equally well in terms of accuracy due to the fact that as the number of

training examples increases even the simpler models performs well. On comparing the run-

time performance, STL model takes least time followed by SSL, TL and MTL. MTL method

takes maximum time for parameter learning because all the related tasks model parameters

needs to be updated in each of the iteration. Runtime performance can be improved by

using random projections (hashing) but at the cost of reduced accuracy.

5.1 Future Work

Performance of the classifier can be further improved by the following methods discussed

below,

5.1.1 Accuracy Improvement

Hierarchy contains important information related to text document classification. Hierar-

chy can be used to extract the parent-child relationships which can be used to improve

the models parameters. However, this is achieved at the cost of expensive runtime, since

50

Figure 5.1: Hirerarchy relationship - for learning more accurate model

capturing the hierarchical information takes polynomial runtime. Figure 5.1 shows how we

can use hierarchy for improving the model parameters.

5.1.2 Runtime Improvement

Runtime of learning the parameters of the models can be improved by writing the GPU

based code. One of the greatest advantage of using the GPU is that it has huge number

of threads which can be used to learn the model parameters independently in parallel

thereby reducing the runtime of the parameters learning to huge fold (Figure 5.2). Further

improvement can be done by implementing the accelerated gradient descent method for

learning the parameters of the model.

5.1.3 Other Loss Function

As discussed in Chapter 3, in this thesis we have made use of logistic regression as the loss

function for learning the model parameters. It is fruitful to compare the result with other

loss function such as Hinge loss [49] and Square loss [50].

51

Figure 5.2: GPU Architecture for parallel parameters learning

52

Appendix A: GPU computation for kNN

Finding k nearest neighbor for each class of DMOZ dataset is very expensive processing

in terms of runtime. To speed up the process of kNN calculation we have implemented

the GPU based code. Linear implementation of kNN can be easily mapped to the GPU

threads in following way. Each thread computes the nearest neighbor of each class of DMOZ

dataset with all the classes of wikipedia dataset. If there are more threads than the number

of classes of DMOZ than we can easily split the task between two or more threads.

A.1 Source Code for similarity matrix computation to be

used in kNN computation

global void kNNComputation(

float *DMOZArray, /* Contains the representative DMOZ feature vector */

float *WikiArray, /* Contains the representative Wikipedia feature vector */

float *similarityMatrix, /* Stores the similarity value */

float *denDMOZ, /* Contains the number of ones in DMOZ feature vector */

float *denWiki, /* Contains the number of ones in Wikipedia feature vector */

int *numClass, /* Number of DMOZ class */

int *numDim)/* Dimension of each class */{

int tid = blockIdx.x*blockDim.x + threadIdx.x;

int N = numClass, d = numDim;

float k;

for(i=0; i<N; i++){

similarityMatrix[tid*N+i] = 0.0;

for(j=0; j<d; j++){

similarityMatrix[tid*N+i] = DMOZArray[(tid)*d+j]*WikiArray[d*i+j] +

similarityMatrix[tid*N+i];

53

}

k = denDMOZ[tid] + denWiki[i] - similarityMatrix[tid*N+i];

if(k > 0){

similarityMatrix[tid*N+i] = similarityMatrix[tid∗N+i]
k ;

}

}

}

54

Bibliography

55

Bibliography

[1] E. Han and G. Karypis, “Centroid-based document classification: Analysis and exper-
imental results,” Principles of Data Mining and Knowledge Discovery, pp. 116–123,
2000.

[2] H. Borko and M. Bernick, “Automatic document classification,” Journal of the ACM
(JACM), vol. 10(2), pp. 151–162, 1963.

[3] S. Dumais and H. Chen, “Hierarchical classification of web content,” Proceedings of
the 23rd annual international ACM SIGIR conference on Research and development
in information retrieval, ACM, 2000.

[4] Q. Xipeng, X. Huang, Z. Liu, and J. Zhou, “Hierarchical text classification with latent
concepts,” Proceedings of the 49th Annual Meeting of the Association for Computa-
tional Linguistics, vol. 2, 2011.

[5] S. Gopal, Y. Yang, and A. Niculescu-Mizil, “A regularization framework for large scale
hierarchical classification,” ECML, 2012.

[6] J. Zhou, L. Yuan, J. Liu, and J. Ye, “A multi-task learning formulation for predicting
disease progression,” Proceedings of the 17th ACM SIGKDD international conference
on Knowledge discovery and data mining, ACM, 2011.

[7] A. Charuvaka and H. Rangwala, “Multi-task learning for classifying proteins with dual
hierarchies.” pp. 834–839, 12/2012 2012.

[8] C. Widmer, J. Leiva, Y. Altun, and G. Rätsch, “Leveraging sequence classification
by taxonomy-based multitask learning,” 14th Annual International Conference, RE-
COMB, Lisbon, Portugal, pp. 522–534, April 25-28, 2010.

[9] X. Wang, C. Zhang, and Z. Zhang, “Boosted multi-task learning for face verification
with applications to web image and video search,” IEEE conference on Computer
Vision and Pattern Recognition, pp. 142–149, 2009.

[10] J. Ghosn and Y. Bengio, “Multi-task learning for stock selection,” Advances in Neural
Information Processing Systems, pp. 946–952, 1997.

[11] J. Zhou, Y. Lei, J. Liu, and J. Ye, “A multi-task learning formulation for predicting dis-
ease progression,” In Proceedings of the 17th ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 814–822, 2011.

[12] S. Yu, K. Yu, V. Tresp, and H. Kriegel, “Collaborative ordinal regression,” In Proceed-
ings of the 23rd international conference on Machine learning, pp. 1089–1096, 2006.

56

[13] R. Caruana, “Multitask learning,” Machine Learning, vol. 28(1), pp. 41–75, 1997.

[14] J. Baxter, “A model of inductive bias learning,” JAIR, vol. 12, pp. 149–198, 2000.

[15] S. Thrun, “Is learning the n-th thing any easier than learning the first?” NIPS, pp.
640–646, 1996.

[16] S. Ben-David and R. Schuller, “Exploiting task relatedness for multiple task learning,”
Learning Theory and Kernel Machines, pp. 567–580, 2003.

[17] J. Zhou, J. Chen, and J. Ye, MALSAR: Multi-tAsk Learning via Struc-
turAl Regularization, Arizona State University, 2011. [Online]. Available:
http://www.public.asu.edu/ jye02/Software/MALSAR

[18] T. Evgeniou and M. Pontil, “Regularized multitask learning,” KDD, pp. 109–117, 2004.

[19] T. Jebara, “Multitask sparsity via maximum entropy discrimination,” JMLR, pp. 75–
110, 2011.

[20] A. Argyriou, T. Evgeniou, and M. Pontil, “Convex multi-task feature learning,” Ma-
chine Learning, vol. 73(3), pp. 243–272, 2008.

[21] J. Liu, S. Ji, and J. Ye, “Multi-task feature learning via efficient l 2, 1-norm minimiza-
tion,” UIA, pp. 339–348, 2009.

[22] G. Obozinski, B. Taskar, and M. Jordan, “Multi-task feature selection,” ICML, 2006.

[23] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal
Statistical Society. Series B (Methodological), pp. 267–288, 1996.

[24] A. Argyriou, T. Evgeniou, and M. Pontil, “Multi-task feature learning,” NIPS, p. 19:41,
2007.

[25] T. Jebara, “Multi-task feature and kernel selection for svms,” ICML, p. 55, 2004.

[26] T. Kato, H. Kashima, M. Sugiyama, and K. Asai, “Multi-task learning via conic pro-
gramming,” NIPS, pp. 737–744, 2008.

[27] T. Evgeniou, C. Micchelli, and M. Pontil, “Learning multiple tasks with kernel meth-
ods,” JMLR, vol. 6(1), pp. 615–637, 2005.

[28] S. Thrun and J. O. Sullivan, “Clustering learning tasks and the selective cross-task
transfer of knowledge,” Learning to learn, pp. 181–209, 1998.

[29] L. Jacob, F. Bach, and J. Vert, “Clustered multi-task learning: A convex formulation,”
NIPS, 2008.

[30] J. Zhou, J. Chen, and J. Ye, “Clustered multi-task learning via alternating structure
optimization,” NIPS, 2011.

[31] E. Bonilla, K. Chai, and C. Williams, “Multi-task gaussian process prediction,” NIPS,
20(October), 2008.

57

[32] Y. Zhang and D. Yeung, “A convex formulation for learning task relationships in multi-
task learning,” In Proceedings of the Twenty-fourth Conference on Uncertainty in AI
(UAI), 2010.

[33] S. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on Knowledge
and Data Engineering, vol. 22(10), pp. 1345–1359, 2010.

[34] X. Zhu, “Semi-supervised learning literature survey,” world, vol. 10, p. 10, 2005.

[35] Z. Rasheed, H. Rangwala, and D. Barbará, “Efficient clustering of metagenomic se-
quences using locality sensitive hashing,” in SIAM International Conference in Data
Mining, Anaheim, CA, April 2012, pp. 1023–1034.

[36] P. Li, A. Shrivastava, J. Moore, and A. C. König, “Hashing algorithms for large-scale
learning,” Technical Report, 2011.

[37] P. Li, A. B. Owen, and C.-H. Zhang, “One permutation hashing for efficient search
and learning,” CoRR, vol. abs/1208.1259, 2012.

[38] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher, “Min-wise independent
permutations,” Journal of Computer Systems and Sciences, vol. 60(3), pp. 630–659,
2000.

[39] P. Li, A. Shrivastava, and C. A. Konig, “Gpu-based minwise hashing,” Proceedings of
the 21st international conference companion on World Wide Web. ACM, pp. 565–566,
2012.

[40] J. L. Carter and M. N. Wegman, “Universal classes of hash functions,” Journal of
computer and system sciences, vol. 18(2), pp. 143–154, 1979.

[41] N. Bhatia and Vandana, “Survey of nearest neighbor techniques,” International Journal
of Computer Science and Information Security, vol. 8(2), pp. 302–305, 2010.

[42] T. M. Cover and P. E. Hart, “Nearest neighbor pattern classification,” IEEE Trans.
Inform. Theory, vol. 13, pp. 21–27, Jan. 1967.

[43] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. New
York, NY, USA: Springer Series in Statistics, 2001.

[44] T. M. Mitchell, Machine Learning. McGraw Hill series in computer science, 1997.

[45] Y. Yang, “An evaluation of statistical approaches to text categorization,” Information
Retrieval, vol. 1(1), pp. 69–90, 1999.

[46] D. Lewis, R. Schapire, J. Callan, and R. Papka, “Training algorithms for linear text
classiers,” In Proceedings of the 19th annual international ACM SIGIR conference on
research and development in information retrieval, pp. 298–306, 1996.

[47] A. Özgür, L. Özgür, and T. Güngör, “Text categorization with class-based and corpus-
based keyword selection,” Proceedings of the 20th international conference on Computer
and Information Sciences, pp. 606–615, 2005.

58

[48] P. Baldi, S. Brunak, Y. Chauvin, C. Andersen, and H. Nielsen, “Assessing the accuracy
of prediction algorithms for classification: an overview,” Bioinformatics, vol. 16(5), pp.
412–424, 2000.

[49] P. Bartlett and M. Wegkamp, “Classification with a reject option using a hinge loss,”
The Journal of Machine Learning Research, vol. 9, pp. 1823–1840, 2008.

[50] S. Yang and B. Hu, “A stagewise least square loss function for classification,” Proceed-
ings of the 2008 SIAM International Conference on Data Mining, 2008.

59

Curriculum Vitae

Azad Naik is currently a graduate student in the Department of Computer Science at the
George Mason University (GMU) in the Northern Virginia Area. He is also a graduate
teaching assistant in the Computer Science department at GMU, Fairfax, VA. Before join-
ing GMU, he has worked as a Software Developer for 1 year at Aricent and as a Senior
Software Developer for over 1 year at Samsung India Software Operations (SISO), Banga-
lore. He completed his Bachelor of Technology in Computer Science and Engineering from
Indian School of Mines Dhanbad, in 2009.

His research interest can be broadly categorized as Data Mining, Machine learning, Algo-
rithm Design, Statistical Pattern Recognition, High Performance Computation and Com-
putational Biology.

60

