


 

 
 
 
 

Development for Housing Analytics-HomeRun 

A Thesis submitted in partial fulfillment of the requirements for the degree of Master of 
Science at George Mason University 

by 

Saurabh Deshpande 
Bachelor of Science 

University of Pune, 2016 
 

Director: Houman Homayoun, Professor 
Electrical and Computer Engineering Department 

Spring Semester 2018 
George Mason University 

Fairfax, VA 



ii 
 

 
Copyright 2018 Saurabh Deshpande 

All Rights Reserved 



iii 
 

 
 
 
 

DEDICATION 

This work is dedicated to my parents. 



iv 
 

 
 
 
 

ACKNOWLEDGEMENTS 

This thesis could not have been a success without the constant support and guidance of 
my thesis advisors, Dr. Setareh Rafatirad and Dr. Houman Homayoun. I worked with Dr. 
Rafatirad continuously dealing with various use case scenarios and strategies to deal with 
real problems that came during this thesis work. She was constantly encouraging me and 
provided me her valuable time to discuss the content and design of this HomeRun 
Application for Android. She was always there when I needed support in UI design and 
provided resources that helped me to build user-friendly UI. Dr. Homayoun offered me 
continuous encouragement and guidance. He helped me manage all the modules and 
guided me for the integration of these modules. He has also helped me in a lot of other 
academic programs as well. Finally, thanks go out to the Fenwick Library for providing a 
clean, quiet, and well-equipped repository in which to work. 

 



v 
 

 
 
 
 

TABLE OF CONTENTS 

Page 
List of Tables .................................................................................................................... vii  

List of Figures .................................................................................................................. viii 

List of Abbreviations ......................................................................................................... ix  

Abstract ............................................................................................................................... x 

Introduction ......................................................................................................................... 1  

Need for HomeRun on Android Platform ....................................................................... 2  

Related Work................................................................................................................... 5  

Zillow........................................................................................................................... 5 

Trulia ........................................................................................................................... 7 

Other ............................................................................................................................ 7 

Android Environment Setup ............................................................................................... 8  

Design specification .......................................................................................................... 12 

Design Pattern Architecture .......................................................................................... 12 

MVP model for HomeRun ........................................................................................ 14 

Component Overview ................................................................................................... 15 

Database ..................................................................................................................... 17  

SQL Database: .................................................................................................. 17 

MongoDB: ........................................................................................................ 17 

Interactive Visualization Tools .................................................................................. 18  

ListView:  According to the android developer guide: ..................................... 18 

Google Maps: .................................................................................................... 18 

HeatMaps: ......................................................................................................... 19 

Spider Graph: .................................................................................................... 19 

Data Exploration ........................................................................................................ 19  

Predictive Model........................................................................................................ 20 

Features ......................................................................................................................... 20 



vi 
 

Implementation ................................................................................................................. 21  

Application Workflow................................................................................................... 21 

Implementation Details ................................................................................................. 22 

First Screen Search .................................................................................................... 22 

Logic For AutoCompletion ................................................................................... 25 

ListView with custom Adapter .................................................................................. 27 

ListView and ArrayAdapter .................................................................................. 28 

Querying onto database......................................................................................... 29 

Custom ArrayAdapters ......................................................................................... 30 

Pagination .................................................................................................................. 31 

Google Maps.............................................................................................................. 34 

Markers ................................................................................................................. 35 

Nearby Hospitals, Restaurants, and Schools......................................................... 37 

HeatMaps .............................................................................................................. 39 

Contextual Action Bar (CAB) ................................................................................... 41 

onItemChangeStateChanged ................................................................................. 43 

onCreateActionMode ............................................................................................ 43 

onPrepareActinMode ............................................................................................ 43 

onActionItemClicked ............................................................................................ 43 

onDestroyActionMode .......................................................................................... 44 

Filter........................................................................................................................... 44 

Querying onto database......................................................................................... 46 

Spider Graph .............................................................................................................. 46 

Mortgage Calculator .................................................................................................. 48 

Future work ....................................................................................................................... 50  

Conclusion ........................................................................................................................ 52  

Appendix ........................................................................................................................... 53  

References ......................................................................................................................... 54  

 



vii 
 

 
 
 
 

LIST OF TABLES 

Table Page 
Table 1: Worldwide Smartphone Sales to End Users by Operating System in 2017 
(Thousands of Units)........................................................................................................... 4 

 



viii 
 

 
 
 
 

LIST OF FIGURES 

Figure Page 
Figure 1:  Operating System Market Share Worldwide from Mar 2017 – Mar 2018[3] .... 3 
Figure 2: Java Version ........................................................................................................ 8 
Figure 3: Android Studio .................................................................................................... 9 
Figure 4: Android Studio with HomeRun Application ..................................................... 10 
Figure 5: Emulator (Pixel XL API 27) ............................................................................. 11 
Figure 6: MVC vs MVP .................................................................................................... 13  
Figure 7: Model View Presenter ....................................................................................... 14 
Figure 8: Model View ....................................................................................................... 16 
Figure 9: Application WorkFlow Diagram ....................................................................... 21 
Figure 10: AutoComplete Suggestions for state city and zipcode .................................... 24 
Figure 11: JSON object from gomashup URL ................................................................. 25 
Figure 12: Code Snippet-Use of Pattern and Matcher ...................................................... 26 
Figure 13: Memory Monitor (Linear Layout vs. ListView with ArrayAdapter)[12] ....... 28 
Figure 14: Custom Adapter Blueprint............................................................................... 31 
Figure 15: Pagination ........................................................................................................ 32 
Figure 16: Pagination Implementation-Thread ................................................................. 33 
Figure 17: Pagination Implementation-Handler ............................................................... 34 
Figure 18: Code Snippet for Google Maps API key ......................................................... 35 
Figure 19: Code Snippet for adding a marker ................................................................... 37 
Figure 20: Nearby Schools, Hospitals, and Restaurants ................................................... 38 
Figure 21: HeatMaps......................................................................................................... 40 
Figure 22: Contextual Action Bar ..................................................................................... 42 
Figure 23: Filter ................................................................................................................ 45  
Figure 24:  Spider Graph................................................................................................... 47 
Figure 25: Mortgage Calculator ........................................................................................ 49 

  

 



ix 
 

 
 
 
 

LIST OF ABBREVIATIONS  

Operating Systems ........................................................................................................... OS 
Application Programming Interface ............................................................................... API 
Original Equipment Manufacturer ................................................................................ OEM 
Android Runtime ...........................................................................................................ART 
Just In Time...................................................................................................................... JIT 
Ahead Of Time ............................................................................................................. AOT 
User Interface .................................................................................................................... UI 
Uniform Resource Locator ............................................................................................URL 
Java SE Development Kit .............................................................................................. JDK 
Software Development Kit ............................................................................................SDK 
Structured Query Language ........................................................................................... SQL 
Return On Investment ..................................................................................................... ROI 
JavaScript Object Notation .......................................................................................... JSON 
Extensible Markup Language ....................................................................................... XML 
Contextual Action Bar .................................................................................................. CAB 
 
 
 



x 
 

 
 
 
 

ABSTRACT 

DEVELOPMENT FOR HOUSING ANALYTICS-HOMERUN 

Saurabh Deshpande, M.S. 

George Mason University, 2018 

Thesis Director: Dr. Houman Homayoun 

Co-Advisor: Dr. Setareh Rafatirad 

 

Real estate is a huge domain, and people think of selling, renting and purchasing 

the property which includes huge investments. The most important part comes while 

dealing with the property is “Searching”. There are millions of homes spread across US 

states and more and more people are hunting for properties, which suit their needs and 

pockets. Searching for a property has become easier because of the Internet Revolution. 

People have started listing the properties online. Now, as smartphones have gained huge 

popularity as they are handy and has access to the Internet on the go. There is an incredible 

growth in the operating systems that support mobile devices. Android OS and IOS are the 

leading operating systems that have millions of applications for their users. More than 75% 

of the mobile devices support Android. [1] 

 Although these smartphones can be used to browse the web for searching 

the property, again one has to go do the tedious job of searching the property. Even if, one 

finds an interesting property listed they have to go to multiple websites to get all the 



xi 
 

information about that property and there is much more you do while considering your next 

home. Example, Google Maps for the location and navigation, different state websites 

listing corresponding state properties, list down all the details of the properties, locality 

inspection. 

To ease this process, an Android application ‘HomeRun’ which is a one-stop 

destination that provides users with all the necessary features integrated. One can search a 

property based on the location, which may include for a specific state, city or zip code. 

Users can also use detailed search option where they can feed in the desired number of 

bedrooms, price, area etc. and get a list of matching properties. Users can compare two or 

more properties using the feature of spider graph and also look for zones with residential 

areas with heat maps. Apart from all these features, the user has been provided with the 

ability to get directions to that property. [1] 

The application is developed in native Android development environment using 

JAVA. 

 

 



1 
 

INTRODUCTION 

Major OEMS in the world are using Android as the operating systems for their 

phones, wearable’s and other devices. Almost of 190 countries around the world have 

major market share captured by Android. It is exponentially growing and million and 

millions of users are using the Android phones and applications developed for this 

platform. 

Every application has a purpose and so does this application “HomeRun for 

Android Phones” too has a purpose. This helps people to search for nearby properties to 

their interests. Starting the application users can feed in the required parameters and then 

this application will search the properties accordingly and will display the result. There are 

millions of homes across US states. Real estate property listing is a need nowadays. To 

cope up with this need, we are developing an android application. Which provides 

affordable home buying opportunities to the user across US states. Users can browse US 

homes for purchase/rent by comparing their details. [1] 

The development of such application requires a lot of planning, considerations and 

tuning in the following areas: [1] 

1. Designing and prototyping the User Interface of different modules. 

2. Granting the application with necessary permissions. 

3. Database Integration. 



2 
 

4. Implementing the search functionality using query URLs. 

5. Populating the results and linking the listed houses with Google Maps. 

6. Implementing the filter option. 

7. Providing with all Google Maps features like navigation, estimated time etc. 

8. Implementing features like heat maps, show on map-nearby hospitals, schools, 

and restaurants. 

9. Displaying the spider graph for comparison. 

10. ROI Calculator 

 

This research is oriented in creating an android application which deals with huge database 

and the application is developed with intensive research on data integration and methods 

to display information in various formats. The application is developed considering the 

principles and patterns of mobile interface design.[2] 

 

Need for HomeRun on Android Platform 

Handy devices have been around us for last 3 decades. The first popular operating 

system was the Symbian which dominated the market till 2007 until iPhone was launched 

with their own iOS. Android OS backed by Google Inc was launched which is an open 

source platform in 2008. 

Android is constantly growing, and many cell phones manufacturing companies 

have accepted Android as their prime OS for the devices they produce. These devices range 

from all sizes- smartphones, tablets to TVs. Considering this growth, all the applications 



3 
 

existed for the previous OS like Symbian and iOS are developed for Android platform. 

Now, Android is the leading OS for which most of the applications are built for.  

April 2017 report from StatCounter states that android has overtaken the big giant in mobile 

operating system platform Microsoft considering the internet usage and popularity.[3] Now 

android has over 3 billion monthly active users growing up from 2 billion in May 

2017.[2][3] 

 

 

 

 

Figure 1:  Operating System Market Share Worldwide from Mar 2017 – Mar 2018[3] 
 
 
 



4 
 

 
 

According to the Gartner reports, worldwide Q2 smartphones sales were dominated 

by Android Smartphones devices (see Table 1). Android leads the sales game with 84.8% 

of the total sales compared to 14.4% of Apple iPhone devices.[2][4] 

 

 

 

Table 1: Worldwide Smartphone Sales to End Users by Operating System in 2017 (Thousands of Units)[4] 
 
Operating System 2017

Units

2017 Market 
Share (%)

2016

Units

2016 Market 
Share (%)

Android 1,320,118.1 85.9 1,268,562.7 84.8

iOS 214,924.4 14.0 216,064.0 14.4

Other OS 1,493.0 0.1 11,332.2 0.8

Total 1,536,535.5 100.0 1,495,959.0 100.0

Source: Gartner (February 2018) 

 

 

 

 

 

 

 

 



5 
 

Related Work 

With the increase in demand for properties for sale and purchase, as discussed 

above a lot of platforms have been developed using the web and mobile technologies. Few 

of the established platforms in the real estate domains are Zillow, Trulia, and Realtor.com. 

The following describes how HomeRun stands against its competitors and how uniquely 

is it trying to provide a one stop application for property search. 

 

Zillow 

Zillow is an online real estate database company which happens to have an 

android/ios application. Although the Zillow Android application has very unique and 

useful features there are some differences which make HomeRun stand out. 

The first screen of the Zillow application displays map and the dots on the map 

represents properties near your current location. No filters are applied and all the houses 

are displayed on a map. The user has to toggle between the list of the houses and the map. 

Simultaneous viewing of the list and map is missing. Whereas in HomeRun users can 

directly locate the property listed in the list view and simultaneously the map changes 

marker position to the location of selected property from the list view. This provides users 

with a better understanding of locations of different properties in the lists.  

As the feature of instant viewing is missing, no nearby schools, restaurants, and 

hospitals are mapped along with the location marker on the map. Although there is an 

option to get nearby schools, it only lists 3 nearest schools to that location. This doesn’t 



6 
 

provide the user with all information regarding nearby schools. Providing more options 

allows users to give preferences to those options.  

In Zillow, the user has to go through multiple screens before they see the ‘navigate 

to’ options. Selecting the list expands the list view to provide all the information about that 

property on the same page. The user has to scroll through the page to get to the directions 

option. HomeRun provides an elegant yet simple UI and offers easy access to all the 

features. For navigating to a specific property location, the user just has to select the list 

item that is the property and map changes instantly to show the location and options such 

as show on Google Maps and start navigation. 

Zillow has almost 5 features which state more information about the property 

stuffed onto just one screen. Users might require time to get familiarized with all this 

information at once. On the other hand, HomeRun provides its features in a different way. 

On long select, on maps etc. 

Performance wise, Zillow application has implemented a pagination for next 100 

items including the images. HomeRun has a small performance boost in this regard as 

pagination limit is 10. 

Zillow plots the location markers at a specific zoom level on the maps. If the zoom 

level is decreased the markers are not visible. No clustering is performed while HomeRun 

plots the marker independent of the zoom level. Also, Zillow fails to provide any 

comparing options between two or more property details, while HomeRun provides with 

an option such as Spider graph, a visual tool for comparing house parameters on a spider 

web-like  graph.[5] 



7 
 

 

Trulia 

Trulia is an online residential estate site which lists properties for sale and rent. 

Similar to HomeRun it also provides tools and information needed in the home search. 

Trulia does cover a lot of drawbacks from Zillow but introduces its own. The start 

screen displays information about houses, rather lists houses from the unrelated area. 

Example, a user living in Virginia gets feed listed with options from San Francisco. Map 

and lists are present on different screens.  

Zoom level matters while displaying the markers on the maps. A problem similar 

to Zillow exists, where decreasing the zoom levels makes the markers invisible on the map. 

All these limitations have been taken care in HomeRun, where simple UI is 

designed to provide important information to the users with a couple of taps. 

 

Other 

 There are other applications like Realtor.com, Homes.com, Apartments.com etc. 

which serve a similar purpose to HomeRun but fails to identify the above-mentioned 

drawbacks.  



8 
 

 
 
 
 

ANDROID ENVIRONMENT SETUP 

To start with the Android application, we need the Java Development Kit. Android studio 

is like the workshop but JDK is the toolbox we need for Android programming. JDK is a 

software that allows the computer to read and work with Java Programming Language. 

This is sort of fundamentally different from a software program because it’s more like an 

upgrade to your computer.[6] 

Checking the availability of Java on your machine: Using the terminal, we can find 

we can check whether the machine has the Java Developer Kit, version 7 or greater. The 

command used to check this is java –version. This gives the current java version. 

 
 
 
 

 

Figure 2: Java Version 
 
 
 
 



9 
 

 

 If the JDK is not available, or the version is lower than 7, then download the JDK 

from the Oracle site.  

 We also need the IDE that is the Android Studio (the workplace). It can be 

downloaded from the Android Studio website. Android SDK stands for software 

development kit that helps developer to create applications for Android platforms. Android 

SDK includes application development tools, sample projects with source codes and 

required libraries to build an Android application.  A virtual mobile device running on the 

computer is the Android emulator in which multiple existing mobile models are loaded. 

One can chose any of the specific model. [6] 

 
 
 
 

 

Figure 3: Android Studio 
 
 



10 
 

 

 

Figure 4: Android Studio with HomeRun Application 
 

 



11 
 

 

Figure 5: Emulator (Pixel XL API 27) 
 
 

 
 

 



12 
 

 
 
 
 

DESIGN SPECIFICATION 

To standardize the development of applications, there are established patterns that 

the developers can use to accelerate and provide user with a better UI. Abiding by these 

patterns both the users and developers are benefitted from the structure of the application. 

 

Design Pattern Architecture 

The question here is why it is necessary to have a design pattern architecture. 

Basically, having a proper architecture helps to achieve simplicity, testability and low-cost 

maintenance. Defining a clear and simple role for each component in the app helps to 

maintain simplicity. Implementing this will help to know what the class does and what is 

inside it. To make sure that the code is written is Unit Testable, we have to write testable 

codes.[7] 

 

Following are few of the popular patterns: 

1. MVC (Model – View - Controller) 

2. MVP (Model –View - Presenter) 

3. MVVM (Model – View - ViewModel) 

4. Clean Architecture 

 
 



13 
 

 
 
 
 

 

Figure 6: MVC vs MVP 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



14 
 

 
 
 

MVP model for HomeRun 

 
 
 
 

 

Figure 7: Model View Presenter 
 
 
 
 
View = a passive interface that displays data to the Presenter. It also routes the user actions 

to the presenter. Activity, Fragment, or View does the job of View module. 



15 
 

Model = this layers has the logic or key to data creation, modification or storage. Model 

can be represented in android by remote server or by database API. 

Presenter = It can be considered as a middleman whose role is to transfer the data from the 

Model and display the same in the view. [7] 

 

Important points of MVP are: 

x The view does not have access Model. 

x The presenter is attached to single View. 

x The view can be considered as transporter where it gets data from the action of user 

and supplies the same to presenter. It has no concerns with the actions operated by 

the presenter on the data. [7] 

 

Component Overview 

There are four major components included in the infrastructure of the application. 

They are: 

1. Database 

2. Interactive Visualization Tools 

3. Data Exploration 

4. Prediction Model 

Figure 11 shows how these modules are linked with each other. 

 

 



16 
 

 

 
 
 
 
 
 

 

Figure 8: Model View  
 
 
 
 

High-level components are very essential for any project to get a clear 

understanding of the purpose and the various high-level modules involved. The design of 

high-level components forms the backbone of the project upon which the detail 

components stem out.  

 



17 
 

Database 

This is the core module for the application. All the data that is circulated in the 

application is stored in the database module. This database includes all the house details 

for all the states in the US. There are many ways of storing the data in an Android 

application. SQLite is the database supported by android. The structured query language is 

the database in which the data is structured into columns and stored in a format.  

We can create multiple tables and relate them using the keys. For HomeRun, the 

initial development was done in SQL database but considering the data set size the database 

was migrated to MongoDB server. 

SQL Database: SQL stands for Structured Query Language, is a domain specific 

language which is designed for managing data held in a relational database management 

system. Compared to old methods of read/write APIs, SQL offers the concept of accessing 

many records with a single command and eliminates the need to specify each record with 

an index. 

The housing data was stored in the application. Sample data of size less than 3mb 

was used. The data was acquired from the Zillow database in CSV format. This CSV format 

was changed to db which is adaptable with the android studio. External dataset files were 

integrated with the application under the assets folder. This included address, state, city, 

zip code, price, latitude, longitude, number of beds, number of baths, property details 

columns. All the required queries were done on this dataset.  

MongoDB: It is a NoSQL database program which uses JSON like documents with 

schemas. MongoDB was used to set up the database on university local server named HH-



18 
 

Xeon2. The data was stored in collections based on the states. API was developed to access 

the data. 

 

Interactive Visualization Tools 

HomeRun needed to present a large amount of data to the user. Dealing with huge 

chunks of data in a plain old fashion way doesn’t abide by the design patterns of android 

application. There are many ways of presenting the data in a systematic manner. HomeRun 

uses ListViews, Google Maps, HeatMaps and Spider Graph. 

 

ListView:  According to the android developer guide: ListView is a view group that 

displays a list of scrollable items.[8] The list items are automatically inserted to the list 

using an Adapter that pulls content from a source such as an array or database query and 

converts each item result into a view that's placed into the list. 

The adapter used is configured to show multiple items from the database like the 

address of the house, state, city, zip code, and price. This provides the user with sufficient 

information about the house in a proper list manner. 

 

Google Maps: Google provide Google Maps Android API to add maps using the 

Google Maps data in the android application. This Google Maps API is designed to take 

care of Maps servers, managing data transfers and downloads, displaying items on maps 

and responding to the gestures done on maps.[9] 



19 
 

In the HomeRun, markers were added to the Google Maps in the application, where 

these markers represent the location of the houses in the list view. It provides a great way 

of representing the location of the property. Additional functionality is integrated into the 

Google Maps where the user can see the nearby places on the selected location. Nearby 

places include the hospitals, schools, and restaurants. 

 

HeatMaps: Google Maps Android HeatMap Utility provides HeatMaps that are 

useful for representing the distribution and density of data points on a map. Heat Maps 

providers users with a better understanding of the distribution and depicts the intensity 

(relative) of the data points on the Google Maps. It uses color variations TO SHOW THE 

data points instead of using the markers.[10] 

HomeRun uses to depict the areas with higher residential availability. The number 

of available properties depicts the intensity of heat of that region.  

 

Spider Graph: Radar Chart/Spider Graph is basically a graph to display data 

involving three or more variable qualities in form of a 2-d chart where variables are 

represented on the axes of the graph starting from the same point. Spider graph is 

implemented in the HomeRun application so that users can compare house details on a 

graph to get a better understanding of the ROI i.e return on investment.  

 
Data Exploration 

 It will be a tedious task for the user if he has to go through huge lists of 

houses in a specific state or zip code. Options to filter out these lists according to user 



20 
 

requirement should be available. Data Exploration model allows users to specify their 

filters on the houses they are interested, like price, area, number of baths, number of beds, 

state, zip code, city etc. 

 

Predictive Model 

 A model is developed which aims for predicting the rent and price 

estimation of the houses. This feature is facilitated in the Mortgage calculator. Models are 

developed to predict the prices and estimated rent of the houses in a particular zip code. 

This provides the user with a better understanding of trends in the real estate world.  

 

 

 Features 

Following are the features of the HomeRun Android application: 

1. Filtering option:  Houses are filtered according to the requirement specified by the 
user. 

2. Map View: Listed houses are displayed on Google Maps. 

3. Navigation: Navigation from the current location to selected house location. 

4. HeatMap:  A heat map depicts the intensity of residential properties in an area. 

5. Graph:  A spider graph to compare house details. 

6. Nearby Places: For each house selected, 

7. Nearby schools, hospitals, and restaurants are marked.  

8. Mortgage Calculator 

 

 



21 
 

 
 
 
 

IMPLEMENTATION 

Application Workflow 

 
 
 
 
 

 
Figure 9: Application WorkFlow Diagram 
 
 
 



22 
 

 
 
 
 
 
 

Implementation Details 

 

First Screen Search  

 The first screen of the application provides users with a facility of searching 

the database of the houses across all US states. The User Interface of the first screen 

contains a TextView which states the user to enter state, city or zip code. The element in 

the UI is an Autocomplete TextView. This AutoComplete TextView is where user types 

in the keyword associated with the area they want the property to search. The keyword can 

be a state, zip code or a city. Entering any keyword will trigger the AutoComplete 

TextView with suggestion related to the keyword entered.[11] 

Example 1: Entering State  

User Entered Keyword: CT 

Suggestions:  CT 

  CT STAMFORD 

  CT EAST BERLIN 

And so on... 

 

Example 2: Entering City 

 User Entered Keyword: Sta 



23 
 

 Suggestions: CT STAMFORD 

   CT STAFFORD 

   CT STAFFORD SPRINGS 

   CT STAFFORDVILLE 

   CT STAFFORD 06075 

And so on...  

 

Example 3: Entering Zipcode 

 User Entered Keyword: 060 

 Suggestions:  CT AVON 06001 

   CT BLOOMFIELD 06002 

   CT WINDSOR 06006 

   And so on... 

     

The above-mentioned examples indicate the pattern implemented in the 

suggestions. And the suggestions works same for all 50 states in the US. The pattern tried 

to achieve here is State or State-City or State-City-Zip code. According to the keyword 

entered, the results are populated in any of the three patterns described. The last element in 

the UI of the first screen is the Search button which queries the database according to user 

input and displays the information in the next activity. 

 
 
 
 



24 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 10: AutoComplete Suggestions for state city and zipcode 



25 
 

Logic For AutoCompletion 

A database which has all the states, cities and zip codes information is stored within 

the application. This database is created when the application is started for the first time. 

This database is derived from the URL: 

“http://www.gomashup.com/json.php?fds=geo/usa/zipcode/state/<state>&jsoncallback=”

.  An array of string which has all postal codes for all 50 states is passed to this URL to get 

the response. The response contains information about all the cities and zip codes included 

in that state. One of many JSON objects looks like: 

 
 
 

 
Figure 11: JSON object from gomashup URL 
 
 
 
 
 
 
As for populating the AutoComplete TextView, the fields required are state, city and zip 

code, other fields such as longitude, latitude are eliminated. This is achieved by using the 

java.util.regex.Pattern and java.util.regex.Matcher libraries. 

  

 



26 
 

 

 

 

 

Figure 12: Code Snippet-Use of Pattern and Matcher 
 
 
 
 
 
 
 
 



27 
 

ListView with custom Adapter 

 
Querying onto the database retrieves thousands of house details. An efficient way 

should be used to display the information in proper manner. If we chose to use to display 

this retrieved information using Linear Layout a lot of memory is used up to create specific 

objects for all the retrieved items. We have another option that can be used to display large 

amounts of information memory efficiently. 

As the memory is a limited resource ListView helps in managing memory 

efficiently. When there is a lot of information to be shown in a list form, ListViews are 

used with ArrayAdapters. Shown below is a comparison of memory usage in listing 

numbers 1 to 1000 using Linear Layout and with ListView. [8][12] 

 

 

 

 

 

 

 

 

 

 

 

 



28 
 

 

 

 

 

Figure 13: Memory Monitor (Linear Layout vs. ListView with ArrayAdapter)[12] 
 
 
 
 
 
 

It is clear from the above figure that memory consumption using Linear Layout is 

more that compared to the ListView with ArrayAdapters. 

 
ListView and ArrayAdapter  

Although there are a lot of list items that have to be displayed in the ListView all the items 

don’t have to be fetched at the same time as only a fixed limited number of item views are 

displayed in the ListView. This is achieved by using the ArrayAdapter with the ListViews.  

 



29 
 

The high-level interaction between the ListView and ArrayAdapter is as follows: 

ListView is powered by the ArrayAdapter. Without the adapter, the ListView can 

be considered as empty container. ArrayAdapter holds on to the set of data that should be 

shown on the screen. When the ArrayAdapter is associated with the ListView, the ListView 

will ask how many data items it expects to display and the ArrayAdapter knows this 

information. In the called method by listView on ArrayAdapter, the input is passed which 

has the updated position of the list that the user is viewing currently(can be position 0 or 

position 100). Knowing this position information the ArrayAdapter looks for the internally 

present data.  And then it has the instructions to convert that source of data into a list item 

view and returns the same.[12] 

After scrolling, some of the item views in the ListView are not visible. Those item 

views are reused by passing them to the adapter. Now the adapter just has to put the data 

value from the internal data source and don’t have to worry about converting into view as 

it is already an item view. This method of reusing the scrap views is called Recycling. 

Recycling can be done with ListViews, GridViews etc.[12] 

 

Querying onto database 

 The user selected input from the first screen is stored as a String and then 

passed to next activity of the application. The second screen of the application is where the 

data is displayed in ListView and Google Maps are implemented. Many other features like 

filtering, spider graph generation, mortgage calculator and heatmaps can be accessed from 

the second screen. 



30 
 

The user input string is retrieved in this activity from the Bundle and then this 

information is used to query the database. To make an URL query from the input string, 

this string is manipulated to extract the state, city and zip code value from it. This done on 

the basis of the number of spaces present in the input string. 

If number of spaces are zero, this suggests the user has only selected state. If the 

number of spaces is 1, that means the user input string has state and city. If the number of 

spaces is 2 and the last substring is not an Integer, the user has selected state and city in 

which the city comprises of two words. And if the last substring is integer along with 

number of spaces equal to three then the user has selected state, city and zip code. 

Using this information in a switch case, query URL is created. The default URL is 

http://129.174.126.235:5959/api/housing/ and the extracted information from the input 

string is attached to default URL. This query URL is then passed onto the 

JsonArrayRequest and details such as Address, state, city, zipcode, and price is extracted 

from the response. 

 

Custom ArrayAdapters 

 The ArrayAdapter class available in the android can only hold one data element in the list 

item view. As the retrieved details from the database have more than one field, custom 

ArrayAdapter are required to display multiple data elements like Address, State, City, 

Zipcode, Price in one list view item.  

 
 
 
 



31 
 

 
 
 
 
 
 

 

Figure 14: Custom Adapter Blueprint 
 
 
 
 
 
Pagination 

 Every time we query the database, thousands and thousands of records are 

fetched. This records not only contains just the 5 fields (state, city, zip code, address, and 

price) but also has all the other information. We have to parse through this response to get 

these 5 fields. Doing this for a large number of records introduces an overhead which 

introduces a delay to display the information in the ListView. This problem is solved by 

Pagination.[13] 

Pagination is also known as Endless Scrolling or Infinite Scrolling. This feature is 

common in the content heavy application as it breaks down a list of content into smaller 

equal pieces, loaded one at a time. Pagination is used in many applications like Facebook, 

Instagram and many more other. Users continue to scroll and the page at the end of scroll 



32 
 

loads more data to the feed. A similar concept is implemented in the HomeRun application 

where first 10 entries of the query result are loaded and fed to the ListView. [13] 

 
 
 
 
 

 

Figure 15: Pagination 
 
 
 
 
 

When the user scrolls down the list and at the end of these 10 list items, next 10 

records are loaded and fed to the ListView. Loading animation is displayed to show the 

user that more data is loading. A different thread is created which displays the progress 

dialog and checks with the loading of next 10 entries.  



33 
 

 
 
 
 
 

 

Figure 16: Pagination Implementation-Thread 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



34 
 

 
 
 
 
 

 

Figure 17: Pagination Implementation-Handler 
 
 
 
 
 
 
 
Google Maps 

With the help of the Maps SDK for Android, Google Maps has been integrated into 

the application. The API is also useful for adding markers to specific locations, adding 

overlays to maps, and manage the user gestures with the map.[9] 



35 
 

 To integrate Google Maps into the application, a key has to be obtained 

from the Google API Console. A unique Android-restricted key is created for this project. 

This API key is then added as a child of the <application> element, by inserting it just 

before the closing </application tag> and to the google_maps_api.xml[9] 

 
 
 
 
 

 
Figure 18: Code Snippet for Google Maps API key 
 
 
 
 
 
 

 The layout of the second screen is divided into two parts. The first half of 

the screen is allocated to the ListView while the second half is dedicated to the Google 

Maps. This facilitates users with checking location information of the selected item from 

the list. The Google Maps is added as a fragment in the layout resource file.  

 

Markers 

 Markers provide accurate information about the location of the 

property.[10] Whenever the user selects one of the items from the ListView, a marker is 

added to the Google Maps. The zoom and focus are set accordingly to the location. To 

achieve this, along with retrieving the property details its location details are also retrieved 

and stored in a LatLng ArrayList. This contains Latitude and Longitude parameters of the 



36 
 

properties. The setOnItemClickListener is triggered whenever the user selects one of the 

items and following steps are executed to add a marker on Maps: 

x The markeroptions object is created 

x The existing map is cleared to make sure the map displays the currently 

selected item location only. 

x MarkerOption object calls position method which takes in the latitude and 

longitude of the location.  

x Title method which sets the current address to the marker. 

x Icon method to get the marker color. 

x Created object is then passed onto the maps by the addMarker method. 

x The zoom level of the maps is set to 17f and the camera is animated to the 

location. 

 
 
 
 
 
 



37 
 

 

 

 

 

 

Figure 19: Code Snippet for adding a marker 
 
 
 
 
 
 
 
Nearby Hospitals, Restaurants, and Schools 

To give additional information about the selected property, the nearby schools, 

restaurants, and hospitals are shown on the map along with location marker. A new class 

is created named GetNearbyPlaces which extends from AsyncTask. Here, a class named 

DownloadURl helps getting the data from the mentioned URL. This can be done using the 

HttpURLConnection. [14] 

The retrieved data will be in the JSON format, and as we don’t need all the retrieved 

information it should be parsed. The resultant obtained after parsing is stored in the list. 



38 
 

Now as this list has all the information about the locations of the restaurants/hospitals/ 

schools, markers are made from the location data and plotted on the maps. [14] 

 

 

 

 

 

Figure 20: Nearby Schools, Hospitals, and Restaurants 
 
 
 
 



39 
 

HeatMaps 

A dataset consisting of the coordinates for each location of interest is created which 

helps to add heatmap to Google Maps. A HeatmapTileProvider is created, passing it the 

collection of LatLng objects. A fresh TileOverlay accepts the heatmap tile provider which 

is then used to display on Google Maps.[10] 

HeatmaptileProvider accepts the latlng objects as arguments and according to the 

zoom levels and the radius, gradient and opacity different tile images are created. Here the 

heatmap shows the number of available houses in an area. The intensity of the heatmap 

varies according to the zoom level.[10] 

  

 

 

 

 

 

 

 

 

 

 

 

 



40 
 

 

 

 

 

 

Figure 21: HeatMaps 
 

 

 

 

 



41 
 

Contextual Action Bar (CAB) 

Every application has an action bar, which is the top section of the screen where 

usually the name of the application or the purpose of the activity is stated. For a specific 

time period the app’s original action is replaced with a custom action bar called as 

contextual action bar. This overlay is temporary and will be transitioned to default when 

the sub-task is finished.[15] 

Examples can be found in day to day application like Gmail application. On long 

pressing the emails or by clicking the images to the right of every email, the action bar 

changes to gray and provides options such as deletion, archive and displays the number of 

emails selected.[15] 

 Similar functionality is implemented in the HomeRun application. When a 

long press is detected on any of the items in the ListView, the contextual mode of the action 

bar is activated and provides multiple options for the selected items. Once these subtasks 

are done, the back arrow key to the left in the CAB gets back to the default action bar. 

 The option provided in the CAB are spider graph and mortgage calculator. 

A number of items selected by the user are displayed onto the CAB. If the user wants to 

compare details on the graph, minimum of two or maximum of three items should be 

selected to compare the details on the spider graph. For the mortgage calculator, only one 

item needs to be selected. Activation of the CAB changes the selection of the item and 

action bar color to grey. And the icons for the spider graph and the mortgage calculator are 

displayed. 

 



42 
 

 

 

 

Figure 22: Contextual Action Bar 
 
 
 
 
 
 
 
 
 
 



43 
 

 CAB is implemented by calling the setMultiChoiceModeListener method on the 
ListView object. It has four override methods:  

1. onItemChangeStateChanged 
2. onCreateActionMode 
3. onPrepareActinMode 
4. onActionItemClicked 
5. onDestroyActionMode 

 
 
onItemChangeStateChanged 

Here, the number of selected/deselected items are determined and the title in the 

CAB is updated. [15] 

 
onCreateActionMode 

On creating the CAB, inflate the spider graph and mortgage calculator using the 

menuInflater method. These icons are pre-defined in the menu resource file. [15] 

 
onPrepareActinMode 

Updates to the CAB can be done due to an invalidate() request. [15] 

onActionItemClicked 

This method responds to the clicks on the menu icons like spider graph and 

mortgage calculator icons. Explicit intent to corresponding activities is created. Spider 

graph icon opens up the Spidergraph activity and the mortgage calculator icon opens up 

the MortgageCalc activity. [15] 

The logic to ensure that minimum of two and maximum of three items are selected 

is implemented here. 



44 
 

onDestroyActionMode 

Necessary updates to the activity are done when the CAB is removed. The selected 

items are deselected/unchecked. The adapter is cleared using the clearSelection method. 

[15] 

 

 
 
 
Filter  

The items in the ListView are fetched according to the user input parameters such 

as state, city and zip code. To provide more options to users so that they can imply more 

restrictions on the properties they are looking for, filter option is provided. The filter icon 

is placed to the top right of the second screen. The action bar is inflated with the filter icon, 

for which an onClickListener is set.  

Users can filter the listed house details according to rent, price, area, number of 

bathrooms and number of bedrooms. Seekbar is implemented for price, rent and area fields, 

which gives users an easy way to choose the range. Minimum and maximum values are set 

according to the min/max values from the database. Change in seekbar changes the value 

in the TextView present on the top of each seekbar. This change is spontaneous with sliding 

seekbars. 

For bedrooms and bathrooms, quantity is selected with the plus and minus buttons. 

Bounds are checked and made sure that the value doesn’t fall below 1 and may rise up to 

the maximum value present for corresponding fields in the database. 

 



45 
 

 

 

 

 

 

 

Figure 23: Filter 
 

 

 

  



46 
 

Querying onto database 

  
 All the filter information is combined with the user input string. Again the 

logic to determine the type of user input is applied and a query URL is created which is 

then passed to the MainActivty of the application. This data is received by the MainActivity 

in onResume() lifecycle method. Response from the JsonArrayRequest is then sorted to 

extract the desired JSON objects. These objects are stored in the ArrayList which is fed to 

the ArrayAdapter of the listView. The adapter is notified of the change in the dataset and 

ListView is updated. 

 
 
Spider Graph 

Graphs are one of the best ways to compare information about two or more objects. 

And Homerun provides users with a unique way of comparing house details in form of 

Spider Graph. Spider Graph as the name suggests looks like a spider web. Users can select 

multiple items from the ListView and the spider graph plots area, rent and price on the 

graph’s axis. As these three parameters play a crucial role in the financial calculation, it 

gives a better understanding to the users about the property valuation.  

As the user long presses one of the items in the ListView, CAB is activated where 

the user can select spider graph option on selecting two or three items to compare. The 

Spider Graph has three axes, area, price, and rent. The selected items address is stored in 

an ArrayList and passed to the spiderGraph activity. Using this information, a query URL 

is created which when passed on the JsonArrayRequest retrieves a response. This response 

has Json objects containing information about the area, price and rent values for 



47 
 

corresponding addresses. These values are used to create data sets which are used to plot 

on the Spider graph. 

 

 

 

 

Figure 24:  Spider Graph 
 

 



48 
 

 

 

Mortgage Calculator 

HomeRun provides with the built-in Mortgage Calculator. This feature provides 

users with an estimate of how the new property stand up against expenses. Users enter 

information such as price, down payment, interest, a period of payback, mortgage tax fee 

and insurance fee to calculate the Payment and Cash flow. 

Users have to select at least one item from the ListView so that the mortgage 

calculator can retrieve available information such as price and rent from the database for 

the selected house. The UI allows users to either directly enter the values or use seek bar. 

In either of the case when calculate is pressed, the related text view and the seek bar are 

updated. On pressing calculate, the output text views for the cash flow and payment are 

bought into focus by scrolling down to the bottom of the screen. 

 

 

 

 

 

 

 

 



49 
 

 

 

 

 

Figure 25: Mortgage Calculator 
 
 
 
 
 



50 
 

 
 
 
 
 
 
 
 

FUTURE WORK 

Future work depends on eliminating the limitations for HomeRun for this stage and 

then extending the application with few another features. 

1. Mortgage: For now the mortgage calculation is not accurate. It does not 

consider the rules and regulations are different for different states. How the 

interest rate varies across different banks. How the loan amount, actual price 

has effect on the rate of interest. These are couple of other measures to be taken 

care of before calculating the mortgage.[1] 

 

2. Settings with login management: Having a dedicated user account on the 

HomeRun will help in providing the flexibility and freedom to the user. Users 

can save the results they are interested in and it will be helpful to administer 

user activity. Thus, it adds to the security aspect of the application as well.[1] 

 
3. Dynamic location display: Starting navigation to one property location, on the 

way to that location, the map can show all the properties passing by. This 

provides users with various options.[1] 

 



51 
 

 

 

 
4. Photos: For now the details does not include the photos of the application. 

Adding pictures of properties is a must needed feature. This brings satisfaction 

to the user.[1] 

 

5. Draw on Map: Allowing users to draw on map a custom boundary in which 

all the properties falling in will be displayed. This feature is really helpful if the 

user wants to live in a specific area that is not already been marked by the 

Google Maps.[1] 

 
 

  

 

 
 

 
 



52 
 

 
 
 
 
 
 
 
 

CONCLUSION 

At the end, I would like to conclude that HomeRun has various useful features and 

makes a good run against its competitors being a one-stop property search application. A 

lot of different approaches while implementing features, incorporating database and 

designing features have been considered and tested. All the development progress can be 

seen at the Github repository of the HomeRun application.  

Existing features of the HomeRun are very interesting and will satisfy the basic 

demands of the users. But, in future, working on limitation and users reviews an improved 

version of this application will be launched. 

  



53 
 

 
 
 
 

APPENDIX 

Github: https://github.com/d27saurabh/HomeRun2 

 

YouTube: https://www.youtube.com/watch?v=gwS6UpSmg78 

 



54 
 

 
 
 
 

REFERENCES 

 
[1] Gupta Rohit, “Mobile Real Estate Agent For Android,” M.S. thesis, Dept. of 
Computer Science, SDSU, CA, USA, 2011. [Online]. Available: https://sdsu-
dspace.calstate.edu/bitstream/handle/10211.10/1712/Gupta_Rohit.pdf?sequence=1 
 
[2] Siddharta Sreenivasa Reddy, “Trip Tracker Application on Android,” M.S. thesis, 
Dept. of Computer Science, SDSU, CA, USA, 2011. [Online]. Available: 
http://sdsudspace.calstate.edu/bitstream/handle/10211.10/1303/Sreenivasa.pdf?sequence=
1 
 
[3] “Operating Systme Market Share Worldwide”, StatCounter Global Stats. Accessed 
April 16. [Online]. Available: http://gs.statcounter.com/os-market-share 
 
[4] Egham, “Gartner Newsroom,” Gartner,February 22,2018. [Online]. Available: 
https://www.gartner.com/newsroom/id/3859963 
 
[5] K. Abrosimova, “How to Develop a Real Estate App Like Zillow,” YALANTIS, 
Accessed June 10,2018.[Online]. Available: https://yalantis.com/blog/mobile-real-estate-
app-development-usa-zillow-trulia-apps-technology/ 
 
[6] Shereen Messi, “Install Android Studio,” Github – Shereen Messi, November 26, 
2017. [Online]. Available: https://github.com/ShereenMessi/Install-android-studio  
 
[7] Hay Zohar, “What are the most popular design patterns for Android?,” Quora, 
November 11, 2017. [Online]. Available: https://www.quora.com/What-are-the-most-
popular-design-patterns-for-Android 
 
[8] “List View,” Google Developers, April 17, 2018. [Online]. Available: 
https://developer.android.com/guide/topics/ui/layout/listview 
 
[9] “Android > Maps SDK for Android: Overview,” Google Developers, July 16, 2018. 
[Online]. Available: https://developers.google.com/maps/documentation/android-
sdk/intro 
 



55 
 

[10] “Google Maps Android Heatmap Utility,” Google Developers, July 3, 2018. 
[Online]. Available: https://developers.google.com/maps/documentation/android-
sdk/utility/heatmap 
 
[11] “AutoCompleteTextView,” Google Developers, June 6, 2018. [Online]. Available: 
https://developer.android.com/reference/android/widget/AutoCompleteTextView  
 
[12] “ListView And ArrayAdapter” Udacity- Android Basics, Accessed date. March 15, 
2018. [Online]. Available: 
https://classroom.udacity.com/courses/ud839/lessons/7709673667/concepts/7883237479
0923 
 
[13] Suleiman, “Pagination Android Tutorial with RecyclerView: getting Started,” 
GRAFIX ARTIST, November 1,2016. [Online]. Available: 
https://blog.iamsuleiman.com/android-pagination-tutorial-getting-started-recyclerview  
 
[14] Navneet, “Google Maps Search Nearby : Displaying Nearby Places using Google 
Places API and Google Maps API V2,” ANDROID TUTORIAL POINT, July 27, 2016. 
[Online]. Available: https://www.androidtutorialpoint.com/intermediate/google-maps-
search-nearby-displaying-nearby-places-using-google-places-api-google-maps-api-v2/ 
 
[15] Paresh Mayani, “Contextual Action Bar(CAB) in Android,” DZone Mobile Zone, 
Oct. 24, 2013. [Online]. Available: https://dzone.com/articles/contextual-action-bar-cab 
 

 

 

 

 

 

 

 

 



56 
 

 
 
 
 

BIOGRAPHY 

Saurabh Deshpande grew up in India. He attended the University of Pune, 
where he received his Bachelor of Science in Electronics and 
Telecommunication in 2016. He went on to receive his Master of Science in 
Computer Engineering in 2018 from George Mason University. He will be 
joining GoCanvas solutions in Fall 2018. 


