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ABSTRACT 

ACTIVE AUTHENTICATION USING BEHAVIORAL BIOMETRICS AND 

MACHINE LEARNING 

 

Ala’a El Masri, Ph.D. 

 

George Mason University, 2016 

 

Dissertation Director: Dr. Harry Wechsler 

 

 

 

Active, or continuous, authentication is gradually gaining grounds as the preferred 

method of personal authentication. This is due to the limited nature of standard 

authentication methods that are unable to guarantee user identity beyond initial 

authentication. While research in the area of active authentication has explored and 

proposed various techniques to overcome this problem, we present two new behavioral-

based biometric models for active authentication that expand on current research in terms 

of performance and scope using adaptive user profiles and their dynamics over time. The 

novel active authentication models are complementary to each other and include: (1) 

Application Commands Streams Authentication Model (ACSAM) and (2) Scrolling 

Behavior Authentication Model (SBAM). 

ACSAM is based on the commands a user issues while interacting with a GUI-

based application. In this model, supervised learning methods including Random Forests, 
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AdaBoost, Decision Trees and Naïve Bayes are used to predict whether the authenticated 

user editing a document is legitimate or not. Random Forests bested all the other learning 

methods considered in correctly identifying the user with an average of 95.43% accuracy 

(number of users correctly classified), while achieving an F1-measure and Area Under the 

Curve (AUC) of 0.953 and 0.735 respectively. 

 SBAM is based on a user’s document scrolling behavior. In this model, both 

classification and clustering techniques are used to authenticate the identified user as 

legitimate or not. For classification, supervised learning methods including Random 

Forests, AdaBoost and AD Trees (Alternative Decision Trees) are used. While 

classification using Random Forests with subsampling yielded an average of 98.24% 

accuracy, it was biased towards the majority class (imposters). This was evident when 

examining the F1-measure for the rare class (legitimate users), which at best achieved 

0.50 accuracy. Alternatively, unsupervised learning using K-means clustering was shown 

to narrow down the possibility that a given scrolling behavior belongs to a particular set 

of users. Towards that end, two approaches were applied to mitigate the unbalanced 

authentication aspect. The first approach focused on ranking the users with 58% and 80% 

of the time the actual user ranked in the top 5 and 10 users, respectively. The second 

approach focused on feasibility sets (or multiple ID sets) with 83% of the time the actual 

user within the correct set of possible user profiles.  

 



1 

 

CHAPTER 1: INTRODUCTION 

This research addressed the security task of continuously and actively verifying the 

identity of an authenticated user beyond initial authentication. This is a critical property 

of the next generation authentication models and a natural progression of traditional 

authentication techniques. This chapter introduces the related security tasks, associated 

challenges and motivation, proposed solutions and novel contribution to this research 

area. 

1.1 Challenges and Motivation 

 

Despite the wide consensus on the vulnerability of password-only authentication, 

52% of organizations still employ such policies [1]. The problem with password-only 

authentication is that the system is dependent on a single and, in many cases, weak factor 

for authentication. If exploited, the system is breached and its resources are vulnerable to 

unauthorized access. In a report published by Verizon in 2013, security breach incidents 

were reported by 19 global organizations that shows that 76% of all breaches investigated 

were due to the exploitation of weak or stolen credentials [2]. Consequently, there has 

been a push for organizations to strengthen their authentication policies by adopting two-, 

and sometimes three- factor authentication, in which the user is required to provide more 

than one method of identification (two- and three- factor authentication are discussed in 

details later in section 2.2.2 Multi-factor Authentication). 
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While multifactor and multimodal authentication models provide robust user 

identification mechanisms, concerns over verifying the user's identity beyond initial 

authentication remain in demand and have dominated recent discussion. The problem of 

ensuring that the active user is still the same user who was initially authenticated led 

researchers to search for additional means of identification that span the duration of the 

user's active session and provide continuous authentication. This concept, sometimes 

referred to as active or continuous authentication, requires that a system attempts to 

verify that the identity of the authenticated user stays the same throughout his/her active 

session. 

To best demonstrate the need of active authentication models, consider the 

following scenarios:  

 Compromised Credentials: Assume that Ammar, a legitimate user, logs into his 

system by providing valid credentials. While he is logged in, Ammar leaves his 

computer without logging out or locking his screen. An imposter takes over his 

active session without a way for the system to detect the intrusion. Similarly, 

stolen credentials can be used by an imposter to log in to the system and gain 

access to system resources otherwise available only for the legitimate user. 

Moreover, relying on password-only authentication can impose the risk of 

passwords being guessed, especially when strong password policies are not in 

place. This scenario equates to  the majority of security breaches in 2012 (76%) 

according to the 2013 Data Breach Investigations Report by Verizon [2]. 
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 Insider Cyber Threat: A definition of insider threat can be borrowed from [3], in 

which it is defined as a threat that occurs when a trusted entity, someone with the 

power to violate a set of rules in a given security policy, abuses his/her power. 

Consider Mariam, a disgruntled employee with valid credentials. Mariam logs 

into the system, but this time with an ill will towards her employee, decides to 

corrupt and delete business-critical data. Since Mariam is a legitimate user, a 

traditional authentication model has no means to detect such adverse actions. 

According to [2], 14% of data breaches in 2012 were perpetrated by insiders to 

the organizations. 

 Ubiquitous Computing: Organization are increasingly adopting mobile 

technologies that are designed to increase their employees’ productivity by 

keeping them connected to the organizational resources and offering the apps 

needed to carry out their daily business operations. In fact, a new business model 

referred to as Bring-Your-Own-Device (BOYD) encourages employees to use 

their own personal mobile devices for work purposes. However, with the rise of 

mobile computing, organizations are faced with new security challenges. Due to 

their size and ubiquitous nature, mobile devices are easy to steal or lose, which 

increases the risk of sensitive business data falling in the wrong hands. Consider 

Eman, a legitimate employee that uses her mobile phone to conduct many of her 

daily business activities (e.g., business email communications). While out for 

lunch, Eman forgets her phone. A stranger finds it and goes through her email 
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exposing sensitive client data. According to a recent survey published in 2014 by 

[4], 68% of reported data breaches since 2010 were due to the loss of theft of 

employees’ mobile device.  

 Malware: Malware, short for malicious software, is a term used to describe a 

wide range of software types including computer viruses, worms, Trojan horses, 

spyware, adware and others that are designed to execute illegitimate and harmful 

actions against the target system. While how malware is designed to carry out its 

malicious activities may vary based on its adverse objectives, all exploit a 

common threat to a system’s availability, integrity and/or confidentiality. 

According to [2], 40% of reported data breaches in 2012 were the result of 

malware. Both academia and industry continue to explore and propose new 

methods for detecting such adverse software through the design and 

implementation of intrusion detection systems. These systems are designed to 

detect abnormal activities on the host system, which is a core design component 

of active authentication models today. 

In all the above scenarios, if an active authentication model is in place, the system 

could detect the abnormal behavior, which then could trigger a response such as blocking 

or deactivating the imposter’s access. While the above scenarios by no means represent 

an exhaustive list of the shortcomings of traditional authentication models, they do 

showcase the need for active authentication models. However, it is important to 

emphasize the two main characteristics of an active authentication model: continuous and 
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non-intrusiveness (these are further defined and discussed in 2.2.3 Active 

Authentication). 

1.2 Thesis Statement 

 

Traditional authentication models fall short of verifying the user’s identity beyond 

the initial authentication. Therefore, active authentication models are needed to 

continuously and noninvasively ensure that a user is indeed the original authenticated 

entity throughout her active session.  

 

1.3 Solutions and Methods 

 

Both academia and industry continue to propose, design and implement solutions 

to the problem of active authentication. The majority of that work relies heavily on 

biometric technologies and machine learning in its design (both discussed in Chapter 3: 

Background and Related Work and Chapter 4: Machine Learning). This research explores 

and proposes two new active authentication models. The first model is based on the 

sequence of user-issued commands from GUI-based application (see Chapter 6: 

Application Commands Streams Authentication Model (ACSAM)). The second model is 

based on user’s document scrolling behavior (see Chapter 7: Scrolling Behavior Based 

authentication Model (SBAM)).  

In both models, various machine learning methods have been evaluated and 

compared including classification and clustering. In classification, predictive modeling is 

used to identify the class label (authenticated vs. imposter) of a new observed 

user/document interaction represented as a feature vector. Decision tress (C4.5) and 
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Naïve Bayes are evaluated for performance. To improve the model’s classification 

accuracy, ensemble methods are used including Random Forests, AdaBoost and SMOTE 

(Synthetic Minority Over-sampling Technique). These methods tend to perform better 

than a single classifier when dealing with small datasets, as such is the case with our 

datasets. In addition, subsampling techniques are used such as leave-one-out and k-fold 

cross validation to overcome this same problem. 

In clustering, K-means method is used for unsupervised learning with the goal of 

narrowing down the possibility of reading pattern belonging to a smaller set of predefined 

user profiles. Two approaches were applied. The first approach focused on ranking the 

users into the top 5 and 10 possible users for a given working session. Here, a basic 

simple ranking technique is applied in which a user profile is represented as a set of 

centroids. Given a new working session, the minimum Euclidean distance to a user’s 

profile is calculated (for details see section 7.3.2.3.1 Approach 1: Top 5/10 Ranking 

(Singleton Sets)). The second approach focused on feasibility sets (or multiple ID sets). 

Here, possible users are filtered by their profile standard error. A per-profile distance 

threshold is calculated based on the average distance and standard deviation between the 

different reading sessions in each profile and the centroids (for details see section 

7.3.2.3.2 Approach 2: Feasibility Sets (Multiple ID Sets)). 

Both models can be abstracted and separately applied to a general authentication 

protocol with four distinct phases: observation, creation/update, comparison and decision 

phases. This general protocol is designed for user/document interaction; the focus of this 
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research (we define the nature of this interaction later when discussing the actual 

models). The following is a description of each phase: 

 Observation phase: During this phase, the system non-intrusively monitors the 

user’s interaction with a document and collects predefined data points known to 

provide discriminative properties. 

 Profile creation/update phase: During this phase, the system references a user 

profile repository. The goal is to determine if a user profile exists for the current 

user based on previous interaction with documents. If no profile is found, a new 

user profile is created and updated with the data being collected. If a user profile 

is found, it is retrieved and updated with the data being collected. 

 Comparison phase: During this phase, the system attempts to make a 

determination whether the user is indeed who he/she claims to be by comparing 

the newly collected data with the saved profile. Machine learning algorithms can 

be applied to make this determination. 

 Decision phase: Finally, the system makes a decision whether to allow the user to 

continue interacting with the document or deny access. This is a binary 

classification problem in which the algorithm employed attempts to classify the 

current interaction as one belonging to the authenticated user or not. In the case 

where access should be denied, the system can trigger various protective actions 

based on the policy in place such as locking the system, sending alerts to system 

administrators and/or prompting the user to re-authenticate. 
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In cases where the authenticated user is wrongfully denied access (False Positive), 

the system should be able to adapt by updating the user profile with the interaction data 

points that led to the misclassification; and hence reducing future false positives. 

Therefore, the system continues to evolve by learning changes in the user’s document 

interaction behavior. Figure 1 provides an illustration of the proposed general active 

authentication protocol discussed. 

 

 

 

 
Figure 1: A general active authentication protocol 

 

 

1.4 Performance 

 

In ACSAM, classification with ensemble learning methods including Random 

Forest and AdaBoost both perform well. Overall, Random Forests bested other classifiers 
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in terms of accuracy (average number of users correctly classified), F1-measure and AUC 

with 95.43%, 0.943 and 0.735 respectively. This is due to the intrinsic characteristics 

(e.g. randomness and sampling/bagging) of Random Forests, which cope better with the 

varying nature of individual user profiles. This level of optimal performance is in line 

with other research which has found that ensemble learning, either through boosting or 

bootstraps aggregating (bagging) is flexible enough to represent complex hypothesis 

functions that are difficult to learn with a single classifier [5]. In addition, bagging (used 

by Random Forest) can reduce the concern that the learned model may over fit the 

dataset. 

However, to reduce the false negative rate (authenticated users are misclassified 

as imposters), the majority class was subsampled in the training set to 10% of its total 

size, bringing the number of sessions in the authenticated and other classes much closer 

to an even split. The results show that subsampling the majority class makes all the 

classifiers more sensitive to the minority class. Although the average percent correct rate 

declines by 9.67% for the Random Forest algorithm, the average AUC increases to 0.746. 

The relative significance of AUC comes from the derivation and interpretation of ROC 

where decision-making is a function of setting thresholds on similarity distances to trace 

the ROC curve. Therefore, subsampling has made the classifier far more sensitive to 

classifying authenticated sessions as authenticated (true positives have increased). 

Subsampling the majority class thus results in a trade-off: a substantially lower false 

negative comes at the cost of potentially confusing additional imposter sessions as 

authenticated (a 23.27% increase in false positives). 
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In scrolling behavior based active authentication model, classification is neutral at 

best. Random Forests with subsampling achieves a 98.24% average percent correctly 

classified and an F1-measure of 0.50 of the authenticated class suggesting a random guess 

when it comes to determining the class of an authenticated user. Clustering with K-means 

offers more promising results with 83.5% success rate in associating a new profile with 

its original user. 

 

1.5 Research Contributions 

The contributions of this research come in the novel methods presented, the tools 

developed, the adoption of our tools and protocols by other research teams and the 

published literature. The subsequent sections present a summary of these contributions. 

1.5.1 New Active Authentication Models 

Two new active authentication models are presented: Application Commands 

Streams Authentication Model (ACSAM) and Scrolling Behavior Authentication Model 

(SBAM). The first model, ACSAM, builds user profiles from user-issued commands 

when interacting with a GUI-based application. We demonstrate that discriminative 

behavioral and cognitive biometric signatures can augment user profiles. Previous 

behavioral models derived from user issued commands were limited to analyzing the 

user's interaction with the *Nix (Linux or Unix) command shell program. Unlike a 

command line interface, which limit the users’ interaction to the set of commands they 

recognize, applications that are GUI-based allow for richer user interactions and could 

reveal a cognitive process that may help to infer a person’s knowledge, intentions and, 
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more importantly, identity. This is not to be mistaken for what research in the area of 

human-computer interaction (HCI) have introduced thus far. HCI research has explored 

the idea of building user profiles based on their behavioral patterns when interacting with 

such graphical interfaces mainly by analyzing the user's keystroke and/or mouse 

dynamics. However, none had explored the idea of creating profiles by capturing users’ 

usage characteristics when interacting with a specific application beyond how a user 

strikes the keyboard or moves the mouse across the screen. In addition, capturing and 

analyzing commands issued through the interaction with GUI-based applications 

provides inference on particular knowledge, context and intent (task) from such actions. 

We provide preliminary evidence that such actions are observable and can reveal the 

intention behind such interaction. 

In the second model, SBAM, we describe and present a novel behavioral 

biometric based on users’ document scrolling traits, and then introduce a new method that 

leverages this unique trait for re-authenticating users. It is important to note that scrolling 

occurs as the result of using a mouse and/or the keyboard keys. In particular, the model 

focuses on identifying anomalous scrolling behavior when users interact with protected 

or read-only electronic documents. This poses a unique challenge due to the minimal user 

input that can be observed and analyzed for authenticity. Protected documents such as 

protected Microsoft Word files and Portable Document Format (PDF) files prohibit user 

input thereby facilitating the focus on observing activities beyond the traditional 

modification of, addition to and/or deletion of documents’ contents. Hence, this method 

relies only on how those documents are viewed.  
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This research provides preliminary evidence to the existence of unique patterns 

related to how users scroll electronic documents. Such patterns are influenced by many 

factors including the users’ purpose or intent; the documents’ contents, length, layout, 

and type; the environment in which such interaction takes place; users’ knowledge of the 

subject; and users’ physical condition. While some of these factors can be controlled such 

as environment and document layout, others are difficult or impossible to control such as 

users’ physical condition. Therefore, the challenge is to find out if a unique reading 

pattern exists regardless of external factors. 

1.5.2 Developed Tools 

In addition, we repurpose and improve a Microsoft Word logger program that was 

developed in previous work by researcher at MITRE Corporation to capture desired 

features from the user interaction with Microsoft Word document. The logger program is 

developed using Visual Basic for Application (VBA) and runs in the background without 

interrupting the user’s session when working on a document.  

1.5.3 Research Impact 

Furthermore, the MS logger program and the experiment protocol were leveraged 

by a research group from the Korea Advanced Institute of Science and Technology 

(KAIST). They conducted similar experiments to those we designed for the ACSAM 

model (see section 6.3 Experimental Design). The methods and results of KAIST 

research are discussed in section 8.5 KAIST Research.  
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1.5.4 Publications 

Conference papers on both models were presented at the 2014 Twelfth Annual 

Conference on Privacy, Security and Trust (PST) [6]; and at the 2015 6th International 

Conference on Information and Communication Systems (ICICS) [7]. Both papers are 

also published in the Institute of Electrical and Electronics Engineering (IEEE) scholarly 

research database, Xplore digital library. Although recently published in April 2015, our 

research paper on scrolling behavior based active authentication has been already cited by 

other researcher in the academic community [8], [9].  
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CHAPTER 2: INFORMATION SECURITY AND AUTHENTICATION 

This chapter discusses the topic of information security in relation to our research 

topic of active authentication. It introduces the objectives of information security and 

how active authentication is applied to uphold and enhance its objectives. It also provides 

a brief progression of authentication models towards active authentication. 

 

2.1 Information Security 

 

Information security entails the protection of digital information from being 

misused by ensuring three main principles: availability, integrity and confidentiality. 

According to the National Institute of Technology and Standards (NIST), these three 

principles form the basic objective of information security [10] and can be defined as 

follows: 

 Availability: The protection against the unauthorized withholding of information 

 Integrity: The protection against the unauthorized manipulation of information 

 Confidentiality: The protection against the unauthorized disclosure of information 

These principles have become an industry standard for designing and evaluating a 

security model. To achieve this objective, a security process needs to be in place. Such 

process usually consists of three main phases: a prevention phase, a detection phase and a 

response phase [11]. In the prevention phase, security controls are applied to prevent the 
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unauthorized access to, withholding of, manipulation of and disclosure of information. If 

an adversary succeeds in exploiting the prevention controls, the detection phase should be 

able to identify the abnormal activities and hence triggering the response phase (e.g., 

applying the appropriate security policy).  While this is a simplistic overview of a 

security process, in practice such a process must follow a layered approach to security in 

which security controls [12] are applied at different network, application and data layers. 

Such a layered approach can be thought of as an information security framework for 

preventing, detecting and responding to security threats. One such control is the 

identification and authentication control to which this research is most applicable.  

In the subsequent sections, we will introduce and describe authentication and its 

various types including single-factor, multi-factor and active authentication. Figure 2 

provides a conceptual view of how a security process works on upholding the objective 

of an information security. 
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Figure 2: A conceptual view of a security process and its objective 

 

 

 

2.2 Authentication 

 

Authentication is the task of verifying the identity of a user, process, or device, often 

as a prerequisite to allowing access to resources in an information system [12]. There are 

numerous methods for implementing an authentication process. These methods can be 

classified into three main authentication types: knowledge-based, token-based and 

biometric-based authentication. 
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In knowledge-based authentication, a user is presumed to know something only 

he/she knows [13]. Here, the authenticator (e.g., authentication system) and the to-be 

authenticated entity (e.g., a user) share something that is known only to both of them. For 

example, both entities know the answer to a previously defined question such as a 

password or a pin number. This type of authentication is the most common and is 

sometimes referred to as traditional authentication. 

In token-based authentication, a user is presumed to have something only he/she is in 

possession of. In this scenario, the authenticating entity trusts that only the legitimate user 

has access to the secret token. For example, the user is in possession of an RSA
1
 token or 

an Automated Teller Machine (ATM) card. Traditionally, this type of authentication is 

supplemented with a knowledge-based authentication such as a secret password or pin 

forming what is known as multi-factor authentication. 

In biometrics-based authentication, a user is presumed to have a unique physiological 

or behavioral trait. Here, the authenticating entity attempts to match a previously stored 

biometric to a new one provided by the to-be authenticated user. If a match is found, the 

user is presumed to be the legitimate user, otherwise access is denied. This type of 

authentication is further described in section 3.1 and forms the basis of our authentication 

models. 

These authentication types can be used individually (single-factor authentication) or 

in combination (multi-factor authentication). The subsequent sections describe this 

                                                 
1
 RSA is made of the initial letters of the surnames of Ron Rivest, Adi Shamir and Leonard Adleman, who 

first publicly described the algorithm in 1977. 



18 

 

concept further. Figure 3 provides a conceptual view of the multi-factor authentication 

concept. 

 

 

 

 

Figure 3: Conceptual view of multi-factor authentication 

 

 

 

2.2.1 Single-factor Authentication 

In single-factor authentication, only one factor is used to achieve authentication. 

This factor could apply any of the previously described authentication types including 

knowledge-based, token-based or biometrics-based authentication. This is the most 

common type of authentication applied by most websites to authenticate users before 

accessing their online accounts. 

2.2.2 Multi-factor Authentication 

In multi-factor authentication, different factors are used to achieve authentication 

including knowledge-based, token-based or biometrics-based authentication. A classic 
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example of multi-factor authentication is ATM card. A user needs to provide both the 

actual ATM card and a personal identification number (PIN) to access his/her fund at a 

bank automated teller machine. 

2.2.3 Active Authentication 

The need for verifying the user’s identity beyond the initial authentication led to 

the research of a new authentication method that is capable of continuously validating the 

authenticity of the originally authenticated entity. This type of authentication is 

commonly known as active authentication in which the system at various points in time 

attempts to non-intrusively verify the active user’s identity. Consequently, an active 

authentication system must meet two main properties: 

 Continuous: The system must continuously verify the identity of its subjects. The 

verification can be trigger based on time or events. In a time-based model, the 

system will attempt to verify the identity of the active user based on a predefine 

time intervals. In an event-based model, the system will attempt to verify the 

identity of an active user based on the occurrence of an event or a change in state. 

 Nonintrusive:  The system needs to function without interrupting the normal flow 

of operations by noninvasively monitoring and verifying the user’s identity. 

To satisfy the nonintrusive property, active authentication models almost always 

employ biometrics in their implementations. Biometrics allows the authentication model 

to silently (without intrusion) observe the traits of authenticated users. Section 3.1 
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Biometric-based Authentication Models introduces the various types biometrics used 

with active authentication models and the related work. 

Active authentication aims to overcome the limitations of traditional one-time 

authentication methods. These methods are designed to verify a user’s identity only at the 

initial access point. Once authenticated, a user is presumed to be the legitimate user 

throughout the active session. The system is not designed to re-verify the identity of a 

user until the current active session has expired and the user attempts to access the system 

the next time. Consequently, an imposter successfully taking over the legitimate user’s 

session is left undetected. For example, consider a situation where a user logs into a 

system and then walks away from his/her computer without logging out or locking his 

screen. An imposter can take over without being detected by the system. 

With active authentication in place, the system should be able to detect deviations of expected normal behavior. 

This normal behavior is usually previously observed and stored in the form of a user profile. As a user interacts 

with the system his/her previously profiled traits are compared to the occurring ones. Depending on a 

predefined threshold of confidence, the system makes a decision to whether such new behavior is considered 

normal or not based on this defined threshold.  

Figure 4 illustrates how active authentication models can detect illegal access 

beyond initial authentication. 
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Figure 4: Conceptual view of traditional vs. active authentication rolls in detecting an imposter 
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CHAPTER 3: BACKGROUND AND RELATED WORK 

The concept and the use of continuous or active authentication has gained 

momentum in recent years for the purpose of verifying the identity of a user beyond 

initial authentication including interest from the defense sector [14]. Traditional 

authentication models were designed to authenticate users at the initial stage and, 

consequently, grant or deny access. However, once a user is granted access there is no 

way to further attest the authenticity of the user and discover unauthorized use, if any. A 

continuous authentication system attempts to address this weakness by re-authenticating 

the user throughout his/her active session. It is important to point out that much of the 

work in the field of intrusion detection has also utilized behavioral biometrics, and thus 

lends itself to active authentication. Both active authentication and intrusion detection are 

about finding imposters engaged in illicit use of resources. The following review of the 

related work covers both concepts. 

 

3.1 Biometric-based Authentication Models 

 

Various implementations of continuous authentication systems have been 

proposed and all have naturally employed biometrics as the authentication type. Most of 

biometric authentication models generally undergo four major stages [13]: 
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1. Enrollment stage: This is the entry point to any biometric system in 

which the user’s desired characteristics (physiological or behavioral) are 

captured as a set of features that could be used later to uniquely identify 

the user. This constitutes the registration process and the collected sample 

is used to create the user biometric profile. The tool used for collecting 

these samples varies depending on the biometrics being collected (e.g. 

fingerprint readers, iris scanners, camera, etc.). The number of samples 

needed for creating the first profile also varies depending on the biometric 

being used.  

2. Monitoring and Collection stage: At this stage the, the system collects 

new samples either actively or at predefined intervals. Samples are 

collected and the same features are used to create the user profile during 

the enrollment process are extracted here to be used in the comparison 

stage. 

3. Comparison stage: Newly collected samples are compared to the stored 

user profile or multiple user profiles if the system is to decide who the user 

is from the pool of preregistered users. This stage can be triggered by an 

event (e.g. attempting to access a specific resource) or time (e.g. verifying 

the user’s identity at specific time intervals). 

4. Decision stage: Based on the comparison result a decision is made to 

whether the user is indeed the legitimate user or an imposter. 

Figure 5 illustrates the four general stages of a biometric authentication process. 
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Figure 5: General biometric authentication process 

 

 

 

While the related work discussed here is not an exhaustive review of the evolution 

of biometrics, it does highlight, at various points in time, the research and technologies 

applied in this field. The subsequent sections provide a review of related work on the use 

of biometrics for active authentication purposes. 

 

3.1.1 Physiological Biometrics 

Physiological biometrics rely on an individual’s unique physical characteristics 

such as fingerprints [15], palm prints [16], [17], iris [18], and face [19], [20], [21], among 

others, to authenticate users. For the most part, authentication systems that employ 

physiological biometrics draw on external sensors that capture users’ physical 

characteristics. For example, Klosterman and Ganger [22] used a camera mounted on top 

of a computer monitor to capture the user's face images to determine identity.  

It is important to note that the various biometrics techniques are not always 

designed and implemented independently as recently; researchers [23]–[26] have 

explored fusing biometric identifiers to create a multimodal biometric system and 



25 

 

improve the identification process. Azzini et al. [26] proposed and tested a multimodal 

authentication system that utilizes two physiological traits, a fingerprint and face 

biometrics. The user is initially authenticated by providing his/her username and 

password. A corresponding template is then retrieved for the face recognition matching 

phase, which continuously checks the identity of the authenticated user. Once the face 

biometrics module become unsure of the user's identity, the user is prompted to provide 

his/her fingerprint for re-authentication. Yap et al. [27], on the other hand, designed a 

system that utilizes a camera and a biometric mouse that continuously collects both the 

face and the fingerprint features and fuses them into a composite score that is checked 

against a threshold to determine authenticity. 

3.1.2 Behavioral Biometrics 

While the above examples rely on external sensors for collecting the biometric 

data, others have resorted to utilize more traditional input tools such as the keyboard and 

mouse. In such cases, researches rely on the behavioral characteristics of users. 

Behavioral biometrics are based on a person's behavior such as how an individual strike a 

keyboard [28], walks [29], or execute computer commands [30]. For example, many have 

investigated users' keyboard typing characteristics (i.e., keyboard dynamics) as possible 

means of continuous authentication. A survey of such methods is provided by 

Shanmugapriya et al. [31], which discusses the various efforts in this area and compares 

the different keystroke metrics used. Others [32], [33], [34],[27]–[29] have explored the 

idea of mouse dynamics as a possible user biometrics. A survey by Revett et al. [35] 
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provides a detailed review of work in this area and proposes a new one. Ahmed and 

Traore [36] have combined both keystroke and mouse dynamics for intrusion detection 

purposes. Others have fused such techniques to create multimodal biometric systems. For 

example, Grag et al. [37] architect a framework for active authentication that depends on 

keyboard activity, mouse movement coordinates, mouse clicks, system background 

processes and user run commands. Unlike our work on application specific command 

streams, their techniques depend on features collected from the users’ interactions with 

the GUI-based operating system in general and not application-specific features, which is 

more granular in scope and can be geared towards critical applications that deal with 

classified material. Such an active authentication technique allows the monitoring of a 

richer set of behavioral features that reveals a cognitive process that may help to infer a 

person's knowledge, intentions and, more importantly, identity. 

Another popular means of continuous authentication is the analysis of command 

line lexicons, which is closely related to our ACSAM model for application specific 

command streams approach to active authentication. For example, Lane and Brodley [38] 

used the Linux command line prompt to capture a sequence of fixed-length commands 

and create users' profiles. Detection of normal or abnormal behavior is then calculated by 

measuring the similarity of new sequence to existing ones. 

Marin et al. [39] have also used command lines to detect intruders. They classify 

legitimate users into categories based on the percentage of commands they issue in a 

given time period. A total of 5,000 commands per user were collected from a Linux shell 

for 50 different users. Users' profiles were created from groups of 1,000 commands and, 
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therefore, each user was represented five times. Their classification methodology 

employed expert rule to reduce dimensionality, K-means for clustering, a generic 

algorithm for further dimensionality reduction, and Learning Vector Quantization (LVQ) 

for refining clusters. Their work has resulted in a classification rate close to 80% 

(correctly identified users) and misclassification rate less than 20% (incorrectly identified 

users). 

Yeung and Ding [40] have used user profiles created from Unix shell commands 

and system calls to apply dynamic and static behavioral modeling approaches. The 

difference between the two approaches is that dynamic models explicitly model temporal 

variations. The dynamic model is based on hidden Markov model (HMM), while the 

static model is based on event occurrence frequency. They applied novelty detection 

instead of classification due to the lack of data representing abnormal behavior for 

training. Their experiments showed that the static modeling approach yielded better result 

than the dynamic modeling with the shell commands, achieving at its best a true detection 

rate (TDR) of 87% and a false detection rate (FDR) of 20%. The static model performed 

better with shell commands over system calls due to the temporal dependencies between 

system calls, which the static model was unsuitable to handle. 

Schonlau et al. [41] also used Linux shell commands and applied six different 

classification methods for detecting masqueraders – people who impersonate the 

authenticated user. Over several months, 15,000 commands per user from 70 users were 

obtained. Fifty users were selected to be intrusion targets and the remaining 20 user were 

designated as the masqueraders. Data from the masqueraders was interspersed into the 
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target data. The first 5,000 commands are used to train the user profiles. For each block 

of 100 commands, a score is computed and checked against a threshold. Out of the six 

methods applied the Bayes 1-step Markov performed the best in detecting masqueraders 

but failed in achieving the desired goal of 1% false alarm rate (FAR). On the other hand, 

the Uniqueness method (based on command frequency) did well in coming close to the 

desired FAR but failed to detect masqueraders. All the other methods performed 

somewhere in between. 

Maxion and Townsend [42] have extended the work by Schonlau et al. by 

revising the experimental method and applying Naïve Bayes, which resulted in a 56% 

improvement and 1.3% FAR. More recently the same data set used by Schonlau et al. has 

been used by Traore et al. [30], which used sequential sampling techniques and naïve 

Bayes classification scheme and yielded 4.28% false acceptance rate (FAR) and 12% 

false rejection rate (FRR). 

Implementations of command line biometrics have, thus far, been limited to the 

CLI. In this research, we explain how such concept can be extended to other domains and 

in particular to GUI-based applications that provides the user with more than just 

command-like interactions. However, in our experiment we only consider command 

streams issued by users when interacting with MS Word as means of identification. We 

test our hypothesis with a data set obtained by MITRE Corporation for their earlier work 

on a recommender system. A description of this data is provided in section 6.1 Dataset. 

The most relevant prior work [43] and closest in spirit to our SBAM model for 

scrolling behavior approach to active authentication introduces a new active 
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authentication model based on screen fingerprints, in which discriminative visual features 

are first extracted from screen recordings of the user’s interaction with the computer. 

Those interactions are then classified using Support Vector Machine (SVM) and 

Adaptive Boosting (AdaBoost), into four possible interaction types: scrolling, typing, 

mouse-based dragging and window resizing. Each of these interaction types is then tested 

using soft-margin SVM and k-nearest neighbors to see how well they can identify a user. 

The features used are limited to using optical flow indicators, the task is identity 

verification for the whole session rather than active authentication, and the number of 

users the method is tested on is limited to five users only. Those limitations are removed 

by our novel full-fledged active authentication method described herein. 
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CHAPTER 4: MACHINE LEARNING 

Machine learning is a scientific discipline that focuses on building prediction 

models capable of learning from past observations. This is also known as generalization, 

which is the model’s ability to accurately recognize, or predict, new samples based on 

what it learned from previous observations. Various machine learning methods have been 

developed to achieve this desired generalization goal including classification (for 

predicting categorical or nominal values), regression (for predicting continuous or 

numerical values) and clustering (for predicting group membership). They mostly fall 

into two broad categories: supervised and unsupervised learning. This chapter describes 

the differences between supervised and unsupervised learning and the various methods 

used in this research. 

4.1 Methods 

4.1.1 Supervised Learning 

In supervised learning, the model is trained on a set of samples. Each sample 

includes input data and its corresponding expected outputs. The model then seeks to 

deduce an inference function capable of predicting the unknown output of new samples. 

The general approach for building supervised learning models starts with an induction 

phase, also known as a training phase, in which the model is trained on a set of samples 

whose class label is known. This is followed by the deduction phase, also known as a 
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testing phase, in which the model attempts to predict the class label for new previously 

unknown samples. Figure 6 illustrates the general approach for building supervised 

learners. 

 

 

 

 

Figure 6: Conceptual View of a General Learning Model 

 

 

 

This section discusses the various supervised learning methods used in our research 

including Decision Tress, Naïve Bayes, Random Forests, AdaBoost and SMOTE.  

4.1.1.1 Classification 

Classification is the task of assigning an object to one of several predefined classes. 

As defined by [44, p. 146], classification is the task of learning a target function f (also 

known as a classification model) that maps each attribute set x to one of the predefined 

class labels y. Classification models can be used for descriptive or predictive analyses of 
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data. In descriptive analysis, the task is to understand the relationships between samples 

in describing a class, while predictive analysis seeks to predict a class label given 

unknown sample. In this research, classification is focused on predictive modeling in 

which the task is to identify the class label (authenticated vs. imposter) of a new observed 

user/document interaction represented as a feature vector. 

4.1.1.1.1 Decision Trees (C4.5) 

 

Decision trees are simple yet widely used techniques for predictive modeling. They 

are constructed of nodes and edges. The tree has three types of nodes: a root node that has 

no incoming edges and zero or more outgoing edges; an internal node that has exactly 

one incoming edge and two or more outgoing edges; and a leaf node that has exactly one 

incoming edge and zero outgoing edges. Root and internal nodes contains the attribute 

test condition from which a decision to split the tree is based on. The test attribute 

conditions represent differences in the data characteristics (e.g. average vertical scroll > 

0.65) that help the model in separating the samples. Leaf nodes at the end of the tree are 

assigned a class label (e.g. authenticated vs. imposter). Classification using decision trees 

can simply be described by the following protocol: 

For each new record 

1) Start at the root node 

2) Apply attribute test condition 

3) Based on the outcome of the test in step 2, follow appropriate branch 

3.1)  If internal node, then apply new attribute test condition and repeat 

step 3 

3.2)  If leaf node, then stop and assign class label 



33 

 

Constructing an optimal tree is computationally expensive or infeasible due to its 

exponential nature (numerous trees that can be constructed from a given set of attributes). 

Therefore, many algorithms have been developed that aim to induce feasible suboptimal 

yet reasonably accurate trees. Such algorithms relay on a greedy strategy for selecting an 

attribute that would optimally split the data. A common such algorithm is Hunt’s 

algorithm, which form the basis for many decision trees induction algorithms including 

C4.5 [44, p. 152]. Hunt’s Algorithm can be summarized by the following: 

Let Dt denote the set of training records associated with node t 

Let y denote the set of possible class labels {y1, y2,…, yc} 

1) If ∀ 𝐷𝑡 : ∈  𝑦𝑡 (all records in Dt belong to the same class label yt), then t is a 

leaf node labeled as yt 

2) If ¬(∀ 𝐷𝑡 : ∈  𝑦𝑡) (not all records in Dt belong to the same class label yt), 

then 

2.1) Select an attribute test condition to split the Dt into smaller subsets 

2.2) ∀ test outcome, create a child node 

3) Distribute records ∈ Dt to the children nodes 

4) ∀ child node repeat starting at step 1 

 

4.1.1.1.2 Naïve Bayes 

Naïve Bayes is one implementation of the Bayesian classification methods. These 

methods, which are based on the Bayesian theorem, seek to model the probabilistic 

relationships between the attribute set and the class variable. Such models are needed in 

cases where the relationship between the attribute set and the class variable is non-

deterministic (Although the attribute in a given test record might be identical to some 

training records, the class label cannot be determined with certainty).  
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For example, consider the training data constructed from our GUI-based 

Application Command Streams experiment (further discussed in 0). The task is to predict 

whether a profile belongs to the authenticated user or an imposter based on the count of 

each command executed from a GUI-based application. Training records are formed 

using the following attribute set: {user id, count of command1, count of command2,…, 

count of commandn}. A test record may differ from the expected command count learned 

from the training records and gets assigned the class variable “imposter”. However, the 

test record may truly belong to the authenticated user and the variance of the command 

count could be related to other factors such as the authenticated user being interrupted 

while editing the document and hence affecting the sequence in which he/she executed 

these commands. 

Therefore, a classification model such as Naïve Bayes helps in situations where the 

class variable Y has a non-deterministic relationship with the attribute set X. In such 

cases, the model will treat X and Y as random variables and seek to capture their 

relationship using the conditional probability P(Y|X), which is also known as the 

posterior probability for Y [44, p. 229]. Similarly, the Naïve Bayes classifier assumes that 

the attribute set X is conditionally independent given the class label Y. However, instead 

of estimating the class-conditional probability for every combination of X, Naïve Bayes 

will only estimate the conditional probability of each Xi, given Y. This approach is 

suitable in situations where the training set is small since the model can still obtain a 

good estimate of the probability. The Naïve Bayes classifier calculates the conditional 

probability using the following formula: 
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 𝑃(𝑌|𝑋) =  
𝑃(𝑌) ∏ 𝑃(𝑋𝑖|𝑌)𝑑

𝑖=1

𝑃(𝑋)
 (0.1) 

The model then uses this formula to estimate the conditional probabilities during 

the training phase. Subsequently, a test record X can be classified by finding the class Y 

that maximizes the conditional probability (since X is fixed for every Y, it is sufficient to 

select Y that maximizes the numerator only).  

4.1.1.2 Ensemble Methods 

Ensemble methods are techniques used for improving the model’s classification 

accuracy by aggregating the predictions of multiple classifiers. This is achieved by 

constructing a model that combines serval base classifiers induced from the training data. 

The model preforms classification by taking a majority vote on the predictions made by 

each base classifier [44, p. 276]. This can be further illustrated in Figure 6. 
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Figure 7: A Logical View of Ensemble Learning Method1 

 

 

 

Since ensemble methods aim to increase the classification accuracy of a model, it is 

important to evaluate the reduction of error rate, if any, when compared to single 

classification methods. However, for ensemble classifier to perform better than a single 

classifier two conditions must be true: (1) the base classifiers should be independent of 

each other (their errors are uncorrelated); and (2) the base classifiers should do better than 

a classifier that performs random guessing.  

 

 

                                                 
1
 Figure borrowed from [44, p. 278] 
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4.1.1.2.1 Random Forests 

Random Forests is an ensemble learning method used in both classification and 

regression tasks. It is constructed from multiple decision trees each generated from an 

independent random training set. The predictions made by each decision tree are then 

combined and a majority vote is applied to determine the class label [1, p. 290]. 

Randomization is an important aspect in Random Forests as it helps in reducing the 

correlation among the individual decision trees, and hence improves the generalization 

error (the algorithm’s ability to generalize). Bootstrap aggregation, also known as 

bagging, is used in Random Forest to introduce randomness in selecting the data records. 

Performance of Random Forests can be computed from the average performance of 

the set of classifiers, and is measured probabilistically as the classifier’s margin as shown 

in equation (4.2): 

 𝑚𝑎𝑟𝑔𝑖𝑛, 𝑀(𝑋, 𝑌) = 𝑃(𝑌̂𝜃 = 𝑌) −
𝑚𝑎𝑥

𝑍 ≠ 𝑌
𝑃 (𝑌̂𝜃 = 𝑍) (4.2) 

Where 𝑌̂𝜃is the predicted class X according to a classifier built from random 

vector 𝜃. The classifier’s accuracy increases as the margin increases. Figure 8 provides a 

logical view of how Random Forests are constructed. 
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Figure 8: Logical View of Random Forests1 

 

 

 

4.1.1.2.2 AdaBoost 

AdaBoost, short for Adaptive Boosting, is an ensemble learning algorithm that 

iteratively trains a “weak classifier” on different probability distribution of the training 

set to boost the performance of a classifier. Unlike Random Forests where the training 

sets are randomly generated from a fixed probability distribution, AdaBoost adjusts the 

training set by assigning higher weights to those examples that were hard to or 

misclassified in previous round. The weak learner, also referred to as the base classifier, 

                                                 
1
 Figure borrowed from [44, p. 292] 
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in subsequent rounds is forced to focus on the misclassified examples. The final boosted 

classifier is represented as the weighted sum of the base classifiers obtained from each 

round [44, p. 288]. Figure 9 illustrates the iterative process of the AdaBoost algorithm.  

 

 

 

 

Figure 9: AdaBoost Conceptual View 

 

4.1.1.2.3  Synthetic Minority Over-sampling Technique (SMOTE) 

Due to the imbalanced nature of our dataset (the two Authenticated and Imposter 

classes are not approximately equally represented), SMOTE technique was applied to 

decrease the classifier’s bias towards the majority class (Imposter) and improve the 

classification performance on the minority class (Authenticated). SMOTE is a widely 

used technique for oversampling imbalanced data where each minority class sample is 

over-sampled by introducing synthetic examples along the line segments connecting the k 

minority class nearest neighbors. The actual neighbors from the K nearest neighbors are 
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randomly selected depending on the amount of over-sampling required [45]. Figure 10 

illustrates how SMOTE selects the synthetic sample from K nearest neighbors of a given 

sample. 

 

 

 

 

Figure 10: SMOTE Conceptual View 

 

 

 

4.1.2 Unsupervised Learning 

In unsupervised learning, the task is to find a structure in unlabeled samples. Unlike 

supervised learning in which the model is trained using inputs with known target output, 

in unsupervised learning the model seeks to predict the outputs of an unlabeled input 

without prior knowledge of its target output. This section introduces clustering, and in 

particular K-means clustering, which is a common approach for unsupervised learning 

and the technique leveraged in our experiments. 
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4.1.2.1 Clustering 

The general idea behind clustering is that samples can be grouped into separate 

clusters based on some similarity measure based solely on the information and 

relationships found in the samples. Samples in one cluster tend to be more similar to one 

another and different from other samples in another cluster. The greater the similarity 

within a group, the greater the difference between groups leading to more defined clusters 

[44, p. 490].  

Clustering can be categorized based on the final structure of the clusters. For 

example, a common differentiation among clustering types is whether the clusters are 

hierarchical or partitional. When clusters have sub-clusters, it is said to be a hierarchal 

clusters in which each cluster is the union of its sub-clusters. On the other hand, a 

partitional clustering, also referred to as exclusive clustering, denotes that each data point 

is a member of exactly one cluster (non-overlapping clusters). In cases where a data point 

can be assigned to two clusters (halfway between two clusters), it results in an 

overlapping clustering type. In situations where a data point cannot be assigned to any 

well-defined clusters, it is left out and consequently the clustering is said to be partial 

when compared to a complete clustering in which every data point belongs to a cluster 

[44, pp. 491–493]. 

 

4.1.2.1.1 K-means 

 

K-means is a technique for producing clusters based on a prototype, which is 

defined in terms of a centroid. As the name indicates, the centroid in k-means is the mean 
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of a collection of data points. Each data point is closer to the center of its cluster than the 

center of any other clusters. Therefore, k-means is said to produce a center-based, or a 

prototype-based, clustering. K-means can be explained in the following protocol: 

1) Select K points as initial centroids 

2) ∀ data point, assign the data point to its closets K centroid 

3) ∀ cluster, recalculate the centroid 

3.1) If  centroid changes, repeat step 2 

3.2) If centroid does not change, stop 

 

Figure 11 demonstrates how k-means works iteratively on defining clusters. 

 

 

 

 

Figure 11: Creating clusters using k-means algorithm 

 

 

 

4.1.3 Methods Reference 

Table 1 provides a mapping between the machine learning methods used and the 

experiments in this research. 
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Table 1 - Mapping of Applied Machine Learning Methods to Thesis Sections 

Method 
GUI-based Application 

Command Streams 
Scrolling Behavior based Active 

Authentication 

Decision Trees (C4.5) 6.4  

Naïve Bayes 6.4  

Random Forests 6.4 7.4.1 

AdaBoost 6.4 7.4.3 

SMOTE  7.4.2 

K-means  7.4.5 
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CHAPTER 5: PERFORMANCE EVALUATION 

This chapter describes the various metrics used in evaluating the performance of the 

proposed models and the general experiment design applied.  

5.1 Metrics 

 

For classification algorithms, several metrics (“performance indices”) are used to 

evaluate the “goodness” of a classifier. The goal is to measure how well the classifier is 

able to predict the correct class of the object under scrutiny. These matrices are based on 

a common 2x2 table known as the confusion matrix. The following subsection describes 

the confusion matrix and the matrices that can be produced from it. 

5.1.1 Confusion Matrix 

 

A confusion matrix, also known as a contingency table, is a representation of the 

classifier’s output. It helps in visualizing how an algorithm classified instances by 

assigning them to four classes (see Table 2): 

 True Positive (TP):  Predicted instances that were correctly classified 

belonging to a class 

 False Positive (FP): Predicted instances that were incorrectly classified 

belonging to a class 
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 False Negative (FN): Predicted instances that were incorrectly classified NOT 

belonging to a class 

 True Negative (TN): Predicted instances that were correctly classified NOT 

belonging to a class 

 

 

 
Table 2: Confusion Matrix 

  Predicted class 

  Positive Class Negative Class 

Actual class 
Positive Class True Postive False Negative 

Negative Class False Postive True Negative 

 

 

 

From the confusion matrix, several performance matrices can be derived 

including accuracy, precision, sensitivity, specificity and the F-measure. 

5.1.1.1 Accuracy 

Accuracy is the measure of how well a classifier is able to correctly assign an 

object to its class. It is the ratio of true prediction – both true positives and true negatives 

– to the total number of prediction and can be calculated using equation 5.1 as follows: 

 Accuracy =  
∑ 𝑇𝑃+ ∑ 𝑇𝑁

∑ 𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (5.1) 

5.1.1.2 Precision 

Precision is a measure of the classifier’s accuracy provided that a specific class 

has been predicted. It is the ratio of true positive prediction to the total number of positive 



46 

 

prediction both true positives and false positives and can be calculated using equation 5.2 

as follows: 

 Precision = 
∑ 𝑇𝑃

∑ 𝑇𝑃+ ∑ 𝐹𝑃
   (5.2) 

5.1.1.3 Sensitivity (Recall) 

Sensitivity, also known as recall or the true positive rate, is the measure of how 

well the classifier is able to assign instances to the positive class. It is the ratio of true 

positive predictions to the total number of instances belonging to the positive class and 

can be calculated using equation 5.3 as follows:  

Sensitivity = 
∑ 𝑇𝑃

∑ 𝑇𝑃+ ∑ 𝐹𝑁
  (5.3) 

5.1.1.4 Specificity 

 Specificity, also known as the true negative rate, is the measure of how well the 

classifier is able to select instances to the negative class. It is the ratio of true negative 

predictions to the total number of instances belonging to the negative class and can be 

calculated using equation 5.4 as follows:  

Specificity = 
∑ 𝑇𝑁

∑ 𝑇𝑁+ ∑ 𝐹𝑃
  (5.4) 

5.1.1.5 F1-measure 

 The F1-measure, also known as the F1-score, is another measure of the classifier’s 

accuracy. It is the harmonic mean of precision (see section 5.1.1.2) and recall (see section 

5.1.1.3). The F1-measure is a preferred performance matrix when working with 

imbalanced datasets especially when the minority class is more important. This is due to 
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the fact that when calculating the F1-measure for each class, one can see how well the 

classifier was able to predict the minority class. Such observation is not clear when 

evaluating the classifier on precision or recall independently. The F1-measure can be 

calculated using equation 5.5 as follows: 

F1 = 
2 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (5.5) 

5.1.2 ROC Curve 

The Receiver Operating Characteristic (ROC) curve is a graphical plot that helps 

visualize the performance of a classifier by illustrating the tradeoff between sensitivity 

and specificity. It is generated by plotting the true positive rate against the false positive 

rate on the vertical and horizontal axes respectively. Figure 12 helps illustrate this 

concept further. The closer the curve to the top-left corner, more accurate the prediction 

power of a classifier. On the other hand, the closer the curve to the bottom-right corner, 

less accurate the prediction power of a classifier. The closer the curve to the straight 

linear line that splits the ROC space into two equal halves (from the bottom-left corner to 

the top-right corner) indicates that the classifier’s prediction power is random. Figure 12 

also illustrates how one can visually compare the performances of two classifiers. 

Classifier 1 (illustrated as a dash-dot line) is more accurate than classifier 2 (illustrated as 

a dash-dot-dot line). 

The Area Under the ROC Curve (AUC) represents the probability that a randomly 

selected positive class instance is assigned a higher score than a randomly selected 

negative class instance. The value of the AUC ranges from zero to one where zero 
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indicates that the classifier has a false positive rate of 100% with a true positive rate of 

0%; and one indicates that the classifier has a false positive rate of 0% with a true 

positive rate of 100%. 

 

 

 

 

Figure 12: ROC Space 

 

 

 

5.2 Experimental Design 

 

Experimental design is structured around a set of key principles including the 

objective of the experiment, data representation, performance validation and performance 

evaluation. This section describes how each of these concepts is applied in our 

experiment design. 
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5.2.1 Objectives 

Experimental design begins with identifying the objective of the work. In our 

case, the ultimate goal is to create a novel authentication model that can actively test for 

user authenticity based on the user’s interaction with a given document. This can be 

further broken down into three specific tasks: 

1. Find if a unique pattern exists to how a user interacts with the document. 

We explore user/document interaction in terms of the command the user 

issues from a GUI application and the way a user scrolls over a 

document. 

2. Use this unique pattern to build a user profile that will be used for 

identification or verification of a user in an active authentication model. 

3. Determine a machine learning algorithm that is capable of matching this 

profile to an observed user behavior with acceptable rate of accuracy. 

5.2.2 Data Representation 

 Data representation refers to the features selected and/or extracted from the 

dataset used to describe, or represent, an object. Collectively, these features form a 

feature vector. One can think of an object as a dot in an N-dimensional feature space. 

Constructing a useful feature vector is an important aspect of experimental design since 

the dataset may contain many ineffective features such as redundant and irrelevant ones. 

Redundant features are those features that do not add any new information to the feature 

vector. For example, both a social security number and a student ID number may serve 

the same purpose, which is a unique identifier of an object. In this case, one can use one 
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or the other to provide the same information. On the other hand, irrelevant features are 

those that do not provide useful information within context to the feature vector. For 

example, if the goal is to construct a feature vector that represents a student’s academic 

performance, the student’s height may be irrelevant (unless the goal is to find if there is a 

relation between a student’s height and their academic performance – most likely not). 

 To construct a feature vector, one can select the desired features or and/or extract 

additional ones. Extracted features are derived functions from the original features. For 

example, extracting a feature that represents the cumulative GPA for a student. Data 

representation is important as the goal is to select and/or extract those features that are 

best at discriminating an object. 

 In our research, feature selection was done through a trail-and-error approach in 

which features were added and removed creating multiple feature vectors to determine 

those that improve generalization and interpretability of the classifiers used. Detailed 

discussion of the specific data representation is provided in sections 5.2.2 and 6.2 where 

we describe the data representation of each active authentication model. 

5.2.3 Performance Validation 

Another aspect of experimental design is how to validate the performance of the 

selected algorithm. Since performance in measured by the true error rate the goal is to 

select the algorithm that provides the lowest error rate on the entire population. However, 

since practically we do not have access to an infinite number of samples, the algorithm 

must be trained and tested with the available dataset.  
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A common approach is to split the dataset into two subsets: a training set used for 

training the model; and a test set used for testing the performance of the trained model. 

This approach is often referred to as the holdout method and a 20/80 split is a common 

application where 20% of the dataset samples are used for training and the remaining 

80% is used for testing. However, this method has its drawbacks. For example, if the 

dataset size is small, splitting the dataset may result in even smaller subset to be 

considered statistically significant. Moreover, the split may create bias distribution of the 

samples where similar samples are overwhelmingly belonging to one subset, hence 

resulting in a misleading error rate.  

To overcome the limitations of the holdout method, a set of resampling techniques 

can be applied including random subsampling, leave-one-out cross validation and k-cross 

validation. In random subsampling, each split randomly selects a fixed (without 

replacement) number of samples and the model is retrained using the training samples 

and tested using the test samples. However, since the method selects a fixed sample 

without replacing them, not all samples are used for training and testing the model. 

Leave-one-out cross validation is an exhaustive cross validation method in which 

learning and testing is performed on all possible ways by dividing the dataset into 

training and testing sets. For N samples, the method will run N trials where each trial 

used N-1 samples for training and the remaining samples for testing. This technique is 

best suited when the sample is small due to costly computational time with large number 

of samples. In our experiments, this method is used with k-means clustering as described 

in section 7.3.2 in this paper. 
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When dealing with a large number of samples non-exhaustive cross validation 

methods are preferred. Such methods include K-fold cross validation, which is similar to 

the random subsampling method with the exception that all samples in the dataset are 

used for training and testing the model. In a k-fold cross validation the dataset is stratified 

into K distinct folds consisting of 1/k of the total data. The model is then training using k-

1 folds and the remaining one for testing. This is repeated until all folds are used for both 

training and testing. In our experiments, k-fold cross validation was applied in validating 

our classification method as described in section 7.3.1. 

Selecting the ideal numbers of folds is not a straightforward task and depends on 

the size of samples on hand.  However, one should consider the following tradeoff. The 

larger the number of folds is, the smaller the bias of the true error rate will be but its 

variance will be high. On the other hand, the smaller the number of folds is, the larger the 

bias of the true error rate will be, but its variance will be small. Therefore, larger number 

of folds is more suited in situations where the dataset is large. However, with sparse 

dataset, a method such as leave-one-out is preferred so that the algorithm can be trained 

on as many samples as possible. In our experiments, in cases where k-folds cross 

validation was applied we chose the common practice of assigning k = 10. 

5.2.4 Performance Measurement 

Deciding on the performance metrics is another important aspect of experimental 

design. As discussed in CHAPTER 5: Performance Evaluation, different metrics can be 

used to measure the performance of a model. While all of them are considered, we assign 
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a higher weight on the F1-measure due to it being insensitive to the true negative rate, 

which represents the majority class in our datasets (the minority class is the class of 

interest to us). By examining the F1-measure for each class, we can determine how well 

the algorithm was able to predict each class. 
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CHAPTER 6: APPLICATION COMMANDS STREAMS 

AUTHENTICATION MODEL (ACSAM) 

This section presents and describes an active authentication model based on 

behavioral biometrics pertaining to GUI-based application user-issued commands. 

Researchers have explored the idea of building users profiles based on users’ behavioral 

patterns when interacting with such graphical interfaces, especially in the area of human-

computer interaction. They did so by analyzing the user's keystroke and/or mouse 

dynamics. However, most of the work that focused on creating behavioral model from 

user issued commands, and perhaps the most relevant to this work, were limited to users' 

interaction with the *Nix command shell program [39]–[42]. Never before the idea of 

creating profiles by capturing users’ usage characteristics when interacting with a specific 

application’s GUI has been examined, this goes beyond how a user strikes the keyboard 

or moves the mouse across the screen. It provides more dimensions to consider and a 

richer set of behavioral features to include when building behavioral profiles. 

This model relies on the user’s issued commands when interacting with a GUI-based 

application. It collects data points (e.g., commands) from the user’s interaction with the 

application (e.g., MS Word), builds a user profile and monitors further user interactions 

to make a determination of the user’s authenticity. To answer the question of whether or 

not a stream of commands triggered by users’ interaction with a GUI-based application 
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can serve as a behavioral biometric, we have chosen to utilize and repurpose a dataset 

collected by the MITRE Corporation from previous research on organization-wide 

learning and recommender systems [46]. This dataset represent two years of users’ usage 

data from interacting with Microsoft Word (see section 6.1). The motivation behind our 

consideration of the MITRE dataset is due to the following: 

 MS Word is a more popular medium among the common computer user than the 

*Nix command shell program. Microsoft claims that roughly half a billion people 

use MS Office [47]. Furthermore, a recent report by Forrester shows that 84% of 

organizations are using MS Office 2010 as their office productivity suite [48]. 

Therefore, creating user behavioral profiles from interacting with such widely 

used applications would have a broader applicability. 

 The graphical user interface of MS Word provides a richer set of behavioral 

features when compared to the command line interface (CLI) of the Linux shell. 

The possible feature set is unique to the application in use and can be derived 

from the way a user interacts with its properties. While the current dataset is 

strictly a representation of the commands issue by users, a future consideration 

would explore a richer set of behavioral features such as the average velocity of 

scrolls, the ratio of backward and forward scrolling switches and the average 

elapsed time between scrolls, to list a few.  

 The last, and most obvious, reason is the availability of the dataset from a 

previous work by MITRE that is made public. 
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The following subsections describe the dataset, data representation, experiment 

design and performance evaluation of the proposed active authentication model. 

6.1 Dataset 

 

The data used for this model was collected by the MITRE Corporation over a 

period of two years from 1997 to 1998. MITRE monitored commands entered in 

Microsoft Word version 97 by 24 employees. The employees consisted of artificial 

intelligence researchers as well as technical and support staff. All individuals used the 

Macintosh operating system. As the system became more robust, additional users were 

monitored. If an individual switched to a PC, they were dropped from observation. The 

data was initially collected to explore the development of recommender systems that 

leverage knowledge of how the entire group used Microsoft Word to tailor the 

application to the organization [13]. The dataset is made publicly available at 

http://www.research.rutgers.edu/~sofmac/ml4um/. A sample of this dataset is provided in 

http://www.research.rutgers.edu/~sofmac/ml4um/
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Appendix B: Sample Data From the MITRE dataset.  

Each time a user opened Microsoft Word and executed a command during the 

period of observation the command was logged along with a unique user ID, the version 

of Word they used, the file size, the creation date of the file, the operating system and 

version and the date/time the command was executed. The commands represent editing 

actions executed inside Microsoft Word such as “Copy”, “Paste”, “New”, or “Italic”. 

Over the course of the study, a total of 74,783 commands were observed. The users 

executed 174 unique commands, and on average, each user executed 1,583 commands. 

Users who participated in less than 10 sessions where discarded from the data analysis.  

 

 

6.2 Data Representation 

 

The MITRE dataset was repurposed to answer the question of whether or not 

there exists a unique pattern in how a user edits a document inside a GUI-based 

application, and therefore the executed stream of commands can serve as a behavioral 

biometric. We treat this as a binary classification problem with the goal of classifying a 

particular document editing behavior as authentic (belonging to the authenticated user) or 

not (belonging to someone else).  

To do this, a bag-of-words model is used for classifying a new document editing 

behavior, where the number of occurrence of each command is used as a feature for 

training the classifier. A profile is created for each user consisting of observed number of 

commands executed consecutively on a single document. A working session is defined 
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by the series of commands executed by a particular user and identified by the captured 

user ID. Because file names are not captured in the data, the commands were organized 

into sessions using a composite key of the file creation date and file size. It is observed 

that in the dataset the file size for a document remains constant as long as the document 

remains open. All commands belong to a single session as long as no more than 60 

minutes elapse between issued commands. 

Consequently, the 74,783 commands coalesce to 11,334 sessions; an average of 

6.59 commands per session. The longest and shortest session consisted of 93 and 1 

commands respectively. Three of the 24 subjects participated in fewer than ten sessions. 

Data for these users are discarded. There is an average of 539 sessions per user. After 

organizing the data by reading sessions, all sessions belonging to an individual contribute 

to generate that user's command profile. Table 3 summarizes the statistics above. 

 

 

 
Table 3: Aggregate summary of the MITRE dataset 

Data Value 

Total number of issued commands 74,783.00 

Total number of unique commands 174.00 

Average number of commands per user 1,583.00 

Total number of sessions 11,334.00 

Average number of commands per session 6.57 

Average number of sessions per user 539.00 

Longest session by number of commands 93.00 

Shortest session by number of commands 1.00 
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6.3 Experimental Design 

 

The goal of the experiment is to determine whether knowledge of a user's profile 

(the authenticated user), as well as knowledge from other users' profiles (imposters), is 

sufficiently distinctive to allow for differentiation between the authenticated user and 

masqueraders. This question is a natural fit for machine learning. To answer this 

question, we compared the performance of commonly used machine learning algorithms 

with the following protocol: 

For each user u: 

1) Label sessions belonging to user u as authenticated 

2) Label sessions not belonging to u as imposter. 

3) Perform a 10-fold cross validation: 

3.1) For each fold f: 

3.1.1) Train classifier on all folds ≠ f. 

3.1.2) Label each session in f as authenticated or imposter. 

 

In a 10-fold cross validation, the sessions are stratified into ten distinct folds 

consisting of 1
10⁄  of the total data. Class distribution (the ratio of authenticated vs. 

unauthenticated sessions) is preserved in each fold. A classifier algorithm is trained on 9 

of the 10 folds. The classifier is asked to label each session in the test fold as 

authenticated or imposter. This process is repeated 10 times, with each fold being used as 

test data once. 

Each user is treated as the authenticated user once. Classifier performance is 

averaged across users. We evaluated several different well-known classifier algorithms 

including C4.5 decision tree, Naïve Bayes, Adaptive Boosting (AdaBoost), and Random 
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Forest. As a baseline, we used a majority class classifier that always classified the 

instance as “imposter”. The following metrics were used to compare classifier 

performance: percentage of correctly classified sessions, F-measure, AUC of the 

Receiver Operator Characteristic (ROC) curve. The larger those metrics are the better 

performance is. 

In addition, due to the imbalanced nature of the dataset, we have observed that the 

class distribution is extremely skewed. The number of sessions labeled “imposter” vastly 

outnumbers the number of sessions belonging to the authenticated class. We examined 

changes in classifier performance when sessions labeled “imposter” are subsampled to 

10% of their original number in the training data. Similarly, we used a 10-fold cross 

validation for each user's profile as after subsampling. 

 

6.4 Performance Evaluation 

 

We first compare the ability of the selected classifier algorithms to distinguish 

between the authenticated and imposter users (see Table 4). The evaluation procedure by 

which each user profile is once treated as the authenticated user and then repeatedly as 

imposter is described in detail in the previous section. The Random Forest algorithm with 

20 decision trees was trained on a randomly selected subset of eight features. AdaBoost 

was trained in 10 iterations with a decision stump as the base classifier. 

 

 

 
Table 4: Average algorithm performance across user profile using 10-fold cross validation 

Algorithm Average percent correct Average F-measure Average AUC 
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Random Forests 95.43% 0.943 0.735 

AdaBoost 95.07% 0.931 0.674 

Naïve Bayes 95.01% 0.932 0.595 

C4.5 95.42% 0.939 0.566 

Baseline 95.04% 0.927 0.500 

 

 

 

All classifiers outperformed the baseline in terms of the F1-measure and AUC, if 

only narrowly in some cases. Random Forest bested the other methods in terms of all 

three metrics. In particular, AUC was much higher for Random Forest than the other 

algorithms tested. Although the perceived increase in average percent correct is moderate 

for Random Forest, a comparison of a confusion matrix (see Table 5 and Table 6) 

between Random Forests and AdaBoost, the second best algorithm, reveals that Random 

Forest is identifying the minority/rare class (authenticated) at a better rate. 

 

 

 
Table 5: Random Forests confusion matrix 

 
Predicted Class 

Authenticated imposter 

Actual Class 
Authenticated 10.59 45.66 

imposter 6.19 1072.57 

 

 

 

Table 6: AdaBoost confusion matrix 

 
Predicted Class 

Authenticated imposter 

Actual Class 
Authenticated 3.49 52.79 

imposter 3.29 1079.50 
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Random Forest and AdaBoost both perform well and both are ensemble learning 

methods. Overall, Random Forests performs better due to its intrinsic characteristics (e.g. 

randomness and sampling/bagging), and ensemble methods, which cope better with the 

varying nature of individual user profiles. This level of optimal performance is in line 

with other research [5], [49], [50], [51] which has found that ensemble learning, either 

through boosting or bootstraps aggregating (bagging) are flexible enough to represent 

complex hypothesis functions that are difficult to learn with a single classifier. In 

addition, bagging (used by Random Forest) can reduce the concern that the learned model 

may over fit the dataset. 

While these initial results suggest that it is possible to use application-specific 

command streams to distinguish between authenticated users and others in Microsoft 

Word, the rate at which authenticated users are misclassified as imposters (a false 

negative) could be prohibitively high in practice (this would depend on the application 

and the action required when an active authentication system triggers a false negative).  

To reduce the false negative rate, the majority class was subsampled in the 

training set to 10% of its total size, bringing the number of sessions in the authenticated 

and imposter classes much closer to an even split. Results for this experiment are 

presented in Table 7. 
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Table 7: Average algorithm performance across user profiles with majority class subsampled to 10% 

Algorithm Average percent correct Average F-measure Average AUC 

Random Forests 85.76% 0.879 0.746 

AdaBoost 87.56% 0.876 0.675 

Naïve Bayes 58.54% 0.614 0.649 

C4.5 85.12% 0.871 0.668 

 

 

 

The results show that subsampling the majority class makes all the classifiers 

more sensitive to the minority class. Subsampling is only used in the training set, not the 

test set, as this would inaccurately represent the observed class distribution. Although the 

average percent correct rate declines by 9.67% for the Random Forest algorithm, the 

average AUC increases. This is an improvement to the classifier’s performance since the 

better the classifier performs, the higher the AUC [52]. The relative significance of AUC 

comes from the derivation and interpretation of ROC where decision-making is a 

function of setting thresholds on similarity distances to trace the ROC curve. 

 Table 8 presents the confusion matrix for the Random Forest algorithm trained on 

the subsampled training data. In comparison to the initial confusion matrix for the 

Random Forest algorithm (see Table 5) trained on the original training data, subsampling 

has made the classifier far more sensitive to classifying authenticated sessions as 

authenticated (true positives have increased). Subsampling the majority class thus results 

in a trade-off: a substantially lower false negative comes at the cost of potentially 

confusing additional imposter sessions as authenticated (an increase in false positives). 
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Table 8: Random Forests confusion matrix after subsampling the majority class 

 
Predicted Class 

Authenticated imposter 

Actual Class 
Authenticated 36.96 17.01 

imposter 144.06 936.47 

 

 

 

 Table 9 presents a comparison between ACSAM and other related research in 

terms of novelty, accuracy and significance. 

 

 

 

 

 
Table 9: ACSAM vs. Others 

Model Novelty Accuracy Significance 

  Research by Results # Users 
# Commands              

Issued 

ACSAM 

GUI-based Application Command 

Streams 

Based on number of command (bag-

of-words) issued by user from a 

GUI-based application 

 

El-Masri et al. (2014)     

 

95.43% 
 

24 

 

74,783 

 

Others 

Command-line lexicon 

Similarity measure of sequence of 

fixed-length command 

 

Percentage of commands issued in a 

given time period 

 

Frequency of commands issued 

 

Marin et al.  (2001)  

 

Yeung & Ding  (2003)           

 

Schonlau et al. (2001)           

 

Maxion & Townsend 

(2002)  

 

80.00% 

 

87.00% 

 

80.40% 

 

74.15% 

 

50 

 

08 

 

70 

 

50 

 

 

5,000 

 

2,356 

 

15,000 

 

15,000 
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CHAPTER 7: SCROLLING BEHAVIOR BASED AUTHENTICATION 

MODEL (SBAM) 

We describe here a novel behavioral biometric based on users’ document scrolling 

traits, and then introduce a new method that leverages this unique trait for re-

authenticating users. It is important to note that scrolling occurs as the result of using a 

mouse and/or the keyboard keys. In particular, we focus on identifying anomalous 

scrolling behavior when users interact with protected or read-only electronic documents. 

This poses a unique challenge due to the minimal user input that can be observed and 

analyzed for authenticity. Protected documents such as protected Microsoft (MS) Word 

files and Portable Document Format (PDF) files prohibit input thereby facilitating our 

focus on observing activities beyond the traditional modification of, addition to and/or 

deletion of documents’ contents. Hence, this method relies only on how those documents 

are viewed. 

The goal of this experiment is to investigate the existence of patterns related to how 

users scroll electronic documents. Such patterns are influenced by many factors including 

the users’ purpose or intent; the documents’ contents, length, layout, and type; the 

environment in which such interaction takes place; users’ knowledge of the subject; rate 

of interruptions; day of week and time of day; the platform used to view documents  and 

users’ physical condition. While some of these factors can be controlled such as 
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environment and document layout, others are difficult or impossible to control such as 

users’ physical condition. Therefore, the challenge is to find out if a unique reading 

pattern exists regardless of external factors. 

7.1 Dataset 

 

We have repurposed a dataset that was obtained from a previous research project 

at the Georgia Institute of Technology (Georgia Tech). This dataset was culled from an 

experiment aimed to detect document access activities that indicate evasive cyber insider 

attacks such as those that use various strategies to escape generic thresholds on coarse-

grain metrics (e.g., indiscriminate bulk read or bulk copy of documents) [53]. The 

experiment required subjects to login into a custom-built web application and read a 

loaded PDF document within a browser. The users’ reading habits were tracked 

throughout the reading session and subsequently logged to a database. Eighty-four 

subjects participated in the experiment and fifty-four documents were available for 

reading. All of the documents were either academic research papers or journal entries. 

The web application was programmed to record the browser’s onResize and 

onScroll events. The onResize event is triggered every time the browser’s window is 

resized, while the onScroll event is triggered whenever the horizontal or vertical scroll 

bars’ positions are changed. Every time the user resized the browser window or scrolled 

through the page, the following data points were captured and stored to a database: the 

vertical and horizontal scroll position; the document width and height, the window width 

and height, and the time the event took place. Table 10 provides descriptions for each of 

these data points. 
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Table 10: Data logged at each onResize and onScroll events 

Data Point Description 

Horizontal scroll 

position 
The X coordinate of the top-left-most visible pixel on the screen. 

Vertical scroll 

position 
The Y coordinate of the top-left-most visible pixel on the screen. 

Window width The width of the browser window in pixels. 

Window height The height of the browser window in pixels. 

Document width 
The width of the document in pixels. This changes when a user zooms in 

or out. 

Document height 
The height of the document in pixels. This changes when a user zooms in 

or out. 

Time 
The timestamp of the log entry in UNIX timestamp format (milliseconds 

elapsed since January 1, 1970). 

 

 

 

The terminology aligned with the above web application goes as follows: 

 Observation (O): An observation is a captured event of a user/document 

interaction. 

 Working Session (WS): A working session is the record of one user's observed 

interactions with a single document during a single continuous period of 

interaction. A working session comprises one or many observations. 

Different users read a different number of documents and collectively produced a 

total of 529 reading sessions. 

 

7.2 Data Representation 
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Three feature vectors were derived and used with various classification and 

clustering techniques. The feature vectors were fed to machine learning algorithms to 

select features (“human factors”) that discriminate best between different readers prior to 

classification. Description of each feature vector is presented in the subsequent sections. 

7.2.1 Feature Vector I 

Feature Vector I is a pure statistical representation derived from the user’s 

scrolling traits. It is comprised, among others, of the average standard deviation and the 

average velocity of the user vertical and horizontal scrolling over the document. Fourteen 

features were extracted here. Table 11 provides a description of each of the extracted 

features. 

 

 

 
Table 11: Feature Vector I data description 

Data Point Description 

Number of logs Total number of events logged for the reading session. 

Average scroll Y distance 
The average vertical distance in pixels between subsequent logged 

events.  

Scroll Y distance standard 

deviation 

The standard deviation of the vertical distance in pixels between 

subsequent logged events. 

Average scroll X distance  
The average horizontal distance in pixels between subsequent 

logged events. 

Scroll X distance standard 

deviation 

The standard deviation of the horizontal distance in pixels between 

subsequent logged events. 

Average elapsed time 
Average amount of time in milliseconds between two subsequent 

logs 

Elapsed time standard 

deviation 

Standard deviation of time in milliseconds between two subsequent 

logs 

Average velocity 
Average velocity in pixels per second between subsequent logged 

events. 
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Velocity standard deviation 
Standard deviation of pixels per second velocity between 

subsequent logged events. 

Switch / scroll ratio 
Number of changes in scroll direction divided by number of logged 

events. 

Number of switches Number of times a user switched directions while scrolling. 

Number forward scrolls Number of events logged as a result of forward scrolls. 

Number backward scrolls Number of events logged as a result of backwards scrolls. 

Total elapsed time Total time that the document was read in milliseconds. 

 

 

 

7.2.2 Feature Vector II  

Feature Vector II is a representation of the polarity of scrolling (forward vs. 

backward scrolls) and the pauses between scrolls. Here we investigate the possibility that 

there exists a unique pattern in how a user scrolls backward and forward while reading a 

document. Each working session is divided into a series of 5-grams sequences. Each of 

the entries in the 5-gram corresponds to a scroll movement by the user. Through 

experimentation, we found that 5-gram length sequence provided sufficient information 

to evaluate. 

For example, let f denote the user’s forward scrolling, and let b denote the user’s 

backward scrolling. If the user had moved forward 3 times, backwards one time and 

forward one time the corresponding 5-gram would be [ f, f, f, b, f ]. A working session 

consists of all 5-grams generated during the users' interaction with the document. The 

individual 5-grams for a working session are summarized into a set of 15 features that 

keep track of whether that 5-gram appeared more frequently than one would expect based 
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on all working sessions. Each feature is binarized to zero or one based on whether that 

feature appears more often than we'd expected (feature value = 1) or less often (feature 

value = 0). This representation is comprised of the 5-gram scroll sequence, the average 

and standard deviation of the sub-sequence distance and pauses. A total of 15 features 

were extracted for this feature vector. Table 12 provides a description of each of the 

extracted feature for this vector. 

 

 

 
Table 12: Feature Vector II data description 

Data Point Description 

Sequence The current extracted sequence of 5-gram length.  

User ID The user identifier. 

Total forward scroll 

distance 
The total distance in pixels of the user’s forward scrolling. 

Average forward 

scroll distance 
The average vertical distance in pixels between subsequent logged 

events when user scrolled forward through the document. 

Average forward 

scroll velocity  
Average velocity in pixels per second between subsequent logged 

events when user scrolled forward through the document. 

Total backward scroll 

distance 
The total distance in pixels of the user’s backward scrolling. 

Average backward 

scroll distance 
The average vertical distance in pixels between subsequent logged 

events when user scrolled backward through the document. 

Average backward 

scroll velocity 
Average velocity in pixels per second between subsequent logged 

events when user scrolled backward through the document. 

Total time Total time that the document was read in milliseconds. 

Average time The average of time in milliseconds between pauses. 

Time standard 

deviation 
The standard deviation of time in milliseconds between pauses. 

Total forward pause Total number of pauses between subsequent forward scrolling. 
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Average forward 

pause 
The average number of pauses between subsequent forward scrolling. 

Total backward pause Total number of pauses between subsequent backward scrolling. 

Average backward 

pause 
The average number of pauses between subsequent backward scrolling. 

 

 

 

7.2.3 Feature Vector III 

In this data representation, we treat the dataset as a bipartite graph with two disjoint 

node sets - U for users and D for documents - where undirected edges represent a read-by 

relation. This feature vector will produce the best results at capturing what is most 

discriminative between users and imposters during the same session. The notation here is 

as follows:  

 Denote by U = {u1, u2,…, un} the set of all users where |U| = 46 

 Denote by D = {d1, d2,...,dn} the set of all documents, where |D| = 65 

 Denote by ui → dj the relationship “user ui works with document dj” 

The following criteria are applied to the data selection process: 

 Exclude documents that have been worked on fewer than 5 times – deg (di) >= 5 

∀ di ∈ D 

 Exclude users who have not worked on at least 8 documents – deg (ui) >= 8 ∀ ui 

∈ U 

Consequently, we are left with |D| = 35, |U| = 27 and |E| = 292 (the size of the edge 

set based on actual number of undirected edges or the ui → dj relations). Each edge 
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corresponds to a working session, which corresponds to a single user working on a single 

document. Edges are labeled with a feature vector extracted for that working session. 

Each working session is binarized using the following method: 1) Calculate median 

values for each of the features across all users and all documents. 2) Binarize all feature 

vectors based on whether the given value is above the median “1” or below the median 

“0”. A total of 23 features were extracted in this feature vector. Table 13 provides a 

description of each of feature. 

 

 

 
Table 13: Feature Vector III data description 

Data Point Description 

Number of entries The total number of events logged for the reading session. 

Post ID The logged event identifier. 

Document ID The document identifier. 

User ID The user identifier. 

Pause average 
The average amount of time in milliseconds between two 

subsequent logs. 

Pause standard deviation  
Standard deviation of time in milliseconds between two subsequent 

logs. 

Number of pauses The total number of pauses. 

Pauses to length ratio The total number of pauses to the total distance. 

Number of long pauses The number of pauses that lasted more than a specified threshold. 

Long pauses to length 

ratio 
The total number of long pauses to the total distance. 

Distance average 
The average of the vertical distance in pixels between subsequent 

logged events. 

Distance absolute average 
The absolute average of the vertical distance in pixels between 

subsequent logged events. 
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Distance standard 

deviation 

The standard deviation of the vertical distance in pixels between 

subsequent logged events. 

Distance absolute standard 

deviation 

The absolute standard deviation of the vertical distance in pixels 

between subsequent logged events. 

Number of forward 

switched 
Number of events logged as a result of forward scrolls. 

Number of backward 

switched 
Number of events logged as a result of backward scrolls. 

Number of switches Number of times a user switched directions while scrolling. 

Number of forward scrolls Number of events logged as a result of forward scrolls. 

Number of backward 

scrolls 
Number of events logged as a result of backward scrolls 

Switches to scrolls ratio The total number of switches to the total number of scrolls. 

Switched to length ratio The total number of switches to the total distance. 

Velocity average 
Average velocity in pixels per second between subsequent logged 

events. 

Velocity standard 

deviation 

Standard deviation of pixels per second velocity between 

subsequent logged events 

 

 

 

7.3 Experimental Design 

 

This section describes the authentication methods used, the feature representation 

they have access to, and motivate linkages and use. 

7.3.1 Classification 

The question we have to answer is: "Is the current user the authenticated user or 

not?" and consequently the problem is posed as a binary classification problem with two 

classes: Authenticated and Imposters. As a first cut, one can use Random Forests, an 

ensemble learning method for classification. Compared to other learning methods used, 

Random Forests performs much better due to its intrinsic characteristics, e.g. random 
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sampling and ensemble methods, which cope better with the varying nature of individual 

user profiles. That is, Random Forests trains multiple “weak” classifiers, in our case 

Decision Trees, based on a randomly selected subset of the entire feature space. The 

algorithm then makes the classification decision based on the majority vote of these weak 

learners. Random Forests employs Feature Vector I. 

7.3.1.1 Handling Imbalanced Data 

Due to the imbalanced nature of our dataset, SMOTE and AdaBoost techniques 

were applied independently to decrease the classifier’s bias towards the majority class 

(Imposters) and improve the classification performance on the minority class 

(Authenticated). Using Random Forests as the classifier, we oversampled the minority 

class using SMOTE, a widely used technique for oversampling imbalanced data by 

creating synthetic minority instances along the line segments connecting the minority 

class nearest neighbors [45]. To improve the performance of the classifiers, we 

considered AdaBoost, a widely applied cost-sensitive boosting technique that boosts the 

outcome of the “weak learner” by assigning weight or cost in favor of misclassified 

instance [11]. This has the potential for improving the performance of the classifier on 

our imbalanced data. To this extent, we applied AdaBoost with Decision Stump and 

ADTree as weak learners. Again, Feature Vector I was used. 

Another technique we applied to reduce classifier bias is sub-sequencing. Here, 

instead of extracting a single feature vector from a single reading session, we built a 

continuous feature vector across all reading sessions for a given user. In this document-
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agnostic approach, we considered extracting features from n-gram sequences of scroll 

events. For each n-gram, we extracted the feature set for that sequence and tested it 

against Feature Vector II. Through experimentation, we found that 5-gram length 

sequence provided sufficient information to evaluate. For example, if a user had 300 

scroll events for a single reading session, then that allowed a total of 296 feature vectors 

of type II to be extracted from the reading session in comparison to the single feature 

vector we had extracted previously. Each subsequence was essentially an estimate of the 

likelihood of the authenticated user being the reader during that subsequence. 

Consequently, as a user read a document, every new scroll event gave us a new 

subsequence for analysis. 

7.3.2 Clustering 

With modest success trying to predict the minority class in our dataset using 

classification, we turned our attention from authenticating the user identity to narrowing 

down the possibility that the current reading pattern belongs to a small set of registered 

user profiles. A pattern that cannot be associated with any of these profiles would be 

considered new or foreign, and hence belonging to a possible imposter. To achieve this, 

we considered clustering as a possible approach. Basically, the goal is to identify (or 

narrow down possibilities of) who is reading the current document. 

7.3.2.1 Creating User Profiles  

Leveraging Feature Vector III (see section 7.2.3 Feature Vector III) we extract a 

profile. To do so, each user’s reading sessions are clustered using k-means and the 
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centroids are extracted from the resulting clusters. To determine the number of clusters 

we first used the simple and widely adopted rule of thumb, which sets the number of 

clusters to approximately √
𝑛

2
 where n is the number of data points. Therefore, we probed 

for the number of clusters between one and √
|𝑅𝑆𝑢|

2
 where u is user. The number of 

clusters varied per user profile with the square root as the upper bound on the number of 

clusters. However, for a few profiles, we discovered that the squared error was still 

unacceptably high when we stopped introducing new clusters at√
|𝑅𝑆𝑢|

2
 . As a result, we 

continued to add clusters until the squared error was less than 15 at which a balance 

between the intra-cluster variance and overfitting was achieved. A user’s profile, 

therefore, could consist of one or many clusters. 

7.3.2.2 Calculating Distance to Profile  

Now that each user’s profile can be represented as a set of centroids, we can 

attempt to determine who is reading a document based on a new reading session. Given a 

target reading session (an unlabeled reading session), user profiles are constructed from 

all reading session except the target (a Leave-one-out model). Then the distance from 

each profile to the target reading session is calculated. If there are n centroids in a profile, 

the distance to the profile is calculated as the minimum Euclidean Distance (ED) between 

the target and the cluster’s centroids in the profile. This can be formulated as 

dist(target, profile) = minc ϵ centroids ED(target, centroid) 
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Figure 13: Users' Profile represented as K clusters 

 

 

7.3.2.3 Determining Most Likely Readers  

Now that the distance from the reading session to each profile is known, a set of 

most likely readers can be determined based on various metrics. Two approaches are 

followed and presented in the subsequent sections. 

7.3.2.3.1 Approach 1: Top 5/10 Ranking (Singleton Sets) 

The simplest approach to determining likely readers can be extracted by ranking 

the distances from a given working session to the profiles. This is repeated for all 

working sessions and profiles and recalculated with target working session removed. 
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7.3.2.3.2 Approach 2: Feasibility Sets (Multiple ID Sets) 

Another approach to determining which users may have generated a working 

session is to label all profiles as possible candidates if target working session is within a 

threshold distance from that profile. A per-profile distance threshold is calculated based 

on the average distance and standard deviation between the different working sessions in 

each profile and the centroids. This gives a sense of how disperse each profile is. For 

each user we set the thresholdu to the average distance plus one standard deviation from 

that average distance, hence expanding the notion of a cluster by adding a threshold 

(“leeway”). Our choice to add a single standard deviation is to reduce the risk of having 

the working session fall too close to other users’ profiles. This allowed outliers to have 

better chance of being associated with the correct user since clusters could overlap 

allowing a new working session to fall within several profiles. 

To determine the set of possible users, we choose a particular reading session as 

the target. The goal is to determine which profiles were capable of generating the target 

according to the distance from the profile’s centroids to the target reading session. Of 

course, one profile clearly generated this reading session (the target was not included in 

the generation of the profile). A perfect system would mark only the actual user’s profile 

as possible for each target. We mark each profilei ∀ i ∈ U as possible or not possible. 

Profilei is marked possible if dist(target, profilei) ≤ thresholdi. Figure 14 illustrates the 

notion of expanding a cluster’s boundary of a user’s threshold. 
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Figure 14: Expanding the notion of a k cluster by a threshold 

 

 

 

7.4 Performance Evaluation 

 

Due to the imbalanced nature of our dataset (the two Authenticated and Imposter 

classes are not approximately equally represented), we use the F1-measure and AUC as 

performance measures. Relying only on the correct classification rate is misleading since 

classifiers tend to be bias towards the majority class (imposter). All classification 

experiments’ performance involve k-fold cross validation and are summarized in Table 

14. 
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7.4.1 Random Forests 

For the purposes of our experiment, we eliminated sessions with less than 150 

observations and users for whom we had fewer than six reading sessions. This left us 

with a total of 29 users. Random Forests with 10-fold cross validation was run on the 

stratified dataset represented by Feature Vector I (see section 7.2.1 Feature Vector I for 

details). Best results were obtained with 40 trees and 9 features achieving a modest F1-

measure of 0.27 for the Authenticated class (and 0.99 for the Imposter class.)  

Moreover, tuning the classifier did not yield significant gain in performance. For 

example, increasing the number of features did not impact the model’s accuracy. 

However, the model’s error decreased as the number of trees increased. This observation 

plateaued after 40 trees. To provide the method with more descriptive data, we then only 

considered users that had at least seven reading sessions where each reading session 

lasted for a minimum of 30 seconds. This left us with data for 27 users. Again, the 

method performed poorly in predicting the minority class with an F1-measure of 0.27 on 

the Authenticated class and a 0.98 on the Imposter class. Although discouraging, the 

results came as no surprise, as similar to many other practical classification problems, our 

dataset was imbalanced, thereby biasing the classifiers towards the majority class 

(Imposters). 

7.4.2 Random Forests with SMOTE 

To overcome the class imbalance problem, we applied SMOTE in three different 

configurations (see description of 3, 4 and 5 in Table 14). However, applying SMOTE 
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yielded modest improvement to the classifier’s prediction power of the minority class 

with an F1-measure of 0.29 (a slim 0.1 increase in performance), which is the best score 

of the three different configurations. 

7.4.3 AdaBoost 

Applying cost-sensitive boosting also resulted in a slight improvement in 

predicting the minority class. Here, AdaBoost with Decision Stump and again with 

ADTree was used achieving an F1-measure of 0.35 and 0.39 respectively. 

7.4.4 Random Forests with Sub-Sampling 

In this experiment, we applied Random Forests with 10-fold cross validation. This 

resulted in an improved performance of the model that could be attributed to the larger 

number of cases tested. For example, in our previous experiment with AdaBoost the total 

number of cases, or predictions, for a given user was 500 compared to 503,662 

predictions when applying sub-sequencing, and hence gaining a normal distribution over 

the produced instances. A total of 44 users were considered during this analysis and the 

performance has increased to an F1-measure of 0.50 for the minority class 

(Authenticated), the model remained neutral in its prediction capability. 
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Table 14: Performance summary of classification experiments 

# Experiment 

% 

Correctly 

Classified 

% 

Incorrectly 

Classified 

Authenticated 

class F-Measure 

Imposter 

class F-

Measure 

AUC 

1 

Random Forests (Analysis 

run on all users that have > 5 

WS AND there are > 150 O 

logged for each WS) 

97.00% 3.00% 0.28 0.99 0.81 

2 

Random Forests (Analysis 

run on all users that have > 6 

WS AND there are > 150 O 

logged for each WS AND 

WS is > 30 seconds) * 

97.00% 3.00% 0.27 0.98 0.79 

3 

Same as experiment 2 but 

with 100% synthetic 

instances (SMOTE) 

96.94% 3.06% 0.20 0.98 0.76 

4 

Same as experiment 3 but 

restricted to users who, after 

the iterative selection criteria 

in experiment 2 is 

performed, still have > 6 WS 

95.97% 4.08% 0.29 0.98 0.82 

5 

Same as experiment 4 but 

with 500% synthetic 

instances (SMOTE) 

95.75% 4.25% 0.26 0.98 0.78 

6 
AdaBoost with Decision 

Stump 
97.92% 2.08% 0.35 0.99 0.88 

7 AdaBoost with ADTree 97.94% 2.06% 0.39 0.99 0.80 

8 
Random Forests with Sub-

sequencing 
98.24% 1.77% 0.50 0.99 0.86 

* Due to the iterative selection process, some users may end up with as few as 3 readings being analyzed 

 

 

 

7.4.5 K-Means Clustering 

With modest success trying to predict the minority class in our dataset using 

classification, we turned our attention from verifying the exact user identity to narrowing 

down the possibility that the current reading pattern belongs to a small set of registered 

user profiles. As described in sections 7.3.2.3.1 and 7.3.2.3.2, two approaches were 

followed: Approach I - Simple ranking by distance (Top 5/10 Ranking) and Approach II - 

filtering users by profile standard error (Feasibility Sets). Figure 15 summarizes the 
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results of approach I. It shows the cumulative percentage of the actual user was ranked 

against each position. Over all reading sessions, 19.75% of the time the actual user's 

profile is the closest to target, while 58% and 80% of the time the actual user was in the 

top five and ten ranked profiles respectively.  
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Figure 15: K-means clustering using simple ranking 

 

 

 

In approach II, 33% of profiles, on average, were marked as possible, that is, we 

could eliminate 2/3 of profiles; and 83.5% of the time, the actual user is within the set of 

the remaining 1/3 possible profiles. Figure 16 provides an illustration of approach II 

performance. 

 

 

 



84 

 

 

Figure 16: Illustration of k-means performance 

 

 

 

We compare next our full-fledged authentication results to those obtained in using 

the screen recordings of scrolling in [43]. The best verification performance reported by 

[43] using SVM achieves a False Acceptance Rate (FAR) of 20.67%, a False Rejection 

Rate (FRR) of 12.38% and an F1-measure Detection Error Tradeoff (DET) of 82.75%. 

Our all classification methods fell short in accurately predicting the authenticated user 

while doing really well in predicting the imposters. For example, best performance on the 

F1-measure was achieved with Random Forest with sub-sequencing where we have a 

FAR of 0.61% and an FRR of 57.12%. The test also yielded an F1-measure of 0.50 for 

the “true” class (authenticated) and 0.99 for the “false” class (imposter). This indicated 

that the model did well in predicting the “false” class but was neutral towards the “true” 

class due to the imbalanced dataset, therefore, biasing the classifier towards the majority 
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class (imposter). However, we do better in predicting the authenticated user with K-

means clustering in which we were able to achieve a success rate of 83.5%.  

Other than addressing a much more difficult problem compared to [43], 

authentication rather than verification, there are three additional notable differences 

between our experiment and the one presented in [43]. First, in [43] the number of users 

from which the data was collected was 21 performing 4 tasks 5 times, but only 5 users 

were used in testing. In our study, data was collected from 46 users (27-44 users were 

used with various experiments) and collectively produced 529 working sessions. 10-fold 

cross validation was used with classification methods, and leave-one-out cross validation 

with clustering. Second, the way the profiles were created in [43] was controlled with 

users asked to use a program that guided them through a sequence of steps that captured 

the four different interaction types including scrolling. In our case, the creation of users’ 

profiles was by training the model on a subset of the dataset as it was collected from the 

various users’ reading sessions. Third, our model is event-driven compared to time-based 

in [43] and therefore provide active and continuous authentication. Every scrolling event 

in our model triggers a point for possible authentication. In [43], the screen recording is 

timed without a guarantee that an actual scrolling occurred during that time. Table 15 

summarizes a comparison between SBAM and other related research in terms of novelty, 

accuracy and significance. 
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Table 15: SBAM vs. Others 

Model Novelty Accuracy Significance 

  Research by Results # Users # Sessions 

SBAM 

Document Scrolling Behavior 

Based on event-driven temporal data 

captured through monitoring users’ 

scrolling habits 

 

User interaction uncontrolled 

 

El-Masri et al. (2015)     

 

84.50% 
 

46 

 

529 

 

Others 

Screen fingerprint 

Based on pixel-level screen analysis 

of captured screen recordings. 

 

User interactions controlled 

(program guided user through a 

sequence of steps) 

 

 

Fathy et al. (2014) 

 

83.50% 

 

 

21 

 

 

105 
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CHAPTER 8: APPLICATIONS AND FUTURE WORK 

The provided models can lend themselves to applications in areas such as access 

control, intrusion detection, and recommender systems. This chapter discusses possible 

applications and future work. 

8.1 Document Access Control 

The approach for authenticating users based on their interaction with documents is 

suited in situations when limiting access to such documents is desired beyond the 

traditional access controls. While initial authentication serves as an entry point of user 

verification, it falls short of guaranteeing that the user who was initially authenticated is 

still the same user currently interacting with the documents. Organizations wishing to 

restrict access to classified or confidential documents would want to employ a system 

that verifies the subject identity while interacting with such content-sensitive documents. 

Therefore, a model such as the one presented here is well suited for such situations 

especially that the model relies solely on the scrolling behavior of the user, which by 

virtue of the documents being read-only would be the only means of interaction with the 

documents. 
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8.2 Electronic Document Forensics 

An offshoot of our experiment provided preliminary evidence suggesting that users’ 

knowledge or familiarity of content can be deduced from their scrolling style. To 

demonstrate the application of such models to the computer forensic field, consider the 

following pilot experiment and its results. Three users were given a three-page document 

containing financial data showing an organization’s Income Statement, Balance Sheet 

and Cash Flow for the years 2008, 2009 and 2010. The first user was a novice in the 

subject (no background in finance and/or accounting), the second user was an expert in 

the subject and the third user was the author of the document. All users were given two 

questions and asked to find the answers in this financial document while the MS Word 

logger logged their reading patterns (for details on this tool see section 1.5.2 Developed 

Tools). Data then was plotted using MS Excel and the following two graphs are 

generated: Figure 17 compares the document navigation trend among the three different 

users by showing changes in document vertical percent scroll over time. Figure 18 

provides a detailed analysis showing the vertical scroll percent over pages and the time 

elapsed between successive scrolls for the novice user. 
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Figure 17: Document vertical scroll percent over time 

 

 

To demonstrate the implications of such graphs consider the following scenario. 

Company xyz discovers that some classified information was leaked to the public. A 

security audit reveals that the source of this leaked information is a document authored by 

employee Bob. Access to this document is limited only to Bob, Bob’s coworker and a 

contributor to the document’s content Alice, and Bob’s supervisor Mary. The audit also 

shows the document’s access metadata such as the document access time and accessed-by 

properties. The metadata reveals that Bob had accessed the document numerous times; 

while Alice had accessed it only few times before. Mary, the supervisor, had only 

accessed the document only twice. Any of the three privileged users could have 

undermined the confidentiality of this document. Their access credentials could have 
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been compromised and an attacker could have carried the breach without being detected. 

In such scenario, it is difficult to identify the true attacker. 

Bob and Alice, the coauthors, would have not browsed randomly through the 

document prior to the information leak. Instead, they would have directly navigated to the 

exact location of interest (e.g., high value content that was leaked to the public). Such 

navigational pattern is depicted in the expert and author series in Figure 17. On the other 

hand, a person who knew that the document contains critical information but does not 

know where exactly this information is located would have to skim randomly spending 

measurable time between positions in the document. This pattern is depicted in the novice 

series in Figure 17. Considering her limited access history and depending on her 

familiarity with the document, this could be Mary’s, the supervisor, navigation pattern 

illustrated by the novice series on the graph.  

Following an induction by elimination approach, Figure 18 provides a more granular 

analysis. It depicts Bob’s, the author, page scrolling pattern and the elapsed time between 

scrolls revealing information such as how much time Bob spent at a particular section in 

a page. Assuming that the leaked information resides at location x in the breached 

document, if the navigation pattern does not show that the Bob has navigated to and spent 

time at location x, he could be eliminated as a possible attacker. While it is true that Bob 

could have relied on his memory or notes to leak this information, if the data shows that 

the user has navigated to and spent considerable time at the location of interest, again, it 

is less likely he is the perpetrator. Similarly, the same analysis can be applied to Alice 

and Mary; the other two users who had accessed the document.  
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Figure 18: Document vertical scroll percent over elapsed time and page number 

 

 

 

One can see how such model can be a useful tool in electronic document forensics. 

While the results presented above are empirical in nature, they serve as a preliminary 

evidence of the applicability of our model in the area of computer forensics and a 

motivation for future work. 

 

8.3 Recommender Systems 

Another offshoot of our experiments provided preliminary evidence suggesting 

that users’ intentions can be deduced from their scrolling style. Three main styles of 

reading, or scrolling, were observed: skimming, scanning and careful reading. These 

different styles of reading can be clearly observed in Figure 19, and can be used to derive 

intentions behind ongoing reading allowing the system to respond accordingly. For 
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example, an observation suggesting a user is involved in careful reading can prompt the 

system to suggest further readings by providing external references to the topics being 

covered in that particular section.  

 

 

 

 

Figure 19: Observed reading patterns 

 

 

 

The three reading styles can be determined by certain properties such as time 

elapsed and vertical scrolling patterns. For example, during the careful reading pattern, as 

illustrated in Figure 20, one can see that considerable time was spent on the first page 

when compared to the rest of the pages in the document. Moreover, the peaks and dips in 
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the page vertical scroll percentage are occurring on the same page. This is attributed to 

the document’s two-column layout. 

 

 

 

 
Figure 20: Careful reading pattern 

 

 

 

However, as the user moves to a skimming reading pattern both the time elapsed 

between scrolls starts to decrease (an indication that the user is no longer engaged in 

careful reading pattern) and the peaks and dip start to gradually lose their definition (an 

indication that the user is no longer reading each column on the page). Another 

interesting observation is that during this phase the user did spend some measurable time 

at two particular locations in the document: page 4 at 39% vertical scroll and page 6 at 
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73% vertical scroll. Cross referencing the document for these locations it appears that 

figures and tables contributed to the longer elapsed time between scrolls.  

 

 

 

 
Figure 21: Skimming reading pattern 

 

 

 

Finally, during the last phase scrolling becomes more random with the user 

scrolling back and forth between pages and revisiting pages. However, unlike the 

skimming reading pattern the user is pending more time between scrolls (12 seconds on 

average). This is an indication that the user is involved in a scanning reading pattern in 

which the goal is to find specific information. 
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Figure 22: Scanning reading pattern 

 

 

 

8.4 Mobile Applications 

Another suitable application of our model is in mobile devices security. While 

many consumer market research are available for reference, it needs no proof that 

touchscreen devices are inarguably reaching critical mass. However, the increased 

popularity comes as no surprise, especially when considering what these relatively small 

devices can provide their users. For example, the mobile phones have evolved from 

simple point-to-point wireless communication devices that transmit and receive audio to 

fully equipped intelligent personal gadgets that are used to carry out information-

sensitive activities such as online shopping and banking – which consequently raises 

privacy concerns and the need to protect it.  
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While our feature vector was composed of mainly users’ scrolling traits by means 

of a mouse or a keyboard, it can also be applied to scrolling based on touch gestures. The 

wide spread of touch-oriented devices today such as smartphones and tablets are well-

suited candidates. In such devices scrolling is the main interaction a user has with the 

GUI, and hence is a natural extension to our experiment and a fitted application to our 

model. 

8.5 KAIST Research 

Our experiment protocol and MS logger program were leveraged by a research group 

from KAIST to carryout similar experiments with slight modifications. Twenty-five 

subjects participated in this experiment. Twenty of them were graduate students who took 

the same class, and five participants were researchers belonging to a National Research 

Institute. Each individual was required to reserve a time slot to access the test machine. 

Three 23 page aligned column documents were used in the experiment; all written in 

Korean. One document was from a book chapter related to cryptography, while the other 

documents were from Maeil Economy, a prominent Korean economy magazine. Articles 

were selected based on their ease of readability and the amount of figures and tables they 

contain. Topics of three documents included public key encryption, funeral culture and 

social commerce. 

To motivate participants to read the documents honestly, they were required to 

answer ten questions after reading each document. Each participant was asked to access 

the test machine, read two documents and answer two sets of related questions. 

Participants were divided into two groups. Ten participants in Group 1 were asked to read 



97 

 

document A and document B and answer the questions related to these documents. Group 

1 participants had background knowledge in cryptography; the topic of document A, but 

no background knowledge related to document B topic. The remaining fifteen 

participants in Group 2 were asked to read document B and document C and answer the 

questions related to these documents. Participants in Group 2 did not have background 

knowledge related to either document. 

Users’ profiles were created from collected data per reading session. A reading 

session is defined as a set of observed events occurring on a particular page. For example, 

events occurring on page one are collected and treated as belonging to one reading 

session. Events occurring on page two are collected and treated as belonging to another 

reading session. If the user scrolls back to page one, the new events on this page are 

collected and treated as belonging to yet another reading session (not the same session 

defined when the user visited page one previously). Unlike how we define a reading 

session by building feature vector over the entire document, they define a reading session 

over a page. This allowed for more sessions to be defined and users’ profile to be built 

faster (not having to wait for the entire document to be read). It also relieved users from 

reading multiple documents, which may lead to users’ anxiety and poor participation. 

To classify users as authenticated vs. imposters, four classification algorithms were 

used: Naïve Bayes, Support Vector Machine (SVM), classification and regression trees 

(CART) and Random Forest. Supervised machine learning with 10-folds cross validation 

was conducted in which the dataset was divided into ten distinctive folds. Each fold was 

used once to test the classifier while the other remaining folds were reserved for training 
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the classifier. This process was repeated ten times. In case of the Random Forest 

algorithm, the classifier was trained with 10 decision trees trained on a randomly selected 

subset of three features. The following general protocol was used with all classifiers: 

For each user i: 

1) Label sessions corresponding to i as authenticated 

2) Label sessions not corresponding to i as imposters 

3) Perform a 10-fold cross validation (CV) for each classifier algorithm 

4) for j
th

 fold where j=1,…, 10: 

4.1) Train classifier with all folds except j
th

 fold and test 

5) Evaluate the performance by calculating: 

5.1) the percentage of correctly classified sessions, 

5.2) Area Under the Curve (AUC) of ROC Curve and 

5.3) both false negative rate and false positive rate. 

Table 16 presents the average performance of algorithms used in KAIST main 

experiment. Each individual's profile was treated as authenticated user once while other 

profiles were treated as imposters. The performance for linear classifier algorithms such 

as Naïve Bayes and SVM yielded high false positive rate while achieving very low false 

negative rate when compared to CART and Random Forest. This is due to the low 

dimensionality of the feature set (only three features), and hence linear classifiers could 

not determine proper hyperplane well. 
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Table 16: Comparison of average performance of algorithms used in KAIST main experiment 

Algorithm False Positive Rate False Negative Rate AUC 

Naïve Bayes  0.74% 13.67% 0.78 

SVM 0% 13.80% 0.50 

CART 3.57% 4.93% 0.95 

Random Forests 1.11% 2.34% 0.99 

 

 

 

Overall, the false positive rate (the percentage of imposters misclassified as 

authenticated users) was relatively low compared to the false negative rate (the 

percentage of authenticated users misclassified as imposters). Random Forests 

outperformed the other algorithms (Naïve Bayes, SVM and CART) in terms of false 

positive and false negative rates. This is due to the randomness and bagging 

characteristics of Random Forests, which helps avoid overfitting. 
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CHAPTER 9: CONCLUSIONS  

This research addresses the problem of active, also known as continuous, 

authentication. It does so by highlighting the need for and motivation behind such an 

authentication model and the limitation and challenges of existing active authentication 

techniques. It introduces two novel models for non-intrusive active authentication: a 

GUI-based application command streams model and a document scrolling behavior 

model. 

In the GUI-based applications command stream model, we demonstrate that like a 

command line lexicon, GUI application command patterns can be used to create user 

profiles that are unique and identifiable. Past research has explored the idea of building 

user profiles based on users’ behavioral patterns when interacting with graphical 

interfaces by analyzing the users’ keystroke and/or mouse dynamics. However, none had 

explored the idea of creating profiles by capturing users’ issued commands when 

interacting with a specific application, which goes beyond how a user strikes the 

keyboard or moves the mouse across the screen. It provides more dimensions to consider 

and a richer set of behavioral features to include when building behavioral profiles. 

We repurpose a publicly available dataset (see section 6.1 Dataset) of user 

command streams generated from MS Word usage to serve as a test bed. User profiles are 

first built using MS Word commands and discrimination takes place using machine 
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learning algorithms. We report best performance using Random Forests and AdaBoost 

with Random Forests coming first in terms of both accuracy and Area under the Curve 

(AUC) for the Receiver Operating Characteristic (ROC) curve. This was due, first, to 

implementing ensemble methods, with Random Forest also characterized by a potent mix 

of randomness and subsampling vis-a-vis both the data samples chosen for training and 

the features chosen to represent the user profiles engaged in training. This is an essential 

adaptation strategy for active authentication to cope better with the varying nature of 

individual user profiles. The training strategy is further enhanced using SMOTE to 

handle unbalanced populations, with imposters less prevalent. 

 In the document scrolling behavior model, we have repurposed a dataset that was 

obtained from a previous research project at the Georgia Institute of Technology (see 

section 7.1 Dataset). Three different feature vectors were extracted and used with 

different classification and clustering algorithms. Our main contribution comes in the 

features considered, the technique used to enrich weak discriminating features and 

methods for continuous authentication. We relied only on the scrolling properties of the 

user over a document, which, in our case, was the only possible interaction a user could 

have with the read-only documents. We have applied Random Forests as the main 

classification model and used SMOTE and AdaBoost to overcome the class imbalance 

problem. Furthermore, we have uniquely applied n-gram sequencing technique to model 

the feature vector. The n-gram method was used to create the feature vector where each 

n-gram represents a feature corresponding to a user’s scroll sequence. However, best 
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performance was achieved using k-means clustering with an 83.5% success rate in 

predicting the authenticated user. 
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APPENDIX A: UNIQUE COMMANDS ISSUED BY USERS IN THE MITRE 

DATASET 

The MITRE dataset was imported into an MS Access table and the following 172 

unique user issued commands where queried and retrieved: 

 
COMMANDS 

EditAutoText FormatBorderInside InsertCrossReference ToolsCustomize 

EditBookmark FormatBorderLeft InsertDatabase ToolsEnvelopesAndLabels 

EditClear FormatBorderLineStyle InsertDateField ToolsGrammar 

EditCopy FormatBorderNone InsertDateTime ToolsHyphenation 

EditCopyAsPicture FormatBorderOutside InsertField ToolsLanguage 

EditCut FormatBorderRight InsertFile ToolsOptions 

EditDeleteBackWord FormatBordersAndShading InsertFootnote ToolsProtectDocument 

EditDeleteWord FormatBorderTop InsertFormField ToolsRepaginate 

EditFind FormatBulletsAndNumbering InsertFrame ToolsRevisions 

EditGoBack FormatCenterPara InsertObject ToolsShrinkToFit 

EditGoTo FormatChangeCase InsertPageBreak ToolsSpelling 

EditGoToHeaderFooter FormatColumns InsertPageNumbers ToolsThesaurus 

EditPaste FormatDrawingObject InsertPicture ToolsWordCount 

EditPasteSpecial FormatDropCap InsertSectionBreak ViewAnnotations 

EditRedo FormatFont InsertSelectDrawingObjects ViewBorderToolbar 

EditReplace FormatFrame InsertSymbol ViewCloseViewHeaderFooter 

EditSelectAll FormatGrowFont InsertTextFormField ViewDrawingToolbar 

EditUndo FormatGrowFontOnePoint InsertTimeField ViewFootnotes 

EditUpdateSource FormatHangingIndent TableAutoFormat ViewGoToHeaderFooter 

FileClose FormatHeadingNumbering TableColumnSelect ViewHeader 

FileClosePreview FormatIndent TableDeleteCellsArgs ViewLockDocument 

FileDocClose FormatItalic TableDeleteCellsArgs= ViewMasterDocument 

FileDocumentStatistics FormatJustifyPara TableDeleteColumn ViewNormal 

FileExit FormatLeftPara TableDeleteRow ViewOutline 

FileFind FormatParagraph TableFormatCell ViewPage 

FileMagnifier FormatPicture TableFormula ViewRuler 

FileNew FormatResetChar TableGridlines ViewShowAll 

FileNewDefault FormatRightPara TableHeadings ViewShowAllHeadings 
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FileOpen FormatShrinkFontOnePoint TableInsertColumn ViewShowNextHeaderFooter 

FilePageSetup FormatStrikethrough TableInsertRow ViewShowPrevHeaderFooter 

FilePrint FormatStyle TableInsertTable ViewToggleFull 

FilePrintDefault FormatStyleGallery TableMergeCells ViewToggleMasterDocument 

FilePrintPreview FormatSubscript TableSelectColumn ViewToolbars 

FileQuit FormatTabs TableSelectRow ViewZoom 

FileSave FormatUnderline TableSelectTable ViewZoomWholePage 

FileSaveAll FormatUnindent TableSort WindowArrangeAll 

FileSaveAs FormatWordUnderline TableSortAToZ WindowClosePane 

FileSummaryInfo Help TableSortZToA WindowDocMaximize 

FileTemplates HelpAbout TableSplit WindowDocMinimize 

FormatAllCaps HelpTipOfTheDay TableSplitCells WindowDocRestore 

FormatAutoFormat HelpTool TableToOrFromText WindowDocSplit 

FormatBold InsertAnnotation ToolsAddRecordDefault WindowNewWindow 

FormatBorderBottom InsertBreak ToolsCancle WindowShowClipboard 
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APPENDIX B: SAMPLE DATA FROM THE MITRE DATASET 

The MITRE Corporation makes available through its research web portal at 

http://www.cs.rutgers.edu/ml4um/ a dataset of approximately 74,000 records that were 

acquired by monitoring day to day usage of Microsoft Word by more than 20 individuals 

at the MITRE Corporation during the calendar years of 1997-1998. The users consisted 

of artificial intelligence engineers, technical staff, and support staff. The following table 

describes the data collected: 

 

 

 
Data Description for MITRE dataset 

Column Label Description 

user ID Unique identifier for each user 

version of Word Version of Word in use at the time of logging 

file size The size of the file, in bytes, when logging was initiated 

file date The date logging was initiated for that file 

operating system and 

version 

The operating system and version in use at the time of logging 

command name The name of the command the user entered. The command name is 

proceeded by the type of command, i.e., EditSelectAll is the text editing 

command SelectAll nominally appearing on the Edit menu. 
command date The date the user entered the command 

command time The time the user entered the command 

 

 

 

http://www.cs.rutgers.edu/ml4um/
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File size allows researchers to correlate commands used with file size. File size 

and date may be joined to form a unique file identifier, allowing researchers to correlate 

commands used with individual files. A command may be entered by selecting it from a 

menu, clicking on an icon, or pressing a keyboard combination. The logger does not 

distinguish how commands are entered. The following is a sample data from the MITRE 

dataset (the complete set can be obtained at http://www.cs.rutgers.edu/ml4um/): 

 

 

 
Sample data from the MITRE dataset 

USER-ID 
WORD-

VERSION 
FILE-DATE FILE-SIZE MACHINE-OS COMMAND 

COMMAND-
DATE 

COMMAND-
TIME 

21464 Version 
6.0.1 

6/2/1998 903 Macintosh 
7.5.3 

EditClear 6/2/1998 11:54:12 
AM 

21464 Version 
6.0.1 

6/2/1998 903 Macintosh 
7.5.3 

EditClear 6/2/1998 11:54:12 
AM 

21464 Version 
6.0.1 

6/2/1998 903 Macintosh 
7.5.3 

FileSave 6/2/1998 11:54:17 
AM 

21464 Version 
6.0.1 

6/2/1998 903 Macintosh 
7.5.3 

FilePrintDefault 6/2/1998 11:54:21 
AM 

21464 Version 
6.0.1 

6/2/1998 903 Macintosh 
7.5.3 

FileOpen 6/2/1998 5:05:03 PM 

21464 Version 
6.0.1 

6/2/1998 903 Macintosh 
7.5.3 

FileOpen 6/2/1998 5:05:05 PM 

21464 Version 
6.0.1 

6/2/1998 903 Macintosh 
7.5.3 

EditClear 6/2/1998 5:05:42 PM 

21464 Version 
6.0.1 

6/2/1998 903 Macintosh 
7.5.3 

FileSaveAs 6/2/1998 5:10:34 PM 

21464 Version 
6.0.1 

6/2/1998 903 Macintosh 
7.5.3 

EditClear 6/2/1998 5:16:01 PM 

21464 Version 
6.0.1 

6/2/1998 903 Macintosh 
7.5.3 

EditClear 6/2/1998 5:19:27 PM 

21464 Version 
6.0.1 

6/2/1998 903 Macintosh 
7.5.3 

EditClear 6/2/1998 5:19:27 PM 

21464 Version 
6.0.1 

6/2/1998 903 Macintosh 
7.5.3 

EditClear 6/2/1998 5:19:27 PM 

21464 Version 
6.0.1 

6/2/1998 903 Macintosh 
7.5.3 

EditClear 6/2/1998 5:19:27 PM 

21464 Version 
6.0.1 

6/2/1998 903 Macintosh 
7.5.3 

EditClear 6/2/1998 5:19:28 PM 

21464 Version 
6.0.1 

6/2/1998 903 Macintosh 
7.5.3 

EditClear 6/2/1998 5:19:44 PM 

21464 Version 6/2/1998 903 Macintosh EditClear 6/2/1998 5:19:44 PM 

http://www.cs.rutgers.edu/ml4um/
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6.0.1 7.5.3 

21464 Version 
6.0.1 

6/2/1998 903 Macintosh 
7.5.3 

EditClear 6/2/1998 5:19:44 PM 

21464 Version 
6.0.1 

6/2/1998 903 Macintosh 
7.5.3 

EditClear 6/2/1998 5:19:45 PM 

21464 Version 
6.0.1 

6/2/1998 903 Macintosh 
7.5.3 

EditClear 6/2/1998 5:19:45 PM 

21464 Version 
6.0.1 

6/2/1998 903 Macintosh 
7.5.3 

EditClear 6/2/1998 5:19:45 PM 

21464 Version 
6.0.1 

6/2/1998 903 Macintosh 
7.5.3 

EditClear 6/2/1998 5:19:45 PM 

21464 Version 
6.0.1 

6/2/1998 903 Macintosh 
7.5.3 

EditClear 6/2/1998 5:19:46 PM 

21464 Version 
6.0.1 

6/2/1998 903 Macintosh 
7.5.3 

EditClear 6/2/1998 5:24:52 PM 

21464 Version 
6.0.1 

6/2/1998 903 Macintosh 
7.5.3 

EditClear 6/2/1998 5:25:02 PM 

21464 Version 
6.0.1 

6/2/1998 903 Macintosh 
7.5.3 

FileSave 6/2/1998 5:25:45 PM 

21464 Version 
6.0.1 

6/2/1998 903 Macintosh 
7.5.3 

FileSave 6/2/1998 5:27:09 PM 

21464 Version 
6.0.1 

6/2/1998 903 Macintosh 
7.5.3 

FilePrintDefault 6/2/1998 5:27:11 PM 

21464 Version 
6.0.1 

6/2/1998 903 Macintosh 
7.5.3 

FilePrintDefault 6/2/1998 8:49:35 PM 

21464 Version 
6.0.1 

6/2/1998 903 Macintosh 
7.5.3 

FileDocClose 6/2/1998 9:35:58 PM 

21464 Version 
6.0.1 

6/2/1997 "4,691" Macintosh 
7.5.3 

EditCut 6/12/1998 9:48:28 AM 

21464 Version 
6.0.1 

6/2/1997 "4,691" Macintosh 
7.5.3 

EditPaste 6/12/1998 9:48:34 AM 

21464 Version 
6.0.1 

6/2/1997 "4,691" Macintosh 
7.5.3 

FileSaveAs 6/12/1998 9:55:19 AM 

21464 Version 
6.0.1 

6/2/1997 "4,691" Macintosh 
7.5.3 

FilePrint 6/12/1998 10:04:59 
AM 

21464 Version 
6.0.1 

6/2/1997 "4,691" Macintosh 
7.5.3 

FilePrint 6/12/1998 10:06:11 
AM 

21464 Version 
6.0.1 

6/2/1997 "4,691" Macintosh 
7.5.3 

FileSave 6/12/1998 10:10:43 
AM 

21464 Version 
6.0.1 

6/2/1997 "4,691" Macintosh 
7.5.3 

FilePrint 6/12/1998 10:10:51 
AM 

21464 Version 
6.0.1 

6/2/1997 "4,691" Macintosh 
7.5.3 

FileSave 6/12/1998 11:15:18 
AM 

21464 Version 
6.0.1 

6/2/1997 "4,691" Macintosh 
7.5.3 

FilePrint 6/12/1998 11:18:09 
AM 

21464 Version 
6.0.1 

6/2/1997 "4,691" Macintosh 
7.5.3 

FileSave 6/12/1998 2:36:07 PM 

21464 Version 
6.0.1 

6/2/1997 "4,691" Macintosh 
7.5.3 

FilePrint 6/12/1998 2:36:14 PM 

21464 Version 
6.0.1 

5/29/1997 0 Macintosh 
7.5.3 

FileOpen 6/15/1998 2:34:59 PM 

21464 Version 
6.0.1 

5/29/1997 0 Macintosh 
7.5.3 

FileDocClose 6/15/1998 2:35:00 PM 

21464 Version 6/2/1997 "4,691" Macintosh FileQuit 6/16/1998 3:53:05 PM 
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6.0.1 7.5.3 

21464 Version 
6.0.1 

6/2/1997 "4,691" Macintosh 
7.5.3 

FileFind 6/16/1998 8:45:37 PM 

M000 Version 
6.0.1 

5/22/1997 6 Macintosh 
7.5.3 

FileOpen 5/22/1997 2:48:48 PM 

M000 Version 
6.0.1 

5/22/1997 6 Macintosh 
7.5.3 

FormatBold 5/22/1997 2:48:49 PM 

M000 Version 
6.0.1 

5/22/1997 6 Macintosh 
7.5.3 

FormatBold 5/22/1997 2:48:53 PM 

M000 Version 
6.0.1 

5/22/1997 6 Macintosh 
7.5.3 

FormatUnderline 5/22/1997 2:48:56 PM 

M000 Version 
6.0.1 

5/22/1997 6 Macintosh 
7.5.3 

FormatUnderline 5/22/1997 2:48:59 PM 

M000 Version 
6.0.1 

5/22/1997 6 Macintosh 
7.5.3 

ViewToolbars 5/22/1997 2:49:09 PM 

M000 Version 
6.0.1 

5/22/1997 6 Macintosh 
7.5.3 

FormatCenterPara 5/22/1997 2:49:11 PM 

M000 Version 
6.0.1 

5/22/1997 6 Macintosh 
7.5.3 

FileQuit 5/22/1997 2:50:52 PM 

M000 Version 
6.0.1 

5/22/1997 6 Macintosh 
7.5.3 

FileOpen 5/22/1997 3:34:26 PM 

M000 Version 
6.0.1 

5/22/1997 6 Macintosh 
7.5.3 

FormatBold 5/22/1997 3:34:27 PM 

M000 Version 
6.0.1 

5/22/1997 6 Macintosh 
7.5.3 

FileQuit 5/22/1997 3:34:42 PM 

M000 Version 
6.0.1 

5/22/1997 6 Macintosh 
7.5.3 

FileOpen 5/22/1997 3:37:23 PM 

M000 Version 
6.0.1 

5/22/1997 6 Macintosh 
7.5.3 

FormatBold 5/22/1997 3:37:25 PM 
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