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Abstract

Many adequate methods exist for conversion of transfer functions in
the continuous domain to discrete equivalents with preservation of magni-
tude. Frequency response in the true sense however is composed of both
magnitude and phase components with characteristics input response in
the time domain dependent on both parts. In an effort to eliminate ac-
ceptance of prediction error associated with phase distortion between con-
tinuous and discrete ”equivalents”, this work strives for a transformation
yielding complete transfer function (frequency response) match. Corre-
lation is shown between operating on positive real continuous transfer
functions and successful duplication of frequency response in the discrete
domain. This work continues an earlier research effort.
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2 Introduction

The objective of this work was to both assess and continue the progress of
the research started over 10 years ago by Beale and Cook (1). That research
dealt with complete transfer function mapping between the continuous and dis-
crete domains. This work attempts to better explain the intermediate results
of ref(1), with the desired goal having been to assess the validity of the base
approach. Unless conclusive investigation indicated irreparable flaws, the base
transformation method would be left intact.

Every effort was made to prevent this work from becoming bogged down
by its programming aspects. However it was realized that automation of the
transformation procedure of ref(1) was necessary to allow efficient examination
of various aspects of the problem. The code allows for automatic generation
of the discrete equivalent to an input continuous transfer function H(s) and
performs all calculations needed to perform adequate error analysis on the nu-
merous iterations. All written code used for this report is available though it
is not optimized by any means and is slanted towards this author’s particular
situation/approach. Note that the deviations of the method in ref(1) from a
standard bilinear transformation could be incorporated into commercial soft-
ware such as MATLAB relatively easily. Note that the open source alternative
Octave is used in this paper [https://www.gnu.org/software/octave/].
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3 Discussion

For completeness, a brief check was carried out on ref(1)’s approach to p- to
z-plane in terms of changes to natural frequency and damping ratio. After some
investigation it was concluded that the approach of ref(1) was proper. It should
be noted that the allowance for adjustment of an H(s) pole discussed in ref(1)
was not replicated in this work, the seed H(s) being taken as inflexible.

The major questions outstanding in ref(1) are:

• for what class of function(s) does the procedure prove useful?

• why were some of the paper’s results less than optimal and could anything
be done to ameliorate the situation?

This follow up work shows:

• at least one class of function exists for which the procedure in ref(1) works
extremely well,

• how the procedure in ref(1) exhibits a near universal inconsistency with
typical non-positive real functions, and

• a proposed modification to the method in ref(1) for such ”ill-conditioned”
functions.

At the start of this research, this author thought that the heart of the in-
consistency lay either with an inadequacy of the bilinear portion of the base
transformation or with the specific application of the all-pass filtering. Subse-
quent work played down these ideas, focusing instead on the function type as
the dominant factor affecting transformation success.
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4 Background

In ref(1), transformation is made from the s-plane to the z-plane via an in-
termediate frequency conversion followed by the bilinear transformation. The
frequency conversion serves to map the continuous range of interest (0 to the
half-sampling rate Ws/2) to one extending from 0 to infinity (i.e. all possible
frequencies) on the second plane. As a quick example, a term s2 + 2nw + w2

yields a p-term p2+2vq+q2 where v=n, q=tan(wT/2), T is the sampling period,
n the damping ratio and w natural frequency. The bilinear transformation term
(z − 1)/(z + 1) then replaces p to complete the conversion. After tranforming
H(s) to H(z), any unconverted zeros (those stemming from infinite s-plane zeros)
must then be set. Finally, an all-pass filter (APF) multiplier is introduced out
of necessity to ”tune” the discrete phase response as closely as possible to the
continuous response.

The problem with this transformation developed towards the higher end
(usually within the last 1/5th) of the frequency range of interest, with divergence
of the phase portion of the frequency response exhibited. Note that with the
APF term, the procedure of ref(1) has the phase terminating at a multiple
of pi (180 deg) at Ws/2. This clearly has drawbacks when trying to match
an arbitrary continuous phase characteristic not at all guaranteed to exhibit
the same terminal phase value. Unless the continuous phase should go to -180
degrees at Ws/2 as does the discrete version with APF, a fixed phase error
is introduced from Ws/2 back to the last intersection of the continuous and
discerte phase curves as illustrated in Figure 1. This inherent characteristic
is not satisfactory. In problems artificially constructed for optimal continuous
phase characteristic for application of the method of ref(1), the transfer function
match was significantly worse than expected. The modification to the procedure
of ref(1) described next is an attempt to exploit the predictable aspects of this
phase divergence.
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5 Modified Approach

At its basic level the modified approach uses knowledge about the true desired
sampling rate Ws to shift the divergence region out beyond Ws/2. This shift is
accomplished by generating the discrete frequency response at a slightly higher
sampling rate Ws*, while utilizing the transformation information only up to
the original Ws/2 cutoff (the function transformation still using the original
sampling period). The basis of the modification is acceptance of a slight degra-
dation of the phase match from w=0 to the divergence point to gain elimination
of the error contributed by the divergence region. In most cases the tradeoff
is beneficial as can be seen in Figure 2. The effect on magnitude match is not
as predictable however. Typical improvement of the performance index (dis-
cussed in the next section) is on the order of 1.5 to 3 depending on the H(s)
characteristic, with Ws* usually within 15 percent of Ws. As a check, all prob-
lems were run at the higher sampling frequency of the modified runs to ensure
that the improvement was not merely due to the faster sampling alone. The
modification does not seem to be effective when the denominator and numera-
tor powers differ by two or more, which is good in that the original method of
ref(1) is least applicable when this difference is one. Table 1 lists some of the
problems examined, with Table 2 listing some of the associated H(z) forms after
transformation.
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Figure 1: Divergence Behavior of the Base Method
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Positive Real:
1 [(s+ 1)(s+ 3)(s+ 4)]/(s+ 2)3

2 [(s+ 2)(s+ 4)]/[(s+ 1)(s+ 3)
3 (s2 + s+ 1)/(s2 + s+ 4)
4 (s3 + 2s2 + s+ 1)/(s3 + s2 + 2s+ 1)
5 [(s+ 2)(s+ 4)(s+ 6)(s+ 8)]/[(s+ 1)(s+ 3)(s+ 5)(s+ 7)]
6 [(s+ 1.5)(s+ 3.5)(s+ 6)]/[(s+ 1)(s+ 3)(s+ 5)(s+ 7)]
Non-Positive Real:
7 original problem (ex. 2)
8 ex. 2 less pole @ 0.62
9 ex. 2 less pole @ 5.0
10 ex. 2 less (s2 + 8.4s+ 36),zero @ 1.65
11 ex. 2 less (s2 + 7.25s+ 81),zero @ 5.0

Non-Positive Real (variations of ex.2 from ref(1)) [ex.2: (s+ 1.65)(s2 + 2.31s+
2.72)(s2 + 7.25s+ 81)/(s2 + 8.4s+ 36)(s+ 5.0)(s+ 0.62)2(s2 + 11.849s+ 72) ]

Table 1: Representative Problems

Positive Real:
1 [(z − 0.72654)(z − 0.32492)(z − 0.15838)]/(z − 0.50953)3(Ws = 20)
2 [(z − 0.50953)(z − 0.15838)]/(z − 0.72654)(z − 0.32492)(Ws = 20)
3 (z2 − 1.64755z + 0.73234)/(z2 − 1.41073z + 0.74376)(Ws = 20)
4 [(z − 0.55902)(z2 − 1.62850z + 0.67539)]/[(z2 − 1.71662z + 0.87681)(z − 0.83528)](Ws = 20)
5 [(z − 0.77568)(z − 0.59140)(z − 0.43274)(z − 0.29053)]/

[(z − 0.88162)(z − 0.67960)(z − 0.50953)(z − 0.36002)](Ws = 50)
6 [(z − 0.90993)(z − 0.80115)(z − 0.67960)(z + 1)]/

[(z − 0.93906)(z − 0.82727)(z − 0.72654)(z − 0.63462)](Ws = 100)

Table 2: Some of the Discrete Equivalents
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Figure 2: Modification to the Base Method
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6 Error Analysis

Simple tracking of mean absolute errors and maximum errors was used as per
ref(1) as well as the percentage of data falling below user set target levels. The
percent tracking is useful in indicating a divergence problem which might then be
circumvented - for example, an error analysis on 100 data comparisons might
see very good phase matchup until the last five data (just after a divergence
point). This extremely skewed data artificially raises the mean absolute errors
and J index. The eventual approach after a number of preliminary analyses
was to make use of a performance index J (one of many possible) which is a
function of the four quantities (two mean errors and two maximum errors), with
magnitude error being more heavily weighted. The weightings were as deemed
appropriateby this author. The index helped quicken evaluation of error analysis
runs, as often slight changes to a problem would degrade magnitude match while
improving phase match or vice versa. A brief note on initial and fnal function
values. In this research, none of the positive real examples examined had a
constant multiplier, as the computer code was set up to solve for any required
scaling while maintaining the DC gain. With non-zero DC gain this meant
that the continuous and discrete magnitude curves were shifted to zero DC
gain in a buffer, the optimization conducted, and the curves translated back to
the original set point. It appeared that just as the matchup for positive real
H(s) improves with sample rate, any required scaling for the discrete equivalent
approaches unity in the limit i.e. the transformation strictly maintains the initial
value (as might be expected). However, this did not appear to be the case for
the respective final values. In particular, with an H(s) with one surplus pole
(non-zero), the corresponding zero resulting from optimization of the response
match does not match that zero which would equalize the limiting final value
(final value theorem).
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7 Results

Unexpected success was found upon application of the method of ref(1) to a
few trial positive real (pr) functions. Note that much of the work listed in the
supplemental reference list was done subsequent to the work of ref(1). Positive
real functions will not be completely discussed here though some principal, easily
discernible properties are:

• the highest (and lowest) powers of the numerator and denominator poly-
nomials must be within 1 of each other,

• the coefficient signs must all be >= 0,

• the coefficients between the highest and lowest power terms must be or-
dered (exclusive),

• using the form P (s) = CN ∗ sN + ...C1 ∗ s + C0, for N > 2, C0 must be
<= the product of the next three (nonzero) highest coefficients, and

• no multiple roots are present at either the origin or infinity

Note that the above are necessary but not sufficient conditions. At first it
was not clear whether the behavior was due to the pr property or simply due
to the composite polynomials being Hurwitz but it is believed the former is the
reason. Unfortunately in one respect, the runs for the pr cases were so good that
no APF term was applied, which means that no truly successful runs with an
APF term applied have been obtained. Readers should not mistakenly conclude
from the pr runs that the coefficients must be integer; it is the sign and relative
position between the zeros and poles which are the key. Integer problems were
run because they were the ones found readily in print. The reference listed for pr
functions also details how reactance functions are a class of pr functions, which is
significant, as it means such functions are realizable in hardware. Also note that
one of the properties of the bilinear transformation is that the transformation
of a pr function is guaranteed to be bounded real, which allows generalization
about preservation of stability in going from the s- to z-domain through the
procedure of ref(1). Isolated results have been summarized for both pr and
non-pr H(s), Figures 3 through 7. The positive real functions have the ”PR”
prefix. Note that a few of the transfer functions are not completely stable and
are used for analysis purposes only. Also note that the modified method was
not run on the pr problems, as the original method of ref(1) proved completely
adequate. It appeared that any desired accuracy could be achieved by increasing
the sampling rate (assuming the allowable sampling rate is that flexible).
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8 Applications

If one were fortunate to be working with an H(s) either positive real or with
enough flexibility to be made positive real, the transformation of ref(1) may be
applied directly, with the accuracy limited only be restrictions on the sampling
rate. As examples, problems PR1 through PR5 with no surplus poles yield ex-
cellent results for moderate sampling rates while problem PR6 with the surplus
pole would require a sampling rate significantly higher than the Nyquist rate
to achieve the same results. Most of the positive real examples are taken from
ref(4). If one is working with non-positive real H(s) with an odd excess of poles,
the modified version of the procedure of ref(1) would rarely yield accuracy ac-
ceptable to the user. The unmodified method of ref(1) could not yield adequate
results due to its asymptotic phase characteristics. Problems 8 through 10 are
examples of this scenario. If one is working with non-positive real H(s) with an
even excess of poles, the modified version of the procedure of ref(1) would often
yield accuracy acceptable to the user. The unmodified method of ref(1) could
also yield adequate results, though far less often. The original autopilot example
of ref(1) is of this type (problem 7). If one is working with an H(s) which has
terms not factorable down to either 1st or 2nd order terms, the transformation
of ref(1) is not so trivial. No problems of this type were analyzed. In the un-
likely event that one does not need to assess the frequency response of a function
up to its Nyquist frequency but to some lower frequency Wx, ref(1) could be
quite adequate if Wx occurs before the divergence. Such a scenario would result
from analysis of a function where only lower frequency contributions are being
examined.
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Figure 3: Problem PR3 Frequency Response
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Figure 4: Problem PR4 Frequency Response
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Figure 5: Problem 9 Frequency Response
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Figure 6: Problem 11 Frequency Response

18



Figure 7: Representative Results
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Surplus poles H(s) (1) method applicable can it be positive real? comment

0 Yes Yes no zeros to set, ideal if positive real

1 No Yes (1) inappropropriate unless positive real;use modified version (1)

2 Maybe No not positive real,try (1), modify as needed

Higher Yes for even No (1) applies to even surplus

Table 3: Possible Cases
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9 Conclusions and Recommendations

1. This paper illustrates the outstanding results of the procedure of ref(1)
on positive real continuous transfer functions. To this author’s knowledge
and limited literature search, no other method is being promoted for such
complete transfer function matching.

2. The procedure of ref(1) can be modified to produce better, although not
always satisfactory results on non-positive real H(s). Future work should
include examining the use of a different transformation other than the
bilinear for thr last step of the A/D conversion, especially when numerator
and denominator powers are matched and there are no large roots present.
It is easy to show that in this instance, the provisions of the bilinear
transformation developed for wider applications are such that the mapping
is probably not as optimal or as advantageous as other transformations
(i.e. variations on the 5,8,-1 rule of integration and similar). It is clear
from Fig 6, ref(1) that the transformation before all-pass filtering does not
inherently maintain phase, at least for non-positive real functions.

3. Specific situations, especially as regards allowable sampling rate, network
implementation flexibility, and specific application (simulation, hardware
implementation, etc) will dictate the viability of the procedures of this
work and its predecessor ref(1) in individual cases.

4. Any extension of the effort discussed here to better define its limitations
and applications would be extremely worthwhile, namely how to extend
the success with positive real functions to less structured problems more
typically confronted in actual design work.

5. When the procedure discussed does work, digital time response to various
input signals should inherently improve in terms of agreement to its con-
tinuous counterpart, this having been a major objective of this work and
of the general A/D process. No time response analysis was performed in
the course of this work, though ref(1) does give some mention.

6. A logical extension of this work would be to incorporate the zero-order hold
(ZOH) associated with digital implementation, a matter not addressed by
either ref(1) or this work.

7. The author wholeheartedly recommends to any individual routinely in-
volved with H(s) to H(z) conversions currently preserving only magnitude
to assess the possible benefits of preserving both parts, especially if there
will be little or no degradation in magnitude match. The transformation
procedure of ref(1) is trivial to perform at least for H(s) factorable down
to 1st and 2nd order terms.

8. In order to eliminate any frequency shift machinations for non-positive real
treatment, further (un-derived) modifications to Beale’s transformation
procedure are needed. The intent of such modification would be to allow
direct implementation of Beale’s procedure on an H(s) with terminal phase
outside the set (-90,0,+90) allowed by positive real functions.
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12 Appendix A

transformation example

Ex. H(s) term s2 + 2.31s+ 2.72 (from problem 7)
Wn2 = 2.72 yields Wn = 1.649
2 ∗ η ∗Wn = 2.31 yields η = 0.7003

for problem 7, largest Wn2 = 81 yields Nyquist rate=9 rad/s rad/s

let Ws = 40 rad/s yields T = 2π/Ws = 0.15708 sec

form p2 + (2vr)p+ r2

r2 = tan(Wi ∗ T/2))2 = (0.13024)2 v = η

2vr = 2 ∗ (0.7003) ∗ (0.13024) = 0.18241

yields

p2 + 0.18241p+ 0.16963

each p goes to (z − 1)/(z + 1) or

[(z − 1)2 + 0.18241(z − 1)(z + 1) + 0.16963(z + 1)2]/(z + 1)2

z2: 1 + 0.18241 + 0.016963 = .1994

z1: −2 + 2(0.016963) = −1.9661

z0: 1 − 0.18241 + 0.016963 = 0.83455

yields term z2 − 1.9661z/1.1994 + 0.83455/1.1994

z2 − 1.6392z + 0.69581

this yields:

H(s) term Wn ∗ η tan(WiT/2) z-term coeff

s2 + 2.31s+ 2.72 0.1302, 0.7003 0.13024 (1,−1.6392, 0.69581)
s+ 1.65 – 0.13032 (0, 1,−0.76941)

s2 + 7.25s+ 81 9.0, 0.4028 0.85408 (1,−0.22383, 0.4308)
s2 + 8.4s+ 36 6.0, 0.7000 0.50953 (1,−0.75054, 0.27689)
s2 + 5.62s+ 3.1 s+ 5.0 0.41421 (0, 1,−0.41422)

s+ 0.62 0.048733 (0, 1,−0.90706)
s+ 0.62 – 0.048733 (0, 1,−0.90706)

s2 + 11.849s+ 72 8.485, 0.6982 0.78647 (1,−0.28083, 0.19152)

for (s+1.65), −(1 − tan(WiT/2)/(1 + tan(WiT/2)) = −0.76941
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13 Appendix B

Octave coding (local or Google extension)
(note: ”:” used in lieu of spaces in tf,num,den for clarity)

PR1:
C = tf(1.0 ∗ [1 : 4 : 3], [1 : 6 : 12 : 8]);
Hd = c2d(C, 2 ∗ pi/20,′ bi′);
num = [1 : −1.20984 : 0.402598 : −0.0373884];
den = [1 : −1.52859 : 0.778862 : −0.132285];
Hd = tf(num, den, 2 ∗ pi/20);
k = dcgain(C)/dcgain(Hd);
bode(C,′ g′, Hd ∗ k,′ r −−′); typical, not shown on rest

PR2:
C = tf(1.0 ∗ [1 : 6 : 8], [1 : 4 : 3]);
Hd = c2d(C, 2 ∗ pi/20,′ bi′);
num = [1 : −0.66791 : 0.0806994]; den = [1 : −1.05146 : 0.236067];
Hd = tf(num, den, 2 ∗ pi/20);
k = dcgain(C)/dcgain(Hd);

PR3:
C = tf(1.0 ∗ [1 : 1 : 1], [1 : 1 : 4]);
Hd = c2d(C, 2 ∗ pi/20,′ bi′);
num = [1 : −1.64755 : 0.73234]; den = [1 : −1.41073 : 0.74376];
Hd = tf(num, den, 2 ∗ pi/20);
k = dcgain(C)/dcgain(Hd);

PR4:
C = tf(1.0 ∗ [1 : 2 : 1 : 1], [1 : 1 : 2 : 1]);
Hd = c2d(C, 2 ∗ pi/20,′ bi′);
num = [1 : −2.18752 : 1.58575 : −0.377557];
den = [1 : −2.5519 : 2.31067 : −0.732382];
Hd = tf(num, den, 2 ∗ pi/20);
k = dcgain(C)/dcgain(Hd);

PR5:
C = tf(1.0 ∗ [1 : 20 : 140 : 400 : 384], [1 : 16 : 86 : 176 : 105]);
Hd = c2d(C, 2 ∗ pi/50,′ bi′);
num = [1 : −2.09035 : 1.57323 : −0.503666 : 0.0576742];
den = [1 : −2.43077 : 2.14015 : −0.807382 : 0.109908];
Hd = tf(num, den, 2 ∗ pi/50);
k = dcgain(C)/dcgain(Hd);
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.
PR6:

C = tf(1.0 ∗ [1 : 11 : 35.25 : 31.5], [1 : 16 : 86 : 176 : 105]);
Hd = c2d(C, 2 ∗ pi/100,′ bi′);
num = [1 : −1.39068 : −0.49884 : 1.39642 : −0.495422];
den = [1 : −3.12749 : 3.64219 : −1.87184 : 0.35819];
Hd = tf(num, den, 2 ∗ pi/100);
k = dcgain(C)/dcgain(Hd);

P7:
C = tf(1.0 ∗ [1 : 11.21 : 116.242 : 372.601 : 561.589 : 363.528], [1 : 26.489 :

340.47 : 2461.61 : 10433.1 : 23363.9 : 19049 : 4981.82]);
Hd = c2d(C, 2 ∗ pi/40,′ bi′);

0.002524z7 − 0.00226z6 − 0.003061z5 + 0.004265z4 − 0.001063z3−
0.001333z2 + 0.001663z − 0.0006096

Hd : −−−−−−−−−−−−−−−−−−−−−−−−−−−−
z7−3.545z6+5.43z5−4.798z4+2.702z3−0.9835z2+0.2186z−0.02319

note ref(1) used an APF form of z = (z + z1)/(z + p1)
where p1 = 1/z1 ie (z + 2.724)/(z + 0.3671)

for a specific frequency, analog and digital respectively,
freqresp(C,w) or[fr, w] = freqz(num, den,N);
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14 Appendix C

For clarification, we illustrate the divergence correction

digital root from TF (s2 + 7.25 + 81)/(s2 + 8.4s+ 36)

s-roots: −3.625 + /− 8.238i,−4.2 + /4.2849i

using
Ws = 40rad/s
T = 2 ∗ PI/Ws

note the bilinear modified z-transform as follows
z − roots : exp(−aT )[1 − 0.85 ∗ (4 ∗ a/Ws)(3.17)], where 4a/Ws <= 1

ORIGINAL: 0.063925 + /− 0.212033i, 0.42632 + /− 0.23811i
yielding

(z2−0.12785z+0.049044)/(z2−0.85264z+0.23845) (2a)

MODIFIED:(Wbar=53 rad/s replacing Ws for root conversion ONLY)
Wbar = Ws ∗ 1.33 the multiplier can be iterated, typ. default 1.15
Tbar = 2 ∗ PI/Wbar

exp(−aTbar)[1 − 0.85 ∗ (4 ∗ a/Wbar)(3.17)], where 4a/Ws <= 1
0.27479 + /− 0.40373i, 0.53488 + /− 0.25389i

yielding (z2 − 0.54958z + 0.23851)/(z2 − 1.06976z + 0.35056) (2b)

we can then compare analog and (2a,2b) via

Hd1 = c2d(H, 0.15708,′ bi′) = baseline via Octave bilinear

1.1z2 − 0.5318z + 0.4943
Hd1 : −−−−−−−−−−−−

z2 − 0.8268z + 0.2988
dcgain(Hd1); 2.25

normalizing,
z2 − 0.48345z + 0.44936

Hd1 : −−−−−−−−−−−−
z2 − 0.8268z + 0.2988

k1 = 1.1
num2 = [1 : −0.12785 : 0.049044] den2 = [1 − 0.852640.23845]
Hd2 = tf(num2, den2, T )
dcgain(Hd2); 2.3877 so require k2=2.25/2.3877=0.94233
Wbar = 1.33 ∗Ws
Tbar = 2 ∗ PI/Wbar
num3 = [1 : −0.54958 : 0.23851] den3 = [1 − 1.069760.35056]

Hd3 = tf(num3, den3, T )
dcgain(Hd3); 2.4535 so require k3 = 2.25/2.4535 = 0.91706
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bode(H,′ r′, Hd2 ∗ k2,′ g −−′, Hd3 ∗ k3,′ b− .′);

The resulting plots (ignoring beyond Ws/2=20 rad/s):
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Figure 8: Analog(red) vs Original (blue) vs Modified(green)
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Figure 9: Analog(red) vs Bilinear(blue) vs modified z-transform(green)
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