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Abstract

EXTENSIONS TO THE COMPUTATIONAL HEMODYNAMICS MODELING OF CERE-
BRAL ANEURYSMS

Fernando Mut, PhD

George Mason University, 2008

Dissertation Director: Dr. Juan R. Cebral

Image-based patient-specific CFD modeling of blood flows is important for better under-

standing the hemodynamics in cerebral aneurysms and their treatment. Some limitations of

current methodologies have been identified, including 1) model size, 2) endovascular device

modeling, 3) missing information and 4) extraction of relevant data. This work addressed

the first two of these limitations.

First, a Deflated Preconditioned Conjugate Gradients (DPCG) algorithm was developed

to accelerate the computation of incompressible flows in the elongated geometries typically

encountered in vascular models. This technique has enabled the modeling of the blood flow

in complex arterial networks in a timely manner making these models practical for clinical

purposes.

Second, a methodology to model stented aneurysms on a patient-specific basis has been

developed. This methodology has allowed the computation of the blood flow in cerebral

aneurysms after the treatment with stents or other flow diverters.

These two developments have extended the range of applicability of image-based CFD

techniques applied to cerebral hemodynamics.



Chapter 1: Introduction

1.1 Background

1.1.1 Cerebral Aneurysms

Intracranial aneurysms are pathological dilatations of cerebral arteries, which are usually

located near arterial bifurcations in the circle of Willis [1–3]. The most serious consequence

is their rupture and the subsequent intracranial hemorrhage into the subarachnoid space,

with an associated high mortality and morbidity rates [4–7]. Intracranial aneurysms are

particularly difficult to treat, and often do not produce symptoms before they rupture [8].

Greater availability and improvement of neuroradiological techniques have resulted in more

frequent detection of unruptured aneurysms. Preventive surgery is increasingly considered

as the therapeutic option. Planning elective surgery requires a better understanding of the

process of aneurysm formation, progression, and rupture so that a sound judgment between

the risks and benefits of possible therapies can be made.

1.1.2 Aneurysms and Hemodynamics

The genesis, progression and rupture of cerebral aneurysms are not well understood. How-

ever, their pathogenesis is believed to be due to the dynamic forces of the blood on a

weakened vascular wall. Ultimately, any rupture is the consequence of the inability of the

wall to contain the force of the flowing blood. Yet hemodynamic studies have not found

evidence of excessive elevations of peak pressure within cerebral aneurysms to explain the

wall failure on a purely mechanical basis, and therefore it is believed that a biological alter-

ation of the aneurysmal wall results in its mechanical weakening over time. Evidence of this

has been found in histological studies that have shown a decreased number or degeneration
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of endothelial cells, degeneration of the internal elastic lamina, and thinning of the medial

layer[9, 10].

The formation of cerebral aneurysms is believed to be related to an interaction between

high flow hemodynamics force and the arterial wall because of several clinical and experi-

mental observations. Cerebral aneurysms are commonly associated with anatomic variations

and pathological conditions such as hypoplasia or occlusion of a segment of the circle of

Willis[11–15], or high flow arteriovenous malformations[16,17], that cause locally increased

flow in the cerebral circulation, and at points of flow bifurcation, a site of flow separation

and elevated Wall Shear Stress (WSS). Observations form animal models have shown that

elevations of WSS to levels that can be found in these conditions can cause fragmentation

of the internal elastic lamina of blood vessels[18] as well as alterations in endothelial pheno-

type or endothelial damage[9]. Additionally, increased flow and systemic hypertension are

required for creating experimental cerebral aneurysms in rats and primates[19–23].

Despite this agreement in the mechanism of aneurysm initiation there is significant

controversy regarding the mechanisms responsible for growth and ultimate rupture of a

cerebral aneurysm. This controversy can be divided into two main schools of thought: high

flow effects and low flow effects. In each theory, the hemodynamics environment within

the aneurysm interacts with the cellular elements of the aneurysmal wall to result in the

weakening of the wall. The distinguishing feature between the two schools of thought is in

the mechanisms responsible for wall weakening.

The high flow theory focuses on the effects of elevation of WSS. Elevation of maximal

WSS can cause endothelial injury and this initiate wall remodeling and potential degener-

ation[24]. A vascular endothelium malfunction or/and an abnormal shear stress field can

cause a lower, non-physiological local arterial tone[25–28]. This would result in a distur-

bance of the equilibrium between the blood pressure forces and the internal wall stress force,

in favor of the first, and a subsequently local dilatation of the arterial wall.

The low flow theory points to low flows within aneurysms as causing localized stagnation

of blood flow against the wall. Blood stagnation is known to trigger mechanisms resulting
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in the aggregation of red blood cells, as well as accumulation and adhesion of both platelets

and leukocytes along the internal surface[29–32]. This process may cause intimal damage,

leading to infiltration of white blood cells and fibrin inside the aneurysm wall. The inflam-

mation would lead to localized degeneration of the aneurysm wall that would progressively

thin and may result finally into a tearing of the tissue.

1.1.3 Aneurysms and CFD

The flow dynamics of cerebral aneurysms have been studied in numerous experimental

models and clinical studies to investigate the role of hemodynamic forces in the initiation,

growth, and rupture of cerebral aneurysms[24,33–40]. Although this work has characterized

the complexity of intra-aneurysmal hemodynamics in experimental and computational mod-

els, the studies have largely focused on idealized aneurysm geometry or surgically created

aneurysms in animals. Each of these previous approaches has had significant limitations

in connecting the hemodynamics factors studied to clinical events. In vitro studies have

allowed very detailed measurement of hemodynamic variables[40], but cannot be directly

used for understanding the hemodynamic forces in an individual clinical case.

Recent progress in high field phase-contrast MR methods for measuring blood flow

dynamics has allowed the visualization and quantification of flow patterns in cerebral arteries

in vivo[41, 42]. However, these techniques are limited by the image resolution and flow

disturbances.

Therefore, realistic image-based computational models can be constructed from anatom-

ical images. This is an attractive alternative because of the ability of computational models

to handle any vessel geometry. Image-based CFD has been applied to the study of a variety

of vascular diseases[43–48]. In addition, computational models can be used not only to

study the current hemodynamics conditions of a given patient (as any imaging modality

would do), but also they provide the possibility of asking what-if questions. For instance,

it is possible to study the alterations of the blood flow patterns of a particular patient

induced by surgical procedures such as bypass surgery[49] or endovascular interventions
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such as stenting and aneurysm coiling[50]. This opens the possibility of choosing the best

therapeutic alternative for a given patient, and also of personalizing and optimizing the

treatment for the particular anatomical and hemodynamic structures of each individual.

This predictive character of patient-specific image-based computational models cannot be

reproduced with any imaging modality.

1.2 Computational Hemodynamics Models

The process of simulation of patient-specific hemodynamics from medical images can be di-

vided into two major stages: a) anatomical modeling and b) blood flow modeling. Anatom-

ical modeling includes two basic steps: 1) image processing and 2) geometrical modeling.

Blood flow modeling is also divided in several sub-steps: 1) flow simulation, 2) post pro-

cessing and 3) visualization. The set of sequential modeling stages is called a computational

modeling pipeline or chain.

Several alternative approaches exist for each of the stages of the modeling chain, and

different investigators have used different combinations of computational tools to assemble

their pipelines. In the center for CFD, our research team have developed the following

inhouse software for each step of the pipeline: a) ZMD for anatomical modeling, b) GEN3D

for mesh generation, c) FEFLO for the numerical solution of the blood flow and d) ZFEM

for the visualization of the results. In what follows, a brief description of this pipeline is

provided[51].

1.2.1 Anatomical Modeling

Patient-specific anatomical models can be constructed from a variety of imaging modalities

such as 3D rotational angiography (3DRA), computed tomography angiography (CTA) and

magnetic resonance angiography (MRA). Rotational angiography is an invasive technique

that requires an intra-arterial injection of contrast material and exposition to a low dose

of X-rays, but provides the highest resolution and contrast between vascular structures
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and the surrounding tissue. CTA is a less invasive technique that requires an intra-venous

injection of contrast material and exposition to X-rays. The resolution is less than that

of rotational angiography and other non-vascular structures such as bone appear bright

in these images, complicating the anatomical modeling process. However, this imaging

modality is useful providing information about the peri-aneurysmal environment. MRA

does not use any ionizing radiation but suffers from signal loss in regions of decreased or

disturbed flow patterns. As in the case of CTA, in MRA images tissues other than blood

vessels are also visualized, complicating the segmentation process. The preferred imaging

modality for numerical modeling is then the rotational angiography because of its superior

quality depicting the vascular structures and simplicity for constructing anatomical models.

After obtaining the clinical data set, the first step in the construction of a patient-

specific anatomical model is to filter the anatomical image in order to reduce the noise

and increase the contrast between the blood vessels and surrounding tissue. Several image-

based techniques could be used to this purpose, including basic ones like sharpening[52] and

blurring[53] (isotropic diffusion), and more advanced techniques such as inhomogeneous and

anisotropic diffusion methods[54]. Vessel enhancement filters based on the local structure

of the image intensity distribution have also been designed[55]. These techniques aim at

smoothing out non-vascular structures and at the same time increase the contrast of tubular

structures in the images.

The second step in the model construction process is the segmentation of vascular struc-

tures. The result of this process is the classification of the image voxels into blood vessels

and other tissues. Several methods can be used for this process. The simplest method

is thresholding[53], in which all the voxels with an intensity value greater than a given

threshold are classified as blood vessels. Another approach is a seeded region growing,

which is usually used to segment simple vascular structures [52,53]. This approach consists

in manually selecting a seed voxel within the desired vascular tree and marking all voxels

connected to it within a specific intensity range. Since this two techniques are based on the

image intensity level, they could fail because in many cases the image intensity distribution
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is not homogeneous within the blood vessels and there may be other tissues with similar

intensities.

Once the image has been segmented, a geometrical model (surface triangulation) is

constructed via iso-surface extraction. This initial surface could be adjusted using the so

called deformable models. The basic idea behind this approach is to allow the surface to

deform under internal elastic forces between neighboring nodes and external forces derived

from the local image intensity gradient[56].

The final step in the model construction is the generation of a 3D volume mesh suitable

for computational fluid dynamics simulations. This process starts with the construction

of an appropriate surface mesh (triangulation) using the geometrical model as the starting

point. Once the surface mesh is obtained, the space within the anatomical model is filled

with tetrahedral elements using the advancing front method[57].

Figure (1.1) shows some examples of anatomical models constructed from 3DRA images

using this technique.

Figure 1.1: Introduction: 3DRA images and its corresponding computational models.
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1.2.2 Blood Flow Modeling

Governing Equations

Blood flow is mathematically modeled by the unsteady Navier-Stokes equations for an

incompressible fluid[57–59]:

∇ · v = 0 (1.1)

ρ
∂v
∂t

+ ρ(v · ∇)v +∇p = ∇ · τ + f (1.2)

where ρ denotes the (constant) density, p the pressure, v the velocity vector and τ the

deviatoric stress tensor. Although the stress/strain-rate relationship is a tensor relation, it

is usually expressed as an algebraic equation of the form:

τ = µγ̇ (1.3)

where µ is the viscosity, and the strain-rate is defined as the second invariant of the strain-

rate tensor, which for incompressible fluids is:

γ̇ = 2
√
εijεij ; εij =

1
2

(
∂vi
∂xj

+
∂vj
∂xi

)
(1.4)

In order to close the system of equations, a constitutive law must be provided to compute

the local viscosity of the fluid. The simplest rheological model is a Newtonian fluid, which

assumes a constant viscosity: µ = µ0. Typical values used for blood are ρ = 1.105 g/cm3

and µ = 0.04 Poise.

However, blood can be thought of as a suspension of particles (red blood cells) in an

aqueous medium (plasma). Thus, it is neither homogeneous nor Newtonian. The rheological

properties of blood are mainly dependent on the maturity, or the volume fraction of red

blood cells in the blood. One of the most commonly used non-Newtonian fluid models for
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blood is the model of Casson[60], which assumes a stress/strain-rate relation of the form

√
τ =
√
τ0 +

√
µ0

√
γ̇ (1.5)

where τ0 is the yield stress and µ0 is the Newtonian viscosity. The existence of a yield

stress implies that blood requires a finite stress before it begins to flow, a fact that has been

observed experimentally. The apparent viscosity of the Casson model can be written as

µ =
(√

τ0
γ̇

+
√
µ0

)2

(1.6)

Since this expression diverges as the strain-rate becomes zero, it is typically modified in

the following way:

µ =

[√
τ0

(
1− e−mγ̇

γ̇

)
+
√
µ0

]2

(1.7)

where the parameter m controls the maximum viscosity obtained when γ̇ tends to zero.

Typical values used for blood are τ0 = 0.04 dyne/cm2, µ0 = 0.04 dyne/cm and m = 100.

Boundary Conditions

In order to obtain unique solutions to the Navier-Stoke equations, proper boundary con-

ditions need to be specified. These boundary conditions attempt to provide the compu-

tational model with information about the surroundings of the anatomical model. For

the inflows/outflows of the model, typically the pressure and/or the velocity profile is pre-

scribed. For the vessel wall the simplest model consists on a rigid wall. Another possibility

is to consider the vessel wall as an elastic membrane, for which a solver for the elasticity

equations has to be coupled with the flow solver. The proper specification of the boundary

conditions for a given model depends on the amount of information available in each case.

Since the physiological parameters can not be obtained for all patients, some assumptions
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have to be made.

Physiologic velocity profiles for the boundaries are derived from phase-contrast magnetic

resonance (MR) images of the main branches of the circle of Willis [47,61]. Time-dependent

flow rates are obtained by integration of the measured velocity profile over the vessel cross

section. The curve is then decomposed into Fourier modes:

Q(t) =
N∑
n=0

Qne
inwt (1.8)

where N is the number of modes and w the angular frequency obtained from the period

of the cardiac cycle. The imposed velocity profile is then computed from the Womersley

solution[62, 63]. This profile is mapped to the boundary using an algorithm that maps the

surface mesh of the boundary to a circle [61]. Figure 1.2 shows a typical flow rate curve

used in the simulations.

Since flow rates are not always available for all the branches included in the models,

traction-free boundary conditions are applied in all the remaining boundaries. It is known

that the flow divisions are determined by the impedance of the distal arterial tree. Im-

posing traction-free boundary conditions for all the outflows boundaries assumes that the

corresponding distal resistances are similar, and therefore the flow division is determined

by the geometry of the anatomical model. This is not an unrealistic assumption when the

outflow vessels are of similar calibers.

Vessel wall compliance is an important effect that may alter the local hemodynamics.

Fluid-Solid interaction models have been applied to the study of these effects on the flow

patterns[64]. However, the main problem remains the proper characterization of the arterial

wall, i.e., the values of local material properties such as the modulus of elasticity, wall

thickness, etc. In addition, coupled fluid-solid models require the specification of proper

pressure boundary conditions, i.e. the pressure waveform that drives the motion of the

arterial wall, which is difficult to measure noninvasively [65]. In addition, a sensitivity
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Figure 1.2: Introduction: Typical flow-rate curve used to impose time-dependent boundary
conditions.

analysis carried out using dynamic imaging of the vascular wall showed that the main

hemodynamics characteristics computed with rigid and deforming wall models are in good

agreement[66, 67] For these reasons, the vessel walls are usually assumed rigid. No-slip

boundary conditions are applied at the vessel walls, i.e., the fluid velocity is equal to the

velocity of the wall, which under the assumption of rigid vessel walls becomes v = 0.

Post-processing and Visualization

The last step in the modeling pipeline is the analysis of the blood flow simulations and ex-

traction of relevant data. This analysis can be divided into two sub-steps: 1) post-processing

and 2) visualization. Post-processing involves further calculations using the blood flow so-

lution in order to obtain derived data sets that are helpful in the characterization and

analysis of the flow patterns. These derived data sets include the wall shear stress (WSS),

streamlines, transport of scalars (e.g. virtual angiograms), etc. Statistical computations
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are also carried out to obtain information like mean values, peaks, etc. All the computed

quantities are then visualized using advanced 3D visualization techniques and graphics li-

braries (OpenGL). Figure (1.3) shows some examples of visualizations of such quantities.

Figure 1.3: Introduction: Visualization of a) streamlines, b,c) mean value of wall shear
stress < |WSS| >, and e,f) oscillatory shear index (OSI)[68].

1.3 Current limitations

The computational modeling pipeline described in the previous sections have proven to be a

powerful tool in helping to understand the role of the hemodynamics forces in the initiation,

growth, and rupture of cerebral aneurysms[44,48,49]. However, there are several issues that

could be addressed in order to improve the actual state of the computational modeling of

cerebral aneurysms.

In what follows a brief description of the issues that we believe are the key factors

towards the next generation of computational hemodynamics models of cerebral aneurysms
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is presented.

1. Increasing model size:

With the constant improvement of medical imaging equipment physicians are able to

produce higher resolution imaging studies. This results in highly detailed anatomical

models which implies a bigger number of elements in order to achieve an accurate

spatial discretization of the domain. This positively enhances the quality of the blood

flow simulation for a particular model. However the convergence rate of the flow solver

is severely deteriorated.

On the other hand, it is also desired to enhance the current models by consider-

ing larger vascular structures upstream and downstream (proximal and distal) to the

aneurysm. However, this implies a significant increase of the model size, which is

followed by slower convergence rates of the flow solver. Figure 1.4 shows an example

of a typical model for the circle of Willis (left) and an extended version which includes

the downstream arterial network (right).

Figure 1.4: Introduction: Example of a typical model of the circle of Willis (left) used in
current simulations and an extended model of the circle of Willis (right) with the attached
arterial network.

12



The ability to produce fast and accurate results in patient-specific models is desired

since it provides the possibility of modeling many cases in a timely manner and thus

obtain reliable statistical results. This also will allow physicians to model new pa-

tients in a daily basis in order to quickly assess which are the best treatment options

available.

2. Deployment of vascular devices:

Currently there is a increased interest in using endovascular devices for flow divertion

(a.k.a flow diverters) such as stents, for treating cerebral aneurysms. These devices

are intended to divert the blood flow away from the aneurysms in order to prevent

their future rupture. Several studies have proven that the final position of the stent,

as well as its geometrical design, plays a major role in the way the blood flow is

diverted. For this reason, a computational model to study the changes in the blood

flow patterns after stenting is a required tool. This will allow the design of better flow

diverters and the selection of the most appropriate one for a given aneurysm.

One of the most important steps in patient-specific virtual stenting modeling is the

stent deployment within a given anatomical model. Also the ability to easily inter-

change different stent designs within the same model is desired in order to perform

fast comparative characterizations.

3. Extraction of relevant information:

The objective of the computational hemodynamics modeling of cerebral aneurysms

is to identify matches or links between hemodynamic variables (or characteristics) of

a given aneurysm and clinical events. This requires the identification of the relevant

hemodynamics quantities that play a major role in the genesis and progression of

cerebral aneurysms. In order to accomplish this, a complete characterization of the

hemodynamics of cerebral aneurysms has to be performed.

The solution of the governing equations for the blood flow results in a detailed descrip-

tion of the velocity and pressure fields within the anatomical model as a function of
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time. The solution fields are further processed (post-processing step) in order to ob-

tain derived quantities that are believed to have relevance in the processes that drive

the genesis of the aneurysms. Example of these quantities are the wall shear stress

(WSS), and the impingement region, i.e., the region in which the jet flow impacts the

wall of the aneurysm.

Currently the researcher performs a visual inspection of the computed quantities in or-

der to obtain a qualitative characterization of the hemodynamics for a given aneurysm

(see figure 1.3). This characterization classifies the hemodynamics into four types: 1)

simple stable , 2) simple unstable, 3) complex stable and 4) complex unstable. Al-

though this procedure has been successful in identifying some trends in the progression

of cerebral aneurysms[48], a better and quantitative characterization is required. One

of the main benefits of such a tool would be to answer questions like “how different

are these two aneurysms?”, “what are the effects of a given stent design or treatment

option?”, and “how close is this aneurysms to a particular class?”.

4. Missing information:

A realistic modeling of the hemodynamics of cerebral aneurysms involves the knowl-

edge of several patient-specific physiological parameters. This information is then

included in the flow solver as boundary conditions, material properties, etc. Among

the most important that can be identified are the blood flow inflow rate and the

outflow boundary conditions.

Since many of these physiological parameters can not be measured for all patients,

some assumptions have to be made. Currently for the inflow rate, measurements

done on normal subjects are used after a proper scaling based on the actual patient’s

vessel area[69] For the outflow boundary conditions, a simple constant pressure is

assumed. However the vascular network (see figure 1.4) that is attached at the outflow

of the model behaves more like a resistant device. This suggest that more realistic

simulations will require taking in consideration the study of resistance-based boundary
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conditions. Although recent studies[70] have shown how to deal with this type of

boundary conditions, a deeper analysis of the problem, as well as the development of

new techniques is needed.

1.4 Issues Addressed

Within the context of this work we have made substantially progress to solve two of the

four current limitations presented in the previous section, namely, 1) the increasing model

size problem, and 2) the deployment of vascular devices (virtual stent deployment).

For the increasing model size problem we have developed a Deflated Preconditioned Con-

jugate Gradients (DPCG) technique[71] which has successfully accelerated the convergence

rate of the pressure Poisson equation within the incompressible flow solver. Several tests

have shown an speedup between 3 and 5 of the total computational time when compared

with the traditional method (standard Preconditioned Conjugate Gradients). This tech-

nique has enabled the possibility of computing a pulsatile solution of the hemodynamics for

a given cerebral aneurysm in a few hours and a steady calculation in a few minutes. At the

same time it has provided the ability of modeling much more complex structures such as

a complete vascular model of the circle of Willis together with the arterial network of the

brain.

For the deployment of vascular devices we have developed a pioneer technique for the vir-

tual deployment of stents within patient-specific anatomical models of cerebral aneurysms.

This technique has allowed to realistically study the changes in the blood flow patterns be-

fore and after stenting. One of the main advantages of this new methodology is the ability

to easily interchange different stent designs in order to do fast comparative characteriza-

tions. Coupled with the DCG technique, it will allow the physicians to better evaluate a

treatment plan for a given patient in a daily basis.

In the following chapters details about these new techniques are provided. The results

of several evaluation studies that have been carried out are presented, as well as several

examples of these methodologies applied to patient-specific models.
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Chapter 2: Increasing Model Size

2.1 Introduction

2.1.1 Motivation

The computational hemodynamic modeling of cerebral aneurysms involves the solution of

the unsteady Navier-Stokes equations for an incompressible fluid:

∇ · v = 0 (2.1)

ρ
∂v
∂t

+ ρ(v · ∇)v +∇p = ∇µ · ∇v (2.2)

where ρ denotes the (constant) density, p the pressure, v the velocity vector and µ the

viscosity.

What sets incompressible flow solvers apart from compressible flow solvers is the fact

that the pressure is not obtained from an equation of state but from the divergence constrain.

The so-called pressure Poisson equation can be obtained by taking the divergence of (2.2)

and using (2.1):

∇2p = −∇ · v∇v (2.3)

This implies that the pressure field establishes itself instantaneously (reflecting the infi-

nite speed of sound assumption of incompressible fluids) and must, therefore, be integrated

implicitly in time[57]. The fact that the pressure field establishes instantaneously is re-

flected by the elliptic character of the Pressure Poisson equation. The main implication is

that changes on the prescribed values need to be propagated through the entire domain in

order to obtain a solution of the Poisson equation. Since the solution of this equation is
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usually carried out using an iterative scheme applied to a finite element approximation of

the Laplace operator, the number of iterations required to transmit information is bounded

from below by the number of elements in the longest direction (graph depth). This fact im-

poses a severe limitation, particularly in the context of modeling cerebral aneurysms, since

typical vascular structures resembles elongated or tubular domains with a corresponding

large graph depth.

The motivation of this work was to develop techniques that can accelerate the transmis-

sion of information along large tubular-shaped domains. The first attempt in this direction

considered the approximation of the solution of the 3D problem by the solution of the

associated 1D problem, provided that in these two settings the solutions are similar (in

cylindrical domains). The problem with this approach is that the resulting preconditioned

matrix was singular. The a deflated preconditioned conjugate gradients algorithm was ex-

plored. This method provided the proper framework needed to communicate information

along the longest direction by means of the subdomain deflation technique. This method

turned out to be equivalent to solving the previously proposed preconditioning technique

based on the 1D model but avoiding the singularity in the preconditioning matrix. In what

follows a description of the numerical methods used for the discretization of the Navier-

Stokes equations is presented.

2.1.2 Numerical Solutions

Several numerical schemes have been used to solve the incompressible Navier-Stokes equa-

tions [72–74]. The hyperbolic character of the advection operator and the elliptic character

of the pressure-Poisson equation have led to a number of so-called projection schemes. The

idea is to predict first a velocity field without taking into account the divergence constraint.

The divergence constraint is then enforced by solving the pressure-Poisson equation. The
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velocity increment can therefore be separated into an advective and pressure increment:

vn+1 = (vn + ∆va) + ∆vp

= ṽ + ∆vp (2.4)

For an explicit integration of the advective terms, one complete timestep is given by:

(a) advective-diffusive prediction: vn → ṽ

[
1

∆t
−∇µ∇

]
(ṽ − vn) + vn · ∇vn +∇pn = ∇µ∇vn (2.5)

(b) pressure correction: pn → pn+1

∇ · vn+1 = 0

vn+1 − ṽ
∆t

+∇(pn+1 − pn) = 0

which, by taking the divergence, results in

∇2(pn+1 − pn) =
∇ · ṽ
∆t

(2.6)

(c) velocity correction: ṽ→ vn+1

vn+1 = ṽ −∆t∇(pn+1 − pn) (2.7)

At a steady state, the residuals of the pressure correction vanish, implying that the

result does not depend on the timestep ∆t.

The most expensive step within this scheme is the solution of the Poisson equation for

the pressure increment, given by equation (2.6). The discretization of this elliptic partial
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differential equation via the finite element method leads to a very large, but symmetric

linear system of algebraic equations of the form:

Ax = b (2.8)

Although the system (2.8) is very large (the number of unknowns equals the number of

grid points in the computational domain), the number of non-zero entries in the matrix A

is comparatively small. This is due to the local support of the interpolant functions used

in the finite element method. For simplices (e.g. triangles in 2-D, tetrahedrals in 3-D)

there is a one-to-one correspondence between the nonzero coefficients in the matrix and the

edges of the computational grid. A grid point in a typical triangular mesh is connected in

average to 6 other grid points, i.e., in average there are 6 non-zero entries per row in the

matrix. The ratio between the total number of entries in the matrix and the number of

non-zero coefficients is known as the sparsity level of the matrix. When the sparsity level

is sufficiently large, iterative solvers become the preferred method in solving such systems.

For the particular case in which the system is also symmetric positive definite (SPD), one

of the best known iterative solvers is the preconditioned conjugate gradients (PCG).

Many attempts have been made to mitigate the impact of the pressure Poisson equation

on the overall cost of a simulation. Options that have proven useful include:

• Improved prediction of the starting value for the iterative solver [75,76].

• Linelet preconditioners for highly stretched grids (e.g. boundary layers) [77,78].

• Multistage or implicit treatment of the advective terms [79,80].

Several attempts have also been made to use multigrid solvers [81–86]. However, for

unstructured grids the expected gains have proven elusive to date. Moreover, cases with

moving and or adapting meshes place further burdens on multigrid solvers vis a vis conjugate

gradient solvers.
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In what follows a detailed description of the classical Conjugate Gradients (CG) method

together with a convergence analysis is presented. After that a full description of the De-

flated Conjugate Gradients (DCG) method is presented. The principal aim of the DCG

method is to remove from the search space those components of the error that may con-

tribute to a slow convergence rate of the classical CG method. This is carried out by a

subspace deflation technique which attempts to approximate the smallest eigenmodes of

the system by a coarse discretization of the domain. This technique has proven to be very

useful especially when dealing with high-aspect ratio domains. Finally, the results of several

experiments that have been carried out to assess the performance of the DCG method are

presented.

2.2 Conjugate Gradients

The Conjugate Gradients (CG) method was introduced by Hestenes and Stiefel[87] in 1952

for solving sparse symmetric positive definite (SPD) systems of linear equations. The CG

method is a special case of a Conjugate Directions (CD) method, in which the search di-

rections are constructed from the residual vectors in a progressive manner. This choice

minimizes the cost in both memory and floating-point operations per iteration of the clas-

sical CD method, making the CG algorithm the preferred choice for solving very large but

sparse SPD systems.

A classical CD method starts with a full-set of conjugate vectors:

{dk}nk=1 ∈ Rn where (di, Adj) = 0 ; i 6= j (2.9)

i.e., vectors that are orthogonal with respect to the inner-product defined by A: (·, ·)A :=

(·.A(·)) (well defined since A is SPD). This set of conjugate vectors can be obtained from

any set of linear independent (L.I.) vectors by the Conjugate Gram-Schmidt process (CGS)

(see algorithm 2.2.1).
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Algorithm 2.2.1 Conjugate Gram-Schmidt process
1: Given {uk}nk=1 L.I., set d1 := u1

2: for i = 2 to n do
3: di := ui
4: for j = 1 to i− 1 do
5: βj = (ui, Adj)/(dj , Adj)
6: di := di − βjdj
7: end for
8: end for

In other words, for each new vector ui, the Conjugate Gram-Schmidt process subtracts from

ui its A-orthogonal projection with respect to all previously generated vectors {dj}i−1
j=1. This

process will not break (in exact arithmetic) unless the {uk}nk=1 are not L.I. The modified

conjugate Gram-Schmidt process (MCGS) can be obtained by replacing ui by di in step 5

of algorithm 2.2.1, which in presence of round-off error is much more reliable.

Given an initial guess x1, the next step in the CD process is to write the initial error

e1 = x∗ − x1 as a linear combination of the conjugate basis vectors:

e1 = α1d1 + . . .+ αndn (2.10)

The coefficients αk can be obtained by first taking the A-inner product between equation

(2.10) and an arbitrary basis vector dk:

Ae1 = α1Ad1 + . . .+ αnAdn

(dk, Ae1) = α1(dk, Ad1) + . . .+ αn(dk, Adn) (2.11)

After that, applying the conjugacy conditions of the basis vectors dk yields:

αk =
(dk, r1)

(dk, Adk)
(2.12)

where r1 = Ae1 is the initial residual vector.

This process can be written in a progressive manner, i.e., at each iteration of CD one
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component of the initial error is eliminated, allowing to stop the process as soon as a

convergence criteria is reached. This is carried out by first defining the following recurrence

relations:

xk+1 = xk + αkdk (2.13)

ek+1 = ek − αkdk (2.14)

rk+1 = rk − αkAdk (2.15)

where equation (2.14) is obtained by subtracting the exact solution x∗ from equation (2.13),

and equation (2.15) is obtained by simply multiplying equation (2.14) from the left by A.

Note also that terms of the form αj(dk, Adj), 1 ≤ j < k can be added to the left hand side

of equation (2.11), since they are all zero by the conjugacy conditions, which by means of

(2.14) leads to:

αk =
(dk, rk)

(dk, Adk)
(2.16)

where now the coefficients αk depend only on values at step k.

A Conjugate Directions algorithm will read as follows:

Algorithm 2.2.2 Conjugate Directions (CD)
1: Given A, b, {uk}nk=1 L.I. and an initial guess x1

2: Compute r1 := b−Ax1

3: Set d1 := u1
4: do until convergence
5: αk := (dk, rk)/(dk, Adk)
6: xk+1 := xk + αkdk
7: rk+1 := rk − αkAdk
8: dk+1 := uk+1

9: for j = 1 to k − 1 do
10: βj = (dk+1, Adj)/(dj , Adj)
11: dk+1 := dk+1 − βjdj
12: end for
13: end do

22



After k steps of CD, the error is expressed by:

ek+1 = αk+1dk+1 + . . .+ αndn (2.17)

Taking the A-inner product of 2.17 with a basis vector dj , and applying the conjugacy

conditions gives:

(dj , Aek+1) = (dj , rk+1) = 0 1 ≤ j ≤ k (2.18)

i.e., ek+1 is A-orthogonal to Dk = span{dj}kj=1, or equivalently, rk+1 is orthogonal to Dk.

This implies the two following optimality properties:

‖rk+1‖ = ‖b−Axk+1‖ = min
x∈x1+Dk

‖b−Ax‖ (2.19)

‖ek+1‖A = ‖x∗ − xk+1‖A = min
x∈x1+Dk

‖x∗ − x‖A (2.20)

i.e., after k steps a CD method finds the best approximate solution in the affine space

x1 + Dk. In other words, a CD process produces at each step the best approximation, in

terms of the error and residual, within the provided search space Dk. Note also that the

exact solution is obtained in at most n steps. However, the main drawback of a conjugate

directions method is that all the previous search directions have to be saved in order to

perform the A-orthogonalization process (steps 9-12 of algorithm 2.2.2). Fortunately, this

can be avoided by simply replacing the original {uk}nk=1 basis vectors with the residual

vectors {rk}nk=1, which is known as the Conjugate Gradients (CG) method. In this case,

the following properties can be easily verified:

• since (dj , rk+1) = 0 for 1 ≤ j ≤ k ⇒ L.I. of rk+1 with respect to Dk is guaranteed,

unless rk+1 ≡ 0, in which case we have the exact solution.

• since span{dj}kj=1 = span{rj}kj=1 ⇒ (rj , rk+1) = 0 for 1 ≤ j ≤ k
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Replacing the recurrence relation (2.15) for rj in the last identity yields:

αj(dj , Ark+1) = (rj , rk+1)− (rj+1, rk+1) = 0 1 ≤ j ≤ k − 1 (2.21)

i.e., the new residual vector rk+1 is already A-orthogonal with all the previous search direc-

tions, except for the last one. This reduces the Conjugate Gram Schmidt orthogonalization

process to just one projection, i.e., only against the last search direction. Further simpli-

fications can be achieved by using the recurrence relations, which results in the following

expressions for the coefficients:

αk =
(rk, rk)

(dk, Adk)
βk =

(rk+1, rk+1)
(rk, rk)

(2.22)

The Conjugate Gradients algorithm reads as follows:

Algorithm 2.2.3 Conjugate Gradients (CG)
1: Given A, b and an initial guess x1

2: Compute r1 := b−Ax1

3: Set d1 := r1
4: do until convergence
5: αk := (rk, rk)/(dk, Adk)
6: xk+1 := xk + αkdk
7: rk+1 := rk − αkAdk
8: βk := (rk+1, rk+1)/(rk, rk)
9: dk+1 := rk+1 + βkdk

10: end do

In terms of storage, the CG algorithm requires only four vectors (x, d, Ad and r) to be

saved. Preconditioning can be easily included in the CG method by simply replacing the

usual Euclidean inner product with the M -inner product, where M is an SPD preconditioner

matrix.

The convergence behavior of the CG algorithm can be analyzed by exploiting the op-

timality properties presented above. Let xk be the approximate solution obtained at the

k-th step of the CG algorithm, and x∗ be the exact solution. The classical a priory bound
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for the error is[88]:

‖x∗ − xk‖A ≤ 2
[√

κ− 1√
κ+ 1

]k
‖x∗ − x1‖A (2.23)

where κ = λmax/λmin is the spectral condition number of the matrix A. Equation 2.23

shows that the convergence rate of the CG algorithm is bounded by the ratio between the

biggest and smallest eigenvalues of the underlying matrix. However, as described in Sluis

et al. [89], the convergence speeds up as soon as the lowest eigenvalues are ’discovered’

by the CG process, giving rise to a condition number based on the active, i.e., the non-

discovered eigenvalues. Therefore, if some knowledge of the eigenmodes associated to the

smallest eigenvalues is at hand, removing them from the spectrum of A would improve the

convergence-rate of the CG process. This is what the Deflated Conjugate Gradients (DCG)

tries to achieve.

2.3 Deflated Conjugate Gradients

2.3.1 Previous Work

The first paper to consider a deflation method for the CG solver is perhaps due to Nico-

laides[90]. The main idea was to remove certain components of the initial residual that may

impede convergence. It also introduced the idea of subdomain deflation, where the lowest

eigenmodes are approximated by a coarse discretization of the domain. However, no numer-

ical experiments were reported. The subdomain deflation approach was successfully applied

to the bending of a cantilever beam and to the stationary Stokes problem, as reported in

Mansfield[91]. The deflation technique was also applied to precondition a Schur complement

matrix[92] for second order operators arising from the partition used for parallel comput-

ing on each processor. Deflation was also used for an augmented conjugate gradients[93]

where the Krylov subspace generated by a previous system is recycled for further solves in

subsequent systems. An approximation of the eigenvectors is used to augment the space of

subsequent systems to deflate the lowest eigenmodes[94]. In this case the eigenvectors are
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computed explicitly and not approximated through a coarse discretization of the domain.

2.3.2 Theoretical Considerations

The Deflated Conjugate Gradients (DCG) technique starts by selecting a subspace W ∈ Rn

which is called the deflation subspace. Recall that the standard CG algorithm generates a

sequence of search directions that are A-orthogonal to all the previous search directions.

This motivates the next step of the deflation technique that consists in writing the solution

space as a direct sum of W and its A-orthogonal complement:

Rn = W⊕W⊥A (2.24)

Let {uk}mk=1 be a basis of W. Applying the CGS algorithm (2.2.1) to these vectors produces

a conjugate basis {dk}mk=1 of W. Note that this conjugate basis can be completed by simply

adding (n −m) more L.I. vectors to the CGS process. The initial error e0 = x∗ − x0 can

now be written as a linear combination of this conjugate basis:

e0 = (ξ1d1 + . . .+ ξmdm)︸ ︷︷ ︸
∈W

+ (ξm+1dm+1 + . . .+ ξndn)︸ ︷︷ ︸
∈W⊥A

(2.25)

The last step in the deflation technique is first to eliminate the components of the error

that belong to the deflation space W (i.e., {ξk}mk=1), and finally apply a CG-type algorithm

to eliminate the remaining components of the error.

The first step (also known as the initial error projection step) is carried out by writing

the initial error as:

e0 = Wc0 + e1 (2.26)

where W is a matrix whose columns are a basis of W and c0 is an m-dimensional vector.

The vector c0 can be easily determined noticing that by construction the vector e1 is A-

orthogonal with W, i.e., W TAe1 = 0, which yields the following m-dimensional SPD system
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of linear equations:

W TAWc0 = W T r0 (2.27)

where Ae0 = r0 is the initial residual.

The initial guess is then updated as follows:

x1 = x0 +Wc (2.28)

The last step is to apply a CG-type algorithm starting from the updated residual vector

r1. Recall that the CG process generates a sequence of search directions from the residuals

that are A-orthogonal to all the previous search directions (generated by the CG).

dk+1 = rk+1 + βkdk ; βk =
(rk+1, rk+1)

(rk, rk)
(2.29)

However, there is no guarantee that these search directions will belong to W⊥A . It is

therefore necessary to include one more A-orthogonality condition to be satisfied by all the

search directions:

W TAdk = 0 ; ∀k (2.30)

i.e., all the search directions need to be A-orthogonal to W.

The new sequence of search directions can be constructed as follows:

dk+1 = rk+1 + βkdk −Wck+1 (2.31)

where the parameter βk is determined by the A-orthogonality of successive search direc-

tions (as for the standard CG), and the m-dimensional vector ck+1 is determined by the

A-orthogonality condition (2.30) between the search directions and W. This yields the
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following m-dimensional SPD system of linear equations:

W TAWck+1 = W TArk+1 (2.32)

Note that this new A-orthogonality conditions has to be also included when computing the

first search direction from the updated initial residual.

The Deflated Conjugate Gradients algorithm reads as follows:

Algorithm 2.3.1 Deflated Conjugate Gradients (DCG)
1: Given A, b, W and an initial guess x0

2: Compute r0 := b−Ax0

3: Solve W TAWc0 = W T r0
4: Set x1 := x0 +Wc0
5: Compute r1 := b−Ax1

6: Solve W TAWc1 = W TAr1
7: Set d1 := r1 −Wc1
8: do until convergence
9: αk := (rk, rk)/(dk, Adk)

10: xk+1 := xk + αkdk
11: rk+1 := rk − αkAdk
12: βk := (rk+1, rk+1)/(rk, rk)
13: W TAWck+1 = W TArk+1

14: dk+1 := rk+1 + βkdk −Wck+1

15: end do

In terms of storage, the DCG algorithm requires four n-dimensional vectors (x, d, Ad and

r), one m-dimensional vector (c), one m by n matrix (W ) and one m by m matrix (W TAW )

to be saved. This extra storage can be mitigated when considering low dimensionality

deflation spaces (m � n) together with high levels of sparsity in the W matrix. An

examples of this is a subdomain deflation technique using constant shape functions. The

solution/inversion of the direct system of equations (steps 3, 6 and 13 of algorithm 2.3.1) can

be carried out very efficiently by performing a Cholesky factorization of the SPD matrix

W TAW at the beginning of the algorithm, and a backward/forward substitution when

required. As the number of non-zeros of W TAW can be very low, a skyline solver is the

preferred choice to minimize the number of floating point operations. Preconditioning can

be easily included in the same manner as for the standard CG method.
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2.3.3 Deflation Subdomains

The DCG technique requires the definition of a deflation subspace W. For matrices arising

from finite element methods, the subdomain deflation approach[90] defines a deflation sub-

space based on a coarse discretization of the domain. This technique attempts to spatially

approximate the smallest eigenmodes of the underlying system so that they can be removed

from the search space of the conjugate gradients method.

It is well known that the discretization of the Laplace operator leads to ill-conditioned

SPD matrices in cases of high aspect-ratio domains. This is usually due to the presence of

very low eigenmodes pointing in the largest direction as shown in Figure 2.1.

Figure 2.1: DPCG: Smallest eigenmodes of the Laplace operator on a rectangular domain.

A physical interpretation of this behavior is presented as follows. First note that values

at the prescribed points have an influence over the whole domain due to the elliptic character

of the Laplace operator. This implies, for example, that changes at opposite points along

the longest direction will have to travel all along the domain. Therefore, if an iterative

solver is used to solve the system of equations, the number of iterations in order to achieve

convergence would be at least the number of elements that exists along the largest direction.

This is due to the fact that each iteration (i.e., matrix/vector multiplication) only transmits

information between neighboring nodes due to the local support of the interpolant functions

used in the spatial discretization of the domain.

This suggests that, for these cases, a good strategy for approximating the smallest

eigenmodes of the system would involve a coarse discretization oriented along the largest
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direction of the domain. One of the simplest ways of defining a coarser discretization from

a given unstructured mesh is to agglomerate the nodes of the mesh into subdomains. Two

alternative methods have been developed following this strategy:

• Seedpoints Alternative (SA): For this (manual) technique, the user defines an arbitrary

set of points, called seedpoints. Given a mesh, the closest mesh points to the seedpoints

are found, and a region number is assigned accordingly. Points not assigned to any

region are then added one layer at a time until all points have been assigned a region

number.

• Advancing Layers Method (ALM): Starting from a prescribed point, neighboring

points are added one layer at a time, until a specified number of points per region is

exceeded. The last set of points added is then used as a starting point for the next

group. The procedure is repeated until all points have been assigned a region number.

Note that in cases with very elongated domains, where the prescribed values are located

at the extremum points, the ALM method will generate a coarse discretization that will be

approximately aligned with the largest direction (provided that the number of points per

region is sufficiently large). Note also that in contrast to the SA method, the ALM method

does not require the intervention of the user for the generation of the subdomains (besides

the specification of the number of points per region). However, the SA method provides a

more flexible option when dealing with domains that does not clearly satisfy the elongated

shape assumption. It is worth to mention that the prescribed points are not assigned to

any region, since they do not belong to the solution space.

The last step is to define an interpolant polynomial over the deflation regions. The

simplest choice are the constant shape-functions. Using this approach, each column of the

matrix W will represent one deflation subdomain. For a given column, a unity value will
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be assigned if a point belongs to that region, and zero otherwise.

Wij =

 1 pi ∈ gj

0 pi /∈ gj
(2.33)

2.4 Benchmarks

The deflated PCG solver has been tested on a variety of examples. These ’test cases’ can

be divided in two groups: 1) Classic Benchmarks and 2) Hemodynamics Models. The aim

of these examples was the comparison of the number of iterations of the pressure Poisson

solver and the speed of the flow calculation. For all the cases, it was verified that the results

obtained using the deflated PCG solver coincide with those obtained by the standard PCG

solver. In addition, the results obtained in the benchmark tests agreed with those reported

in the literature[95].

2.4.1 Pipe Flow

The first example is the classic Poiseuille pipe flow, a steady flow of a viscous Newtonian fluid

in a straight circular domain. A uniform velocity profile is prescribed at the inflow, while

a constant pressure is prescribed at the outflow. Since the pressure field has to establish

itself along the pipe, the number of iterations required increases with the graph depth of

the finite element mesh. The physical dimensions and parameters were set as follows:

• pipe radius: r = 1

• pipe length: l = 20, 40, 80

• density: ρ = 1

• inflow velocity: v = 1

• viscosity: µ = 0.01
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The element size was set to h = 0.1, implying approximately a graph depth of 200, 400

and 800 for the cases considered. This resulted in grids of 129 Kels, 260 Kels and 516 Kels

respectively. All cases were run for 100 timesteps using explicit timestepping. The number

of groups were chosen to be 15, 30 and 60. The deflation domains were generated by the

advancing layers technique, starting from the exit. Figure 2.2-2.3 show the surface mesh,

deflation domain boundaries for 15 groups, pressure and absolute value of the velocity for

l = 20. As expected the velocity profile at the outlet is parabolic, and the pressure field is

linear along the cylinder axis after an initial development distance.

Figure 2.2: Pipe Flow: Surface mesh and deflation domain boundaries for l = 20

Figure 2.3: Pipe Flow: Pressure and Abs(Velocity) for plane z = 0.
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Figure 2.4: Pipe Flow: Number of iterations required for the PCG solver at each timestep.

Figure 2.4 shows the number of iterations required for the PCG solver. The sudden

’dips’ in the number of iterations at some timesteps are due to the fact that a projective

prediction of pressure increments with 2 Krylov vectors [76] was used. Note the dramatic

decrease in the number of iterations achieved by the deflated PCG solver. This decrease

may also be seen in Figure 2.5, which depicts the average number of iterations for the first

20 steps for the different options chosen.

While the number of iterations increases linearly with the pipe length for the conven-

tional PCG, the performance of the deflated PCG solver seems to be insensitive to the pipe

length and the number of groups chosen. Figure 2.6 shows the total CPU time required for

the simulation, highlighting the importance of a fast Pressure-Poisson solver. Note that for

the case l = 80, the deflated PCG case performs seven times faster.
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2.4.2 Naca 0012

The second example is the classic NACA0012 airfoil at α = 5o angle of attack. This is a

steady, inviscid case (Euler equations). Figures 2.7 show the surface mesh employed, as well

as the surface pressures obtained.

Figure 2.7: NACA 0012: Surface Mesh and Pressure contours.

The mesh had approximately 370 Kels. This problem was solved using local timesteps

to accelerate convergence to steady-state. The deflation subdomains were generated from

39 seedpoints selected by hand. The seedpoints are shown in figure 2.8

Figure 2.9 shows the number of iterations as the solution is advanced to steady state.

One can observe that even on this rather coarse mesh with limited graph depth between

the outflow, prescribed pressure boundary and the airfoil, the deflated PCG requires ap-

proximately half the iterations of the usual PCG. In this case only a modest improvement

of performance was obtained.
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Figure 2.8: NACA 0012: Seedpoints selected by hand used to generate 39 deflation subdo-
mains.
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Figure 2.9: NACA 0012: Number of iterations per pseudo timestep required to achieve
steady state.
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2.4.3 von Karman Vortex Street

The last example in this section is also a well known benchmark case. A circular cylinder is

suspended in a uniform stream of incompressible viscous fluid. The separation at the back of

the cylinder generates the so-called von Karman vortex street, whose characteristics depend

on the Reynolds number Re = ρV∞D/µ, where D is the diameter of the cylinder. This is

essentially a 2-D example, but it was run with a 3-D solver. A mesh of 113 Kels was used

for the simulation, with special placement of points in the vicinity of the cylinder. The

parameters were chosen such that the resulting Reynolds number was Re = 190.

Figure 2.10 shows the surface grid of the 3-D model. Figure 2.11 shows the surface grid

and the absolute value of the velocity in a cut plane.

Figure 2.10: von Karman Vortex Street: Surface mesh of the 3-D model.

The run was started impulsively and continued until the vortex street was fully devel-

oped. Starting from this (restart) state, the solution was advanced 50 steps using a 3-stage

Runge-Kutta scheme for the advection, and two different options of deflation sub-domains

were tested. In both cases the deflated PCG regions were grown from 14 and 18 manually

selected seedpoints. Figure 2.12 shows the deflation regions for the 18 seedpoints case.
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Figure 2.11: von Karman Vortex Street: Surface mesh and Abs(Vel).

The iterations required per timestep are displayed in Figure 2.13. One can observe that

the deflated PCG requires substantially less iterations, and is rather insensitive to the num-

ber of subdomains chosen. Note that in this case where the grid is highly stretched around

the cylinder (Navier-Stokes mesh), the deflated PCG still reduced the number of iterations.
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Figure 2.12: von Karman Vortex Street: Deflation subdomains grown from 18 seedpoints.
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Figure 2.13: von Karman Vortex Street: Number of iterations per timestep.
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2.5 Hemodynamic Models

The deflated PCG has been tested on five different patient-specific vascular models to

assess its performance in real hemodynamics cases. Each case is representative of the

different geometries encountered when constructing patient-specific models of aneurysms

and cerebral arteries. For all the models, the following assumptions were made.

The blood was considered as a Newtonian fluid, which is modeled by the unsteady incom-

pressible Navier-Stokes equations. The simulations were performed using implicit timestep-

ping, solving a pseudo-steady problem at each timestep[80]. Within each pseudo-timestep

the advective terms were integrated implicitly using 5 LU-SGS passes (local Courant num-

ber C = 5.0), followed by the pressure projection. The timestep was set to ∆t = 0.01 sec.

The material properties of the fluid were taken to be ρ = 1.0 g/cm3 and µ = 0.04 Poise.

Two cardiac cycles were computed with 100 timesteps per cycle. The first three examples

were computed on an Intel Xeon processor (E5345/2.33MHz) computer with 16GB of RAM

using the serial version of the flow solver. The last example (cerebral arteries) was run on

an 8-way Dual-Core AMD Opteron processor (8222/3MHz) machine with 64GB of RAM

using the OpenMP version of the flow solver on 8 Processors.

2.5.1 Internal Carotid Artery Aneurysm

The first example is a patient-specific model of a cerebral aneurysm located at the Internal

Carotid Artery (ICA). This case is particularly interesting since it was possible to recon-

struct the entire ICA from the carotid bifurcation to the carotid terminals from 3DRA data.

This model was previously used in a study[96] to investigate how much of the upstream

vessel has to be included in the model in order to obtain the right secondary flows at the

aneurysm. The volume mesh obtained for this model had 646 Kpts and 3.6 Mels. The de-

flation groups were generated using both methods. For the seedpoints alternative 45 points

were manually selected from the surface model. For the advancing layers method 20, 50,

100 and 150 groups were automatically generated. Figure 2.14 shows the overall domain,
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as well as the group boundaries for the 45 and 50 groups cases.

Figure 2.14: ICA Aneurysm: Deflation boundary subdomains for 50 groups using advancing
layers method (left) and 45 groups using the seedpoints alternative (right).

The pressure was prescribed (homogeneous bc) at the outflow boundary at the ICA

terminal (top part), while a time-dependent velocity profile was prescribed at the inflow

boundary at the origin of the ICA (bottom part). No-slip boundary conditions were applied

at the vessel wall.

Figure 2.15 depicts the pressure drop (left) and the wall shear stress distribution (right)

at the peak systole (the inflow rate peak) of the second cardiac cycle. As it was expected,

the pressure gradient is aligned with the parent vessel, while the pressure is almost constant

inside the aneurysm.
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Figure 2.15: ICA Aneurysm: Pressure (left) and Wall Shear Stress (right) distributions. at
T = 1.4sec.

Figure 2.16 shows the average number of iterations required for the pressure Poisson

solver at each timestep. This average was computed over all the iterations that took place

during the several pseudo timesteps within each timestep. The average number of iterations

without deflation has a mean value of 625, while with deflation it ranges between 75 and

150 iterations. Therefore, in average, the number of iterations have decreased between 4.20

and 8.45 times for the cases with 20 and 150 groups, respectively.

Figure 2.17 depicts the CPU time required to complete each timestep. For the non-

deflated case, the average CPU time of the whole run is about 15m53s, while with deflation
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Figure 2.16: ICA Aneurysm: Average number of iterations for the Pressure-Poisson solver
at each timestep for all cases (top) and deflation cases only (bottom).
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it ranges between 4m55s and 6m40s seconds. This implies that the average speedup is

between 2.4 and 3.2 for the cases with 20 and 150 groups respectively. Looking at the

deflation cases only (bottom part of both figures), it is clear that as the number of deflation

groups increases, the average number of iterations and the CPU time per timestep always

decreases. By comparing the 45 groups case (seedpoints) and the 50 groups case (advancing

layers), it can be concluded that both methods have performed similarly in this case.

Looking at both figures, it can be seen that all the curves follow the inflow profile, having

the highest values where the inflow rate is maximum. This implies that for a higher inflow

rate, more iterations are needed by the pressure Poisson solve in order to reach convergence.

The sudden ’dips’ are due to a good approximation of the initial guess using the solution

of the previous timestep. This behavior is accentuated at the end of the cardiac cycles (1st

and 2nd) where the inflow rate changes very slowly.

Figure 2.18 shows the total CPU time for all the cases run. The best speedup obtained

is about 3.18 with 150 groups.
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Figure 2.17: ICA Aneurysm: CPU time at each timestep for all cases (top) and deflation
cases only (bottom).
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Figure 2.18: ICA Aneurysm: Total CPU time required for the 200 timesteps. The best
speedup obtained was about 3.18 corresponding to 150 groups using the advancing layers
technique.
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2.5.2 Basilar Tip Aneurysm

The second example is a patient-specific model of a cerebral aneurysm located at the tip

of the basilar artery. The model included in the upstream direction both vertebral arter-

ies. The volume mesh generated for this model had 535 Kpts and 2.9 Mels. The deflation

subdomains were generated using both methods. For the seedpoints alternative 90 points

were manually selected from the surface model. For the advancing layers method 20, 50,

100 and 150 groups were automatically generated. Figure 2.19 shows the overall domain,

as well as the deflation group boundaries for the 90 and 100 groups cases.

Figure 2.19: BT Aneurysm: Deflation boundary subdomains for 100 groups using the
advancing layers method (left) and 90 groups using the seedpoints alternative (right).

The pressure was prescribed (homogeneous bc) at the three outflows (top part), while

a time-dependent velocity profile was prescribed at the two inflows (bottom part). No-slip

boundary conditions were applied at the vessel wall.
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Figure 2.20 depicts the pressure (left) and the wall shear stress distribution (right) at

the peak systole of the second cardiac cycle. As it was expected, the pressure changes along

the vessels, while it is almost constant inside the aneurysm.

Figure 2.20: BT Aneurysm: Pressure and Wall Shear Stress distribution at T = 1.4sec.

Figure 2.21 shows the average number of iterations required for the pressure Poisson

solver at each timestep. For the standard PCG solver, the average number of iterations

have a mean value of 820 iterations. For the deflated PCG solver, the mean values of the

average number of iterations range from 50 to 190 iterations. This implies that in average,

the number of iterations have decreased between 4.2 and 15.7 times corresponding to the

20 groups and 90 groups cases respectively. Note also that for the non-deflated case the

standard PCG solver have not reached convergence as it reached the maximum pre-set limit

of 1200 iterations in several timesteps.
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Figure 2.21: BT Aneurysm: Average number of iterations for the Pressure-Poisson solver
at each timestep for all the cases (top) and the deflation cases only (bottom).
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Figure 2.22 depict the CPU time required to complete each timestep. For the non

deflated case the average CPU time is about 14 minutes, while for the deflated cases this

value ranges from 3m20s and 6m10s. This implies that the average speedup of the whole

run is between 2.38 and 4.21 for the cases with 20 and 90 groups, respectively. The best

speedup obtained corresponds to the case with 90 groups using the seedpoints alternative,

which performed even better than the 150 groups using the advancing layers method. This

may be due to the fact that with the seedpoints alternative the resulting groups have more

regular shapes than those generated by the ALM method as observed in figure 2.19 As in

the previous example, the sudden ’dips’ found in both figures can be attributed to a good

approximation of the initial guess using the solution of the previous timestep.

Figure 2.23 shows the total CPU time for all the cases run. The best speedup obtained

is about 4.23 with 90 groups.
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Figure 2.22: BT Aneurysm: CPU time at each timestep corresponding to all the cases (top)
and the deflation cases only (bottom).
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Figure 2.23: BT Aneurysm: Timings corresponding to the basilar model of a cerebral
aneurysm. The best speedup obtained was about 4.23 corresponding to 90 groups using the
seedpoints alternative.
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2.5.3 Circle of Willis

The third example is a subject-specific model of the circle the Willis of a normal volunteer

constructed from magnetic resonance images. The volume mesh generated for this model

had approximately 836 Kpts and 4.6 Mels. The deflation groups were generated using both

methods. For the seedpoints alternative 131 points were manually selected from the surface

of the model. For the advancing layers method 20, 50, 100 and 150 groups were automati-

cally generated. Figure 2.24 shows the overall domain, as well as the deflation subdomain

boundaries for the 131 and 150 groups cases.

The pressure was prescribed (homogeneous bc) at the eight outflows (left and right ICAs

and basilar artery). Time-dependent velocity profiles constructed from patient-specific flow

rates obtained form PC MR images were prescribed at the three inflows (bottom part).

Figure 2.25 depicts the pressure (top) and the wall shear stress distribution (bottom) at

the peak systole of the second cardiac cycle. As it can be seen in this picture, the pressure

gradient is very low on the large vessels when compared with the small vessels. The higher

pressure gradients are located in the places where the vessel’s radius changes more rapidly.

This is linked to the fact that in those regions the resistance to the blood flow increases

considerably. These changes in the resistance are also noticeable by the wall shear stress

distribution, which is also higher in the regions were the vessel’s radius decreases more

rapidly.

Figure 2.26 shows the average number of iterations required for the pressure Poisson

solver at each timestep. For the standard PCG solver, the average number of iterations

have a mean value of 860 iterations. For the deflated PCG solver, the mean values range

from 90 and 190 iterations. This implies that, in average, the number of iterations have

decreased a factor between 2.3 and 9.8 for the 20 groups case and the 131 groups case

respectively.
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Figure 2.27 depicts the CPU time required to complete each timestep. For the non-

deflated case the average CPU time is about 23 minutes, while for the deflated cases this

values ranges from 7m30s and 14m50s. The average speedup is therefore between 1.6 and

3 for the cases with 20 and 131 groups, respectively. Note that for the deflated cases using

the advancing layers method, as the number of groups increases, the average number of

iterations and the CPU-time per timestep decreases accordingly. The best speedup in both

iterations and CPU time was obtained for the 131 groups using the seedpoints alternative.

As in the previous case this seems to be related to a more uniform groups shape using the

seedpoints alternative when compared to the advancing layers method.

Figure 2.28 shows the total CPU time for all the cases run. The best speedup obtained

is about 3.9 with 131 groups.
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Figure 2.24: COW: Deflation boundary subdomains for 150 groups using advancing layers
method (left) and 131 groups using the seedpoints alternative (right).
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Figure 2.25: COW: Pressure and Wall Shear Stress distributions at T = 1.4sec.
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Figure 2.26: COW: Average number of iterations for the Pressure-Poisson solver at each
timestep for all cases (top) and deflation cases only (bottom).
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Figure 2.27: COW: CPU time at each timestep for all cases (top) and deflation cases only
(bottom).
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Figure 2.28: COW: Timings corresponding to a model of the Circle of Willis. The best
speedup obtained was about 4.23 corresponding to 90 groups using the seedpoints alterna-
tive.
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2.5.4 Cerebral Arteries

The last example is a patient-specific vascular model of the circle of Willis and the arterial

network of the brain constructed from high resolution MRA images covering the entire

brain of a normal subject[97]. The volume mesh had approximately 3.8M points and 19M

elements. The groups were constructed using both methods. For the seedpoints alternative

512 and 978 equally spaced points were generated along the centerlines of the model. For the

advancing layers method 250, 500, 1000, 2000 and 3500 groups were generated. Figures2.29

shows the overall domain, as well as the deflation groups boundaries for the 1000 groups

case (top) and the 978 groups case (bottom).

The pressure was prescribed (homogeneous bc) at the 3 inflows (bottom part), while

a time-dependent velocity profile was prescribed at the 62 outflows. The flow waveforms

were scaled with each outflow area in order to obtain the same wall shear stress at all the

outflows (10 dyne/cm2).

Figure 2.30 depict the pressure drop (top) and wall shear stress distribution (bottom) at

the peak systole of the second cardiac cycle. The differences in pressure observed between

the left and right sides of the modes is due to a bend in the vessel geometry which produces

a significant pressure drop. Figure 2.31 shows a close-up view of this feature. This pressure

drop also results in locally elevated wall shear stress in this region.

Figure 2.32 shows the average number of iterations required for the pressure Poisson

solver at each timestep. The standard PCG solver has a mean value of 536 iterations per

timestep, while for the deflated PCG solver this value ranges from 40 and 150 iterations

per timestep. This implies that, in average, the number of iterations for the PCG solver

have decreased between 3.5 and 13.5 times corresponding to the 250 and 3500 groups,

respectively. As observed before, for the non-deflated case the standard PCG solver have

not reached convergence as it reached the maximum pre-set limit of 1200 iterations in several

timesteps.

Figure 2.33 depicts the CPU time required to complete each timestep. For the non-

deflated case, the average CPU time is about 36m40s. For the deflated cases, the average
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CPU time ranges between 10m25s and 16.45s seconds. The average speedup of each timestep

is then located between 2.2 and 3.5 for the cases with 250 and 3500 groups, respectively.

The bottom parts of figures 2.32 and 2.33 reveals that for all the cases as the number of

groups increases, the number of iterations and average CPU time always decreases. Note

that for this model there is no apparent distinction in the performance obtained between

the methods used for generating the deflation subdomains. This is consistent with the fact

that both methods generated similar group shapes as it can be seen in figure 2.29.

Figure 2.34 shows the timing for all the cases that were run. The best speedup obtained

is about 3.8 corresponding to the 3500 groups case using the advancing layers method.
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Figure 2.29: Cerebral Arteries: Deflation boundary subdomains corresponding to 1000
groups selected by the advancing layers method (top) and 978 groups selected by the seed-
points alternative (bottom).
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Figure 2.30: Cerebral Arteries: Pressure and Wall Shear Stress distribution at time T =
1.4sec.
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Figure 2.31: Cerebral Arteries: Huge pressure drop (top) at time T = 1.4sec. due to an
high bend in the vessel geometry. This pressure drop also produces a high wall shear stress
region (bottom).
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Figure 2.32: Cerebral Arteries: Average number of iterations for the pressure Poisson solver
at each timestep for all the cases (top) and the deflation cases only (bottom).
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Figure 2.33: Cerebral Arteries: CPU time at each timestep corresponding to all the cases
(top) and the deflation cases only (bottom).
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Figure 2.34: Cerebral Arteries: Timings corresponding to a model of the cerebral arteries.
The best speedup obtained was about 3.8 corresponding to 3500 groups using the advancing
layers method.
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2.6 Summary

A Deflated Preconditioned Conjugate Gradients (DPCG) technique has been developed

for the pressure Poisson equation within an incompressible flow solver. This technique

was successfully tested on idealized cases. Several patient-specific image-based blood flow

computations were also carried out to assess the performance of the deflated PCG solver

on real cases ranging from relatively simple to quite complex geometries.

For all the cases, the solutions obtained with the deflated PCG solver coincided with

those obtained with the standard PCG solver. The number of iteration was significantly

reduced (up to a factor of 13) while speedups between 2 and 5 times were obtained in the

solution of the incompressible flow equations.

Automatic (advancing layers) and manual (seedpoints) methods for constructing the

deflation subdomains have been developed. These methods resulted in similar performances.

However, in some cases, the manual method outperformed the automatic one, possibly

because it produced more regular groups with more uniform pressure distributions.

In conclusion, this methodology has improved substantially the performance of the in-

compressible flow solver, making larger and more complex models practical. Although the

methodology was developed in the context of blood flow simulations, it is general and can

be used for any incompressible flow calculation.
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Chapter 3: Virtual Stenting

3.1 Introduction

Currently there is a increased interest in using endovascular devices as flow diverters for

the treatment of cerebral aneurysms. The main goal of these endovascular devices, such

as stents, is to deviate of the blood flow away from the aneurysm and promote aneurysm

thrombosis and prevent its rupture. However, several studies have shown[98] that the

specific stent design and its positioning may play an important role in how the blood flow is

diverted. For this reason, a computational model to study the changes in the flow patterns

before and after stenting is a highly valuable tool.

The computational modeling of patient-specific stenting is divided in two mayor steps:

1) Virtual Stenting: the process of virtually positioning a given stent within the anatomical

model, and 2) Blood flow Modeling: the process of finding a solution to the governing

equations for the blood flow in the presence of the stent. The objective of these calculations

is to assess the efficacy of different stent designs or treatment plans in diverting the flow

and to create a hemodynamic condition within the aneurysm favorable for thrombosis and

aneurysm occlusion.

In what follows, a description of the methodology developed for the virtual deployment of

stents within a given anatomical model is presented. The main aim of this tool is to provide

with a realistic patient-specific anatomical model after stenting in such a way that it can be

used for a numerical simulation of the blood flow. The final objective is to characterize the

blood flow changes before and after stenting in order to assess the effectiveness of a given

stent design in a patient-specific basis.
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3.2 Methodology

The Virtual Stent Deployment methodology can be divided in four main steps: 1) parent

vessel’s centerline extraction, 2) initial cylindrical host surface generation, 3) host surface

adaptation to the vessel wall, and 4) stent design mapping. In what follows a detailed

description of each step is provided.

The first step is the extraction of the skeleton corresponding to the parent vessel. This is

done by a minimal cost path construction algorithm[99]. The basic idea is first to compute

the distance to the wall map within the anatomical model. Then the two endpoints of the

skeleton (manually selected) are connected by the minimum arclength path that travels

along the local maxima of the distance map. The output of this step is a collection of single

connected points (edges) that represents the centerline of the parent vessel.

The second step consists in generating a cylindrical surface along the previously com-

puted centerline. This is done by first computing an arclength parametrized cubic spline

interpolation of the centerline points. Two arclength parameters s0 and s1 are then selected

in such a way that the interpolated centerline between them satisfies the following: 1) it has

the arclength of the targeted stent, and 2) it is in the required deployment position. These

parameters are manually selected by trial and error. Finally a triangulated cylindrical sur-

face is generated along the interpolated centerline between these values, where the radius

of the cylinder is set to be the distance to the wall at each step. The output of this step is

a triangulated cylindrical surface that lies completely inside the anatomical model, which

roughly matches the vessel geometry and is already in the targeted deployment position.

The third step attempts to improve the fitting quality of the cylindrical surface to the

vessel wall. This is carried out by a combination of external forces and internal smoothing

forces applied to the triangulated surface. The external forces consist of an inflating force (or

radial force) that is computed as the distance vector between the points in the triangulated

surface and the centerline. This force has the effect of inflating the cylindrical surface while

maintaining the cylindrical shape. The internal smoothing forces are based on the classical
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smoothing Laplacian operator. These are basically attractive forces between each point in

the triangulated surface and its first neighbors, i.e., all the points that are connected to it.

The effect of this force is to keep the cylindrical surface smooth while it is deformed.

The vertices of the cylindrical surface are updated using a classical Newtonian law of

motion resulting in the following set of equations:

mi
∂2pi
∂t2

+ γ
∂pi
∂t
− α̃ifint(pi) = β̃ifext(pi) (3.1)

where mi is the ith vertex mass and γ is a damping parameter. The parameters α̃i and β̃i

controls the influence of the internal and external forces. The discretization of equation 3.1

using a fully explicit discretization scheme leads to

pn+1
i = pni + (1− γ)(pni − pn−1

i ) + αifint(pni ) + βifext(pni ) (3.2)

where αi and βi are force weights including the point mass and the timestep. The stability

of this scheme is guaranteed if αi, βi and γ lie inside [0, 1/2], [0, 1] and [0, 1] respectively.

For all the cases the parameters were set to be γ = 1, αi = 0.01 and βi = 0.0005. These

values were selected on a trial and error basis using several test cases.

Boundary conditions are applied to the points lying on the top and bottom ends of the

cylinder. For these points only the components of the total force that are in the planes

defined by the top and bottom ends of the cylinder are kept. This is done in order to

maintain the original stent length and deployment position along the vessel.

The deformation process is performed interactively and stopped when most of the points

of the cylindrical surface are on the vessel wall. This step has to be done interactively since

there is no mechanism to prevent the cylindrical surface to enter into the aneurysm. When

a point crosses the vessel wall, it is projected back onto the wall and kept fixed in that

position for the rest of the simulation. Figure (3.1) depicts the deformed cylindrical surface,

the vessel wall and the arrows representing the internal and external forces.

72



Figure 3.1: Virtual Stent Deployment: Intermediate stage during the deformation of a
cylindrical surface in order to match the given vessel wall. The arrows represents the actual
internal and external forces exerted over the cylinder under deformation.

The final step consists in using the deformed cylindrical surface as a host surface to

map different stent designs. The stent designs are drawn on a 2D rectangle as a collection

of connected lines with appropriate thickness. This 2D rectangle is a discrete surface that

matches the host cylinder in the number and distribution of triangular elements. Using a

simple coordinates transformation, the stent designs are mapped onto the deformed cylinder

in order to obtain the final stent models in the deployed state. A constant phase angle can

be provided at this step in order to rotate the deployed stent around the vessel.

The procedure to deploy a stent into a patient-specific vascular model of a cerebral

aneurysm is illustrated in figure (3.2).

The blood flow simulation after stenting is computed using the finite element method
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Figure 3.2: Virtual Stent Deployment: Different stages of the Virtual Stent Deployment
methodology.
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in conjunction with an adaptative embedded technique for unstructured grids[98]. This

method greatly simplifies the flow simulation since it doesn’t require a remeshing of the

model after stenting. This methodology has been successfully applied in the simulation and

characterization of several stents designs[98,100,101].

3.3 Evaluation

The Virtual Stent Deployment methodology was evaluated using an idealized glass model

of a cerebral aneurysms with a Neuroform stent in place. Figure 3.3 shows a picture of the

deployed stent within the phantom model.

A geometrical model of this idealized case was reconstructed from a 3-D rotational

angiographic scan of the glass model. A Neuroform stent (Boston Scientific, Inc.) design

was then virtually deployed using the methodology previously presented. Figure 3.4 shows

the virtually deployed Neuroform stent thus obtained.

It can be seen from comparison between figure 3.3 and figure 3.4 that the stent was

successfully positioned along and around the parent vessel. Also the length of the stent

and its conformability to the vessel wall are well approximated. However the size of the

gaps between the stent wires at the top of the model are not well approximated by the

computational model. Note also how the wires of the stent in the bottom part of the

phantom model are crossed with each other, while in the computational model this feature

is not reproduced. These two discrepancies are due to the fact that the mapping step

between the 2-D design and the deployed cylinder is a continuous mapping. Since the

deployment methodology is only geometric, i.e. it does not include a mechanical modeling

of the stent wires, this behavior is accentuated in regions of high curvature of the vessel

wall and in places where the stent wires are not connected to each other.

However, these limitations are less important for stent designs with small closed cells and

vessels with small curvature and it does not seem to affect substantially the overall solution

of the blood flow field after stenting[98]. In what follows several examples of patient-specific

models of stented cerebral aneurysms using this methodology are presented.
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Figure 3.3: Phantom Case: Deployed stent (Neuroform) within an idealized model of an
stent with its parent vessel made of glass.
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Figure 3.4: Phantom Case: Virtually Deployed stent using the Virtual Stent Deployment
methodology.
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3.4 Applications

The virtual stenting technique was demonstrated in several patient-specific cases of cerebral

aneurysms. For all the cases, the vascular models were constructed from 3DRA images

obtained during intravascular injection of a contrast agent.

In the first example, three different stent designs were tested in four patient-specific

anatomical models. The goal of these simulations was to characterize the effectiveness of

the different designs in the divertion of the blood flow.

The second example is a cerebral aneurysm for which clinical studies before and after

stenting treatment are available. This provided the opportunity to compare the changes in

the blood flow before and after stenting between the measured data and the computational

model.

3.4.1 Comparison of Stent Designs

In this example, the virtual stenting technique was applied[100], in conjunction with an

embedded technique, to compute the blood flow in four different patient-specific models of

cerebral aneurysms with three stents of different design. Figure 3.5 shows the 3DRA images

used to construct the vascular models and the reconstructed anatomical models with the

various stent designs used. The first stent (third row) is made up of rhomboidal cells

similar to the Neuroform stent (Boston Scientific, Inc.) while the remaining two stents have

a helical-type design with wires oriented clockwise (fourth row) and counter-clockwise (last

row). Simulations of the blood flow were carried out with and without stents. Physiologic

pulsatile flow rates derived from measurements in normal subjects were prescribed at the

inflow[51], while traction-free boundary conditions were imposed at the outflows. The same

boundary conditions were used before and after stenting.

Figure 3.6 shows the streamlines at peak systole before and after stenting for all models

and stents. For the first case (left column), when compared to the flow without stent,

the Neuroform stent design (second row) diverts the inflow jet towards the center of the
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Figure 3.5: Comparison of Stent Designs: Original 3DRA image, computational model and
three stents deployed into the model.

aneurysms dome. The helical stents divert the flow to the center of the aneurysms and

prove even more effective compared to the Neuroform in reducing the inflow jet.
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In the second case (second column), the Neuroform stent only reduces slightly the inflow

jet in comparison to the pre-stented case. Similarly to the first case, the helical stents

obstruct the flow into the aneurysms more effectively. In the pre-stented case the inflow

into the aneurysm was at the distal part of the neck and the outflow was at the proximal

part. This was not altered by the Neuroform stent. However, the helical stents shifted the

location of the inflow and outflow to the sides of the neck. From this case it is clear the the

inflow and outflow in the aneurysm depend on factors such as the stent used, the location

of the aneurysm on the parent vessel, the shape of the aneurysm and the parent vessel and

the type of inflow.

The third case (third column) shows that the inflow after stenting was closer to the

proximal part of the aneurysm neck and the outflow was at the distal part.

Hemodynamics in the pre and post-stented cases for the fourth aneurysm (right column)

was different due to the size, shape and location of the aneurysm on the parent vessel. In

the pre-stented case the inflow was at the proximal part and the jet was impacting on

the body of the aneurysm. The Neuroform slightly reduced the inflow, but increased the

concentration of the inflow jet. As expected, the helical stents diffused the inflow jet to a

larger extent with lower flow into the aneurysm.

These examples illustrate how the methodology can be used to understand the changes

in the hemodynamics produced by different stents. This can be useful for selecting the best

stent for a given aneurysm.
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Figure 3.6: Comparison of Stent Designs: Streamlines for the various patient specific cases,
pre-stented case (top row), with Neuroform stent (second row), left oriented helical stent
(third row), and right oriented helical stent (bottom row).
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3.4.2 Model of Aneurysm treated with stent

In this example, the alterations in the blood flow produced by a braided stent were analyzed.

The case studied was a giant (26mm) intracranial aneurysm in the left internal carotid artery

(ICA). The aneurysm was treated with a braided stent alone (Pipeline Neuroendovascular

Device, Chestnut Medical Technologies, Inc). Rotational and conventional angiograms were

acquired prior and immediately after stenting. A patient-specific model of the aneurysm

and the parent artery before treatment was constructed from the 3D rotational angiogram.

A model of the Pipeline stent was created following the geometry described in [102]

Figure 3.7 illustrates the modeling steps. This figure shows the rotational angiogram

prior to stenting (top-left panel), the reconstructed vascular model (top-center panel), the

deformed cylindrical support surface for stent deployment (top-right panel), the stent design

(bottom-left panel), the deployed stent (bottom-center panel) and a detail of the mesh after

embedding the stent and adaptive refinement (bottom-right panel).

The results of the numerical simulations of the hemodynamics before and after stenting

the aneurysm are presented in Figure 3.8. This figure shows the intra-aneurysmal blood

flow pattern at peak systole for the pre-stenting (left) and post-stenting (right) models.

These visualizations show that before stenting there is a high speed inflow jet entering the

aneurysm at the proximal end of the neck. This inflow jet produces a complex and unsteady

flow pattern inside the aneurysm.

The placement of the stent produces a significant alteration of the blood flow pattern.

In particular, the inflow jet is substantially diffused by the stent mesh resulting in a much

simpler and more stable flow pattern with slower velocities and a smoother appearance.

The peak flow rate entering the aneurysm was reduced from 2.32 ml/s to 1.47 ml/s (47%

reduction).

Synthetic or ’virtual’ angiograms were created to visualize the intra-aneurysmal flow

characteristics. These virtual angiograms are visualizations of the passage of a simulated

bolus of contrast transported by the blood flow. They are constructed by numerically
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Figure 3.7: Pipeline: Top row: rotational angiography prior to treatment (left), vascular
model (center), deformed cylinder (right). Bottom row: stent design (left), deployed stent
(center), zoom up view of the refined mesh near the stent wires (right).

Figure 3.8: Pipeline: Flow pattern at peak systole before (left) and after (right) stenting.

solving the transport equation:

φ,t + v · ∇φ = 0 (3.3)
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where φ represents the dye concentration field, and v is the velocity field obtained from the

flow solver. This equation was numerically solved using a finite element scheme [103]. At

the model inlet a time-dependent concentration with the shape of a Poisson distribution

was imposed simulating four seconds injection of contrast. The concentration field was then

advanced for 10 cardiac cycles assuming periodicity of the flow velocity field. The virtual

angiograms were then created by a volume rendering technique using the mesh points with

opacity and intensity modulated by the concentration field at each instant.

Selected frames of conventional and virtual angiograms are shown in Figure 3.9. The

left panel of this figure shows four frames of the conventional (left) and virtual (right) an-

giograms before aneurysm stenting. The first three frames (from top to bottom) correspond

to the filling phase, while the last frame corresponds to the washout phase. It can be seen

that the main flow characteristics observed in the conventional angiogram are reasonably

reproduced by the computational model. Namely, the location and size of the inflow jet

and flow impaction zone, and the major vortical structures observed inside the aneurysm.

The right panel of Figure 3.9 shows four selected frames of the conventional (left) and

virtual (right) right after stenting. These visualizations confirm the predicted alteration

of the flow pattern from a complex to a simple flow type and slower flow velocities (i.e.

increased residence time). They also show that little contrast reaches the distal part of the

dome, while most of the dye concentrates near the inflow zone.
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Figure 3.9: Pipeline: Conventional (gray background) and virtual (white background) an-
giogram prior to stenting (left panel) and right after stenting (right panel).
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3.5 Summary

A novel methodology for virtual stent deployment in patient-specific models of cerebral

aneurysms has been developed. This represents a first step towards an accurate and realistic

method for modeling the hemodynamics of stents in aneurysms.

The technique was evaluated with a glass phantom of a stented aneurysm in a curved

vessel. In addition, the methodology was demonstrated with several patient-specific models

of cerebral aneurysms constructed from 3DRA images and different stents designs. One of

the main advantages is that different stent designs can be easily interchanged allowing for

a fast characterization of the blood flow patterns in order to determine the best option.

This methodology has several limitations: 1) it can produce unrealistic elongations of

the stent wires in regions of high vessel curvature, specially for stents with large cells; 2)

the gaps between unconnected wires could be different from the actual gaps; 3) it does not

produce forshortening of the stent; and 4) it requires manual intervention to avoid leaking

into the aneurysm. However, these limitations are less important for stent designs with

small closed cells and vessels with small curvature.

Despite these limitations, the methodology was able to reproduce the flow alterations

observed in a patient treated with a braided stent. Further improvements are needed in

order to obtain a more accurate representation of the stent geometry in the deployed stage.
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Chapter 4: Conclusions and Outlook

Two new methodologies that extended the capabilities of the computational modeling of

cerebral aneurysms have been developed and tested , namely, 1) an acceleration technique

for the incompressible Navier-Stokes solver and 2) a methodology to virtually deploy stents

within anatomical models of cerebral aneurysms.

A Deflated Preconditioned Conjugate Gradients (DPCG) technique for the solution

of the pressure Poisson equation within an inhouse incompressible flow solver (FEFLO)

has been developed. The main idea is to use a coarser discretization of the domain to

approximate the lowest eigenmodes of the system and therefore promote a faster convergence

rate. This technique was developed in the context of computational modeling of cerebral

aneurysms, but it is general and can be used for any incompressible flow problem. Several

examples have shown a speedup between 3 and 5 in the total computational time compared

to the standard PCG solver. The number of iterations has also been reduced by up to a

factor of 12. This technique has successfully extended the capabilities of the flow solver

and larger and more complex vascular models have become practical. Future work will

explore the possibility of applying this deflation technique to non-symmetric cases with the

GMRES method. This would allow to also reduce the computational time required to solve

the advection terms of the Navier-Stokes equations.

A pioneer technique for the virtual deployment of stents within patient-specific models

of cerebral aneurysms have been developed. This methodology was tested on several models

of cerebral aneurysms constructed from 3DRA images and different stent designs. One of

the main advantages of this technique is the possibility of easily interchange stent designs

in order to characterize its performance for a given patient-specific model. However, this

methodology has some limitations in dealing with stent designs with large cells and high

curvature vessel walls. Despite this limitations, the methodology was able to reproduce the
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flow alterations observed in a patient treated with a braided stent. Further improvements

are needed in order to obtain a more accurate representation of the stent geometry in the

deployed stent.
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[47] J. R. Cebral, M. A. Castro, R. Löhner, O. Soto, P. J. Yim, and N. Alperin, “Finite
element modeling of the circle of willis from magnetic resonance data,” Proc. SPIE
Medical Imaging, vol. 5031, pp. 11–21, 2003.

[48] J. R. Cebral, M. A. Castro, J. E. Burgess, R. Pergolizzi, M. J. Sheridan, and C. M.
Putman, “Characterization of cerebral aneurysm for assessing risk of rupture using
patient-specific computational hemodynamics models,” American Journal of Neuro-
radiology, vol. 26, pp. 2550–2559, 2005.

[49] C. A. Taylor and M. T. Draney, “Computational techniques in therapeutic decision-
making,” Computer Assisted Surgery, vol. 4, pp. 231–247, 1999.

[50] J. R. Cebral and R. Lohner, “Efficient simulation of blood flow past complex en-
dovascular devices using an adaptative embedding technique,” IEEE Transactions in
Medical Imaging, vol. 24, no. 4, pp. 468–477, 2005.

[51] J. R. Cebral, M. A. Castro, S. Appanaboyina, C. M. Putman, D. Millán, and
A. F. Frangi, “Efficient pipeline for image-based patient-specific analysis of cerebral

93



aneurysm hemodynamics: Technique and sensitivity,” IEEE Transactions in Medical
Imaging, vol. 24, no. 1, pp. 457–467, 2005.

[52] J. R. Cebral and R. Lohner, “From medical images to anatomically accurate finite
element grids.” International Journal for Numerical Methods in Engineering, vol. 51,
pp. 985–1008, 2001.

[53] J. Beutel and M. Sonka, Handbook of medical imaging, Volume 2: Medical image
processing and analysis, ser. SPIE Press Monograph. SPIE-International Society for
Optical Engine, 2000, vol. PM80.

[54] J. Weickert, Anisotropic diffusion in image processing, ser. ECMI. Stuttgart, Ger-
many: Teubner-Verlag, 1998.

[55] A. Frangi, “Multiscale vessel enhancement filtering,” Lecture Notes in Computer Sci-
ence, vol. 1496, pp. 130–137, 1998.

[56] P. J. Yim, G. Boudewijn, B. Vasbinder, V. B. Ho, and P. L. Choyke, “Isosurfaces
as deformable models for magnetic resonance angiography,” IEEE Transactions on
Medical Imaging, vol. 22, no. 7, pp. 875–881, 2003.

[57] R. Lohner, Applied CFD techniques: An Introduction based on Finite Element Meth-
ods, 2nd ed. Wiley, 2008.

[58] ——, “Extensions and improvements of the advancing front grid generation tech-
nique,” Computer Methods in Applied Mechanics and Engineering, vol. 5, pp. 119–132,
1996.

[59] J. Mazumdar, Biofluid mechanics. World Scientific, 1992.

[60] P. K. Kundu and I. M. Cohen, Fluid Mechanics. Elsevier, 2004.

[61] J. R. Cebral, M. A. Castro, O. Soto, R. Löhner, and N. Alperin, “Blood-flow models
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