
Reports
Machine Learning and Inference Laboratory

 Reasoning with Meta-values in AQ Learning

Ryszard S. Michalski
Janusz Wojtusiak

MLI 05-1
P 05-2

June, 2005

MLI 04-1-

School of Computational Sciences

George Mason University

REASONING WITH META-VALUES IN AQ LEARNING

Ryszard S. Michalski*
Janusz Wojtusiak

 Machine Learning and Inference Laboratory
George Mason University

Fairfax, VA 22030-4444, USA
 {michalski, jwojt}@mli.gmu.edu

http://www.mli.gmu.edu

(*) Also with Institute of Computer Science

Polish Academy of Sciences, Warsaw, Poland

Abstract
This paper describes methods for reasoning with missing, irrelevant and not applicable meta-values in the AQ
attributional rule learning. The methods address issues of handling these values in datasets both for rule learning
and rule testing. In rule learning, the presence of these values affects the extension-against generalization
operator in star generation, and the rule matching operator. In rule testing, these values affect the execution of
the rule matching operator. The presented methods have been implemented in the AQ21 learning program and
tested on four datasets.

Keywords: Machine learning, Concept learning, AQ learning, Meta-values, Missing values,
Irrelevant values, Not applicable values.

Acknowledgments

The authors thank Dr. Kenneth Kaufman for his useful comments on the earlier version of
this paper, and for valuable suggestions regarding examples used to illustrate the
methodology. Jarek Pietrzykowski helped to prepare data for experiments involving the
Computer Users and ROBOTS datasets.

The presented research was conducted in the Machine Learning and Inference Laboratory of
George Mason University, whose research activities are supported in part by the National
Science Foundation Grants No. IIS 9906858 and IIS 0097476, and in part by the
UMBC/LUCITE #32 grant. The findings and opinions expressed here are those of the
authors, and do not necessarily reflect those of the above sponsoring organizations.

1 INTRODUCTION

In the general problem of learning concepts or classifications, one needs to consider cases when
training or testing datasets may not have values specified for all the attributes and for all entities
(concept examples). Some attributes may have missing values. Some attributes may apply to
some but not to all entities (e.g., the number of pages applies to a book, but not to a chair in the
library). Also, certain attributes may be known to have no relevance to a given learning
problem, thus, removing them from the data is desirable (e.g., the value of a stock tomorrow will
unlikely depend on the last name of the broker’s barber).

 2

To represent such cases, Attributional Calculus employed in AQ learning assumes that the
domain of every attribute includes three meta-values in addition to its regular values (Michalski,
2004). These meta-values correspond to three possible answers to a question requesting an
attribute value in situations in which a regular value is not provided. Specifically, these are
“missing,” “not applicable” and “irrelevant,” meta-values. Their semantics is defined as
follows:

• Missing (a.k.a. “Don’t know” or “Unknown”), denoted by a “?”, is given to an attribute
whose value for a given entity is not available for some reason. For example, the attribute has
not been measured for this entity, or was measured but was not recorded in the database. In
such situations, the meta-value “?” in inserted in the training and/or testing datasets for this
attribute in the event (example, instance, record, or datapoint) characterizing the given entity.

• Not-applicable, denoted by an “NA,” is given to an attribute that is not applicable to a given
entity.

• Irrelevant, denoted by an “*”, indicates that this attribute is considered irrelevant for the
learning problem, or for the concept (class) to be learned, or in the particular event..
Consequently, three types of irrelevant attributes are distinguished, task-irrelevant, class-
irrelevant, and event-irrelevant.

o An attribute is task-irrelevant if it is irrelevant for the entire learning problem. For
example, a student’s hair color can be declared as irrelevant for learning rules for
classifying students into groups representing their academic performance.

o An attribute is class-irrelevant if it is irrelevant for a given class (value of the output
attribute), but may relevant for other classes. For example, the patient’s PSA (prostatic
specific antigen) level is relevant for diagnosing prostate diseases, but is irrelevant for
diagnosing eye diseases.

o An attribute is event-irrelevant if it is irrelevant only for a particular event in the class to
be learned. For example, the attribute “stock price” is relevant to any event in the class
“stocks_to_acquire,” but in a particular instance when it is the stock of company you
work for and is given free to employees, it may be considered irrelevant.

The task-irrelevance is handled by simply removing the attribute in question from the
training and testing datasets. The class-irrelevance is handled by removing the attribute from
training dataset for the given class, but it remains in dataset when learning classes for which
it is relevant. Therefore, only the problem of handling event-irrelevant attributes needs to be
considered.

The presence of missing values may be unavoidable in some problem domains. As to the
irrelevance or not-applicability of an attribute, such decisions are made by an expert setting a
learning problem. These decisions can be viewed as prior knowledge communicated to the
learning program. This knowledge is provided by entering appropriate meta-values into the
training and testing datasets.

In addition to methods that fill-in the missing values before the learning process starts (wrapper
methods), we describe also methods for handling missing values during the process of AQ
learning. These methods are applied during the execution of two basic operators:

- The “extension against” generalization operator in the training phase

 3

- The matching examples against rules operator, in the training and testing phases.

The first operator is employed during star generation of the AQ learning method and second is
employed both in star generation and in determining the degree of match between an event and a
rule (e.g., Michalski, 1975; 2004; both papers are downloadable from address
www://www.mli.gmu.edu/papers). For completeness, before describing these methods, we
briefly review the extension against and matching operators.

2 THE EXTENSION AGAINST AND RULE MATCHING OPERATORS

To explain the extension against and rule matching operators, we assume that the reader is
familiar with the basic terminology of Attributional Calculus (Michalski, 2004; downloadable
from address www.mli.gmu.edu/papers). We start by explaining the extension against operator,
which is the basic generalization operator in AQ learning.

Given two attributional events e1 and e2 (vectors of attribute-values), the extension of e1 against
e2, denoted as e1 —| e2, is equivalent to the extension of e1 in the negation of e2, denoted as
e1 |— ~e2, that is:

 e1 —| e2 = e1 |— ~e2 (1)

To explain the function of the extension-in operator, let us first assume that ~e2 is a single
complex (attributional conjunction), denoted by L. The extension of e1 in L is defined:

 e1 |— L = L, if e1 ∈ L, otherwise ∅ (2)

By e1 ∈ L is meant that e1 strictly satisfies (or is covered by) the complex L, that is, satisfies all
conditions in L. The negation of an event, e.g., ~e2 in (1), is equivalent to a disjunction of
complexes consisting of a single condition. Extension-in is distributive over disjunction,
therefore, if L in (2) is replaced by a disjunction of complexes, L1 ∨ L2 ∨ ,… ∨ Lk, the result of
the |— operator is a disjunction of the results obtained from applying (2) to individuals
complexes L1, L2, .., Lk:

 e1 |— (L1 ∨ L2 ∨…∨ Lk) = (e1 |— L1) ∨ (e1 |— L2) ∨ .. ∨ (e1 |— Lk) (3)
Let us now generalize the extension against operator to the case in which e1 is an arbitrary
complex. Suppose that L+ and L- are two complexes characterizing positive and negative
training examples, respectively. Suppose further that L+ can be represented in the form:

 L+ = [xi = A] & CTX1 (4)
and L- in the form:

 L- = [xi = B] & CTX2 (5)
where xi is an attribute, A and B are subsets of the domain of xi (represented in Attributional
Calculus by linking their elements by internal disjunction), and CTX1 and CTX2 are “context”
complexes that do not contain attribute xi, or are null expressions.

Let us assume first that references A and B are disjoint, i.e., A ∩ B = ∅. The extension of L+
against L

-
 along dimension xi, denoted

 L+ —| L- / xi (6)

is equivalent to the extension of L+ in negation of L
-
 along xi, denoted L+ |— ~ L

-
 / xi, and

produces

 4

 L = [xi ≠ B ∪ ε] (7)

where ε is a generalization margin, which is a set disjoint from A and B, ranging between the set
D(xi) – (A ∪ B) and ∅, where D(xi) is the domain of attribute xi.

If ε = D(xi) – (A ∪ B), then L is [xi = A], that is, a complex created by repetitively applying the
dropping condition generalization operator to remove CTX1 from L+ (Michalski, 1983). If ε =
∅, then L is the maximal possible consistent generalization of L+, that is, the maximally general
complex that covers L+ and does not intersect with L

-
. (Note that L includes neither CTX1 nor

CTX2.)

If the contrast complex, L
-
, is a conjunction of several selectors in the form [xi = Ai], i = 1,2,3..,

the extension-against is performed for all attributes (dimensions), xi.

Let us now consider a more general case when A ∩ B ≠ ∅. This case can be treated in three
different ways, as is done in AQ learning with regard to ambiguous events:

1. Include_in_Pos: Assume that L+ = [xi = A] & CTX1, and L- = [xi = B \ A] & CTX2, and
proceed as in the case above, i.e., when A ∩ B was empty. This assumption means that events
satisfying [xi = A ∩ B] are treated as positive examples, but not as negative.

2. Include_in_Neg: Assume that L+ = [xi = A \ B] & CTX1, and L- = [xi = B] & CTX2, and
proceed as in the case when A ∩ B was empty. This assumption means that events satisfying [xi
= A ∩ B] are treated as negative examples, but not as positive.

3. Ignore: Assume that L+ = [xi = A \ B] & CTX1, and L- = [xi = B \ A] & CTX2, and proceed as
in the case when A ∩ B was empty. This assumption means that events satisfying [xi = A ∩ B]
are treated as neither positive nor negative examples.

If B \ A = ∅, i.e., when B ⊆ A, then L = ∅ (null expression), and this step of application of the
extension-against operator is skipped.

Let us now consider the most general case in which conditions [xi = A] and [xi = B] in (4) and
(5) are arbitrary logically disjoint attributional conditions, say, S1 and S2, respectively. They
may be, e.g., extended conditions in which A and B are attributes, rather than subsets of the
domain of xi (Michalski, 2004). We have:

 L+ = S1 & CTX1 (8)

 L
-
 = S2 & CTX2 (9)

In this case, the extension of L+ against L
-
 produces:

 L = ~S2 & ε, if ~S2 logically intersects with L+; otherwise, ∅ (10)

where ε is a generalization margin, which is a complex, CPX, that ranges between a value
defined by the expression ~S2 & CPX = S1 & CTX1 (in which case L is not generalized) and
the value “True” (in which case L is the maximal consistent generalization of (8), that is,
maximal generalization that does not cover any part of L

-
).

 5

The above assumed that A, B, S1 and S2 all include no meta-values. One problem considered in
this paper is how to execute the extension-against operator when complexes L+ and/or L

-
 include

such values. Another problem is how to compute the degree to which an event matches a
complex (rule) in cases in which the complex and/or event includes such values. Both problems
occur in rule learning, and the second problem occurs in rule testing, that is, in applying rules to
classify new events.

The rule matching operator is not a single operator, but rather a combination of constituent
operators used for interpreting an attributional ruleset. Thee basic constituent operators are
defined in a ruleset interpretation schema, namely, an operator for matching an event with an
attributional condition (selector), an operator for matching an event with a conjunction of
selectors (a complex), and operator for matching an event with a disjunction of complexes
(Michalski, 2004).

Before applying a star generation operator, it is desirable to sort positive and negative examples
in descending order of the number of meta-values in them. This way, the operations involving
events with meta-values are delayed until the later stages of the process. This may lead to better
results, because operations with such events narrow down the range of possible generalizations.

3 REASONING WITH MISSING META-VALUES

3.1 Wrapper Methods

Wrapper (or preprocessing) methods for handling missing values are applied to datasets before
starting the learning process. After they have been applied, there is no need for modifying the
regular extension-against and matching operators to handle missing meta-values.

Method P1: Ignore events with attributes in the training set that have a “?” value in the
training dataset for the purpose of rule learning. Note that if the original dataset is transformed
into a target set through an attribute selection operator, some attributes will be removed.
Therefore, events with a “?” value for the removed attributes may not have any more missing
values. This method is recommended when the training dataset is large.

When rules are tested, or applied to new examples for the purpose of classification, events with
missing values are kept in the testing set. Because classification rules do not require knowledge
of values of all attributes, it may happen that the rules can be evaluated without knowing the
missing value/s. If in the testing/application phase the missing values are required to evaluate a
rule, then Method P2 or P3 is applied.

Method P2: Replace “?” by the average value (for numerical attributes) or the most frequent
value (for nominal attributes) in the s most similar training and/or testing events, where s is a
program parameter. If the training dataset is large, finding the s events most similar to a given
event can be a time-consuming operation. For default, use s = 1, and select a single, the most
similar example.

Method P3: Learn rulesets for determining the values of the attributes with missing values in
the training dataset, and then use these rulesets to predict the missing values when learning rules
for other output attributes. Learn first rules for determining values of those attributes with the
largest number of missing values in the dataset. Use method P2 for handling “?” values in

 6

attributes other than the one serving as output attribute. After a ruleset for an attribute was
learned, apply it to training and testing events that have a “?” value for this attribute, and replace
the “?” value by the rule-predicted value. Continue such a process until all missing values are
replaced by regular values.

A disadvantage of methods P2 and P3 is that values inserted in place of missing values may be
incorrect, and in such a case the performance of the learning or testing processes may be
negatively affected.

3.2 Executing the Extension-against Operator in Learning

Method L1: When applying the extension-against operator to negative events with “?” values,
ignore (skip) the extension-against operation for attributes with missing values in such events.

Method L2: Treat “?” as a regular value in the events, but do not use events with a “?” for
seeds. When extending a seed against a missing value, create a selector: [xi ≠ ?], regardless of
the value of attribute xi in the seed. This means that selector [xi ≠ ?] is assumed to cover any
seed event (the probability of this grows with the number of attributes). When logically
multiplying a regular selector, [xi = R], by the selector [xi ≠ ?], follow the rule:

 [xi = R] & [x i ≠ ?] = [xi = R, ~?] (11)

where the reference, R, does not include any meta-value. When multiplying two selectors with
the same attribute and a “?” in the reference, create two different “?” symbols:

 [xi = R1, ~?] & [xi = R2, ~?] = [xi = R1, ~?1, ~?2] (12)

When selecting complexes from intermediate or final stars, select only those that do not have a
“?” value in any selector. If such a complex does not exist in the final star, do not select any
complex but generate a star from another seed, or apply method L1.

3.3 Matching Rules with Events Containing Missing Values

We consider here a typical case when a “?” does not occur in rules but only in events. When an
event includes one or more “?” values, it may still be possible to determine if the event matches
the rule or not, because the rule may not refer to this attribute. If this is not possible, one of the
following methods is applied:

Method M1: Determine k most similar events in the training data to the given event, and
estimate the probability of matching the rule on the basis of the distribution of attribute values in
this group.

Method M2: Suppose a rule, COND � CONS, in which the condition, COND, is a complex,
and the consequent, CONS, is a selector, is to be matched with an event, e, in which attributes
from the set A have “?” values. Create a product of two rules:

 COND-A � CONS & COND-B � CONS (13)

where COND–A is the part of COND with attributes from A, and COND-B is the part that has
the remaining attributes. Determine the degree of match, DM, between e and COND-B, and
create a rule:

 COND-A & DM� CONS (14)

 7

When using a strict interpretation schema e either matches or does not match COND-B, so DM
is either 0 or 1. In the first case, the result is that the event does not match the rule. In the second
case, we have

 COND-A � CONS (15)

The rule (15) indicates which attributes need to be measured in order to assign a definitive
decision to the event e. When using a flexible interpretation schema (Michalski, 2004), the rule
(14) in which DM has some a smaller than 1, but greater than some acceptance threshold, is
returned as the output of the matching procedure,

To approximate the positive coverage, p, and negative support, n, of a learned rule (the number
of positive and negative events covered by the rule, respectively), the Coverage Range method is
used.

For all events that cannot be matched with a rule with a specific degree of match because of the
presence of a missing attribute value in the event, determine two values of p, pmin and pmax, and
two values of n, nmin and nmax, respectively. pmin and nmin are computed by assuming that the
event does not match the rule, and pmax and nmax are computed by assuming that it does match.
The positive rule coverage is characterized by the range (pmin .. pmax), and the negative coverage
by the range (nmin .. nmax).

4 REASONING WITH IRRELEVANT META-VALUES

As mentioned in the Introduction, one can distinguish between three kinds of irrelevant
attributes, task-irrelevant, class-irrelevant, and event-irrelevant. A classification of an attribute
into any of these classes is done by a domain-expert. The task-irrelevant attributes are handled by
removing them from the training and testing datasets. The class-irrelevant attribute are handled
by removing them from the training data for the classes for which they are irrelevant.

The event-irrelevant attributes are irrelevant only for specified events. The following sections
describe methods for handling them in rule learning and rule testing phases, respectively.

4.1 Rule Learning: Executing the Extension-against Operator

Suppose one or more training events for a given class have an irrelevant (“*”) value for one or
more attributes. These irrelevant values were presumably introduced by an expert in a given
problem domain. An irrelevant value is equivalent to, and thus can be replaced by, a disjunction
of all the values from the domain of the attribute in question (assuming that the domain is finite).

A training event with such a value can thus be transformed to a disjunction of events, each
having a different value from the attribute domain. In general, which includes also the case of
attributes with an infinite domain, such an event is equivalent to a complex that does not have a
selector with the attribute with an “*” value in the event.

This idea leads to the following method for executing the extension-against operator with events
that have an irrelevant value for some attributes.

Method IR: If an attribute is indicated as irrelevant in one or more events of a given class, but
indicated as relevant for other events; that is, is irrelevant for one or more combinations of values

 8

of other attributes, but not for all combinations, then in executing the extension against operator,
ignore the attribute with the value “*” in events with that value, but do not ignore it in other
events.

A proof of the correctness of this method is straightforward. Consider first the case of extending
an event against another event in which an attribute has an “*” value. Recall that

 e1 —| e2 = e1 |— ~e2 (16)

Suppose, without reducing the generality, that e2 = (x1=a1 & x2= a2 & x3= *), and values a1
and a2 do not appear in e1. Thus,

 e1 |— ~e2 = [x1 ≠ a1] ∨ [x2 ≠ a2] ∨ [x3 ≠ *] (17)

Based on the definition of the irrelevant value, “*”, [x3 ≠ *] is equivalent to:

 [x3 ≠ a31 v a32 v v a3k], which, ∅ (18)

where a3i, i = 1, 2,3,..., span all values in the domain of x3. This proves the procedure.

A proof for the case in which e1 has an irrelevant value or the general case in which events e1
and e2 are complexes is straightforward, because L & [xi = *] = L for every L.

4.2 Rule Matching: Determining Coverage of Events with Irrelevant Values

If an event with some attributes indicated as irrelevant is matched against an attributional rule,
this attribute is removed from the event. This is equivalent to asserting that the irrelevant value
always matches a selector with this attribute.

5 REASONING WITH NOT APPLICABLE META-VALUES

5.1 Rule Learning: Executing the Extension-against Operator

If a dataset has “Not applicable” values (“NA”) for some attributes, the attributes are removed
from all events with that value when executing the extension-against operator, regardless of
whether they are positive or negative events. This operation is justified by the “NA” semantics,
according to which, asking for a value of the attribute of an entity for which an attribute is not
applicable is meaningless.

5.2 Rule Matching: Determining Coverage of Events with “NA” Values

If a training event has a “Not applicable” value for some attribute, the attribute is removed from
the event when determining the rule coverage during the learning process. Therefore, the event
does not match the rule if the rule references the NA attribute.

During the testing process, when matching an event against a rule, it is important to correctly
interpret the meaning of the condition referencing an attribute that is not applicable to an entity.
Consider the following example involving robot-like objects used in the iAQ program
(downloadable from http://www.mli.gmu.edu/msoftware.html). Suppose a testing event:

 e = (Has_jacket = no, jacket_color = NA, x3 = a3) (19)

 9

is matched against the rule:

 [robot = friendly] � [jacket_color = red] (20)

The jacket_color is NA in this event because the robot does not wear a jacket. The rule is
interpreted as not applicable to this event, and thus ignored. The result would be the same if one
treated the value “NA” as a regular value of the attribute.

Suppose now that the event (18) is matched against the rule:

 [robot = friendly] � [jacket_color ≠ red] (21)

If one would consider “NA” as a regular value of the attribute “jacket_color,” then event (19)
would match this rule, which would be incorrect. In this case, the “NA” value has to be
interpreted according to its semantics. Because the “jacket_color” is not applicable, matching the
event against rule (21) should produce a no-match answer. In other words, the condition
[jacket_color ≠ red] should be interpreted as asking for the color of the jacket only if the robot
wears a jacket.

6 IMPLEMENTATION OF META-VALUES IN AQ21 LEARNING PROGRAM

6.1 Bitstring Representation of Discrete Attributes

This section describes an implementation of the presented methods for reasoning with meta-
values in the AQ21 program for learning and testing of attributional rules (Wojtusiak, 2004).
Because discrete and continuous attributes are represented differently, these two types of
attributes are handled in different ways. Discrete attributes are represented by bitstrings and
continuous attributes are represented by ranges of values (Michalski and Wojtusiak, 2005). The
method described here concerns only basic selectors, in which the reference is a single value or
an internal disjunction of attribute values, but can not be another attribute, as is in compound
selectors (Michalski, 2004).

In the bitstring representation, both events and complexes are represented by equal-length binary
strings. Each such bitstring is a concatenation of the characteristic vectors of the selector
references. The length of a bitstring is thus:

 #D(x1) + …+ #D(xn) + n (22)

where D(xi) is domain of the attribute xi, and #D denotes the cardinality of D. The value n in
(22) is added to account for the representation of missing meta-values. The next section
describes this representation in detail.

6.2 Handling Meta-values for Discrete Attributes

As indicated above, events comprising values of discrete attributes, as well as complexes
describing sets of events are represented in AQ21 by equal-length bitstrings. In this
representation, each bit indicates the presence (denoted by “1”) or absence (denoted “0”) of the
attribute value corresponding to the bit’s position in the string. For example, if the domain of x,
D(x), is {0,1,2,3,4}, then value x = 3 is represented by a string <00010>. Thus, in a
representation of an event only one bit is set to “1”for each regular attribute value (not a meta-
value) in the event.

 10

In representing a selector with a discrete attribute, all the bits representing attribute values in the
selector reference are set to “1”, and the remaining bits are set to “0”. For example, if the domain
of attribute “color” is {red, green, blue}, the selector [color = red ∨ blue] is represented by the
bitstring <101>. An attributional complex is represented by a concatenation of bitstrings
representing constituent selectors.

The meta-value “Missing” is represented by an additional bit at the end of the bitstring, a meta-
bit, whose value is set to 1 when “missing” is assigned to the attribute. For example, the event
e1 = (color = green)(size = ?) is represented by the bitstring <(0100)(0001)>, assuming that the
domain D(size) is {small, medium, large}.

The meta-value Irrelevant (“*”) is represented by setting all value bits to “1”, and the meta-bit to
“0”. Thus, an event e3 = (color = *) is represented by <1110>.

The meta-value “Not applicable” is represented by setting all bits to “0.” Thus, the event e4 =
(color = NA) is represented by the bitstring <0000>.

Using this representation, the extension against operator checks for the presence of meta-values
in both positive and negative events. If there are none, the program performs a standard
extension-against operation as described in Section 2. If a meta-value is detected, the program
performs the extension against operation for attributes with known values, and uses the methods
described in Sections 3.2, 4.1 and 5.1 for attributes with the meta-values.

If there is no “?” value in an event, the matching operation between an event and a complex is
straightforward. It is simply done by logically multiplying the corresponding bitstrings. The
meta-bit is treated as any other bit. If the logical multiplication produces a string in which at least
one bit is 1, then the match is strict, otherwise it is not. For instance, matching event (color = *)
against rule R = [color = red ∨ blue] involves a logical multiplication of bitstrings <1110> and
<1010>, which produces <1010>. The presence of “1s” in the result indicates that event e3
strictly matches rule R.

Suppose now that the event e4 = (color=NA) is matched against rule R from the previous
example. e4 is represented by the bitstring <0000> and R is represented by the bitstring <1010>.
A logical multiplication of the two bitstrings produces <0000>, which indicates no strict match.
If an event does not match every selector in a complex, the whole complex is not strictly
matched. (In this paper we do not consider partial, or flexible, matches of complexes. For a
discussion of such methods, see (Michalski, 2004)).

To implement methods M1 and M2 for reasoning with the unknowns requires computation of
probabilities, as described in Section 3.3. For this purpose, all selectors of a given rule need to
be evaluated separately. When a selector cannot be matched because of the “missing” value,
method M1 estimates the probability of matching it, and method M2 displays a message
informing user about this fact. To increase the program’s efficiency, the matching condition
operation is applied only to events marked as having missing values.

6.3 Handling Meta-values for Continuous Attributes

Selectors with continuous attributes are represented in AQ21 by ranges (pairs of real values), in
which the first number is the lower bound, and the second number is the upper bound on the

 11

values of a given attribute. Both events and complexes are represented this way. For example,
suppose “distance” (in meters) is a continuous attribute, whose domain ranges from 0 to 1000.
An event e1 = (distance = 37.25) would be represented by the pair (37.25, 37.25), in which the
lower bound and the upper bound are the same. If an attributional condition in a rule is [distance
= 25.3..32.1], the program would represent it by the pair (25.3,32.1) associated with attribute
“distance.”

The “Missing” meta-value is represented by the (+∞, +∞), where the lower and upper bounds are
set to infinity, which in the computer representation is the largest positive value representable on
the given computer. The meta-value “Irrelevant” is represented by the range (-∞, +∞), which
spans the entire range of real numbers representable on the given computer.

It should be noted that actual attribute domain does not have to span the entire range of real
numbers. For instance, the domain may just be numbers in the range from 0 to 100, but the
selector [x = *] would still be represented by the pair (-∞, +∞). The meta-value “Not applicable”
is represented by a pair (+∞, -∞), where the lower bound is set to plus infinity and the upper
bound is set to minus infinity, that is, the opposite of the representation of irrelevant values.

The “infinity” values are used in this representation, because they are assumed to never appear in
data. AQ21 uses the convention that infinity is encoded as the largest possible number in double
precision. The number is represented by the constant DBL_MAX1 that, according to the IEEE
standard, equals approximately 1.8*10308.

Both the “extension-against” and “matching” operators require special treatment of meta-values
by checking each case separately. To illustrate this problem, let x be a continuous attribute with
the domain (0, 100), rule r = [x = 10..20], and event e1 = (x = *). The event e is encoded by a
pair (-∞, +∞), and rule r is represented by the pair (10, 20). In this representation, event e1 is not
included in rule r, but according to the definition of irrelevant values, it should be. A similar
situation involves the “missing” value. To illustrate this, suppose that event e2= (x = ?),
represented by the pair (+∞, +∞), is matched against the rule r = [x = 10..20]. In this
representation the event does not match the rule. This is correct when computing value of pmin
described in Section 3.3, but incorrect for computing value of pmax. Thus, matching events with
meta-value “?” against rules is done according to a special procedure that corrects the indicated
problem.

To increase efficiency, AQ21 marks all events containing a meta-value. When an event with a
meta-value is detected, the program calls an appropriate procedure for handling it.

6.4 Implementing Wrapper Methods for Handling Missing Values

The implementation of the P1 method described in Section 3.1 is straightforward. Before AQ21
is run, all events with a “?” value for some attribute are removed from the data. This is a very
fast operation requiring only one pass through the data. As mentioned before, this method is
inappropriate for small datasets with many missing values, because too many events may have to
be ignored.

—————
1 In IEEE standard infinity is not encoded as the largest representable number and the presented method is used only in AQ21.

 12

Method P2 requires the computation of statistics on the data. The values are computed according
to the following algorithm.

For each event e with one or more missing values
Select the s events most similar to e in the same class
 For each attribute with value “?”
 If the attribute is numeric, compute the avera ge value
 Else compute the most frequent value in the s events
 Replace “?” with the computed value.

This algorithm assumes that missing values are infrequent, so that the algorithm will be efficient,
and that within the s selected events there is at least one regular value. The latter is most likely
true when s is sufficiently large.

P3 is the most advanced wrapper method for dealing with missing values. Using the provided
training data, the method learns rules to predict missing values of attributes. The following
pseudocode describes this algorithm.

 For each class C
 Order attributes into list L in ascending order of the number of
 events in the training dataset missing their value.
 For each attribute x from L, in the order defin ed by L:
 Learn rules for all the values of the attribu te
 from L using examples from C.
 Using the learned rules predict “missing” val ues
 of the attribute in the events of that clas s.

To apply this method, two problems have to be taken care of. First, the program must deal with
missing values present in the training events for learning value-predicting rules. The simplest
method is to ignore attributes with “missing” values. If many attributes have missing values,
then predictive rules can be learned using method L1 or L2, as described in Section 3.2.

A more complex problem is when an event in which a value is predicted has more than one
“missing” value, and it happens that another “missing” value is instrumental in the value-
predicting ruleset. One of two methods can be applied when learning the value-predicting rules:

- When learning value-predicting rules, ignore all attributes that have missing values in
events in which values are being predicted. This may not be possible when a large
number of missing values is present in the dataset, because all attributes would have to
be ignored.

- Use method M1 to compute probabilities of match, and choose the match with the
highest probability to predict the value.

To use these methods, the value-predicting rulesets must be logically disjoint so that the rule will
predict only one value. This is achieved by setting the AQ21 parameter that controls the type of
rulesets to be learned to “disjoint covers.” In cases where learned rulesets are not disjoint (when
“intersecting covers” were learned) one may choose the value that is suggested, for example, by
the rule with the highest support.

 13

7 EXPERIMENTAL RESULTS

7.1 Testing Methods for Handling Missing Values

The methods described above have been implemented in the AQ21 learning program and tested
on three datasets: Volcanoes, World Factbook 2004, and Computer Users.

The Volcanoes dataset, provided by the Smithsonian Institution, contains information about a
large number of volcanoes from around the world. The dataset that was used in the study
contained 13,787 training and 5,858 testing events for predicting whether or not fatalities would
occur due to volcanic eruptions. Each eruption is described by 45 multitype attributes (Kaufman
and Michalski, 2005).

The dataset has 79,829 missing values in the training dataset, out of 12,787 x 45 = 575,415 total
values that is, about 14 %, and 33,843 missing values out of 263,610 total values in the testing
dataset, that is, about 13%. The main reason for the amount of missing values is that much of the
data come from records of eruptions from centuries ago, in which these values were not
measured.

The World Factbook dataset contains information about 266 countries of the world. Each
country is described in terms of 36 multitype attributes, such as Gross Domestic Product (GDP),
Unemployment level, Fertility, Mortality, Population, etc. The dataset was prepared by the CIA
and is downloadable from their website: http://www.cia.gov/cia/publications/factbook. In this
dataset, 2552 values are missing, that is, about 27% of the data.

The Computer Users dataset contains datastreams from process tables recorded during the
interaction of 10 users with their computers. The datastreams were used to learn models (“user
signatures”) of the users’ interactions with the computer for the purpose of detecting illegitimate
user activities (Michalski et al., 2005). For each of the 10 users, the dataset contains 10 training
and 5 testing sessions (datastreams from login until logout).

Summary of Results

AQ21 learned rulesets from the Volcanoes dataset for the output attribute “Fatalities” whose
values are ”present” and “absent.” Four methods for handling missing values were applied: L1
(ignore attribute in the extension-against operation), P1 (remove events), P2 (estimate values),
and P3 (infer missing values). Table 1 presents the accuracies of classifying the testing data by
the rules learned using these four methods.

Method

L1 P1 P2 P3
Accuracy 98.51% 96.53% 98.48% 98.05%
Learning Time 13 min 2.6 min 13 min 48 min

Table 1: Results from comparing methods for handling missing values in the Volcano dataset.

As shown in Table 1, rules learned using methods L1, P2 and P3 gave very similar and relatively
high degrees of accuracy on classifying the testing data. The P1 method gave slightly lower

 14

accuracy, but was by far the fastest. Overall, if one considers accuracy to be the primary factor
and the learning time as the secondary factor, L1 performed the best.

Table 2 presents results from applying the same four methods to the problem of learning rules
from the World Factbook dataset for the output attribute “Birth Rate” with two classes (its
values): “≤ 20,” and “>20”. The best results in terms of accuracy and learning time were again
obtained by L1. The second best was P3 which gave relatively good results, but the learning
time was significantly longer than that of the other methods. The P1 method performed poorly
for this problem in terms of classification accuracy because too many events were removed from
the training dataset.

Method
L1 P1 P2 P3

Accuracy 94.29% 54.29% 40.00% 87.14%
Learning Time 0.3 sec 0.01 sec 0.2 sec 107 sec

Table 2: Results from comparing methods for handling missing values in
the World Factbook dataset.

Table 3 presents results from applying the same four methods to the problem of learning rules for
the Computer Users dataset. Here, the output attribute was “User” that has 10 values identifying
each of ten computer users.

Again, L1 gave the best classification accuracy on the testing dataset, while its learning time was
comparable to that of other methods. The P1 method had the shortest learning time, as before,
but its accuracy was lower on the testing data than that of L1. The P3 method was worst in terms
of accuracy, as well as the learning time.

Method
L1 P1 P2 P3

Accuracy 70.21% 68.09% 65.96% 63.83%
Learning Time 20 min 17 min 18 min 34 min

Table 3: Results from comparing four methods of handling missing values on the Computer
Users dataset.

The best performance of L1 in the experiments can be explained by the fact that the extension
against operation ignores only the missing values in the event, but takes into consideration other
values (see Section 3.2). Thus, it uses more information than other methods. The P1 method
removes not only the missing values but also entire events, thus uses less information for
learning. The P2 and P3 methods draw inferences about the training dataset that may or may not
be correct. Because the AQ21 learning program working in Theory Formation mode (as in our
experiments) learns descriptions that are complete and consistent with regard to the entire
training dataset, any incorrectly inferred values will negatively affect its performance.

The above experiments tested methods for handling missing values by comparing accuracies and
learning times obtained by these methods on three different real-world datasets. The next set of
experiments tested the methods by determining their accuracies on datasets in which we changed
a certain percentage of values into missing values. Thus, in these experiments we compared the

 15

performance of the methods when applied to datasets with different amount of values missing,
starting with the original data in which no values were missing.

In first step, we removed from the Computer Users dataset all events that contained any missing
values. The resulting dataset had 8579 training and 3929 testing events (with no missing values).
In the next six experiments, we randomly changed into missing values 5%, 10%, 15%, 20%,
25% and 30% of values in the dataset, respectively. Each of these six training sets was then used
as input to the AQ21 learning program. The learned rules were then tested on the complete
testing set (with all the values present). The classification accuracies (based on the “correct
match” evaluation, (Wojtusiak, 2005)) obtained from these experiments are presented in Table 4.

Method
L1 P1 P2 P3

Original data 60.87% 60.87% 60.87% 60.87%
5% missing 58.70% 50.00% 65.22% 60.87%
10% missing 54.35% 45.65% 56.52% 58.70%
15% missing 41.30% 21.74% 60.87% 36.96%
20% missing 28.26% 13.04% 60.87% 30.43%
25% missing 19.57% 15.22% 43.48% 15.22%
30% missing 13.04% 0.00% 19.57% 15.22%

Table 4: Classification accuracies obtained by four methods of handling missing values applied
to training sets with different percentages of missing values.

For up to 10% of missing values, L1, P2 and P3 methods all performed similarly. For above 10%
of missing values only P2 preformed well. A particularly surprising result is that rules learned
using P2 gave better performance accuracy when the training dataset had 5% missing values than
when it had no missing values, which is counterintuitive. It was also surprising that the rules
learned using P2 gave the same accuracy when the dataset had 20% missing values as when it
had no missing values. As expected, all method gave progressively worse results with the
increasing percentage of missing values. The strongest such effect was for P1, as it was learning
from an increasingly smaller amount of data.

The next set of experiments investigated the performance of rule matching methods on data with
different percentages of missing values in the testing set. To this end, we applied the learned
rulesets from the complete training dataset (i.e., with no missing values) to the testing datasets
with 5%, 10%, 15%, 20%, 25% and 30% values missing.

Results of the experiments, presented in Table 5, show that for the Computer Users dataset, the
presence of up to 10% missing values in the testing dataset did not affect the overall
classification accuracy when using a strict matching method. When the Selectors Ratio flexible
matching method was used (Michalski, 2004), the classification accuracy was much higher, but
at the expense of classification Precision, and it decreased much slower with the increasing
percentage of missing values in the testing dataset.

 16

Testing dataset Strict Matching Flexible Matching

(Selectors Ratio)
 Accuracy Precision Accuracy Precision
Original data 60.87% 87.18% 89.13% 24.63%
5% missing 60.87% 89.11% 84.78% 24.63%
10% missing 60.87% 93.20% 82.61% 24.88%
15% missing 47.83% 97.64% 78.26% 25.14%
20% missing 34.78% 100.00% 69.57% 27.32%
25% missing 26.09% 95.37% 73.91% 27.03%
30% missing 21.74% 95.37% 65.22% 26.47%

Table 5: A performance of the strict and flexible matching methods on testing datasets with
increasing percentages of missing values.

It should be mentioned that the results from all the methods are relatively poor in this case,
because the Computer Users dataset presents a particularly difficult classification problem due to
a low relevance of the data to the problem (Michalski et al, 2005).

7.2 Testing the Method for Handling Irrelevant Values

To test methods for handling Not-Applicable and Irrelevant meta-values, we used an example from
the ROBOTS problem used in the iAQ program for demonstrating natural induction
(downloadable from http://www.mli.gmu.edu/msoftware.html). In this experiment, the dataset is a
collection of imaginary robots that are classified as “Friendly” (positive examples) or “Unfriendly”
(negative examples). Each robot is described in terms of attributes defined in Table 6. The “Robot
class” is the output attribute (with two values, “Friendly” and “Unfriendly),” and the rest are input
attributes. In addition, iAQ generates various derived attributes (Michalski and Pietrzykowski,
2005).

Attribute Name Attribute Type Attribute Domain

Robot class Nominal Friendly, Unfriendly
Head shape Nominal Round, square, triangle
Body shape Nominal Round, square, triangle
Smiling Nominal Yes, no
Holding Structured Sword, balloon, flag, Canadian flag, US_flag,

Polish_flag
Height Linear short, medium, tall
Antenna’s color Nominal Red, yellow, blue, green, black, white
Jacket’s color Nominal Red, yellow, blue, green, black, white
Has tie Nominal Yes, no

Table 6: Original attributes used for describing examples in the ROBOTS domain.

Training examples for a ROBOTS problem chosen for our experiments are presented in Table 7.
The first column represents the output attribute “Robot class”, and the other columns represent
the input attributes shown in Table 6.

 17

Examples of robots

Robot
class Head

shape
Body
shape

Smiling Holding Height Antenna’s
color

Jacket’s
color

Has
tie

Friendly round square Yes Polish flag Tall green blue yes
Friendly round triangle Yes balloon Medium green yellow no
Friendly square square Yes balloon Short red yellow no
Friendly round triangle Yes Polish flag Medium green yellow no
Unfriendly triangle square No US flag Medium green yellow yes
Unfriendly round square Yes sword Medium green blue yes
Unfriendly square square No balloon Medium red green yes
Unfriendly square triangle Yes sword Short green yellow no
Unfriendly round triangle No Polish flag Short green black yes
Unfriendly square square Yes sword Tall red red yes

Table 7: Training events used for learning the concept of Friendly Robots.

The learning dataset presented in Table 7 consists of events with no meta-values. Given this
training dataset, AQ21 generated the following rule:

[robot is friendly] � [it is smiling: 4,3] &
[it is not holding a sword: 4,2] : p=4, n=0

The rule covers all four positive examples and no negative examples (p=4, n=0). Its premise is a
conjunction of two conditions: [robot is smiling], which covers four positive and three negative
events, and [robot is not holding a sword], which covers four positive and two negative events.

Suppose now that a new positive event e1 = (friendly, round, triangle, *, US flag, medium,
green, yellow, no) is added to the training dataset by the teacher. In this event, the “Smiling”
attribute is indicated as irrelevant (it may be relevant for other events in the class “Friendly”).

To handle the additional event, e1, AQ21 needs to either learn a different rule that will describe
all positive events, or to learn an additional rule to cover the additional example. In our
experiment, AQ21 learns two rules, one that is identical to the previously learned rule, and the
second describing the added example:

[robot is friendly] � [it is smiling: 4,3] &
[it is not holding a sword: 4,2] : p=4, n=0

 [robot is friendly] � [it is not holding a sword: 4,2]
 [it has no tie: 4,1] : p=4, n=0

Let us suppose that event e2 = (unfriendly, round, square, *, sword, medium, yellow, red, yes) is
now added as a negative example to the dataset for the class “Friendly”. The original ruleset is
still a complete and consistent description of the class of friendly robots. Although attribute
“smiling” is irrelevant for the negative event e2, it is holding a sword that eliminates it, and the
rules are consistent.

To illustrate matching events with meta-value “*” against rules, suppose that the rule
 [robot is friendly] � [it is smiling] & [it is not holding a sword]

 18

has been previously learned. The event e1: (friendly, round, triangle, *, US_flag, medium,
green, yellow, no) matches this rule because it is not holding a sword and it has been declared
that the feature “is smiling” is irrelevant. Similarly the event e2: (unfriendly, round, square, *,
sword, medium, yellow, red, yes) does not match the rule, because the robot is holding a sword.

7.3 Testing the Method for Handling Not Applicable Values

To test the method for handling “Not applicable” meta-values, suppose we added to the dataset
for the ROBOT problem a positive example

e3 = (friendly, triangle, square, yes, NA, medium, green, blue, yes),

whose value of attribute “holding” is NA because the robot under consideration has no hands. In
this case, the originally learned rule does not cover the event e3. AQ21 learns an additional rule,
and produces the ruleset:

[robot is friendly] � [it is smiling: 5,3] & [it is not holding a sword: 4,2] : p=4, n=0

 [robot is friendly] � [its head is square or triangle: 2,4]
 [its body is square: 3,4]
 [it is smiling: 5,3]
 [its height is short or medium: 4,5] : p=2, n=0

The second rule has four selectors needed to eliminate all negative events, while still covering
event e3. Such a treatment of NA meta-values is consistent with the method described in Section
5.

A similar example can be developed for the case when NA appears in a negative example.

To illustrate matching events with the NA meta-value against rules, suppose that the rule:

[robot is friendly] � [it is smiling] & [it is not holding a sword]

has been learned. The event

e4 = (friendly, triangle, square, NA, balloon, medium, green, blue, yes)

is matched against the rule. The event e4 does not match it because its attribute “Smiling” is not
applicable.

8 RELATED RESEARCH

The problem of handling meta-values described in this paper has not been adequately addressed
in literature on machine learning and data mining. Most authors concentrate solely on handling
missing values, or treat all three meta-values in the same way. Even if they distinguish between
different meta-values, as, for example, in (Kononenko, 1992; Bruha, 2004), they do not address
the distinctions between them. The methods presented in this paper are original and different
from those described in the literature. They also are applied in the context of more expressive
representation language, namely attributional calculus.

 19

To give the reader a sense of the differences between our methods and other methods, below is a
brief review of some of the research in this area, which is mainly concerns handling of missing
values.

In C4.5 program (Quinlan, 1993), the learning phase assigns probabilities to the missing values
in order to evaluate an attribute. Events with missing values are assigned probabilities of
belonging to partitioned sets. The probabilities are used when computing Gain Ratio, a measure
for evaluating attributes when building a decision tree. This probabilistic approach is also used
when evaluating new examples. In such cases, the program explores all possibilities in
evaluating the decision tree, and assigns the class with the highest probability.

CN4 described in (Brucha and Krokowa, 1994) is an extension of the CN2 program (Clark and
Niblett, 1988). It employs six routines for processing missing values (Brucha and Franek 1996;
Brucha, 2004): ignore missing values; add “missing” value to an attribute domain; use the most
common value; create weighted copies of the original examples having different values replacing
the missing one; randomly select values; and match any value in learning and classification.

In (Brucha, 2004), the author proposes a multistrategy approach based on the six methods listed
above to handle missing attribute values. Two of the presented methods are similar to our
methods P1 (ignore events with missing values) and P2 (replace missing values with
average/most common value), but applied with a different learning program.

Ragel and Cremilleux (1999) presented an approach similar in spirit to P3, but in the context of
using association rules to fill-up the missing values. The proposed MVP method learns rules
using the Robust Association Rules Algorithm (RAR). Rules with a high support are used to
complete missing values in data. Another approach similar to P3 is discussed in
(Lakshminarayan et al., 1996), in which the authors use the Autoclass Bayesian clustering
program and C4.5 decision tree learner for filling-in the missing values.

Wu and Barbara (2002) describe a method for handling missing values for numerical attributes.
The method assumes the availability of constraints on attribute values, such as data summaries
contained in data warehouses. Three types of problems are considered: well-constrained, in
which the available summary is sufficient for inferring missing values; under-constrained, in
which summaries are accurate but insufficient; and over-constrained, in which summaries are
inconsistent. The authors propose three methods for filling-in missing values: by solving linear
equations in order to find exact missing values, by maximizing entropy, and by minimizing
cross-entropy. Experimental results show that the accuracy of the presented methods increases
with the number of constraints (summaries).

Wang (2004) proposes a fuzzy set-based method to handle missing values in
learning Hopfield neural nets. Each training example with missing values is replaced by a set of
“fuzzy examples” without missing values and whose weights/probabilities are computed
according to fuzzy set theory. Such examples are used to learn the neural networks. Similarly
for classification problems, the author proposes using fuzzy copies of testing example for
evaluation; each copy of the testing example is given a value estimated based on the fuzzy sets
theory and having an assigned probability (weight). The weight is taken into consideration to
compute the final degree of match.

 20

A number of papers describe statistical approach to handling missing meta-values. Holt and
Benfer (2000) propose an iterative regression approach named MISDAT. The program
iteratively improves estimates of missing values until a test based on squared multiple correlation
stabilizes. In practice, fewer than ten iterations are usually sufficient. An overview of a number
statistical methods for dealing with missing values is presented by Little and Rubin (2002).

A number of researchers have investigated the handling and imputation of missing values to
particular datasets. Heikki et al. (2004) discuss several methods, such as simulation of missing
data, interpolation, regression analysis, nearest-neighbor etc. as applied to air quality data.
Engels and Diehr (2003) discuss statistical methods for imputing missing values in longitudinal
data. Sartori et al. (2004) use statistical methods for multiple imputation of missing values in
cancer mortality data.

Theoretical aspects of learning from examples with meta-values are discussed in (Schuurmans
and Greiner, 1997; Greiner et al., 1997). The authors discuss missing and irrelevant meta-values
in context of PAC learning.

9 CONCLUSION

Methods for reasoning with missing, irrelevant, and not applicable meta-values in data have
been described for both training and application/testing phases of attributional rule learning using
AQ learning method. The three meta-values have different semantics, and appear in the data for
different reasons. Therefore, they have been considered in this paper as separate problems.

The missing value problem appears in many applications domains, as it is quite common that
values of some attributes may not available in the data for some reason. The irrelevant and not
applicable values represent problem background knowledge communicated to the program by an
expert, and the problem is how to adequately utilize this knowledge. Semantics of the meta-
values are used on level of extension-against, the most important operation in AQ learning,
therefore are handled on the basic level of the learning algorithm. This fact significantly
differentiates the presented methodology from methods known from literature that are based on
filling-in missing values.

The presented methods have been implemented in the AQ21 learning program, and tested on
datasets from three different real world domains, and one designed domain in order to evaluate
their strengths and weaknesses. Four methods were investigated for handing missing values, L1
(that ignores these values during the extension-against operation), P2 and P3 (that fill-in data by
estimated or hypothesized values), and P1 (that ignores events with such values). In our initial
experiments, the best results were obtained from the L1 method. Methods for handling irrelevant
and not applicable meta-values gave results fully consistent with the meaning of these meta-
values. The initial results confirmed our hypothesis that handling semantics of meta-values on
level of extension-against and basic matching operators, the lowest level operations in AQ
learning, provide the best results.

The implementation of the developed methods in the AQ21 program makes it applicable to many
real-world domains where such meta-values occur. Such domains include medicine, agriculture,
bioinformatics, intrusion detection, classification of geological phenomena, and others.

 21

REFERENCES

Brucha, I., “Meta-Learner for Unknown Attribute Values Processing: Dealing with Inconsistency
of Meta-Databases,” Journal of Intelligent Information Systems, 22:1, pp. 71-87. 2004.

Brucha, I. and Franek, F., “Comparison of Various Routines for Unknown Attribute Value
Processing: The Covering Paradigm,” International Journal of Pattern Recognition and
Artificial Intelligence,. 10:8, pp. 939-955, 1996.

Clark, P. and Niblett, T., “The CN2 Induction Algorithm,” Machine Learning, 3:4, pp. 261-283,
1989.

Engels, J. M. and Diehr, P., "Imputation of Missing Longitudinal Data: A Comparison of
Methods," Journal of Clinical Epidemiology, 56, pp. 968-976, 2003.

Greiner, R., Grove, A.J. and Kogan, A., “Knowing What Doesn’t Matter: Exploring the
Omission of irrelevant data,” Artificial Intelligence, 97:1-2, pp. 345-380, December 1997.

Holt, B. and Benfer, R.A., Jr., "Estimating Missing Data: An Iterative Regression Approach,"
Journal of Human Evolution, 39, pp. 289-296, 2000.

Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J. and Kolehmainen, M., "Methods of
Imputation of Missing Values in Air Quality Data Sets," Atmospheric Environment, 28, pp.
2895-2907, 2004.

Kaufman, K.A. and Michalski, R.S., “An Application of AQ Learning to the Analysis of
Volcanic Activities,” Reports of the Machine Learning and Inference Laboratory, George Mason
University, 2005 (to appear).

Lakshminarayan, K., Harp, S. A., Goldman, R. and Samad, T., "Imputation of Missing Data
using Machine Learning Techniques," Proceedings of the Second International Conference on
Knowledge Discovery & Data Mining, Portland, OR, 1996.

Little, R.J.A. and Rubin, D.B., Statistical Analysis with Missing Data, Second Edition, John
Wiley & Sons, 2002.

Michalski, R.S., "Synthesis of Optimal and Quasi-Optimal Variable-Valued Logic Formulas,"
Proceedings of the 1975 International Symposium on Multiple-Valued Logic, Bloomington, IN,
pp. 76-87, 1975.

Michalski, R. S., "A Theory and Methodology of Inductive Learning," Chapter in the book,
Machine Learning: An Artificial Intelligence Approach, R. S. Michalski, T. J. Carbonell and T.
M. Mitchell (Eds.), pp. 83-134, TIOGA Publishing Co., Palo Alto, 1983.

Michalski, R.S., "ATTRIBUTIONAL CALCULUS: A Logic and Representation Language for
Natural Induction," Reports of the Machine Learning and Inference Laboratory, MLI 04-2,
George Mason University, Fairfax, VA, April, 2004.

Michalski, R.S. Kaufman, K.A., Pietrzykowski, J., Sniezynski, B., and Wojtusiak, J. “Learning
User Models for Computer Intrusion Detection: Results from a Preliminary Study Using Natural
Induction Approach” Reports of the Machine Learning and Inference Laboratory, George Mason
University, Fairfax, VA, 2005 (to appear).

 22

Michalski, R.S and Pietrzykowski, J., "iAQ: A Natural Induction System for Education and
Research in Machine Learning and Knowledge Mining," Reports of the Machine Learning and
Inference Laboratory, George Mason University, Fairfax, VA, 2005 (to appear).

Michalski, R.S. and Wojtusiak, J., “Semantic and Syntactic Attribute Types in AQ Learning,”
Reports of the Machine Learning and Inference Laboratory, George Mason University, Fairfax,
VA, 2005 (to appear).

Quinlan, J. R., “Unknown Attribute Values in Induction,” Proceedings of the 6th International
Workshop on Machine Learning, San Mateo, CA, 1989.

Quinlan, J. R., C4.5: Systems for Machine Learning, Morgan Kaufmann Publishers Inc., 1993.

Ragel, B. and Cremilleux, B.,"MVC - A Preprocessing Method to Deal with Missing Values,"
Knowledge-Based Systems, 12, pp. 285-289, 1999.

Satori, N., Salvan, A., and Thomaseth, K., "Multiple Imputation of Missing Values in Cancer
Mortality Analysis with Estimated Exposure Dose," Computational Statistics & Data Analysis,
2005 (to appear).

Schuurmans, D., and Greiner, R., “Learning to Classify Incomplete Examples,” in
Computational Learning Theory and Natural Learning Systems, Vol. IV, MIT Press, 1997.

Wang, S., "Classification with Incomplete Survey Data: A Hopfield Neural Network Approach,"
Computers and Operations Research, Volume 32, Issue 10, 2005.

Wojtusiak, J., “AQ21 User’s Guide,” Reports of the Machine Learning and Inference
Laboratory, MLI 04-3, George Mason University, Fairfax, VA, 2004.

Wu, X. and Barbara, D., "Learning Missing Values from Summary Constraints," SIGKDD
Explorations, 4, 2002.

 23

A publication of the Machine Learning and Inference Laboratory
School of Computational Sciences
George Mason University
Fairfax, VA 22030-4444 U.S.A.
http://www.mli.gmu.edu

Editor: R. S. Michalski
Assistant Editor: K. A. Kaufman

The Machine Learning and Inference (MLI) Laboratory Reports are an official publication of the Machine Learning
and Inference Laboratory, which has been published continuously since 1971 by R.S. Michalski’s research group
(until 1987, while the group was at the University of Illinois, they were called ISG (Intelligent Systems Group)
Reports, or were part of the Department of Computer Science Reports).

Copyright © 2005 by the Machine Learning and Inference Laboratory.

