
Reports 
Machine Learning and Inference Laboratory 

 Reasoning with Meta-values in AQ Learning 
 

 

 

Ryszard S. Michalski 
Janusz Wojtusiak 

 
 
 
 

MLI 05-1 
P 05-2 

June, 2005 
 
 
 
 

MLI 04-1- 
 
 
 
 

 

School of Computational Sciences 
 

George Mason University 



REASONING WITH META-VALUES IN AQ LEARNING  
 

Ryszard S. Michalski* 
Janusz Wojtusiak 

 Machine Learning and Inference Laboratory 
George Mason University 

Fairfax, VA 22030-4444, USA 
 {michalski, jwojt}@mli.gmu.edu 

http://www.mli.gmu.edu 

 
(*) Also with Institute of Computer Science 

Polish Academy of Sciences, Warsaw, Poland 

Abstract 
This paper describes methods for reasoning with missing, irrelevant and not applicable meta-values in the AQ 
attributional rule learning. The methods address issues of handling these values in datasets both for rule learning 
and rule testing. In rule learning, the presence of these values affects the extension-against generalization 
operator in star generation, and the rule matching operator. In rule testing, these values affect the execution of 
the rule matching operator. The presented methods have been implemented in the AQ21 learning program and 
tested on four datasets. 
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1 INTRODUCTION 

In the general problem of learning concepts or classifications, one needs to consider cases when 
training or testing datasets may not have values specified for all the attributes and for all entities 
(concept examples). Some attributes may have missing values. Some attributes may apply to 
some but not to all entities (e.g., the number of pages applies to a book, but not to a chair in the 
library).  Also, certain attributes may be known to have no relevance to a given learning 
problem, thus, removing them from the data is desirable (e.g., the value of a stock tomorrow will 
unlikely depend on the last name of the broker’s barber).   
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To represent such cases, Attributional Calculus employed in AQ learning assumes that the 
domain of every attribute includes three meta-values in addition to its regular values (Michalski, 
2004). These meta-values correspond to three possible answers to a question requesting an 
attribute value in situations in which a regular value is not provided. Specifically, these are 
“missing,” “not applicable” and “irrelevant,”  meta-values. Their semantics is defined as 
follows: 

• Missing (a.k.a. “Don’t know” or “Unknown” ), denoted by a “?”, is given to an attribute 
whose value for a given entity is not available for some reason. For example, the attribute has 
not been measured for this entity, or was measured but was not recorded in the database. In 
such situations, the meta-value “?” in inserted in the training and/or testing datasets for this 
attribute in the event (example, instance, record, or datapoint) characterizing the given entity.  

• Not-applicable, denoted by an “NA,” is given to an attribute that is not applicable to a given 
entity. 

• Irrelevant, denoted by an “*”, indicates that this attribute is considered irrelevant for the 
learning problem, or for the concept (class) to be learned, or in the particular event.. 
Consequently, three types of irrelevant attributes are distinguished, task-irrelevant, class-
irrelevant, and event-irrelevant. 

o An attribute is task-irrelevant if it is irrelevant for the entire learning problem.  For 
example, a student’s hair color can be declared as irrelevant for learning rules for 
classifying students into groups representing their academic performance.  

o An attribute is class-irrelevant if it is irrelevant for a given class (value of the output 
attribute), but may relevant for other classes.  For example, the patient’s PSA (prostatic 
specific antigen) level is relevant for diagnosing prostate diseases, but is irrelevant for 
diagnosing eye diseases. 

o An attribute is event-irrelevant if it is irrelevant only for a particular event in the class to 
be learned. For example, the attribute “stock price” is relevant to any event in the class 
“stocks_to_acquire,” but in a particular instance when it is the stock of company you 
work for and is given free to employees, it may be considered irrelevant.  

The task-irrelevance is handled by simply removing the attribute in question from the 
training and testing datasets. The class-irrelevance is handled by removing the attribute from 
training dataset for the given class, but it remains in dataset when learning classes for which 
it is relevant.  Therefore, only the problem of handling event-irrelevant attributes needs to be 
considered. 

The presence of missing values may be unavoidable in some problem domains. As to the 
irrelevance or not-applicability of an attribute, such decisions are made by an expert setting a 
learning problem. These decisions can be viewed as prior knowledge communicated to the 
learning program. This knowledge is provided by entering appropriate meta-values into the 
training and testing datasets. 

In addition to methods that fill-in the missing values before the learning process starts (wrapper 
methods), we describe also methods for handling missing values during  the process of AQ 
learning.  These methods are applied during the execution of two basic operators:  

-  The “extension against” generalization operator in the training phase 
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- The matching examples against rules operator, in the training and testing phases. 

The first operator is employed during star generation of the AQ learning method and second is 
employed both in star generation and in determining the degree of match between an event and a 
rule (e.g., Michalski, 1975; 2004; both papers are downloadable from address 
www://www.mli.gmu.edu/papers). For completeness, before describing these methods, we 
briefly review the extension against and matching operators.  

2 THE EXTENSION AGAINST AND RULE MATCHING OPERATORS  

To explain the extension against and rule matching operators, we assume that the reader is 
familiar with the basic terminology of Attributional Calculus (Michalski, 2004; downloadable 
from address www.mli.gmu.edu/papers). We start by explaining the extension against operator, 
which is the basic generalization operator in AQ learning.   

Given two attributional events e1 and e2 (vectors of attribute-values), the extension of e1 against 
e2, denoted as e1 —| e2, is equivalent to the extension of e1 in the negation of e2, denoted as  
e1 |— ~e2, that is: 

 e1 —| e2    =     e1 |— ~e2 (1) 

To explain the function of the extension-in operator, let us first assume that ~e2 is a single 
complex (attributional conjunction), denoted by L. The extension of e1 in L is defined: 

 e1  |—  L    =   L,  if e1 ∈ L, otherwise ∅ (2) 

By e1 ∈ L is meant that e1 strictly satisfies (or is covered by) the complex L, that is, satisfies all 
conditions in L.  The negation of an event, e.g., ~e2 in (1), is equivalent to a disjunction of 
complexes consisting of a single condition.   Extension-in is distributive over disjunction, 
therefore, if L in (2) is replaced by a disjunction of complexes, L1 ∨ L2 ∨ ,… ∨ Lk,  the result of 
the |— operator is a disjunction of the results obtained from applying (2) to individuals 
complexes L1, L2, .., Lk: 

 e1  |—  (L1  ∨ L2 ∨…∨ Lk)    =    (e1 |—  L1) ∨  (e1 |— L2)  ∨ .. ∨  (e1 |—  Lk) (3)  
Let us now generalize the extension against operator to the case in which e1 is an arbitrary 
complex.  Suppose that L+ and L- are two complexes characterizing positive and negative 
training examples, respectively.  Suppose further that L+ can be represented in the form:      

 L+ = [xi = A] & CTX1 (4) 
and L- in the form:  

 L- = [xi = B] & CTX2 (5) 
where xi is an attribute, A and B are subsets of the domain of xi (represented in Attributional 
Calculus by linking their elements by internal disjunction),  and CTX1 and CTX2 are “context” 
complexes that do not contain attribute xi, or are null expressions. 

Let us assume first that references A and B are disjoint, i.e., A ∩ B = ∅.  The extension of L+ 
against L

-
 along dimension xi, denoted  

 L+ —| L- / xi (6) 

is equivalent to the extension of  L+ in negation of L
-
 along  xi, denoted  L+  |— ~ L

-
 / xi, and 

produces              
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 L = [xi ≠ B ∪ ε] (7) 

where ε is a generalization margin, which is a set disjoint from A and B, ranging between the set 
D(xi) – (A ∪ B)  and ∅, where  D(xi) is the domain of attribute xi. 

If ε = D(xi) – (A ∪ B), then  L is  [xi = A], that is, a complex created by repetitively applying the 
dropping condition generalization operator to remove CTX1 from  L+ (Michalski, 1983).   If ε = 
∅, then L is the maximal possible consistent generalization of L+, that is, the maximally general 
complex that covers L+ and does not intersect with L

-
. (Note that L includes neither CTX1 nor 

CTX2.)   

If the contrast complex, L
-
, is a conjunction of several selectors in the form [xi = Ai], i = 1,2,3.., 

the extension-against is performed for all attributes (dimensions), xi. 

Let us now consider a more general case when A ∩ B  ≠  ∅. This case can be treated in three 
different ways, as is done in AQ learning with regard to ambiguous events: 

1. Include_in_Pos: Assume that L+ = [xi = A] & CTX1, and  L- = [xi = B \ A] & CTX2, and 
proceed as in the case above, i.e., when A ∩ B was empty.  This assumption means that events 
satisfying [xi = A ∩ B] are treated as positive examples, but not as negative.  

2. Include_in_Neg:  Assume that L+ = [xi = A \ B] & CTX1, and L- = [xi = B] & CTX2,  and 
proceed as in the case when A ∩ B was empty.  This assumption means that events satisfying  [xi 
= A ∩ B] are treated as negative examples, but not as positive.  

3. Ignore:  Assume that L+ = [xi = A \ B] & CTX1, and L- = [xi = B \ A] & CTX2, and proceed as 
in the case when A ∩ B was empty.  This assumption means that events satisfying [xi = A ∩ B] 
are treated as neither positive nor negative examples. 

If B \ A = ∅,  i.e., when B ⊆ A,  then L = ∅ (null expression), and this step of application of the 
extension-against operator is skipped.   

Let us now consider the most general case in which conditions [xi = A] and [xi = B] in (4) and 
(5) are arbitrary logically disjoint attributional conditions, say, S1 and S2, respectively.  They 
may be, e.g., extended conditions in which A and B are attributes, rather than subsets of the 
domain of xi (Michalski, 2004).  We have:  

 L+    =   S1 & CTX1 (8) 

 L
-
      =   S2 & CTX2 (9)  

In this case, the extension of L+   against L
-
 produces: 

 L = ~S2 & ε, if  ~S2 logically intersects with L+; otherwise,  ∅ (10)                               

where ε is a generalization margin, which is a complex, CPX, that ranges between a value  
defined by the expression ~S2 & CPX =  S1 & CTX1  (in which case L is not generalized) and 
the value “True” (in which case L is the maximal consistent generalization of (8), that is,  
maximal generalization that does not cover any part of L

-
). 
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The above assumed that A, B, S1 and S2 all include no meta-values. One problem considered in 
this paper is how to execute the extension-against operator when complexes L+ and/or L

-
 include 

such values. Another problem is how to compute the degree to which an event matches a 
complex (rule) in cases in which the complex and/or event includes such values. Both problems 
occur in rule learning, and the second problem occurs in rule testing, that is, in applying rules to 
classify new events. 

The rule matching operator is not a single operator, but rather a combination of constituent 
operators used for interpreting an attributional ruleset. Thee basic constituent operators are 
defined in a ruleset interpretation schema, namely, an operator for matching an event with an 
attributional condition (selector), an operator for matching an event with a conjunction of 
selectors (a complex), and operator for matching an event with a disjunction of complexes 
(Michalski, 2004). 

Before applying a star generation operator, it is desirable to sort positive and negative examples 
in descending order of the number of meta-values in them. This way, the operations involving 
events with meta-values are delayed until the later stages of the process. This may lead to better 
results, because operations with such events narrow down the range of possible generalizations. 

3 REASONING WITH MISSING META-VALUES  

3.1 Wrapper Methods 

Wrapper (or preprocessing) methods for handling missing values are applied to datasets before 
starting the learning process.  After they have been applied, there is no need for modifying the 
regular extension-against and matching operators to handle missing meta-values.  

Method P1: Ignore events with attributes in the training set that have a “?” value in the 
training dataset for the purpose of rule learning.  Note that if the original dataset is transformed 
into a target set through an attribute selection operator, some attributes will be removed.  
Therefore, events with a “?” value for the removed attributes may not have any more missing 
values. This method is recommended when the training dataset is large. 

When rules are tested, or applied to new examples for the purpose of classification, events with 
missing values are kept in the testing set. Because classification rules do not require knowledge 
of values of all attributes, it may happen that the rules can be evaluated without knowing the 
missing value/s. If in the testing/application phase the missing values are required to evaluate a 
rule, then Method P2 or P3 is applied. 

Method P2: Replace “?” by the average value (for numerical attributes) or the most frequent 
value (for nominal attributes) in the s most similar training and/or testing events, where s is a 
program parameter.  If the training dataset is large, finding the s events most similar to a given 
event can be a time-consuming operation.  For default, use s = 1, and select a single, the most 
similar example. 

Method P3: Learn rulesets for determining the values of the attributes with missing values in 
the training dataset, and then use these rulesets to predict the missing values when learning rules 
for other output attributes.  Learn first rules for determining values of those attributes with the 
largest number of missing values in the dataset. Use method P2 for handling “?” values in 
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attributes other than the one serving as output attribute.  After a ruleset for an attribute was 
learned, apply it to training and testing events that have a “?” value for this attribute, and replace 
the “?” value by the rule-predicted value.  Continue such a process until all missing values are 
replaced by regular values. 

A disadvantage of methods P2 and P3 is that values inserted in place of missing values may be 
incorrect, and in such a case the performance of the learning or testing processes may be 
negatively affected.  

3.2 Executing the Extension-against Operator in Learning 

Method L1: When applying the extension-against operator to negative events with “?” values, 
ignore (skip) the extension-against operation for attributes with missing values in such events. 

Method L2: Treat “?” as a regular value in the events, but do not use events with a “?” for 
seeds.  When extending a seed against a missing value, create a selector:  [xi  ≠  ?], regardless of 
the value of attribute xi in the seed.  This means that selector [xi ≠ ?] is assumed to cover any 
seed event (the probability of this grows with the number of attributes).  When logically 
multiplying a regular selector, [xi = R], by the selector [xi  ≠  ?], follow the rule: 

 [xi = R] & [x i ≠ ?] = [xi  = R, ~?] (11) 

where the reference, R, does not include any meta-value.  When multiplying two selectors with 
the same attribute and a “?” in the reference, create two different “?” symbols: 

 [xi = R1, ~?] & [xi = R2, ~?]  =    [xi = R1, ~?1, ~?2] (12) 

When selecting complexes from intermediate or final stars, select only those that do not have a 
“?” value in any selector.  If such a complex does not exist in the final star, do not select any 
complex but generate a star from another seed, or apply method L1. 

3.3 Matching Rules with Events Containing Missing Values 

We consider here a typical case when a “?” does not occur in rules but only in events. When an 
event includes one or more “?” values, it may still be possible to determine if the event matches 
the rule or not, because the rule may not refer to this attribute. If this is not possible, one of the 
following methods is applied: 

Method M1: Determine k most similar events in the training data to the given event, and 
estimate the probability of matching the rule on the basis of the distribution of attribute values in 
this group. 

Method M2: Suppose a rule, COND � CONS, in which the condition, COND, is a complex, 
and the consequent, CONS, is a selector, is to be matched with an event, e, in which attributes 
from the set A have “?” values.  Create a product of two rules: 

 COND-A � CONS   &   COND-B � CONS (13) 

where COND–A is the part of COND with attributes from A,  and COND-B is the part that has 
the remaining attributes.  Determine the degree of match, DM, between e and COND-B, and 
create a rule: 

 COND-A & DM�  CONS (14) 
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When using a strict interpretation schema e either matches or does not match COND-B, so DM 
is either 0 or 1.  In the first case, the result is that the event does not match the rule. In the second 
case, we have 

 COND-A �  CONS (15) 

The rule (15) indicates which attributes need to be measured in order to assign a definitive 
decision to the event e.  When using a flexible interpretation schema (Michalski, 2004), the rule 
(14) in which DM has some a smaller than 1, but greater than some acceptance threshold, is 
returned as the output of the matching procedure, 

To approximate the positive coverage, p, and negative support, n, of a learned rule (the number 
of positive and negative events covered by the rule, respectively), the Coverage Range method is 
used. 

For all events that cannot be matched with a rule with a specific degree of match because of the 
presence of a missing attribute value in the event, determine two values of p, pmin and pmax, and 
two values of n, nmin  and nmax, respectively.  pmin and nmin are computed by assuming that the 
event does not match the rule, and  pmax  and nmax  are computed by assuming that it does match. 
The positive rule coverage is characterized by the range (pmin .. pmax), and the negative coverage  
by the range (nmin .. nmax).  

4 REASONING WITH IRRELEVANT META-VALUES 

As mentioned in the Introduction, one can distinguish between three kinds of irrelevant 
attributes, task-irrelevant, class-irrelevant, and event-irrelevant. A classification of an attribute 
into any of these classes is done by a domain-expert. The task-irrelevant attributes are handled by 
removing them from the training and testing datasets. The class-irrelevant attribute are handled 
by removing them from the training data for the classes for which they are irrelevant.   

The event-irrelevant attributes are irrelevant only for specified events. The following sections 
describe methods for handling them in rule learning and rule testing phases, respectively.  

4.1 Rule Learning: Executing the Extension-against Operator   

Suppose one or more training events for a given class have an irrelevant (“*”) value for one or 
more attributes. These irrelevant values were presumably introduced by an expert in a given 
problem domain. An irrelevant value is equivalent to, and thus can be replaced by, a disjunction 
of all the values from the domain of the attribute in question (assuming that the domain is finite). 

A training event with such a value can thus be transformed to a disjunction of events, each 
having a different value from the attribute domain. In general, which includes also  the case of 
attributes with an infinite domain, such an event is equivalent to a complex that does not have a 
selector with the attribute with an “*” value in the event.  

This idea leads to the following method for executing the extension-against operator with events 
that have an irrelevant value for some attributes. 

Method IR: If an attribute is indicated as irrelevant in one or more events of a given class, but 
indicated as relevant for other events; that is, is irrelevant for one or more combinations of values 
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of other attributes, but not for all combinations, then in executing the extension against operator, 
ignore the attribute with the value “*” in events with that value, but do not ignore it in other 
events. 

A proof of the correctness of this method is straightforward. Consider first the case of extending 
an event against another event in which an attribute has an “*” value. Recall that  

 e1 —| e2    =     e1 |— ~e2 (16) 

Suppose, without reducing the generality, that e2 = (x1=a1 & x2= a2 & x3= *), and values a1 
and a2 do not appear in e1. Thus, 

 e1 |— ~e2 = [x1 ≠ a1] ∨ [x2 ≠ a2] ∨ [x3 ≠ *] (17)                                             

Based on the definition of the irrelevant value, “*”, [x3 ≠ *] is equivalent to: 

 [x3 ≠  a31 v a32 v   ....v a3k], which,  ∅ (18) 

where a3i, i = 1, 2,3,..., span all values in the domain of x3.  This proves the procedure. 

A proof for the case in which e1 has an irrelevant value or the general case in which events e1 
and e2 are complexes is straightforward, because L & [xi = *] = L for every L.                   

4.2 Rule Matching: Determining Coverage of Events with Irrelevant Values   

If an event with some attributes indicated as irrelevant is matched against an attributional rule, 
this attribute is removed from the event. This is equivalent to asserting that the irrelevant value 
always matches a selector with this attribute. 

5 REASONING WITH NOT APPLICABLE META-VALUES  

5.1 Rule Learning: Executing the Extension-against Operator 

If a dataset has “Not applicable” values (“NA”) for some attributes, the attributes are removed 
from all events with that value when executing the extension-against operator, regardless of 
whether they are positive or negative events.  This operation is justified by the “NA” semantics, 
according to which, asking for a value of the attribute of an entity for which an attribute is not 
applicable is meaningless.  

5.2 Rule Matching:  Determining Coverage of Events with “NA” Values  

If a training event has a “Not applicable” value for some attribute, the attribute is removed from 
the event when determining the rule coverage during the learning process.  Therefore, the event 
does not match the rule if the rule references the NA attribute. 

During the testing process, when matching an event against a rule, it is important to correctly 
interpret the meaning of the condition referencing an attribute that is not applicable to an entity. 
Consider the following example involving robot-like objects used in the iAQ program 
(downloadable from http://www.mli.gmu.edu/msoftware.html).  Suppose a testing event:  

 e = (Has_jacket = no, jacket_color = NA, x3 = a3) (19) 
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is matched against the rule: 

  [robot = friendly] � [jacket_color = red] (20) 

The jacket_color is NA in this event because the robot does not wear a jacket. The rule is 
interpreted as not applicable to this event, and thus ignored. The result would be the same if one 
treated the value “NA” as a regular value of the attribute.  

Suppose now that the event (18) is matched against the rule: 

 [robot = friendly] � [jacket_color ≠ red] (21) 

If one would consider “NA” as a regular value of the attribute “jacket_color,” then event (19) 
would match this rule, which would be incorrect.  In this case, the “NA” value has to be 
interpreted according to its semantics. Because the “jacket_color” is not applicable, matching the 
event against rule (21) should produce a no-match answer. In other words, the condition 
[jacket_color ≠ red] should be interpreted as asking for the color of the jacket only if the robot 
wears a jacket. 

6  IMPLEMENTATION OF META-VALUES IN AQ21 LEARNING PROGRAM 

6.1 Bitstring Representation of Discrete Attributes  

This section describes an implementation of the presented methods for reasoning with meta-
values in the AQ21 program for learning and testing of attributional rules (Wojtusiak, 2004).  
Because discrete and continuous attributes are represented differently, these two types of 
attributes are handled in different ways. Discrete attributes are represented by bitstrings and 
continuous attributes are represented by ranges of values (Michalski and Wojtusiak, 2005).  The 
method described here concerns only basic selectors, in which the reference is a single value or 
an internal disjunction of attribute values, but can not be another attribute, as is in compound 
selectors (Michalski, 2004). 

In the bitstring representation, both events and complexes are represented by equal-length binary 
strings. Each such bitstring is a concatenation of the characteristic vectors of the selector 
references.  The length of a bitstring is thus:  

 #D(x1) + …+ #D(xn) + n (22) 

where D(xi) is domain of the attribute xi, and  #D denotes the cardinality of D. The value n in 
(22) is added to account for the representation of missing meta-values.  The next section 
describes this representation in detail.   

6.2 Handling Meta-values for Discrete Attributes 

As indicated above, events comprising values of discrete attributes, as well as complexes 
describing sets of events are represented in AQ21 by equal-length bitstrings. In this 
representation, each bit indicates the presence (denoted by “1”) or absence (denoted “0”) of the 
attribute value corresponding to the bit’s position in the string.  For example, if the domain of x, 
D(x), is {0,1,2,3,4}, then value x = 3 is represented by a string <00010>. Thus, in a 
representation of an event only one bit is set to “1”for each regular attribute value (not a meta-
value) in the event. 
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In representing a selector with a discrete attribute, all the bits representing attribute values in the 
selector reference are set to “1”, and the remaining bits are set to “0”. For example, if the domain 
of attribute “color” is {red, green, blue}, the selector [color = red ∨ blue] is represented by the 
bitstring <101>.  An attributional complex is represented by a concatenation of bitstrings 
representing constituent selectors. 

The meta-value “Missing” is represented by an additional bit at the end of the bitstring, a meta-
bit, whose value is set to 1 when “missing” is assigned to the attribute.  For example, the event 
e1 = (color = green)(size = ?) is represented by the bitstring <(0100)(0001)>, assuming that the 
domain D(size) is {small, medium, large}. 

The meta-value Irrelevant (“*”) is represented by setting all value bits to “1”, and the meta-bit to 
“0”. Thus, an event e3 = (color = *) is represented by <1110>.  

The meta-value “Not applicable” is represented by setting all bits to “0.”  Thus, the event e4 = 
(color = NA) is represented by the bitstring <0000>. 

Using this representation, the extension against operator checks for the presence of meta-values 
in both positive and negative events. If there are none, the program performs a standard 
extension-against operation as described in Section 2. If a meta-value is detected, the program 
performs the extension against operation for attributes with known values, and uses the methods 
described in Sections 3.2, 4.1 and 5.1 for attributes with the meta-values. 

If there is no “?” value in an event, the matching operation between an event and a complex is 
straightforward. It is simply done by logically multiplying the corresponding bitstrings. The 
meta-bit is treated as any other bit. If the logical multiplication produces a string in which at least 
one bit is 1, then the match is strict, otherwise it is not.  For instance, matching event (color = *) 
against rule R = [color = red ∨ blue] involves a logical multiplication of bitstrings <1110> and 
<1010>, which produces <1010>.  The presence of “1s” in the result indicates that event e3 
strictly matches rule R. 

Suppose now that the event e4 = (color=NA) is matched against rule R from the previous 
example. e4 is represented by the bitstring <0000> and R is represented by the bitstring <1010>.  
A logical multiplication of the two bitstrings produces <0000>, which indicates no strict match.  
If an event does not match every selector in a complex, the whole complex is not strictly 
matched.  (In this paper we do not consider partial, or flexible, matches of complexes.  For a 
discussion of such methods, see (Michalski, 2004)). 

To implement methods M1 and M2 for reasoning with the unknowns requires computation of 
probabilities, as described in Section 3.3.  For this purpose, all selectors of a given rule need to 
be evaluated separately.  When a selector cannot be matched because of the “missing” value, 
method M1 estimates the probability of matching it, and method M2 displays a message 
informing user about this fact.  To increase the program’s efficiency, the matching condition 
operation is applied only to events marked as having missing values. 

6.3 Handling Meta-values for Continuous Attributes 

Selectors with continuous attributes are represented in AQ21 by ranges (pairs of real values), in 
which the first number is the lower bound, and the second number is the upper bound on the 
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values of a given attribute.  Both events and complexes are represented this way.  For example, 
suppose “distance” (in meters) is a continuous attribute, whose domain ranges from 0 to 1000.  
An event e1 = (distance = 37.25) would be represented by the pair (37.25, 37.25), in which the 
lower bound and the upper bound are the same.  If an attributional condition in a rule is [distance 
= 25.3..32.1], the program would represent it by the pair (25.3,32.1) associated with attribute 
“distance.” 

The “Missing” meta-value is represented by the (+∞, +∞), where the lower and upper bounds are 
set to infinity, which in the computer representation is the largest positive value representable on 
the given computer. The meta-value “Irrelevant” is represented by the range (-∞, +∞), which 
spans the entire range of real numbers representable on the given computer. 

It should be noted that actual attribute domain does not have to span the entire range of real 
numbers. For instance, the domain may just be numbers in the range from 0 to 100, but the 
selector [x = *] would still be represented by the pair (-∞, +∞).  The meta-value “Not applicable” 
is represented by a pair (+∞, -∞), where the lower bound is set to plus infinity and the upper 
bound is set to minus infinity, that is, the opposite of the representation of irrelevant values. 

The “infinity” values are used in this representation, because they are assumed to never appear in 
data. AQ21 uses the convention that infinity is encoded as the largest possible number in double 
precision.  The number is represented by the constant DBL_MAX1 that, according to the IEEE 
standard, equals approximately 1.8*10308. 

Both the “extension-against” and “matching” operators require special treatment of meta-values 
by checking each case separately.  To illustrate this problem, let x be a continuous attribute with 
the domain (0, 100), rule r = [ x = 10..20 ], and event e1 = (x = *).  The event e is encoded by a 
pair (-∞, +∞), and rule r is represented by the pair (10, 20).  In this representation, event e1 is not 
included in rule r, but according to the definition of irrelevant values, it should be.  A similar 
situation involves the “missing” value. To illustrate this, suppose that event e2= (x = ?), 
represented by the pair (+∞, +∞), is matched against the rule r = [ x = 10..20 ]. In this 
representation the event does not match the rule. This is correct when computing value of pmin 
described in Section 3.3, but incorrect for computing value of pmax.  Thus, matching events with 
meta-value “?” against rules is done according to a special procedure that corrects the indicated 
problem. 

To increase efficiency, AQ21 marks all events containing a meta-value. When an event with a 
meta-value is detected, the program calls an appropriate procedure for handling it. 

6.4 Implementing Wrapper Methods for Handling Missing Values   

The implementation of the P1 method described in Section 3.1 is straightforward.  Before AQ21 
is run, all events with a “?” value for some attribute are removed from the data.  This is a very 
fast operation requiring only one pass through the data.  As mentioned before, this method is 
inappropriate for small datasets with many missing values, because too many events may have to 
be ignored. 

————— 
1 In IEEE standard infinity is not encoded as the largest representable number and the presented method is used only in AQ21. 
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Method P2 requires the computation of statistics on the data.  The values are computed according 
to the following algorithm. 

For each event e with one or more missing values 
Select the s events most similar to e in the same class      
   For each attribute with value “?”  
     If the attribute is numeric, compute the avera ge value  
     Else compute the most frequent value in the s events 
     Replace “?” with the computed value. 

This algorithm assumes that missing values are infrequent, so that the algorithm will be efficient, 
and that within the s selected events there is at least one regular value. The latter is most likely 
true when s is sufficiently large.  

P3 is the most advanced wrapper method for dealing with missing values.  Using the provided 
training data, the method learns rules to predict missing values of attributes.  The following 
pseudocode describes this algorithm. 

  For each class C 
    Order attributes into list L in ascending order  of the number of    
      events in the training dataset missing their value. 
    For each attribute x from L, in the order defin ed by L:  
      Learn rules for all the values of the attribu te  
        from L using examples from C. 
      Using the learned rules predict “missing” val ues  
        of the attribute in the events of that clas s. 

To apply this method, two problems have to be taken care of. First, the program must deal with 
missing values present in the training events for learning value-predicting rules.  The simplest 
method is to ignore attributes with “missing” values.  If many attributes have missing values, 
then predictive rules can be learned using method L1 or L2, as described in Section 3.2. 

A more complex problem is when an event in which a value is predicted has more than one 
“missing” value, and it happens that another “missing” value is instrumental in the value- 
predicting ruleset.  One of two methods can be applied when learning the value-predicting rules: 

- When learning value-predicting rules, ignore all attributes that have missing values in 
events in which values are being predicted.  This may not be possible when a large 
number of missing values is present in the dataset, because all attributes would have to 
be ignored. 

- Use method M1 to compute probabilities of match, and choose the match with the 
highest probability to predict the value. 

To use these methods, the value-predicting rulesets must be logically disjoint so that the rule will 
predict only one value.  This is achieved by setting the AQ21 parameter that controls the type of 
rulesets to be learned to “disjoint covers.”  In cases where learned rulesets are not disjoint (when 
“intersecting covers” were learned) one may choose the value that is suggested, for example, by 
the rule with the highest support. 
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7 EXPERIMENTAL RESULTS 

7.1 Testing Methods for Handling Missing Values 

The methods described above have been implemented in the AQ21 learning program and tested 
on three datasets: Volcanoes, World Factbook 2004, and Computer Users. 

The Volcanoes dataset, provided by the Smithsonian Institution, contains information about a 
large number of volcanoes from around the world. The dataset that was used in the study 
contained 13,787 training and 5,858 testing events for predicting whether or not fatalities would 
occur due to volcanic eruptions. Each eruption is described by 45 multitype attributes (Kaufman 
and Michalski, 2005). 

The dataset has 79,829 missing values in the training dataset, out of 12,787 x 45 = 575,415 total 
values that is, about 14 %, and 33,843 missing values out of 263,610 total values in the testing 
dataset, that is, about 13%.  The main reason for the amount of missing values is that much of the 
data come from records of eruptions from centuries ago, in which these values were not 
measured. 

The World Factbook dataset contains information about 266 countries of the world.  Each 
country is described in terms of 36 multitype attributes, such as Gross Domestic Product (GDP), 
Unemployment level, Fertility, Mortality, Population, etc.  The dataset was prepared by the CIA 
and is downloadable from their website: http://www.cia.gov/cia/publications/factbook.  In this 
dataset, 2552 values are missing, that is, about 27% of the data. 

The Computer Users dataset contains datastreams from process tables recorded during the 
interaction of 10 users with their computers.  The datastreams were used to learn models (“user 
signatures”) of the users’ interactions with the computer for the purpose of detecting illegitimate 
user activities (Michalski et al., 2005).  For each of the 10 users, the dataset contains 10 training 
and 5 testing sessions (datastreams from login until logout). 

Summary of Results  

AQ21 learned rulesets from the Volcanoes dataset for the output attribute “Fatalities” whose 
values are ”present” and “absent.”  Four methods for handling missing values were applied: L1 
(ignore attribute in the extension-against operation), P1 (remove events), P2 (estimate values), 
and P3 (infer missing values). Table 1 presents the accuracies of classifying the testing data by 
the rules learned using these four methods. 

 
Method  

L1 P1 P2 P3 
Accuracy 98.51% 96.53% 98.48% 98.05% 
Learning Time 13 min 2.6 min 13 min 48 min 

Table 1: Results from comparing methods for handling missing values in the Volcano dataset. 

As shown in Table 1, rules learned using methods L1, P2 and P3 gave very similar and relatively 
high degrees of accuracy on classifying the testing data. The P1 method gave slightly lower 
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accuracy, but was by far the fastest.  Overall, if one considers accuracy to be the primary factor 
and the learning time as the secondary factor, L1 performed the best. 

Table 2 presents results from applying the same four methods to the problem of learning rules 
from the World Factbook dataset for the output attribute “Birth Rate” with two classes (its 
values):  “≤ 20,” and “>20”. The best results in terms of accuracy and learning time were again 
obtained by L1.  The second best was P3 which gave relatively good results, but the learning 
time was significantly longer than that of the other methods.  The P1 method performed poorly 
for this problem in terms of classification accuracy because too many events were removed from 
the training dataset. 

Method  
L1 P1 P2 P3 

Accuracy 94.29% 54.29% 40.00% 87.14% 
Learning Time 0.3 sec 0.01 sec 0.2 sec 107 sec 

Table 2: Results from comparing methods for handling missing values in  
the World Factbook dataset. 

Table 3 presents results from applying the same four methods to the problem of learning rules for 
the Computer Users dataset.  Here, the output attribute was “User” that has 10 values identifying 
each of ten computer users. 

Again, L1 gave the best classification accuracy on the testing dataset, while its learning time was 
comparable to that of other methods.  The P1 method had the shortest learning time, as before, 
but its accuracy was lower on the testing data than that of L1. The P3 method was worst in terms 
of accuracy, as well as the learning time. 

Method  
L1 P1 P2 P3 

Accuracy 70.21% 68.09% 65.96% 63.83% 
Learning Time 20 min 17 min 18 min 34 min 

Table 3: Results from comparing four methods of handling missing values on the Computer 
Users dataset. 

The best performance of L1 in the experiments can be explained by the fact that the extension 
against operation ignores only the missing values in the event, but takes into consideration other 
values (see Section 3.2). Thus, it uses more information than other methods. The P1 method 
removes not only the missing values but also entire events, thus uses less information for 
learning.  The P2 and P3 methods draw inferences about the training dataset that may or may not 
be correct.  Because the AQ21 learning program working in Theory Formation mode (as in our 
experiments) learns descriptions that are complete and consistent with regard to the entire 
training dataset, any incorrectly inferred values will negatively affect its performance. 

The above experiments tested methods for handling missing values by comparing accuracies and 
learning times obtained by these methods on three different real-world datasets.  The next set of 
experiments tested the methods by determining their accuracies on datasets in which we changed 
a certain percentage of values into missing values.  Thus, in these experiments we compared the 
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performance of the methods when applied to datasets with different amount of values missing, 
starting with the original data in which no values were missing. 

In first step, we removed from the Computer Users dataset all events that contained any missing 
values. The resulting dataset had 8579 training and 3929 testing events (with no missing values).  
In the next six experiments, we randomly changed into missing values 5%, 10%, 15%, 20%, 
25% and 30% of values in the dataset, respectively. Each of these six training sets was then used 
as input to the AQ21 learning program.  The learned rules were then tested on the complete 
testing set (with all the values present).  The classification accuracies (based on the “correct 
match” evaluation, (Wojtusiak, 2005)) obtained from these experiments are presented in Table 4. 

Method  
L1 P1 P2 P3 

Original data 60.87% 60.87% 60.87% 60.87% 
5%   missing 58.70% 50.00% 65.22% 60.87% 
10% missing  54.35% 45.65% 56.52% 58.70% 
15% missing 41.30% 21.74% 60.87% 36.96% 
20% missing 28.26% 13.04% 60.87% 30.43% 
25% missing 19.57% 15.22% 43.48% 15.22% 
30% missing 13.04% 0.00% 19.57% 15.22% 

Table 4:  Classification accuracies obtained by four methods of handling missing values applied 
to training sets with different percentages of missing values. 

For up to 10% of missing values, L1, P2 and P3 methods all performed similarly. For above 10% 
of missing values only P2 preformed well.  A particularly surprising result is that rules learned 
using P2 gave better performance accuracy when the training dataset had 5% missing values than 
when it had no missing values, which is counterintuitive. It was also surprising that the rules 
learned using P2 gave the same accuracy when the dataset had 20% missing values as when it 
had no missing values.  As expected, all method gave progressively worse results with the 
increasing percentage of missing values. The strongest such effect was for P1, as it was learning 
from an increasingly smaller amount of data. 

The next set of experiments investigated the performance of rule matching methods on data with 
different percentages of missing values in the testing set. To this end, we applied the learned 
rulesets from the complete training dataset (i.e., with no missing values) to the testing datasets 
with 5%, 10%, 15%, 20%, 25% and 30% values missing. 

Results of the experiments, presented in Table 5, show that for the Computer Users dataset, the 
presence of up to 10% missing values in the testing dataset did not affect the overall 
classification accuracy when using a strict matching method. When the Selectors Ratio flexible 
matching method was used (Michalski, 2004), the classification accuracy was much higher, but 
at the expense of classification Precision, and it decreased much slower with the increasing 
percentage of missing values in the testing dataset. 
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Testing dataset Strict Matching Flexible Matching 

(Selectors Ratio) 
 Accuracy Precision Accuracy Precision 
Original data 60.87% 87.18% 89.13% 24.63% 
5%   missing 60.87% 89.11% 84.78% 24.63% 
10% missing 60.87% 93.20% 82.61% 24.88% 
15% missing 47.83% 97.64% 78.26% 25.14% 
20% missing 34.78% 100.00% 69.57% 27.32% 
25% missing 26.09% 95.37% 73.91% 27.03% 
30% missing 21.74% 95.37% 65.22% 26.47% 

Table 5: A performance of the strict and flexible matching methods on testing datasets with 
increasing percentages of missing values. 

It should be mentioned that the results from all the methods are relatively poor in this case, 
because the Computer Users dataset presents a particularly difficult classification problem due to 
a low relevance of the data to the problem (Michalski et al, 2005). 

7.2 Testing the Method for Handling Irrelevant Values 

To test methods for handling Not-Applicable and Irrelevant meta-values, we used an example from 
the ROBOTS problem used in the iAQ program for demonstrating natural induction 
(downloadable from http://www.mli.gmu.edu/msoftware.html).  In this experiment, the dataset is a 
collection of imaginary robots that are classified as “Friendly” (positive examples) or “Unfriendly” 
(negative examples).  Each robot is described in terms of attributes defined in Table 6.  The “Robot 
class” is the output attribute (with two values, “Friendly” and “Unfriendly),” and the rest are input 
attributes. In addition, iAQ generates various derived attributes (Michalski and Pietrzykowski, 
2005). 

   
Attribute Name Attribute Type Attribute Domain 

Robot class Nominal Friendly, Unfriendly 
Head shape Nominal Round, square, triangle 
Body shape Nominal Round, square, triangle 
Smiling Nominal Yes, no 
Holding Structured Sword, balloon, flag, Canadian flag, US_flag, 

Polish_flag 
Height Linear short, medium, tall 
Antenna’s color Nominal Red, yellow, blue, green, black, white 
Jacket’s color Nominal Red, yellow, blue, green, black, white 
Has tie Nominal Yes, no 

Table 6: Original attributes used for describing examples in the ROBOTS domain. 

Training examples for a ROBOTS problem chosen for our experiments are presented in Table 7.  
The first column represents the output attribute “Robot class”, and the other columns represent 
the input attributes shown in Table 6. 



 

 17 

 
Examples of robots  

Robot 
class Head 

shape 
Body 
shape 

Smiling Holding Height Antenna’s 
color 

Jacket’s 
color 

Has  
tie 

Friendly round square Yes Polish flag Tall green blue yes 
Friendly round triangle Yes balloon Medium green yellow no 
Friendly square square Yes balloon Short red yellow no 
Friendly round triangle Yes Polish flag Medium green yellow no 
Unfriendly triangle square No US flag Medium green yellow yes 
Unfriendly round square Yes sword Medium green blue yes 
Unfriendly square square No balloon Medium red green yes 
Unfriendly square triangle Yes sword Short green yellow no 
Unfriendly round triangle No Polish flag Short green black yes 
Unfriendly square square Yes sword Tall red red yes 

Table 7: Training events used for learning the concept of Friendly Robots. 

The learning dataset presented in Table 7 consists of events with no meta-values. Given this 
training dataset, AQ21 generated the following rule: 

[robot is friendly]  �  [it is smiling: 4,3] &  
[it is not holding a sword: 4,2] : p=4, n=0 

The rule covers all four positive examples and no negative examples (p=4, n=0).  Its premise is a 
conjunction of two conditions: [robot is smiling], which covers four positive and three negative 
events, and [robot is not holding a sword], which covers four positive and two negative events. 

Suppose now that a new positive event e1 = (friendly, round, triangle, *, US flag, medium, 
green, yellow, no) is added to the training dataset by the teacher.  In this event, the “Smiling” 
attribute is indicated as irrelevant (it may be relevant for other events in the class “Friendly”). 

To handle the additional event, e1, AQ21 needs to either learn a different rule that will describe 
all positive events, or to learn an additional rule to cover the additional example.  In our 
experiment, AQ21 learns two rules, one that is identical to the previously learned rule, and the 
second describing the added example: 

[robot is friendly]  �  [it is smiling: 4,3] &  
[it is not holding a sword: 4,2] : p=4, n=0 

 [robot is friendly]  �  [it is not holding a sword: 4,2] 
     [it has no tie: 4,1] : p=4, n=0 

Let us suppose that event e2 = (unfriendly, round, square, *, sword, medium, yellow, red, yes) is 
now added as a negative example to the dataset for the class “Friendly”.  The original ruleset is 
still a complete and consistent description of the class of friendly robots.  Although attribute 
“smiling” is irrelevant for the negative event e2, it is holding a sword that eliminates it, and the 
rules are consistent.  

To illustrate matching events with meta-value “*” against rules, suppose that the rule 
 [robot is friendly]   �   [it is smiling] & [it is not holding a sword] 
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has been previously learned.  The event e1:  (friendly, round, triangle, *, US_flag, medium, 
green, yellow, no) matches this rule because it is not holding a sword and it has been declared  
that the feature  “is smiling” is  irrelevant.   Similarly the event e2: (unfriendly, round, square, *, 
sword, medium, yellow, red, yes) does not match the rule, because the robot is holding a sword. 

7.3 Testing the Method for Handling Not Applicable Values 

To test the method for handling “Not applicable” meta-values, suppose we added to the dataset 
for the ROBOT problem a positive example  

e3 = (friendly, triangle, square, yes, NA, medium, green, blue, yes), 

whose value of attribute “holding” is NA because the robot under consideration has no hands. In 
this case, the originally learned rule does not cover the event e3.  AQ21 learns an additional rule, 
and produces the ruleset: 

[robot is friendly]    �   [it is smiling: 5,3] & [it is not holding a sword: 4,2] : p=4, n=0 

 [robot is friendly]    �   [its head is square or triangle: 2,4] 
       [its body is square: 3,4] 
       [it is smiling: 5,3] 
       [its height is short or medium: 4,5] : p=2, n=0 

The second rule has four selectors needed to eliminate all negative events, while still covering 
event e3.  Such a treatment of NA meta-values is consistent with the method described in Section 
5. 

A similar example can be developed for the case when NA appears in a negative example. 

To illustrate matching events with the NA meta-value against rules, suppose that the rule: 

[robot is friendly]  �  [it is smiling] & [it is not holding a sword]  

has been learned.  The event  

e4 = (friendly, triangle, square, NA, balloon, medium, green, blue, yes) 

is matched against the rule.  The event e4 does not match it because its attribute “Smiling” is not 
applicable. 

8 RELATED RESEARCH 

The problem of handling meta-values described in this paper has not been adequately addressed 
in literature on machine learning and data mining.  Most authors concentrate solely on handling 
missing values, or treat all three meta-values in the same way. Even if they distinguish between 
different meta-values, as, for example, in (Kononenko, 1992; Bruha, 2004), they do not address 
the distinctions between them.  The methods presented in this paper are original and different 
from those described in the literature. They also are applied in the context of more expressive 
representation language, namely attributional calculus. 
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To give the reader a sense of the differences between our methods and other methods, below is a 
brief review of some of the research in this area, which is mainly concerns handling of missing 
values. 

In C4.5 program (Quinlan, 1993), the learning phase assigns probabilities to the missing values 
in order to evaluate an attribute.  Events with missing values are assigned probabilities of 
belonging to partitioned sets.  The probabilities are used when computing Gain Ratio, a measure 
for evaluating attributes when building a decision tree.  This probabilistic approach is also used 
when evaluating new examples.  In such cases, the program explores all possibilities in 
evaluating the decision tree, and assigns the class with the highest probability. 

CN4 described in (Brucha and Krokowa, 1994) is an extension of the CN2 program (Clark and 
Niblett, 1988).  It employs six routines for processing missing values (Brucha and Franek 1996; 
Brucha, 2004): ignore missing values; add “missing” value to an attribute domain; use the most 
common value; create weighted copies of the original examples having different values replacing 
the missing one; randomly select values; and match any value in learning and classification. 

In (Brucha, 2004), the author proposes a multistrategy approach based on the six methods listed 
above to handle missing attribute values.  Two of the presented methods are similar to our 
methods P1 (ignore events with missing values) and P2 (replace missing values with 
average/most common value), but applied with a different learning program. 

Ragel and Cremilleux (1999) presented an  approach similar in spirit to P3, but in the context of 
using association rules to fill-up the missing values. The proposed MVP method learns rules 
using the Robust Association Rules Algorithm (RAR).  Rules with a high support are used to 
complete missing values in data.  Another approach similar to P3 is discussed in 
(Lakshminarayan et al., 1996), in which the authors use the Autoclass Bayesian clustering 
program and C4.5 decision tree learner for filling-in the missing values. 

Wu and Barbara (2002) describe a method for handling missing values for numerical attributes.  
The method assumes the availability of constraints on attribute values, such as data summaries 
contained in data warehouses.  Three types of problems are considered: well-constrained, in 
which the available summary is sufficient for inferring missing values; under-constrained, in 
which summaries are accurate but insufficient; and over-constrained, in which summaries are 
inconsistent.  The authors propose three methods for filling-in missing values: by solving linear 
equations in order to find exact missing values, by maximizing entropy, and by minimizing 
cross-entropy.  Experimental results show that the accuracy of the presented methods increases 
with the number of constraints (summaries). 

Wang (2004) proposes a fuzzy set-based method to handle missing values in 
learning Hopfield neural nets.  Each training example with missing values is replaced by a set of 
“fuzzy examples” without missing values and whose weights/probabilities are computed 
according to fuzzy set theory.  Such examples are used to learn the neural networks.  Similarly 
for classification problems, the author proposes using fuzzy copies of testing example for 
evaluation; each copy of the testing example is given a value estimated based on the fuzzy sets 
theory and having an assigned probability (weight).  The weight is taken into consideration to 
compute the final degree of match. 
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A number of papers describe statistical approach to handling missing meta-values.  Holt and 
Benfer (2000) propose an iterative regression approach named MISDAT.  The program 
iteratively improves estimates of missing values until a test based on squared multiple correlation 
stabilizes.  In practice, fewer than ten iterations are usually sufficient.  An overview of a number 
statistical methods for dealing with missing values is presented by Little and Rubin (2002). 

A number of researchers have investigated the handling and imputation of missing values to 
particular datasets.  Heikki et al. (2004) discuss several methods, such as simulation of missing 
data, interpolation, regression analysis, nearest-neighbor etc. as applied to air quality data.  
Engels and Diehr (2003) discuss statistical methods for imputing missing values in longitudinal 
data.  Sartori et al. (2004) use statistical methods for multiple imputation of missing values in 
cancer mortality data. 

Theoretical aspects of learning from examples with meta-values are discussed in (Schuurmans 
and Greiner, 1997; Greiner et al., 1997).  The authors discuss missing and irrelevant meta-values 
in context of PAC learning. 

9 CONCLUSION 

Methods for reasoning with missing, irrelevant, and not applicable meta-values in data have 
been described for both training and application/testing phases of attributional rule learning using 
AQ learning method.  The three meta-values have different semantics, and appear in the data for 
different reasons. Therefore, they have been considered in this paper as separate problems. 

The missing value problem appears in many applications domains, as it is quite common that 
values of some attributes may not available in the data for some reason. The irrelevant and not 
applicable values represent problem background knowledge communicated to the program by an 
expert, and the problem is how to adequately utilize this knowledge.  Semantics of the meta-
values are used on level of extension-against, the most important operation in AQ learning, 
therefore are handled on the basic level of the learning algorithm.  This fact significantly 
differentiates the presented methodology from methods known from literature that are based on 
filling-in missing values. 

The presented methods have been implemented in the AQ21 learning program, and tested on 
datasets from three different real world domains, and one designed domain in order to evaluate 
their strengths and weaknesses.  Four methods were investigated for handing missing values, L1 
(that ignores these values during the extension-against operation), P2 and P3 (that fill-in data by 
estimated or hypothesized values), and P1 (that ignores events with such values).  In our initial 
experiments, the best results were obtained from the L1 method.  Methods for handling irrelevant 
and not applicable meta-values gave results fully consistent with the meaning of these meta-
values.  The initial results confirmed our hypothesis that handling semantics of meta-values on 
level of extension-against and basic matching operators, the lowest level operations in AQ 
learning, provide the best results. 

The implementation of the developed methods in the AQ21 program makes it applicable to many 
real-world domains where such meta-values occur.  Such domains include medicine, agriculture, 
bioinformatics, intrusion detection, classification of geological phenomena, and others. 
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