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Abstract

SECURE COOPERATIVE DATA ACCESS IN MULTI-CLOUD ENVIRONMENT

Meixing Le, PhD

George Mason University, 2013

Dissertation Co-Director: Dr.Sushil Jajodia

Dissertation Co-Director: Dr.Krishna Kant

In this dissertation, we discuss the problem of enabling cooperative query execution in

a multi-cloud environment where the data is owned and managed by multiple enterprises.

Each enterprise maintains its own relational database using a private cloud. In order to

implement desired business services, parties need to share selected portion of their informa-

tion with one another. We consider a model with a set of authorization rules over the joins

of basic relations, and such rules are defined by these cooperating parties. The accessible

information is constrained by these rules. It is assumed that the rest of the information is

well protected but those mechanisms are not addressed here.

It is expected that the authorization rules are formulated based on business needs and

agreements, and may suffer from several issues. First, the rules may be inconsistent in

that they release more information than the parties may realize or agree to. We formalize

the notion of consistency of authorization rules and devise an algorithm to augment rules

to maintain rule consistency. We also consider the possibility of occasional changes in

authorization rules and address the problem of maintaining consistency in the face of such

changes. We propose algorithms for both changes with new privileges grants and revocations

on existing privileges. Instead of augmentation, conflicts may be resolved by introducing



negative rules. We discuss the mechanism to check if the negative rules can be violated and

the possible way of enforcing them.

The second issue is that the parties may possess inadequate access to basic data to

implement the operations required for providing the stated access to the composed data. In

other words, the rules cannot be enforced or implemented in reality. Therefore, we propose

an algorithm to systematically check the enforceability for each given authorization rule

in order to determine the set of queries that can be safely executed. We also present

mechanisms to generate a query execution plan which is consistent with the authorization

rules for each incoming authorized query. Since finding the optimal query plan can be very

expensive, our algorithm attempts to find good query plans using a greedy approach. We

show that the greedy approach provides plans that are very close to optimal but can be

obtained with a far lower cost.

The third issue to consider is handling of situations where rules cannot be enforced

among existing parties. For this, we propose the introduction of trusted third parties to

perform the expected operations. Since interactions with the third party can be expensive

and there maybe risk of data exposure/misuse, while the data is held by third party, it is

important to minimize their use. We define a cost model and formulate the minimization

problem. We show that this problem is NP -hard, so we use greedy algorithms to generate

solutions. With extensive simulation evaluations, the results show the effectiveness of our

approach. Furthermore, we discuss different types of third parties, and the need for multiple

third parties. We examine the problem of how to use minimal number of third parties to

meet the given security requirements. This problem thus out to be strongly related to the

graph coloring problems. We propose some heuristics to find near optimal answers.



Chapter 1: Introduction

1.1 Secure cooperative data access

Enterprises increasingly need to collaborate to provide rich services to clients with minimal

manual intervention and without paper documents. This requires the enterprises involved

in the service path to share data in an orderly manner. For instance, an automated determi-

nation of patient coverage and costs requires that a hospital and insurance company be able

to make certain queries against each others’ databases. Similarly, to arrange for automated

shipping of merchandise and to enable automated status checking, the e-commerce vendor

and shipping company should be able to exchange relevant information, perhaps in form of

database queries. To achieve collaborative computation, one scenario could be that needed

information is shared among all the parties. In such a scenario, each individual party man-

ages its own data, but one party can always access the data of another party. However, from

data security point of view, sharing information with all parties releases more information

than needed, and it is not desired by the data owners in many cases. Usually, data owners

release their data to other parties only based on their collaboration requirements. In such

environments, data must be released only in a controlled way among cooperative parties,

subject to the authorization policies established by them. The data authorization should be

flexible and fine-grained so that the data owners can easily determine which portion of the

information is released to which party. On the other hand, the rest of the information that

is not released needs to be protected. In the rest of the chapter, we will discuss the model

of the cooperative data access, the problems in such an environment and the contributions

of this thesis.

1



1.1.1 Cooperative data access model

Without loss of generality, we assume each collaborative party or enterprise maintains its

own data in its private cloud. Such a party may have its own data center running the private

cloud or possibly running the cloud on infrastructures rented from a provider. We assume

that all data is stored in relational form. It is because relational model is the most popular

data model. However, it is possible to extend our model to more general data models. We

also assume the relational data is in a standard form such as BCNF so that data from

different sources can be joined in a lossless manner. As the enterprises need to collaborate

with one another to fulfill the desired business requirements, they will negotiate with each

other to make data access permissions according to their agreements. For instance, an

insurance company may require certain data from hospital and if the hospital thinks it is

reasonable and safe to give insurance company access to the requested data, it may agree

to release this data. We define the data access privileges using a set of authorization rules.

Since we are dealing with the relational model, the authorization rules are made over the

original tables belonging to some enterprises or over the lossless joins (./) over two or

more of the relational tables. The join operations, coupled with appropriate projection and

selection operations define the access restrictions; although in order to enable working with

only the schemas, we do not consider selection operation. We use the join operation over

the relations because it can implicitly constrain the tuples being released to the authorized

party and it meets the requirement of cooperative data access. For example, if the hospital

thinks the insurance company should be able to obtain the patient information but only

these patients who have plans with this insurance company, then the authorization given to

the insurance company is defined only on the join result of hospital data and the insurance

data. In this way, the insurance company can only retrieve corresponding patients’ data

instead of all the data from the hospital. We leave the formal definition of the authorization

rules in later chapters.

To be able to apply the desired permissions among the collaborating parties, the autho-

rization rules are visible to all the parties. It is worth noting that only the rules are exposed

2



to all the parties but no data. We can assume that the rules and related metadata are stored

at a central place, and it can be either a party among the collaborating ones or a separate

party that is trusted by all the collaborating parties. It is also possible to consider the

situation that authorization rules are stored in a distributed manner, and each party only

knows the permissions it is given. However, in this thesis, we consider our model as a cen-

tralized one. The purpose of cooperative data access is to provide services to the clients, so

the clients will issue queries against the parties to obtain desired information. For instance,

a client may want to retrieve the information about a patient in the hospital and insured

with the insurance company. Thus, we first need to check if the information requested by

the client is authorized to be released. If the information is authorized, a query execution

plan is required to retrieve and compose the data from the owners to answer the query.

Such a query execution plan must follow the given authorization rules so as to make sure

no unauthorized information is released to unauthorized parties during the whole process.

The tasks of query authorization check and query planning are fulfilled by a centralized

party that knowns all the authorization rules. Figure 1.1 shows a possible architecture for

such environment. Although the data are managed by different owners with their private

clouds, the authorization rules are put at a central place to be referenced by all the parties.

As clients initiate queries, the queries are first handled by the query planner. The planner

checks the query authorizations and generates safe query plans based on the rules. After

that, the client can use such safe distributed query plan to execute the query against the

cooperative parties.

1.1.2 Problems

The data authorization rules are supposed to satisfy the requirements laid down by each

enterprise, but without a careful global organization, the rules may not be either mutually

consistent or adequate to allow all the desired data sharing. There are several reasons for the

possible inconsistency. First of all, enterprise may make some rules independently so that

they are unaware of the rules made by others. For example, when a hospital releases data to

3
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an insurance company, it may not know what other information the insurance company can

get from other parties such as a credit card company. Furthermore, some authorization rules

involve information from multiple data owners (e.g., join over data belonging to multiple

parties). Authorized information is generated through a series of relational operations,

where join is the most important operation. As authorized information is given in the form

of join results, a party getting pieces of information can also perform join operations over

it. Consequently, the party can derive some information by itself based on the information

it receives from cooperative parties. However, there is no rule to authorize such information

release. In this case, we say such a set of rules is inconsistent relative to the set of intended

authorization. For instance, if a party gets information both from insurance company and

hospital, the party can derive the information about a patient with his/her plan. However,

there is no given permission allowing this party to obtain such information. In such case,

we say the rules are inconsistent. The rule inconsistency creates conflicting results for query

authorization, so it needs to be properly handled. The rule inconsistency problem arises

because the information that is not regulated by any rule is considered not authorized.

However, it is not the case that all the local computation results are undesired. In the

extreme case, if the enterprises find out there is no restriction on the local computation

results, it is possible that a large number of authorization rules need to be specified. The

4



overwhelming number of rules can be difficult to manage, so we may want to use a concise

way to present the data access permissions. In fact, if all the local computation results are

allowed, we can use the initial set of rules made by the cooperative parties and consider

an implicit way of information authorization. We call it as the implicit semantics of the

rules. By doing that, we have a small number of rules compared to the explicit way of

authorization, but the price is that we may need additional cost to determine the query

authorization. In addition, when interpreting the rules using implicit semantics, we need to

introduce negative rules to explicitly prohibit the undesired local computations.

Even if the rules are mutually consistent with one another, there are still other problems

to be considered. In addition to inconsistency, it is possible that a query can be authorized

but not implementable. Since the rules are individually specified based on business re-

quirements of the cooperative parties, there may not exist a complete set of rules that can

authorize all the steps in the process of answering an authorized query. The simplest way

to illustrate this problem is by considering the following situation: a rule specifies access

to R ./ S (where R and S are relations owned by two different parties); however, no party

has access to both R and S individually and thus no party is able to do the join operation!

In such case, a query requesting the data on the join result of R and S is authorized by

the rule, but the query cannot be answered. We say that a rule can be enforced among the

cooperative parties if there exists a series of operations among the cooperative parties that

is allowed by the rule permissions and the final result is exactly the information conveyed

by the rule. Obviously, authorization rules are not always enforceable among the parties,

and a basic problem is to determine implementability of them. This needs to be done as

efficiently as possible. Furthermore, if a query is authorized and the corresponding rule can

be enforced, we still need a safe query execution plan to answer the query. Such a plan

must be consistent with the given set of rules so that no privilege restriction is violated. In

addition, we need to deal with the unenforceable information. There are several different

ways to handle such a problem.

One way to enforce a rule is to introduce a trusted third party. A trusted third party is an

5



entity other than the existing collaborating parties, and it is trusted by some collaborating

parties so it is authorized to get information from these parties. In the above example, if

there is a trusted third party, then the third party can be authorized to access both R and

S, then it can do the computation of R join S for the desired party. Therefore, we discuss

the possibilities of different third party models to enforce the rules and answer queries. A

third party may either act as an opaque service provider that does not retain any data or

provide richer functionality such as caching of data or query results. Multiple third parties

maybe needed to provide data isolation and/or to improve performance. The use of a third

party can be expensive both computationally and economically. Third parties may charge

money for the services they provide, and the parties need to consider the potential risk

of data exposure. Therefore, when using the third party to enforce the rules, we want to

interact with the third party in a minimal way. In some cases, multiple third parties are

needed because of potential conflicts among the data obtained by the third party as well

as the performance considerations. For example, if we the computation result of R ./ S

needs to be prohibited on a given party, we also want to ensure it will not be generated

at any third party. To achieve that, parties own the data of R and S should not share

the same third party to enforce their rules. Such a constraint at the third party can even

cause multi-way conflicts among the data. To give an example, the result of R ./ S ./ T

is undesired, but any combination of the two relations is allowed. In such scenarios, using

minimal number of third parties to satisfy all the requirements is desired.

1.1.3 Contributions

We study the problems mentioned above, and propose mechanisms to solve these problems.

We study the rule inconsistency problem and discuss possible ways to resolve it. We first

consider the explicit semantics of the authorization rules. In this situation, if there is

no explicit rule specifying the data release, then access to such information is prohibited.

To resolve the inconsistency among the rules, one solution is to add additional privileges

allowing the party to access the local computation results. To give a simple example, if

6



an enterprise P is authorized to get relations R and S from two parties, but no rule is

authorizing P to access the join result of R ./ S, we can add a rule allowing P to access

R ./ S to resolve consistency. In contrast, the alternative way is to constrain the existing

privileges of the party so that it cannot access all pieces of information and local computation

is prevented.

By exploring the first approach, we propose a mechanism that analyzes the given set

of rules and automatically adds necessary rules to authorize the access to all derivable

information. Basically, we build a closure of rules based on the initial given set of rules. The

mechanism takes advantage of the join properties among the relations and systematically

generates the rules, and it ensures the rule inconsistency can be removed. Since the business

relationships among the cooperative parties may change from time to time, the authorization

rules may change correspondingly. Because any changes on the rules may result in new

conflicts, we propose algorithms to maintain rule consistency in the cases of a new rule is

granted or an existing rule is revoked. In both cases, a single change can lead to a series of

changes in order to ensure consistency. The main issue to address is to ensure that changes

are introduced in such a way that minimum number of queries is affected.

Considering the explicit semantics of the rules, checking whether a query is authorized

is straightforward. The complexity of generating the rule closure to achieve consistency

is generally quite acceptable due to fact that long chains of joins are rare in practice.

However, it can be exponential in the worst case. Therefore, we also consider the implicit

way of interpreting rules so that the rules are concise and local computations are allowed

by default. In this case, to decide whether an incoming query can be authorized to run

is not trivial, and the check needs to be done on the fly for each individual query. A

query is authorized if a party has all the information that the query requests and the exact

answer for the query can be generated with legitimate computations over this information.

We propose a mechanism that efficiently checks the query authorization under implicit

scenarios. Since local computation is allowed by default under implicit semantics, there is a

need to introduce negative rules to prohibit undesired local computation results. Compared
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with the authorization rules, the negative rules define which information a party cannot

access. However, negative rules may be difficult to enforce. One possible way is to revoke

some authorization rules from the party so the local computation cannot be performed.

The other option is to use Chinese wall security policy [1]. In Chinese wall policy, data

is categorized into conflicting classes. The data access privilege of a party depends on the

previous data access history of the party, and it is only allowed to access one piece of data

from each class. For instance, if data R and S are within the same conflicting class, a party

P is free to visit either R or S at the beginning. However, once party P already has the

data R it can never get S, and vice versa. Using such a mechanism, undesired results can

never be generated.

Regarding the rule enforcement issues, we address the rule enforcement checking problem

in two steps. First of all, we examine the enforceability of each access rule in a constructive

bottom-up manner, and build a relevance graph that captures the relationships among the

rules. In a collaborative environment, a rule can be enforced with not only the locally

available information but also the remote information from the cooperative parties. We

propose a mechanism that checks the authorization rules in a bottom-up manner and finds

all the information that is authorized by the rules and can be enforced among collaborating

parties. If a rule is not totally enforceable, we consider two ways to deal with it. The

first option is to remove the unenforceable part of the rule, so that only enforceable rules

are retained. The second option is to modify related existing rules to make the inspected

rule totally enforceable. We use the property of the graph to find the solution that has

minimal impact on the existing rules. Furthermore, we examine the problem of query plan

generation in controlled collaborating environment, and it can be different from the classical

distributed query processing. To find the optimal query plan under data access constraints

is not an easy task due to the large search space for possible optimal query plans. We

show the difficulty of finding optimal answer in such scenarios, and how it is significantly

more complex than classical query processing. Thereby, we also propose an efficient greedy

algorithm that in most cases provides either the optimal solution or a solution that is very
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close to optimal. We prove that our algorithms are both correct and complete. That is,

the rule enforcement checking algorithm finds all information that can be enforced among

existing parties. The query planning algorithm is guaranteed to generate a query plan for

each query against these enforceable information, and such a plan is consistent with the

given authorization rules so that no data access restriction is violated.

Considering the using one global trusted third party to enforce rules, we aim to minimize

the costs of using the third party. Therefore, we first model the costs of using the third party,

which includes communication and computing costs. We show that minimizing both types

of costs is NP -hard. Therefore, we propose efficient greedy algorithms and evaluate their

performance against brute force algorithms. Since the brute force algorithm is exponential

in time complexity, we compare the results only when the optimal solution can be generated

in a reasonable amount of time. We find that the greedy algorithm finds cost in all cases

that is very close to the optimal cost. In the cases where a single trusted third party is not

adequate, we examine the problem of finding the minimal number of third parties to meet

all security requirements. Specifically, we show such a problem can be reduced to the graph

coloring problem which is also a NP -hard problem. Hence, instead of giving a solution that

finds the optimal answer, we provide with heuristics taking advantage of the property of

cooperative data access, which is complementary to the existing greedy algorithm for graph

coloring problem.

1.2 Related work

The problem of controlled data release among distributed collaborating parties has been

studied in [2]. The authors propose an efficient and expressive form of authorization rules

defined on the join path of relations. Under such model, only explicitly authorized informa-

tion can be safely retrieved. They devise an algorithm to check if a query with given query

plan tree can be authorized using the explicit authorization rules. However, this work does

not address the problem of determining the query plan. We note in this regard that regular

query optimizers do not comprehend access restrictions and thus cannot be used to generate
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query plans. Thus, determining an appropriate query plan is also a crucial problem that

we address. In our work, we follow the format of authorization rules proposed in [2].

In another work [3], the same authors evaluate whether the information release the

query entails is allowed by all the authorization rules given to a particular user, which

considers the possible combination of rules and assume the rules are defined in an implicit

way. Their solution uses a graph model to find all the possible compositions of the given

rules, and checks the query against all the generated authorization rules. In our work, we

assume authorizations are explicitly given. Data release is prohibited if there is no explicit

authorization. The architecture and rule implementation issues are discussed in [4], where

they proposed a centralized server to enforce the access control.

Processing distributed queries under protection requirements has been studied in [5–7].

In these works, data access is constrained by limited access pattern called binding patterns,

and the goal is to identify the classes of queries that a given set of access patterns can

support. These works only consider two subjects, the owner of the data and a single user

accessing it, whereas the authorization model considered in our work involves independent

parties that may cooperate in the execution of a query. There are also classical works on

query processing in centralized and distributed systems [8–11], but they do not deal with

constraints from the data owners. Using a classical query optimizer may miss possible query

plans in the cooperative scenario.

Answering queries using views [12] is close to our work also since each rule can be

thought as a view. Answering queries using views can be used for query optimization [13,14],

maintaining physical data independence [15], data exchange [16] and data integration [17,

18]. Different methods can be applied, materialized views can be treated as new options

and put into the conventional query plan enumeration to find better query plan, queries can

also be rewritten using given views with query rewriting techniques [19,20], and sometimes

conjunctive queries are used to evaluate the query equivalence and information containment.

In addition, query optimization using cached results in distributed environment is studied

in [21], and the query rewriting technique can also be used for view based access control [22].

10



Our scenario is different from all these works. To answer a query using given views, at least

we know all the information provided by the given views can be obtained. In our situation,

without knowing how the rules can be enforced, we cannot decide which views should be

used. Most of these works consider conjunctive queries, and the decision problem of whether

a query can be answered by the given views is NP-Complete [23,24] in general. However, the

authorization rules in our model do not have selection operations and we consider lossless

joins of relational data in standard form, whether a query is authorized can be determined

in polynomial time.

Security issues in cloud computing have been discussed in [25–28], and there are some

proposed secure architectures in cloud [29–31]. There are several works that focus on

verifying data ownership in the clouds [32,33]. In addition, information leakage problem in

clouds is discussed in [34]. A mechanism for efficient and exclusive access to outsourced data

is proposed in [35], and some other works [36,37] consider the different security protections

of the clouds and selectively outsource less sensitive data. On the other hand, attribute

based access control is getting more attention, and a new encryption framework is proposed

in [38] to combine the attributed based access control with the encryption mechanism.

There are some works on the access control in collaborative environments. In [39],

the authors examined existing access control models as applied to collaboration, and point

the weaknesses of these models. In addition, [40, 41] applied RBAC in the collaborative

environments. [42] discuss the access control problems in the popular social networks. [43]

proposed a web services based mechanism for access control in collaboration situations. All

these access control models are different from the one we are using. In [44], collaboration

among enterprises was also studied, but that work focused on different application data and

multilevel policies.

There are several services such as Sovereign joins [45] to enforce the authorization rule

model we used, such a service gets encrypted relations from the participating data providers,

and sends the encrypted results to the recipients. Join processing in outsourced databases

is also discussed in [46, 47]. In addition, there are some research works [48–51] about how
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to secure the data for out-sourced database services. These methods are also useful for

enforcing the authorization rules in our work.

Theoretically speaking, a trusted third party can be replaced using the secure multiparty

computation (SMC) [52–54]. However, the generic solution of a SMC problem can be very

complicated depending on the input data, it is usually unrealistic in practical. Particularly,

the join operation among several parties with huge relational tables does not have an efficient

SMC solution. Therefore, we consider using the third parties to enforce the rules.

1.3 Thesis Outline

In this thesis, the first chapter discusses the general challenges in secure cooperative data

access scenarios, the problems studied and the contribution of this thesis and the previous

related research works. In chapter 2, we study the problem of inconsistent authorization

rule set and efficient query authorization check. In chapter 3, we discuss the problem of

authorization rule enforcement among collaborative parties, where we provide a mecha-

nism to check the rule enforceability as well as how to generate query plans for authorized

queries. In chapter 4, we study the issue of minimal information exchanged with trusted

third parties so as to answer the queries and enforce the rules. In chapter 5, we discuss

the cooperative data access problem in cloud environments and the new challenges and

opportunities together with conclusions and future works.
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Chapter 2: Cooperative data authorization and rule

consistency

A cooperative enterprise environment involves access to shared data that is defined by a set

of authorization rules based on negotiations among these cooperating enterprises. In this

chapter, we first formally introduce our authorization model and preliminary of the basic

concepts. After that, we discuss the query authorization checking problem as well as the

rule consistency problem and give corresponding solutions. At last, we introduce negative

rules and discuss the possible ways of enforce negative rules.

2.1 Preliminaries

First, we describe the assumptions for our context. We assume simple select-project-join

queries (e.g., no cyclic join schemas or queries). In general, the join operation cannot be

done on any two arbitrary attributes, and the possible joins between different relations

are usually limited. We assume that the join schema is given – i.e., all the possible join

attributes between relations are known. Each join in the schema is lossless so a join attribute

is always a key attribute of some relations. We assume all the existing parties depend on

each other to work collaboratively, so that they all strictly follow the given rules and they

are all not malicious. In addition, only one authorization rule can be given on each distinct

join result for each party.

2.1.1 Notations and definitions

An authorization rule rt is a triple[At, Jt, Pt], where Jt is called the join path of the rule,

At is the authorized attribute set, and Pt is the party authorized to access the data.
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Definition 1. A join path is the result of a series of join operations over a set of relations

R1, R2...Rn with the specified equi-join predicates (Al1, Ar1), (Al2, Ar2)...(Aln, Arn) among

them, where (Ali, Ari) are the join attributes from two relations. We use the notation Jt to

indicate the join path of rule rt. We use JRt to indicate the set of relations in a join path

Jt. The length of a join path is the cardinality of JRt.

We can consider a join path as the result of join operations without limitations on the

attributes. Thus, At is the set of attributes projection on the join path that is authorized

to be accessed by party Pt. Table 2.2 shows an example set of rules given to the cooperative

parties. The first column is the rule number, the second column gives the attribute set of

the rules, join paths of the rules are shown in the third column, and the last column shows

the authorized parties of the rules. On each different join path, only one rule can be given

to a party. We assume that each given authorization rule always includes all of the key

attributes of the relations that appear in the rule join path. In other words, a rule has

all the join attributes on its join path. We argue that this is a reasonable assumption as

in many cases when the information is released; it is always released along with the key

attributes.

When a query is given, it should be answered by one of the parties that have the

authorization. Since our authorization model is based on attributes, any attribute appearing

in the Selection predicate in an SQL query is treated as a Projection attribute. In other

words, the authorization of a PSJ query is transformed into an equivalent Projection-Join

query authorization. Therefore, a query q can be represented by a pair [Aq, Jq], where Aq

is the set of attributes appearing in the Selection and Projection predicates, and the query

join path Jq is the FROM clause of an SQL query. In fact, each join path defines a new

relation/view. To better understand the authorization relationships between the queries

and the rules, we give the definition for join path equivalence below.

Definition 2. Two join path Ji and Jj are equivalent, noted as Ji ∼= Jj, if any tuple in Ji

appears in Jj and any tuple in Jj appears in Ji.
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Figure 2.1: Join path equivalence

Based on the two parts of information conveyed by join paths, one necessary condition

for equivalence is JRi = JRj . However, if several relations joins over the same attributes,

then the join predicates (join orders) among the join paths can be different, but they are

still equivalent. To decide join path equivalence, we put join paths into join graphs. A join

graph is a graph G = (V,E), where each vertex v in the graph indicates a relation, and

each edge e is the join attribute for the possible join between two vertices. The given join

schema is an example of join graph. For a given join path, we can also put its relations and

join predicates into a graph. A valid join path is a spanning tree of a join graph, and two

join paths are equivalent if they are both spanning trees of the same join graph. Figure 2.1

(a) shows the join graph of the given join schema, (b) is the graph representation of the

join path of example rule r8, and (c) is for the join path of rule r17. Since figure 2.1 (b) and

(c) are both spanning trees of (a), these two join paths are equivalent.

2.2 Online query authorization check

In this section, we discuss the problem under the implicit semantic of the authorization

rules where the local computations are allowed by default. Given a set of authorization

rules R in an implicit way, we want to check whether an incoming query q is authorized

according to given rules R. Under the implicit semantic, we say a query is authorized if

the query is authorized by any local computation results.

Definition 3. A query q is authorized if there is a subset of rules R′ of R, and there

exists a resulting rule rt which is the local computation results over R′ such that Jt ∼= Jq
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and Aq ⊆ At

2.2.1 A running example

To better illustrate the problem, we first give an example scenario of cooperative data

access. Since query authorization and consistency problems are mainly related to the local

computations, our discussion in this section focuses on the rules given to a single party.

Therefore, we only give the sample rules of one party in our example to illustrate the

problems.

The running example models an e-commerce scenario with five parties: (a) E-commerce,

denoted as E, is a company that sells products online, (b) Customer Service, denoted C,

is another entity that provides customer service functions (potentially for more than one

company), (c) Shipping, denoted S, provides shipping services (again, potentially to multiple

companies), (d) Supplier, denoted P , is the party that stores products in the warehouses,

and finally (e) Warehouse, denoted W , is the party that provides storage services. To keep

the example simple, we assume that each party has but one relation for its local database

described below. The attributes should be self-explanatory; the key attributes are indicated

by underlining them. In each of these relations, a single attribute happens to form the key,

but this is not required in our analysis.

1. E-commerce (order id, product id, total) as E

2. Customer Service (order id, issue, assistant) as C

3. Shipping (order id, address, delivery type) as S

4. Warehouse (product id, supplier id, location) as W

5. Supplier (supplier id, supplier name, factory) as P

In the following, we use oid to denote order id for short, pid stands for product id, sid

stands for supplier id, and delivery stands for delivery type. The possible join schema is
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Figure 2.2: The given join schema for the example

also given in figure 2.2. Relations E, C, S can join over their common attribute oid; relation

E can join with W over the attribute pid, and W can join with P on sid. In the example,

relations are in BCNF, and the only functional dependency (FD) in each relation is the one

implied by the key attribute (i.e., key attribute determines everything else).

We now define a set of authorization rules given to the party E as described in Table 2.1.

(Suitable rules must also be defined for other parties, but are not shown here for brevity.)

The first column is the rule number, the second column gives the attribute set of the rules,

join paths of the rules are shown in the third column, and the last column shows the

authorized parties of the rules. The first rule define access to the relation owned by E, and

the following rules define remote access cooperated with other parties.

To see if a query can be authorization, we need to check if the given authorization rules

can directly allow the query permission. In the case that no existing rule can authorize the

query, we need to check if the local compositions of the authorized information can allow

the query. To illustrate query authorization, we shall consider two specific queries:

1. Select oid, total, location, sname From E-commerce as E, Warehouse as W, Supplier as P Where

E.pid = W.pid and W.sid = P.sid

2. Select issue, pid, location From Customer as C, E-commerce as E, Warehouse as W Where C.oid

= E.pid and E.pid = W.pid and total>‘100’

Since the authorization form is based on attributes, any attribute appearing in the

Selection predicate in an SQL query are treated as Projection attributes. Thus, Query 2
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Table 2.1: Authorization rules given to party PE
Rule No. Authorized attribute set Join Path Party

1 {oid, pid, total} E PE
2 {oid, issue} C PE
3 {oid, issue, assistant, delivery} C ./oid S PE
4 {oid, pid, address} E ./oid S PE
5 {sid, factory} P PE
6 {pid, sid, location} W ./sid P PE

can be put into a pair [Aq, Jq], here Aq is the set {issue, pid, location, total}, and Jq is the

join path C ./oid E ./pid W .

2.2.2 Join groups and Sub-Path relationship

In order to perform efficient authorization checking, we group relations according to their

join capability. For this we define a Join Group as a set of relations that share the same

join attribute and they can possibly join over that attribute. A relation can appear in

several Join Groups. A Join Group is identified by the join attribute that its relations

can join over which is the key attribute of some relation. Each query itself has an associated

Join Path called query join path. Similarly, join path associated with a rule is called Rule

Join Path. For instance, the query join path of Query 1 is E ./ W ./ P , and Rule 6 has

the rule join path W ./ P . Similar to relations, the rules can be joined together. We first

study the problem that given a query q to a party PE , whether the given set of rules R

on PE can be composed using joins to authorize the query q. The first step is to figure

out the rules that carry relevant information to the query. Hence, we define the concept

of Sub-Path relationships between join paths, which is useful for determining the relevant

rules for checking the authorization.

Definition 4. (Sub-Path Relationship) A Join Path Ji is a Sub-Path of another Join

Path Jj if: 1) The set of relations JRi is a subset of the relation set JRj. 2) Ji is equivalent

to the join results in Jj which only involves relations in JRi.

The sub-path relationships can be determined using the graphs. Figure 2.3 shows the
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query 1 in our example, and the rules in the boxes are the ones defined on the Sub-Path of

the Query Join Pquery join pathath. Figure 2.4 does the same for query 2. For query 1,

rules r1, r5, r6 are defined on the Sub-Paths of the query join path. For query 2, the rules

are r1, r2. A rule defined on a Sub-Path of the query join path is called a Relevant rule

to the query.

For the incoming query, we construct a Query Join Group List for it, and each entry

in the list is a join group of rules. The unique join attribute appearing in the query is to

identify each entry. Only rules in the list are the relevant rules that will be considered in

the composition step. To compose the rules, we take advantage of the properties of the

lossless joins in the join schema.

2.2.3 Join patterns and key attributes hierarchy

Since we assume all the basic relations are in BCNF, and the join paths are the results

of lossless join operations, the key attributes of basic relations in the given join schema

form a hierarchal relationship. For instance, suppose that the relations R, S have their key

attributes R.K and S.K respectively. If these relations can join losslessly, then the joining

attribute must be the key attribute in at least one of them [55]. That is, either the join

is performed on R.K, S.K, or R.K is the same attribute as S.K. In either case, one key

attribute from a basic relation is also the key attribute of the join result of the two relations.

Therefore, if the join is performed over the attribute S.K (R.K 6= S.K), then the attribute

R.K can functionally determine the relation S. In such case, we say R.K is at a higher
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level than S.K, denoted R.K → S.K. If R.K = S.K, there is no hierarchy, and such key

attribute of R and S is also the key attribute of the join result. Thus, for a given valid

join path, the key attribute of the join path is a key attribute from a basic relation. We

call the key attribute of the join path in an authorization rule as key of the rule. Also, the

join attributes in the join paths are always key attributes of some basic relations so these

join attributes form the hierarchal relationship. For instance, in the running example, the

key attribute oid is at the top level, and we have the hierarchal relationship for three key

attributes, where oid→ pid→ sid.

Chain join type

In a chain type of join, each relation has at most two join attributes. It is allowed to have

multiple tables joining on the same attribute. Based on the lossless join condition discussed

above, for each join between two tables, the key attribute of one relation is also the key

attribute of the join result. For a chain type of join, the join path can be presented as a

chain of relations, and the relations can be ordered according to the key attributes hierarchy.

For a group of relations joining on the same attribute their positions can be changed in the

ordered join path.

Star join type

For the star type of join, there is a central relation with more than two different join

attributes to join with other tables. Other relations join with the central one on their key

attributes, and these join attributes are non-key attributes of the central relation. This

join type cannot be presented as an ordered chain where each relation appears only once.

However, there is key hierarchy among the relations. The key of the central relation is still

the key of the join result.

In above cases, each join between two tables involves key attribute of one relation,

so that the equi-join operation usually reduces the number of tuples. In a cooperative

environment, data from different parties usually does not have foreign key constraints.
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We do not consider cardinality-preserving joins [14] and join paths with different lengths

contains different number of tuples in general.

2.2.4 Lossless join conditions over authorization rules

Based on the hierarchal join attributes in a join path, we discuss the possible lossless join

scenarios between a pair of rules ri and rj . Given two rules ri and rj , we can think their

join paths Ji and Jj stand for two different relations. There are several situations that the

two join paths can join in a lossless way.

1. To form a join path of R ./s.k S ./t.k T , one situation is that two join paths do not

have overlapped relations. For instance, it can be ri = R ./s.k S, rj = T . Since they

do not have overlapped relations, the join attribute is clear. The two join paths must

join on t.k, and we need to check their attribute set. If ri does not have t.k, the join

cannot be done. Figure 2.5 shows this join scenario. In the figure, we use relation

C in the example to represent R, E represents S and W represents T . The join is

performed on oid, which is the key of E.

2. Another case is that the two join paths Ji and Jj have overlapped relations. In

figure 2.6, the two join paths are in the form of R ./s.k S and S ./t.k T . The overlapped

relation is S. In general, S can also be a join path. Here, the join condition is not clear

as S can have multiple attributes such as s.k and t.k. If they join over the key attribute

of S, then (R ./s.k S) ./s.k (S ./t.k T ) ∼= R ./s.k (S ./s.k S) ./t.k T ∼= R ./s.k S ./t.k T .

The join is lossless in both chain and star type of schema.
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3. If the join attribute between two join paths is not the key attribute for the overlapping

relation S, then a join operation is lossy in general. However, if the join is done on

the join attribute among the target join path, the join is lossless. For example in

Figure 2.7, t.k is the join attribute between S and T , and it is not the key attribute

of the overlapping relation S. However, we can first apply projection πT (S ./t.k T ),

then join it with the other join path. The join is also lossless in both chain and star

type of schema.

4. In addition to the above scenarios where join operations generates a longer join path,

another join scenario is the back join that extends the attribute set. We assume

Ji = R ./s.k S ./t.k T such as the example in Figure 2.8. Then it can join with

Jj = S ./t.k T on the common attribute t.k. Since an FD (Functional dependency)

exists in a sub join path is always valid in the longer join path, the FD t.k → T can

extend the attribute set of the previous rule with more attributes.

According to above discussion, when checking query permission, we can compose the

relevant rules according to the key hierarchy of the query join path. As rules are organized

in the Query Join Group List according to their join attributes, the rules having common

join attribute will appear in the same entry of the list. Therefore, for the given query

join path, we can check the possible compositions beginning from the highest level of the

join attributes. We iterate all the rules including the highest level relation to start the

composition of rules. For each of them, we check if join operation can be performed on the
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next level of the join attributes. For each entry in the list we checked, if there are other

rules can be composed with the existing rule, we expand the composed rule with more

relations in the join path or more attributes. Finally, a set of maximally composed rules

on the query join path can be obtained, and the query is checked with these rules to see if

it is authorized. Here, we give a number of assertions regarding the rule composition and

query checking which are useful in formulating the checking algorithm and proving their

correctness.

Theorem 1. All authorization rules that are not defined on a Sub-Path of query join query

join path are not useful in the rule composition.

Proof. Assume a query q has a Join Path of Jq. A rule r not defined on a Sub-Path of the

query join path will have two possibilities by definition. 1) The Join Path Jr includes at

least one relation Tm which is not in the set of JRq. 2) The Join Path Jr is defined on

the set of relations which is a subset of JRq, but join over different join attributes. The

composed rule that can authorize the query must have the equivalent Join Path as query

join path. Otherwise, the query results will have incorrect tuples, and such a case also

means the query is not authorized. Thus, if an authorization rule r has Tm in its Join Path,

then any composed rule using this rule will also have Tm in its Join Path which is different

from query join path. For the second case, such a join result is different from the query join

path.

2.2.5 Algorithm for checking query permission

In the first step, the algorithm examines all the given rules and builds the Query Join

Group List as discussed above. In the second step, the algorithm composes rules efficiently

with Query Join Group List. The algorithm examines the list entries according to the join

attribute hierarchy. For rules in the top level entry, the algorithm begins the composition to

generate a maximal composed rule. Each rule in the entry group is applied with projection

operation first so only these relations and attributes that functional depend on this join

attribute are preserved. All these projected attributes are merged into the composing rule.
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Thus, the composing rule increases join path length as well as the attribute set. Once a

rule has been merged with the composing rule, the algorithm will ignore it when iterating

the lower level entries in the list. Eventually, one composed rule will be generated by the

algorithm. The query will be checked with these rules to see if there exists a composed rule

that authorizes the query. The detailed algorithm is presented in Algorithm 1.

We assume the complexity of the basic operation that checks whether a given rule can

authorize the query is C, and there are N given rules, and the query q has a Join Path

length of m. In the algorithm, step one has the worst case complexity of O(N ∗ C ∗ m).

Similarly, in step two, at most m entries and N rules are checked, and composing the rules

is not expensive than C also, thus, the complexity of step two is O(N ∗C ∗m). Therefore,

the overall complexity of the algorithm is O(N ∗ C ∗m). Considering the fact that most

join paths in practice involves less than 4 or 5 relations, the number of m is expected to be

very small in most cases. Therefore, in average cases, we can expect the complexity of the

algorithm close to O(N ∗ C).

Theorem 2. The composition step can cover all the possible ways to authorize the query.

Proof. The composition step looks for only possible compositions among Query Composable

rules. According to the key attributes and relations’ hierarchy, the composed rules that can

authorize the query must include the top level relations. Also, all the information that can

be included into the composed rule is through join operations, and only the portion of a

rule functionally depends on the join attribute can be added into the composed plan in a

lossless manner. As we consider all join attributes hierarchy and possible lossless join cases.

The composition steps generate the maximal possible composed rule.

Illustration with the running example

We begin with query 1. In the first step, the algorithm examines all the rules. As no single

rule is defined on the query join path, none of the given rule can authorize this query. After

figuring out relevant rules, the query join group list can be built:

oid → {Rule 1}, pid → {Rule 6}, sid → {Rule 5}
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Algorithm 1 Online Query Permission Checking Algorithm

Require: Set of authorization rules, the query q
Ensure: Query can be authorized or not

STEP ONE:
1: for each authorization rule r do
2: if r authorizes q then
3: q is authorized
4: return true
5: else if Sub-Path(r, q) then
6: for each join attribute in q do
7: if r is functionally determined by this attribute then
8: Add r into the entry of this join attribute in Query Join Group List

STEP TWO:
9: Construct an empty rule rc

10: for Each rule rt include the top level relations do
11: rc ← rt
12: Initialize a priority queue Q
13: Enqueue all the join attributes in rc
14: while The queue Q is not empty do
15: Dequeue the join attribute Aj
16: Find the entry associated with Aj
17: for Each rule rr in this entry do
18: if rr has not been visited then
19: Apply projection to rr with attributes functionally depends on Aj
20: Merge the projected rule with rc
21: Enqueue new join attributes in rc
22: if rc authorizes q then
23: q is authorized
24: return true
25: q is denied
26: return false

The the algorithm iterates each entry of the list, and attributes in each entries are added

to the composed rule. Consequently, we have the composed rule {oid, pid, total, sid, location

, facorty}, (E ./ W ./ P )→ PE . Such a rule authorizes Query 1. In contrast, the composed

rule for Query 2 is {oid, pid, total, issue}, (C ./ E)→ PE . Since it is not on the query join

path, the query is not authorized.

2.3 Offline authorization and rule consistency

When considering the explicit semantic of the authorization rules, an authorized query must

have a matching authorization rule given on a join path that is equivalent to the one of the

query which is the following definition for Authorized query.

Definition 5. A query q is authorized if there exists a rule rt such that Jt ∼= Jq and

Aq ⊆ At
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The query authorization checking is straightforward in this case. However, due to the

possible local computation, the inconsistency among the rules needs to be resolved. To

achieve that, we propose an algorithm taking advantage of the functional dependencies

among the basic relations to generate all derivable rules to ensure rule consistency. Such a

process can be done as pre-computation.

2.3.1 Consistency of rules

To remove inconsistency by adding rules, one must generate all possible compositions

through lossless joins of the given rules and add any missing ones from the list. We first

define the notion of closure to make the rules consistent.

Definition 6. If two rules ri, rj of party P can be joined losslessly according to the given

join schema, and the resulting information [Ai
⋃
Aj , Ji ./ Jj ] is also authorized by another

rule rk of party P , then we say the two rules are “upwards closed”. For a set of rules, if

any two rules that can be joined losslessly are “upwards closed”, we say the set of rules is

consistent, and the rules form a consistent closure.

Although we are discussing the problem under cooperative environment, the rule con-

sistency property only applies to each individual party separately. It is because that the

inconsistency of rules is caused by local computations. In other words, it is only required

that the rules given to one party form a closure, and the rules on other different cooperative

parties are considered separately. Thus, we inspect one party at a time, and we create a

group for the rules based on their key attributes which is similar to the previous join group.

As the rules within this group share the same key attribute, any two of them can join over

their key attributes.

Definition 7. A rule group is a group of authorization rules associated with a key (join)

attribute, where all the attributes in these rules functionally depend on this attribute. If a

rule group is consistent, then it is called a consistent rule group.

We follow the above definitions for Sub-path relationship and relevant rules. A rule rt
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Table 2.2: Authorization rules for e-commerce cooperative data access
Rule No. Authorized attribute set Join Path Party

1 {oid, pid, total} E PE
2 {oid, issue, address} S ./oid C PE
3 {oid, pid, total, issue} E ./oid C PE
4 {oid, pid, sid, location, total} E ./pid W PE
5 {pid, sid, factory} W ./sid P PE

can be locally generated only by combining the information from its relevant rules. Based

on the relevance relationship, the rules are organized in a Relevance graph. Such a graph

has different levels according to the corresponding lengths of the join paths. Each node in

such structure is a rule marked by its join path. Two nodes are connected if one is the

relevant rule of the other. For instance, figure 2.9 shows a relevance graph. J2 is a sub-path

of J6, and r2 is a relevant rule to r6. They are connected in the graph, and they are on

different levels.

2.3.2 Another set of example rules

To better understand the algorithm, we give a different set of example rules in this section.

The set of authorization rules given to the party E are listed in Table 2.2. (Suitable rules

must also be defined for other parties, but are not shown here for brevity.) Columns are

the same as Table 2.1.

Given a set of rules, our goal is to generate the consistent closure of it. Our algorithm

uses the join attribute hierarchy property and rule groups to efficiently generate the consis-

tent closure. The rules are first divided into different rule groups and consistent rule groups

are generated. Next, based on the join attribute hierarchy, each join attribute is considered

for deriving further rules, and any such rules are added to the rule closure. When this

procedure terminates, we have the entire consistent closure.
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2.3.3 Consistent rule group generation

The first step is to generate the consistent rule group. With the input as a rule group of

some given rules, the algorithm considers each derived rule in the order of join path length.

When counting the join path length for a group, we only include the basic relations whose

key attributes are the attribute associated with the rule group, and we call these relations

as dependent relations of the group. A join path that involves only dependent relations is

called a dependent join path. Relations whose key attribute is not this attribute are called

optional relations. Optional relations or join paths are associated with the dependent join

paths. In the graph, we only assign one node for each dependent join path. If the given rule

set includes two or more rules that have the same dependent join path, they are assigned to

the same node in the graph but identified with their optional relations. When generating

the consistent rule group on the higher level parent nodes of this node, the algorithm needs

to generate corresponding rules using each of the rule associated with this node. We will

use our running example to illustrate this.

The join paths discussed below to generate the consistent rule group are all dependent

join paths. The algorithm looks for each join path length to check if a pair of rules can be

joined to form a join path of desired length. Starting from the length of 2, the algorithm

takes rules with length less than 2 and generates all the pairs of them. If the resulting

rule is not present in the given rule group, the algorithm adds it to the group. Otherwise,

the resulting rule is merged with the existing rule on their attribute sets. Meanwhile, the

relevance graph is also built and edges are added between the resulting rule and the rules

being examined.

Next, the algorithm checks join path length of 3 to k where k is the number of dependent

relations in the rule group. When inspecting the length i join-path, the algorithm first takes

the rule rm with maximal length (m < i) in the current rule group. The algorithm then

looks for possible pairs including rm, so the other rule rj whose dependent join path should

have the property that |JRj \ JRm|+ |JRm| = i. The rules are chosen in the reverse order

of join path length since the rule with longer join path includes all the attributes from
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Figure 2.9: The consistent rule group of oid

its relevant rules. All the rules with join paths that do not satisfy this property will not

be considered in pair with rm, and a rule is never paired with its own relevant rules. By

iterating over all the join path lengths, the consistent rule group can be generated.

To illustrate the process, we use the running example. The first 4 rules have the same

key attribute oid, and they are put into the same rule group of oid. Within these rules,

r4 has an optional relation W which does not depend on oid. It is only counted as join

path of length 1 and is associated with the node of r1 since its dependent join path is the

same as J1. Then the algorithm begins with join path length of 2. As the only rule with

join path length less than 2 is r1, no pair is found. However, the given rules r2 and r3 are

both of length 2, so they are checked with r1 to see the relevance relationship. Thus, r3 is

connected with r1 in the graph. Next, the algorithm checks the length of 3. Since this rule

group only includes 3 different relations {E,C, S}, this is the maximal length to check. The

algorithm first takes r2 and looks for the rule can pair with it. Among the join path J1 and

J3, J3 is selected since its length is longer, and there is no need to further check with J1

as it is relevant to J3. Therefore, a rule r6 with join path E ./ C ./ S is added to the rule

group with the attribute set A2
⋃
A3. In the relevance graph, this rule is connected with

both r2 and r3.

In addition, rule r4 has the optional relation W , and it is associated with r1 in the

group. Therefore, all the rules that r1 is relevant to also have this optional relation. In

such case, based on r6 and r3, another two rules are added into the rule group. This makes
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Table 2.3: Generated consistent rule group of oid
Rule No. Authorized attribute set Join Path Party

1 {oid, pid, total} E PE
2 {oid, issue, address} S ./oid C PE
3 {oid, pid, total, issue} E ./oid C PE
4 {oid, pid, sid, location, total} E ./pid W PE
6 {oid, pid, total, issue, address} E ./oid S ./oid C PE
7 {oid, pid, total, issue, location, sid} C ./oid E ./pid W PE
8 {oid, pid, total, issue, location, sid, address} S ./oid C ./oid E ./pid W PE

rule group consistent and is listed in Table 2.3. Here the first 4 rules are given and rule

6 to 8 are added by the algorithm to make the rule group consistent. The built relevance

graph is shown in Figure 2.9. In the figure, the rule numbers are indicated beside the rule

join paths, and the dashed box shows the optional relation of W . Since r4 has the optional

relation E and overlaps with r1 on dependent join path, all the parent rules of r1 which are

r3, r6 should also have corresponding rules including the optional relation W , which are the

rules r7, r8.

2.3.4 Iteration of key attributes

We take advantage of the key attributes hierarchy property to develop a mechanism that

can achieve the consistent closure. As the key attribute hierarchy can be obtained based

on the given join schema, and we assume this information is available when the algorithm

is being executed.

At the beginning, the algorithm makes an empty set called target rule set, and the

algorithm keeps adding rules into this set. At the end, the target rule set is the rule closure

we need. For the given set of rules, the algorithm first puts each rule into different rule

groups based on its key attribute, and it will only be assigned into one rule group. Then,

for each rule group, the algorithm generates the consistent rule group respectively.

Next, the algorithm iterates each rule group according to the level of its associated

attribute in the key attribute hierarchy. To begin with, the algorithm inspects the rule

group of the top level attribute. All the rules in the group being inspected are put into the
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Figure 2.10: The relevance graph for the consistent closure.

target rule set first. Then, the algorithm checks the lower level groups one by one. For each

rule group being checked, all the rules in the current target rule set are iterated. If the rule

rt from the current target rule set contains the join attribute that is associated with the

rule group being checked, then each rule in the rule group being checked can join with rt.

The algorithm generates all these rules by making the union of join paths and the attribute

sets, and it adds these generated rules into the target rule set. If there is already a rule in

the target rule set with the same join path, the generated rule is merged with the existing

rule by making union of the attribute sets from the rules.

As the algorithm iterates all the rule groups, the target rule set will keep grow and even-

tually form the consistent closure. As rules are added to the target rule set, the algorithm

also updates the relevance graph capturing the rule relevance relationships. If a new rule

is generated, it is appended to the graph. Connection edges are added between the rule

and the pair of rules that generate it, and the attribute set can be updated. The detail

algorithm is described in Alg. 2.

We can use the running example to illustrate the process of rule group iteration. Accord-

ing to the key attribute hierarchy, oid is the top level attribute. Thus, the consistent rule

group of oid which is listed in Table 2.3 is copied to the target rule set. The only remaining
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Table 2.4: Generated consistent closure based on given rule set
Rule No. Authorized attribute set Join Path Party

1 {oid, pid, total} E PE
2 {oid, issue, address} S ./oid C PE
3 {oid, pid, total, issue} E ./oid C PE
4 {oid, pid, sid, location, total} E ./pid W PE
5 {pid, sid, factory} W ./sid P PE
6 {oid, pid, total, issue, address} E ./oid S ./oid C PE
7 {oid, pid, total, issue, location, sid} E ./oid C ./pid W PE
8 {oid, pid, total, issue, location, sid, address} S ./oid C ./oid E ./pid W PE
9 {oid, pid, sid, factory, total, location} E ./pid W ./sid P PE
10 {oid, pid, total, issue, sid, factory, location} C ./oid E ./pid W ./sid P PE
11 {oid, pid, total, issue, location, sid, factory, ad-

dress}
C ./oid S ./oid E ./pid
W ./sid P

PE

rule group is the group of pid since there is no given rule takes sid as key attribute. Also,

there is only one rule r5 in the rule group of pid, and this rule group is already consistent.

As in the key attribute hierarchy, pid is on the next level of oid, the algorithm checks each

rule in the current target rule set to see if it contains the attribute pid. The set of rules

{r1, r3, r4, r6, r7, r8} all have this attribute, so 6 rules joining with r5 are generated and

added to the target rule set. However, some of these rules have the same join paths and

they are merged with existing rules, so only 3 new rules are added to the target rule set.

Finally, we generate the consistent closure as listed in Table 2.4. The last three rules are

generated in this process. Figure 2.10 shows the built relevance graph, where relevant rules

are connected by edges. The attribute sets of the rules are shown in boxes and the join

paths together with rule numbers are shown above. The rules are put into 5 levels based

on their join path length.

2.3.5 Average case complexity

The complexity of the algorithm depends on the given join schema and given rules. In

worst case, generating a consistent rule group takes exponential time. However, in real

cases, usually a rule group will not include more than 4 dependent relations. We make

the assumption that the maximal number of dependent relations in a rule group is 4. In

addition, we assume there are at most k given rules in a rule group. Within a rule group,
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there are some given rules overlap on their dependent join paths. Assuming the number of

overlapped rules is p, then there are k−p nodes for initially given rules. As the most number

of relations is 4, we have k − p < 16. For the algorithm, at most 22 pairs of nodes will be

examined, and there are at most 11+8p rules are added into the consistent rule group. As

k and p are usually small, the number of rules in a consistent rule group is usually less than

20 and the complexity of generating it is also low. We can think the generation of consistent

rule groups takes constant time and there are at most C rules in a consistent rule group.

If there are m rule groups in total, it looks like we have the complexity of Cm in worst

case. However, within a rule group, there is only one dependent relation that can join

with the rules in the next rule group to be inspected. If at most v rules including such

dependent relation, then at each step only v ∗ C rules will be added, and the complexity

is O(v ∗ C ∗ (m − 1)). In many cases, a rule group contains only one or no rule such as

the rule group of pid and sid in the example, so C is fairly small for many rule groups.

Also, the length of a valid join path m is usually very small as a join of 5 relations from

different enterprises should be a rare case. Therefore, the complexity of the algorithm in

real scenario is much lower than the theoretical worst case one.

Theorem 3. Given a rule set, the algorithm generates its consistent closure.

Proof. Assuming there are two random rules ri, rj , we check whether the consistent closure

generated by the algorithm always have rk, which is the join result of them. ri, rj can be

given rules or the rules generated by the algorithm. Firstly, if ri, rj have the same key

attribute, the two rules will be in the same rule group. When the algorithm generates

the consistent rule group, it tries all possible combinations of the dependent relations. In

addition, optional relations are considered from bottom up, so there is always a rule in the

generated consistent rule group that has the same join path as rk. When checking the rule

relevance in the graph, the attributes from the relevant rules are added to the higher level

rules so the rule has the same join path as rk also has all the attributes from ri and rj .

Since the algorithm examines each join path length in ascending order, it does not matter

if ri, rj are given rules or generated rules, and ri, rj are always upwards closed.
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Algorithm 2 Rule Closure Generation Algorithm
Require: Given authorization rule set R on one party

Ensure: The set of rules R+ that is a consistent closure
1: Put rules from R into rule groups based on their key
2: Put the key attributes of relations into a priority queue Q based on its level in hierarchy
3: for Each rule group G do

4: Generate the consistent rule group G+

5: for Length k ← 2 to 4 do
6: Mark all rules unvisited
7: for Each unvisited rule ri length < k do
8: if Exists rm, where |Jj − Ji|+ |Ji| = k then
9: Join ri with rm and get result rj

10: if There is no rule in R+ of join path Jj then

11: R+ ← rj
12: else
13: Get the rule and merge with rj
14: R+ ← updated rj
15: Mark its relevant rules visited
16: while Q 6= ∅ do
17: Dequeue the key attribute, and get its associated G+

18: if R+ 6= ∅ then
19: for Each rule rr in R+ do
20: if rr includes the key attribute of G+ then

21: for Each rule rg in G+ do
22: Join rr with rg and get result rj
23: if There is no rule in R+ of join path Jj then

24: R+ ← rj
25: else
26: Get the rule and merge with rj
27: R+ ← updated rj
28: R+ ←

⋃
G+

If ri and rj are not in the same rule group, then we assume the key attribute of ri is on

the higher level than the key of rj . If both rules are the given rules and ri includes the key

attribute of rj , when the algorithm iterates the rule group of rj , ri is already in the target

rule set, and their join result is put into the target rule set. On the other hand, if ri is a

generated rule, it is always added into the target rule set by the algorithm. If it can join

with rj , the result is added to the target rule set also. Thus, after checking the rule group

of rj , all the possible joins over that join attribute are examined. All the rules generated

afterwards are joined over the attribute of lower level of rj , and rules from these rule groups

never include the key attribute of rj . If rj is a generated rule, it is in its consistent rule

group, so the algorithm adds the result of ri and rj into the rule set. Therefore, all the

rules are upwards closed, and the generated rule set is consistent.
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2.3.6 Consistent authorization rule changes

Cooperative parties may change the authorization rules over time because of the evolving

business needs. The change could either be grant more access privileges to a party or revoke

some existing privileges. In addition, the change may cause new conflicts among the rules.

Thus, a mechanism is needed to maintain the rule consistency while authorization rules are

changed.

In general, a change of authorization rule that meet the new business requirement and

also has minimal impact on the remaining authorization rules is the optimal solution. There

are different factors can be take into consideration to best recover the rule consistency in

the case of change. For instance, according to the business relationships, some authoriza-

tion rules maybe more important than the others, so they may have different priorities.

In such case, we always prefer to make changes on the less important rules first. Also, in

a cooperative environment, some parties collaborate more intimately than the others, and

there may also have priorities on different parties. Thus, it is preferred to grant privileges

to the intimate parties and revoke privileges from the others. To keep the discussion simple,

we propose our mechanism to find the solution that takes minimal changes to the existing

authorization rules in terms of the number rules being modified. The priorities in autho-

rization rules and parties can be considered by extending such a mechanism, and we leave

them for future works.

Two types of rule changes

A possible architecture for the authorization is that the authorization rules are stored at

a central place different from any cooperative parties. An independent query optimizer

then reads the authorization rules and generates the query plans. However, cooperative

enterprises do not typically share a single independent query optimizer. Instead, each

party that answers the queries usually generates the query plan locally. Therefore, without
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a centralized party, each cooperative party should keep a copy of all authorization rules

locally. We discuss two types of rule changes below.

Independent change: This type of rule change only applies to a single party. Even

though a join path involves authorizations from several parties, the change may occur

because of a party no longer trusts some other party or their business relationships changed.

Such changes usually affect only a small set of rules. Even if the change only takes on a

single rule, to maintain the consistency of the rule set, a set of rules may need to be changed

accordingly. The discussions below about the granting and revoking of authorization rules

can be directly applied to this type of change. After the party changes its authorization

rules, it broadcasts the change to other cooperative parties.

Cooperative change: Sometimes a group of parties may want to update the autho-

rization rules among them at the same time. These parties may negotiate the rules together

and apply the changes on multiple parties at the same time. The group of rules needs to be

updated as a whole, and we call this type of change as cooperative change. In such case,

the updates on several parties need to be synchronized. We call the parties involved in a

cooperative rule change as change cooperative parties. A cooperative change needs to

be performed among these parties atomically from a temporal perspective.

To achieve that, we use 2PC protocol for the rule update. Among the change cooperative

parties, one party is selected as the master party, which we call as coordinator, and all

the other change cooperative parties are called slave parties. Since we assume that the

rule changes do not happen frequently, each party can only be involved in one cooperative

change process at a time. Therefore, if a slave party is updating its rules, it will have lock

them and other rule update requests received are rejected.

Overall, the mechanism works as follows. According to the 2PC protocol, the update

process is divided into a voting phase and a commit phase. In the voting phase, the master

party (coordinator) sends messages to all slave parties indicating the set of rules being

changed, and each slave party is required to update the rules related to it. If the slave party

can update its rules, which means there is no ongoing rule update at this party, an agreement
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is sent back to the coordinator, else the request is rejected. Only if the agreements from

all slave parties are received, the coordinator will go into the commit phase. In the commit

phase, the coordinator sends a commit message to slave parties to finish the rule update

and locks are released. Otherwise, the updating transaction is aborted, and the coordinator

will try it later.

Consistently grant more information

In the case of rule change, when more access privileges are granted to a party, we need a

mechanism to maintain the rule consistency. There are also two types of grants. The first

is adding non-key attributes (non-join attributes) to a rule. If a rule is granted with more

attributes, then the algorithm first selects the higher level parent rules of this rule in the

graph. We search upwards in the graph, and this can be done with a depth first search. If

the rule being inspected does not have these expanded attributes, then the algorithm adds

these attributes to the rule. If the rule being inspected already has these attributes, the

search along this path will stop and another path will be picked. Consequently, the added

attributes will be propagated to all the related rules that are at a higher level from the rule

being changed. For instance, in our running example, if the attribute delivery is added to

r2, then the rules r6, r8, r11 on the same path need to add this attribute.

In some cases, the attribute added is not the key attribute of the rule being modified,

but the attribute is the key attribute for other rules. Therefore, by adding this attribute,

the modified rule can possibly further join with other rules. To deal with this situation,

once a join attribute is added to a rule (non-key attribute for the rule being modified), the

algorithm checks if there exists a join group associated with this attribute. If that is the

case, rules which use this attribute as the key attribute are selected from the generated

consistent closure. Each rule selected is then joined with the rule being modified, and the

resulting rule is added to the rule set or merged with existing rule. Only these rules need

to be added to the rule set.

On the other hand, there is another type of change of rules, where a rule on a new join
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path is granted to a party. In such case, we need to check if this rule can join with existing

rules to generate legitimate new rules. The mechanism is similar to the previous approach

for generating the consistent closure. As the newly added rule rn has a new join path, we

first obtain the key attribute of rn, and then rn is put into the join group whose associated

attribute is the key attribute of rn. Within this group, as a new rule is added, the algorithm

re-computes the consistent join group. This can be done efficiently since these rules all can

join over their key attributes. In fact, the rule rn is checked with existing rules in the

consistent join group. rn is inserted into the graph of the join group, and its relevant rules

and the rules it relevant to are not checked with it. All the other rules are checked and rn

can join with each of them to form a new rule and put into the consistent join group. The

algorithm then keeps the set of newly added rules for the following rule generation.

In the next step, each of the newly added rules is iterated to see what are the other rules

that can be generated based on it. For each newly added rule rn, the algorithm checks the

join attributes in its join path (excluding its key attribute), and for each join attribute the

algorithm combines rn with the rules in the join group and add them into the newly added

rule set. This process actually finds all needed rules which has the same key attribute as the

key of rn. After that, the algorithm looks for existing rules that include the key attribute

of rn but not using it as their key attributes. Each such rule can join with the newly added

rules in the group of rn over the key attribute of rn. The algorithm adds all these generated

rules into the rule set so as to complete it as a consistent closure. The attribute set of the

rules should also be considered. If there exists a rule on the same join path, the attribute

sets of the two rules are merged.

In our running example, we can think a new rule r12 with join path E ./oid S is added

whose attribute set is {oid, pid, total, address}. In this case, the algorithm will put the rule

into the join group of oid. In the graph structure, such a rule has relevant rule r1, and it

is the relevant rule of r6, r8. Therefore, other rules in the join group are paired with r12.

However, most of these generated rules already exist in the current join group, so the only

new rule r13 need to be added is on the join path of S ./oid E ./pid W . Next, the algorithm
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Table 2.5: Authorization rules added together with a rule grant change
Rule No. Authorized attribute set Join Path Party

12 {oid, pid, total, address} E ./oid S PE
13 {oid, pid, total, address, sid, location} S ./oid E ./pid W PE
14 {oid, pid, total, address, sid, location, factory} S ./oid E ./pid W ./sid P PE

checks the rules r12, r13. Since both of them include pid as non-key attribute, and there

is no join group of sid, both rules are paired with the join group of pid. This results in

only one additional rule r14 on the join path of S ./oid E ./pid W ./sid P . Since oid is the

top level join attribute, by adding this rule to the rule set, the consistent rule closure is

achieved. Table 2.5 lists these newly added rules.

In worst case, if there are already n rules exist in the closure, and there are C rules in

the join group. Adding one more rule will need adding additional C − 1 rules to maintain

the consistency. For the above mechanism, the recompilation of the join group will take

C steps since each existing rule need to be checked. The remaining complexity depends

on the join groups associated with the added rules. If the total number of levels is u, and

assuming at most s rules in a join group has the join attribute of the inspected group, then

the number of pairs to examine in for one join group is s ∗C. The total complexity can be

O(C ∗ u ∗ s).

Revocation of existing authorization rules

Besides grant of more access privileges, the changes on the rules can also be the revocation

of some existing authorization rules. Similar to the grant case, the revocation can range

from removing some non-key attributes to complete removal of a rule. We first discuss the

situation where non-key attributes are revoked. The revocation of attributes usually causes

inconsistency. Since its relevant rules may still have the revoked attribute, the party can

still access these attributes through local computation. Therefore, we need to also revoke

these attributes from all relevant rules. Based on the built graph structure, the algorithm

retrieves the relevant rules of the rule being modified, if any relevant rules include such
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revoked attributes, these attributes are also revoked from these rules.

For instance, we can take the example of Figure 2.10. Let’s assume the modification

is made on the rule r10, and the attribute factory is revoked. In such case, its relevant

rules r9, r5, r4, r1 are checked. Attribute factory should also be revoked from these rules.

Therefore, r9, r5 are modified to keep the rule closure consistent.

On the other hand, if a rule with a join path is completely revoked from the rule set,

we need to make sure that such a join path can no longer be generated from the remaining

relevant rules. Therefore, each possible ways to enforce the join path need to be obtained

and the possible pairs should be taken apart. To achieve that, the algorithm uses the

graph structure built before. In the graph, only the direct relevant rules of the revoked

rule rv are examined. The direct relevant rules of rv are the relevant ones in the graph

that directly connected with rv with one edge. For each of the direct connect rule rd, the

algorithm computes its matching join path Jm for Jv. The matching join path Jm is a

join path that Jm ./ Jd = Jv, Jm 6= Jv, and |Jm| is the minimal one among such join paths.

Given the join schema, Jm can be efficiently determined by computing the minimal set of

JRm = JRv−JRd. If such set does not form a join path that is a sub-path of Jm, then the

matching join path of rd does not exist. Otherwise, the matching join path Jm is obtained.

In the graph, if a rule containing Jm is not found, higher level rules connecting to it are

examined, and the one with minimal join path length is selected as Jm.

As we can check the enforceability of the rules which will be discussed in later sections,

we assume we already know what are the locally enforceable rules. Thus, for each pair of

rules selected, the algorithm needs to remove one rule from it so as to make the join path

no longer enforceable. If a rule in the pair is not locally enforceable, we prefer to remove

it since it does not cause cascade revocations. In contrast, if a rule in the pair is locally

enforceable, by removing this rule, we need to make sure all the rules that can compose this

one are taken apart. Thus, a cascade of revocation will occur. In addition, when iterating

each pair, the algorithm also records the number of appearances of the rules. We prefer

to remove the rule with most appearances since removing one such rule can break several
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pairs. For the locally enforceable rules that are being removed, the algorithm puts them

into a queue so that they are processed in a cascaded manner. In worst case, it checks

exponential number of pairs, and half of the existing rules need to be removed from the rule

set.

For instance, in figure 2.10, the rule r10 is completely removed. This rule has three

direct relevant rules {r4, r9, r3}. r9 is first examined, and its matching join path is {C}.

As {C} is not available, r3 is paired with r9. On the other hand, r3 can pair with r5, r9,

and r4 cannot pair with any other rule. Therefore, the algorithm needs to break all the

pairs of rules {(r3, r5), (r3, r9)}. Since r3 appears in both pairs, the algorithm will revoke it

also, and it is put into the queue. As r3 is not locally enforceable, we do not need further

revocation. Finally, revoking r10 with r3 will keep the rule closure consistent.

The above mechanism to remove a rule is complicated and it considers only one next

level of rules. Thus, we also consider removing the rules in another way. A single party

usually issues a revocation, and this party usually revokes the authorization rules with its

own data. Therefore, when a revocation is issued, it is common for the party to revoke all

the rules including its basic relation. If this is the case, the revocation involves a set of rules

that all including that basic relation, and the consistent closure is still maintained.

According to this idea, if we want to remove a rule, we can also remove a set of rules

containing the same basic relation. Thus, another possible way to consistently revoke a rule

can be found. The algorithm can first obtain all the relevant rules of rv. For each relevant

rule, the algorithm records the basic relations appearing in the join path. The basic relation

associated with least number of rules is then selected, and rules including this basic relation

are removed from the set.

Back to our example, suppose that we want to revoke rule r10. This mechanism first

retrieves its relevant rules which are {r4, r5, r9, r3, r1}. These join paths are examined, and

the appearances of 4 basic relations are checked and counted. Therefore, relation C appears

once, E appears 4 times, W appears 3 times, and P appears twice. Thus, the algorithm

tries to remove the rule whose join path has C. Consequently, r3 is removed, and this result
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is the same as the previous algorithm for this example. In general, these two mechanisms

produce different results.

Here, we argue that the rule closure property is different from the rule enforcement issue.

Though removing a set of rules will affect the enforceability of other rules, we only focus on

maintaining the rule consistency property here. For the second approach, the complexity is

O(n ∗ t), where n is the number of relevant rules, and t is the maximal number of relations

in a join path.

2.4 Negative rules to prevent undesired results

The consistent rule set always allows the local computation results. However, the data

owners may not desire such results. Therefore, negative rules are required so as to prevent

a party getting such results. Negative rules are easy to be made, but they are difficult

to enforce. In this section, we first discuss the way to check if a negative rule is being

violated. Based on that, we use the Chinese wall security policy to enforce negative rules.

As introduced before, the access privilege of a party is based on the access history of it under

Chinese wall policy. Once releasing new information to the party will let the party get the

sensitive results by local computation, and then the party is not allowed to get such new

information. For instance, if data owners want to protect the information of RA ./ RB, and

party PC already get the information of RA, then it is not allowed to access RB anymore.

In such case, we can guarantee that PC cannot obtain the information of RA ./ RB.

Under explicit rule semantic, anything not specified in the authorization rules are pro-

hibited. In this section, we focus our discussion with the implicit semantic of authorization

rules, and negative rules need to be given in explicit way. A negative rule is similar to an

authorization rule, but it may not have the join path information. In such case, a neg-

ative rule takes priority over others so that the associations among certain attributes are

not released anywhere. We can also present a negative rule denoted as nrt as a triple

[NAt, NJt, NPt], where NAt is the attribute associations that is not allowed to be obtained

by the party NPt, and access to the subset of NAt. NJt is the join path defining where
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NAt comes from, and it can also be ∅ as discussed. Once a negative rule on a join path

NJt is specified, all the information on the join paths that are the longer paths including

NJt is prohibited as well. We want to check using all the given authorization rules under

implicit semantic to see if there exists any possible composition of rules that violates the

negative rules. For example, we can have a negative rule denoted as nr1 as below:

1. (E.oid, E.total, W.location), ∅ → Party E

This rule means the Party E is not allowed to get these three attributes from two tables

at the same time (in one tuple), however the appearance of any two of them is allowed.

Before discussing Chinese wall policy, we need a mechanism to tell if a given negative rule

is potentially violated. Negative rules cannot be composed by join operations since such

operations do not make sense. Thus, we always check negative rules one at a time. To make

sure a negative rule without a join path is not violated, all the possible join paths and rule

compositions that may generate such attribute set need to be checked. To do so, one naive

idea is to generate all the possible authorization rules and check if any one of them violates

the given negative rules. Again, this is highly inefficient and we need a better algorithm.

To check a negative rule with a join path, we can use the aforementioned mechanisms as

discussed below.

2.4.1 Negative rule violation detection algorithm

If there is no single given authorization rule that violates the attribute set of the negative

rule, then the negative rule can only be violated via the composition of the given authoriza-

tion rules. To check a negative rule with a join path, one option is to use algorithm 1 to see

if there will be a violation. We can put the negative rule denoted as nrt being inspected as a

query denoted as Qn against the party. Thus, we run the online query permission checking

algorithm to test if query Qn is authorized by the given authorization rules. If that is the

case, it means the negative can be violated potentially. However, as the information on

the longer join paths should also be prohibited, we may need to run the algorithm several
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times with negative rules on these longer join paths as well. In some cases, this becomes

inefficient. We give the alternative way to do the check below.

We consider the negative rules without specified join paths as example. In fact, even

if the join path is not explicitly specified, we can still figure it out through the attribute

set. For instance, the above negative rule 1 has the join path E ./ W which can be inferred

from its attribute set. Similar to the query authorization checking mechanism, we use the

Join Group List to check the possible rule compositions that may violate the negative rules.

Different from the query authorization check where only the rules relevant to the query need

to be checked, we need to consider all the given authorization rules here. Thus, we create

the Join Group List by putting all the given authorization rules into the list. Each entry in

the list is identified by the key attribute, and the content of the entry is an attribute set.

We only need to list the key attributes in the rule join path. A rule is put into an entry if

it contains such attribute, and we do the projection on the rule so that only the attributes

functionally depends on this key attribute will be added into the entry. After that, we begin

with the negative rule check according to property of the key attributes hierarchy. The entry

with the highest level in the hierarchy is examined first. If its attribute set contains any

key attribute of the other entries, we connected the current entry with these entries. Then,

we examine the entry which connected with the current entry and has the key attribute on

the next level in the hierarchy. Finally, we merge all the connected entries beginning with

the one with highest level key. If such an attribute set is not a superset of the attribute set

in the negative rule, the negative is not violated.

For instance, if the negative rule is nr1 above, and we consider the set of rules in section

2.2.1. Then only two entries will be created which are identified by the key attributes of

{oid, pid}. As rule r1 to r4 all have oid and oid is the key attributes of these rules, attributes

appear in these rules are all put into the entry of oid and attributes of r6 are put into the

entry of pid. Since these two entries are connected, we can obtain the final attribute set with

all attributes from the two entries, and that is a superset of attribute set of nr1. Therefore,

nr1 is violated in this example. Algorithm 2 is the detail description of the process.
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Algorithm 3 Negative Rule Violation Detection Algorithm

Require: Set of authorization rules, the negative rule nr, the join attribute set
Ensure: negative rule can be violated or not

STEP ONE(Join Group List Generation):
1: for each authorization rule r do
2: for each join attribute Ai in NJt do
3: if Ai ⊆ Attribute set of r then
4: Project r to keep attributes functionally depend on Ai
5: Merge these attributes into the entry of Ai in Join Group List

STEP TWO(Verification):
6: Pick the entry with highest key attribute As
7: Create an empty attribute set UA
8: Put As in a priority queue Q
9: while Q is not empty do

10: Get Aj with highest key attribute
11: for each key attribute k in entry Aj do
12: if entry k is not visited then
13: Push entry k to Q
14: Obtain the attribute set from the entry of Aj
15: Union all the attributes with set UA
16: if The attribute set of the negative rule NAt ⊆ UA then
17: return true
18: return false

To examine the complexity, suppose that there are N given rules, and there are m

join attributes in the join path. The cost of checking an attribute in a set takes constant

time C, and the union operation takes constant time S, so the complexity of step one is

O(N ∗ C ∗ S ∗m) which is O(N2).

2.4.2 Applying Chinese wall policy

From the previous mechanism, we can know if a given negative rule can be violated. We

apply Chinese wall policy only on these rules. To efficiently enforce negative rules using

Chinese wall policy, we need to modify the architecture a little bit. As Chinese wall policy

needs to be implemented using the access history of a party, we introduce a centralized

authority CA that keeps the access histories for all the parties, and the CA controls the

privileges of all the access requests. Each party needs to fetch data from others must go

through CA first.

To answer a received query, a party issues an access request to CA so as to retrieved the

related information from cooperative parties. Such access request is similar to a query that

has the attribute set information along with the join path. As the access request denoted
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as rqa is received by CA, it first checks the access history of the requesting party Pr. Since

each access history entry is similar to an authorization rule, CA first adds the new request

rqa into the access history of Pr. After that, for each of the negative rules given to Pr, CA

tests if the access history of Pr violates the negative rule. The testing mechanism is the

same as the above two algorithms we discussed depending on whether the join path of the

negative rule is defined or not. If the testing result shows there is a violation, then it means

allowing the access request of rqa will violate at least one negative rule. Consequently,

the access request rqa is denied by CA, and it is removed from the access history of Pr.

Otherwise, the request rqa is approved, and Pr is allowed to access such information. With

the coordination of CA, we enforce the negative rules with Chinese wall policy, and the

undesired local computation results can be avoided.
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Chapter 3: Authorization rule enforcement and query

planning

In last chapter, we discussed the query authorization and rule consistency problems. In this

chapter, we assume our discussion is under the explicit semantics of authorization rules,

and we assume we already have a set of authorization rules that are consistent. We study

the problems only involving existing cooperative parties, without any trusted third parties.

We discuss the rule enforcement and query planning problems in this chapter.

Under explicit semantic, a query authorized by an authorization rule should be answered.

However, “authorized” is only a necessary condition for a query to be answered but not

sufficient. It is due to the fact that each join operation requires the operating party has the

access privileges on join attributes from two pieces of data, and this requirement may not

be always satisfies. In fact, the basic problem is to determine enforceability of the given

rules.

To actually answer a query, we need at least one query execution plan. A query

execution plan or “query plan” for short, includes several ordered steps of operations

over authorized and obtainable information and provides the retrieved information to a

party. The result returned by a query execution plan pl is also relational data, and it can

also be presented with the triple [Apl, Jpl, Ppl]. A valid query plan should be authorized

by a given authorization rule rt. Therefore, a plan pl answers a query q, if Jpl ∼= Jq ∼= Jt,

Aq = Apl ⊆ At and Ppl = Pt. An authorization rule defines the maximal set of attributes

that a query on the equivalent join path can retrieve. Therefore, a rule can also be viewed

as a query. We call the query plan to enforce a rule as an enforcement plan or “plan” for

short below.

Definition 8. A rule rt can be totally enforced, if there exists a plan pl such that Jt ∼= Jpl,
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At = Apl, Pt = Ppl. rt is partially enforceable, if it is not totally enforceable and there is a

plan pl that Jt ∼= Jpl, At ⊃ Apl, Pt = Ppl. Otherwise, rt is not enforceable. A join path Jt

is enforceable if there is a plan pl that Jt ∼= Jpl.

In general, we can use a query optimizer to find a query plan tree, and check if the plan

tree can be safely assigned to the parties. However, regular query processing techniques

usually focus on the performance perspective, and they do not understand the data access

restrictions among parties. Consequently, some possible query plans to answer an authorized

query may be missed by them. Therefore, it is desired to have an efficient mechanism to

decide whether an authorized query can be answered with a consistent query execution plan

which involves only cooperative parties. In addition, we should find an efficient query plan

for an answerable query.

We address such problems separately. First, we examine each authorization rule and

check the possible enforcement of each individual rule, and build a relevance graph that

captures the relationships among the rules. This can be done once all the rules are given,

and we can do it as a precomputing step. Once we know the enforceability of the rules and

the built relevance graph, we can do efficient query planning according to them. Queries

that are authorized by enforceable rules are guaranteed to have a safe execution plan.

However, a rule may have many possible partial plans. Although we can systematically

generate all partial plans and determine the optimal query plan; the worst case complexity

of the process could be very high. Under such scenario, we propose an efficient algorithm

that works in a bottom up manner to check the enforceability of each given rule, and we

also give algorithms to generate efficient query plans for authorized queries.

3.1 Authorization enforcement among existing parties

Similar to the previous chapter, we consider a group of cooperating parties, each of which

maintains its data in a standard relational form. The basic problems considered here are

as follows: Given a set of authorization rules R on N cooperating parties, (a) identifies the
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Table 3.1: Authorization rules for e-commerce cooperative data access
Rule No. Authorized attribute set Join Path Party

1 {pid, location} W PW
2 {oid, pid} E PW
3 {oid, pid, location} E ./pid W PW

4 {oid, pid, total} E PE
5 {oid, pid, total, issue} E ./oid C PE
6 {oid, pid, total, issue, address} S ./oid E ./oid C PE
7 {oid, pid, location, total, address} S ./oid E ./pid W PE
8 {oid, pid, issue, assistant, total, address, delivery} S ./oid E ./oid C ./pid W PE

9 {oid, address, delivery} S PS
10 {oid, pid, total} E PS
11 {oid, pid, total, address, delivery} E ./oid S PS
12 {oid, pid, total, location} E ./pid W PS
13 {oid, location, pid, total, address, delivery} S ./oid E ./pid W PS

14 {oid, pid} E PC
15 {oid, issue, assistant} C PC
16 {oid, pid, issue, assistant} E ./oid C PC
17 {oid, pid, issue, assistant, total, address, location} S ./oid C ./oid E ./pid W PC

subset of R that can be enforced along with a consistent plan, and determines the maximal

portion of other rules that can also be enforced. (b) Derives a query execution plan pl for

an incoming authorized query q which is consistent with the rules R.

3.1.1 Example rule

We use a running example which is slightly different from the one in last chapter by removing

the party of Supplier to keep the discussion clear. The set of example rules are listed in

Table 3.1.

3.1.2 Consistent query plan

In this section, we first define the query plan consistency. For a query plan to be consistent

with the rules, the result of the query plan must be authorized by a rule. In fact, a query

plan recursively contains other sub query plans until the sub plans are access plans getting

information from basic relations. Sub plans constitute the resulting plan with operations.

Thus, a query plan contains a series of operations over sub plans, and each operation takes

sub plans as input and generates another plan as output. In our context, the possible

49



operations on plans are projection, join and data transmission. For instance, there is an

enforcement plan for r3, and such a plan contains a join over two sub plans on the data

authorized by r1 and r2 respectively. Information authorized by r1 is owned by PW , and

the sub plan for it is an access plan reading the table W . The sub plan for r2 includes an

access plan reading table S at PS , and another operation transmitting the data from PS to

Pw. The example plan for r3 has the Jpl = E ./pid W , and Apl = {oid, pid, location}. r3

authorizes this plan.

Definition 9. An operation in a query plan is consistent with the given rules R, if for

the operation, there exist rules that authorize access to the input tuples of the operation and

to the resulting output tuples.

For the three types of operations in our scenario, we give the corresponding conditions

for consistent operation.

1. Projection (π) is a unary operation. For a projection to be consistent with the rules,

there must be a rule rp authorizes (�) the input information.

2. Join (./) is a binary operation, and two input sub plans pli1 and pli2 do a join operation

and the resulting plan plo = pli1 ./ pli2. Therefore, for a join operation to be consistent

with R, all the three plans need to be authorized by rules. Since join is performed

at a single party, and rules are upwards closed, if the input plans are authorized by

rules, the join operation is consistent.

3. Data transmission (→) is an operation involves two parties. The input is a plan pli

on a party Pi, and the output is a plan plo for a party Po, where pli → plo. In our

scenario, data cannot be freely transmitted between parties. The receiving party must

be authorized to get the part of information that the party sends out. As each join

path defines a different relation, the receiving party must have a rule that is defined on

the equivalent join path as the information being sent. Otherwise, the transmission is

not safe. The reason is similar as the query authorization discussed above. Therefore,
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a data transmission operation to be consistent with R, if ∃ri, ro ∈ R, Ji ∼= Jo, Pi 6= Po

and ri � pli, ro � plo. In the case that Pi is sending information with attributes

not in Ao, Pi should do a projection operation πAo(pli) first followed by the data

transmission operation.

In our example, r8 authorizes PE to get information on (S ./ E ./ C ./ W ). If PS sends

the information of r11 to PE , it will not be allowed. Although the attribute set of r11 is

contained by r8, there is no rule for PE to get data on the join path of (E ./ S), and the

data transmission is disallowed.

Definition 10. A query execution plan pl is consistent with the given rules R, if for each

step of operation in the plan is consistent with the given rule set R.

3.2 Checking rule enforcement

It is not always the case that any authorized query has a consistent query plan. To perform

a join operation, a single party must access the join attributes from two join operands. For

instance, if we remove r2 from the rule set, then r3 that requires a join between E and W

cannot be enforced since PW is not allowed to read relation E and vice versa. Thus, we

check the rule enforceability below.

3.2.1 Method overview

In this section, we first introduce some concepts and results, and then we present the

algorithm that works from bottom-up to check the enforceability of each given authorization

rules. According to the key hierarchy property, there always exists a key attribute from one

basic relation that is also the key attribute of a join path. We call this attribute as the key

attribute of the join path (or the key of the rules defined on such join path). If the join

result of two join paths forms a valid longer join path, the join operation is always lossless.

We call a plan as joinable plan if such a plan contains all the key attributes of the basic

relations in its join path.
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Lemma 1. If a join path Jt is enforceable, there exists a joinable plan pl that Jt ∼= Jpl.

Proof. As we assume all the rule definitions contain the key attributes of the relations in its

join path, these attributes are always authorized in data transmission operations. All the

plans start from the rules on basic relations which are totally enforceable, and a longer join

path is enforced by join operations over plans on shorter join paths. Therefore, if there is

a plan for join path Jt, there always exist one plan that never project out any of these key

attributes through the different operations in the entire plan, and such plan is joinable.

In some cases, a rule does not have a total enforcement plan, but only some partial plans.

A partial plan only enforces a rule with an attribute set that is a proper subset of the rule

attribute set. We say that an attribute set is a maximal enforceable attribute set for

a rule, if it is enforced by a plan of the rule, and there is no other plan of the same rule

that can enforce a superset of these attributes. If a rule is totally enforceable, its maximal

enforceable attribute set is the rule attribute set, and we have the following lemma.

Lemma 2. A rule has only one maximal enforceable attribute set.

Proof. Firstly, a totally enforceable rule only has one maximal enforceable attribute set.

Thus, a rule defined on basic relation only has one such set. To get the maximal attribute

set, we do not eliminate any attributes via projections of plans, and maximal information is

exchanged in data transmission operations, and such plans are always joinable. Therefore,

if a rule is not totally enforceable, even it has several partial plans, these joinable plans are

on the same join path and can always be merged by joining over the key attributes of the

join path. Consequently, a partially enforceable rule has one maximal enforceable attribute

set. At last, if a rule is not enforceable, its enforceable attribute set is empty.

As discussed above, the required mechanism should tell which rules can be enforced and

what are their maximal enforceable attribute sets. We have two options with the given

rules that are not enforceable. The first choice is that we keep only the found enforceable

rules with their maximal enforceable attribute sets, and rules that are not enforceable as

well as the unenforceable attributes are removed from the rule set. This solution can be
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thought as a conservative one since it prohibits some authorized information to be released

because of the enforceability. In contrast, we can leave the given set of rules. In such

scenario, we consider using trusted third party to enforce the unenforceable portion of the

rules. Therefore, we discuss the first option in this chapter, and leave the second one to

next chapter.

To that end, we first propose a constructive mechanism that checks the rules in a bottom-

up manner. In general, an enforcement plan for a rule combines pieces of information

available and generates the information authorized by the rule. For each rule, the mechanism

checks its relevant information locally and remotely and indicates if it can be enforced and

what is its maximal enforceable attribute set. The set of unenforceable attributes and the

unenforceable rules are identified in the rule set.

3.2.2 Finding enforceable information

When examining a rule [At, Jt, Pt], we call such a rule rt as Target Rule, the attribute set At

as Target Set, the join path Jt as Target Join Path, and the party Pt in the rule as Target

Party. All the other parties are Remote Parties. To check the enforceability of rt, we first

find the relevant information that can be obtained locally at Pt. If this is not enough, we

check the information from remote parties. Rules can be enforced by performing consistent

operations over the information that is known enforceable. In addition, it is always the case

that information from short join paths is put together to enforce a rule of longer join path.

Therefore, we propose the algorithm to work in a bottom-up way in the order of join path

length, and it begins with rules on basic relations (length of 1 rules). As the mechanism

works bottom-up, when examining a target rule with join path of length n, we can assume

that all the rules on join paths with shorter lengths have already been examined, and only

the maximal enforceable attribute sets of the rules are preserved.

Since the first task is to identify relevant information locally, we check the rules relevant

to rt at Pt. At party Pt, a joinable plan that is on a sub-join path of Jt is a Relevant Plan.

Parties having rules defined on the equivalent join path of Jt are called Jt-cooperative
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parties, and information on Jt is allowed to be exchanged only among these parties by

data transmission operations. For instance, PE and PS are J13-cooperative parties since

J13 ∼= J7. We assume that each inspected rule is represented by an enforcement plan. When

inspecting the target rule, we consider using these plans to enforce it. We say “join among

rules” below, which means their enforcement plans.

The checking process iterates in the order of the join path lengths beginning with the

rules defined on the basic relations on various parties. These rules can be totally enforced as

the data owners sending their data to the authorized parties. From then on, the algorithm

checks for rules defined on longer join paths. At the same time examining the rules, the

algorithm also builds a relevance graph. Each node in such structure is a rule with its

maximal enforceable attribute set. The nodes in the graph are put in different levels based

on their join path lengths. Different from the relevance graph discussed in last chapter,

we consider the relationships among parties here. Among different parties, nodes can be

connected if they have the equivalent join paths. Figure 3.1 shows the built structure for

our running example. The different parties are separated vertically. The bold boxes show

the basic relations owned by different parties. The algorithm starts the iteration with the

rules on basic relations r1, r2, r4, r10, and so on.

As the algorithm iteratively checks all the rules, when a target rule rt is examined,

the algorithm first checks whether the join path Jt can be enforced using relevant rules

on Pt. After that, all the rules with equivalent join path of Jt are checked respectively at

Jt-cooperative parties. Then the algorithm checks the possible enforcement by exchanging

information among these parties. In figure 3.1, on the level of join path length 2, the

algorithm checks the rules with the order of r3, r12, r5, r16, r11 because J3 ∼= J12 and

J5 ∼= J16. Jt-cooperative parties such as PW and PS on J3 will check the remote enforcement

between r3 and r12, which will be described later.

To check local enforceability, the algorithm finds its local relevant rules in the currently

built relevance graph since all its relevant rules have already been examined and added

to the graph. It only checks with the top level relevant rules in the current graph, where

54



top level rules are the nodes not connected to any higher level nodes (rules with longer

join paths) in the currently built graph during the bottom-up procedure. For example, in

figure 3.1, when the algorithm examines r13 on PS , only r11, r12 are top level rules. And

when checking r8, r7 and r5 are top level rules since r6 is not enforceable. Here, we take

advantage of the upwards closed property of the rules, so that the top level rules cover all

possible join results among the lower level rules. If these top level rules cannot be composed

to enforce the Jt, there is no need to check lower level rules. When examining r13, there

is no need to consider the join between r9 and r10. Among the rules in the graph on Pt, a

relevant rule rr of rt can be efficiently decided, if JRr ⊂ JRt.

The following step is to check whether the join path Jt can be enforced locally by

performing joins among these top level relevant rules. The algorithm basically checks each

pair of these rules. We check it pairwise because if a pair of them can join, the result must

be able to enforce Jt. Otherwise, there must exist another relevant rule of rt authorizing the

join result, and such a rule is on higher level of the pair of rules being inspected, which is

contradict to the fact that the pair of rules are top level rules. When checking whether a pair

of rules (rs, rr) can join, the algorithm first tests their relation sets to see if JRs
⋂
JRr = ∅.

If these two join paths have overlapped relations, they can join over the key attribute of

the overlap part, and Jt can always be enforced. Otherwise, we need to further check the

attributes of two rules to see if they have the required join attribute in common. If Jt can

be locally enforced, we mark the target rule as local enforceable rule and add it to the

graph by connecting it with top level relevant rules. Otherwise, it has to wait and see if Jt

can be enforced on other parties. For instance, when checking r3 in our example, it has top

level relevant rules r1 and r2. Since there is no overlapped relation for the pair of rules, the

algorithm checks whether join attribute pid can be found in both rules. On the other hand,

when checking the pair r11 and r12, as E is the overlapped relation, the join path J13 can

be locally enforced. r17 does not has a valid join pair, and it is not locally enforceable.

After that, the algorithm gets the most efficient pair of rules that can enforce Jt. The

cost of the plan can be quantified by the number of the join and data transmission operations
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involved. For the selected pair of top level rules, the algorithm further searches for a more

efficient join pair. The algorithm fixes one of the top level rule and search for the other

matching rule whose join path has minimal overlapped relations. This can be done by

following the path downwards beginning from the other top level rule in the pair. Finally,

the best found pair of rules are recorded as the plan to enforce this join path Jt. Our

algorithm is not designed to find a globally optimal way to enforce a join path due to

extremely high complexity of doing so. Nevertheless, the algorithm attempts to make

local (greedy) optimizations wherever possible. The topic of eventual effectiveness of local

optimizations is beyond the scope of this work and is not addressed here. For instance, the

join path J13 can be enforced with the pair of rules r11 and r12, which is the only found

pair. The algorithm further searches for pairs with fewer overlapping. Along the path, pairs

r12 and r9 is checked, and this is a better one than r11 and r12, and the algorithm keeps

this result J9 ./ J12 as the plan to enforce J13. Only the join attributes in relations are

preserved in such plans.

Meanwhile, the algorithm computes the union of the attributes from top level relevant

rules regardless of the enforceability of Jt. The resulting attribute set Ar includes all

attributes that can be obtained from party Pt if Jt can be enforced. It is always the case

that Ar ⊆ At as rules are upwards closed. If Ar not equals to At, we call the set of attributes

At \ Ar as missing attribute set Am. The attributes in Am are potentially obtainable

from the Jt-cooperative parties. In the example, the attribute delivery in r8 cannot be

found in its top level rules r7 and r5, and it is a missing attribute after the local checking.

Next, the algorithm checks the remote information that a party can use to enforce a

rule, and only Jt-cooperative parties are checked. As the previous steps of the algorithm tell

which parties can locally enforce the join path Jt, if there exists any party that can enforce

Jt, then all the Jt-cooperative parties can have joinable plans for their rules on Jt. Thus,

the party Pt is able to get attributes from all its Jt-cooperative parties to enforce rt. For

instance, r17 is not locally enforceable, but J8 can be enforced with a joinable plan at PE .

Thus, we can add a data transmission operation to such plan, and r17 also has a joinable
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Algorithm 4 Rule Enforcement Checking Algorithm

Require: All given authorization rule set R on all parties
Ensure: Find enforceable rules and build graph

1: Mark rules with length 1 as total enforceable rules
2: Get the maximal length of join path length N
3: for Join path of length 2 to N do
4: for Each join path Jt length equal to i do
5: AJt ← ∅, the set of shared attributes on Jt
6: for Each party Pt has a rule rt on Jt do
7: Obtain the set of top level relevant rules Rv
8: Add the node and connections to Rv in graph
9: Av ← the union of attributes in Rv

10: Missing attribute set Am ← At
11: for Each pair of relevant rule (rs, rr) do
12: if The pair can locally enforce Jt then
13: Am ← Am \Av and break

14: if Am 6= ∅ then
15: Put rt with Am into the Queue of Jt
16: AJt ← AJt

⋃
Av

17: for Each rule rt in the Queue of Jt do
18: if Jt can be enforced on some party then
19: Add connections among Jt-cooperative parties in graph
20: Am ← Am \AJt
21: if Am 6= ∅ then
22: Replace At with At \Am in graph
23: else
24: rt cannot be enforced, remove rules on Jt from graph
25: Join path length i++

plan. This plan can join with r16, so that attributes issue, assistant in r17 can be enforced.

Consequently, these attributes in r8 can also be enforced. Therefore, we take the union

of the attribute sets from all Jt-cooperative parties to check if rt can be totally enforced.

If the missing attribute set Am ⊂ Ar1
⋃
Ar2 ...Ark (where Ari is the relevant attribute set

of a Jt-cooperative party Pi), then rt can be totally enforced. Otherwise, Am is updated

by removing the attributes appear in any Ari . In such case, rt has a maximal enforceable

attribute set on Jt without the attributes in Am. The node rt in the relevance graph is

presented with the attribute set At \Am. Meanwhile, connection edges are added among

the Jt-cooperative rules in the relevance graph. For example, attribute delivery of r8 also

cannot be found in its Jt-cooperative party PC , so it cannot be enforced. r8 in the graph

is represented with the attribute set without delivery. We use bold font in figure 3.1 to

indicate this attribute is not enforceable. Also, since join path J6 cannot be enforced at any

party, r6 is not enforceable, and it will not be included in the relevance graph. In figure 3.1,
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Figure 3.1: relevance graph built for the example

we use the dashed box to show r6 is removed. The local enforceable rules are marked with

“L”. The detailed algorithm is described in Algorithm 4.

In algorithm 4, each rule will be examined at most twice, with one local enforceability

check and another one in checking the queue of Jt. In the step of local enforcement checking,

only the top level relevant rules on party Pt are checked. Suppose that the total number of

rules is Nt, the maximal number of relevant rules of a rule is No, and checking join condition

takes constant C. Then the worst case complexity for algorithm 4 is O(Nt ∗N2
o ∗C), where

No is usually very small. In addition, this algorithm can be used as a pre-compute step

once all the rules are given.

Theorem 4. The Rule Enforcement Checking Algorithm finds all enforceable information.

Proof. As all the information can be obtained on join results comes from the basic relations,

the algorithm works in bottom-up manner to capture the operation results. If the join path

of a rule cannot be enforced, then all the rules on this join path cannot be enforced and can

be discarded. The algorithm first finds a way to enforce the join path of the rule rt. The

check on local relevant rules explores all possible ways to compose useful information on Pt.
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Since the only other information can be used to enforce rt must come from Jt-cooperative

parties, the algorithm also considers all the attributes that rt can get from them. There is

no other way to enforce more attribute for rt.

3.3 Complexity of query planning

The above mechanism tells us which queries can be answered with consistent plans. How-

ever, we still need to generate such consistent plans. From performance perspective, we

always want optimal plans with minimal costs. Unfortunately, finding the optimal query

plan is NP -hard in our scenario.

Theorem 5. Finding the optimal query plan to answer an authorized query is NP -hard.

Proof. The optimization of set covering problem is know to be NP -hard. The set covering

problem can be described as follows: there is a set of elements U = {A1, A2, ..., An} (called

the universe), and theres is also a set of sets S = {S1, S2, ...Sm} where Si is a set of elements

from U and is assigned a cost. Given an input pair (U, S), the task is to find a set covering

that has minimal total cost. We can convert a set covering problem into a cooperative

query planning problem. Assuming that there are two basic relations R and S which can

join together, and we map each element in the universe U into an attribute for relation R,

and add another attribute A0 to R and S as their key attributes. Thus, R has the schema

{A0, A1, A2, ..., An}, and we also assign the relation S with the schema {A0, An+1}. Next,

we then consider a query requesting the attribute set {A1, A2, ..., An} on the join path of

R ./ S. Based on that, we can construct rules on m + 1 parties according to the given

set covering problem. Party P0 has the rule with join path R ./ S that authorizing the

query. For each other party Pi, it has the rule ri on R ./ S with the attribute set Si
⋃
{A0}.

P0 cannot locally do the join R ./ S, but other parties can enforce their rules ri locally,

and their costs are known. Therefore, for P0 to answer the query, it needs a plan bringing

attributes from other parties and merging them at P0 (multi-way join operation on attribute

A0) to answer the query. The optimal plan needs to choose the rules with minimal costs,
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and the union of their attribute sets must cover the query attribute set. In such case, if the

optimal query plan can be found in polynomial time, the set covering problem also has a

polynomial solution. Thus, finding the optimal query plan in our scenario is NP -hard.

3.3.1 Query plan cost model

It is reasonable to assume that the numbers of tuples in the relations are known. In addition,

the join selectivity between the relations is also known so that the size of join paths can be

estimated as well. The cost of a query plan mainly includes two parts: 1) cost of the join

operations, 2) cost of data transmission among the parties. We assume joins are done by

nested loop and indices on join attributes are available. The cost of a join operation between

R and S can be estimated as: α(Size(R)∗Size(S)∗P(R,S))+(Access(R)+Size(R)), where

Size() is the number of tuples in the relation and Access() is the cost of retrieving the

relation. R is the smaller relation, α is the cost of generating each tuple in the results, and

P(X,Y ) is the known join selectivity. The costs of data transmission are only decided by

the size of the data being shipped. The cost of moving R ./ S from a party to another is

β(Size(R) ∗ Size(S) ∗ P(R,S)), where β is the per tuple cost for data transmission. Under

such assumption, we can compare the costs of different query plans.

3.3.2 Upper bound complexity of plan enumeration

Although finding an optimal query plan is NP -hard, we want to see if it is possible to

enumerate all possible query plans and compare them to get the optimal one as the join

path length in our scenario is usually limited. We assume the longest join path is 5, and

we begin the process based on the graph produced by the previous enforcement checking

algorithm. When a query comes in, we first filter unrelated rules (rules not connected to

the target node in the graph) and unrelated attributes (non-key attributes that are not in

the query attribute set). In the classical query processing, the query attributes are always

retrievable from the corresponding relations and usually the generated plan does not contain

repeated joins (two join operands have overlapped relations). However, as authorization
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rules put constraints in our scenario, additional join operations may be required so as to

answer the query. Moreover, to enumerate the query plans, we should not only consider the

different ways to perform the join operations, but also the different paths to retrieve the

query attributes.

To generate a consistent plan for a query, we first need a plan that enforces the query join

path. Once we have such a plan, it can further join with relevant plans to get all requested

attributes to achieve the final query plan. Therefore, we first enumerate different possible

ways to enforce the query join path. As we are interested in the worst case scenario, we

assume the query join path is length of 5, and we consider the possible last join operations

among a pair of relevant rules to enforce the target join path. In the worst case, the possible

pairs of rules with different join path lengths are (3, 2), (3, 3), (3, 4), (4, 1), (4, 2), where two

numbers in parenthesis are the lengths of two relevant rules. We cannot discard pairs with

overlapped relations such as (3, 3), (3, 4), (4, 2) because in our scenario, enforcing a longer

join path can be more efficient than a shorter join path. Next, we need to recursively search

for the possible ways to enforce the join paths in each possible join pair listed in the previous

step. We give the possible combinations for this recursive process below. Moreover, instead

of counting the possible ways locally, we need to further consider the possibility that the

join path is enforced via a remote party. Remote parties can enforce the join paths and

sends the results to the target party.

We need to enumerate all possible ways of join path enforcement instead of finding

only the optimal way to enforce the join path because the optimal query plan does not

necessarily have the optimal enforcement plan for the query join path in our scenario. In

fact, finding the optimal way of enforcing a join path can be somewhat easier, and we

will discuss that later. Besides the join path enforcement, additional steps are still needed

to retrieve missing attributes which are requested by the query but not enforced by the

selected join path enforcement plan. Given various authorization rules, different join path

enforcement plans may result in different sets of missing attributes. Therefore, for each

different missing attribute set, we need to further enumerate the steps that retrieve these
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Figure 3.2: A simple worst case example

attributes via relevant rules on the cooperative parties. As a missing attribute may appear

in multiple relevant rules, choosing the optimal set of relevant rules is similar to a set

covering problem. Thus, to find the optimal answer, we need to enumerate all the possible

sets of relevant rules that cover the missing attributes. Since the problem is similar to set

covering problem, given Nr relevant rules that have the missing attributes, there are 2Nr -1

combinations to check. In our scenario, once we select a rule cover, we still need to further

find plans enforcing these rules to known their costs.

To illustrate the complexity, we construct a simple example with join path length of

3. In figure 3.2, there are four parties and they all have rules on different join paths. The

attribute names are simplified to save space, and edges connecting the rules with equivalent

join paths across the parties are also omitted to keep the graph clear. In the example,

the query asks for all the attributes and only r7 (dashed box) can authorize the query.

For various plans enforcing the target join path, none of them can enforce all the query

attributes. The possible ways to enforce the join path locally on Pt is 3 ∗ (1 + 2) = 9.

Considering other 3 parties, we have (3 ∗ 4 ∗ (1 + 2 ∗ 4)) ∗ 4 = 432 different ways of enforcing

the join path, and these plans result in 6+4 =10 different missing attribute sets. For each

of them, we need to check the ways to get missing attributes. For example, if the missing

attribute set is {total, assistant, delivery}. Then, there are 12 relevant rules having the

missing attributes, and the possible combinations to consider is 212-1.

In table 3.2, we list the maximum numbers of possible join path enforcement plans for

62



Table 3.2: Maximum number of plans for each join path length
JP Length Maximum number of join path enforcement plans

1 1

2 Tn
3 (C2

3 ∗ S2 ∗ (1 + 2 ∗ S2)) ∗ Tn
4 (C3

4 ∗ S3 ∗ (1 + C1
3 ∗ S2 + C2

3 ∗ S3) + C2
4 ∗ S2 ∗ S2) ∗ Tn

5 (C4
5 ∗ S4 ∗ (1 +C1

4 ∗ S2 +C2
4 ∗ S3) +C3

5 ∗ S3 ∗ (S2 +C1
3 ∗ S3)) ∗ Tn

each join path length. Notation Si indicates the number of plans for a join path of length

i. We assume there are at most Tn parties having the rules on equivalent join paths.

To sum up, in the worst case, to enumerate all the possible plans for a query, there are

S5 +Ne ∗ (2Cm ∗ −1) ∗ Cm ∗ S4 possible cases, where S5 is the maximal number of ways to

enforce a join path of length 5 and it is similar for S4. Cm is the number of missing attributes

which should be the number of all non-key attributes in the worst case. Ne is the different

number of missing attribute sets based on all the join path enforcement plans. In above

example, this number is 10. Because of the difficulties mentioned above in enumerating all

possible ways of enforcing join paths and attributes, we consider a greedy algorithm in the

following.

3.4 Consistent query planning

As finding optimal plan is very difficult, instead of giving an optimal query plan, we focus

on generating an efficient consistent query plan in this section.

3.4.1 Query planning algorithm

When generating a plan for the query, we always choose the optimal join path enforcement

plan first, and then apply the set covering greedy mechanism on the missing attributes to

find required relevant rules. The optimal enforcement plan for each join path on a specified

party can be pre-determined by extending the rule enforcement checking mechanism in a

dynamic programming way. When checking a rule rt, instead of inspecting only top level

relevant rules, all the possible join pairs at Pt are inspected. These possible plans are
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compared and only the one with minimal cost is kept. As Jt-cooperative parties find their

optimal local enforcement plans respectively, these plans are further compared among the

parties so that each party finds its optimal way of enforcing Jt. As discussed, the selected

join path enforcement plan usually results in a missing attribute set. To get these attributes,

we explore the relevance graph to decompose rt into a set of relevant rules that can provide

these attributes. We record the required operations among these rules, and then recursively

find ways to enforce these rules so as to generate a query plan.

Firstly, as rt uses the optimal join path enforcement plan, it can be extended to get

missing attributes that appear in the relevant rules of basic relations on all Jt-cooperative

parties. This can be done through semi-join operations. In such cases, the party Pt can

send the plan with only the join attributes to the Jt-cooperative party, and the receiving

party does a local join with its relevant rules of basic relations to get these attributes. Such

information is sent back to Pt, and Pt performs another join to add these attributes to

the query plan. In this way, we can reduce the missing attribute set by removing these

attributes.

The remaining missing attributes can always be found in the relevant rules on Jt-

cooperative parties. However, these relevant rules are defined on join paths instead of

basic relations. Similar to the above case, the missing attributes carried by these rele-

vant rules on Pt can be brought to the final plan by a local join, and these on remote

Jt-cooperative parties can also be added to the plan by semi-join operations. Thus, our

next effort is to determine these relevant rules. Here, we always pick the relevant rule

that covers the most attributes in the missing attribute set until all the missing attributes

are covered by the picked rules. This is a greedy approach, and is similar in spirit to the

approximate algorithms used for the set covering problem. The relevant rules effectively

allow us to decompose the rule (i.e., express in terms of) rules with smaller join paths. The

missing attributes are also reduced in the process by considering the rules involving basic

relations. During the decomposition, the algorithm associates the set of attributes with

the decomposed rule which are the missing attributes expected to be delivered by this rule.
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The attribute set of the rule is projected onto these attributes only, but the join attributes

are always preserved. In addition, we also records the operations between the existing plan

and these decomposed ones. If they are on the same party, a join operation between them

is recorded. Otherwise, a semi-join operation is recorded. Since each decomposed rule also

needs a subplan to enforce, we can iterate the process of decomposition, and the algorithm

uses a queue to iteratively decompose rules until all the rules are on basic relations. This

decomposition process gives the hierarchal relationships among rules which indicate how

related attributes can be added to the final plan.

The decomposition process gives a set of rules, but we also need the subplans to enforce

the join paths of these rules so as to generate a complete plan. To achieve that, we inspect

the join paths of these decomposed rules from bottom-up. We use another priority queue

to keep all the join paths from the decomposed relevant rules, and the shortest join path

is always processed first. This allows the use of results from the enforcement plans of sub

join paths as much as possible. The algorithm uses the best enforcement plan for each join

path as discussed. When an enforcement plan of a join path is retrieved, the algorithm

combines previously recorded operations to generate the subplan for the decomposed rule

on such join path. Finally, the algorithm finds the plans for each join paths in the queue,

and generates the final query plan with a series ordered operations starting from the basic

relations, and it is described in Algorithm 5.

3.4.2 Illustration with example

Figure 3.1 gives an example of the relevance graph that is built by our algorithm. Non-

composable rules, non-enforceable rules and attributes that cannot be enforced are all re-

moved in the structure. Any remaining rule in the structure can be answered by a consistent

query plan.

For instance, if the query q is on the join path of S ./ C ./ E ./ W and the attribute

set Aq is {oid, pid, issue, assistant, total, address, location}. Such a query is authorized by

the rule r8 on the party PE . Then the algorithm begins from this node to build the query
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Algorithm 5 Query Planning Algorithm
Require: The structure of rule set R, Incoming query q
Ensure: Generate a plan answering q.

1: if There is a rule rt, Jt ∼= Jq and Aq ⊆ At then
2: Missing attribute set Am ← Aq
3: Initialize queue Q, and priority queue P
4: Enqueue rt to Q with Am
5: while Queue Q is not empty do
6: Dequeue rule rt and the associated Am
7: for Each Jt-cooperative party do
8: Finds the attribute set Ab from basic relations
9: Am ← Am \Ab

10: Record connections between rb and rt
11: while Am 6= ∅ do
12: for Each relevant rule rs on Pco do
13: Find the rule with max Am

⋂
As

14: Enqueue the rule rs with π(Am)
15: Enqueue the join path Js to priority queue P
16: Record connections between rs and rt
17: Am = Am \As
18: while The priority queue P is not empty do
19: Dequeue the rule rs with join path Js
20: Add the path to enforce Js to plan
21: for Each Js-cooperative party do
22: if The party has recorded Ab on Js then
23: Add (./ /→) operations between rb and rs
24: for Each decomposed rule rd from rs do
25: Add (./ /→) operations between rd and rs
26: else
27: The query q cannot be answered

plan.

First of all, rule r4 of basic relations E on PE is picked, and the attribute set {oid, pid,

total} in Aq can be found in this rule. Next, the J8-cooperative party PC is inspected. It

has relevant basic rules r14, r15, but the attributes in r14 is found in r4 already, so it is

discarded. Attributes found in r15 are removed from the missing attribute set just like the

ones in r4. Also, the algorithm records a join of r8 with r4, and a semi-join between r8

and r15. Since now the missing attribute set is {location, address}, the algorithm looks

for relevant rules to start decomposition. As the relevant rule r7 includes both attributes,

the algorithm picks this rule and record a join between r7 and r8, but the attribute set

associated with r7 is reduced as {oid, pid, location, address}.

Next, the algorithm iterates to decompose the rule r7 with missing attribute set {location,

address}. As the attribute address can be obtained from r9 at party PS , the algorithm
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records a semi-join between r7 and r9. Because of the attribute location, r12 is found as a de-

composed rule with missing attribute set {location}. At next iteration, the J12-cooperative

party PW is examined, and the related rule r1 is recorded as a semi-join with r12 as location

is found. Consequently, the decomposition process is completed, and the join paths J3, J13

and J8 are pushed into the priority queue.

Next, the algorithm checks the join paths from the priority queue in the order of join

path length to build the plan. First, J3 is checked. As the best plan to enforce J3 is

a join between r1 and r2, such a plan is chosen. Since r1 has a semi-join with r12, now

the plan adds this operation to generate a sub plan enforcing r12 with the attribute set

{oid, pid, location}, which is the attribute set associated with r12. Next, J7 is examined.

The recorded plan to enforce J7 is a join between J12 and J9. Now the algorithm can take

the advantage that J12 is already enforced in previous step. As r9 has a recorded semi-join

with r7, the algorithm adds this operation and a plan enforcing r7 with the attribute set

{oid, pid, location, address} is generated.

Finally, the algorithm takes the similar steps to generate the final plan for r8 with the

attribute set equivalent to Aq. Therefore, such a plan can answer the example query and

it is consistent with the given rules. It is worth noticed that such a plan avoided enforcing

the join paths r5 and r11, and the plan for the longer join paths use the intermediate results

generated for its relevant join paths. Thus, such a plan is efficient under the restriction of

the rules. Table 3.3 shows the steps of the query plan generated by the algorithm. Each

step in the table generates a subplan of the final plan. In these steps, we assume projection

are pushed to basic relations, so only join attributes and missing attributes are retrieved

from the relevant rules, and we omit such steps in Table 3.3.

3.4.3 Theorem Proofs

In this subsection, we prove the correctness and completeness of the proposed algorithms.

Theorem 6. A query plan generated by Query Planning Algorithm is consistent with

the set of rules R.
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Table 3.3: A consistent plan for the example query
Step Number Performed operation

Step1 PE sends oid, pid of E to PW
Step2 PW does a join on Step1 and relation W

Step3 PW sends Step2 to PS
Step4 PW does a join on Step3 and relation S

Step5 PS sends Step4 to PE
Step6 PE does a join on Step5 and relation E

Step7 PE sends Step6 with projection on {oid, pid}
Step8 PC does a join on Step7 and relation C

Step9 PC sends Step8 to PE
Step10 PC does a join on Step9 and Step6

Proof. The Query Planning Algorithm works on a subset of rules of R. In the generated

plan, the subplans to enforce join paths are consistent. They are generated during the rule

enforcement checking. Each join operation in such a plan is added according to a legitimate

local join over the relevant rules, and each data transmission operation happens only among

Jt-cooperative parties. Thus, these subplans are consistent. In the iteration of decomposing

rules, there are join and semi-join operations between the decomposed rules and the original

rule. A join operation between a rule and its local relevant rule is always consistent. A

semi-join between a rule and a relevant rule on its Jt-cooperative party is also consistent.

It is because the attributes in the relevant rule can be obtained by the rule with Jt on

the same party, and the data transmission between two parties is consistent as they are

Jt-cooperative parties and the original rule is always authorized to access these missing

attributes. Since each operation in the plan is consistent, the plan generated by Query

Planning Algorithm is consistent with the rule set R.

Theorem 7. The Rule Enforcement Checking Algorithm finds all consistently en-

forceable information.

Proof. As all the information can be obtained on join results comes from the basic relations,

the algorithm works in bottom-up manner to capture all possibilities. If the join path of

a rule cannot be enforced, then all the rules on this join path cannot be enforced at all.

Therefore, the algorithm first searches for all the possible ways for a join path to be enforced
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at any party. As a join between a rule and its local relevant rule is alway consistent, the

corresponding step in the algorithm finds all the locally enforceable attributes. Since the

other information can be used to enforce rt must come from Jt-cooperative parties, the

algorithm also considers all the attributes that rt can get from other parties. There is no

other way to enforce more attribute for rt.

Theorem 8. For a query q and a set of given rules R, if the Query Planning Algorithm

does not give a query plan, then there does not exist a consistent query plan.

Proof. According to the above lemma, all the enforceable information is given by Rule En-

forcement Checking Algorithm. Thus, if there is an enforceable rule rt to authorize q,

the Query Planning Algorithm can always generate a consistent query plan. Otherwise,

q cannot be answered safely.

3.4.4 Preliminary performance evaluation of the algorithm

Since our query planning algorithm works in a greedy way, we want to evaluate the output

results. However, the optimal plan cannot be found in general, so we cannot compare our

results with the optimal ones. Thus, we use simple examples, where manually finding the

optimal plans becomes possible, and we perform preliminary evaluation on these cases.

In the following, we assume the selected join path enforcement plan carries the maximal

attributes along with it.

Case 1

Firstly, we can take a look at the example in figure 3.2. For simplicity, we assume all the

relations have the same sizes. Given the same query discussed before which only r7 can

authorize, the optimal plan should be as follows: join two relations at Pt first, and then

join with the third one at Pt to enforce the join path of S ./ E ./ C. Then Pt sends the

oid on the join path of S ./ E ./ C to other parties, and do semi-joins with each of the

party to obtain the missing attributes {total, assistant, delivery}. Finally, Pt does a local

join with these information got from remote parties and such a plan answering the query.
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In this case study, our greedy algorithm generates the same optimal plan. As the optimal

way to enforce join path S ./ E ./ C is the local enforcement at Pt, our plan also gets the

missing attributes via semi-join operations.

Case 2

In the example shown in figure 3.1, assuming the query has the join path S ./ C ./ E ./ W ,

and the attribute set includes all the attributes in r8 except delivery. For such a query,

our algorithm first find the optimal way to enforce the join path, which can be represented

as (((r1 ./ r2 → PS) ./ r9) → PE) ./ (r14 ./ r15 → PE). This plan results in a missing

attribute set {total, assistant}. Next, the algorithm adds a local join with r4 to retrieve

total, and a semi-join with r15 to obtain the attribute assistant. In fact, there are only two

ways to enforce the query join path in this example. The other way is to perform r9 ./ r10

first and then join with r12 at party PS . By doing that, the plan can carry the attribute

total and only has assistant as missing attribute. However, if we compare the two plans,

the difference is that our plan gets the attribute total via a join among relation E and join

path S ./ C ./ E ./ W , and the latter plan perform the join among E and S on PS . As

the longer join path usually has much fewer tuples, and no matter the sizes of relation S

and E, the former plan is better than the latter one in this example case. For the missing

attribute assistant, as it can only be retrieved from party PS , getting it from r15 is better

than r16. Therefore, the query plan generated by our algorithm is actually the optimal plan

is this example case.

Case 3

However, our algorithm cannot guarantee the generated plan is always optimal. In figure 3.3,

we consider a query which is the same as r4. The way to enforce the query join path

S ./ E ./ C in our generated plan is labeled with bold boxes. The other way to enforce it

is to enforce r7 at PA first, and send the results to PT to enforce R2 and join with R3. As

the latter plan requires one more join and data transmission operation, our plan to enforce
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Figure 3.3: An non-optimal example

the query join path is better. However, the latter plan has no missing attribute, and our

plan still need to enforce r7 again to retrieve attributes {total, issue}. Therefore, our plan

is not optimal in this case. Compared to the optimal plan, our generated plan just has one

extra step which is r1 join with r3. Only in extreme situations, where the sizes of E ./ C

and C ./ S are very large, but S ./ E ./ C is very small, our plan can be better.

Complexity of the algorithm

As the algorithm 5 iteratively decomposes rules, if there are Nq rules relevant to the query

q, the algorithm needs to examine all of them in the worst case. In addition, when finding

the decomposition of relevant rules, it needs to find the cover of the missing attributes.

If the maximum number of relevant rules on Jt-cooperative parties is Nr, the worst case

complexity is O(N2
r ∗ C), where C is the constant to record operations among rules. The

loop of the priority queue to find the enforcement of required join paths has at most Nq

join paths to be explored, and it is no more expensive than the previous part. Therefore,

the overall worst case complexity is O(Nq ∗N2
r ∗ C). Usually Nr is much smaller than Nq.

To sum up, these simple example cases show our query planning algorithm is effective

to find a good query plan for an authorized query.
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3.5 Query planning with authorization rule changes

In this section, we consider the problem of authorization rule changes when queries are being

processed. We have the above algorithm to generate a query plan among the cooperative

parties based on the consistent closure and the algorithm to check the rule enforceability.

While a generated query plan is being executed, if the authorization rules are updated, then

some steps in the plan may not be able to be executed. As grant of access does not affect the

query plan execution, the rule changes discussed here are revocations on access privileges.

We discuss how to adapt the query execution with the authorization rule changes below.

3.5.1 Snapshot solution

Since the biggest concern of this problem is that the authorization rules are changed during

the query plans are being executed, one possible solution is that at the time each generated

query plan is executed, we make sure the authorization rules related to this plan are not

changed. Thus, in this solution, we first obtain a snapshot of a consistent state of the rules

before doing the query planning, and the query plan is generated under such snapshots rules

so that the execution of the query plan is not affected by the rule changes.

Assuming the query q is received by a party P which has the rule authorizing the

answer of the query, and the party is going to do the query planning locally. Therefore,

the party P first sends the authorization rules it caches to other parties with the mark of

query q identifying this snapshot is exclusively for q. Each cooperative party that receives

the message compares its rules with the received rules from P . Each party should either

agrees on the rules regarding itself or sends its updated rules to the party P . If a party is

performing a rule updating, it may send a notification back to P , and P have to defer the

query planning and try again later.

Therefore, party P can always obtain and plan with the updated rules, and the party

receiving the messages will take a snapshot on the rule set it acknowledged to P with the

mark of the query q. Later, even if the party updates its rules, it keeps these snapshotted

rules until the query is answered. Then, the party P will generate the query plan using the
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query planning algorithm, and the plan is executed on these cooperative parties. If there

is no rule update between the time of P making the snapshot and the query is answer, the

query plan can be executed as usual. If the authorization rules on a party are updated, the

party may lack the authorization to perform the steps in the query plan. In this case, it

can use the snapshotted rules with the marks of q to retain the authorizations from other

parties. Other cooperative parties will also honor the snapshotted rules even if currently

the authorization rules are updated. Therefore, the query plan generated from the snapshot

can always be executed.

Finally, as soon as the query q is answered, party P sends finish messages to other parties

indicating that the execution of the query q has finished. A party receives this message will

remove the snapshotted rules associated with query q. Thus, any following queries cannot

take advantage of these rules and they can only be processed according to updated rules.

To give an example, we assume there are three parties PR, PS , PT . Each party can access

their own relations R,S, T . These relations share the same key attribute so that they can

always be joined. In addition, PT is allowed to get the relation R, and the result of R ./ T .

PS is allowed to get R ./ T , and of course the join of R ./ S ./ T . The incoming query q

asks for the information on the join path of R ./ S ./ T and it is authorized by the rule

on PS . As PS is going to generate the query plan, it first send messages to snapshot the

current rules. Based on these rules, a query plan will first let PT to get the relation R

and generate the result R ./ T , and this result is send to PS to perform a further join and

answer the query q. At the time the plan is generated, the rules given to PT are modified,

and the rule that authoring PT to access R is revoked. In such case, when PT executes the

query plan, it will use the snapshotted rule associated with q. Therefore, party PR knows

the access for R is to answer the query q, and the access is allowed. After q is answered,

PS sends the finish messages to remove the snapshot. At the end, party PT can no longer

access the relation R.
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3.5.2 Dynamic planning

Instead of the snapshot approach, as we assume the access changes is infrequent, we can use

the mechanism to adjust the query plan dynamically. The idea is to execute the query plan

first, and whenever a step cannot be executed because of the rule change, the algorithm looks

for alternative ways to replace the step and continue the query plan. However, sometimes

the access change makes the query no longer answerable, and therefore the existing plan

may be aborted, and it should be checked again to see if there still exists a valid query plan

to answer the query. Here, we also have two types of revocations.

Revocation of non-key attributes

If only the non-key attributes in the rules are revoked, the generated query plan should still

be able to run. However, these revoked attributes cannot be retrieved at these steps in the

plan. Thus, the algorithm first checks if the following steps in the plan can access these

attributes efficiently. If this is not the case, as the plan can still be executed, the result will

only have the partial answer of the query without these revoked attributes. Therefore, the

algorithm constructs another query to retrieve these missing attributes. The new query q′

contains only these attributes as well as the key attributes from their relations which are

used to join with the previously got partial results.

Since the planning party P can no longer retrieve these attributes, such a query must be

answered by another party, and party P will send the obtained partial result to that party.

Thus, the party to answer q′ must have a rule on the same join path as the one in query

q. If such a party exists, the query planning algorithm is re-executed to get a plan for q′.

Otherwise, the query q cannot be answered. If a re-planning is possible, the planning party

will first collect rules from cooperative parties to get the most up to date rules, and then

run the query planning algorithm. Finally, the result of q′ is joined with the partial results

of q, and that answer is obtained.
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Revocation of join paths

In the previous case, the enforceability of the join paths are not affected. Consequently, the

query plan can continue to execute. In contrast, if a rule is totally revoked, it is possible

that the current plan cannot be executed any more. In this situation, the algorithm looks

for an alternative party that can perform these steps. If the same intermediate result can be

obtained from the alternative party, the following steps in the plan can still be executed. If

the replacement of the steps cannot be found, the algorithm has to abort the current plan.

Since it is not clear whether the rules and their join paths are still enforceable, the rule

enforcement checking algorithm needs to be performed to determine the set of enforceable

rules. If query q is not answerable anymore, the algorithm finishes. Otherwise, the query

planning algorithm is re-executed, and a new plan is generated if possible. Since we assume

the access changes are infrequent, this dynamic adaption mechanism works if the new plan

is generated.
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Chapter 4: Rule enforcement with trusted third parties

In previous chapters, we studied the problems under the assumption that there is no trusted

third party available for secure computation over sensitive data. In this chapter, we assume

trusted third parties are available for rule enforcement and query execution. We discuss

various problems by considering the third parties.

4.1 Enforcement of rules with third party as a join service

As discussed above, we knew there are some rules and attributes in the given set of rules

cannot be enforced by any consistent query plan. In such case, we may need a trusted

third party (TP) to be involved in the rule enforcement. We assume that a third party

(TP ) is not among the cooperative parties and can receive authorized information from any

cooperative party. We assume that the TP always performs required operations honestly,

and does not leak information to any other party. In our model, we assume the trusted

third party works as a service. That is, each time we want to enforce a rule, we need to

send all relevant information to the third party, and the third party is only responsible for

returning the join results. After that, the third party does not retain any information about

the completed join requests.

We investigate the problem of rule enforcement. With the existence of a third party, it

is always possible to find an enforcement plan for a given authorization rule. We aim to

minimize the amount of data to be released to the third party because of the overhead of

sending data to the third party, latency/expense of third party computations, and potential

exposure of data during transmit or while at the third party. We start with consideration

of communication cost, and then discuss the overall cost of enforcing an authorization rule.

We can formulate the problem as follows: Given a target rule rt to be enforced at
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the third party, and a set of cooperative parties {P1, P2...Pm} together with a set of rules

R = {r1, r2...rn} given to these parties, we look for the minimal amount information from

set R to be sent to TP to enforce rt and the minimal overhead of using TP . We assume there

exists a pre-processing step to tell which rules can be enforced without the third party. We

prefer to enforce authorization rules among cooperative parties directly. We assume these

directly enforceable rules are materialized which means the data regulated by the rules is

always available so we do not have to enforce them from the beginning. We say the “rules”

in the following refers to the enforced information authorized by these rules.

First of all, we filter out the rules in R which are not relevant to target rulert or

not enforceable. Next, we look for which relevant rules should be selected. To minimize

information release to TP , we prefer a rule with a longer join path since it usually carries

less information. For instance, if the target join path Jt is C ./ E ./ S, it is desired to send

rules on join paths C ./ E and E ./ S to TP instead of C ./ E and S because join path

E ./ S usually has fewer tuples than S. In addition, as the given rules are “upwards closed”,

a higher level relevant rule always includes all the attributes of the lower level rules that are

relevant to it. Therefore, if we only need certain attributes, instead of selecting a low level

rule, we can select a high level rule with projection operation. For example, assuming we

need to enforce a rule rt with join path R ./ S ./ T on the third party, all the attributes in

relations S and T are already provided by a relevant rule rs, and we look for the next rule.

There are two relevant rules to choose from where one is on the basic relation R and the

other is on the join path of R ./ S. We only need attributes in relation R, but we prefer to

use the rule on R ./ S because of fewer tuples. Hence, we apply πR(R ./ S) to get needed

attributes. According to these principles, we only look for the Top level relevant rules on

cooperative parties to enforce the target rule tt. If a relevant rule of rt is not relevant to

any other higher level relevant rules, it is a top level relevant rule. We call the top level

relevant rules as Candidate Rules in the following. By considering only candidate rules,

we can largely reduce the number of rules to be considered to choose from. We have the

following finding between the maximum number of candidate rules on a single party and
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the join path length of the target rule.

Theorem 9. Given a target rule rt with join path length nt, the maximum number of

candidate rules on one party is nt.

Proof. Firstly, we assume the join path of rt is a chain type of join so that each join operation

between relations Ri and Rj is performed on a different join attribute. In such scenario,

the maximum number of candidate rules is nt. It happens when all the relevant rules on

the party P are rules on basic relations, and none of them can join with each other, so

there are at most nt such rules. If there is one more relevant rule re on the same party,

then the join path of re at least includes two relations. Thus, re is a candidate rule, but

the total number of candidate rules decreases as the two rules with relations in Je are no

longer candidate rules. If two relevant rules can join, the resulting rule is also a relevant

rule, and it can replace these two rules as the new candidate rule. Therefore, if there are

more than nt rules relevant to rt, the number of candidate rules is less than nt. If the join

schema of the join path Jt is not chain type, then at least two relations in JRt joining on

the same attribute. Consequently, the relevant rules of rt have more chances to be joined

together to form higher level relevant rules. In the extreme case, where all the relations

in JRt joining over the same attribute, then there is only one candidate rule since all the

relevant rules can join with each other. To conclude, the maximum number of candidate

rules on a cooperative party is nt.

4.2 Minimizing communication cost

In this section, we consider the problem of choosing the proper candidate rules to minimize

the amount of information sent to the third party. As these information is supposed to

be sent to TP through the network, we call it as the communication cost of enforcing

the target rule. In our cost model, we assume attributes are of the same lengths, so the

amount of information is quantified by sum of the number of attributes picked from each

rule multiplied by the number of tuples in that selected rule. Thus, we want to minimize

78



Cost =
∑k

i=1 π(ri) ∗w(ri), where ri is a selected rule, k is the number of selected rules, and

π(ri) is the number of attributes selected to be sent, and w(ri) is the number of tuples in

ri. We begin with the model that all candidate rules have the same number of tuples to

obtain useful theoretical results. Later, we discuss the model where the numbers of tuples

are different which is realistic.

4.2.1 Rules with same number of tuples

Our goal is to minimize the total amount of information sent to the third party. In our cost

model, only the numbers of the attributes and tuples influence the cost of a selected rule.

However, it is usually difficult to know the exact number of tuples in the join paths. To

begin with, we first assume all the candidate rules have the same number of tuples no matter

what are their join path lengths. Under such assumption, we can convert our problem into

an unweighted set covering problem.

We first assume the candidate rules have the same w(ri) value. An authorization rule

has two things need to be concerned for enforcement (a) the join path and (b) the attribute

set. Assuming the target rule rt has the attribute set At = {A1, A2...Am}, and the join

path Jt with JRt = {R1, R2...Rk}, we treat the join attributes from different relations in At

as different attributes marked by their relations. Other attributes are also labeled by their

relation names. To find the candidate rules that can provide enough information to enforce

rt, we map each labeled attribute to only one candidate rule so that all of these attributes

can be covered. Once we get such a mapping, we have one solution including the picked

rules and projections on desired attributes. Among these solutions, we want the minimal

cost solution according to our model. Since we assume all the top level rules have the same

number of tuples, it seems that the total cost of each candidate solution should always be

the same.

However, it is not true because the join attributes appearing in different relations are

merged into one attribute in the join results. We can consider the example in Figure 4.1.

The boxes in the figure show the attribute set of the rules, and the join paths and rule
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Figure 4.1: An example of choosing candidate rules

numbers are indicated above the boxes. There are four cooperating parties indicated by Pi

and one TP , and the three basic relations are joining over the same key attributes R.K.

Among the 4 candidate rules, if we select r2, r3 to retrieve the attributes R.X and S.Y

(non-key attributes), we need to send R.K and S.K which are their join attributes to the

third party as well. Whereas, if we choose r1, then we only need to send 3 attributes as

R.K and S.K are merged into one attribute in r1. Thus, choosing a candidate rule with

longer join path may reduce the number of attributes actually being transferred. Fewer

rules mean fewer overlapped join attributes to be sent (e.g., R.K in r1 and T.K in r4

are overlapped join attributes). In addition, selecting fewer rules can result in fewer join

operations performed at the third party. Since we assume the numbers of tuples in candidate

rules are the same, the problem is converted to identify minimal number of candidate rules

that can be composed to cover the target attribute set. It is basically an unweighted set

covering problem and hence NP -hard.

Theorem 10. Finding the minimal number of rules sent to the third party to enforce a

target rule is NP -hard.

Proof. Consider a set of elements U = {A1, A2, ..., An} (called the universe), and a set

of subsets S = {S1, S2, ...Sm} where Si is a set of elements from U . The unweighted set

covering problem is to find the minimal number of Si so that all the elements in U are

covered. We can turn it into our rule selection problem. For this we start with the attribute

set {A0, A1, A2, ..., An}, where A0 is the key attribute of some relation R and Ai’s are non-

key attributes of R. For each Si ∈ S, we construct a candidate rule ri on R with the
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attribute set Si
⋃
{A0} and assign it to a separate cooperative party. Therefore, if we can

find the minimal set of rules to enforce some target rule rt in polynomial time, the set

covering problem can also be solved in polynomial time.

4.2.2 Rules with different number of tuples

In general, the numbers of tuples in the relations/join paths are different, and they depend

on the length of the join paths and the join selectivity among the different relations. Join

selectivity [9] is the ratio of tuples that agree on the join attributes between different rela-

tions, and it can be estimated using the historical and statistical data of these relations. In

classical query optimization, a large number of works assume such values are known when

generating the query plans. We also assume that this is the case. Therefore, we can assign

each candidate rule ri with a cost csti = w(Ji) ∗ π(ri), where π(ri) is the per tuple cost of

choosing rule ri, and w(Ji) is the number of tuples in join path Ji.

The problem is similar to (but not identical to) the weighted set covering problem. Given

the universe U = {A1, A2, ..., An} and the set of subsets S = {S1, S2, ...Sm}, we try to find

a cover C of U which has the minimal overall cost cost(C) =
∑

Si∈C cst(Si). Although the

weighted set covering problem is also NP -hard to solve, the well known greedy algorithm

can achieve a lnn-approximation and it is proved to be the best-possible polynomial time

approximation algorithm for the problem [56].

In our problem, once some attributes are covered by previously chosen rules, the fol-

lowing chosen rules should project out these attributes so as to reduce cost. This is

closer to the pipelined set covering problem [57], which is to minimize the cost(C) =∑k
i=1w(Si)|U −

⋃i−1
j=1 Sj |. Unfortunately, our problem is still slightly different. Firstly,

the costs of previously chosen rules are not applied on the elements that are not covered by

these rules in our problem. Secondly, the key (join) attribute of a rule always needs to be

selected with the rule whether or not it is previously covered by other rules. Therefore, our

cost function should be as follows.
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cost(C) =

k∑
i=1

w(Si)π(Si), π(Si) =


|Sj

⋂
(U \

⋃i−1
j=1 Sj)|, if (key(Si) /∈

⋃i−1
j=1 Sj)

|Sj

⋂
(U \

⋃i−1
j=1 Sj)|+ 1, if (key(Si) ∈

⋃i−1
j=1 Sj)

(4.1)

Corollary 1. Finding the minimal amount of information sent to the third party to enforce

a target rule is NP -hard.

Proof. Based on Theorem 10, if we have a polynomial algorithm to find the minimal amount

of information with rules of different costs, we can assign the same cost to each candidate

rule so as to solve the unweighted version of the problem.

In the weighted set covering problem, the best known greedy algorithm finds the most

effective subset by calculating the number of missing attributes it contributes divided by

the cost of the subset. In our case, we also want to select the most effective attributes

from the available subsets. Similar to the weighted set covering algorithm which selects the

subset Si using the one with minimal w(Si)
|Si\U | , we select the rule with the minimal value of

w(Si)∗π(Si)
|Sj

⋂
(U\

⋃i−1
j=1 Sj)|

, where π(Si) is defined in equation (4.1).

In our problem, with one more rule selected, the third party need to perform one more

join operation, and possibly one more join attribute need to be transferred to the third

party. Therefore, when selecting a candidate rule, we examine the number of attributes this

rule can provide and the costs of retrieving these attributes. In the second case of π(Si) in

equation (4.1), the cost of one one extra attribute is added. However, if this selected rule

can provide many attributes to the uncovered set, the cost of this additional attribute can

be amortized. This makes the algorithm prefer rules providing more attributes and results

in less number of selected rules which is consistent with our goal. We present our greedy

algorithm in Algorithm 6.
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Algorithm 6 Selecting Minimal Relevant Data For Third Party

Require: The set R of candidate rules of rt on cooperative parties
Ensure: Find minimal amount of data being sent to TP to enforce rt

1: for Each candidate rule ri ∈ R do
2: Do projection on ri according to the attributes in rt
3: Assign ri with its estimated number of tuples ti
4: The set of selected rules C ← ∅
5: Target attribute set U ← merged attribute set of rt
6: while U 6= ∅ do
7: Find a rule ri ∈ R that minimize α = w(Si)∗π(Si)

|Sj
⋂
(U\

⋃i−1
j=1 Sj)|

8: R← R \ ri
9: for Each attribute Ai ∈ (ri

⋂
U) do

10: cost(Ai)← w(Si)

11: ri ← πU (ri) ∗ w(Si)

12: U ← U \ ri
13: C ← C

⋃
ri

14: Return C

Since the extra cost for a rule is at most one join/key attribute for a rule ri, our greedy

algorithm has a very tight bound. We show it in the following theorem.

Theorem 11. The greedy algorithm finds the amount of information that is 2-approximation

of the minimal amount of information to enforce a target rule.

Proof. If we do not consider the issue of join attributes, then for each Ai, we select it

from the subset rj where Ai ∈ rj with minimal w(Sj). As we select each element with

minimal possible cost, the total cost that covers U is minimal. We denote this cost as

MIN . Next, we denote the optimal solution of finding minimal information to enforce

a rule as OPT , and it is obvious MIN <= OPT because at least we need to cover all

the required attributes. Then if we use the greedy algorithm 6, in the worst case each

attribute Ai is retrieved with cost of 2*w(Sj). That is, each attribute is selected from a

separate rule and the associated join attribute is always redundant. We denote our solution

as GRD, and MIN <= OPT <= GRD <= 2MIN <= 2OPT . Therefore, our solution is

2-approximation.

Further reducing the communication cost

Instead of send all the relevant relational data to the third party and let the third party

does all the join operations to enforce the target rule, we can further reduce the amount
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Table 4.1: Example rules for enforcement
Rule No. Authorized attribute set Join Path Party

1 {oid,pid,total} E PE
2 {oid, pid, total} E ./oid S PE
3 {oid, address, delivery} S PS
4 {oid, pid, total, address, delivery} E ./oid S PS

of information being transferred in some special cases. For instance, suppose we have the

following set of rules on the two parties.

In Table 4.1, neither of the party can perform the join operation of E ./oid S. If r4 needs

to be enforced, a third party is required. According to the above discussion, both party PE

and PS can send their own data of r1 and r3 to the third party, and the third party can

perform the join operation and return the required result to party PS so as to enforce r4.

However, in this example, we can further reduce the involvement with the third party.

In fact, both parties can send only the attribute oid to the third party. The third party

perform the join operation only with two columns of oid and keeps only the values that

appear in both columns. Such information is sent back to PE , and PE performs another

local join to eliminate the tuples in its basic relation E whose value of oid do not appear

in the result got from the third party. As a matter of fact, this step enforces r2 and such

information is then sent to PS and the party PS can perform another join operation with

r3 to enforce r4. In this scenario, only two columns of data are sent to the third party.

In this example, such operation is possible because of the rule r2, PE is authorized to get

the join result of πoid(E ./oid S) from the third party. Otherwise, this operation violates the

authorizations. This type of operation can also happen on a multi-way join where several

cooperative parties send their candidate rules to the third party. If a party PC is similar

to PE which is also a Jt-cooperative party of rt, then it is allowed to get only the join

attribute of the resulting join path Jt from the third party. On the contrary, if PC is not

a Jt-cooperative party, then it is not allowed to get the join result on Jt. In such case, PC

has to send whole related attributes of its candidate rule to the third party.

This type of join operation is similar to semi-joins [58]. The requirement is that the
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cooperative party must be a Jt-cooperative party. In such cases, the party has a given

rule on the join path Jt. However, such a rule cannot be enforced among cooperative

parties. If we want to minimize the information being sent using this type of operation,

then we can assign new cost values for such candidate rules on Jt. Compare to other

relevant rules with the value α = w(Si)∗π(Si)
|Sj

⋂
(U\

⋃i−1
j=1 Sj)|

, the metric value α of a Jt top level

rule is just α = w(Si)

|Sj
⋂
(U\

⋃i−1
j=1 Sj)|

. This type of optimization may largely reduce the amount

of information need to be sent to the third party, but it also brings overheads for the

cooperative parties to perform more operations. If we choose to use such join mechanism,

the algorithm prefers to choose from these rules because of the smaller α value. Again,

depending on the given rules, this type of candidate rules may not exist.

4.3 Minimizing the overall cost

In this section, we consider the overall cost of using the third party, which includes both

the communication cost and the computing cost at the third party. The computing cost is

the cost of the third party to perform all required join operations. Given a set of selected

candidate rules, minimization of computing cost is similar to the classical query optimization

problem which is an NP -complete problem even if considering only the nested loops join

method [59]. The computing cost is difficult to estimate because of the different access

methods which can be index scan or sequential scan, and the different join methods such

as nested loop, sort-merge, hash-join, etc. Moreover, the join orders and the size of the

input data and join results also influence the computing cost. Therefore, we first make

some assumptions in this section so that we can estimate the computing cost.

We assume the number of tuples of the selected candidate rules are known as w(Ji), and

we also assume all the joins are done with nested loop method. Given n rules, the third

party always does n−1 sequential join operations. In addition, we assume the relations have

indices on their join attributes. For a nested loop join with two input relations, the cost

can be estimated as: Access(Outer) + (Card(Outer) ∗Match(Inner)), where Access(R)
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is the cost of access the relation R which is usually a function of the number of data

blocks in R. We can have Access(R) = Card(R)/Page(R), where Page(R) is the number

of tuples of R in one page. Card(R) is the number of tuples in R which is w(JR), and

Match(Inner) is the cost of finding a matching tuple in the inner relation which is usually

a small constant if the indices are available. Obviously, we always prefer using the smaller

input relation as the outer relation. In addition, as we need to perform n− 1 joins, we keep

the intermediate join results of the previous joins. The result of a join can be estimated as

Access(Result) = Card(Outer) ∗ Card(Inner) ∗ SelectivityFactor ∗ Page(Result), where

SelectivityFactor is the estimate of what fraction of input tuples will be in the result, and

it is known. Therefore, the total computing cost including n − 1 join operations can be

estimated as:

CompCost = Access(R1) +

n−1∑
i=1

(((Card(JRi) ∗ Card(Ri+1) ∗ SFJRi,Ri+1
∗ Page(JRi+1))

In the above equation, R1 is the selected rule with least cost w(Ji). JRi is the join

results of the rules from R1 to Ri, and SFJRi,Ri+1 is the selectivity factor. Thus, to minimize

CompCost, it is preferred to have fewer number of operations, and for each operation, the

relation with smaller cardinality should be used as the Outer relation. To that end, we

process join operations in the ascending order of the cardinality of the selected rules. In

fact, this only gives us a lower bound of the CompCost, because these rules cannot be

processed in an arbitrary order due to the join schema. Given a set of candidate rules

selected by the previous algorithm, we calculate the computing cost using the above model.

In most cases, the communication cost and computing cost are closely related and with less

information and fewer rules being sent to the third party, the computing cost can also be

reduced.

Thereby, the overall cost can be calculated as OverCost = CommCost+α∗CompCost.
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We put α here since the unit cost of the two are usually different. In communication cost

the unit cost can be the network transmission cost and computing cost is mainly the disk

I/O and CPU costs, which can be smaller than network cost but may not always be true.

If the communication cost is the dominant cost, we still use the above discussed algorithm

to pick up the candidate rules. However, if the computing cost is dominant, we may prefer

minimal number of rules instead of minimal amount of information (fewer join operations).

To that end, when finding the minimal overall cost, we run two greedy algorithms. One is

the Algorithm 6, and the other is the greedy algorithm for unweighted set covering problem,

where the algorithm always picks the rule that covers the maximal number of uncovered

elements. After running the two algorithms and calculating the overall cost with the two

algorithms, we pick the solution that gives the smaller overall cost.

4.4 Evaluation

We evaluated the effectiveness of our greedy algorithm against brute force via simulations.

For the brute force algorithm, we first filter the rules to obtain the candidate rules and apply

projections on these rules. In order to select the candidate rules, the brute-force algorithm

tests the power set of the filtered candidate rules, and for each rule combination, uses the

minimal possible cost value for each attribute in the target set. Therefore, we obtain the

minimal costs for each possible rule combination.

4.4.1 Minimal communication costs comparison

In this simulation evaluation, we use a join schema with 8 parties. Three of the parties

share the same key and join attributes, and the remaining parties are assumed to join in

a chain type of schema with all different join attributes. According to the join schema, we

generate the rules with various join paths and attribute sets, and each party could have one

rule on each distinct join path. There are 8 basic rules corresponding to the basic relations

owned by the parties. We generate total number of rules varying in the range from 9 to

208, and we randomly generate a target rule with join path length of 4. We define the cost
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Figure 4.2: Minimal communication costs with
different schemas
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Figure 4.3: Minimal communication costs found by
two algorithms

as a function of the join path length, basically w(Ji) = 1024/2length(Ji)−1. In other words,

we assume as the join path length increases by one, the number of tuples in the results

decreases by half. We use this model because (a) the numbers of tuples in join paths highly

depend on the real data and difficult to be modeled, (b) such a model is an extreme case

that favors the candidate rules with longer join paths. In contrast, we also use the model

where all the rules have same number of tuples (Section 4.1) as the other extreme case in

later simulations to compare the differences. We use a Mac Pro machine with 4 cores 2.2G

Hz with 6GB memory to perform all the simulations.

We then perform the similar simulations using a different join schema to see if schema

affects the results. For one such case, 6 of the relations can join with each other and the

other 2 relations form a chain. This is more like a star type of join. Figure 4.2 shows the

results of the simulations. The legend of “BruteForce1” means the brute force algorithm is

tested with the original join schema, and “Greedy2” means the greedy algorithm is tested

using the new join schema. Figure 4.2 also shows the trends of the costs as number of rules

increases. At the beginning, when the number of rules is small, usually the costs are high.

It is because we have to choose the rules with shorter join paths which have higher costs.

As the number of rules goes larger, the costs become less and stable. To better show the
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results, in figure 4.3 and figure 4.7, we show the number of rules beginning from 46. The

results show the different join schemas do not affect much.

Using the original schema, we then randomly generate a target rule with join path length

of 7. Figure 4.3 shows the comparison between two algorithms. In fact, the two algorithms

generate almost the same results. In Figure 4.3, the legend of “BruteForce4” indicates the

target rule has the join path length of 4, and brute force algorithm is used. Among these

solutions, in less than 2% of the cases the two algorithms produce different answers. In

addition, the maximal difference between them is just 5%. The results also indicate the

join path length of the target rule affect the costs, but the algorithms give similar solutions

independent of the join path length.

4.4.2 Running time comparison

As the two algorithms have different complexity, we test both with different number of

candidate rules. When the number of rules is small, the brute-force algorithm is also quick,

but as the number goes over 16, it shows the exponential nature of the algorithm. In

contrast, the greedy algorithm always runs fast. Figure 4.4 shows the comparison results in

log2 scale. We can learn from this result that if the total number of candidate rules is more

than 16 rules, the greedy algorithm is required.

In Figure 4.5 we show the relationship between the total number of generated rules and

the number of candidate rules. We run the simulations with various parameters. In the

figure, bar “len7,node12” means the target join path length is 7 and there are 12 cooperative

parties in total. As we can see this data series have a high probability of getting more than

16 candidate rules. The greedy algorithm is required in these cases.

4.4.3 Minimal overall costs comparison

We also conducted simulations to evaluate the solutions produced by two algorithms con-

sidering the minimal overall costs. As the significance of the communication cost and

computing cost can be different, we test with α. α = 0 means that the communication cost
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Figure 4.6: Minimal overall costs with same cost
model
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Figure 4.7: Minimal overall costs with half cost
model

is dominant and results are similar to the above. In contrast, α = 2 means the computing

cost was dominant. Figure 4.6 depicts the comparison between two algorithms. In the

legends, “Greedy0” means greedy algorithm is tested and α = 0. For this simulation, we

use the model that all the rules have the same number of tuples. Not surprisingly, the cost

values are high under such a model.

We again perform similar simulations using the original half cost model, and Figure 4.7
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shows the results. In both figures, the solutions found by the two algorithms are very

close. In fact, there are only 27 different cases among around 800 runs of the comparisons

where the two algorithms give different results. Moreover, we find most of the different

cases happen when the number of rules is less than 110. That is, with plenty number of

generated rules, the greedy algorithm is very close to give the optimal answer with the

maximal difference of only 9%. In most different cases, the greedy algorithm gives answer

that is 3 to 5 percent more compared to the optimal one. In addition, both figures show

when α = 2, the fluctuations become larger. It indicates that two types of costs are closely

related and the overall costs show the accumulated effects.

4.5 Third party with storage capability

In previous sections, we consider the third party works as a join service. Under such

assumption, the third party takes various input information from the cooperative parties

and does the join operation and gives the join results to the target party, and we assume

the third party does not retain any computation results. However, in many cases, the third

party may have the ability to cache its computation results, and the cooperative parties

can take advantage of it so as to reduce the cost of enforcing other rules.

In this section, we consider the model where the third party can store its computation

results for the future tasks. As the cached data can become obsolete after some time

period, we assume there are proper mechanisms [60, 61] for synchronize the data between

the data owners and the trusted third party. Hence, the third party can distinguish which

data is out of date. In addition, the storage capability of a third party is usually limited.

Therefore, different cache replacement mechanisms can be applied. In fact, the optimal

caching policy for the third party can be different from the file cache [62] and process

cache [63] mechanisms, and it can be complicated. For instance, the third party prefers

to keep the results of enforced rules with shorter join paths since they have better chances

to be reused. We leave the problem of finding optimal caching policy as the future work,

and we assume a good cache mechanism is applied at the third party. When a request for
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enforcing rule rt comes in, the third party first examines its cached data to see which is

useful for the rule enforcement. Then the selected data is locked and cannot be swapped

out from the third party storage until rt is enforced.

By taking the advantage of the intermediate results at the third party, we can send less

data to the third party to enforce a target rule. Similar to previous mechanisms, the third

party filters its cached data to find the data from the relevant rules of rt. Based on that, we

try to find out the minimal information that is need to be enforced by the third party needs.

We call the remaining set of attributes that are need to be enforced by the third party as

minimal required attribute set. To obtain that set, we organize the cached information

at the third party. All such information is put into a relevance graph, and we can use the

rule consistency algorithm to generate the closure of these available data. This step results

in the obtainable information of one or several candidate rules on the third party. These

candidate rules represent the maximal existing information that a third party can use to

enforce rt. Since the rule consistency algorithm usually finishes in a very short time, we

do not consider the cost of finding this useful information on the third party. However,

performing the join operations over these data incurs computing costs.

The next task is to use the third party to enforce minimal required attribute set so that

rt can be totally enforced. Although the minimal required attribute set may not form a

valid join path, we can still the same algorithm to find what is the minimal information

needed from the cooperative parties. In fact, we can think the problem in the following

way: to find the minimal costs of rules to enforce rt, there are relevant rules with extra

small costs which are the cached information at the third party. To enforce the remaining

attribute set, what is a minimal cost of rule selection. Consequently, it becomes a sub

problem of the problem discussed in last section. Thus, the problem is also NP -hard, and

we can use the same greedy algorithm. We have the following assertion as well.

Theorem 12. To minimize the cost of enforce a rule via third party, the data being sent

from cooperative parties should only cover the minimal required attribute set.

Proof. The third party takes advantage of all the cached information it has, so if an attribute
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is available at the third party, it does not appear in the minimal required attribute set

denoted as AM . That is, the minimal required attribute set is unique and determined.

Then we take AM as the new target attribute set to find the minimal relevant information

to cover it. For the set of relevant rules on cooperative parties denoted as St which is

transferred to the third party to enforce rt, it is adequate to project each rule in St on the

attribute set AM . The amount of resulting set of information is no more than St. Thus,

choosing the set of information only covering AM minimizes the total cost of enforcing the

rule.

4.5.1 Partially trusted third parties

In the above, we assumed that third party is fully trusted, and each party can send all of

their data to the third parties in plaintext. However, it may be not easy to find a third

party that is totally trusted by all of the cooperative parties. We can assume a public third

party service is “honest but curious”, which means the third party does work correctly but

may look into the data it receives. Cooperative enterprises usually do not want to reveal

the information to the third party. In such a scenario, cryptography can be used in these

operations. Before sending data to these third parties, data need to be encrypted so that

the third party cannot read the information.

Assuming full trust between cooperative parties, we can assume that all cooperative

parties share the same encryption key, and the cooperative parties encrypt all the data sent

to the third party first. The relational data is encrypted on a per tuple basis so that tuples

can be matched based on the join attribute. To that end, the join attribute of the tuple need

to be encrypted separately from the rest of the attributes. Thus, the same values on the

join attribute have the same cipher text, so there is no need for the third party to decrypt

the tuples and it can decide whether two tuples from two data owners should be merged

and output as a resulting tuple in the join result. In this way, a partially trusted third

party performs the join operation over the cipher text and it cannot reveal the information
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from the process. Similarly, the Jt-cooperative parties can use semi-join mechanism and

send only encrypted join attributes to the third party.

4.6 Multiple third parties

Usually, one third party is good enough to do all the join operations if it acts as a join

service. However, in some cases, one trusted third party is inadequate and undesired. The

cooperative parties may not share the same third party in terms of business relationship such

as cost or trust issues. In addition, one third party may be inadequate from performance

perspective. A single third party may be unable to provide efficient service because it is

remotely located from some of the cooperative parties.

From security perspective as well, we may need to isolate the data from different cooper-

ative parties. Usually it is not the case that all the parties are cooperating with each other,

and a cooperative party may have conflicts of interest with others. In other words, the

parties may form several collaboration groups with conflicts between them. For example,

an e-commerce company A may collaborate with a shipping company S, but it does not

want another e-commerce company B (its competitor) to see any of its data. In such case,

if the party A sends its data to a trusted third party, it expects that the competing party

B never has any access or interaction with the same third party, and vice versa. It is also

the third party’s responsibilities to enforce these policies so that whenever it holds any data

from party A, it denies any access (read/write) from party B. Therefore, if both A and B

need to be sent to the third party to accomplish join operations with other data, the data

from these conflicting parties should never be put on the same party including the third

party. Hence, we may need multiple third parties to isolate the data. Here the conflict

between A and B is just pairwise, but the conflicts can happen between multiple parties

which are multi-way conflicts.

Similar to the cooperative parties, the third party may also need to be prevented from

obtaining certain sensitive associations via local computation. In such case, if a third party

gets various data from several cooperative parties and such data can be potential combined
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to derive the sensitive association, then these pieces data from several cooperative parities

forms a multi-way conflict. Multiple third parties are also required. For instance, the

association in the join result of R ./ S ./ T is undesired but any join results of two tables

from {R,S, T} is allowed, then data from {R,S, T} forms a three-way conflict.

4.6.1 Multiple third parties for data isolation

First of all, we have the following definition for the data isolation requirement in our scenario.

Definition 11. A piece of data conflicts with the other, if they are owned by two com-

peting parties or the derivable information from them is undesired. The data isolation

requirement is satisfied, if there is no conflict exists on any single party.

From the definition, it is clear that there is no conflict for each given authorization rule.

That is, for relations appear in a join path, these data do not conflict with each other.

Otherwise, such a rule will not be made since all the rules are desired by the business

requirements.

Basically, the conflicts happen for two reasons: competing parties and undesired derived

results. The competing relationships can be obtained when the parties and join schema are

given. In contrast, the undesired derived results are only given in the similar form of

negative rules and only the prohibited results are explicitly given. Therefore, there is a

need to figure out these multi-way conflicts. Considering the possible conflict at the third

party, we interpret the conflicts using Chinese wall policy. If a third party obtains a piece of

data from one party, it can never get data from its competitors. Similarly, for the undesired

computation results, no third party can get all information that causes a multi-way conflict.

Under the semantic of Chinese wall policy, if there is a n-way conflict, then a third party

can obtain up to n− 1 pieces of data but it cannot access the last piece of the data.

Conflict graph

To minimize the costs of using the third party usage, a basic problem is what is the minimal

number of third parties required to satisfy the security requirements. In the following, we
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examine this problem in details.

We represent the conflict relationships using a graph. In such a graph GC =< V,E >,

each vertex v ∈ V represents a rule, and an edge e ∈ E connects two vertices if the

information regulated by the two rules conflict with each other, and such a graph is called

conflict graph. The data from competing parties obvious creates pairwise conflicts between

them. However, the difficult problem is to use the conflict graph to represent the multi-way

conflicts.

The multi-way conflict is usually given in the form like a negative rule discussed in

Chapter 2. To simplify the discussion, we consider the conflicts in terms of join paths

below, and the attribute set can be considered by extending the mechanism. Similar to

negative rules, if a join path is prohibited at third parties, the other join paths it is relevant

to are prohibited as well. For example, if R ./ S contains sensitive association, then a join

path R ./ S ./ W is also prohibited. To present multi-way conflicts using a graph, we need

to first understand the relationship among the rules. Similar to the situation in Chapter

2, we consider the potential local computations that can be happened at the third party.

We need to consider the rules on all of the cooperative parties together since all these

rules can be potentially sent to the third party. Therefore, we run the rule consistency

checking algorithm against all the authorization rules given to the cooperative parties and

we have the relevance graph. During this process, some new rules are generated and these

rules represent the potentially derivable information at the third party. Each rule in the

relevance graph is also put into the conflict graph as a vertex. For a given prohibited join

path, we check the relevance graph using the similar mechanism to the rule enforcement

checking algorithm, so that we know all pairs of rules that can be composed to obtain the

undesired join path. Hence, we put an edge between each found pair of the rules. In this

way, we include all the conflict information in the conflict graph.
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4.6.2 Static data allocation

To be conservative, once the third party obtains some data, the cooperative parties may

assume the third party will always retain that data so the conflict data will never be sent the

same party. In addition, we assume all the data on the cooperative party may potentially

send their data to the third party. Under such assumptions, we want to figure out the

minimal number of third parties required.

Once we create the conflict graph, we can relate our problem with the graph coloring

problem. Each edge in the graph denotes the two connecting vertices should not be put

on the same third party, and we assign colors to all the vertices in the graph. The vertices

connected by the same edge cannot have the same color. We can consider each color

represents a third party, and we can avoid all the conflicts by properly coloring the graph.

Therefore, finding the minimal number of third parties is finding the chromatic number of

the conflict graph. However, find a chromatic number of a graph is known to be NP -hard.

Corollary 2. Finding the minimal number of third parities to resolve all conflicts among

data is NP -hard.

Finding the chromatic number

Finding the chromatic number of a given graph is well studied, and it is NP -hard. The best

known approximation gives the bound of O(n(log log n/ log n)3) [64], where n is the number

of the vertices in the graph. Such an approximation is based on randomized algorithm and

gives the theoretical bounds of the problem, but it cannot be directly applied to the graphs.

In general, another well known greedy algorithm which is called Welsh-Powell algorithm [65]

is used to find the chromatic number of a graph. Given the conflict graph, we can first order

the vertices according to their degrees, and we give different numbers to various colors. The

greedy algorithm considers the vertices in the order v1, , vn and assigns to vi the smallest

available color not used by vi’s neighbors among v1, , vi−1, and it adds a new color to vi

if needed. The solution generated by the algorithm uses at most min(d(xi) + 1, i) colors,

where d(xi) is the maximum degree of the graph. Using this greedy algorithm gives us the
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static allocation to avoid conflicts at the third parties.

The above algorithm gives us a coloring result of the conflict graph. However, in our

scenario, we may be able to improve the bound of the algorithm. In the previous chapters,

we discussed how to organize rules in a relevance graph. As rules are given to different

cooperative parties, the set of rules on the same party will never conflict with each other.

Furthermore, the rules have the relevant relationships do not conflict with each other either.

Based on these properties, we can conclude that the other upper-bound for the chromatic

number is the number of the different parties, and we assume there are N cooperative

parties. Therefore, the new upper-bound is min(d(xi) + 1, i, N). If the result of Welsh-

Powell algorithm uses more than N colors, we redo the coloring of the graph by simply

assign a different color to each individual party. The rules on the same party are marked

using the same color. This gives us a colored graph to avoid conflicts as well.

Optimization with relevant rules

By taking advantage of the rule relevance relationship, we may further reduce the number

of the colors used. In the relevance graph, we have edges across the different parties that

connecting the rules with the equivalent join paths. If two rules have the equivalent join

paths, then they cannot conflict with each other, and they can be applied with the same

color. In addition, all the lower level rules connected to these rules in the relevance graph

do not conflict with each other either. For instance, we have rt, ro on the join path Jt and

a set of lower level rules rm...rn are connected to them in the relevance graph, then these

rule never conflict with each other. It is because of the fact that if any of these rules form

conflict, then there will be a prohibited join path given which is a sub path of rt which is

impossible since rt is a given authorization rule.

Therefore, we can use the same color for Jt-cooperative rules as well as their connected

lower level rules. To that end, we examine the relevance graph in a top-down manner.

Beginning with the rules having longest join paths, we count the number of cooperative top

level rules on each party. A cooperative top level rule is a rule that has an equivalent
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join path as a rule on another cooperative party, and there is no higher level rule it relevant

to that is also a cooperative rule.

We prefer the parties whose top level rules are all cooperative rules. If so, these coop-

erative top level rules can be colored using the colors of other parties. To that end, we sort

the cooperative parties according to the number of top level rules they have. We begin with

the party whose top level rules are all cooperative rules. Since each rule is cooperative with

some other rules on remote parties, we can color this rule using the color of the remote

party. Thus, we can color all the rules on this party using only the colors of other parties

and reduce the chromatic number by one.

However, this coloring mechanism is not transitive. It only works among Jt-cooperative

rules. For instance, if the party PR has two rules on R and S respectively, and another

party PS has two rules S and W . We can color PR with red, and PS is blue. As two parties

both have the rules on S, the rule S on PS can also be colored as red. However, even if

S does not conflict with W , we cannot transitively color W using red. It is because these

three relations may potentially form a conflict group. Therefore, we iteratively examine the

parties covered by cooperative top level rules, and try to color such parties use the colors

of other parties. The process proceeds until all such parties are checked, and not all such

parties can be colored using the colors of remote parties. To conclude, the process helps to

reduce the number of colors needed, but it is not aimed to provide a optimal answer. Using

this approach, we just have another alternative way to give a coloring solution, which is

complementary to the existing approximate coloring algorithms. This approach is specific

to our problem situation compared to general graph coloring algorithms.

To illustrate the mechanism, we use figure 4.8. Assuming there is a restriction that the

join path of R ./ S ./ W is not allowed to be generated. As there are three parties, 3 colors

are enough to solve all conflicts and we assign 3 different colors to parties at the beginning.

Since party PR only has one top level rule and it is on the same join path as rule r7 on PS ,

we can use the color of Ps which is color 2 to color r6. As r1 is relevant to r6, all of the

rules on PR can be colored using color 2. Thus, we reduce the number of colors by one. On
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Figure 4.8: An example of reducing number of colors

party PW , r4 can be colored using color 2 as it is on the same join path as r3. However, we

cannot further reduce the number of colors.

4.6.3 Dynamic data allocation

Instead of assigning data statically to parties to avoid conflicts, a dynamic assignment may

be desired in practice. When discussing the static allocation, we assume all the cooperative

parties will send their data to the third party and the third party always retains the data it

receives. However, these assumptions may not always be true. In some situations, the third

party are trusted by the cooperative parties, and because of the limited storage capability

of third party it swaps out some old data from the cache after providing the service. Then,

we only need to worry about the possible conflict during a period of time on each third

party. Moreover, different rules may need to be enforced with different frequencies. During

certain amount of time, we can only focus on optimizing certain number of rules instead

of all the rules. If we use the solution of static allocation, we may use extra number of

third parties than we actually needed at any time point. In fact, the static data allocation

assumes the worst case scenario, and we may want to allocate the data to the third parties

on the fly which depends on the current allocation of data at the third parties.

As we assume the number of conflicts at a certain time point is small, we begin with

only one third party. To enforce the first target rule, all the relevant data is sent to the

third party. After that, for each new data sent to the third party, we check the previously

built conflict graph to see if the rule regulating the new data will cause conflict on the third
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party. If the new rule causes a new conflict, we move such data to a new third party. In the

case that there is already a list of third parties, we check the newly added rule with each

of these parties. We prefer to put the rule along with the rules from the same cooperative

party since they never conflict with each other. We assign the new rule to the first found

such third party, or we assign it to a new third party if needed. By allocating the data

in this way, we may use more third parties than the number of parties currently involved

in some bad cases. Whereas, under the assumption that there is not so many enforcement

requests during a period of time, the number of third parties needed is usually smaller than

the static allocation. The dynamic data allocation provides another option for solving the

conflicts among the data.
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Chapter 5: Conclusions and future work

In this chapter, we first give the conclusions of the works, and then discuss the future

directions for the research.

5.1 Conclusions

In this thesis, we consider the scenarios that require different parties and enterprises to

cooperate with each other to perform computations and meet business requirements. Each

of these enterprises owns and manages its data independently using a private cloud, and

these parties need to selectively share some information with one another. We consider the

authorization model where authorization rules are used to constrain the access privileges

based on the results of join operations over relational data.

We can interpret the authorization rules in two ways. With implicit authorization, we

presented an efficient algorithm to decide whether a given query can be authorized using

the join properties among the given rules. Under the explicit semantic, access conflicts may

arise among the rules made according to business requirements. Therefore, we proposed

a mechanism to make the set of cooperative authorization rules consistent. In addition,

we also presented algorithms to maintain the rule consistency in the case of granting and

revocation of access privileges. To prevent undesired computation results, negative rules

are introduced. We proposed an algorithm to check whether the given authorization rules

will violate the negative rules.

Since authorization rules are made based on business requirements, it is possible that

some rules cannot be enforced among the cooperative parties which arises the problem of

rule enforcement. To enforce a rule on join results, it is required that involved parties have

sufficient authorizations to perform the join (or semi-join) operations. Therefore, given a set
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of rules among some cooperative parties, it is desired to know whether each individual rule

can be enforced among these parties. We proposed an algorithm that uses a constructive

method to check the rules in a bottom-up manner based on the number of the relations

involved, and the mechanism finds all the information that can be enforced among existing

collaborating parties. There are some rules cannot be enforced, and we give a mechanism

to modify the rules so as to make them totally enforceable. We proved the correctness and

completeness of the algorithm.

In addition, a query execution plan is needed to answer an incoming query, and a regular

query optimizer may miss possible plans under the constraints of these rules. Based on the

rule enforceability, we presented a mechanism to generate a query execution plan which is

consistent with the authorization rules for each incoming authorized query. Since finding the

optimal query plan is NP -hard, our algorithm works in a greedy way to find a good solution.

We compared the query plans generated by our algorithm with the optimal ones through

case studies (where optimal plans can be identified). The results showed the effectiveness

of our approach.

If there is no consistent plan to enforce a rule among existing parties, trusted third

parties are needed. We think various models for the third party. A third party can work as

a secure join service provider, where it does not store any information. Also, it can work

as an aggregator where it can cache the input data and join results. We first examined

the problem under the model of one third party works as a join service. We discussed

how to minimize the communication cost and the computing cost for interaction with third

parties. Since these problems are NP -hard, and we proposed greedy algorithms to generate

solutions. With extensive simulation evaluations, we concluded that our algorithms were

efficient and the solutions were close to the optimal ones. Sometimes, multiple third parties

are needed for data isolation and performance purpose, and there is the problem of data

allocation with multiple third parties. We described both static and dynamic data allocation

mechanisms to meet the data isolation requirements with minimal number of third parties.

103



5.2 Future work

In the future, it is possible to formulate the query authorization problem as well as the

negative rule checking problem with first-order logic so as to use traditional SAT based

techniques [66, 67]; however, the feasibility and complexity of this approach remain to be

investigated. For the enforcement of negative rules using Chinese wall policy, there exist a

question of how to enforce it in a distributed manner. If the access history of the parties

is not maintained at a central place, the enforcement of such negative rules becomes chal-

lenging. As we considered the rule consistency problem with respect to rule changes, it is

worth to look into the more dynamic situation where not only the rules are changing from

time to time, but also parties can join and leave the cooperative environment at different

times.

We assume the collaborating parties first make the rules via negotiations, and then

check whether a query is authorized and the safe ways to answer the query. It is possible

to consider reversing the process. That is, we may want to figure out the complete set of

queries that should be answered to meet business requirements, and after that we design au-

thorization rules for cooperative parties so that only these wanted queries can be answered.

However, due to the local computation, we may authorize extra information when granting

privileges for this set of queries. Thereby, the problem becomes to figure out the best way

of making rules so that minimal amount of extra information will be released together with

the rules. To achieve that, we may also assume a limited number of third parties are given,

and there is a problem of finding the optimal solution under such a scenario.

We studied the rule consistency problem with infrequent rule changes. In a military or

workflow scenario, the permissions as well as the data may change on a per mission basis

so that an authorization rule given to a party applies only for a short period of time. Since

the relevant data also changes frequently in this case, it will become useless after some

time. In such environments, the authorization rule can be granted dynamically based on

the demands. For instance, for each step in a query, we can grant permissions to authorize

the operation on the fly. Once such a step is executed, the authorizations are revoked.
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This is similar to the workflow scenario. By granting privileges for a short time period, the

extra information that is obtainable via local computation can be limited. The challenging

problem becomes finding a way to schedule the queries as well as the time points to grant

the authorizations so that minimal amount of extra information is released.

In our current model, access privileges are specified at the attribute level. Once a

party can access an attribute, it can get all the tuples projected on that attribute. Since

certain tuples can be more sensitive than the others, restrictions on the tuple level is also

desired to prevent undesired data release. This is a simplified selection operation over

the authorized data. However, it is expected that adding such a restriction should not

complicate the current authorization model. In addition, it is also interesting to consider the

write permissions. Our current models assume only the data owners may change their data

and other parties just read the data from these owners. In some situations, it is desirable

that a collaborating party can also modify the data owned by others. In addition to the

synchronization problems, there is also a challenging problem of organizing the privileges

and correctly granting and revoking write privileges to certain parties.

Our current model does not assume any malicious insiders and all the parties are ex-

pected to strictly follow the given authorization rules. In practice, a party may not behave

honestly during the collaboration. For instance, a party may be authorized to obtain some

information from a data owner, and then it may leak this information to some unautho-

rized parties. As another example, a party that receives data from the data owner and

sends it to another party according to the generated query plan may change some of data

it should transfer or choose not to send all the required data. Thus, it is required to have

a mechanism that can verify the integrity of the received data. One possibility is to use

the existing mechanisms such as hash values, merkle trees and signatures to ensure the

data integrity [68,69]. Considering the properties in the collaboration environment, it may

be possible to check the data integrity through collaboration. In cooperative data access,

there may exist more than one legitimate data transmission path beginning from the data

owner to the authorized party. Therefore, parties can exchange the information they have.
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By doing that, if the number of misbehaving parties is limited, it is very possible to de-

tect them. It is possible to defined rules in such a way that each query be answered in at

least k ways, and misbehaviors can be detected if only fewer than k/2 ways are behaving

irregularly. Furthermore, existing mechanisms such as reputation systems [70] and trust

management [71] can be considered to ensure the data integrity in the cooperative data

access environment.

In previous discussion about the third party with storage ability, we do not consider

the concrete cache mechanism used by the third party. The data cached by the third party

should depend on the frequency of the use, size of the data, the update frequency of the

relational data and so on. The optimal cache policy of the third party can be different from

the file cache and process cache because the relational data is structured and we can cache

the data on a per tuple or column basis. Therefore, it is not trivial to find the optimal

cache policy. Furthermore, the data owned by the enterprises need to be synchronized with

the data at the third party. The synchronization problem needs to be resolved.

To build the private cloud, different parties may rent the cloud infrastructure from the

same service provider. It is also possible for an enterprise to build a hybrid cloud where

the data owner manages the sensitive data locally, but the data for sharing is put in a

public cloud. These emerging trends create new challenges and opportunities for secure

cooperative data access. If cooperative parties use the same cloud provider, then the cloud

provider could be used as a partially trusted third party to help enforce the security policies.

In addition, it may be possible to perform privacy preserving join operations in such an

environment. The expected mechanism can be a hybrid of using a trusted third party and

the secure multiparty computation. Also, the cost model should also be revised under such

situations.

At last, we want to apply and evaluate all the proposed mechanisms in real world sce-

narios. We already implemented the algorithms and tested them using generated simulation

data. However, that is not adequate. We expect to look into the more concrete example

in the real world. For instance, we may want to study the relational schemas used by the
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e-commerce companies, shipping companies such as Amazon, ebay, UPS and on. We also

need to analyze the collaboration relationships among these entities and see how to make

the authorization rules in an optimal way so that only information required by business

requirement is released. In addition, we want to evaluate how the query plan generation

mechanism works under such environments, and to what extent the trusted third parties

are needed to satisfy all security requirements.
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