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ABSTRACT 

METAGENOMIC AND PREDICTIVE FUNCTIONAL ANALYSIS OF MICROBIAL 

COMMUNITIES IN A NOVEL WASTEWATER TREATMENT SYSTEM 

Alison Gomeiz, M.S. 

George Mason University, 2021 

Thesis Director: Dr. Benoit Van Aken 

 

Aerobic granulation is an emerging microbial process in wastewater treatment that has 

shown to improve the efficiency of conventional activated sludge systems by accelerating 

sedimentation, improving organic waste, nitrogen, and phosphorus removal, and increasing 

microbial tolerance to toxic elements found in wastewater. Aerobic granulation results in 

large microbial aggregates that sediment faster contribute to higher cell tolerance than 

bacterial flocs found in conventional AS systems. To date, granulation can only be 

achieved in sequence batch reactors, which are largely incompatible with the continuous 

flow model used in modern wastewater treatment plants.  Recent research conducted at 

Virginia Polytechnic Institute and State University has demonstrated for the first time that a 

proper ratio of feast to famine conditions is able to promote aerobic granulation in a 

simulated plug flow reactor, composed of a suite of completely stirred tank reactors in 

series. Feast and famine cycles are known to negatively select for filamentous microbes 
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that contribute to poor aggregate density in continuous flow wastewater reactors and 

positively select for microbes known to contribute to biofilm formation. The goal of the 

present study is to understand the mechanisms of aerobic granulation present in this novel 

reactor system by determining changes in the microbial community composition in aerobic 

granules compared to conventional microbial flocs. A metagenomic analysis was 

conducted using 16S rDNA sequencing on aerobic granules and conventional AS samples 

fed by the same wastewater. Taxonomic identification and predictive functional 

metagenomics were completed with bioinformatics software tools Bioconductor, 

PICRUSt2, and BURRITO. In contrast to previous metagenomic reports of AS in 

contemporary wastewater treatment facilities, the results of this thesis have revealed the 

microbial community changes and predicted functionality of bacteria in the new reactor 

system that efficiently facilitated the aerobic granulation process. These findings include 

increased prevalence of bacterial taxa such as Comamonadaceae, Hydrogenophaga, 

Flavobacterium and Sphingopyxis in the PFR system with aerobic granular sludge, which 

are known to produce extracellular polymeric substances and are commonly identified in 

SBRs. Additionally, drastic decreases were observed for taxa including Actinobacteria, 

Chloroflexi, Accumulibacter, Microthrix, and Zoogloea, which are filamentous groups 

largely associated with sludge bulking issues and poor sedimentation in traditional AS. 

Apparent variability in abundance between the chambers of the PFRs with failed 

granulation and successful granulation indicate higher compositional stability in AGS. 

Predictive functional analysis further indicates upregulation of proteins involved in biofilm 

formation pathways in AGS, such quorum sensing, secretion systems, and transporters. 
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Upregulation of nitrogen and sulfur metabolism in AGS also agree with the expected 

activity of granular sludge communities compared to flocs in AS. Somewhat unexpectedly, 

growth rates and other metabolic functions are upregulated in AS, which may be explained 

by the stationary phenotype of a mature AGS system. These results indicate the selection 

of bacteria that can contribute to biofilm formation and inhibition of filamentous microbes, 

suggesting that the feast/famine profile in the PFR systems provided similarly adequate 

conditions to that of other successful SBR systems. 
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1. INTRODUCTION 

Background 

Urban wastewater management in the US dates back as early as 18001. While the 

technology of wastewater treatment has drastically changed since that time, one integral 

principle of water purification has persisted: the use of wastewater bacteria in organic waste 

decomposition. Contemporary wastewater treatment plants (WWTPs) employ a three-

phase system in treatment. Primary treatment is characterized by multiple cycles of 

screening and physical separation of sediment and particles, secondary (or “conventional”) 

treatment involves bacterial processing via the AS process, and the third treatment include 

nitrogen and phosphorous removal and/or disinfection. Even through engineering 

advancements, primary treatment alone is largely insufficient in providing high water 

quality2,3. It is estimated that 85% of organic material in sewage is processed during 

secondary treatment2. Thus, bacteria in WWTPs are critical to providing clean water to the 

environment. Gaining understanding of the bacterial mechanisms involved in the 

wastewater treatment process may provide insight in optimizing purification processes.  

One important characteristic of these microbial cells is the ability to form 

aggregates. These aggregates can be characterized as either flocs or aerobic granules, 

depending on their settling characteristics. Aggregates allow for efficient separation of 

treated water from microbial biomass and recycling of the biomass in the head of treatment 
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system. Aerobic granules are superior to flocs in their settleability, waste removal ability, 

resistance to toxins and environmental changes, and biomass retention4. In recent years, 

aerobic granule architectures of bacterial communities have been identified in sequential 

batch reactors (SBRs). In the static, aerobic environment of the SBR system, bacterial 

communities adhere to one another to form aggregate structures. When these flocs meet 

sufficient size and density requirements, they are deemed aerobic granules5. These 

structures display phenotypes that are very similar to that of bacteria in traditional biofilm 

structures, such as increased metabolic function, increased production of extracellular 

polymeric substance (EPS) to reinforce compact structure, and promoted survival of the 

community in unfavorable conditions. Such qualities are incredibly desirable in wastewater 

treatment due to improved waste removal rates of organic material6, nitrogen7, 

phosphorus8, and other contaminants4, facilitated sludge-water separation, increased 

biomass retention, quicker settlement times, community resiliency to operational 

parameter alterations, and inhibition of sludge bulking9.  Collectively, these characteristics 

lead to a more efficient purification system compared to the flock counterpart in 

conventional AS10. Unfortunately, the most common type of reactors used in WWTPs are 

continuous flow reactors (CFRs). For reasons that are not well understood, CFRs do not 

create the conditions necessary to promote aerobic granulation like their SBR counterpart. 

A civil engineering research group (led by Dr. Zhi-Wu Wang) at Virginia’s Polytechnic 

Institute and University (Virginia Tech) has recently found that a simulated PFR comprised 

by a series of continuously stirred tank reactors (CSTRs), is able to replicate aerobic 

granulation of real domestic wastewater when biomass is subjected to feast and famine 
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cycles. Previous research has determined that feast and famine cycles are effective 

operational parameters employed to reduce the prevalence of filamentous microbes in 

aerobic granular sludge (AGS)11. As such, feast and famine cycles are commonly used as 

a condition to promote aerobic granulation in SBRs. Prior to this finding, aerobic 

granulation had been observed almost exclusively in SBR systems. However, it is still 

unclear why aerobic granulation occurred in such a system, while continuing to remain 

difficult to maintain in other continuous flow systems. This novel treatment system was 

not characterized with respect to either the microbial community or gene expression of the 

AS. To better elucidate the underlying mechanisms of the successful aerobic granulation, 

it is essential to study the microbial community growing in the PFR system.  

Some of the results of this thesis are included in a publication by the author in 

collaboration with Virginia Tech whereby metagenomics analysis revealed taxonomic 

composition of a community which provided insight into the function of the population 

and the types of bacteria that thrive in aerobic granules for wastewater treatment. Using the 

taxonomic findings from metagenomics analysis, the predictive functionality of the 

microbial community was also determined to depict the functional response of bacteria in 

relationship with their environment.  

Objective 

The objective of this research is to apply a bioinformatic and molecular biology 

approach to solve civil engineering challenges in wastewater treatment efficiency. Because 

wastewater treatment is almost entirely dependent on the labor completed by bacteria in 

activated sludge, research focused solely on the phenotype of activated sludge is largely 
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insufficient in explaining the causality of complex mechanisms like aerobic granulation. 

This is demonstrated by the inability to achieve aerobic granulation in continuous flow 

systems, despite decades of research. Therefore, it is essential to study the microbial 

community of novel aerobic granulation systems such as the PFRs described in this work 

in order to better understand suspended biofilms.  

Specific aims 

This project was completed partially in collaboration with Virginia Tech 

researchers who have engineered wastewater reactor systems used to implement the 

aerobic granulation process using domestic wastewater. The reactors used for data 

processing combine elements from both CFRs and SBRs in order to facilitate the 

generation of aerobic granules. The specific aims of this study were to: 

1) Determine microbial community compositional differences of different 

feast/famine ratios in order to identify trends between successful and failed 

aerobic granulation systems. 

2) Determine microbial community compositional difference between the various 

chambers of the successful aerobic granulation system in order to identify 

trends between feast and famine conditions. 

3) Predict the functional composition of aerobic granules compared to microbial 

flocs. 

4) Predict the functional compositional shifts during induced feast and famine 

cycles in order to elucidate metabolic changes that may explain successful 

aerobic granulation. 
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Significance 

Despite decades of research to successfully generate aerobic granules in continuous 

flow reactor systems, AGS is still only consistently produced in SBRs. There is a 

substantial demand for a continuous flow architecture that is able to facilitate aerobic 

granulation of AS. Our civil engineering collaborators have shown, possibly for the first 

time, successful aerobic granulation in a benchtop continuous flow system through the 

implementation of feast and famine conditions. However, the mechanisms behind 

successful aerobic granulation are poorly understood. Prior to this study, analysis on the 

successful aerobic granules had only been physically characterized by parameters such as 

settling times and relative densities. The composition and functions of bacteria in AS are 

clearly critical to the success of wastewater treatment. Thus, the results of this study are 

essential for improving understanding of the conditions of successful AGS, which is 

integral for future breakthroughs in wastewater treatment.2. Literature Review: 

Wastewater treatment and biomass 

2.1 WWTP reactors and aerobic granulation  

The microbial community structure in AS varies substantially depending on type 

of reactor system employed. While the operational parameters of one type of reactor system 

may facilitate aerobic granulation of bacteria, others may lead to poor bacterial aggregates 

that lead to poor settling of biomass and sludge bulking issues that reduce the efficiency of 

waste removal by the bacterial community. The stark phenotypic difference between these 

microbial communities in different reactors warrants analysis on what conditions either 

promote or downregulate aerobic granulation. 
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2.1.1 Continuous flow, sequential batch, and plug flow reactors 

The main reactor employed by WWTPs in the United States are CFRs due to the 

simplicity of design and operation4,12–14. CFRs employ a constant flow model whereby 

wastewater influent can continuously be fed into and removed from the reactor system. By 

contrast, wastewater is introduced in batches, not continuously, in the alternative SBR 

system. In this system, the bacteria of a single batch will consume the available nutrients 

in the tank, eventually leading to nutritional depletion, or famine, by the end of the 

treatment cycle. The implementation of this feast-to-famine technique is thought to be a 

central variable for successful granulation in SBRs4. This is because famine conditions are 

known to inhibit the growth of filamentous bacteria which compromise aerobic granular 

formation11. Furthermore, nutritional depletion is one of the common environmental 

conditions known to upregulate biofilm formation in bacteria15. Aerobic granules are 

sometimes called “self-suspended biofilms” due to their phenotypic similarities to 

traditional biofilms. Unfortunately, SBRs are not compatible with continuous flow 

facilities4,16. Despite over twenty years of research on the aerobic granulation of bacteria 

in SBR models, CFRs are still unable to replicate aerobic granulation. These limitations 

have prevented larger WWTPs from taking advantage of the aerobic granulation process 

and its accompanying benefits.  

To address the desire for a continuous flow aerobic granulation technique, a plug-

flow system was designed to mimic the feast/famine profiles in SBR systems. The PFR is 

an ideal reactor model approximated in the application of many industries that provides a 

gradient of concentration within a tubular infrastructure. A limitation of continuous flow 
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models is that fluids continuously added to the reactor result in near-constant 

concentrations of nutrients. This leads to adverse effects on the resulting product, as it does 

not provide the concentration gradient needed for aerobic granulation to occur. Conversely, 

the PFR model provides a concentration gradient across the distance of a tubular reactor. 

This is achieved when fluid moves at a constant velocity within the reactor, creating thin, 

radial “plug” cross sections of fluid that run perpendicular to the direction of flow (Figure 

1). Each cross section has a concentration, and the concentration decreases in the cross 

sections approaching the removal site (x =L).  

 

 

 

 

Figure 1. Schematic drawing of a plug flow reactor. The feeding site is represented by 

distance x = 0, and the removal site is represented by x = L. The starting and ending flow 

velocities are represented by Fj0 and Fj, respectively. x represents the “plug” cross 

section. In a perfect PFR system, the concentration of fluid contained in this x section 

will be uniform17. 
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A common way to simulate the PFR system is to join multiple CSTRs in series such 

that each CSTR approximates a single “plug” cross section. Through this approximated 

plug flow system, the exit stream of the first CSTR becomes the feed stream of the next 

CSTR in the series. This way, nutrient availability decreases from one CSTR to the next, 

allowing for the implementation of feast/famine conditions. Concentration gradients are 

applied over the distance of x = L for a given period of time (often called the hydraulic 

retention time, HRT). This same concept is applied in SBRs, but instead of a distance vector 

in the PFR, the concentration gradient is applied as a time gradient18. Hypothetically, this 

same feast/famine cycle can be applied to the approximated PFR to yield successful aerobic 

granules19. Because each reactor or chamber is continually stirred, the model used in this 

study successfully created a continuous flow aerobic granulation reactor system19.Thus, 

the PFR system attempts to reconcile the limitations of the CFR and SBR to produce AGS 

that can be implemented in large-scale WWTPs. In benchtop studies, PFRs can be 

simulated using a series of connected small CSTRs (Figure 2). 

2.1.2 Operational parameters for aerobic granulation 

Gravity selection pressure and feast and famine conditions 

In 2019, it was discovered for the first time that a benchtop PFR fed with real 

domestic wastewater was able to induce aerobic granulation19. This was achieved through 

a combination of gravity selection pressure and replication of feast and famine cycles. For 

inducing feast and famine, the first chambers in the PFR are provided with a substrate-rich 

and oxygen-rich (aerobic) environment, followed by other chambers with a starvation 
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period (Figure 2)20. Due to the continuous operations of the PFR, this discovery may have 

important applications for AGS in large-scale WWTPs.  

 

 

 

 

Figure 2. Schematic of an eight-chambered benchtop PFR. The domestic wastewater 

primary effluent (PE) is added to the first chamber and is processed sequentially to estimate 

plugged flow (direction of flow demonstrated by the blue arrows). Each chamber operates 

as a CSTR as represented by black stirring motors. All CSTRs are continuously aerated 

from the bottom of each chamber. The first two CSTRs represent a feast cycle; CSTRs 3-

8 represent the famine cycle. After the final chamber, there is a settling velocity (Vs) 

selector where the densest biomass (red) is collected after a brief settling period (t = 4 min) 

and recycles to the first chamber18. 

 

 

 

It has been previously suggested that gravity selection pressure is a requisite for 

aerobic granulation4,21, and recent work in civil engineering has focused on optimizing this 

process. Gravity selection functions by washing out suspended sludge with longer settling 

times while retaining the granular sludge that settles more quickly and has reportedly 

facilitated aerobic granulation22. It is notable that in CSTRs, this gravity selection process 
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must be coupled with a feast/famine cycle in order for aerobic granulation to take place4. 

Hence, feast/famine cycles appear to be an integral parameter for the promotion of AGS.  

The effect of feast and famine cycles in wastewater treatment has been well-studied 

for many decades as a way to control the issue of sludge bulking in traditional AS WWTPs. 

Overgrowth of filamentous bacteria in WWTPs causes failure during the sedimentation 

step of wastewater treatment23. Thus, uncontrolled growth of these microbes is thoroughly 

detrimental to effective AS performance in wastewater treatment. Induction of sufficient 

famine is a very effective way to discourage filamentous bacteria from dominating the 

biomass, and the resulting microbial community provides peak substrate uptake, high 

oxygen utilization, and rapid settling times11. The feast and famine concept has been 

applied to many SBR systems in order to discourage the growth of filamentous bacteria 

that impede the aerobic granulation process and further improve organic removal capacity 

of wastewater by microorganisms4. 

Further, the ratio of feast to famine periods can drastically alter the ability of 

bacteria to aggregate into granules. For example, it has been reported that a feast to famine 

ratio greater than 0.5 inhibits the formation of aerobic granules18. Publications on 

successful feast/famine cycles employed in SBR systems report feast/famine ratios from 

as low as 0.16 to as high as 0.4624–26. Although the lower bound of the feast/famine ratio 

for successful aerobic granulation varies depending on operational parameters that vary 

between studies, values higher than 0.46 are universally attributed to aerobic granulation 

failure in these reports. The efficacy of feast/famine cycles have been studied mostly in 

SBR systems, which further highlights the novelty of the findings presented in this work.  
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A variety of feast to famine ratios are studied in this study: 1.0, 0.5, and 0.33. It is 

not expected that the two former ratios will result in successful granulation. The latter falls 

in the acceptable range reported in other studies, and therefore granulation is most expected 

in these conditions. 

Additional conditions promoting aerobic granulation 

While the emphasis of this project is on the feast/famine conditions (and gravity 

selection pressure, to a lesser extent) of a simulated PFR, there are other operational factors 

that must be considered in order to form aerobic granules from AS. These include applied 

shear stress, presence of an adequate carbon source24, starting microbial composition of 

biomass, organic loading rate, volumetric exchange rate, HRT, and sedimentation time27,28.  

2.2 Advantages of aerobic granulation 

Microbial communities in AGS enjoy many advantages over traditional AS that 

share striking similarities with traditional biofilm structures, such as stable physical 

structure, improved metabolic rates, higher nutrient retention, protection against toxins, 

environmental stress, and mechanical stress (such as shear stress)29. WWTPs that utilize 

AGS technology experience steep reductions in energy usage (up to 63%) due to these 

improved waste removal efficiencies and rapid sedimentation of aerobic granules16. AGS 

removal efficiencies of chemical oxygen demand (COD), nitrogen, and phosphorus 

increase by upwards of 67-96% compared to AS systems8,30,31. This is partially due to the 

compact structure of granules, which provide an anaerobic region for bacteria involved in 

phosphorus and denitrification. These anaerobic microbes support other functional groups 

such as nitrifiers and heterotrophic bacteria27.  



12 

 

Furthermore, metabolism of these chemicals is much more stable and subject to 

fewer fluctuations than what is observed in AS32,33. Additionally, EPS in aerobic granules 

acts as a diffusion limitation barrier in adverse conditions to prevent toxins from 

penetrating biofilms such as aerobic granules34. This results in excellent tolerance to pH 

shock35, salinity36, and chemical shock (such as phenols37 and pentachlorophenol38).  

Rapid sedimentation in particular is due to the compact structure of these self-

suspended biofilm aggregates, which simultaneously decrease settling times and increase 

the biomass that can be removed after treatment. Moreover, AGS serves to assuage a major 

bottleneck of modern WWTP design: reactor volume. The volume needed for a biological 

reactor reportedly decreased by 30% in a Polish WWTP that implemented AGS27. This 

occurs because the settled concentration of biomass, as measured by the mixed liquor 

(volatile) suspended solids (MLSS or MLVSS) content, is higher in AGS systems 

compared to their non-granulated counterparts, which increases the amount of biomass that 

can be removed during treatment. Simultaneously, AGS is less prone to sludge bulking 

issues that arise in AS that contribute poorly to sludge volume and efficiency. As a result, 

the overall volume of sludge generated during processing is significantly reduced27. 

2.3 Microbial community profiles in WWTPs 

2.3.1 Community structure of activated sludge WWTPs 

There is substantial literature describing the metagenomic community structure of 

bacteria in traditional AS WWTPs. These taxonomic levels have been identified down to 

the genus or species level in many instances.  
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Filamentous bacteria are commonly found in AS samples and are problematic for 

sludge bulking and foaming during wastewater treatment39. Sludge bulking reduces the 

efficiency of organic waste removal of biomass and is a common issue that plagues 

activated sludge. Some filamentous taxa that contribute to sludge bulking include the 

Chloroflexi phylum, Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria 

classes, and the Saprospiraceae family27,40–44. Actinobacteria in particular were found to 

decrease from 33.7% to 14% abundance during the transition from AS to AGS treatment. 

It is important to note that filamentous groups are also important to the initial phases of 

aggregation in AGS systems. Although they may disappear from the biomass upon 

reaching steady state, filamentous groups are not exclusive to AS WWTPs24. However, the 

overgrowth of these groups is negatively associated with the proper function of wastewater 

treatment.  

The microbes in AS are capable of degrading a variety of carbonaceous and 

nitrogenous materials. Additionally, a group of organisms called polyphosphate-

accumulating organisms (PAO) are integral to the biological removal of phosphorus. 

Phosphorus is not as easily biodegradable as carbon and nitrogen material during 

conventional wastewater treatment, and thus it is poorly removed. PAOs uptake phosphate 

intracellularly, which makes them desirable for improving the quality of primary effluent. 

Common PAOs found in WWTP include Intrasporangiaceae, Candidatus Accumulibacter, 

Dechloromonas, Tetrasphaera, Flavobacterium, and Sphingopyxis. It is notable that a 

variety of other bacteria are capable of phosphorus accumulation, but PAOs are distinct 

due to their functional ability in various environmental conditions. To promote their 
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growth, many AS WWTPs apply an anaerobic selective pressure that promotes growth of 

PAOs and inhibits aerobic groups45. 

2.3.2 Community structure of AGS WWTPs 

There are a limited number of studies discussing the differences observed in 

WWTPs that transition from traditional AS to AGS technology with the same 

infrastructure. Studies of this type would be ideal for illustrating microbial community 

shifts in aerobic granulation. These results could then be used as a benchmark for 

experimental designs like the PFR used in this study that possesses varying levels of 

granulation.  To supplement these comparative studies, the community structure observed 

in SBRs compared to contemporary CFR WWTPs will also be included. 

A WWTP in Poland that transitioned from AS to AGS technology revealed that a 

variety of taxa that were in higher abundance in the WWTP employing AGS, from phylum 

to genus level classification. EPS producers such as Candidatus Competibacter, 

Flavobacterium, Sphingopxyis, and Dechloromonas were differentially observed in 

AGS27. Because EPS biosynthesis is the basis of biofilm formation, it is expected that 

bacteria that are capable of EPS production would be more highly represented in AGS than 

in AS. Additional studies corroborate the presence of bacteria known to produce EPS. 

Some identified taxa in this functional category include  Hydrogenophaga, Acidovorax46, 

Pseudomonas, Aeromonas, Arcobacter, and Acinetobacter. Another integral characteristic 

of biofilm formation is the presence of cell surface hydrophobicity. A previous study on 

the relationship between cell hydrophobicity, EPS production, and community 

composition previously reported that increased cell hydrophobicity was associated with 
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higher EPS and a higher ratio of Flavobacteriales to Sphingobacteriales abundance. 

Conversely, high cell hydrophilicity was associated with lower EPS production and a 

higher abundance of Sphingobacteriales.  Because EPS is directly responsible for cell 

hydrophobicity, it is of great interest to understand the cell hydrophobicity of specific 

microbes to assess their potential aggregation abilities.  
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3. MATERIALS AND METHODS 

3.1 Sample acquisition 

Concentrated AS and aerobic granule samples are obtained from the Virginia Tech 

Department of Civil and Environmental Engineering laboratory in Manassas, VA. Samples 

were taken from the Occoquan Watershed Monitoring Lab in Manassas, VA. Samples were 

allowed to settle after acquisition (no set time provided). Once settled, the concentrate that 

sedimented at the bottom was collected into Nasco Whirl-Pak™ 100 mL bags and 

transported to a -80°C freezer at the Virginia Tech laboratory in Manassas. These samples 

were then transported from Manassas to the George Mason University Potomac Science 

Center (PSC) campus on dry ice and stored at -80°C.  

3.1.1 Data set 

Activated sludge samples were collected from three different benchtop designs 

using 4-, 6-, and 8-chambered PFR systems (n = 4, 6, and 8, respectively) from Virginia 

Tech’s Civil and Environmental Engineering lab in Manassas, VA. As a control, AS was 

acquired from real domestic wastewater (n = 2) from the Upper Occoquan Watershed 

Service Authority (UOSA) wastewater resource recovery facility in Centreville, VA. This 

same wastewater was used for seeding the PFR systems.   

Samples acquired from the chambered reactors were labelled X-Yz whereby X 

represents the total number of chambers in the PFR system, Y represents the specific 

chamber number that was sampled, and z signifies triplicates taken from the chamber 

where applicable (labelled as A, B, and C). 
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3.1.2 Feast/famine ratios of the PFR systems 

The feast to famine ratio of the 4-, 6-, and 8-chambered reactors were 1:1, 1:2, and 

1:3 (1, 0.5, 0.33), respectively. In this study, feast condition was defined by sufficient 

substrate for microbial growth, whereas famine condition was defined by insufficient 

substrate. The end of the feast period is determined by the last chamber with a growth rate 

≥ decay rate. The determination of these rates is based on COD removal and described in 

further detail in Sun et al. (2021).   

For all three reactors, the first two chambers receiving PE were determined to be in 

feasted conditions, and the following chambers in famine, as shown in Figure 3. The PE 

fed in these PFR systems comes from UOSA domestic wastewater effluent. 
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Figure 3. Diagram of the feast to famine cycles employed in the 8-, 6-, and 4-chambered 

reactors. Feast/famine ratios are shown vertically, and the hydraulic retention time (HRT) 

is shown horizontally. On the right, the morphology of the mature granules for each reactor 

is shown on petri dishes18. 

 

 

 

3.2 NGS-based amplicon sequencing 

3.2.1 DNA Extraction 

Samples were thawed in a 25°C water bath and removed promptly upon achieving 

a homogenous liquid consistency, as heating to room temperature may contribute to nucleic 

acid degradation. Twelve mL of thawed sample were centrifuged for 10 min at 10,000 rpm. 

Approximately 250 mg of the pelleted material was then extracted using the DNeasy 

Powersoil Kit (Qiagen) following the manufacturer's protocol47. The homogenization step 
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was completed with a BeadBug™ Homogenizer48 for 30 seconds at 3000 rpm. The 

homogenization step was repeated up to three times (total time 90 seconds) to achieve full 

homogeneity and placed on ice in between homogenizations. Unless otherwise specified, 

samples were maintained on ice in between extraction steps to further minimize 

degradation. 

3.2.2 PCR amplification 

DNA samples were assessed for purity and quantity via spectrophotometry using a 

NanoDrop (Life Technologies). Purity is determined through A260/A280 and A260/A230 

ratios.  Next, 16S rRNA gene amplification was conducted via qPCR using primers that 

target the V3-V4 hypervariable region of prokaryotic small ribosomal subunit rRNA gene. 

The primers selected for the purpose of this project have been frequently reported in human 

microbiome 16S rRNA amplicon studies and provide the highest coverage of the Bacteria 

domain without detectable bias towards specific taxa within the Bacteria domain49. These 

primers are purchased from Integrated DNA technologies (IDT, Coralville, Iowa) and 

contain partial adapter sequences for Illumina sequencing: 

341F: 5’ CCTACGGGNGGCWGCAG 

785R: 5’ GACTACHVGGGTATCTAATCC 

Amplification of DNA samples was conducted in triplicates and with a control 

(Milli-Q water). The volume of reagents per 20 µL PCR well were: 0.8 µL elution buffer 

(1/5 diluted), 0.1 µL 341F primer, 0.1 µL 785R primer, 10 µL ABsolute Blue QPCR, and 

9 µL DNA (or Milli-Q water for control). The PCR conditions were: (a)b 2 min at 96°C, 

(b) 45 cycles of 25 sec at 95°C, 1 min at 50°C, and 50 sec at 72°C, and (c) 1 min at 72°C. 
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3.2.3 Illumina® sequencing 

Following amplification, samples were shipped on ice packs to Genewiz® for 

Illumina®-based amplicon next generation sequencing (NGS). Sequencing results were 

provided as paired-end FASTQ files that are demultiplexed and have the adapters removed. 

Files from forward reads are labeled with the suffix “_R1”, while the reverse reads are 

labeled “_R2”. These results were obtained from the GeneWiz website and were then 

subject to bioinformatics analysis. 

3.2.4 RNA extraction 

Samples were thawed in RNAlater at 4°C for 24-48 hr prior to extraction to allow 

the solution to thoroughly penetrate bacterial cells. RNA extraction was then completed 

with both the PureLink™ RNA Mini Kit and RNeasy PowerSoil Total RNA Kit, following 

manufacturing protocols. Unless otherwise specified, samples were maintained on ice in 

between extraction steps to further minimize degradation. Quantity and preliminary quality 

were evaluated using a NanoDrop. Quality was then assessed with the Agilent 4150 

TapeStation electrophoresis system. RNA quality is assessed by RNA integrity numbers 

(RIN) from 1-11 where 1 represents highly degraded RNA, and 11 represents the highest 

quality RNA. The results below were completed in February 2021 (Figure 4). 
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Figure 4. RNA TapeStation analysis from the 4-2 (B1) and 6-4 (C1) PFR chambers, along 

with the RNA ladder (A1). The gels for the three samples, their respective RIN values, and 

electropherogram for the 4-2 chamber are shown.  

 

 

 

3.3 Metagenomics analysis 

Metagenomic analysis was completed almost exclusively with Bioconductor. 

Bioconductor is an open-source software project written in the R programming language 

with over 3000 packages designed to analyze and visualize biological data. DADA2 is one 

of the most popular software packages in Bioconductor, and as discussed in Appendix A.3: 

Sample inference: Denoising or clustering, it provides a denoising algorithm superior to 

traditional clustering methods. An additional benefit of denoising is that the outputs, ASVs, 

provide better input data for identifying chimeric sequences that arise during PCR 

amplification. The R script for this section is provided in Appendix  for the reader’s 

convenience.   
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3.3.1. Amazon Web Services (AWS) 

While Bioconductor can be used on any computer that can run R, some packages 

require extensive computer power for their algorithms. The denoising and de novo chimera 

removal steps can take weeks to complete on a conventional computer due to the 

complexity of the algorithms and size of the FASTQ input files. Through Amazon Web 

Services (AWS), bioinformatics scripts can be run on virtual machines in under an hour at 

$0.68 per hour50. A 16-core EC2 (elastic computer cloud) virtual machine accessed from 

AWS is used to run R script, Bioconductor, and its packages for metagenomic analysis. 

3.3.2 Primer trimming 

As discussed in Appendix A.1.1 Primer trimming, specific trimming methods are 

preferred for samples sequenced by brands such as Illumina due to the propensity of the 

types of sequencing errors that arise from Illumina-specific sequencing technology. 16S 

rDNA amplicons were sequenced using Illumina NGS (see Section 4.2.2). Thus, it was 

decided that specific trimming techniques would yield the highest quality output. 

PANDAseq and Cutadapt are two common primer trimming tools with specific and 

non-specific trimming capabilities. Both tools were tested using a set of forward and 

reverse FASTQ files from the 4-chambered reactor. Ultimately, Cutadapt was chosen 

to process FASTQ reads due to inconsistent selectivity observed in the PANDAseq tool, 

which is discussed in more detail in Appendix Specific trimming: PANDAseq vs. 

Cutadapt. 
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3.3.3 Quality filtering and trimming  

Quality was evaluated and visualized using DADA2’s plotQualityProfile 

function and QIIME1’s VSEARCH function fastq_stats. Most forward FASTQ files 

maintained Q scores above 35, even at position 250 in the read, and thus they were not 

subject to quality trimming. Reverse reads were found to be lower quality on average, as 

expected. Up to six bases were trimmed due to poor quality across all reverse files in order 

to ensure a 12 bp overlap requirement for merging was fulfilled. Many reverse reads were 

found to have terminal Q scores of up to 30, so truncating the ends even in reverse reads 

was very minimal in some datasets. Quality trimming was executed by calling the 

filterAndTrim function in DADA2. 

3.3.4 Learn errors  

Sequence error analysis was completed by calling the learnErrors function in 

DADA2. This function contains a fully automated algorithm and has no parameters to 

assign. The learned error rates are then used as an input for the dada denoising function. 

3.3.5 Dereplication 

Dereplicating reads was executed using the derep function in DADA2. In order 

for reads to be dereplicated together into a single representative sequence, they must be a 

100% match, or a 1.00 tolerance.  

3.3.6 Inferring sample composition 

Denoising methods were employed for sample inference. The advantages of 

denoising over traditional clustering methods are discussed in Appendix A.3: Sample 

inference: Denoising or clustering. The DADA algorithm was the denoising method 
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selected for inferring sample composition and was executed in R using the DADA2 

package.   

3.3.7 Merging 

Complementary forward and reverse FASTQ files (“_R1” and “_R2” matches) are 

merged using the mergePairs function in DADA2. The defaults for the error threshold 

(zero) and the minimum overlap length requirement (12 bp) were used for merging.  

3.3.8 Generate sequence table 

The outputs of the merged function are single-stranded ASVs and their abundances. 

This data is presented as a list. In order to present this data as a matrix of samples and 

sequences (ASVs), the makeSequenceTable function is executed with the merged 

object as the input. The output is called a sequence table, which is a similar format to an 

OTU (operational taxonomic units) table. Instead of representative OTUs, the true 

sequences are provided in the table. This sequence table is still subject to further 

downstream filtering (chimera removal) and is not the final object. chimera removal are 

properly vetted ASVs and their abundances per sample. The final, actual sequences, and 

can now be saved as a text file in FASTA format.  

3.3.9 Remove chimeras (de novo method) 

The DADA2 package contains a de novo tool for chimera identification that studies 

the individual dataset for the presence of chimeric sequences. This tool, called 

removeBimeraDenovo, was executed to perform chimera removal. There are no 

parameters to assign with this function, as the only input data to identify chimeras are from 
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the relationships found within the sequences analyzed. The ASVs can be provided from 

the sequence table generated in Section 4.3.9. 

If the input file is provided as a sequence table, the output will also be a sequence 

table object. This chimera-free sequence table is the culmination of the metagenomic 

workflow.  

3.3.10 Assign taxonomy 

The final step is to test the fully vetted ASVs against a 16S rRNA database. The 

function assignTaxonomy in DADA2 is employed for this step. The input files for this 

function are the ASVs and desired database. The chimera-free sequence table object 

generated from Section 4.3.9 fulfills the former input object. The ASVs were tested using 

the SILVA v138 rRNA database. The output object from assignTaxonomy is a text file 

that relates the ASV number to a taxonomy. SILVA provides taxonomies up to the genus 

level, although some species and strains may be available for some ASVs.  

Only 0.32% of reads were unable to be classified to at least the Kingdom level. 

3.3.11 Reformatting output files 

The two main objects generated from the DADA2 pipeline are the sequence table 

matrix and the taxonomy text file. These files must be reformatted for some software 

packages such as PICRUSt2 and BURRITO. There are three main files expected in 

pipelines: an ASV FASTA text file, a count table, and the taxonomy text file. The former 

two objects both come from the chimera-free sequence table, and the latter merges the 

assignTaxonomy object with headers from the sequence table. 
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The sequence table organizes ASVs into columns and samples into rows. There are 

often thousands of ASVs that make the size of this table unmanageably large. In order to 

make the data more manageable, this matrix is split into two files: the ASV FASTA file 

and the count table. The ASV FASTA file provides the full sequence for each ASV and a 

shortened header that represents each sequence. To reformat this table, the column headers 

(the sequences) are extracted from the sequence table. Then, a header is provided for each 

sequence starting with “>ASV_1”, then “>ASV_2, >ASV_3, … >ASV_n” for the entire 

number of sequences ‘n’. To fulfill proper format for FASTA files, headers must contain 

the “>” prefix, followed by a sequence that is tab-delimited.  

To generate the count table, the ASVs are substituted in as the new column headers 

for the sequence table, completely eliminating the sequences from the matrix. This 

modified sequence table with simplified column headers is the count table. 

In the taxonomy object, the row headers are changed from the default to match the 

shortened “ASV_n” headers in the count table and FASTA file. Column headers represent 

the various taxonomic levels and are not reformatted. This text file is the taxonomy file. 

These objects are imported into Excel for ordinance plot visualizations. 

3.4 Predictive functional analysis 

3.4.1 PICRUSt2 

PICRUSt2 is a Python script that analyzes the metagenomic outputs generated by 

packages like DADA2. There are minimal parameters to assign when executing the script 

because it is testing ASVs (also accepts OTUs) against functional databases such as KEGG. 

The input files for PICRUSt2 are the count table and the ASV FASTA file (which provides 
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the “key” for the count table). The --stratified flag must be specified in this pipeline 

in order to generate stratified outputs. The python script for this section is provided in 

Appendix  for the reader’s convenience 

After the main pipeline picrust2_pipeline.py has been executed, the 

convert_table.py function is executed with the stratified outputs in order to generate 

the legacy format from the pred_metagenome_contrib.tsv object. The output of 

this conversion is the pred_metagenome_contrib.legacy.tsv object, which is 

needed for visualization web servers such as BURRITO. 

Other outputs like KO_predicted.tsv are provided by the PICRUSt2 script. 

KO_predicted.tsv can be used as an input file for the KEGG Mapper tool called 

“Search Pathways”. The Mapper function allows the user to visualize the components of 

different functional pathways that are predicted to be present. 

3.4.2 BURRITO and KEGG scores 

The web server visualization tool BURRITO is used to find relationships between 

the taxonomy and predicted function of a microbiome. A limitation of metatranscriptomics 

analysis is that it fails to assign function to the microbial taxa contributing to the function. 

On the other hand, metagenomics fails to determine the true function contributed by the 

microbial community. BURRITO attempts to reconcile these issues by estimating the 

contribution of each function that is attributed to each taxon51. Functional annotations are 

based on KEGG (Kyoto Encyclopedia of Genes and Genomes) orthology groupings. The 

KEGG database is updated daily and contains genomic information as well as high order 

functional pathways. 
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The inputs for BURRITO are the count table, the matching taxonomy text file, and 

the pred_metagenome_contrib.legacy.tsv object from PICRUSt2. The 

outputs are a functional attribution table and a percent contribution table of each taxa to a 

specific function. These exports are then visualized in Excel. 

3.5 Determination of Significance 

To identify significant differences between samples, the ANOVA-like Differential 

Expression (ALDEx2) tool from Bioconductor was used52. ALDEx2 uses a centered-log 

ratio in order to determine differences between high throughput sequencing data. ALDEx2 

was used for both determining significant differences in taxonomic classifications and 

functional prediction analysis. ALDEx2 employs both the Welchs test and Wilcoxon test 

for determining P-values between samples. If P < 0.05 by either test, the taxonomic 

classification or function was considered significant and included in downstream 

visualizations. Both tests employ a Benjamini-Hochberg (BH) correction of raw P-values. 

Hence, the output P-values are represented as we.eBH or wi.EBH objects for Welchs 

(we) or Wilcoxon (wi) P values with BH corrections.  

The R script for the ALDEx2 package is available in Appendix .  
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Figure 5. Schematic ALDEx2 plots between genera of the 8-chambered PFR (n= 8) and 

AS samples (n=2). The Bland-Altman plot, or MA plot (a), shows the relationship between 

the abundance (centered-log ratio) and difference. The effect plot, or MW plot (b), shows 

relationship between dispersion and difference. Statistically significant values in both plots 

are shown in red. Abundant but non-significant values are shown in grey; rare but non-

significant values are shown in black.  

 

 

 

3.6 Visualizations 

3.6.1 Ordinance plots 

To generate ordinance plots, total counts for each taxonomic classification per 

sample need to be determined. ASV count tables are imported into Excel. If needed, this 

table is transposed such that the ASV IDs are row headers. The taxonomic identifiers in 
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the taxonomy file correspond to the ASV IDs in the count table; these classifications (from 

phylum to genus, where applicable) are then inserted to replace these ASV IDs.  

This newly merged file with the taxonomies and count table has a unique string of 

taxonomic classification per row (since each ASV was unique). However, two different 

rows may share classifications. For example, two adjacent rows may have a different genus 

classification but are contained in the same Flavobacteriaceae family. These two rows will 

need to be merged at the level up to the point where the names diverge. In this example, 

this would be to the family level. The python script for this merge step can be found in 

Appendix E. The resulting merged files can then be inserted in Excel to generate 

normalized ordinance bar plots.  

3.6.2 Principal coordinate analysis (PCoA) 

Principal coordinate analysis (PCoA) was conducted on the ASVs of the full 

dataset. This was completed using the combined sequence table with the full sequence in 

the column headers. This input file (along with a sample data table detailing the different 

feast/famine ratios of the samples) was analyzed using the get_pcoa tool from the 

Bioconductor package MicrobiotaProcess53. The R script for this step can be found in. 

3.6.3 Heatmaps 

Heatmaps are generated using the base R function heatmap. Input files used for 

this visualization included taxonomic count tables and functional attribution tables from 

BURRITO. The green/red color palette is from the gplots package from R. Color keys and 

histograms are generated using the heatmap.2 tool. The R script for this visualization 

can be found in Appendix . 
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4. RESULTS AND DISCUSSION 

4.1 Reactor results 

Aerobic granule formation was readily observed in the 8-chambered PFR system, 

compromised in the 6-chambered PFR, and completely failed in the 4-chambered PFR. All 

of the results described in this section were obtained by our Virginia Tech collaborators, 

Dr. Z. Wang and Dr. Y. Sun. These results are described to provide necessary background 

for the metagenomic findings. 

4.1.1 Physical characteristics of biomass 

Sludge volumetric indices (SVI) are used to evaluate the settling efficiency of the 

different PFR systems. SVIs are presented as functions of time such as SVI5 and SVI30 

(volumes recorded at t = 5, 30 minutes). SVI30 ≤ 60 mL/g and SVI5:SVI30 ≤ 1 are typical 

benchmarks for good settleability of AGS4. SVI values obtained at steady state (Table 1) 

show successful aerobic granulation in the 8-chambered PFR, compromised granulation in 

the 6-chambered PFR, and complete failure of granular aggregation in the 4-chambered 

PFR. Similarly, the specific densities of the 8-chambered PFR align with values previously 

reported for AGS (1.13 to 1.2054–57), whereas the 4- and 6-chambered PFRs resemble 

values associated with AS (1.001 to 1.0154,55,58). Sludge morphology results (Figure 6a) 

reveal irregular, fluffy, large, poorly circular flocs in the 4-chambered PFR system. The 6-

chambered reactor has a more regular shape, although the particle size is still large and 

loose. In the 8-chambered reactor, dense and spherical granules are visually dominant. 

These observations are confirmed through the particle size distribution in Figure 6b. Most 
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flocs in the 4-chambered PFR are over 8 mm in diameter, compared to 4-5 mm in the 6-

chambered PFR, and 1-2 mm in the 8-chambered PFR. The circularity distribution of the 

particles (Figure 6c) show strongest circularity in the 8-chambered PFR that then declines 

in the 6- and 4-chambered PFRs.  Interestingly, the evolution of the granular morphology 

between chambers of the 8-chambered PFR (Figure 6d) reveal a mixture of flocs and 

spherical aggregates. Their size and circularity are initially comparable to the 4-chambered 

PFR values, but there is a drastic improvement observed in the third chamber, coinciding 

with the famine cycle.  

These results show a relationship between the feast/famine ratio and physical 

characteristics. This correlation is confirmed in Figure 7, which shows strong, monotonic 

relationships (R2 > 0.85) between the feast/famine ratio and various parameters. This 

includes a negative relationship between feast/famine ratio and circularity, zone settling 

velocity (Vzs, indicates the speed by which biomass settles59), and specific gravity (R2 = 

0.95, 0.96, and 0.95, respectively) and positive relationships between feast/famine ratio 

and median granule diameter, SVI30, and SVI5:SVI30 (R2 = 0.99, 0.96, and 0.86, 

respectively). These correlations illustrate that longer famine periods are associated with 

improved settleability, while longer feeding periods are associated with poor settleability 

and morphology.  The SVI30 in the 6-chambered PFR reveals an interesting deviation from 

these trends; instead of increasing, the SVI30 is nearly identical to the SVI30 of 8-chambered 

PFR (Figure 7c). This reveals that the 0.5 feast/famine ratio possesses some physical 

characteristics of AGS, suggesting a transitional phenotype that exists between activated 

granular sludge and traditional AS. This phenotype is observed in the physical appearance 
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of the aggregates of the 6-chambered PFR (Figure 6a) whereby large filamentous flocs are 

observed alongside granules observed in the 8-chambered PFR. This aligns with literature 

that find the upper boundary of feast/famine ratios for successful aerobic granulation to be 

0.5.  

The changes in these physical characteristics at different feast/famine ratios may be 

explained by compositional shifts in the microbial community. Because sludge bulking is 

due to an overgrowth of filamentous bacteria, poor settleability parameters may be related 

to high abundances of filamentous bacteria. Conversely, AGS with good settleability 

should correspond to a a high abundance of EPS-producing bacteria. 

4.1.2 Biochemical characteristics of biomass 

The reduction in total COD from the biomass strongly agrees with the first order 

rate law for all three PFRs (R2 > 0.93). The rate is fastest in the 8-chambered PFR, followed 

by the 6- and 4-chambered PFR (rate constants = 1.4, 2.0, and 2.2 hr-1, respectively). Mixed 

liquor suspended solids (MLSS) are generally composed of bacteria and other suspended 

compounds. Mixed liquor volatile suspended solids (MLVSS) are slightly different in that 

they only consider “volatile” solids, which are materials that burn in 550°C temperatures 

(the overwhelming majority of which is bacteria)60. MLSS and MLVSS values are higher 

in AGS compared to AS, and theses higher concentrations are associated with improved 

COD removal rates. This relationship demonstrates excellent fitness (Figure 7d) for 

MLVSS and the rate constant versus the feast/famine ratio (R2 > 0.98 for all three 

parameters). Improved waste-clearing capabilities is an integral advantage of AGS systems 
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and may be explained through compositional and phenotypic differences of bacteria in 

granules.  

Across all PFR systems, the highest EPS concentration is observed the 8-

chambered PFR (Table 1), in both major components: polysaccharides (PS) and proteins 

(PN). Both PS and PN are integral to promoting the granular aggregation of bacteria in 

wastewater treatment21. An increase in these values is indicative of increased cohesive 

activity in the 8-chambered PFR, which indicates increased prevalence of EPS-producing 

microbes. When evaluating EPS production in this PFR across its chambers, the PN/PS 

ratio decreases with time (HRT).  It is reported that the consumption of PN during famine 

is favorable for cell hydrophobicity of AGS because it acts as an energy source and 

increases the representation of hydrophobic PS61,62. Generally, PN content in EPS is 

positively correlated with cell hydrophobicity63,64 due to hydrophobic amino acid side 

chains65. If PN/PS is too high, increased prevalence of hydrophilic amino acid side chains 

may decrease overall hydrophobicity, which is highly destabilizing to a microbial 

community’s ability to develop granules66.  While it is not always the case63,64,67–70, high 

PN/PS ratios are usually attributable to fluffier flocs. Thus, the reduction in PN/PS over 

time may suggest that famine plays a vital role in maintaining a stable granule structure. 
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Table 1. Physical and biochemical parameters of the 4-, 6-, and 8-chambered PFR systems 

at steady state. Published by Sun et al. (2020). 
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Figure 6. Sludge morphologies at steady state. Petri dish photos (a), particle size 

distributions (b), and circularity distribution of particles (c) are shown for the different PFR 

systems. Petri dish photos across the chambers of the 8-chambered PFR are also shown 

(d). Published by Sun et al. (2020). 
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Figure 7. Dependence of sludge characteristics such as median particle diameter size (d50) 

and circularity (a), SVI30 and SVI5:SVI30 on feast/famine ratios (b), the zone settling 

velocity (Vzs) and specific gravity (c), and the rate constant (k), mixed liquor suspended 

solid concentration, and mixed liquor volatile suspended solid concentration (d). Published 

by Sun et al. (2020). 
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4.2 Community profile of AS and AGS 

To visualize large-scale trends within the data, a principal coordinates analysis 

(PCoA) was conducted on the entire dataset. PCoA is a useful analytical tool for complex 

data such as metagenomics results through simplification of input parameters. As is shown 

in Figure 8, distinct separation between the four sample sets is observed. The strongest 

similarity between groups is observed between the 4- and 6-chambered PFRs. Clustering 

is weakest in these two groups, indicated by the larger ellipses around the individual 

samples. Clustering is improved in the 8-chambered PFR samples and is strongest in the 

AS samples (n = 2). This may suggest more compositional heterogeneity in the 4- and 6- 

chambered PFRs (and the 8-chambered PFR, to a lesser extent) between different 

chambers, which is not observed between the AS samples. The isolated clustering of the 

8-chambered PFR and AS from other sample sets suggest distinct taxonomic abundances. 

The relatedness between the 4- and 6-chambered PFRs indicates more similar phenotypes. 

The “OTU” vectors provided correlate with the five ASVs that are most influential in the 

clustering process. From these vectors, it is shown that the taxa clustered most strongly 

with the 8-chambered PFR include Sphaerotilus, Arcobacter, and Bacteroidia; the taxa 

clustered most strongly with the 4- and 6-chambered PFRs are Hydrogenophaga and 

Haliscomenobacter. 
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Figure 8. Principle coordinates analysis (PCoA) of all ASVs for all datasets. The control 

(AS) and three different PFR systems are clustered in dashed ellipses. The vector of five 

main OTUs are shown. 

 

 

 

Next, heatmaps were generated at the phylum, class, order, family, and genus levels 

of the dataset to ascertain additional macroscale trends at each taxonomic rank. Similar 

trends in microbial abundance between the sample sets is observed across different 

taxonomic ranks. Hence, it can be concluded that the phylum rank (Figure 9a) largely 
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determines the clustering for the lower ranks (Figure 9b-e). In agreement with the PCoA 

plot, there is strong similarity between the 4- and 6-chambered PFRs. Some variations in 

abundance are observed in the 4-2 chamber and the 6-4 chambers at the phylum level, 

which may explain the poorer clustering of these chambers in Figure 8. In the 8-chambered 

PFR, some variation in abundance becomes clear at the order level (Figure 9c) in the 8-4 

and 8-5 chambers. Because variation is not observed at higher taxonomic ranks, this may 

contribute to the stronger clustering shown in the PCoA for the 8-chambered system. 

Interestingly, there seems to be similarity in the highly abundant taxa of the 8-chambered 

PFR and AS samples. Conversely, the PCoA plot indicates distinct separation between 

these sample sets. To better determine the extent of similarity between these two groups, 

ALDEx2 was used to find taxa with abundances that are significantly different between the 

8-chambered PFR and AS. The percentage of these significantly different taxa are shown 

for these two groups and other sample sets in Table 2 at each taxonomic rank. In accordance 

with both PCoA and heatmap trends, the strongest similarity is observed between the 4- 

and 6-chambered PFRs. Interestingly, high similarity is also observed between the 6- and 

8-chambered PFR. These similarities were not visible in either the PCoA or heatmaps. This 

finding provides the first indication of an intermediate microbial compositional state in the 

6-chambered PFR (feast/famine = 0.5). This aligns with the morphological and settling 

results of aggregates in the 6-chambered PFR that revealed compromised granulation 

(Figure 6) and the literature which indicates a successful granulation threshold at a 

feast/famine ratio ≤ 0.5. Thus, it is of great interest to determine the abundance of specific 

groups that explain the intermediate physical characteristics of AGS in the 6-chambered 
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PFR. The strongest dissimilarity observed between AS and the 8-chambered PFR reveals 

that the apparent trend of similarity in the heatmaps is misrepresented. There are clearly 

large red areas in the heatmaps for both AS and 8-chambered PFR samples, but the results 

from Table 2 indicate that the specific taxa that are overrepresented vary substantially 

between the sample sets. The high dissimilarity between the 8-chambered PFR and AS 

indicate that the largest metagenomic differences of the dataset exist between the PFR 

system with AGS and the continuous flow system with traditional activated sludge.  
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Figure 9. Heatmap across all samples across all major taxonomic classifications: phyla (a), 

class (b), order (c), family (d), and genera (e). Rows represent the various taxonomic 

identifiers at the given level. Columns represent samples. AS samples are shown in purple, 

the 1.0 feast/famine ratio PFR in red, the 0.5 feast/famine ratio PFR in blue, and the 0.3 

feast/famine ratio PFR in green. 

 

 

 

Table 2. Statistical outputs from ALDEx2 showing the percentage of taxa identified as 

statistically significant (P < 0.05) between two sets of data. Percentages are provided for 

each taxonomic level. 
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4.2.1 Phylum, class, and order distributions 

The phyla that are differentially abundant in AS (Figure 10a) largely agree with 

trends that have been previously described in continuous flow AS systems27,46,71,72. Some 

of these taxa, such as Chloroflexi and Planctomycetota, contain filamentous groups that 

are associated with sludge bulking and foaming issues in WWTPs44. There is a distinct 

difference in abundance between the AS and PFR systems. The higher abundance of 

filamentous groups in AS compared to the PFR systems suggests a successful 

environmental pressure in the feast/famine systems against the selection of filamentous 

bacteria. Trends in abundance between the different PFRs are not well enough defined at 

this taxonomic rank to explain differences in their morphologies. 

Myxococcota is not a phylum commonly identified in AS or AGS, likely due to a 

recent reclassification of Deltaproteobacteria into four novel phyla (including 

Myxococcota)73. 27,74. Unexpectedly, Haliangium accounts for over half of Myxococcota 

in AS samples (Table 3). Discussion on this halophilic genus in coastal marine 

environments in WWTPs is limited. Studies surveying community compositions in 

different AS WWTPs have reported that Haliangium is one of the most significantly 

differential abundant taxa75. One paper assessing the microbial composition during winter 

operation of an AS WWTP in winter identified Haliangium as a core genus76.  The UOSA 

facility and PFRs in this study were both sampled during the winter, but a high abundance 

is not observed in the PFRs, indicating temperature is an unrelated factor. It is most likely 

that feast and famine conditions discourage proliferation of Haliangium, though abundance 

of Myxococcota (Haliangium) in AS lacks a clear explanation.  
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The phyla most abundant in the 8-chambered PFR (Figure 10b) agree with trends 

previously described in the literature on aerobic granules collected from SBR systems27. 

The most abundant phylum across all PFR chambers and AS (AS) samples is 

Proteobacteria (Figure 10), which agrees with the available literature for both AGS and AS 

systems. The percent abundance ranges from 32% to 73% across all samples. These results 

may suggest that high levels of feast and famine (1.0 and 0.5) select for particularly high 

abundances of Proteobacteria. Bacteroidota is the second-most abundant phylum across all 

samples. The low abundance of AS is comparable to the 4- and 6-chambered PFRs. The 

significantly high abundance observed in the 8-chambered PFR may be explained by the 

relationship between Bacteroidota, cell hydrophobicity, and EPS production of AGS. A 

study on variable cell hydrophobicity of AS and AGS found that Bacteroidota was present 

in only trace amounts (1%) in hydrophilic microbial communities, but in hydrophobic 

communities, its abundance increased to nearly 50% of the AGS community66. This in turn 

was associated with higher production of EPS and stronger settleability of. This is further 

affirmed by the fact that a majority (>60%) of Bacteroidota in the 8-chambered reactor 

belong to the Flavobacteriales order, which are well-known to produce EPS in biofilms46. 

Thus, the high abundance of Bacteroidota in the aggregates of the 8-chambered PFR 

suggests increased EPS production and granule maturation. The similar abundances of 

Bacteroidota in the 4- and 6-chambered PFRs to the control (AS) suggest that the higher 

feast/famine ratios do not properly select for EPS producers needed for successful 

granulation. In the 8-chambered PFR, about 74% of the microbes in Campilobacterota 

belong to Arcobacter, which was identified as a major OTU in Figure 8. Arcobacter has 
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previously been identified as the most prevalent genus in mature AGS74. Thus, the high 

abundance of Bacteroidota and Campilobacterota in the 8-chambered PFR suggests 

improved EPS production of these aggregates. This is supported by the morphological 

results of the aggregates in the 8-chambered PFR, which show mature granule structures.  
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Figure 10. The microbial class assortment distribution of the 4-, 6-, and 8-chambered PFR 

systems and primary effluent from UOSA (AS). Phyla expected to be in higher abundance 

in AS (a) and phyla expected to be higher in AGS (b) are provided.  

*P ≤ 0.05; **P ≤ 0.02 
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The higher abundance of Polyangia, Parcubacteria, Anaerolineae, and 

Actinobacteria classes in AS (Figure 11) support previously published findings on the 

relative abundance of these classes in AS compared to AGS27,77. These trends continue to 

support the distinction in communities between the PFR and UOSA facility microbes.   

About 84% of Proteobacteria is composed of Gammaproteobacteria, so identical 

trends are observed in Figure 11. Bacteria belonging to Gammaproteobacteria in particular 

contain filamentous microbes that are some of the main contributors of sludge bulking 

issues in WWTPs39. These issues arise when an overgrowth of filamentous microbes 

disrupt the compact structure of granular aggregates, resulting in fluffy flocs with poor 

settling characteristics that negatively impact the efficiency of the WWTP. Through 

properly coordinated feast and famine periods, the proliferation of these filamentous 

groups is controlled11 to ensure proper settleability of the biomass. If the feast period is too 

long relative to famine, then filamentous groups are not properly controlled, resulting in 

activated sludge with large flocs instead of dense granules. The trends between the PFRs 

(Figure 15) are well-aligned with these concepts. The highest percent abundance of 

Gammaproteobacteria is observed in the 4-chambered PFR, followed by the 6-chambered 

PFR. The poor morphology and settling results of the biomass in these PFRs correspond to 

failed or compromised granulation. A predominance of filamentous microbes in these 

PFRs could explain the large, fluffier flocs, low specific densities, and low settling 

volumes. The lower abundance of Gammaproteobacteria in the 6-chambered PFR and 

partial settling success can be explained by the intermediate feast/famine ratio employed 
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in this system, as the apparent threshold for successful granulation ≤ 0.5. The lowest 

abundance observed in the 8-chambered PFR further supports this idea, as the best 

morphology and settling parameters were observed for these aggregates. It can be 

concluded that the 0.33 feast/famine ratio is sufficiently low enough to control the 

abundance of certain filamentous groups like Gammaproteobacteria to promote successful 

granulation. 

If filamentous bacteria were solely deleterious to aerobic granules, it would be 

expected that the abundance of Gammaproteobacteria be lower than 39% in AGS. On the 

contrary, filamentous groups are central to successful aerobic granulation in moderate 

abundances. Filaments are necessary at the start of granulation to extend into substrate and 

absorb nutrients during the feasting phase24 (Figure 13). In fact, previous studies have 

found that Gammaproteobacteria may even increase slightly during transitions from AS to 

AGS, indicating that this class  essential for proper operation of successful AGS27. This 

would explain why the lowest abundance observed is in the AS samples in this study. The 

overall trend observed across PFRs and AS suggests that while overrepresentation of these 

groups can be detrimental to the aerobic granulation process, the presence of filamentous 

groups such as Gammaproteobacteria are needed for successful AGS.  
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Figure 11. The microbial class assortment distribution of the 4-, 6-, and 8-chambered PFR 

systems (with feast/famine ratios of 1:1, 1:2, and 1:3, respectively), AS (AS) from UOSA, 

and partially nitrifying aerobic granules. Only the top 15 classes of the total bacterial 

abundance are presented. 
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Figure 12. Chronological diagram of the structural and metabolic transformation of a 

microbial aggregate in a feast (a-b) and famine (c-d) period. In the feast phase when sCOD 

is highly concentrated, filamentous bacteria are fully extended from the floc (a) which 

allows for them to capture particulate COD (b). In the famine phase when sCOD is in low 

concentration, the filamentous groups congregate inwards in the aggregate for endogenous 

metabolism of the captured particulate COD (pCOD) (c). In the final maturation step, the 

filamentous bacteria are fully retratcted and are held together by a mature EPS matrix (d). 

Courtesy of Sun et al. (2021). 

 

 

 

About 70% of Gammaproteobacteria is composed of Burkholderiales. Identical 

trends discussed for Proteobacteria and Gammaproteobacteria are observed in 

Burkholderiales (Figure 13). AGS communities predominantly composed of 

Burkholderiales correlated with slow-settling and fluffy granules78. Thus, the same 

relationship between the morphological results of the PFRs and abundance of 

Gammaproteobacteria applies to Burkholderiales. 
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Campylobacterales (from the aforementioned phylum Campilobacterota), 

Sphingomonadales, Pseudomonadales, and Flavobacteriales are found in much higher 

abundance in the 8-chambered PFR than AS and other PFR systems. The latter of these 

three orders are known to produce EPS79, and microbes belonging to Campylobacterales 

(such as Arcobacter) demonstrate a high correlation to granulation and have been 

exclusively identified in AGS bioreactors27,74,80. Thus, at the order level, it becomes clearer 

that there are distinct functional differences between the 8-chambered PFR and the other 

PFR systems. Other orders related to EPS activity are indiscriminately represented in the 

three PFR systems, such as Thiotrichales and Verrucomicrobiales. 100% of Thiotrichales 

is composed of Thiothrix, a genus that has been linked EPS production68 and successful 

granulation in systems where it accounted for over half of the total microbial community69. 

Thiothrix is found exclusively in the PFRs; its abundance was undetectable in AS. 

An interesting shift between Sphingobacteriales and Flavobacteriales is observed 

between AS and the PFRs. A previous study evaluating the effect of cell hydrophobicity 

on community structure and EPS production in AGS found that when hydrophobicity was 

increased, a shift from Sphingobacteriales to Flavobacteriales was observed. Following the 

proliferation of Flavobacteriales was an increase in EPS production. When the cellular 

community was hydrophilic and dominated by Sphingobacteriales, there was minimal EPS 

production and failed granulation66. This finding it notable because cell surface 

hydrophobicity is important for biofilm attachment83. A similar trend is observed in this 

study, particularly in the 8-chambered PFR due to the high abundance of Flavobacteriales.  

The percent abundance of Flavobacteriales in the 4-chambered PFR is comparable to AS, 
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and abundance in the 6-chambered PFR is between the two PFRs. The relationship between 

the relative abundance of Sphingobacteriales in AS and Flavobacteriales in the PFRs 

suggests highest cell hydrophobicity in the 8-chambered PFR, which correlates to the most 

optimal environment for EPS production. This is supported by the high EPS content 

reported for the 8-chambered PFR (Table 1) and morphological results. The intermediate 

abundance of Flavobacteriales in the 6-chambered PFR is also supported by the 

intermediate success of morphological and settling results reported. The compositional 

profiles in AS and the 4-chambered PFR suggest an inadequate community profile for 

proper cell hydrophobicity, which would then lead to poor EPS production. This explains 

the poor EPS content reported in this study for the 4-chambered PFR.  
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Figure 13. The microbial class assortment distribution of the 4-, 6-, and 8-chambered PFR 

systems (with feast/famine ratios of 1:1, 1:2, and 1:3, respectively), AS from UOSA (AS), 

and partially nitrifying aerobic granules. Only the top 15 orders of the total bacterial 

abundance are presented. 

 

 

 

4.2.2 Family and genus distributions 

A variety of low level taxa are reported to be in higher abundance in either AS or 

AGS in the literature. Important taxa found to be in higher abundance in metagenomic 

reports on continuous flow WWTPs are bolded in the AS column of Table 3, while taxa 

that were found in higher abundance from SBR WWTPs are bolded for the 8-chambered 
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PFR column, where successful granulation is observed. If the expected trend from the 

literature disagreed with the findings of this study, the taxa are highlighted in blue  

 

 

 

Table 3. Percentage of the most important classes, orders, and genera between AS and the 

three different PFR benchtop reactors. Taxa that have been differentially identified in AS 

in continuous flow reactors are bolded in the AS column. Taxa that have been differentially 

identified AGS systems from SBRs are bolded in the 8-chambered PFR  (AGS) column. 

*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001. 

 

 

 

 

Differentially prevalent in AS 

The taxa that are more abundant in the UOSA AS samples overwhelmingly agree 

with the expected trends based on the literature of continuous flow WWTPs (Table 3). 
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Many of these groups (Hyphomicrobiaceae, Candidatus Microthrix, and Zoogloea) are 

attributed to filament or adhesin production84 known to cause bulking, foaming issues, poor 

settling times, and poor compaction ability in AS WWTPs31,44,105, which aligns with the 

expected morphology of AS compared to AGS. Furthermore, the low abundance in the 

PFR samples suggests that feast/famine conditions play a role in controlling these 

filamentous groups that are detrimental to successful granulation. It is interesting to note 

that out of the three PFRs, these taxa are most abundant in the 8-chambered PFR (Table 

3). This may be due to the role of substrate acquisition of filamentous groups in the early 

feasting phases of SBR systems. Filamentous bacteria are often encountered on the surface 

of granules during feasting phases in order to obtain nutrients needed for endogenous 

metabolism of the granule core during subsequent famine11. Furthermore, findings indicate 

that Zoogloea is found early in granule maturation, decreases as maturation progresses, and 

is capable of EPS production46. This suggests that some amount of Zoogloea may be 

integral for both capturing nutrients and granular structure, while excess abundance may 

be attributable to uncontrolled filamentous growth. Thus, the dual functionality of filament 

and EPS production may explain the moderate presence of Zoogloea in extended famine 

conditions.   

Decreased Nitrospira abundance in the 8-chambered PFR is possibly due to the 

change in biomass structure from the AS to an AGS system; Nitrospira sp. are nitrite-

oxidizing bacteria that utilize oxygen in their environment. In AS, free diffusion allows for 

easier access of oxygen. In aerobic granules, oxygen penetration is restricted, worsening 

conditions for growth for this genus27,86.  
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The high relative abundance of PAOs in AS samples in this study (Candidatus 

Accumulibacter, Intrasporangiaceae, Tetrasphaera, Dechloromonas) suggests a negative 

selection pressure of these taxa in the PFRs. This aligns with literature that indicates 

aerobic granulation discourages the growth of most PAOs in SBR systems27,74. Despite 

being more abundant than the PFR systems, it is notable that the abundance of PAOs in AS 

is much lower than anticipated for continuous flow systems27. This may be due to the 

method of phosphorus removal used at the UOSA. As discussed in Section 2.3.2 

Community structure of AGS WWTPs, some WWTPs employ microbes for phosphorus 

removal through an initial anaerobic cycle45 with phosphorus enrichment87 that selects for 

proliferation of anaerobic microbes such as the aforementioned PAOs. However, the 

UOSA system removes phosphorus by feeding primary effluent through a high-lime 

process88. The lack of an initial anaerobic cycle may explain the poor abundance of these 

taxa in AS. Furthermore, this same primary effluent is immediately subjected to aerobic 

conditions when fed to the PFRs, which explains the further drop in abundance observed 

in all PFR systems. Flavobacterium, Thiothrix, and Sphingopyxis are known to accumulate 

phosphorus as well27,81, and the dominating abundance of these genera in the 8-chambered 

reactor (>15% total abundance) suggest competitive activity with other PAOs commonly 

observed in AGS and AS. Hence, other microbes outcompete the already poorly 

represented PAOs for substrate89.  

Differentially prevalent in AGS 

Hydrogenophaga, Acidovorax, Cloacibacterium, Xanthomonadaceae, Aeromonas, 

Acinetobacter, Flavobacterium, and Sphingopyxis are all commonly identified in granular 
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sludge reactors78,90–95 and are known to produce EPS46,54,96.  Notably integral for bacterial 

aggregation is the Xanthomonadaceae family, which produces N-acyl-homoserine-lactone, 

a component of EPS and a QS molecule. The drastic increases in abundances of these 

groups from AS to the 8-chambered PFR suggest that the low feast/famine ratio strongly 

selects for these EPS-producing bacteria. Interestingly, the abundance of some groups such 

as Hydrogenophaga and Xanthomonadaceae are highest in the 6-chambered PFR. This 

suggests that the threshold feast/famine ratio of 0.5 may be low enough to positively select 

for some EPS-producing groups as well. Jointly, the trend of increased abundance of EPS-

producing bacteria in the 6- and 8-chambered PFRs support the morphological findings of 

the aggregates in these systems, thus relating the abundance of EPS producers to successful 

granulation. 

Many of these EPS-producing genera are present in the top 15 most abundant 

genera in the 8-chambered PFR (Figure 14). Other genera include Bdellovibrio, which are 

highly motile and flagellated97, and Novosphingobium, which are non-filamentous, known 

to form microcolonies98, and possess strong cell surface hydrophobicity99. The strong 

differences in abundance of these genera between the 8-chambered PFR and AS show the 

distinct selection for bacteria that are either capable of EPS production or facilitate the 

formation of biofilms in the PFR system. 

Interestingly, Sphaerotilus is the largest genus in the 8-chambered PFR (Figure 14). 

Many microbes belonging to this genus are largely associated with the production of long 

filaments (up to 1000 µm) in wastewater that contribute substantially to sludge bulking and 

foaming issues in AS100. , although some reports have identified Sphaerotilus in dense 
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bioflocs101. Such a high predominance of this genus in the 8-chambered reactor reflects 

poorly on the structural stability of granule. More puzzling is the non-existent abundance 

of Sphaerotilus in AS, which indicates that a variable in the PFRs positively selected for 

the overgrowth of these microbes. Overgrowth of Sphaerotilus has been linked to high 

organic loading rates of simple biodegradable substances like acetate and glucose102,103. 

These microbes are known to store polysaccharides and poly-β-hydroxybutyrate in 

granules as reserve material72, so it is possible that such conditions in the PFRs erroneously 

selected for this genus. It is unclear why the abundance of Sphaerotilus is so poorly 

represented in the 6-chambered PFR compared to the 4- and 8-chambered PFRs (Table 3). 
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Figure 14. Percent abundance of the 15 most abundant genera in the 8-chambered PFR 

(excluding Sphaerotilus). The abundances in AS are also provided for comparison. 

 

 

 

4.3 Community profile on the dynamic response of aerobic granulation 

Figure 15 shows the community profile of Gammaproteobacteria in the individual 

chambers of all three PFR systems.  It is notable that there is more dramatic variation of 

Gammaproteobacteria in the 4- and 6-chambered PFRs (σ = 11.2, 10.9) compared to the 8-

chambered PFR (σ = 3.4). The decrease and rise in abundance observed in these PFRs does 

not appear in the 8-chambered PFR. These results show a compositional instability in the 

failed AGS reactors (4-6 chambers) and are accompanied by higher average abundances. 
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Conversely, greater stability in the 8-chambered PFR with AGS is accompanied by lower 

average abundance. This suggests a stronger compositional integrity in systems with 

successful AGS, whereas microbial flocs are more likely to shift dramatically with changes 

in environmental conditions. The variability observed in the 4- and 6-chambered PFRs  

“boom-and-bust” shift in community structure has been previously described in aggregated 

microbial communities during changes to nutrient availability104. The induction of feast 

and famine in the PFR may explain the diversity in abundance in the direction of plug flow, 

due to nutrient availability reduction. Conversely, it has been revealed that microbial 

community diversity in AGS decreases sharply in the early stages of maturation and 

stabilizes around key groups such as EPS producers105. This would explain the static 

microbial community composition observed in the 8-chambered PFR, since the aerobic 

granules were sampled at steady-state.  

The apparent heterogeneity of the microbial community in the PFRs with failed 

granulation (4 and 6 chambers) indicate variable biological response during changes to 

nutritional availability between chambers. Implementation of appropriate feast/famine 

conditions in the 8-chambered PFR led to less pronounced community changes, likely due 

to the stabilizing characteristics identified in AGS. Metagenomic analysis is insufficient in 

explaining the factors at play in maintaining a consistent microbial community structure. 

These microbial mechanisms are elucidated in Section 4.4 Predictive functional analysis 

through predictive functional analysis. 
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Figure 15. Percent abundance of Gammaproteobacteria across all chambers of the three 

PFR systems, accompanied by the AS samples (average is shown). Data labels are provided 

for percent abundances associated with transitions from feast to famine conditions. 

Triplicate samples (4-2 and 6-4) are presented as averages. 

 

 

 

 

For the majority of other taxa, there is little compositional change between 

chambers. Plug flow models are not designed to change the composition of microbes 

during the hydraulic retention period, only the concentration of nutrients. As microbes flow 

through a decreasing gradient of nutrients, it is more likely that the epigenetic response of 
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the microbial community will change, rather than the actual community composition. It is 

notable that the standard error rates of percent abundance between chambers decreases as 

the number of chambers increases, further indicating that the highest compositional 

stability occurs in AGS.  

4.4 Predictive functional analysis  

Metagenomic analysis, particularly at family and genus ranks, provide associative 

relationships between classification and function. Further elucidation of function is 

typically determined through RNA sequencing and subsequent metatranscriptomic 

analysis. Unfortunately, RNA extractions yielded materials of insufficient quality for 

sampling, as determined by poor RIN values during Tapestation analysis. Despite three 

months of alterations to extraction protocols, evidence of high degradation persisted. It is 

hypothesized that the RNA degraded during the sampling process, prior to extraction. After 

collection from the PFRs, biomass was left for an indiscriminate amount of time to allow 

aggregates to settle prior to being placed in a -80°C freezer; this is problematic because 

RNA begins degrading within 30 minutes at room temperature106. It is also likely that 

ribonucleases (RNases) present in the biomass during sampling contributed to the 

degradation in this time. Resampling with protective measures such as use of an RNA 

stabilizing reagent and flash freezing was proposed. However, due to state-wide laboratory 

shutdowns in the spring of 2020 and subsequent shutdown of the PFR systems, resampling 

could not be conducted. As an alternative to RNA sequencing, microbial community 

function was predicted by testing ASVs against the KEGG functional database in 
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PICRUSt2. Functions determined to be significantly different (P < 0.05) between the AS 

and AGS (8-chambered PFR) samples are shown in Figure 16. 

 

 

 

 
Figure 16. Heatmap of significantly different (P < 0.05) KEGG-predicted functions 

between AGS and AS samples. Functions and samples are clustered by similarity. KEGG 

SubPathways are represented by a colored legend: cellular processes (green), 
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environmental information processing (blue), genetic information processing (purple), and 

unclassified (grey). Notable functions with P > 0.05 are labeled NS (non-significant). 

 

 

 

4.4.1 Biofilm formation 

Secretion systems and transporters are integral for EPS production and 

dissemination; in conjunction with quorum sensing, upregulation of these functions in AGS 

indicates increased cell-to-cell communication, which aligns with the phenotype observed 

in mature biofilms107 . Two-component systems (TCSs) are the predominant regulatory 

signal transduction systems that microbes use to detect and physiologically respond to 

environmental fluctuations. These cellular responses include biofilm formation, which is a 

common response to environmental stressors like nutrient deprivation. As such, TCS has 

been identified as the main pathway associated with the complex mechanism of biofilm 

formation in microbial communities108. The significant upregulation of these systems in 

AGS is then well-explained from both a biofilm formation perspective and as a response 

to famine periods in the PFR system. The taxa that contribute the most substantially to 

these functions include Hydrogenophaga, Flavobacterium, Pseudomonas, and 

Acidovorax. 

 The KEGG website identified a variety of biofilm formation pathways from the 8-

chambered PFR results, such as the autoinducer-2 (AI-2) quorum sensing pathway that 

mediates interspecies communication for biofilm formation (Figure 17). AI-2 molecules 

entering the receiving cell (via transporters) are phosphorylated, allowing phospho-AI-2 to 

bind and inactivate LsrR. LsrR is a regulatory protein that represses transcription of genes 
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related to the biosynthesis of the EPS component, colanic acid. In addition to responding 

to incoming AI-2 molecules, it is clear that the microbial community in AGS are also 

producing AI-2 molecules through the activation of LuxS. This pathway was strongly 

identified in Hydrogenophaga and Flavobacterium. Other AI-2 quorum sensing pathways 

involving Lux proteins (such as the LuxO pathway) were identified in Pseudomonas and 

Aeromonas. Acyl-homoserine lactones (AHLs), a class of quorum sensing molecules 

found exclusively in gram-negative bacteria, were also identified through Las and Rhl 

systems in Pseudomonas. These systems are involved in the biosynthesis of Psl 

polysaccharide and rhamnolipids, which are both EPS components. 

Cellulose and curli are components of EPS regulated by CsgD, the master biofilm 

transcriptional regulator from the LuxR protein family. CsgD can be activated by an array 

of environmental conditions, either directly or indirectly by Sigma-38, the main initiation 

factor involved in stationary phase microbial growth109. This pathway was identified in 

Pseudomonas, Acinetobacter, and Aeromonas in AGS.  

Glycogen biosynthesis and poly-N-acetyl-glucosamine biosynthesis, a component 

of EPS110, are activated through the BarA/UvrY/CsrA pathway. BarA/UvrY is a TCS; 

BarA is a sensor transmembrane kinase that is activated by peroxide111, formate, or 

acetate112. Autophosphorylated BarA then transphosphorylates UvrY113, which then 

activates the transcription of csrB sRNA (small regulatory RNA). These sRNAs inactivate 

CsrA through sequestration. CsrA is a repressor RNA-binding protein that inhibits 

translation of mRNAs involved in glycogen and EPS biosynthesis and potentially quorum 

sensing114. When CsrA is inactive, translation of these various mRNAs can occur, resulting 
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in EPS production. The presence of all the necessary proteins for the inactivation of CsrA 

are identified in the KEGG database, indicating successful biofilm formation through this 

pathway. The taxa in this study linked to this pathway include Pseudomonas, 

Acinetobacter, Arcobacter, Aeromonas, and Campylobacterales. 

 Motility is downregulated during biofilm formation, which is primarily regulated 

by levels of cyclic-di-GMP (c-di-GMP). Many regulatory proteins in the c-di-GAMP 

pathway are not present in AGS, suggesting poor activation of flagellar assembly.   
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Figure 17. The KEGG reference pathway of biofilm formation (modeled after E. coli) in 

AGS. Activity at the top of the figure is associated with motility, and the bottom portion is 

associated with biofilm formation. Additional environmental signals that can activate 

CsgD are shown in the grey box. Proteins in the pathway are labeled in boxes unless 

otherwise indicated; non-proteins are illustrated with bullets. Proteins highlighted in red 

indicate a match in the KEGG database; proteins in black do not have a match. 
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4.4.2 Metabolic functions 

Other functions upregulated in AGS include nitrogen and sulfur metabolism, 

particularly sulfate reduction. Denitrifiers and sulfate-reducing bacteria are typically found 

in the anoxic region and anaerobic core of aerobic granules (respectively) due to their 

anaerobic activity (Figure 20). Because of these anoxic/anaerobic regions, AGS provides 

an adequate environment for the proliferation of denitrifying and sulfate-reducing bacteria, 

resulting in higher denitrification and sulfate reduction compared to the flocs in AS27,115. 

The lack of compact structure in AS does not provide this environment in looser flocs. For 

nitrogen metabolism, this means only aerobic nitrifiers survive in AS conditions. One of 

the important advantages of AGS is simultaneous nitrification-denitrification, which is 

facilitated by the presence of the anoxic region. Through analysis of the predicted KEGG 

pathways, proteins for the full pathways of denitrification and nitrification were identified 

in the 8-chambered PFRs (Figure 18). The efficient removal of nitrates, ammonia, and 

sulfates is an important advantage of AGS over AS, so the upregulation of these pathways 

is a notable finding. The taxa that contribute the most substantially to these functions are 

Hydrogenophaga and Sphaerotilus (nitrogen metabolism) and Pseudomonas (sulfur 

metabolism). 

Significant upregulation of oxidative phosphorylation, carbon fixation, and other 

energy metabolic functions was identified in the AS samples. These trends were somewhat 

unexpected given the superior COD removal rates observed in the AGS samples18 (Figure 

7d). This can be partially explained by the anaerobic metabolic ability of AGS, whereas 
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nearly all energy metabolism in flocs can be attributed to aerobic respiration. An additional 

explanation for the downregulation of metabolism in AGS is due to induction of famine 

periods, which reduce nutrient availability for metabolism. However, nutrients acquired 

during the feast phase are easily absorbed into the granule structure (Figure 12), providing 

nutrient sources through the famine period27. A more probable explanation is related to the 

growth rates between the bacteria in AGS and AS. Mature biofilms approach stationary 

phases of growth characterized by growth rates that are equivalent to decay rates (Figure 

19). These growth restrictions do not apply to planktonic bacteria. This hypothesis is 

supported by the upregulation of replication proteins in AS, such as DNA 

repair/recombination proteins, translation factors, aminoacyl-tRNA synthetases, 

chaperones, and transcription machinery. Most importantly, ribosome expression and 

biosynthesis are upregulated in AS. Ribosomes are so strongly correlated to microbial 

growth that ribosome counts are commonly used in in situ studies to estimate growth rates 

of bacteria116. 
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Figure 18. Schematic of the bacterial mechanism of nitrogen metabolism in AGS, as 

provided by KEGG117. Proteins in the pathway are labeled in boxes, and non-proteins are 

illustrated with bullets. Proteins highlighted in red indicate a match in the KEGG database.   

 

 

 

 

 

Figure 19. An example growth curve for bacteria over the course of biofilm establishment 

and maturation. Growth is measured by the ocular density (OD) at 600 nm. Absorbance at 

this wavelength captures light scattering associated with microbial growth in liquid 

media118. 

 

 

 

 

4.5 Future considerations 

There is a strong relationship between EPS production and cell hydrophobicity. 

Because EPS production is crucial to granule formation, analyzing the cell hydrophobicity 
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across the different CSTR chambers of the PFR system would be an important validation 

technique to confirm EPS findings presented in this study. 

There lacks a consensus in the literature about the validity of using the protein to 

polysaccharide (PN/PS) ratio in EPS as a way to predict sludge settleability. I propose that 

the controversy in the literature is the product of different compositions of protein present 

in EPS. Hydrophobic amino acid side chains can increase cell hydrophobicity, while 

hydrophilic amino acid side chains are found to be destabilizing to granular structures. The 

ratio of hydrophobic to hydrophilic amino acids can vary substantially with different 

environmental factors, and thus there is a vast assumption made in concluding that high 

PN/PS content is inherently destabilizing to aerobic granules. More accurate conclusions 

on the relative hydrophilicity can be achieved through the full amino acid profile in EPS 

protein. Hence, these results would be more informative than the total PN content. 

Many AGS studies sample biomass throughout the aerobic granulation process. In 

this study, samples were taken only at steady state across the various CSTRs. While granule 

maturation occurs to an extent in this system, recycled granules in activated sludge at 

steady state are further along in the maturation process and represent a different community 

phenotype than maturing granules. To differentiate mature granules from maturing 

granules in AS which coexist in a steady state system, additional sampling throughout the 

maturation process may further elucidate community and motility functions needed to 

complete successful biofilm formation. 

The composition of the microbial community is not homogenous within an aerobic 

granule. On the contrary, there is distinct stratification of microbial groups in a granule 
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based on function and metabolic ability. The arrangement of bacteria that make up the core 

and outer layers of the granule are largely determined by conditions such as shear force 

and carbon source (Figure 20). For example, the outer layer that has optimal accessibility 

to oxygen is dominated by aerobic bacteria responsible for nitrification and organic 

materials processing. The core is made up of anaerobic bacteria responsible for the majority 

of denitrification activity. In between these layers, hypoxic and anoxic groups associated 

with phosphorus removal are common. During sample preparation, the granules (or flocs) 

were thoroughly homogenized in order to ensure that the bacteria from all portions of the 

granular structure are equally represented during sequencing. However, sequencing 

different portions of the particulates separately would yield more insightful information on 

the dynamic function of the microbial community throughout the granulation process. 

Additionally, DNA from bacterial groups enveloped in EPS may not be adequately 

extracted during homogenization of the material. This could lead to underrepresentation of 

EPS-producing bacteria present in the granule structure. Substantial compositional 

variation amongst the triplicate samples that were sequenced (Figure 21) affirm that this 

attempt at homogenization was unsuccessful.  
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Figure 20. Schematic drawing of the stratifications in an aerobic granule. The aerobic, 

anoxic, and anaerobic layers are listed along with their associated functions in wastewater 

treatment. 
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Figure 21. Percent abundance plots of triplicate samples from the 4-chambered PFR (4-2A 

to 4-2C) and the 6-chambered PFR (6-4A to 6-4C) for Gammaproteobacteria and 

Bacteroidia. The ranges for each triplicate dataset are provided. 

 

 

 

The high abundance of Sphaerotilus in AGS may foreshadow sludge bulking issues 

under the current operational parameters of the PFR system. The starting AS abundance of 

Sphaerotilus was 0.10% but was found to be upwards of 20% in the feasting phase of the 

8-chambered PFR. This indicates that the feasting conditions may apply a selective 

pressure encouraging the overgrowth of Sphaerotilus. High organic loading rate with 

readily biodegradable compounds like acetate and glucose have been linked to overgrowth 

of filamentous groups including Sphaerotilus. Alterations to these parameters could inhibit 

filamentous overgrowth and promote stable granule formation.  

Quality assessment studies have reported that the largest influence on variation in 

microbiome profiling is the choice in primers119. The 341F and 785R primers used in this 

study were selected due to the high coverage reported in studies on the human 

microbiome49,120. However, it is possible that these findings are not accurate 

representations of the microbial community in wastewater. One study relating soil, plant, 

animal, and human microbiomes found that that the best primer pair was 515F/806R, 

yielding the largest diversity coverage, species richness, and number of ASVs121. Studies 

comparing the best primer pair for wastewater treatment plant samples are largely in 

disagreement; some suggest 27F/1492R, others suggest 341F/534R and 968F/1401R120,122. 

Most metagenomic studies on the microbial communities in AS use the hypervariable V3-
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V4 region for amplification, although the specific primer pairs differ74,77,80,123–128. Others 

use different regions altogether44,54,92. The lack of a standard set or even region of primer 

pairs for amplification is potentially introducing biases across different studies that may 

render trends between communities unreliable.  

In addition to selecting for 16S bacterial rRNA, it has been previously demonstrated 

that other non-prokaryotic organisms are integral to AGS. For example, differential 

abundances of archaeal groups are found in AS and AGS; Euryachaeota is strongly 

correlated to AGS, and Methanosaeta is predominant in AS129. Additionally, 

microorganisms such as tardigrades, ciliates, and rotifers are indicative of a healthy 

ecosystem in AGS. Tardigrades and rotifers in particular are known to feed on planktonic 

bacteria, while walking ciliate are known to feed on dead bacteria on the surface of aerobic 

granules27. Thus, these non-bacterial microorganisms also play an important role in the 

success of aerobic granulation, and analyzing their prevalence in novel wastewater 

treatment reactors may detail an additional layer of complexity of successful AGS.  
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5. CONCLUSION 

The results of this study suggest that the complex community structure of the plug-

flow reactor largely agrees with findings of other mature aerobic granular sludge systems 

under the correct combination of feast and famine conditions. Furthermore, the critical 

limit of a 0.5 feast/famine cycle has been reaffirmed in this study, accompanied by novel 

physical, metabolic, and metagenomic results that reflect an intermediate, transitional 

granular sludge phase in the 1:2 feast/famine PFR (6 chambers). As expected, aerobic 

granulation failed in the 4-chambered PFR with a 1.0 feast/famine ratio. Metagenomic 

results provide a microbiological explanation for the failure of this system with heavy 

similarities in the taxonomic groups of this PFR and AS samples.  

By settling and standards, successful granulation was observed in the 8-chamberd 

PFR. This finding in itself is the first of its kind, as successful granulation is only 

consistently achieved in sequence batch reactors. The novel metagenomic analysis 

conducted on resultant AGS identify EPS-producing groups such as Flavobacterium, 

Hydrogenophaga, Pseudomonas, and others. Moreover, there was a substantial decrease 

in representation of filamentous groups such as Actinobacteria, Chloroflexi, Microthrix, 

and Zoogloea. Predictive functional analysis further reveals the upregulation of biofilm 

formation pathways and proteins related to intercellular communication in the 8-

chambered PFR sample, suggesting that the 0.33 feast/famine ratio implemented in the 

PFR provided substantial nutritional deprivation to activate aerobic granulation. 
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APPENDIX A  

There is a plethora of open-source bioinformatic tools available for the type of 

metagenomic analysis needed to complete this study. The purpose of this appendix is to 

provide the reader with the rationale for each tool and function used for the metagenomic 

analysis of data in this study. The tools needed for this microbial community study range 

from simple data pre-processing packages to more complex algorithms that infer amplicon 

sequence variants (ASVs), find chimeric sequences, and conduct taxonomic identification. 

These include software packages and programs such as Bioconductor, QIIME, UPARSE, 

MED, and more. Web servers such as MG-RAST and PATRIC have also emerged in recent 

years in order to provide a user interface that make metagenomic analysis more accessible 

for scientists with limited programming and/or cloud computing experience130,131. No 

single tool or web server is a superior option above the others, and the algorithms in these 

tools are consistently optimized to address biases or limitations. Furthermore, there exists 

a virtually unlimited combination of parameters within even a single tool. As a result, 

metagenomic analysis is a largely decentralized process that the researcher necessarily 

tailors to their type of data and expertise. 

A.1 Data preprocessing  

One of the few domains that remains relatively conserved among the different 

bioinformatics tools is data preprocessing. The goal of this step is to determine the quality 

of raw FASTQ reads and prime the reads for downstream analysis. Due to the large amount 

of data generated during sequencing, preprocessing is imperative to make information 
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more manageable. Quality tools include primer trimming, quality trimming, filtering, 

dereplication, and merging. These steps are well-defined and simple, and there are minimal 

differences between the tools belonging to different packages. However, the different tools 

do require the researcher to establish the desired parameters, and the different values and 

thresholds employed have the potential to influence results.  

A.1.1 Primer trimming  

Primer trimming is an important first step in quality management of FASTQ files, 

as primers account for 10% or more of base reads. Primer trimming tools can utilize a 

specific or non-specific methodology, depending on the researcher’s preference. Specific 

trimming is the preferred method of primer trimming and appears in more published 

workflows than non-specific trimming. The advantage of specific trimming is that it 

simultaneously accounts for quality and discards reads that have a high likelihood of 

returning unreliable results. However, nucleotide insertions and deletions (collectively 

referred as indels) of primer sequences can occur during amplification and sequencing, and 

specific trimming techniques do not account for this. Reads that experience frameshifts due 

to insertions or deletions are automatically discarded in the specific trimming method on 

the assumption that the rest of the sequence is unreliable, which is not necessarily a sound 

assumption to make. 

Specific trimming 

Specific trimming protocols require the primer sequence used during amplification 

to be specified (both forward and reverse primers). The trimming tool will then search 

through the FASTQ sequences and excise the desired primer sequence from the forward or 
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reverse reads. During amplification, it is not uncommon for point mutations (also known 

as single nucleotide substitution errors132) to occur in the extension phase. As an example, 

Taq DNA polymerase I has a reported error rate between 8.0 x 10-5 to 7.2 x 10-5 errors per 

base per doubling133–135. Additionally, substitution errors are known to be the dominant 

error type observed during Illumina next-generation sequencing (NGS)136. The substitution 

error rate of Illumina NGS is 0.24% per base.  To account for the propensity of substitution 

errors during amplification and sequencing, the primer trimming tool utilizes an error 

threshold. Error thresholds will automatically discard reads that have primer mismatches 

above a designated percentage. The standard threshold is 10%. This means that for a primer 

sequence that is 40 nucleotides (nts) in length, the trimming tool will tolerate up to four 

bases that do not match the specified primer sequence. Primer sequences with a mismatch 

of five or more bases will be discarded from the FASTQ file, and thus removed from further 

downstream analysis.  

High-quality sequences might not need as low of a threshold as the 10% default. 

These data can afford to increase the threshold value without losing a substantial number 

of reads. As such, the threshold set can be altered to the researcher’s discretion depending 

on the quality of the reads and the subsequent number of sequences that are eliminated 

from the FASTQ file.  

Specific trimming is advantageous because primers are one of the few controls in 

the reads. If the primer is inaccurate, it may be indicative of a poor read. Thus, the quality 

of the primer can serve as a quality filter for reads that demonstrate a high probability of 

error. 
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Non-specific trimming 

Non-specific trimming does not require the primer sequence as input. This method 

of trimming only accounts for the nucleotide length of the primer. The number of specified 

bases will then be indiscriminately excised from all reads. For example, if the primer length 

is specified as 40 bases, all reads contained in the FASTQ file will have the first 40 bases 

removed. Because there is no threshold requirement, no reads are discarded at this stage.  

The advantage of this method is that it accounts for oligonucleotide insertions and 

deletions encountered during amplification and sequencing135. While it is significantly 

more common to encounter substitution errors than insertions and deletions, the specific 

trimming method does not account for the presence of insertions or deletions and tolerates 

these reads very poorly. The addition of one or more nucleotides in the primer sequence 

effectively leads to a frameshift mutation and subsequently shifts the primer sequence. 

With the specific trimming method, these reads will fail the tolerance filter, as all bases 

following the position of the frameshift will be treated as mismatches. Specific trimming 

tools assume that these primer errors reflect poor quality in the rest of the read and therefore 

are discarded. This assumption is not universally applicable, as the rest of the read still 

reports the quality scores for each nucleotide position, and these quality scores can still be 

high. In such a scenario, the single frameshift is not representative of an entirely poor-

quality read and therefore should not be discarded from consideration. 

Because there is no threshold used in non-specific trimming, all reads are retained 

when using this method, including low quality reads. Excision of these reads is saved for 

the quality evaluation and quality trimming steps. This method prevents the bias against 
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reads with insertions or deletions that would otherwise be discarded using specific 

trimming. 

The extent to which primers are subject to oligonucleotide insertions or deletions 

is somewhat dependent on the type NGS technology used. 454 pyrosequencing technology 

can be incredibly prone to indels; indel errors can range from 0.02% to nearly 50% per 

base132. Other technologies like Illumina NGS experience indel errors ranging from 2.8 x 

10-6 to 5.1 x 10-6, which is several of orders of magnitude less common than the error rate 

observed by 454 sequencing technology137.  

Amplification does not contribute largely to insertion or deletion errors. In fact, the 

errors experienced when using Taq polymerase I are predominantly substitutions by 

frequency (98.8%), followed by minimal deletions (1.2%), and no reported insertions135.  

In summary, the choice to use specific or non-specific primer trimming should be 

considered on a case-by-case basis depending on the proclivity for indel errors compared 

to point substitution errors. If Illumina NGS is used, the overwhelming majority of errors 

in the reads are substitution errors to the point that indel errors are negligible. Discarding 

these sequences with indels when they fail the threshold is not likely to significantly alter 

the outcome of the metagenomic data, as it represents around 1% of all total errors. Reads 

that fail the threshold in this case largely agree with the assumption that rest of the sequence 

is likely unreliable and should be discarded. If other forms of sequencing that are more 

likely to experience indel errors (such as 4454, Ion Torrent, or Pacific BioSciences), non-

specific trimming should be considered instead.   
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Specific trimming: PANDAseq vs. Cutadapt 

Because Illumina NGS is used for metagenomic sequencing in this study, specific 

trimming was chosen as the method for primer trimming. There are two popular trimming 

tools, PANDAseq and Cutadapt, used to complete this data preprocessing step. 

PANDAseq in particular has attracted significant attention from bioinformaticians, 

with over a thousand of citations since its release in 2012138. Despite this popularity, the 

outputs from this trimming tool were substandard.  Some functions did not yield the 

expected results, and thus it was not considered a reliable tool for metagenomics 

processing. 

Many modifications can be made to the trimming function in PANDAseq to alter 

the number of accepted reads. One option is to merge the reads (also referred to as 

“assembly” or “alignment” in PANDAseq workflows) in addition to primer trimming. The 

default for PANDAseq is to trim the primers and then assemble the forward and reverse 

reads. This default command was tested with a 0.6 accuracy threshold, meaning that base 

errors of up to 40% in the primer sequence would be tolerated. Only 200 reads were 

discarded when using this pipeline (less than 0.2% of all reads). To trim after assembly, 

the -a command can also be specified. For reasons unknown, using the -a command 

increases the selectivity of the reads that are accepted even when the same 0.6 threshold 

was applied. 7000 reads were discarded, accounting for 5% of all reads in the FASTQ file. 

The tool selected for primer trimming was the Python library, Cutadapt139. The 

limitations of PANDAseq were not apparent when using Cutadapt. The default error rate 

employed by Cutadapt is 10%. For our 17 and 21 base pair primers (forward and reverse, 
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respectively), this comes out to a tolerance of 1-2 base errors per read. A very low number 

of reads were discarded with this default value (less than 0.1% of all reads), so the tolerance 

threshold was increased to only allow a single base error in the primer sequence. To achieve 

this, the threshold was set to 5% and 6% for the forward and reverse FASTQ files, 

respectively. Only 1000 reads were discarded due to high error rates (1.1% of total reads).   

A.1.2 Quality evaluation 

Q scores 

One of the benefits of the newer FASTQ format over the previously used FASTA 

format is that quality information is automatically included for each base sequenced. 

Quality information is formatted as Phred quality scores, also known as Q scores. Q scores 

logarithmically represent the probability, P, that a base is incorrectly reported during 

sequencing140,141.  

𝑃 = 10−𝑄/10 

(Equation 1) 

𝑄 = −10 log10(𝑃) 

(Equation 2) 

 

For example, a Q score of 30 has a probabilistic error of 0.001 (10-30/10), or a 99.9% 

probabilistic accuracy. Q scores are displayed as ASCII (base 33) characters in FASTQ 

files and can be readily converted to the numerical Q score (Figure 22). The string of ASCII 

characters as they would appear in a FASTQ file are shown in Figure 23142. 
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Figure 22. The relationship between Q scores, probability, and ASCII characters143. 

FASTQ files report quality scores via their ASCII equivalents. 

 

 

 

 

 

 

 

Figure 23. Example of a read in FASTQ format. ASCII-transcribed Q scores are found 

underneath the read, separated by a plus symbol. Q scores and bases are in line such that 

the nucleotide is directly above the ASCII character that reports its quality. 
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Phasing 

Due to the limitations of Illumina NGS technology, there is typically a drop in 

quality towards the end of a read. This is due to a process called phasing144. During 

sequencing, DNA sequences (such as amplicons) are denatured to single-stranded 

molecules, exposing the base sequence of the strand. This exposed template strand is then 

washed with incoming nucleotides that are tagged with fluorescent signals and a terminator 

cap145. Fluorescent signals differentially bind to a specific nucleotide which allow for the 

specific detection of one of the four bases. The terminator cap prevents the addition of 

additional nucleotides, ensuring that only one fluorescent signal is measured per position 

(or cycle). In order to initiate the next cycle, this cap must be removed. Occasionally, the 

cap is not properly removed, causing the sequencing equipment to erroneously capture the 

previous fluorescent signal (n-1) a second time. Alternatively, an extra nucleotide can bind 

to the template strand (n+1) in the case that a cap is defective, causing one of the 

nucleotides to be skipped in the sequence. The former error is referred to as being out of 

phase, and the latter pre-phasing. Both out of phase and pre-phasing are phasing errors that 

can occur during sequencing. With a higher number of cycles (longer read length), phasing 

become more likely due to the cumulative nature of the errors144. Thus, the fluorescent 

signals received become more asynchronous, are less likely to be accurate readings, and 

generate lower quality scores towards the end of an amplicon read.  
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Tools for quality visualization 

Q scores can be visualized with different tools such as DADA2 (from 

Bioconductor), FastQC, and VSEARCH (from QIIME1)146–148. These tools present the 

visuals in different ways, but the overall purpose is the same: to assess the quality of each 

base as a function of the read’s length. Because of phasing, it is important to analyze the 

extent to which quality scores fall with respect to read length. A Q score above 20 is 

commonly recognized as “acceptable”, and a Q score above 28-30 is commonly considered 

a high quality read146,149. In general, the drop is more drastic in reverse reads than in 

forward, as seen in the DADA2 visualizations in Figure 23. It is not uncommon to find 

quality scores below 20 at the end of reads, especially those with longer amplicons and in 

reverse reads. The presence of Q scores as low as 12 (error probability of 6.3%) can be 

observed in DADA2’s heatmap (Figure 24b), further highlighting some of the 

shortcomings of NGS that must be accounted for during data preprocessing.  

VSEARCH statistics 

Programs such as VSEARCH analyze the Q score distributions numerically, which 

provide more insightful and quantitative results of the reads (Tables 1-2). There are a 

variety of simpler statistics, such as the number of bases associated with each Q score (N), 

the percent of bases with a given Q score (Pct), and the percent of bases that have a given 

Q score or higher (AccPct, for accumulated Q score) (Table 4). Through these statistics, 

we can infer that the 4-chambered reactor data being analyzed is very high quality. Over 

96% of bases have a quality score of 32 or higher, which corresponds to a predicted error 

rate of 0.063%. Only 2.00% of all reads are below a quality score of 27 (AccPct), which is 
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considered the lower bound of a high quality read. This finding suggests that the 

overwhelming majority of bases sequenced are of high quality. However, these statistics 

do not provide insight for the quality of the reads with respect to the read length. 

There is also an array of more complex statistical values: the percent of all reads 

with at least length “L” (PctRecs), average Q score in a given range of read lengths (AvgQ), 

probabilistic error rates (P(AvgQ)), average expected error (AvgEE), and the expected 

error growth rate (RatePct), as approximated from the AvgEE between position L and 

position L-1 ( 

 

Table 5). These statistics provide more extensive analysis on quality and sequence 

position. As the length of the read increases, the percent of reads that meet the length 

requirement falls. This is expected because not all reads will be a full 250 bases due to 

phasing or other NGS errors. However, 99.7% of bases are at least 248 bases in length. Of 

the reads that are at least 248 nts in length, the average quality score is a 37.2. Average 

quality scores (AvgQ) are not reliable to gauge the quality of a read because low quality 

reads are easily masked by an abundance of high-quality reads150,151: 

Number of reads x Q score   AvgQ  AvgEE 

(120 reads x Q37.2) + (30 reads x Q2) 30.2  19.0 

150 reads x Q25    25  0.5 

 

AvgEE is calculated as the sum of error probabilities, P152. 
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As shown, a dataset may have a higher average quality score, but the true quality 

of the data is very poor: 19 expected errors per 150 bases. Because of this, it is essential to 

consider other statistics (like the expected error, AvgEE) that better represent the presence 

of error, particularly with respect to the read’s length. A clear decline in quality can be 

observed in  

 

Table 5 through the changes to probabilistic error rates, average expected error 

rates, and the expected error growth rate (P(AvgQ), AvgEE, and RatePct, respectively). 

Fortunately, these changes are insignificant. Even at length of 250 nts, the expected error 

(AvgEE) is 0.27. An AvgEE value of one means that one base is expected to be misreported 

in the entire read. Thus, a value below one means that the most probably number of errors 

is zero. It can be concluded from the dataset that the quality through the end of the read is 

very reliable and does not need quality trimming (Section A.1.3 Quality trimming). 
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Figure 24. Quality score distribution plots generated by the DADA2 visualization tool, 

plotQualityProfile. Quality scores are plotted a function of the read length 

(“cycle”). Input data comes from forward (a) and reverse (b) FASTQ files from an 8-

chambered reactor. Green lines represent the median quality scores for each base position; 

orange lines represent the quartiles. The black heatmaps represent the frequency of the 

(A) 

(B) 
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quality scores per base position. The forward reads are almost entirely contained in the 36-

40 Q score range (a), whereas the reverse reads experience a steeper decline near cycle 

number 150, approaching median quality scores as low as 30. 

 

 

 

 

 

 

Table 4. Simple quality distribution statistics provided by VSEARCH. Input data used for 

this example comes from a 4-chambered reactor system. The highest number of reads “N” 

are associated with the highest Q scores (32-40), making up 96.60% of all reads. “ASCII” 

corresponds to the base-33 conversion character for the Q score “Q”; “Pe” is the 

corresponding probability of error in the read for that given quality score. 

 

 

 

 

 

 

 

ASCII Q Pe N Pct AccPct

I 40 0.010% 20547955 58.50% 58.50%

G 38 0.016% 11938085 34.00% 92.50%

A 32 0.063% 1446491 4.10% 96.60%

< 27 0.200% 476386 1.40% 98.00%

7 22 0.631% 76573 0.20% 98.20%

. 13 5.012% 641178 1.80% 100.00%

# 2 63.096% 137 0.00% 100.00%
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Table 5. Detailed VSEARCH statistical outputs for quality evaluation. Input data used for 

this example comes from a 4-chambered reactor system sequenced using 250 nt amplicon 

NGS. “L” represents the length of the read. As the value of L increases, the subsequent 

quality metrics show increased error probability: average quality score (AvgQ) drops with 

read length; probabilistic error rates, average expected error rates, and the expected error 

growth rate (P(AvgQ), AvgEE, and RatePct, respectively) all increase with read length. 

  

 

L PctRecs AvgQ P(AvgQ) AvgEE RatePct

2 100.0% 36.7 0.00021 0 0.093%

3 100.0% 36.9 0.00020 0 0.083%

4 100.0% 36.8 0.00021 0 0.082%

5 100.0% 37.1 0.00020 0 0.078%

6 100.0% 39.0 0.00013 0 0.074%

7 100.0% 38.6 0.00014 0.01 0.080%

8 100.0% 38.6 0.00014 0.01 0.080%

9 100.0% 38.6 0.00014 0.01 0.080%

10 100.0% 38.9 0.00013 0.01 0.077%

11 100.0% 39.0 0.00013 0.01 0.075%

12 100.0% 39.1 0.00012 0.01 0.073%

240 99.8% 36.7 0.00021 0.25 0.105%

241 99.8% 37.0 0.00020 0.25 0.105%

242 99.8% 36.8 0.00021 0.26 0.106%

243 99.8% 37.0 0.00020 0.26 0.106%

244 99.8% 36.7 0.00022 0.26 0.107%

245 99.8% 36.7 0.00021 0.26 0.107%

246 99.8% 36.6 0.00022 0.27 0.108%

247 99.8% 37.0 0.00020 0.27 0.108%

248 99.7% 37.2 0.00019 0.27 0.108%

249 97.5% 36.1 0.00024 0.27 0.109%

250 65.9% 35.8 0.00026 0.27 0.109%
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A.1.3 Quality trimming  

After reviewing the quality of the reads with the tools described in A.1.2 Quality 

evaluation, reads should be trimmed to remove the lowest quality bases at the end of a read. 

The amount trimmed will depend on the quality of the data, the size of the amplicons, and 

the length of the overlap between the forward and reverse reads. For example, an amplicon 

with 341F and 785R primers will have a sequence 444 nts in length in between the primers 

(shown in black in Figure 25). However, because the primers are also included during 

sequencing (17 and 21 bp in length for the forward and reverse primer, respectively), the 

true coverage is substantially larger: 482 bases. For amplicon sequencing of a coverage of 

482 nts, 2 x 250 base pair (bp) amplicon would be selected for forward and reverse readings 

(as shown by the orange and green arrows, respectively). This yields a theoretical coverage 

of 500 nts, which is an overlap of 18 bases more than is required for full coverage of the 

sequence (shown in blue in Figure 25). Some overlap is needed in order to merge forward 

and reverse reads (discussed in Section A.1.6 Merging), but a large overlap allows for low-

quality bases at the end of the read to be trimmed if needed without detriment to 

downstream steps such as merging. This example provides a moderate overlap where it 

would be acceptable to trim up to 6 bases total. 
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Figure 25. An example diagram of the overlap obtained during amplicon sequencing. When 

using 341F and 785R primers (shown in gray), the total length of the amplicon, including 

the primers, is 482 bps (shown in red). Thus, 250 bp sequencing in each direction (orange 

and green arrows) is utilized to achieve proper coverage of the amplicon. This yields an 18 

bp overlap (shown in blue). Position 563 is the centermost base. 

 

 

 

A.1.4 Filtering reads  

After removing primers and quality trimming reads, short sequences can be 

removed through a processing called filtering. The purpose of this step is to prepare reads 

for merging. By excising reads that are far too short to be merged, the merging algorithm 

can be executed more quickly and with higher accuracy. This can be achieved using 

Cutadapt.  

Minimum and maximum read lengths are proportional to the average length of the 

read, which has likely decreased during primer trimming and quality trimming. The default 

in Cutadapt is 10%, signifying that the lower boundary of accepted reads is 10% below 
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the average length, and the upper bound of accepted reads is 10% above the average length. 

Because it is known that the overwhelming majority of samples are either 249 or 250 bases 

long (97.5% and 65.9% of reads, respectively, as seen in  

 

Table 5), the average length is between 249 and 250. Below is an example for the 

boundary determination of a forward read with a length of 17 bps: 

 

(Read length – primer length) * 10% = proportion value  

(250 𝑏𝑝 − 17 𝑏𝑝) ∗ 10% = 22 𝑏𝑝 

(Equation 3) 

(Average length – primer length) – proportion value = minimum bound 

(250 𝑏𝑝 − 17 𝑏𝑝) − 22𝑏𝑝 = 211 𝑏𝑝 

(Equation 4) 

(Average length – primer length) + proportion value = maximum bound 

(250 𝑏𝑝 − 17 𝑏𝑝) + 22𝑏𝑝 = 252 𝑏𝑝 

(Equation 5) 

 

Thus, the maximum and minimum values to be passed through the Cutadapt 

filter tool are 252 and 211, respectively. This must be repeated for the reverse read, which 

likely has a smaller average length due to more extensive trimming and a different primer 

length. 
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A.1.5 Dereplication  

Dereplication eliminates replicate sequences found in a FASTQ file and notates 

that there is a given abundance of repeats for every given sequence. The purpose of 

dereplication is to simplify data in a way that makes analysis less computationally 

intensive. Data storage is optimized if a single representative sequence is listed 100 copies 

rather than actually storing the same sequence 100 separate times. This step requires a 

100% match between sequences and is relatively straightforward. This step can be 

completed through all of the major software packages such as Bioconductor and QIIME. 

A.1.6 Merging 

Merging marks the final step in quality processing. The tools described in Sections 

3.1 serve to improve the relative quality of the reads by discarding poor quality reads, 

discarding reads of insufficient length, trimming primers, and trimming read length to 

remove poor Q scores. Once these steps are completed with the raw data of the forward 

and reverse reads, they can be merged to form a single-stranded sequence. In fact, many 

pipelines wait to merge forward and reverse sequences until after sequence error analysis 

(“learning errors”) and denoising functions have been called.   

As mentioned in Section A.1.3 Quality trimming, there must be a proper overlap 

between the forward and reverse reads in order to ensure the pairs match accurately. Similar 

to primer trimming (Section A.1.1 Primer trimming), there is an error threshold that 

determines the number of bases that are permitted to mismatch during merging. The default 

error threshold in DADA2 is zero; this means that reads with any base pair mismatches are 

to be excised from the dataset for further analysis. This parameter is intentionally strict in 
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order to prevent mispairing between two unrelated reads, which can drastically alter 

downstream results such as taxonomic identifications. This default can be changed to allow 

for errors. If this option is selected, the merging tool will evaluate the mismatched bases 

and choose the correct base in the merged sequence based off of the quality score between 

the two bases.  

Additionally, there is a length parameter that defines the minimum overlap required 

in order to match forward and reverse reads. The default value in DADA2 is a 12 bp 

overlap; the default value in the QIIME1 pipeline is 10 bp. 

Quality evaluation after merging 

Quality statistics can be generated following the merging step in order to determine 

average lengths and changes to quality. The outputs of these statistics are identical to those 

described in Section A.1.2 Quality evaluation. 

A.2 Learning errors 

Sequence error estimation is an algorithm apart of DADA2 used to predict errors 

introduced during PCR amplification and sequencing147. These errors vary drastically 

depending on the dataset. As a result, the developers of DADA2 designed a machine-

learning algorithm that learns the errors from the data directly by alternating the estimation 

of error rates and inference of sample composition (discussed in Section A.3.1 Clustering). 

This learning process continues until a consistent solution is achieved147,152. This algorithm 

uses a parametric model to predict these errors, as shown in Figure 26. Estimating error 

parameters from an individual’s set of data results in sample inference results that are more 

sensitive and specific than any other clustering algorithm147. 
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Error rate estimation is executed with the learnErrors function in DADA2. 

The only inputs for this function are the output files from quality preprocessing discussed 

in Section A.1 Data preprocessing. There are no parameters that need to be specified with 

this function. 

 

 

 

 

Figure 26. A visualization of estimated error rates as determined by the learnErrors 

function in DADA2. Points in black represent the observed error rates for each consensus 

quality score. The black line represents the estimated parametric model of the error rates 

as was determined by the machine-learning algorithm. The red line represents the expected 
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relationship between error rate and Q score for comparison between the expected error rate 

(red) and learned error rate (black)147. 

 

 

 

 

A.3: Sample inference: Denoising or clustering 

A.3.1 Clustering 

Leading up to sample inference, samples have been passed through many different 

tools and functions to reduce the probability of errors. However, Illumina-based NGS is 

not perfect, and assigning taxonomies to dereplicated sequences can cause sequencing 

errors to be erroneously interpreted as genomic variation147. In order to correct for this, 

clusters of similar sequences are grouped together in operational taxonomic units (OTUs). 

The threshold requirement of similarity is typically set to 97%. This grouping step is called 

clustering, and it is one way to execute sample inference. 

The limitation of OTU clustering is its low resolution. In attempt to correct for 

sequence errors, clustering algorithms fail to take advantage of the fine-scale variations 

that can be detected by Illumina NGS147. These variations can provide insightful 

information on population structure. These higher resolution variations are compromised 

by conventional OTU clustering algorithms such as uclust (used in QIIME1), UPARSE, 

Mothur, and MED (minimum entropy decomposition).  

A.3.2 DADA: A new tool for sample inference 

DADA2 is an open-source R package that contains tools for filtering, trimming, 

dereplication, merging, assigning taxonomy, identifying chimeras, producing 
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visualizations, and more. Arguably, the most influential tool in the DADA2 package is the 

divisive amplicon denoising algorithm (DADA). The DADA algorithm is designed to infer 

composition differently than traditional clustering algorithms. Samples are analyzed by 

dividing amplicon reads into small segments that match the learned error rates obtained 

from the learnErrors function. Instead of a clustering method that generates OTUs, 

the DADA algorithm uses a denoising method which generates ASVs (actual sequence 

variants). 

The division of amplicon reads into small segments is not a new method of sample 

inference. MED utilizes this method as well, and as a result, this algorithm is able to 

identify fine-scale variations153. MED and DADA2 were found to have comparable ability 

to identify fine-scale variation, but DADA2 generated a lower number of false positives147. 

This is significant because prior to the development of DADA2, MED was considered the 

algorithm with the lowest false positive rate of all published sample inference 

algorithms153. 

Additionally, when the DADA algorithm was tested on vaginal microbiome 

samples (n = 142 women), six separate and novel variants of Lactobacillus crispatus were 

identified. Vaginal microbiome samples selected for evaluation due to the relatively low 

level of microbial diversity compared to other body habitats154. Prior to this analysis, there 

had only been one predominant Lactobacillus OTU identified through metagenomic 

analysis155. This finding suggests that the DADA algorithm is more sensitive than other 

available clustering algorithms.  
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When compared to the UPARSE algorithm, DADA2 identified an equal or larger 

amount of reference strains in a mock dataset. DADA2 also outperformed UPARSE in 

specificity as observed by the number of false sequences identified by UPARSE compared 

to DADA2147.  

Perhaps the largest competitor of the DADA2 package is the software pipeline 

QIIME (quantitative insights into microbial ecology). Prior to the release of its second 

version, the QIIME1 platform used uclust as the default tool for OTU clustering156,157. 

When uclust and DADA2 were both tested on mock datasets, DADA2 was more 

specific and sensitive than QIIME, and QIIME was found to have a significantly higher 

propensity for identifying erroneous sequences147. Recent literature on QIIME2 detail the 

addition of new plugins that increase the options available for sample inference158. QIIME2 

now includes improved clustering methods such as q2-vsearch and q2-dbotu, both 

of which are more accurate than their uclust predecessor159.  Interestingly, plugins now 

exist for denoising methods such as DADA2 and Deblur. 

A.3.3 Additional denoising packages 

Comparative studies with DADA2 such as those described above typically compare 

the efficacy of OTU clustering methods with the one denoising algorithm, DADA. 

However, other denoising packages exist, such as Deblur and UNOISE3. The denoise 

method of sample inference is apparently superior to traditional clustering methods, but it 

is also important to compare the accuracy of different denoising methods against one 

another. A comparative study on DADA2, Deblur, and UNOISE3 concluded that DADA2 

found the most ASVs of all three denoising methods when tested on mock datasets as well 
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as an array of real microbiome datasets160. It was suggested that this high resolution may 

lend DADA2 more vulnerable to false positive results. However, this was not reflected in 

the results obtained by the study and has yet to be demonstrated in the literature. 

Additionally, all three pipelines generated similar microbial community profiles.  

At this time, DADA2 appears to be the best bioinformatics tool for sample 

inference due to its unmatched specificity and sensitivity in identifying sequence variants. 

A.4 Removing chimeras 

Chimeras are sequences that contain components from two different sequences. 

Incomplete amplification during PCR occurs occasionally and creates sequence fragments 

that act erroneously as primers for the next cycle of extension, leading to integration of two 

different templates during the annealing step. 

The DADA algorithm is able to identify substitution, insertion, and deletion errors, 

but it is incapable of removing chimeras. Thus, the removal of chimeras is completed with 

a separate step. Algorithms such as removeBimeraDenovo identify chimeric sequences 

by attempting to reconstruct singular sequences from different segments of parent 

sequences. If they match, then they are excised from the dataset147. “De novo” methods 

signify that the algorithm does not reference an external database to find chimeras. 

“Closed” methods of chimera identification that use a database (such as ChimeraSlayer 

Gold161) also exist, but these are not consistently reliable since the process by which 

chimeras are generated is random.  
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An additional benefit of using denoising methods is that ASVs improve the 

accuracy by which algorithms can identify and remove chimeras from reads in comparison 

to OTUs generated from clustering methods.  

A.5 rDNA gene databases 

Reads have now been fully processed and are ready to be run against a database to 

be assigned taxonomies. Commonly used taxonomic classification 16S databases include 

SILVA, GreenGenes, and RDP (Ribosomal Database Project). Literature comparing the 

different databases is sparse and largely inconclusive162.  

The SILVA and RDP databases are both regularly updated to continually add 

additional taxonomies. The GreenGenes database, on the other hand, has not been updated 

since 2013163. The SILVA database is larger than RDP, which is advantageous from the 

perspective of increasing variety, but it does increase run time162. Additionally, SILVA 

sequences are quality checked, which ensures accuracy of the results obtained from 

taxonomic matches164. Recent publications tend to prefer SILVA over GreenGenes when 

choosing a 16S database. 

A new paper published in 2020 details a reference database designed specifically 

for AS and influent wastewater microbiomes, called MiDAS (Microbial Database for 

AS)72. The taxonomy is based on results from 21 Danish WWTPs. It attempts to improve 

the taxonomic resolution for WWTP microbial communities which are lacking from 16S 

databases such as SILVA or GreenGenes, which only provide classifications to the genus 

level. It is argued that the diversity of wastewater microbial communities is integral to 

predicting physiological differences between microbes. Because of this, higher resolution 
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is needed to differentiate microbial members of the same genus. There is little comparative 

research conducted on this database due to the niche microbiome that it applies to. 

Additionally, the taxonomies have been trained exclusively on Danish municipal WWTPs. 

Hence, it is uncertain how applicable the results would be applied to pilot wastewater 

studies, or even municipal WWTPs in different countries that have different parameters for 

treatment.  
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APPENDIX B 

The purpose of this appendix is to provide the reader with the code written in R 

employing the Bioconductor package, DADA2, as mentioned in Section 4.3. It also serves 

to explain the utilization of the AWS EC2 framework and RStudio AMI. 

Launching the AWS EC2 Machine 

 The virtual machine created through the AWS EC2 server was instance type 

c5.4xlarge, which is a 16-core machine165 

. When creating the virtual machine, the RStudio AMI was specified as provided by Louis 

Aslett166. The region was set to N. Virginia and then launched. The IPv4 public IP address 

generated then served as the web address used to access the remote RStudio. The requested 

username was provided by the AMI, and the password is the instance identification number 

as provided through AWS. 

 Next, FileZilla was used in order to connect local files and remote storage. Under 

Site Manager, the IPv4 public IP address was pasted to fulfill the host address. Then, 

any desired files stored locally can be transferred to the virtual machine storage for use in 

RStudio. 

R Script 

This script assumes previous installation of BiocManager and DADA2 packages. 

library(BiocManager) 

library(dada2) 

 

# Organize files into R1 and R2 folders (Rstudio terminal) 

mv /home/rstudio/primer_trimmed/*_R1_001_* /home/rstudio/primer_trimmed/R1 

mv /home/rstudio/primer_trimmed/*_R2_001_* /home/rstudio/primer_trimmed/R2 
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# Tie all forward and reverse fastq files together. 

pathF <- "/home/rstudio/primer_trimmed/R1" 

pathR <- "/home/rstudio/primer_trimmed/R2" 

filtpathF <- file.path(pathF, "filteredforward") 

filtpathR <- file.path(pathR, "filteredreverse") 

fastqFs <- sort(list.files(pathF, pattern="fastq.gz")) 

fastqRs <- sort(list.files(pathR, pattern="fastq.gz")) 

 

# Ensure that the number of R1 files equals R2 files. 

if(length(fastqFs) != length(fastqRs)) stop("Forward and reverse files do 

not match.") 

 

# Filter reads for low quality and N nts  

filterAndTrim(fwd=file.path(pathF, fastqFs), filt=file.path(filtpathF, fas

tqFs), rev=file.path(pathR, fastqRs), filt.rev=file.path(filtpathR, fastqR

s), compress=TRUE, verbose=TRUE, multithread=TRUE) 

 

# Change file paths of filtpathF and filtpathR. 

filtpathF <- "/home/rstudio/primer_trimmed/R1/filteredforward" 

filtpathR <- "/home/rstudio/primer_trimmed/R2/filteredreverse" 

 

# Ensure that filtered sample names in the filtered sequences are paired. 

filtFs <- list.files(filtpathF, pattern="fastq.gz", full.names = TRUE) 

filtRs <- list.files(filtpathR, pattern="fastq.gz", full.names = TRUE) 

sample.names <- sapply(strsplit(basename(filtFs), "_R1"), `[`, 1) 

sample.namesR <- sapply(strsplit(basename(filtRs), "_R2"), `[`, 1) 

if(!identical(sample.names, sample.namesR)) stop("Forward and reverse file

s do not match.") 

 

# Call "learnErrors" function. 

names(filtFs) <- sample.names 

names(filtRs) <- sample.names 

set.seed(100) 

errF <- learnErrors(filtFs, nbases = 1e8, multithread = TRUE) 

errR <- learnErrors(filtRs, nbases = 1e8, multithread = TRUE) 

 

# Perform dereplication and denoising on "err" objects. Use sam 

to feed the output of the "derepFastq" function into the "dada" function. 

mergers <- vector("list", length(sample.names)) 

names(mergers) <- sample.names 

for(sam in sample.names) { 
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    cat("Processing:", sam, "\n") 

    derepF <- derepFastq(filtFs[[sam]]) 

    ddF <- dada(derepF, err = errF, multithread = TRUE) 

    derepR <- derepFastq(filtRs[[sam]]) 

    ddR <- dada(derepR, err = errR, multithread = TRUE) 

} 

 

# Merge "dd" and "derep" objects. Forward and reverse reads are separated. 

merger <- mergePairs(ddF, derepF, ddR, derepR) 

mergers[[sam]] <- merger 

 

# Generate sequence table using “merger” object. Save R and locally.  

seqtab_4and6chamber <- makeSequenceTable(mergers) 

saveRDS(seqtab_4and6chamber, "home/rstudio/seqtab_4and6chamber.rds") 

 

# Merge sequence tables from additional batches, if needed: 

    # First upload any additional sequence tables to the console.  

    seqtab_4and6chamber <- readRDS("home/rstudio/seqtab_4and6chamber.rds") 

    seqtab_8chamber <- readRDS("home/rstudio/seqtab_8chamber.rds") 

 

    # Merge the sequence tables from all batches. Save to R and locally.   

    seqtab_468sequences <- mergeSequenceTables(seqtab_4and6chamber,  

    seqtab_8chamber) 

    saveRDS(seqtab_468sequences, "home/rstudio/seqtab_468sequences.rds") 

 

# Once all sequence tables are loaded, remove chimeras.  

seqtab_468sequences_nochim <- removeBimeraDenovo(seqtab_468sequences, meth

od="consensus", multithread=TRUE) 

 

# The “_nochim” object is a sequence table used by downstream packages. Save 

to R and locally. 

saveRDS(seqtab_468sequences_nochim, "home/rstudio/seqtab_468sequences_noch

im_FINAL.rds") 

 

# Assign taxonomy and save the output (to R and locally via FileZilla). 

taxa_seqtab_468sequences <- assignTaxonomy(seqtab_468sequences_nochim, "ho

me/rstudio/silva_nr_v138_train_set.fa") 

saveRDS(taxa_seqtab_468sequences, "home/rstudio/taxa_seqtab_468sequences.r

ds") 
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APPENDIX C 

The purpose of this appendix is to provide the reader with the Python scripts used 

for the PICRUSt2 software as described in Section 3.4 Predictive functional analysis. 

There are two input files needed to run the PICRUSt2 pipeline. The first is a 

FASTA file with ASV identification numbers and their corresponding sequences. The 

second is the tab-delimited ASV sequence table with sample names as column headers and 

the ASV identification number as row headers. A tab must be present as the first character 

in this text file. The ASV identification numbers must match exactly in both the FASTA 

file and the sequence table. The PICRUSt2 pipeline can be executed locally or using an 

AWS virtual machine. If it is used locally, it requires 16 gigabytes of RAM. 
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Python Script 

This script assumes previous installation of PICRUSt2, which was completed using 

a conda environment in Ubuntu. The FASTA file of ASVs (ASVs4and6.fa) fulfills 

the -s flag, and the ASV sequence table (ASVs_seqtable4and6.tsv) fulfills the -

i flag. The --stratified flag must be specified in order to generate stratified tables. The 

desired output file directory is established using the -o flag. 

conda activate picrust2 

     

# Import the FASTA file of ASVs.  

cp /mnt/c/Users/Ali/Documents/research/ASVs4and6.fa . 

     

# Import the ASV sequence table. 

cp /mnt/c/Users/Ali/Documents/research/ASVs_seqtable4and6.tsv . 

 

# Execute the PICRUSt2 pipeline (with stratified outputs. 

picrust2_pipeline.py -s ASVs4and6.fa -i ASVs_seqtable4and6.tsv -

o picrust2_out_pipeline_with_stratified -p 1 --stratified --verbose 

 

# Convert the stratified EC and KO files into "legacy" format that can be 

read by programs like BURRITO. 

convert_table.py picrust2_out_pipeline_with_stratified/KO_metagenome_out/p

red_metagenome_contrib.tsv.gz -c contrib_to_legacy -

o picrust2_out_pipeline_with_stratified/KO_metagenome_out/pred_metagenome_

contrib.legacy.tsv.gz 
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APPENDIX D 

The purpose of this appendix is to provide the reader with the R script used to 

generate statistically significant groups with ALDEx2. 

library(ALDEx2) 

 

phyla8cham <- data.frame(fread("C:\\Users\\Ali\\Documents\\research\\phylu

m_percabund_8chamber.txt", sep = "\t"), row.names = 1) 

 

# Differentiate the two sample sets to compare within the phyla8cham  

object by assigning the number of columns to each. 

conds <- c(rep("chamb8",8), rep("AS",2)) 

 

# Execute the ALDEx function. 

x.all <- aldex(phyla8cham, conds, mc.samples = 32, test="t", effect=TRUE, 

include.sample.summary = FALSE,denom = "all",verbose = TRUE) 

 

# Plot the results of ALDEx (x.all object). 

par(mfrow=c(1,2)) 

aldex.plot(x.all, type="MA", test="welch", xlab="Log-

ratio abundance", ylab = "Difference") 

aldex.plot(x.all, type="MW", test="welch", xlab="Dispersion", ylab = "Diff

erence") 

 

# Display the rows that are significant (P < 0.05) either by the Welchs or

 Wilcoxon method. 

found.by.one <- which(x.all$we.eBH < 0.05 | x.all$wi.eBH < 0.05) 

 

# Display the rows that are significant by both Welchs and Wilcoxon  

methods. 

found.by.one <- which(x.all$we.eBH < 0.05 & x.all$wi.eBH < 0.05) 

 

# Save the statistical outputs of the ALDEx function. 

write.table(x.all, "C:\\Users\\Ali\\Documents\\research\\phylum_8AS_aldex_

output.tsv", sep = '\t', quote = FALSE, row.names = FALSE) 

 

 



110 

 

APPENDIX E 

The purpose of this appendix is to provide the reader with the scripts used for the 

various visuals provided in this document. These include scripts for generating matrices 

for ordinance plots, generating PCoA plots, and heatmaps. 

Ordinance Plots 

Below is the Python script used to generate merged count tables at each taxonomic 

level from ASV count tables and corresponding taxonomic files. The purpose of this code 

is to find the sum of sums of all taxonomic classifiers across all levels per samples. The 

summed counts (output_df) are then imported into Excel to generate ordinance plots. 

import argparse  

import pandas  

 

TAXONOMIC_LEVELS = ['Kingdom', 'Phylum', 'Class', 'Order', 'Family', 'Genu

s'] 

 

def main(): 

    parser = argparse.ArgumentParser() 

 

    # Parse some arguments. 

    parser.add_argument("-i", "--

input", type = str, help = "Input file containing taxonomies and columns  

to be summed.", dest = "input_file", default = "HC_abundance_v2.csv") 

    parser.add_argument("-t", "--taxonomic-

level", type = str, help = "The taxonomic level of interest. For all,  

specify 'ALL'.", dest = "taxonomic_level", default = "ALL") 

    parser.add_argument("-d", "--

delimiter", type = str, help = "The delimiter of the input file. Defaults 

to comma. For tab, write 'tab'.", dest = "delimiter", default = ',') 

    parser.add_argument("-o", "--

output", type = str, help = "The base filename of the output files.  

Defaults to '_counts'.", dest = "output_file", default = "_counts") 
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    args = parser.parse_args() 

     

    sep = args.delimiter 

 

    if sep == 'tab': 

        sep = '\t' 

 

    print("Input File: %s\nTaxonomic Level: %s\nDelimiter: \"%s\"" % (args

.input_file, args.taxonomic_level, args.delimiter)) 

 

    df = pandas.read_csv(args.input_file, delimiter = sep) 

 

    if args.taxonomic_level == 'ALL' or args.taxonomic_level == 'all': 

        for level in TAXONOMIC_LEVELS: 

            print("Computing sums for taxonomic level: \"%s\"" % level) 

            compute_sum(df, level, args.output_file, args.delimiter) 

            print("... Done!\n") 

    else: 

        print("Computing sums for taxonomic level: \"%s\"" % args.taxonomi

c_level) 

        compute_sum(df, args.taxonomic_level, args.output_file, args.delim

iter) 

        print("... Done!\n") 

 

def compute_sum(df, taxonomic_level, output_base, delimiter): 

    """ 

    Compute the sum for the given taxonomic level. 

 

    Arguments: 

        df: The dataframe. 

 

        taxonomic_level: The taxonomic level for which the sum(s) will be 

computed. 

    """ 

    # Get the unique values for the kingdom/phylum/class/order/family/ 

genus column. 

    classifiers = df[taxonomic_level].unique() 

 

    # Create a copy of the master list of taxonomic levels. 

    drop_labels = TAXONOMIC_LEVELS.copy() 

 

    # Remove the level we're interested in from this list, as we're going  



112 

 

to drop all of the columns in this list. 

    drop_labels.remove(taxonomic_level) 

    print("Drop labels: " + str(drop_labels)) 

 

     # Drop columns for taxonomic levels that we are not interested in.  

Also drop the ASV ID column, which is the first column. 

    df2 = df.drop(df.columns[0], axis = 'columns') 

    df2 = df2.drop(drop_labels, axis = 'columns') 

 

    # The columns are what we'll be computing the sums for. 

    columns = None 

 

    # Collect data that we'll use to create a dataframe. 

    data = [] 

 

    # For each of the unique values in the phylum/class/etc. column... 

    for classifier in classifiers: 

        sums = [] 

 

        # Select only the rows from the dataframe corresponding to the  

    current classifier. 

        df3 = df2.loc[df2[taxonomic_level] == classifier] 

         

        # We only need to populate the columns list once. 

        if columns is None: 

            columns = df3.columns[1:] # Ignore the taxonomic level column. 

         

        # Compute the sum for each column. 

        for column in columns: 

            sums.append(df3[column].sum()) 

 

        # Compute the sum of sums (i.e., the total for this classifier).  

    We have a 'TOTAL' column at the very end. 

        sums.append(sum(sums)) 

 

        # Store the data. 

        data.append([classifier] + sums) 

     

    output_file = taxonomic_level + output_base + ".csv" 

    print("Writing results to file \"%s\" now..." % output_file) 

 

    # Create dataframe from the data, then call to_csv to save it. 
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    output_df = pandas.DataFrame(data, columns = [taxonomic_level] +  

    columns.values.tolist() + ["TOTAL"]) 

    output_df.to_csv(path_or_buf = output_file, sep = delimiter) 

 

if __name__ == "__main__": 

    main() 
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Principal coordinate analysis 

Below is the R script used to generate the PCoA plot from sequence variants in a 

sequence table. 

library(MicrobiotaProcess) 

 

# Import count table. 

seqtab_468sequences_nochim <- data.frame(fread("C:\\Users\\Ali\\Documents\

\research\\seqtab_468sequences_nochim_FINAL.rds", sep = "\t"), row.names =

 1) 

 

# Import sample data table (simple table of 2*n dimensions where  

n=samples, as row headers; second column represents feast/famine ratios). 

sampleda <- data.frame(fread("C:\\Users\\Ali\\Documents\\research\\sampled

afinal.txt", sep = "\t"), row.names = 1) 

 

# Create ps_dada2 object. 

ps_dada2 <- import_dada2(seqtab=seqtab, sampleda=sampleda) 

 

# Create PCoA plot. 

pcoares <- get_pcoa(obj=ps_dada2, distmethod="euclidean", method="hellinge

r") 

pcoaplot <- ggordpoint(obj=pcoares, biplot=TRUE, speciesannot=TRUE, 

                       factorNames=c("Feast/famine"), ellipse=TRUE) 
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Heatmaps 

Below is the R script used to generate heatmaps, both for taxonomic visualization 

as well as predictive functional visualizations. 

library(gplots) 

require(data.table) 

 

# Import desired file (i.e., taxonomy count table at the phylum level). 

phyla8cham <- data.frame(fread("C:\\Users\\Ali\\Documents\\research\\phylu

m8AS_significant_taxa_aldex.txt", sep = "\t"), row.names = 1) 

 

# Scale the samples so that the dendrogram is not squished; requires  

transposition function because cols are transformed by default. 

z <- t(scale(t(phyla8cham))) 

 

# Set custom distance and clustering functions for the dendrogram. 

hclustfunc <- function(x) hclust(x, method="complete") 

distfunc <- function(x) dist(x,method="maximum") 

fit <- hclustfunc(distfunc(z)) 

clusters <- cutree(fit, 5)  

 

# Plot the heatmap: without a column dendrogram, using the green/red palette 

from gplots, and with smaller row text size. 

heatmap(z, Colv = NA, col=greenred(256),cexRow = 0.8) 

 

# Make the color key and histogram. 

heatmap.2(z, col=greenred(256)) 
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