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Abstract

This paper describes methods for reasoning migsing irrelevantandnot applicablemeta-values in the AQ
attributional rule learning. The methods addressas of handling these values in datasets bottuli®tearning
and rule testing. In rule learning, the presenceheke values affects thextension-againsgeneralization
operator in star generation, and the rule matcbperator. In rule testing, these values affectetkecution of
the rule matching operator. The presented methads heen implemented in the AQ21 learning prograch a
tested on four datasets.
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1 INTRODUCTION

In the general problem of learning concepts or classificatmres needs to consider cases when
training or testing datasets may not have values specified thieattributes and for all entities
(concept examples). Some attributes may have missing values. &woibetes may apply to
some but not to all entities (e.g., the number of pages applee®aok, but not to a chair in the
library). Also, certain attributes may be known to have no ralevao a given learning
problem, thus, removing them from the data is desirable (e.g., theofadustock tomorrow will
unlikely depend on the last name of the broker’s barber).



To represent such cases, Attributional Calculus employed in A@irgaassumes that the
domain of every attribute includes thmeeta-valuesn addition to its regular values (Michalski,
2004). These meta-values correspond to three possible answers totiangrezpiesting an
attribute value in situations in which a regular value is not providpdcifically, these are
“missing,” “not applicable” and “irrelevant,” meta-values. Their semantics is defined as
follows:

* Missing (a.k.a.“Don’t know” or “Unknown”), denoted by a “?”, is given to an attribute
whose value for a given entity is not available for some reason. For examgltrithge has
not been measured for this entity, or was measured but was nate@dorthe database. In
such situations, the meta-value “?” in inserted in the trainingoamnekting datasets for this
attribute in the event (example, instance, record, or datapoint) characterizingethergity.

* Not-applicable denoted by an “NA,” is given to an attribute that is not applicibéegiven
entity.

* lIrrelevant, denoted by an “*”, indicates that this attribute is considerezleirant for the
learning problem, or for the concept (class) to be learnedn dha particular event..
Consequently, three types of irrelevant attributes are distimglisask-irrelevant class-
irrelevant, andevent-irrelevant

0 An attribute istask-irrelevantif it is irrelevant for the entire learning problem. For
example, a student’s hair color can be declared as irrelevanedrning rules for
classifying students into groups representing their academic pencema

o0 An attribute isclass-irrelevantif it is irrelevant for a given class (value of the output
attribute), but may relevant for other classes. For exanmepdtient’'s PSA (prostatic
specific antigen) level is relevant for diagnosing prostate sksedut is irrelevant for
diagnosing eye diseases.

0 An attribute isevent-irrelevantf it is irrelevant only for a particular event in the class t
be learned. For example, the attribute “stock price” is releiaany event in the class
“stocks_to_acquire,” but in a particular instance when it is thek stbcompany you
work for and is given free to employees, it may be considered irrelevant.

The task-irrelevance is handled by simply removing the attributquestion from the

training and testing datasets. The class-irrelevance is hamgleinoving the attribute from
training dataset for the given class, but it remains in datdsat learning classes for which
it is relevant. Therefore, only the problem of handling evenewent attributes needs to be
considered.

The presence of missing values may be unavoidable in some probleaingos to the
irrelevance or not-applicability of an attribute, such decisionsrerge by an expert setting a
learning problem. These decisions can be viewed as prior knowledgaucicated to the
learning program. This knowledge is provided by entering appropriata-vakies into the
training and testing datasets.

In addition to methods that fill-in the missing values before thmileg process starts (wrapper
methods), we describe also methods for handling missing values dummgrdcess of AQ
learning. These methods are applied during the execution of two basic operators:

- The “extension against” generalization operator in the training phase



- The matching examples against rules operator, in the training and tdssesp

The first operator is employed during star generation of Qeearning method and second is
employed both in star generation and in determining the degree df bedteeen an event and a
rule (e.g., Michalski, 1975; 2004; both papers are downloadable from address
www://www.mli.gmu.edu/papers). For completeness, before descritiiage methods, we
briefly review the extension against and matching operators.

2 THE EXTENSION AGAINST AND RULE MATCHING OPERATORS

To explain the extension against and rule matching operators, suen@ghat the reader is
familiar with the basic terminology of Attributional Calcul(ichalski, 2004; downloadable
from address www.mli.gmu.edu/papers). We start by explainingxtension againstperator,
which is the basic generalization operator in AQ learning.

Given two attributional events el and e2 (vectors of attribute-vathe®xtension oélagainst
e2, denoted as el —| e2, is equivalent toetttension okl in the negation of e2, denoted as
el |— ~e2, that is:

el—|e2 = el|—-~e2 (1)

To explain the function of thextension-inoperator, let us first assume that ~e2 is a single
complex (attributional conjunction), denoted by L. Bx¢ension oélin L is defined:

el |— L = L, ifellL, otherwisel (2)

By el L is meant that el strictly satisfies (or is coveredtbg)complex L, that is, satisfies all
conditions in L. The negation of an event, e.g., ~e2 in (1), is equivalentdisjunction of
complexes consisting of a single condition.  Extension-in is loligive over disjunction,
therefore, if L in (2) is replaced by a disjunction of complekx&d1L2 [1,... 0Lk, the result of

the |— operator is a disjunction of the results obtained from appl@hgo individuals
complexes L1, L2, .., Lk:
el |— (L10L20...0Lk) = (el|— L1Y (el|—L2)O..0 (el |— Lk) (3)

Let us now generalize the extension against operator to tlkeirtaghich el is an arbitrary
complex. Suppose that'land L are two complexes characterizing positive and negative
training examples, respectively. Suppose further thaah be represented in the form:

L+ = [xi = A] & CTX1 (4)
and L in the form:

L- = [xi = B] & CTX2 (5)
where x is an attribute, A and B are subsets of the domain @fepresented in Attributional
Calculus by linking their elements by internal disjunction), anXT&nd CTX2 are “context”
complexes that do not contain attributear are null expressions.

Let us assume first that references A and B are disjointAi.e.,.B = 0. Theextension of.*
againstL along dimensior;, denoted

L" —| L /x (6)
is equivalent to thextension ofLL" in negation of Lalong x;, denoted [ |—~ L / x, and
produces



L=[xi+B0Oe¢ )

whereg is ageneralization marginwhich is a set disjoint from A and B, ranging between the set
D(x;)) — (AU B) andd, where D(X is the domain of attributeg.x

If e=D(x)— (A0 B), then Lis [x=A], thatis, a complex created by repetitively applytimg
dropping conditiongeneralization operator to remove CTX1 fromi (Michalski, 1983). Ift =
0, then L is the maximal possible consistent generalizatiori,ahat is, the maximally general
complex that covers™and does not intersect with. l[(Note that L includes neither CTX1 nor
CTX2.)

If the contrast complex, Lis a conjunction of several selectors in the forpe[A], i = 1,2,3..,
the extension-against is performed for all attributes (dimensians), x

Let us now consider a more general case when B # [. This case can be treated in three
different ways, as is done in AQ learning with regard to ambiguous events:

1. Include_in_Pos: Assume that L= [x; = A] & CTX1, and L= [x; = B\ A] & CTX2, and
proceed as in the case above, i.e., whem B was empty. This assumption means that events
satisfying [x = A n B] are treated as positive examples, but not as negative.

2. Include_in_Neg: Assume that L=[x; = A\ B] & CTX1, and L= [x; = B] & CTX2, and
proceed as in the case whemAB was empty. This assumption means that events satisfying [x
= A n B] are treated as negative examples, but not as positive.

3.Ignore: Assume that L=[x;= A\ B] & CTX1, and L= [x; = B\ A] & CTX2, and proceed as
in the case when A B was empty. This assumption means that events satisiirgN n B]
are treated as neither positive nor negative examples.

IfB\A =0, i.e.,, when BJ]A, then L =00 (null expression), and this step of application of the
extension-against operator is skipped.

Let us now consider the most general case in which conditiprsAk and [x = B] in (4) and
(5) are arbitrary logically disjoint attributional conditions, ,s&t and S2, respectively. They
may be, e.g., extended conditions in which A and B are attributesy thign subsets of the
domain of x (Michalski, 2004). We have:

L* = S1&CTX1 (8)
L = S2&CTX2 9
In this case, the extension of Lagainst Lproduces:

L =~S2 &€, if ~S2 logically intersects with'l otherwise, [ (10

where € is a generalization marginwhich is a complex, CPX, that ranges between a value
defined by the expression ~S2 & CPX = S1 & CTX1 (in whickedais not generalized) and
the value “True” (in which case L is the maximal consistent igdimation of (8), that is,

maximal generalization that does not cover any part)of L



The above assumed that A, B, S1 and S2 all include no meta-v@hegroblem considered in
this paper is how to execute the extension-against operator wherezesfil and/or L include
such values. Another problem is how to compute the degree to which annestehies a
complex (rule) in cases in which the complex and/or event includesvalies. Both problems
occur in rule learning, and the second problem occurs in rule tettatgs, in applying rules to
classify new events.

The rule matching operator is not a single operator, but rathemaimation of constituent
operators used for interpreting an attributional ruleset. Thee lgasistituent operators are
defined in a ruleset interpretation schema, namely, an operatarafiching an event with an
attributional condition (selector), an operator for matching an evéht avconjunction of

selectors (a complex), and operator for matching an event witisjanction of complexes
(Michalski, 2004).

Before applying a star generation operator, it is desiraldertopositive and negative examples
in descending order of the number of meta-values in them. This eyperations involving
events with meta-values are delayed until the later stagbe @rocess. This may lead to better
results, because operations with such events narrow down the range of possiblz agoresal

3 REASONING WITH MISSING META-VALUES

3.1 Wrapper Methods

Wrapper (or preprocessing) methods for handling missing valeeapptied to datasets before
starting the learning process. After they have been apfitietk is no need for modifying the
regular extension-against and matching operators to handle missing nuets-val

Method P1: Ignore events with attributes in the training set that hav@”avélue in the
training dataset for the purpose of rule learning. Note thheioriginal dataset is transformed
into a target set through an attribute selection operator, somieutas will be removed.
Therefore, events with a “?” value for the removed attributeg mod have any more missing
values. This method is recommended when the training dataset is large.

When rules are tested, or applied to new examples for the purpdsssification, events with
missing values are kept in the testing set. Because dtasisifi rules do not require knowledge
of values of all attributes, it may happen that the rules carvéleated without knowing the
missing value/s. If in the testing/application phase the missigvare required to evaluate a
rule, then Method P2 or P3 is applied.

Method P2: Replace “?"by the average value (for numerical attributes) or the mogtidre
value (for nominal attributes) in tremost similar training and/or testing events, wheis a
program parameter. If the training dataset is large, findiag events most similar to a given
event can be a time-consuming operation. For defaults esg, and select a single, the most
similar example.

Method P3: Learn rulesets for determining the values of the attributds missing values in
the training dataset, and then use these rulesets to predidstgiegnvalues when learning rules
for other output attributes. Learn first rules for determining vatidgbose attributes with the
largest number of missing values in the dataset. Use methodrRtaridling “?” values in



attributes other than the one serving as output attribute. Afteleset for an attribute was
learned, apply it to training and testing events that have a t@é ¥ar this attribute, and replace
the “?” value by the rule-predicted value. Continue such a proacggsall missing values are
replaced by regular values.

A disadvantage of methods P2 and P3 is that values inserted engblaissing values may be
incorrect, and in such a case the performance of the learnimgstong processes may be
negatively affected.

3.2 Executing the Extension-against Operator in Learning

Method L1: When applying the extension-against operator to negative event§?vithlues,
ignore (skip) the extension-against operation for attributes with missingsvalgach events.

Method L2: Treat“?” as a regular value in the events, but do not use events with far
seeds. When extending a seed against a missing value, csetgetar: [x # ?], regardless of
the value of attribute;xn the seed. This means that selecterz[®] is assumed to cover any
seed event (the probability of this grows with the number ofbates). When logically
multiplying a regular selector, [x R], by the selector [xz ?], follow the rule:
Xi=R]&[xiZ?]=[% =R, ~?] (12)

where the reference, R, does not include any meta-value. When ymugiplo selectors with
the same attribute and a “?” in the reference, create two differentitiialy:

[xi=R1,~?] & [x=R2,~?] = [x=R1, ~?1, ~?2] (12)

When selecting complexes from intermediate or final starsctsehly those that do not have a
“?” value in any selector. If such a complex does not exidtenfinal star, do not select any
complex but generate a star from another seed, or apply method L1.

3.3 Matching Rules with Events Containing Missing Values

We consider here a typical case when a “?” does not occur inbutemly in events. When an
event includes one or more “?” values, it may still be possibtetermine if the event matches
the rule or not, because the rule may not refer to this attritfutes lis not possible, one of the
following methods is applied:

Method M1: Determinek most similar events in the training data to the given event, and
estimate the probability of matching the rule on the basis digiebution of attribute values in
this group.

Method M2: Suppose a rule, CONB» CONS, in which the condition, COND, is a complex,
and the consequent, CONS, is a selector, is to be matched wetreane, in which attributes
from the set A have “?” values. Create a product of two rules:

COND-A=> CONS & COND-B2> CONS (13)

where COND-A is the part of COND with attributes from A)da&OND-B is the part that has
the remaining attributes. Determine the degree of match, i2wlyeene and COND-B, and
create a rule:

COND-A & DM=> CONS (14)



When using a strict interpretation scheen@ither matches or does not match COND-B, so DM
is either O or 1. In the first case, the result is that thetelaes not match the rule. In the second
case, we have

COND-A= CONS (15)

The rule (15) indicates which attributes need to be measured in tor@gessign a definitive
decision to the ever. When using a flexible interpretation schema (Michalski, 2004), tiee rul
(24) in which DM has some a smaller than 1, but greater thare sicceptance threshold, is
returned as the output of the matching procedure,

To approximate the positive coverageand negative support, of a learned rule (the number
of positive and negative events covered by the rule, respedtitteyCoverage Rangmethod is
used.

For all events that cannot be matched with a rule with a spdeifree of match because of the
presence of a missing attribute value in the event, determineatwes ofp, pmin andpmax and
two values ofn, Nmin andnmay respectively. pmin andnmin are computed by assuming that the
event does not match the rule, apgax andnmax are computed by assuming that it does match.
The positive rule coverage is characterized by the rgmge.(pmay, and the negative coverage
by the ranger(uin .- Nmay)-

4 REASONING WITH IRRELEVANT META-VALUES

As mentioned in the Introduction, one can distinguish between three kindselefvant
attributes, task-irrelevant, class-irrelevant, and event-imeke\A classification of an attribute
into any of these classes is done by a domain-expert. The task-irrelevhuatesttare handled by
removing them from the training and testing datasets. The-ictaks/ant attribute are handled
by removing them from the training data for the classes for which theyeleyant.

The event-irrelevant attributes are irrelevant only for spetiévents. The following sections
describe methods for handling them in rule learning and rule testing phapestivesy.

4.1 Rule Learning: Executing theExtension-against Operator

Suppose one or more training events for a given class haveekavant (“*”) value for one or
more attributes. These irrelevant values were presumably inteducan expert in a given
problem domain. An irrelevant value is equivalent to, and thus carplaeed by, a disjunction
of all the values from the domain of the attribute in question (assuming that the donmaie)is f

A training event with such a value can thus be transformed to a aisjurof events, each
having a different value from the attribute domain. In general, whicludes also the case of
attributes with an infinite domain, such an event is equivalent to plerrthat does not have a
selector with the attribute with an “*” value in the event.

This idea leads to the following method for executing the extengiaimst operator with events
that have an irrelevant value for some attributes.

Method IR: If an attribute is indicated as irrelevant in one or more everdasgofen class, but
indicated as relevant for other events; that is, is irrelevant for one orcaomit@Enations of values



of other attributes, but not for all combinations, then in executingxtension against operator,
ignore the attribute with the value “*” in events with that value, datnot ignore it in other
events.

A proof of the correctness of this method is straightforward. @engirst the case of extending
an event against another event in which an attribute has an “*” value. Recall that

el—|e2 = el|—-~e2 (16)
Suppose, without reducing the generality, that e2 = (x1=al & x2& ®2= *), and values al
and a2 do not appear in el. Thus,
el |—~e2 = [x#£ al]l[x; # a2] O [x3 # *] (17)

Based on the definition of the irrelevant value, “*”, [%3] is equivalent to:
[Xs# a1VayV ....vay, which, O (18)

where g;, i =1, 2,3,..., span all values in the domain of x3. This proves the procedure.

A proof for the case in which el has an irrelevant value orehergl case in which events el
and e2 are complexes is straightforward, because L. &1{k= L for every L.

4.2 Rule Matching: Determining Coverage of Events with rrelevant Values

If an event with some attributes indicated as irrelevant iehed against an attributional rule,
this attribute is removed from the event. This is equivalent trtass that the irrelevant value
always matches a selector with this attribute.

5 REASONING WITH NOT APPLICABLE META-VALUES

5.1 Rule Learning: Executing theExtension-against Operator

If a dataset has “Not applicable” values (“NA”) for someilatites, the attributes are removed
from all events with that value when executing the extensiamsigoperator, regardless of
whether they are positive or negative events. This operatiortifepi®y the “NA” semantics,
according to which, asking for a value of the attribute of anyefaitwhich an attribute is not
applicable is meaningless.

5.2 Rule Matching: Determining Coverage of Events with “NA” Values

If a training event has a “Not applicable” value for some attibtiie attribute is removed from
the event when determining the rule coverage during the learningsgrod herefore, the event
does not match the rule if the rule references the NA attribute.

During the testing process, when matching an event against atnglemportant to correctly
interpret the meaning of the condition referencing an attributeéshmtdt applicable to an entity.
Consider the following example involving robot-like objects used in the B@gram
(downloadable fronmttp://www.mli.gmu.edu/msoftware.hjmiSuppose a testing event:

e = (Has_jacket = no, jacket_color = NA, X&) (29)



is matched against the rule:
[robot = friendly] < [jacket_color = red] (20)

The jacket_color is NA in this event because the robot does not weaket. The rule is
interpreted as not applicable to this event, and thus ignorede$uk would be the same if one
treated the value “NA” as a regular value of the attribute.

Suppose now that the event (18) is matched against the rule:
[robot = friendly] €& [jacket_color# red] (21)

If one would consider “NA” as a regular value of the attribyéeKet_color,” then event (19)
would match this rule, which would be incorrect. In this case, the”“dflue has to be
interpreted according to its semantics. Because the “jacket” lwot applicable, matching the
event against rule (21) should produce a no-match answer. In other wwdsoridition
[jacket_color# red] should be interpreted as asking for the color of the jacketifotle robot
wears a jacket.

6 IMPLEMENTATION OF META-VALUES IN AQ21 LEARNING PROGRAM

6.1 Bitstring Representation of Discrete Attributes

This section describes an implementation of the presented methodsasoning with meta-
values in the AQ21 program for learning and testing of attobat rules (Wojtusiak, 2004).
Because discrete and continuous attributes are representecendiffethese two types of
attributes are handled in different ways. Discrete attr#bate represented by bitstrings and
continuous attributes are represented by ranges of values (Skichatl Wojtusiak, 2005). The
method described here concerns only basic selectors, in which eéhencsf is a single value or
an internal disjunction of attribute values, but can not be anothdrutdt as is in compound
selectors (Michalski, 2004).

In the bitstring representation, both events and complexes aeseaped by equal-length binary
strings. Each such bitstring is a concatenation of the chasticterectors of the selector
references. The length of a bitstring is thus:

#D(x) + ...+ #D(%) + n (22)

where D(X) is domain of the attribute;,xand #D denotes the cardinality of D. The value n in
(22) is added to account for the representation of missing metasval The next section
describes this representation in detail.

6.2 Handling Meta-values for Discrete Attributes

As indicated above, events comprising values of discrete attribigesield as complexes
describing sets of events are represented in AQ21 by equa@ildmtstrings. In this
representation, each bit indicates the presence (denoted by ‘dsence (denoted “0”) of the
attribute value corresponding to the bit's position in the string.ekample, if the domain of x,
D(x), is {0,1,2,3,4}, then value x = 3 is represented by a string <00016ws,Tin a
representation of an event only one bit is set to “1"for each negtitébute value (not a meta-
value) in the event.



In representing a selector with a discrete attributehalbits representing attribute values in the
selector reference are set to “1”, and the remaining bitseate “0”. For example, if the domain
of attribute “color” is {red, green, blue}, the selector [color = réBlue] is represented by the
bitstring <101>. An attributional complex is represented by a ¢enaton of bitstrings
representing constituent selectors.

The meta-value “Missing” is represented by an additional iheaend of the bitstring, meta-
bit, whose value is set to 1 when “missing” is assigned to thbuaé. For example, the event
el = (color = green)(size = ?) is represented by theaibgst(0100)(0001)>, assuming that the
domain D(size) is {small, medium, large}.

The meta-value Irrelevant (“*”) is represented by setéifhgzalue bits to “1”, and the meta-bit to
“0”. Thus, an event e3 = (color = *) is represented by <1110>.

The meta-value “Not applicable” is represented by settingi@ito “0.” Thus, the event e4 =
(color = NA) is represented by the bitstring <0000>.

Using this representation, the extension against operator cloedke fpresence of meta-values
in both positive and negative events. If there are none, the prograornperd standard
extension-against operation as described in Section 2. If a matigatletected, the program
performs the extension against operation for attributes with knownsyalod uses the methods
described in Sections 3.2, 4.1 and 5.1 for attributes with the meta-values.

If there is no “?” value in an event, the matching operation betweeneart and a complex is
straightforward. It is simply done by logically multiplyinthe corresponding bitstrings. The
meta-bit is treated as any other bit. If the logical multiplication presiacstring in which at least
one bit is 1, then the match is strict, otherwise it is not. m&sance, matching event (color = *)
against rule R = [color = red blue] involves a logical multiplication of bitstrings <1110> and
<1010>, which produces <1010>. The presence of “1s” in the result inditbatesvent e3
strictly matches rule R.

Suppose now that the event e4 = (color=NA) is matched against rilenRthe previous
example. e4 is represented by the bitstring <0000> and R isesfgddy the bitstring <1010>.
A logical multiplication of the two bitstrings produces <0000>, whiatidates no strict match.
If an event does not match every selector in a complex, theewdwhplex is not strictly
matched. (In this paper we do not consider partial, or flexibléchras of complexes. For a
discussion of such methods, see (Michalski, 2004)).

To implement methods M1 and M2 for reasoning with the unknowns requires ediowpudf
probabilities, as described in Section 3.3. For this purpose, altaslet a given rule need to
be evaluated separately. When a selector cannot be matcledded the “missing” value,
method M1 estimates the probability of matching it, and method Mg@lagis a message
informing user about this fact. To increase the program’s eifigiethe matching condition
operation is applied only to events marked as having missing values.

6.3 Handling Meta-values for Continuous Attributes

Selectors with continuous attributes are represented in AQ21 ggggpairs of real values), in
which the first number is the lower bound, and the second number is thebagypel on the

10



values of a given attribute. Both events and complexes are repcesaistway. For example,
suppose “distance” (in meters) is a continuous attribute, whose doamgjesrfrom 0 to 1000.
An event el = (distance = 37.25) would be represented by the pair (37.25, Bvbich the
lower bound and the upper bound are the same. If an attributional comtiéioule is [distance
= 25.3..32.1], the program would represent it by the pair (25.3,32.1) associtteattwibute
“distance.”

The “Missing” meta-value is represented by the,(+), where the lower and upper bounds are
set to infinity, which in the computer representation is the lapgestive value representable on
the given computer. The meta-value “Irrelevant” is represenyethd range ¢e, +), which
spans the entire range of real numbers representable on the given computer.

It should be noted that actual attribute domain does not have to spantiteerange of real
numbers. For instance, the domain may just be numbers in the range fm00, but the
selector [x = *] would still be represented by the pair, (r0). The meta-value “Not applicable”

is represented by a pairof+ -0), where the lower bound is set to plus infinity and the upper
bound is set to minus infinity, that is, the opposite of the representation of irrelevas. valu

The “infinity” values are used in this representation, becaugeatteeassumed to never appear in
data. AQ21 uses the convention that infinity is encoded as trestgygssible number in double
precision. The number is represented by the constant DBL_‘M#e¢, according to the IEEE
standard, equals approximately 1.8*fD

Both the “extension-against” and “matching” operators requireigpieeatment of meta-values
by checking each case separately. To illustrate this prold¢m be a continuous attribute with
the domain (0, 100), rule r =[ x = 10..20 ], and event el = (x = *). Th& evis encoded by a
pair (<o, +00), and rule r is represented by the pair (10, 20). In this repat®en event el is not
included in rule r, but according to the definition of irrelevant @ajut should be. A similar
situation involves the “missing” value. To illustrate this, suppose ¢ant e2= (x = ?),
represented by the pair off+ +0), is matched against the rule r = [ x = 10..20 ]. In this
representation the event does not match the rule. This is cotnect computing value of.p,
described in Section 3.3, but incorrect for computing valug.gf prhus, matching events with
meta-value “?” against rules is done according to a specakg@ure that corrects the indicated
problem.

To increase efficiency, AQ21 marks all events containing a-wadtee. When an event with a
meta-value is detected, the program calls an appropriate procedure fandghand

6.4 Implementing Wrapper Methods for Handling Missing Values

The implementation of the P1 method described in Section 3.1 is dwaigid. Before AQ21

is run, all events with a “?” value for some attribute areonead from the data. This is a very
fast operation requiring only one pass through the data. As mentiorwd, dbfs method is
inappropriate for small datasets with many missing valuegulsedoo many events may have to
be ignored.

! In IEEE standard infinity is not encoded as thigeat representable number and the presented misthedd only in AQ21.
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Method P2 requires the computation of statistics on the data. The values are cocgurtidg
to the following algorithm.

For each event e with one or more missing values
Select the s events most similar to e in the same class
For each attribute with value “?”
If the attribute is numeric, compute the avera ge value
Else compute the most frequent value in the S events
Replace “?” with the computed value.

This algorithm assumes that missing values are infrequetitasthe algorithm will be efficient,
and that within thes selected events there is at least one regular value. Téeisamost likely
true whers s sufficiently large.

P3 is the most advanced wrapper method for dealing with missing valissg the provided
training data, the method learns rules to predict missing valuesirifutes. The following
pseudocode describes this algorithm.

For each class C

Order attributes into list L in ascending order of the number of
events in the training dataset missing their value.
For each attribute x from L, in the order defin ed by L:
Learn rules for all the values of the attribu te
from L using examples from C.
Using the learned rules predict “missing” val ues
of the attribute in the events of that clas S.

To apply this method, two problems have to be taken care of. Firgirdgeam must deal with
missing values present in the training events for learningeyaledicting rules. The simplest
method is to ignore attributes with “missing” values. If mattyitautes have missing values,
then predictive rules can be learned using method L1 or L2, as described in Section 3.2.

A more complex problem is when an event in which a value is predietednore than one
“missing” value, and it happens that another “missing” value isum&ntal in the value-
predicting ruleset. One of two methods can be applied when learning the \edicthpg rules:

- When learning value-predicting rules, ignore all attributes hlaae missing values in
events in which values are being predicted. This may not be posgikle a large
number of missing values is present in the dataset, becauseilalites would have to
be ignored.

- Use method M1 to compute probabilities of match, and choose the mikchhe
highest probability to predict the value.

To use these methods, the value-predicting rulesets must bdljodis@int so that the rule will
predict only one value. This is achieved by setting the AQ21 p&athat controls the type of
rulesets to be learned to “disjoint covers.” In cases wheneddaulesets are not disjoint (when
“intersecting covers” were learned) one may choose the Watieés suggested, for example, by
the rule with the highest support.
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7 EXPERIMENTAL RESULTS

7.1 Testing Methods for Handling Missing Values

The methods described above have been implemented in the AQ21 lgaogrem and tested
on three dataset$'olcanoesWorld Factbook 2004andComputer Users

The Volcanoesdataset, provided by the Smithsonian Institution, contains information about
large number of volcanoes from around the world. The dataset thatisedsin the study
contained 13,787 training and 5,858 testing events for predicting whether atatities would
occur due to volcanic eruptions. Each eruption is described by 45 mukityipeites (Kaufman
and Michalski, 2005).

The dataset has 79,829 missing values in the training dataset, out&f £23 = 575,415 total
values that is, about 14 %, and 33,843 missing values out of 263,610 total maluedasting
dataset, that is, about 13%. The main reason for the amount of missing values is thattheich of
data come from records of eruptions from centuries ago, in whicke tedses were not
measured.

The World Factbookdataset contains information about 266 countries of the world. Each
country is described in terms of 36 multitype attributes, such ess@omestic Product (GDP),
Unemployment level, Fertility, Mortality, Population, etc. Theadat was prepared by the CIA
and is downloadable from their websitiettp://www.cia.gov/cia/publications/factbaok In this
dataset, 2552 values are missing, that is, about 27% of the data.

The Computer Usersdataset contains datastreams from process tables recorded tha&ring
interaction of 10 users with their computers. The datastreanesused to learn models (“user
signatures”) of the users’ interactions with the computerferpurpose of detecting illegitimate
user activities (Michalski et al., 2005). For each of the 10 ugerslataset contains 10 training
and 5 testing sessions (datastreams from login until logout).

Summary of Results

AQZ21 learned rulesets from thélcanoesdataset for the output attribute “Fatalities” whose
values are "present” and “absent.” Four methods for handlingngissiues were applied: L1
(ignore attribute in the extension-against operation), P1 (removesgve?2 (estimate values),
and P3 (infer missing values). Table 1 presents the accurdaiassifying the testing data by
the rules learned using these four methods.

Method
L1 P1 P2 P3
Accuracy 98.51% 96.53% 98.48% 98.05%
Learning Time | 13 min 2.6 min 13 min | 48 min

Table 1 Results from comparing methods for handling missing values in the Volcana datase

As shown in Table 1, rules learned using methods L1, P2 and P3 gawwmiay and relatively
high degrees of accuracy on classifying the testing data.PLhmethod gave slightly lower
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accuracy, but was by far the fastest. Overall, if one densiaccuracy to be the primary factor
and the learning time as the secondary factor, L1 performed the best.

Table 2 presents results from applying the same four methods praiblem of learning rules
from the World Factbook dataset for the output attribute “Birth Ratéfi two classes (its
values): ¥ 20,” and “>20". The best results in terms of accuracy and leatimmeagwere again
obtained by L1. The second best was P3 which gave relatively geatist but the learning
time was significantly longer than that of the other methods. Pihenethod performed poorly
for this problem in terms of classification accuracy becansenany events were removed from
the training dataset.

Method
L1 P1 P2 P3
Accuracy 94.29% 54.29% | 40.00%87.14%
Learning Time | 0.3 sec 0.01sed 0.2sec 107 sec

Table 2 Results from comparing methods for handling missing values in
the World Factbook dataset.

Table 3 presents results from applying the same four methods to the problem nfleaes for
the Computer Userslataset. Here, the output attribute was “User” that has 10 vdkrsying
each of ten computer users.

Again, L1 gave the best classification accuracy on the tegtitaget, while its learning time was
comparable to that of other methods. The P1 method had the shor@sgléiane, as before,
but its accuracy was lower on the testing data than that of L1IP3meethod was worst in terms
of accuracy, as well as the learning time.

Method
L1 P1 P2 P3
Accuracy 70.21% 68.09% 65.96% 63.83%
Learning Time | 20 min 17 min 18 min 34 min

Table 3 Results from comparing four methods of handling missing values @otn@uter
Usersdataset.

The best performance of L1 in the experiments can be explaindtedgct that the extension
against operation ignores only the missing values in the eventkiestitdo consideration other
values (see Section 3.2). Thus, it uses more information than otheodsefThe P1 method
removes not only the missing values but also entire events, thudegsemformation for

learning. The P2 and P3 methods draw inferences about the traitasgtdhat may or may not
be correct. Because the AQ21 learning program workiricheory Formatiormode (as in our

experiments) learns descriptions that are complete and consigtantegard to the entire
training dataset, any incorrectly inferred values will negativelcaits performance.

The above experiments tested methods for handling missing valgesnparing accuracies and

learning times obtained by these methods on three differenivoelal-datasets. The next set of
experiments tested the methods by determining their acesragidatasets in which we changed
a certain percentage of values into missing values. Thus, & eékpsriments we compared the
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performance of the methods when applied to datasets with diffaneount of values missing,
starting with the original data in which no values were missing.

In first step, we removed from the Computer Users datasetetits that contained any missing
values. The resulting dataset had 8579 training and 3929 testing @viémiso missing values).
In the next six experiments, we randomly changed into missingsvalte 10%, 15%, 20%,
25% and 30% of values in the dataset, respectively. Each of thessrgng sets was then used
as input to the AQ21 learning program. The learned rules weretébtad on the complete
testing set (with all the values present). The classificasiccuracies (based on the “correct
match” evaluation, (Wojtusiak, 2005)) obtained from these experiments are preaerdbtki4.

Method
L1 P1 P2 P3
Original data 60.87% 60.87% 60.87% 60.87%
5% missing 58.70% 50.00% 65.22% 60.87%
10% missing 54.35% 45.65% 56.52% 58.70%
15% missing 41.30% 21.74% 60.87% 36.96%
20% missing 28.26% 13.04% 60.87% 30.43%
25% missing 19.57% 15.22% 43.48% 15.22%
30% missing 13.04% 0.00% 19.57% 15.22%

Table 4 Classification accuracies obtained by four methods of handling missing aaloiesd
to training sets with different percentages of missing values.

For up to 10% of missing values, L1, P2 and P3 methods all performedrkintior above 10%
of missing values only P2 preformed well. A particularly sumpgisesult is that rules learned
using P2 gave better performance accuracy when the training dataset haskb% values than
when it had no missing values, which is counterintuitive. It was algarising that the rules
learned using P2 gave the same accuracy when the datdse@%amissing values as when it
had no missing values. As expected, all method gave progressivede results with the
increasing percentage of missing values. The strongest suchvedfefor P1, as it was learning
from an increasingly smaller amount of data.

The next set of experiments investigated the performanceeofmaiching methods on data with
different percentages of missing values in the testing sethi$aend, we applied the learned
rulesets from the complete training dataset (i.e., with noimgisalues) to the testing datasets
with 5%, 10%, 15%, 20%, 25% and 30% values missing.

Results of the experiments, presented in Table 5, show that f@othputer Userslataset, the
presence of up to 10% missing values in the testing dataset did feot #fe overall
classification accuracy when using a strict matching method. WiegBelectors Ratidlexible
matching method was used (Michalski, 2004), the classification agcwas much higher, but
at the expense of classificatid®irecision and it decreased much slower with the increasing
percentage of missing values in the testing dataset.
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Testing dataset | Strict Matching Flexible Matching
(Selectors Ratio)
Accuracy| Precision| Accuracy| Precision

Original data 60.87% | 87.18% 89.13% 24.63%
5% missing 60.87% | 89.119%9 84.78% 24.63%
10% missing 60.87% | 93.209%9 82.61% 24.88%
15% missing 47.83% | 97.64% 78.26%  25.14%
20% missing 34.78% | 100.00% 69.57% 27.32%
25% missing 26.09% | 95.379%9 73.91% 27.03%
30% missing 21.74% | 95.379% 65.22%  26.47%

Table 5 A performance of the strict and flexible matching methods on testing datatet
increasing percentages of missing values.

It should be mentioned that the results from all the methods ateve®l poor in this case,
because th€omputer Userslataset presents a particularly difficult classification pnobdiue to
a low relevance of the data to the problem (Michalski et al, 2005).

7.2 Testing the Method for Handling Irrelevant Values

To test methods for handlingpt-Applicableandlrrelevantmeta-values, we used an example from
the ROBOTS problem used in the iIAQ program for demonstrating nafadaiction
(downloadable from http://www.mli.gmu.edu/msoftware.html). In this expent, the dataset is a
collection of imaginary robots that are classified as “Friehgigsitive examples) or “Unfriendly”
(negative examples). Each robot is described in terms of attributes defifeoler. The “Robot
class” is the output attribute (with two values, “Friendly” and ffigmdly),” and the rest are input
attributes. In addition, iIAQ generates various derived attribiBshélski and Pietrzykowski,
2005).

Attribute Name Attribute Type Attribute Domain
Robot class Nominal Friendly, Unfriendly
Head shape Nominal Round, square, triangle
Body shape Nominal Round, square, triangle
Smiling Nominal Yes, no
Holding Structured Sword, balloon, flag, Canadian flag, US_tlag,
Polish_flag
Height Linear short, medium, tall
Antenna’s color Nominal Red, yellow, blue, green, black, white
Jacket’s color Nominal Red, yellow, blue, green, black, white
Has tie Nominal Yes, no

Table 6 Original attributes used for describing examples in the ROBOTS domain.

Training examples for a ROBOTS problem chosen for our experiraemtzresented in Table 7.
The first column represents the output attribute “Robot class”, andtliee columns represent
the input attributes shown in Table 6.
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Examples of robots
Robot — . .
class Head | Body | Smiling | Holding Height Antenna’s | Jacket's | Has
shape | shape color color tie

Friendly round | square| Yes Polish flagall green blue yes
Friendly round | triangle Yes balloon Medium | green yellow| no
Friendly square| square Yes balloon Short red yellow  no
Friendly round | triangle Yes Polish flag Medium | green yellow | no
Unfriendly | triangle| square | No US flag Medium| green yellow yes
Unfriendly | round | square| Yes sword Medium  green blue yes
Unfriendly | square | square No balloon Medium red green yes
Unfriendly | square | triangle Yes sword Short green yellow| no
Unfriendly | round | trianglel No Polish flag| Short green black yes
Unfriendly | square | square Yes sword Tall red red yes

Table 7 Training events used for learning the concegfrendly Robots

The learning dataset presented in Table 7 consists of eventsiavitieta-values. Given this
training dataset, AQ21 generated the following rule:

[robot is friendly]

é

[it is smiling:4,3] &

[it is not holding a sword4,?] : p=4, n=0

The rule covers all four positive examples and no negative exaifgé, n=0). Its premise is a
conjunction of two conditions: [robot is smiling], which covers four pesiand three negative
events, and [robot is not holding a sword], which covers four positive and two negative events.

Suppose now that a new positive event el = (friendly, round, triangleS *fldd, medium,
green, yellow, no) is added to the training dataset by thédeadn this event, the “Smiling”
attribute is indicated agrelevant(it may be relevant for other events in the class “Friendly”)

To handle the additional event, el, AQ21 needs to either learn amliffele that will describe

all positive events, or to learn an additional rule to cover thetiadai example.

In our

experiment, AQ21 learns two rules, one that is identical to thequgyilearned rule, and the

second describing the added example:

[robot is friendly] <«

[robot is friendly]

é

[it is smiling:4,3] &

[it is not holding a sword4,?] : p=4, n=0

[it is not holding a swordk,2]

[it has no tie4,1] : p=4, n=0

Let us suppose that event e2 = (unfriendly, round, square, *, sword, mgeilow, red, yes) is
now added as a negative example to the dataset for the ctassdf¥¥. The original ruleset is
still a complete and consistent description of the classierfidly robots. Although attribute
“smiling” is irrelevant for the negative event €2, it is holdingweord that eliminates it, and the

rules are consistent.

To illustrate matching events with meta-value “*” against rules, supposthéaule
[robot is friendly] < [it is smiling] & [it is not holding a sword]
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has been previously learned. The event el: (friendly, round, gjahgUS_flag, medium,
green, yellow, no) matches this rule because it is not holdingped samd it has been declared
that the feature “is smiling” is irrelevant. Similathe event e2: (unfriendly, round, square, *,
sword, medium, yellow, red, yes) does not match the rule, because the robot is &sldorg.

7.3 Testing the Method for Handling Not Applicable Values

To test the method for handling “Not applicable” meta-values, suppesedded to the dataset
for the ROBOT problem a positive example

e3 = (friendly, triangle, square, yes, NA, medium, green, blue, yes),

whose value of attribute “holding” is NA because the robot under consatehas no hands. In
this case, the originally learned rule does not cover the e8erd®21 learns an additional rule,
and produces the ruleset:

[robot is friendly] < [it is smiling:5,3] & [it is not holding a sworda,2] : p=4, n=0
[robot is friendly] <« [its head is square or triangkes]
[its body is square;4]
[it is smiling:5,3
[its height is short or mediumg| : p=2, n=0
The second rule has four selectors needed to eliminate allveegagnts, while still covering

event e3. Such a treatment of NA meta-values is consistent with the methdoedescBection
5.

A similar example can be developed for the case when NA appears in a negatipteexa
To illustrate matching events with the NA meta-value against rules, suthyabske rule:
[robot is friendly] & [it is smiling] & [it is not holding a sword]
has been learned. The event
e4 = (friendly, triangle, square, NA, balloon, medium, green, blue, yes)

is matched against the rule. The event e4 does not matclaitdeeits attribute “Smiling” is not
applicable.

8 RELATED RESEARCH

The problem of handling meta-values described in this paper has ncadesprately addressed
in literature on machine learning and data mining. Most authorertate solely on handling
missingvalues, or treat all three meta-values in the same way. Ettesyidistinguish between
different meta-values, as, for example, in (Kononenko, 1992; Bruha, 2004), timey dddress
the distinctions between them. The methods presented in this papmigaral and different
from those described in the literature. They also are applied ioothtext of more expressive
representation language, namely attributional calculus.
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To give the reader a sense of the differences between duodseind other methods, below is a
brief review of some of the research in this area, which islyneoncerns handling ahissing
values.

In C4.5 program (Quinlan, 1993), the learning phase assigns probaldities missing values
in order to evaluate an attribute. Events with missing valuesassigned probabilities of
belonging to partitioned sets. The probabilities are used wheputmg Gain Ratio, a measure
for evaluating attributes when building a decision tree. This probtibifipproach is also used
when evaluating new examples. In such cases, the program explbreossibilities in
evaluating the decision tree, and assigns the class with the highest fisobabil

CN4 described in (Brucha and Krokowa, 1994) is an extension dfieprogram (Clark and

Niblett, 1988). It employs six routines for processing missing vdBiegcha and Franek 1996;
Brucha, 2004): ignore missing values; add “missing” value to abw# domain; use the most
common value; create weighted copies of the original examples Hdiffergnt values replacing

the missing one; randomly select values; and match any value in learningsaiftcakion.

In (Brucha, 2004), the author proposes a multistrategy approach basedsonriethods listed
above to handle missing attribute values. Two of the presented metfeodsmilar to our
methods P1 (ignore events with missing values) and P2 (replacengnigglues with
average/most common value), but applied with a different learning program.

Ragel and Cremilleux (1999) presented an approach similar intspitR, but in the context of
using association rules to fill-up the missing values. The proposed M&Rod learns rules
using the Robust Association Rules Algorithm (RAR). Rules withga Bupport are used to
complete missing values in data. Another approach similar to Pd3lisisussed in

(Lakshminarayan et al., 1996), in which the authors use the Autoclassi&@a clustering

program and C4.5 decision tree learner for filling-in the missing values.

Wu and Barbara (2002) describe a method for handling missing valuearfierical attributes.
The method assumes the availability of constraints on attributessatuch as data summaries
contained in data warehouses. Three types of problems are camisietieconstrained, in
which the available summary is sufficient for inferring rmgsialues; under-constrained, in
which summaries are accurate but insufficient; and over-constramedjich summaries are
inconsistent. The authors propose three methods for filling-in missingsvdy solving linear
equations in order to find exact missing values, by maximizinggntrand by minimizing
cross-entropy. Experimental results show that the accuracy preésented methods increases
with the number of constraints (summaries).

Wang (2004) proposes a fuzzy set-based method to handle missing values
learning Hopfield neural nets. Each training example withingsg&lues is replaced by a set of
“fuzzy examples” without missing values and whose weights/probasbiliare computed
according to fuzzy set theory. Such examples are used to leameuba networks. Similarly
for classification problems, the author proposes using fuzzy copidsstiig example for
evaluation; each copy of the testing example is given a valura@stl based on the fuzzy sets
theory and having an assigned probability (weight). The weiglatkentinto consideration to
compute the final degree of match.

19



A number of papers describe statistical approach to handliaging meta-values. Holt and
Benfer (2000) propose an iterative regression approach named MISDAT. prolgeam
iteratively improves estimates of missing values until a test based aedauoaltiple correlation
stabilizes. In practice, fewer than ten iterations are ussafficient. An overview of a number
statistical methods for dealing with missing values is presented by amitl Rubin (2002).

A number of researchers have investigated the handling and imputatioissihg values to
particular datasets. Heikki et al. (2004) discuss several methotisassimulation of missing
data, interpolation, regression analysis, nearest-neighbor etc. asdagplair quality data.

Engels and Diehr (2003) discuss statistical methods for imputisgingivalues in longitudinal
data. Sartori et al. (2004) use statistical methods for multppeitation of missing values in
cancer mortality data.

Theoretical aspects of learning from examples with meta-valeesliscussed in (Schuurmans
and Greiner, 1997; Greiner et al., 1997). The authors discuss misdiimgedevant meta-values
in context of PAC learning.

9 CONCLUSION

Methods for reasoning witmissing irrelevant andnot applicablemeta-values in data have
been described for both training and application/testing phases of attributienalamling using
AQ learning method. The three meta-values have differentrgmsisand appear in the data for
different reasons. Therefore, they have been considered in this paper ategapétems.

The missingvalue problem appears in many applications domains, as it is quite cortivabn
values of some attributes may not available in the data for semsen. Tharrelevant andnot
applicablevalues represent problem background knowledge communicated to the pbygaam
expert, and the problem is how to adequately utilize this knowledgear8ics of the meta-
values are used on level of extension-against, the most important @perathQ learning,
therefore are handled on the basic level of the learning algoritfimis fact significantly
differentiates the presented methodology from methods known frontditerthat are based on
filling-in missing values.

The presented methods have been implemented in the AQ21 learning pragcabested on
datasets from three different real world domains, and onergbsdpmain in order to evaluate
their strengths and weaknesses. Four methods were investigatasdang missing values, L1
(that ignores these values during the extension-against operaBoa)dHP3 (that fill-in data by
estimated or hypothesized values), and P1 (that ignores eventsuaiittvalues). In our initial
experiments, the best results were obtained from the L1 method. Methods for harelémgnt
and not applicable meta-values gave results fully consistenttétimeaning of these meta-
values. The initial results confirmed our hypothesis that handénwastics of meta-values on
level of extension-against and basic matching operators, thetldswest operations in AQ
learning, provide the best results.

The implementation of the developed methods in the AQ21 program makes it appbcabiey
real-world domains where such meta-values occur. Such domains inwdagliiene, agriculture,
bioinformatics, intrusion detection, classification of geological phenomena, and.other
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