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Abstract

FUNCTION SPACE NONLINEAR RESCALING METHODS FOR ELLIPTIC CON-
TROL PROBLEMS WITH POINT-WISE STATE AND CONTROL CONSTRAINTS

Joel M Mejeur, PhD

George Mason University, 2017

Dissertation Director: Dr. Igor Griva

State inequality constraints in PDE Constrained Optimization (PDECO) arise in

many areas of science and engineering. Unfortunately these constraints, and the re-

sulting Lagrange multipliers, are known to negatively influence the behavior of many

existing optimization methods. In this work Nonlinear Rescaling based methods are

used for the state and control constraints. In particular, a Nonlinear Rescaling-Primal

Dual Augmented Lagrangian method is analyzed and proven to have linear conver-

gence for state and control constrained problems. In addition, a Primal Dual Nonlin-

ear Rescaling Augmented Lagrangian method is analyzed for control constraints and

shown to have superlinear convergence properties. In each of the derived methods

the Finite Element Method will be used to construct and solve the discretized version

of the inner iteration.



Chapter 1: Introduction

The field of optimization for problems with Partial Differential Equation (PDE) con-

straints has been an active area of research for many decades, which has been doc-

umented within works by Lions [26], Biegler et.al. [9], and Hinze et.al. [23] and the

references contained within. The difficulty of these PDE Constrained Optimization

(PDECO) problems arises from two primary sources.

One of these sources of difficulty lies with the PDE constraint itself. The level

of difficulty involved depends on a number of factors, including the specific PDE(s)

being solved and the domain on which they are solved. Decades of research have gone

into developing methods for solving just the PDE systems themselves, focusing on

things such as the discretization methods, nonlinear solver techniques, and efficient

preconditioners for the resulting linear systems and their respective solvers. The

resulting size of these linear systems has also been increasing. Discretized PDEs with

millions of degrees of freedom are now common, and problems with billions of degrees

of freedom are now also being solved.

The second source of difficulty in solving PDECO problems is in reality a result

of two factors. One factor is that even under a relatively simple, linear PDE con-

straint the resulting optimality condition system of equations which must be solved

may be nonlinear, and therefore PDECO problems with the simple PDE constraint

become nonlinear optimization problems. The other factor is related to the size of

the optimization problem, which relates back to the size of the discretized PDE sys-

tem itself. An example demonstrating this issue could be a simple optimal control

problem governed by an elliptic PDE, where the control is distributed throughout
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the domain. If the problem’s state variable, control variable, and the Lagrange mul-

tiplier associated with the PDE constraint are discretized in the same method then

there can be an equal number of discretized degrees of freedom for all three variables.

Furthermore, for each point-wise inequality imposed on the PDECO an additional

Lagrange multiplier would be added. Therefore a PDECO problem with point-wise

inequality constraints both the state and control leads to 5 times the number of dis-

cretized degrees of freedom than just the PDE alone. One additional detail is that

efficient solvers may exist for finding the solution to the discretized PDE, and lin-

ear systems that may arise from the optimization problem are often more complex,

requiring different preconditioning and solution strategies.

PDECO problems which contain point-wise inequality constraints on the state

variables pose additional problems. These constraints cause their associated Lagrange

multipliers to be highly irregular [12, 13, 7] which cause problems both in the the-

oretical convergence of the method as well as with implementations of the method.

The irregularity and the issues which ensue will be discussed in Chapter 2.

Many methods for solving state constrained problems have been proposed and

investigated over the last few decades. Standard optimization methods such as Se-

quential Quadratic Programming (SQP) [10], Augmented Lagrangian [5, 24], and

Interior Point [4, 39, 38] have been applied to state constrained problems. Among

the more recent methods over the last 10-15 years for solving state constrained op-

timization problems have focused on the use of Semi-Smooth versions of Newton’s

Method and Moreau-Yosida regularization of the state constraint [4, 6, 21, 22, 14].

As an alternative to these, the work described here uses is based on Nonlinear

Rescaling. The Nonlinear Rescaling (NR) principal was introduced by Polyak [30]

in the early 1990’s as a method for handling inequality constraints for finite dimen-

sional optimization. NR methods, unlike classical barrier methods, do not require the

2



barrier parameter to approach infinity to guarantee convergence, which is the cause

of ill-conditioning of the Hessian in most other barrier methods such as the Interior

Point method. Goldfarb, et.al. [16] modified the NR based methods to include equal-

ity constraints through the augmented Lagrangian (AL). These Nonlinear Rescaling

Augmented Lagrangian (NRAL) methods are the basis for the methods examined

here, and these methods will be introduced in Chapter 3.

All previous work in NR-based methods has been done in the Rn space, whereas

the target application space of this research is in the solution of PDECO problems,

which are infinite dimensional in nature. It is possible to recast these infinite dimen-

sional problems as finite dimensional problems in Rn, which can often then be solved

using existing, well established nonlinear optimization methods.

But there are a number of disadvantages to this technique, primarily related to

the fact that one is solving an approximation to the problem instead of the problem

itself. Specific optimality conditions, interpretation of norms and their meaning from

one iteration to the next, and the solution itself is dependent on the discretization of

the problem. This dependence is both on the discretization method (finite difference,

finite element, etc.) and the specific triangularization of the domain of interest.

Changing the discretization, either by method or resolution of the triangularization,

results is modified optimality conditions.

This is an important point given that many modern discretization methods, in

particular the Finite Element Method, can employ adaptive meshing capability to

both reduce the time required to solve the problem and potentially increase the fidelity

of the solution. In the case where a discretized optimization problem is solved using

a method that employs adaptive meshing one must take extra care in using previous

solution information. But in an infinite dimensional method solution information

remains valid from one mesh to the next, provided the mesh is sufficiently resolved.

3



Each method presented and analyzed in this document is done so in its infinite

dimensional form. Within the implementation of the example problem one does, at

some point need to discretize a system of equations, since in general these systems

of equations do not have analytical solutions. In the implementations described here

the only system of equations discretized are the linearized operators solved within the

inner most iteration. The Finite Element Method [35] is chosen as the discretization

and solution methods for solving the infinite dimensional systems.
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Chapter 2: Elliptic Optimization with State- and

Control-Constraints

2.1 Problem Statement and Notation

The general optimization problem examined here is a stationary optimal control prob-

lem with an elliptic PDE constraint, with independent inequality constraints on the

state and control variables. Optimization problems with elliptic constraints are very

frequently analyzed throughout optimization and control research, for two primary

reasons. Many physical, mathematical, and financial phenomena are governed by el-

liptic constraints, and therefore optimization problems do often arise with these PDE

constraints. Elliptic constraints are also more amenable for analysis due to the well

behaved and well studied qualities of the elliptic PDE.

Let J(u, q) be the functional being minimized, where u is the state variable and q

is the control variable of the problem. Let Ω be a convex, bounded domain in Rn for

n = 1, 2, 3. The state variable is in the Sobolev space W = H2(Ω) ∩ H1
0 (Ω), where

H1
0 (Ω) is defined as a H1 space over Ω such that u = 0 on ∂Ω (the boundary of Ω)

for all u ∈ H1(Ω).

Define A to be a second-order uniformly elliptic operator of the form

A(·) =
n∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj
(·)
)

(2.1)
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where there exists some constant θ such that

n∑
i,j=1

aij(x)ξiξj ≥ θ|ξ|2 (2.2)

for all ξ ∈ Rn and x ∈ Ω. Additionally, the coefficients aij of A are defined to be

bounded and continuously differentiable. Finally, define the operators (·, ·)2
L(Ω) and

‖ · ‖2
L(Ω) are the L2 inner product and norm, respectively, over the domain Ω. The

more general form of (·, ·) and ‖ ·‖ will imply these operators over Ω unless a different

space is specified.

minimize J(u, q) =
1

2
‖u− ud‖2 +

α

2
‖q‖2

subject to Au = q in Ω

ηu ≥ u ≥ ηl a.e. in Ω

βu ≥ q ≥ βl a.e. in Ω

(2.3)

where u ∈ W , and A : W → L2(Ω), and q, ud, ηu, ηl, βuand βl are all in L2(Ω).

Note that while there are no boundary conditions directly specified in the problem

statement, placing u ∈ W includes the requirement that u = 0 on ∂Ω.

Problem (2.3) is assumed to satisfy strict complementarity. Furthermore, the

strong convexity of J (u, q) allows one to assume that the second order optimality

conditions are satisfied.

The regions Pη and Pβ will be defined to be the passive regions Pη = {x ∈ Ω | ηu > u > ηl}

and Pβ = {x ∈ Ω | βu > q > βl}, respectively. Similarly, Aiη and Aiβ are the active
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regions Aiη = {x ∈ Ω | u = ηi} and Aiβ = {x ∈ Ω | q = βi}, for i = {u, l} respectively.

2.2 Optimality Conditions

The first order optimality conditions of problems similar to Problem 2.3 have been

considered in a number of texts [12, 6, 7] . The following analysis follows the material

presented by Bergounioux and Kunisch [7], but generalized to include bounds on

the control, modifying the state constraint to be include both an upper and lower

bound, and replacing the Laplacian in the PDE constraint with a more generic elliptic

operator.

Theorem 2.2.1. Let A :W → L2 be an elliptic operator and Ω be a convex domain

in Rn, n = 1, 2, 3. The variables (u∗, q∗) ∈ W ×L2 is the solution to Problem (2.3) if
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and only if there exists a λ∗ ∈ L2, σ∗u, σ
∗
l ∈ C∗, and χ∗u, χ

∗
l ∈ L2 such that

(λ∗, Au) + 〈σ∗u, u〉C∗,C − 〈σ∗l , u〉C∗,C + (u∗ − ud, u) = 0 ∀u ∈ C such that ηu ≥ u ≥ ηl

(2.4a)

A(u∗) = q∗ (2.4b)

αq∗ + χ∗u − χ∗l − λ∗ = 0 (2.4c)

〈σ∗u, u− u∗〉C∗,C ≤ 0 ∀u ∈ C such that u ≤ ηu (2.4d)

u∗ ≤ ηu (2.4e)

〈σ∗l , u∗ − u〉C∗,C ≤ 0 ∀u ∈ C such that u ≥ ηl (2.4f)

u∗ ≥ ηl (2.4g)

χ∗u ≥ 0, q∗ ≤ βu, (χ∗u, βu − q∗) ≥ 0 (2.4h)

χ∗l ≥ 0, q∗ ≥ βl, (χ∗l , q
∗ − βl) ≥ 0 (2.4i)

Proof. In order to derive the optimality conditions for (2.3) some additional notation

is required. Define T : L2 → C as the operator that maps a function q ∈ L2 to

u(q) ∈ W , which is the solution to the state equation Au = q. Additionally define
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the sets Kus, Kls, Kuc, and Klc as

Kus = {u ∈ W ⊂ C(Ω) | u ≤ ηu} (2.5a)

Kls = {u ∈ W ⊂ C(Ω) | u ≥ ηl} (2.5b)

Kuc =
{
q ∈ L2 ⊂ C(Ω) | q ≤ βu

}
(2.5c)

Klc =
{
q ∈ L2 ⊂ C(Ω) | q ≥ βl

}
(2.5d)

and define indicator functions over these sets.

IU =

 0 for u ∈ KU

+∞ for u /∈ KU

(2.6)

for U = us, ls, uc, and lc.

Using the convexity of these indicator functions, and the functional being mini-

mized, the standard properties of subdifferential calculus [37] imply that (u∗, q∗) will

be the solution to Problem (2.3) if and only if

0 ∈ ∂
(

1

2
‖T q∗ − ud‖2 +

α

2
‖q∗‖2 + Ius(T q∗) + Ils(T q∗) + Iuc(q

∗) + Ilc(q
∗)

)
(2.7)

Convexity of the operator (2.7) implies that the following statement is equivalent.

0 ∈ ∂
(

1

2
‖T q∗ − ud‖2 +

α

2
‖q∗‖2

)
+ T †∂ (Ius(T q∗)) + T †∂ (Ils(T q∗))

+ ∂ (Iuc(q
∗)) + ∂ (Ilc(q

∗))

(2.8)
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Define σ∗u, σ
∗
l , χ

∗
u and χ∗l to be the elements within indicator functions Ius, Ils, Iuc,

and Ilc.

σ∗u ∈ ∂Ius(T q∗) (2.9a)

σ∗l ∈ ∂Ils(T q∗) (2.9b)

χ∗u ∈ ∂Iuc(q∗) (2.9c)

χ∗l ∈ ∂Ilc(q∗) (2.9d)

Using (2.9a), (2.9b), (2.9c) and (2.9d) we see that (2.8) is equivalent to

0 ∈ ∂
(

1

2
‖T q∗ − ud‖2 +

α

2
‖q∗‖2

)
+ T †σ∗u + T †σ∗l + χ∗u + χ∗l . (2.10)

This equation may be expressed as

0 =(T q∗ − ud, T q − T q∗) + α(q∗, q − q∗) + (T †σ∗u, q − q∗)− (T †σ∗l , q − q∗) (2.11)

+ (χ∗, q − q∗)− (χ∗, q − q∗) (2.12)

=(T †(T q∗ − ud) + T †σ∗u − T †σ∗l + αq∗ + χ∗u − χ∗l , q − q∗) (2.13)

=(−λ∗ + αq∗ + χ∗u − χ∗l , q − q∗) (2.14)

for all q ∈ C, and where

λ∗ = −T †(T q∗ − ud)− T †σ∗u + T †σ∗l . (2.15)
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Equation (2.15) can be analyzed in its weak form, by multiplying through by a q ∈ L2.

0 = (λ∗, q) + 〈T †T q∗ − ud), q〉+ 〈T †σ∗u, q〉 − 〈T †σ∗l , q〉

= (λ∗, q) + 〈T q∗ − ud), T q〉+ 〈σ∗u, T q〉 − 〈σ∗l , T q〉
(2.16)

The definition of T then provides the following result.

(λ∗, Au) + 〈σ∗u, u〉C∗,C − 〈σ∗l , u〉C∗,C + (u∗ − ud, u) = 0 ∀u ∈ C, ηu ≥ u ≥ ηl (2.17)

and

A(u) = q (2.18)

which satisfies (2.4a) and (2.4b). Equation (2.14) is true for all q, and therefore can

be simplified as

αq∗ + χ∗u − χ∗l − λ∗ = 0 (2.19)

which satisfies (2.4c).

The remaining optimality conditions to be proven require additional analysis of

(2.9a), (2.9b), (2.9c), and (2.9d), which require understanding the definition of an

element in a subdifferential. First define f : U → R be a convex function, and let x

be in U . Let φ be in the dual space U∗. Element φ is defined to be a subgradient of

f at x if

f(y)− f(x) ≥ 〈φ, y − x〉U∗,U ∀y ∈ U (2.20)

The subdifferential ∂f(x) is the set of all subgradients of f at x. Using this and the

definition of T we know that (2.9a) is equivalent the following inequality, which holds

11



for all u∗ ∈ Kus.

Ius(u)− Ius(u∗) ≥ 〈σ∗u, u− u∗〉C∗,C ∀u ∈ Kus (2.21)

Since both u and u∗ must be in Kus we have that Ius(u) = 0 and Ius(u
∗)=0, and

therefore we arrive at

u∗ ∈ Kus and 〈σ∗u, u− u∗〉C∗,C ≤ 0 ∀u ∈ Kus. (2.22)

which is equivalent to (2.4d). A similar analysis may be used to show that (2.9b),

(2.9c), and (2.9d) are equivalent to

u∗ ∈ Kls and 〈σ∗u, u∗ − u〉C∗,C ≤ 0 ∀u ∈ Kls (2.23a)

q∗ ∈ Kuc and 〈χ∗u, q − q∗〉C∗,C ≤ 0 ∀q ∈ Kuc (2.23b)

q∗ ∈ Klc and 〈χ∗l , q∗ − q〉C∗,C ≤ 0 ∀q ∈ Klc (2.23c)

The Lagrange multipliers associated with control constraints are in L2(Ω) [26]. There-

fore q, q∗, χ∗u and χ∗l are in L2 and

〈χ∗u, q − q∗〉C∗,C = (χ∗u, q − q∗)L2 ≤ 0 ∀q ∈ L2 (2.24)

and similarly

〈χ∗l , q∗ − q〉C∗,C = (χ∗l , q
∗ − q)L2 ≤ 0 ∀q ∈ L2. (2.25)

Additional information may be derived for χ∗ by examining it in regions ΩAβ and

ΩPβ . Within ΩAβ we know β = q∗, and by selecting any q < β we see that (χ∗, q −

12



q∗)L2(ΩAβ ) ≤ 0 will be true if and only if χ∗ > 0. Similarly, within ΩPβ , we know

that β > q∗. By selecting q = β we see that (χ∗, q − q∗)L2(ΩAβ ) ≤ 0 implies χ∗ ≤ 0.

By selecting any q ≤ β such that q < q∗ we see that (χ∗, q − q∗)L2(ΩAβ ) ≤ 0 implies

χ∗ ≥ 0. Thus for any q ∈ L2(ΩKη) we have that χ∗ = 0. Thus at the solution (u∗, q∗)

we have

χ∗ ≥ 0, β ≥ q∗, (χ∗, β − q∗) ≥ 0 (2.26)

which is the same as (2.4f), completing the proof.

2.3 Example State Constrained Problem

Irregularity of the Lagrange multipliers associated with can easily be shown with the

following 1D state constrained problem.

minimize J(u, q) =
1

2
‖u− ud‖2 +

α

2
‖q‖2

subject to −∇2u = q in Ω

u(−1) = u(1) = 0

u ≥ −3 + cos(2πx)

5
a.e. in Ω

12 ≥ q a.e. inΩ

(2.27)

where Ω = [−1, 1]. Let the desired state, ud, be defined as

ud(x) = e−xcos(πx)(x− 1)3(x+ 1)3 (2.28)

13
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straint

Figure 2.1: Idealized State and Control

which can be seen in Figure 2.1a, along with the state constraint. Without either the

state or control inequality constraint the solution would trivially be q = −∇2ud, seen

in Figure 2.1b. For this example the regularization parameter α is set to 10−5.

This state constrained problem is small and simple enough that a number of

existing solvers are able to find a solution, but yet is able to demonstrate the issues

resulting from the state constraint. This problem was solved using the Interior Point

method as implemented in the Optimization Toolbox�within MATLAB®[27]. The

solution to Problem (2.27) is shown in Figure 2.2. The Lagrange multiplier associated

with the control constraints is known to be in L2([−1, 1]), and can be seen in Figure

2.2d.

The Lagrange multiplier associated with the control constraint is a well behaved

function, as expected of an L2 function. The Lagrange multiplier associated with

the state constraint, though, is not well behaved, which can be seen in 2.2c. In the

passive region the multiplier is zero, and away from the boundary between the active

and passive regions the multiplier is well behaved. But at the boundary a sharp

discontinuity is formed.
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Figure 2.2: Solution to Example State Constrained Problem
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Chapter 3: Nonlinear Rescaling Augmented

Lagrangian Methods

The NRAL family of methods was first introduced in the late 1990’s by Goldfarb

et. al. [16]. In this work two separate methods were coupled to handle optimization

problems with both equality and inequality constraints. The inequality constraints

were used using the Nonlinear Rescaling (NR) method, which is described in Section

3.1. The Augmented Lagrangian (AL) method, described in Section 3.2, was used for

the equality constraints.

In order to introduce the NRAL method both the NR and AL methods will be

presented in their classic finite dimensional form. Let F (x), fi(x), and gj(x) be C2

functions in Rn, for i = 1, . . . ,m and j = 1, . . . , r. The generic problem used to

describe these methods follows.

minimize F (x)

subject to fi(x) ≥ 0 i = 1, . . . ,m

gi(x) = 0 j = 1, . . . , r

(3.1)

Define f(x) = {fi(x), i = 1, · · · ,m} and g(x) = {gj(x), i = 1, · · · , r}.
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3.1 Nonlinear Rescaling

The Nonlinear Rescaling method was introduced by Polyak in the early 1990’s [30]

as a method for constrained optimization problems with inequality constraints. The

NR methods use barrier functions with appropriate properties to recast the inequality

constrained problem into an equivalent problem. These barrier functions are similar

to those in the Interior Point method [15, 42, 41, 11], but unlike the interior point

method the barrier functions exist at the solutions, and therefore the NR method

does not experience the ill-conditioning at each iteration seen in the Interior Point

method.

The classic NR method is applied for problems with inequality constraints only.

Therefore we drop the equality constraints from Problem (3.1).

minimize F (x)

subject to fi(x) ≥ 0 i = 1, . . . ,m

(3.2)

Define the problem’s Lagrangian, L(x, λ), in the usual way, and let λ ∈ Rm.

L(x, λ) = F (x)− λ · f(x) (3.3)

If F (x) is convex and in C2, fi(x) is concave and in C2, and the Slater condition

holds, then it is known [29] that there must exist a λ∗ such that at the solution x∗

the following Karush-Kuhn-Tucker (KKT) conditions hold.

∇xL(x∗, λ∗i ) = ∇F (x∗)−
m∑
i=1

λ∗i∇xfi(x
∗) = 0 (3.4a)

fi(x)λi = 0 i = 1, · · · ,m (3.4b)
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Figure 3.1: Example Rescaling Function Ψ

In the NR method, the inequalities in problem (3.1) are modified using a rescaling

function Ψ(t) : R→ R. The rescaling function is a concave, C2, function and defined

to have the following properties.

Ψ(0) = 0 (3.5a)

Ψ ′(t) > 0 (3.5b)

Ψ ′(0) = 1 (3.5c)

Ψ ′′(t) < 0 (3.5d)

The following additional requirements on Ψ(t) are standard requirements used in the

analysis of NR based methods. There exists a a > 0 and b > 0 such that

Ψ ′(t) ≤ a

t+ 1
(3.6a)

Ψ ′′(t) ≥ − b

(t+ 1)2
(3.6b)
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for all t ≥ 0. Finally, in support of the future analysis within this work one requires

one additional bound on Ψ . In particular, for c > 0 there exists a small ξ > 0 such

that for any |t| < ξ

|Ψ ′′′(t)| ≤ c. (3.7)

The new problem becomes

minimize F (x)

subject to
1

k
Ψ(kfi(x)) ≥ 0 i = 1, . . . ,m

(3.8)

where k is some positive barrier parameter. The modified Lagrangian associated with

this rescaled problem is

LNR,k(x, λ) = F (x)−
m∑
i=1

λi
k
Ψ(kfi(x)). (3.9)

At the optimal pair (x∗, λ∗) we know that

∇xLNR,k(x∗, λ∗) = ∇xF (x∗)− diag(Ψ ′(λ∗kf(x∗)))∇xf(x∗) = 0 (3.10a)

Define x̂ to be the minimizer for LNR,k(x, λf ) for a fixed λf . It can be shown [30] that

under appropriate assumptions LNR,k(x, u) is strongly convex near the solutions x∗,

and that if λ̂f is close enough to λ∗f than x̂ will be a good approximation to x∗ if k is

sufficiently large. This behavior can be more easily seen by defining the intermediate

variable λ̂ as

λ̂fi = Ψ ′(k(fi(x̂)))λfi (3.11)
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and inserting λ̂f into (3.10a). Since x̂ is the minimizer to ∇xLNR,k(x, λf ) we have

∇xLNR,k(x̂, λf ) = ∇xF (x̂)−
m∑
i=1

∇xfi(x̂)T λ̂fi = 0. (3.12)

We see that ∇xLNR,k(x̂, λf ) = ∇xL(x̂, λ̂f ), and therefore we see that the minimizer

is also a stationary point of the original problem’s Lagrangian (3.3).

The primal NR method then uses this information to construct a Sequential Un-

constrained Minimization Technique (SUMT) method. The minimization step is find-

ing the x̂ which minimizes LNR,k(x, λf ) under a constant λf . The second step then

uses (3.11) as the update method to the Lagrange multiplier λf . This method has

been shown [30] to have linear convergence with a constant barrier parameter k. The

convergence of this method can be improved by simply increasing k as the method

approaches the solution.

Simply increasing the barrier parameter k can have the unfortunate side effect

of ill-conditioning that affects other barrier methods. To avoid this issue another

modification has been made to the NR method. This modification involved converting

the primal NR method described above to a primal-dual NR (PDNR) method [31, 17,

32]. In the PDNR methods the primal and dual variables are treated simultaneously

by solving (3.11) and (3.12) as a coupled system of equations. These methods have

been shown to have up to 1.5-q-superlinear convergence [17] when coupled with an

appropriate update scheme for k.

20



3.2 Augmented Lagrangian

The classical Augmented Lagrangian as introduced by Hestenes [20] and Powell [34]

have been used for equality and inequality constraints for over 40 years, but in this

context it will only be used for the equality constraints. Now consider the following

problem, which is simply (3.1) without the inequality constraints.

minimize F (x)

subject to gi(x) = 0 j = 1, . . . , r

(3.13)

The Lagrangian is defined in its usual way. Define λg ∈ Rr, then the Lagrangian

is

L(x, v) = F (x)− λg · g(x) (3.14)

At the optimal pair (x∗, λ∗g) we have

∇Lx(x∗, λ∗g) = ∇xF (x∗)−
r∑
j=1

λ∗gj∇xgj(x
∗) = 0 (3.15)

In the classical Augmented Lagrangian method the original problem’s Lagrangian is

augmented with a penalty term, resulting in

LAL,k(x, λg) = F (x)− λg · g(x) +
k

2
(g(x) · g(x)) (3.16)

At the solution pair (x∗, λ∗g) we have that LAL,k(x∗, λ∗g) = 0 and

∇xLAL,k(x∗, λ∗g) = ∇xF (x∗)− λg · ∇xg(x) + k∇xg(x∗)g(x∗) = 0 (3.17)
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and just like in the NR method we see that ∇xLAL,k(x∗, λ∗g) = ∇xL(x∗, λ∗g) = 0.

Therefore the minimizer of LAL,k is also a stationary point for L(x̂, λ̂g).

Define x̂ to be the minimizer of LAL,k(x, λg) for a fixed λg. It again can be shown

[33] that under the appropriate assumptions LAL,k(x, λ) is strongly convex near the

solution x∗, that that if λ̂g is close enough to λ∗G than x̂ will be a good approximation

to x∗ if k is sufficiently large. This behavior, like in the NR case, can be more readily

seen by defining the intermediate variable

λ̂g = λg − kg(x̂) (3.18)

and inserting λ̂g into ∇xLAL,k(x, λ̂g). Since x̂ is the minimizer to LAL,k(x, λg)

∇xLAL,k(x̂, λg) = ∇xF (x̂)−
r∑
j=1

λ̂gj∇xgj(x̂) = 0 (3.19)

This fact, combined with strong convexity of LAL,k [33] again indicates that with a

constant λg we have that x̂ is the minimizer for both LAL,k(x, λg) and L(x, λ̂g).

The primal AL, similar to the primal NR method, is a SUMT method. The first

step of this method is to find the x̂ which minimizes ∇xLAL,k(x, λ̂g) under a constant

λ̂g. The second step is to update the Lagrange multiplier λg using (3.18). The primal

AL method has been shown to have linear convergence with a constant k, where the

convergence constant is inversely proportional to the penalty parameter k [8]. The

convergence rate may be improved to super-linear then with an appropriate sequence

of k.

Simply increasing the penalty parameter k can, again, have the unfortunate side
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effect of ill-conditioning. A Primal-Dual AL (PDAL) method has also been intro-

duced [33]. In this method, equations (3.19) and (3.18) are simultaneously solved for

both the primal and dual variable. This method has been shown to have quadratic

convergence [33].

3.3 Nonlinear Rescaling Augmented Lagrangian

The similarities of the NR and AL methods are striking. The classic, primal versions

of these methods are simply variations on the Uzawa algorithm [36]; an unconstrained

minimization followed by a prescribed update to the dual variables. In was recognized

as early as the 1960’s by Fiacco and McCormick [15] that penalty and barrier methods

can be combined into a single method in order to handle optimization problems with

both equality and inequality constraints.

A combination of the AL method for equality constraints and NR method for

inequality constraints was introduced in the late 1990’s by Goldfarb, et. al. [16].

Since both equality and inequality constraints are included the original problem (3.1)

may now be considered.

The Lagrangian for problem (3.1) is

L(x, λf , λg) = F (x)− λf · f(x)− λg · g(x) (3.20)

where λg ∈ Rm and λf ∈ Rr are the same Lagrange multipliers introduced in Sections

3.1 and 3.2. At the solution x∗ we assume there exists λ∗f and λ∗g such that

∇xL(x∗, λ∗f , λ
∗
g) = ∇xF (x)−

m∑
i=1

λ∗fi∇xfi(x
∗)−

r∑
j=1

λgj∇xgi(x
∗) = 0. (3.21)
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This NRAL algorithm begins by rescaling the original problem’s inequalities as

done in the NR method, and applying an augmented Lagrangian penalty term to the

Lagrangian.

Lk(x, λg, λf ) = F (x)−
m∑
i=1

λfi
k
Ψ(kfi(x))− λg · g(x) +

k

2
g(x) · g(x) (3.22)

At x∗ it is known that Lk is strongly convex [16]. Define x̂ to be the minimizer of

Lk(x, λf , λg) with constant λf and λg close to λ∗f and λ∗g, respectively. Then the

following must be true.

∇xLk(x̂, λf , λg) = ∇xF (x̂)−
m∑
i=1

λfiΨ
′(kfi(x̂))∇xfi(x̂)

−
r∑
j=1

(λgj∇xgj(x̂) + kgj(x̂)∇xg(x̂))

= 0

(3.23)

The intermediate variables λ̂f and λ̂g remain as defined in the previous sections.

λ̂fi = Ψ ′(kfi(x̂))λfi (3.24)

λ̂g = λg − kg(x̂) (3.25)

Substituting λ̂f and λ̂g into (3.23) again shows that∇xLk(x̂, λf , λg) = ∇xL(x̂, λ̂g, λ̂f ),

and therefore the minimizer of Lk(x, λf , λg) remains a stationary point of L(x, λ̂f , λ̂g).

Just as in the NR and AL methods, the primal NRAL method performs an un-

constrained minimization of L(x, λf , λg) under constant λf and λg, followed by the
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Lagrange multiplier updates (3.24). And just like the primal NR and AL methods,

the primal NRAL method has been shown to have linear convergence when the bar-

rier/penalty parameter k is held constant [16]. A primal-dual NRAL method, which

incorporates a specific update strategy to k has been shown to have 1.5-q-superlinear

convergence [18].

3.4 Function Space NRAL Methods

In the previous section the NRAL method were introduced in their classic finite di-

mensional form. Many of the mainline optimization methods (SQP, Interior Point,

Augmented Lagrangian, etc.) have been used to solve PDECO problems in the finite

dimensional form. In this method, commonly referred to as the Discretize-Than-

Optimize (DTO), the original problem (2.3) is approximated with a new discretized

version of itself. The space Ω is replaced with some triangularization Ωh ⊂ Ω, and all

functionals in the problem are discretized on the space Ωh using a selected discretiza-

tion method such as a Finite Difference or a Finite Element methods.

minimize Jh(uh, qh) =
1

2
‖uh − udh‖2

L2(Ωh) +
α

2
‖qh‖2

L2(Ωh)

subject to Ahuh = qh

ηh ≥ uh

βh ≥ qh

(3.26)

where uh ∈ H1
0 (Ωh)∩H2(Ωh), andAh : H1

0 (Ωh)∩H2(Ωh)→ L2(Ωh), and q,h udh, ηh, and βh

are all in L2(Ωh). The primal NRAL method can also be utilized to solve this dis-

cretized problem.

25



The alternative to this finite dimensional methodology is referred to as a func-

tion space, or Optimize-Than-Discretize (OTD), approach. In this methodology the

original problem is left intact, and the optimization method is formulated in the

same space the original optimization problem, and discretization of the space Ω is

performed only when required to numerically solve a set of equations. There are

advantages and disadvantages to both approaches, and one discussion of is included

by Gunzburger in [19].

In a function space primal NRAL method, the unconstrained minimization step

finding where ∇xLk(x, λg, λf ) = 0 would be the point at which discretization occurs.

When comparing problems (2.3) to (3.1) we see that there is now just one equality

constraint and two inequality constraints. The system of equations which is equivalent

to ∇xLk(x, λg, λf ) = 0 becomes finding the û and q̂ which satisfies the following

system of equations.

∇uJ(u, q)− λuf , Ψ ′(k(η − u)− A†λg − kA†(Au− q) = 0 (3.27a)

∇qJ(u, q)− λqffΨ
′(k(β − q)) + qλg − k(Au− q) = 0 (3.27b)

This unconstrained minimization is followed by the updates to λg, λ
u
f , and λqf .

λ̂uf = λufΨ
′ (k(η − û)) (3.28a)

λ̂qf = λqfΨ
′ (k(β − q̂)) (3.28b)

λ̂g = λg − k(Aû− q̂) (3.28c)

The following chapters discuss variations on primal dual methods associated with
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NRAL methods for solving problems similar to (2.3). Chapter 4 introduces and anal-

yses the PDAL method in function space which is used for solving problems with only

the PDE constraint. Chapter 5 introduces and analyzes a mixed primal/primal-dual

NRAL method which uses the PDAL method to solve the inner problem. Finally,

Chapter 6 introduces and analyzes a full primal-dual NRAL method for solving prob-

lems similar to (2.3) but with control constraints only.
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Chapter 4: Quadratic Convergence of a PDAL

Method for Optimization with Elliptic Equality

Constraints

4.1 Problem Definition

The general problem examined in this chapter involves a PDECO problem with no

additional inequality constraints. Let u, q, A, and Ω be as defined in Section 2.1.

Additional, define J (u, q) : W × L2(Ω) → R be a twice continuously Fréchet differ-

entiable function, which is convex within Ω.

minimize J (u, q)

subject to Au = q in Ω

(4.1)

Let u∗ ∈ W and q∗ ∈ L2 be the solution to problem (4.1), and define its La-

grangian, L(u, q, λ) :W × L2 × L2 → R.

L(u, q, λ) = J (u, q)− (λ,Au− q) (4.2)

Due to the elliptic nature of A it is known that there must exist a λ∗ ∈ L2 such that
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the following first order optimality conditions are true.

∇L(u∗, q∗, λ∗) =

∇uJ (u∗, q∗)− A†λ∗

∇qJ (u∗, q∗) + λ∗

 = 0 (4.3a)

Au∗ − q∗ = 0 (4.3b)

The second order optimality conditions also hold for Problem (4.1), due to the

strong convexity of J .

4.2 The PDAL Method

The AL method begins with the addition of a penalty term to the Lagrangian,

L(u, q, λ). This results in the augmented Lagrangian, LAL,k(u, q, λ) : W × L2(Ω) ×

L2(Ω)→ R, with k > 0.

LAL,k(u, q, λ) = L(u, q, λ) +
k

2
(Au− q, Au− q)

= J (u, q)− (λ,Au− q) +
k

2
(Au− q, Au− q)

(4.4)

The gradient of LAL,k(u, q, λ) can be computed as the following.

∇LAL,k(u, q, λ) =


∇uJ (u, q)− A†λ+ kA†(Au− q)

∇qJ (u, q) + λ− k(Au− q)

Au− q

 (4.5)

There are a number of important properties of LAL,k at the solution, (u∗, q∗, λ∗).
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The first of these can be trivially seen from its definition, and the second from its

gradient.

LAL,k(u∗, q∗, λ∗) = L(u∗, q∗, λ∗) = J (u∗, q∗) (4.6)

∇LAL,k(u∗, q∗, λ∗) = ∇L(u∗, q∗, λ∗) =


∇uJ (u∗, q∗)− A†λ∗

∇qJ (u∗, q∗) + λ

Au− q

 (4.7)

We can therefore state that (u∗, q∗, λ∗) is a stationary point for both L(u, q, λ) and

LAL,k, and in fact is the solution to both the original problem and its augmented

equivalent. One additional useful property of the augmented Lagrangian is its con-

vexity, which is stated in the following lemma.

Lemma 4.2.1. Let (u∗, q∗, λ∗) be a stationary point for Problem (4.1). Then there

exists a neighborhood B1(u∗, q∗), k0 > 0, and µ > 0 such that LAL,k(u, q, λ∗) is strongly

convex for all (u, q) ∈ B1(u∗, q∗), k > k0, .

Proof. Define ξ = (uξ, qξ) where uξ ∈ W , qξ ∈ L2(Ω), and λξ ∈ L2(Ω). First compute

∇2LAL,k at the solution (u∗, q∗, λ∗).

∇2LAL,k(u∗, q∗, λ∗) =

∇2
uuJ (u∗, q∗) + kA†A ∇2

uqJ (u∗, q∗)− kA†

∇2
uqJ (u∗, q∗)− kA ∇2

uuJ (u∗, q∗) + kI



= ∇2L(u∗, q∗, λ∗) +

kA†A −kA†

−kA kI


(4.8)
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Using strong convexity of L(u, q) and recognizing that (4.8) can be written as

∇2LAL,k(u∗, q∗, λ∗) = ∇L2(u∗, q∗, λ∗) + k

(
A −I

)†(
A −I

)
(4.9)

it can be directly seen that LAL,k(u∗, q∗, λ∗) is strongly convex.

Like described in Section 3.2 the function space AL method is a SUMT method.

Initial values for us=0, qs=0, and λs=0 are selected. The first step of the SUMT

iterations becomes the unconstrained minimization

(us, qs) = arg min
(u,q)∈W×L2(Ω)

LAL,k(u, q, λs−1) (4.10)

with a fix λs. The Lagrange multiplier is then updated throughout Ω using

λs = λs−1 − k (Aus − qs) . (4.11)

In the PDAL method this SUMT method of unconstrained minimization followed

by the multiplier update is replaced with the solution of (us, qs, λs) simultaneously at

each iteration. By examination of (4.5) it can be seen that

∇uLAL,k(us, qs, λs−1) = ∇uJ (us, qs)− A† (λs−1 − k(Aus − qs))

= ∇uJ (us, qs)− A†λs

= ∇uL(us, qs, λs)

(4.12)
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and

∇qLAL,k(us, qs, λs−1) = ∇qJ (us, qs) + λs−1 − k(Aus − qs)

= ∇qJ (us, qs) + λs

= ∇qL(us, qs, λs).

(4.13)

The PDAL method then becomes a method for solving (4.1) by solving the following

system of equations.

∇uL(us, qs, λs) = ∇uJ (us, qs)− A†λs = 0

∇qL(us, qs, λs) = ∇qJ (us, qs) + λs = 0

λs − λs−1 + k(Aus − qs) = 0

(4.14)

This primal dual system (4.14) is solved using Newton’s method. The Newton

direction is solved for at each step by solving the system of equations derived by

linearization of (4.14) about (u, q, λ). The linearization takes the form

MAL,k(us, qs, λs)


δu

δq

δλ

 = aAL(us, qs, λs), (4.15)
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where

MAL,k(us, qs, λs) =


∇2
uuJ (us, qs) ∇2

uqJ (us, qs) −A†

∇2
quJ (us, qs) ∇2

qqJ (us, qs) Iλ

A −Iq Iλ
k

 (4.16)

and

aAL(u, q, λ) =


−∇uJ (us, qs) + A†λs

−∇qJ (us, qs)− λs

−(Aus − qs)

 . (4.17)

Each iteration of the PDAL method becomes finding the Newton directions, (δu, δq, δλ),

from (4.15). This is followed by a simple update to the variables.

us+1 = us + δu

qs+1 = qs + δq

λs+1 = λs + δλ

(4.18)

4.3 Local Convergence Analysis

The finite dimensional version of this PDAL method has been shown to have quadratic

local convergence under appropriate assumptions [33]. The local convergence analysis

shown here follows the outline seen in [33], but is presented here in the function space.

One key component in this analysis is the definition of the merit function v(u, q, λ).

This merit function both defines the distance between the current point in the solution
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and it will be used in the penalty parameter update strategy.

v(u, q, λ) = max{‖∇uL(u, q, λ)‖, ‖∇qL(u, q, λ)‖, ‖Au− q‖} (4.19)

A second component of this analysis is lemma 4.3.1. This lemma provides a

bound on the norm of a Hilbert space operator’s inverse, which will be used to bound

‖Mk(u, q, λ)−1‖ in the following analysis.

Lemma 4.3.1. Define A and B to be Hilbert spaces. Let F : A → B be an invertible

operator where ‖F−1‖ ≤ N � ∞. Define a small β > 0 and G : A → B. If

‖F −G‖ ≤ β then

‖G−1‖ ≤ 2N (4.20)

and

‖F−1 −G−1‖ ≤ 2N2β. (4.21)

Proof. Invertibility of F and the bounds on ‖F−1‖ and ‖F − G‖ allows G−1 to be

bounded. First write G−1 as

G−1 = (F − (F −G))−1

=
(
I − F−1(F −G)

)−1
F−1. (4.22)

Then recall the Taylor series expansion of (1−x)−1 and apply it to (I−F−1(F−G))−1,

which leads to

(
I − F−1(F −G)

)−1
=

(
I +

∞∑
j=1

(
F−1(F −G)

)j)
. (4.23)

34



By inserting (4.23) into (4.22), one can then bound ‖G−1‖ using the stated bounds

on ‖F−1‖ and the Cauchy-Schwarz and triangle inequalities.

∥∥∥∥∥
(
I +

∞∑
j=1

(
F−1(F −G)

)j)
F−1

∥∥∥∥∥ ≤
∥∥∥∥∥
(
I +

∞∑
j=1

(
F−1(F −G)

)j)∥∥∥∥∥∥∥F−1
∥∥

≤

(
1 +

∞∑
j=1

∥∥∥(F−1(F −G)
)j∥∥∥)∥∥F−1

∥∥
≤ N

(
1 +

∞∑
j=1

∥∥∥(F−1(F −G)
)j∥∥∥)

≤ N

(
1 +

∞∑
j=1

(Nβ)j

)

Finally, by selecting a small enough β we can assert that Nβ < 1
2
, leading to the

initial claim of

‖G−1‖ ≤ N

(
1 +

∞∑
i=1

1

2j

)
= 2N

With this result in hand, we can easily prove the second claim. By noting that

‖F−1 −G−1‖ =
∥∥F−1(G− F )G−1

∥∥
and using the previous result we can see that

‖F−1 −G−1‖ ≤ ‖F−1‖‖(F −G)‖‖G−1‖ ≤ 2N2β

With Lemma 4.3.1 and the definition of v(u, q, λ) the quadratic local convergence
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of the function space PDAL method can now be shown. In the following analysis the

linearization of (4.5) results in the Newton system of equation for solving problem

(4.1). Invertibility of the operator from this Newton system is known, and used

in conjunction with Lemma 4.3.1 to bound MAL,k(u, q, λ). This bound, along with

computed bounds on aAL(u, q, λ) are then used to bound the error after a Newton

step.

Theorem 4.3.2. Define (u∗, q∗, λ∗) to be the solution to (4.1). Further define (û, q̂, λ̂)

to be the current solution after a single iteration using the Newton system (4.15) where

k = v(u, q, λ)−1. Then there exists a small parameter 0 ≤ ε � 1 such that for any

initial (u, q, λ) ∈ Bε(u
∗, q∗, λ∗) the bound on the error in (û, q̂, λ̂) is

‖(û, q̂, λ̂)− (u∗, q∗, λ∗)‖ ≤ ρ‖(u, q, λ)− (u∗, q∗, λ∗)‖2 (4.24)

for some ρ > 0

Proof. First define the linearized system derived from the Lagrange system (4.5) for

problem (4.1).

M∞(u, q, λ)


δu

δq

δλ

 = aAL(u, q, λ), (4.25)

where

M∞(u, q, λ) =


∇2
uuJ (u, q) ∇2

uqJ (u, q) −A†

∇2
quJ (u, q) ∇2

qqJ (u, q) Iλ

A −Iq 0

 . (4.26)

The strong convexity of J and definition of A can be used to show that the operator
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M∞(u, q, λ) is an invertible operator. First assume that M∞(u, q, λ) is not invertible.

Then there exists a w = (wu, wq, wλ) ∈ W ×L2×L2, such that M∞(u, q, λ)w = 0 for

w 6= 0. See that M∞(u, q, λ)w = 0 is equivalent to

∇2
uuJ (u, q) ∇2

uqJ (u, q)

∇2
quJ (u, q) ∇2

qqJ (u, q)


wu
wq

+

−A†
Iλ

wλ = 0 (4.27a)

(
A −Iq

)wu
wq

 = 0 (4.27b)

Multiplying (4.27a) by (wu wq) and using the fact that (wu, A
†wλ) = (Awu, wλ) and

(4.27b) leads to

(
wu wq

)−A†
Iλ

wλ = wλ

(
A −Iq

)wu
wq

 = 0 (4.28)

Then the second term on the left had side of the modified (4.27a) reduces down to

(
wu wq

)∇2
uuJ (u, q) ∇2

uqJ (u, q)

∇2
quJ (u, q) ∇2

qqJ (u, q)


wu
wq

 = 0. (4.29)

Stong convexity of J implies that (4.29) can only be true if wu = wq = 0. Finally,

with wu = wq = 0, (4.27a) simplifies to −A†wλ = 0 and wλ = 0. The latter trivially

indicates that wλ = 0, and therefore M∞(u, q, λ)w = 0 if and only if w = 0, and

therefor M∞(u, q, λ) is invertible.
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Quadratic convergence of Newton’s method for (u, q, λ) close to (u∗, q∗, λ∗) indi-

cates that there must exist a ρ0 > 0 such that

‖(u, q, λ)− (u∗, q∗, λ∗)‖ ≤ ρ0‖(u, q, λ)− (u∗, q∗, λ∗)‖2 (4.30)

where ξ = ξ + δξ for ξ = u, q, λ.

In order to find a similar bound for (û, q̂, λ̂) we begin with the following algebraic

relations.

(û, q̂, λ̂)−(u∗, q∗, λ∗) = (u, q, λ) + (δu, δq, δλ)− (u∗, q∗, λ∗)

= (u, q, λ) + (δu, δq, δλ) + (δu, δq, δλ)− (δu, δq, δλ)− (u∗, q∗, λ∗)

= (u, q, λ)− (u∗, q∗, λ∗) + (δu, δq, δλ)− (δu, δq, δλ)

(4.31)

Take the norm of both sides, recall the definition of (δu, δq, δλ) and (δu, δq, δλ), and

apply the triangle inequality.

‖(û, q̂, λ̂)− (u∗, q∗, λ∗)‖ = ‖(u, q, λ)− (u∗, q∗, λ∗) + (δu, δq, δλ)− (δu, δq, δλ)‖

= ‖(u, q, λ)− (u∗, q∗, λ∗) +M−1
AL,k(u, q, λ)aAL(u, q, λ)−M−1

∞ (u, q, λ)aAL(u, q, λ)‖

≤ ‖(u, q, λ)− (u∗, q∗, λ∗)‖+ ‖M−1
AL,k(u, q, λ)aAL(u, q, λ)−M−1

∞ (u, q, λ)aAL(u, q, λ)‖

≤ ‖(u, q, λ)− (u∗, q∗, λ∗)‖+ ‖M−1
AL,k(u, q, λ)−M−1

∞ (u, q, λ)‖‖aAL(u, q, λ)‖

(4.32)

The using the bounds on ‖(u, q, λ) − (u∗, q∗, λ∗)‖ the above term can be written
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without reference to (u, q, λ).

‖(û, q̂, λ̂)− (u∗, q∗, λ∗)‖ ≤ρ0‖(u, q, λ)− (u∗, q∗, λ∗)‖2+

‖M−1
AL,k(u, q, λ)−M−1

∞ (u, q, λ)‖‖aAL(u, q, λ)‖
(4.33)

M∞(u, q, λ) is invertible, due to strong convexity of J and the definition of

A. Therefore we can state that there exists an N , with 0 < N � ∞, such that

‖M−1
∞ (u, q, λ)‖ ≤ N . By definition of MAL,k(u, q, λ) and M∞(u, q, λ) we know that

‖MAL,k(u, q, λ)−M∞(u, q, λ)‖ =
1

k
. (4.34)

Application of Lemma 4.3.1 then implies that

‖M−1
AL,k(u, q, λ)−M−1

∞ (u, q, λ)‖ ≤ 2N2

k
. (4.35)

Since J and the elements of A are twice continuously Fréchet differentiable and

λ ∈ L2(Ω) it is known that there must exist an L0 > 0 such that ‖aAL(u, q, λ)‖ ≤

L0‖(u, q, λ)−(u∗, q∗, λ∗)‖. These two bounds are then used to further bound ‖(û, q̂, λ̂)−

(u∗, q∗, λ∗)‖.

‖(û, q̂, λ̂)− (u∗, q∗, λ∗)‖ ≤ ρ0‖(u, q, λ)− (u∗, q∗, λ∗)‖2 +
2N2

k
L0‖(u, q, λ)− (u∗, q∗, λ∗)‖

(4.36)

Recognize that v(u, q, λ) is Lipschitz continuous, and that v(u, q, λ) = 0 if and

only if (u, q, λ) = (u∗, q∗, λ∗). Then there exists a L1 > 0 such that v(u, q, λ) ≤

L1‖(u, q, λ) − (u∗, q∗, λ∗)‖. Also recall that k = v(u, q, λ)−1, and the second term in
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(4.36) can be further bounded.

2N2

k
L0‖(u, q, λ)− (u∗, q∗, λ∗)‖ = 2N2L0v(u, q, λ)‖(u, q, λ)− (u∗, q∗, λ∗)‖

≤ 2N2L0L1‖(u, q, λ)− (u∗, q∗, λ∗)‖2

(4.37)

Incorporating (4.37) in (4.36) results in the claim.

‖(û, q̂, λ̂)− (u∗, q∗, λ∗)‖ ≤ ρ0‖(u, q, λ)− (u∗, q∗, λ∗)‖2

+ 2N2L0L1‖(u, q, λ)− (u∗, q∗, λ∗)‖2

≤ ρ‖(u, q, λ)− (u∗, q∗, λ∗)‖2

where ρ = max{ρ0, 2N
2L0L1}.
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Chapter 5: Linear Convergence of a NR-PDAL

Method for State- and Control-Constrained

Optimization with Elliptic Equality Constraints

The method analyzed in this chapter directly handles Problem (2.3) with all con-

ditions specified in Section 2.1. This method is a mixed method which treats the

inequality constraints in a standard primal NR methodology, but in each inner step

of the NR method the PDE constraint is incorporated using a primal-dual AL method.

5.1 The NR-PDAL Method

Before defining the NR-PDAL method, additional details of Problem (2.3) must be

defined, in additional to those shown in Chapter 2. Let u∗ ∈ W and q∗ ∈ L2 be the

solution to Problem (2.3). Due to the strong convexity of 1
2
‖u − ud‖2

L2 + α
2
‖q‖2 and

the assumptions of problem (2.3), it is known that there exists a Lagrange multiplier

tuple (λ∗, σ∗u, σ
∗
l , χ

∗
u, χ

∗
l ) ∈ L2×C∗×C∗×L2×L2 such that the optimality conditions

(2.4) hold.

The derivation of the NR-PDAL method begins in much the same way as the clas-

sic NRAL method shown in section 3.3. Define the Lagrangian, L(u, q, λ, σu, σl, χu, χl) :
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W × L2 × L2 × C∗ × C∗ × L2 × L2 → R, be defined as

L(u, q, λ, σu, σl, χu, χl) =
1

2
‖u− ud‖2

L2(Ω) +
α

2
‖q‖2 − (λ,Au− q)

−(σu, ηu − u)− (σl, u− ηl)− (χu, βu − q)− (χl, q − βl)

(5.1)

The modified Lagrangian from the NRAL method must now be defined. Unlike in

section 3.3, the penalty and barrier parameters will be not be the same, resulting in

two k values. The parameter kp will denote the penalty parameter associated with

the AL modification. The parameter kb will be the barrier parameter associated with

the NR modification. The modified Lagrangian from the NRAL method becomes

Lk(u, q, λ, σu, σl, χu, χl) =
1

2
‖u− ud‖2

L2(Ω) +
α

2
‖q‖2 − (λ,Au− q)

+
kp
2

(Au− q, Au− q)

− 1

kb
(σu, Ψ(kb(ηu − u))− 1

kb
(σl, Ψ(kb(u− ηl))

− 1

kb
(χu, Ψ(kb(βu − q))−

1

kb
(χl, Ψ(kb(q − βl))

(5.2)

As described in section 3.3, the classic primal NRAL method would alternate

between the unconstrained minimization step

(û, q̂) = arg min
(u,q)∈W×L2(Ω)

Lk(u, q, λ, σu, σl, χu, χl) (5.3)
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over fixed (λ, σ, χ), followed by the Lagrange multiplier updates

λ̂ = λ− kp(Aû− q̂) (5.4a)

σ̂u = σuΨ
′(kb(ηu − û)) σ̂l = σlΨ

′(kb(û− ηl)) (5.4b)

χ̂u = χuΨ
′(kb(βu − q̂)) χ̂l = χlΨ

′(kb(q̂ − βl)) (5.4c)

In the mixed primal/primal-dual NR-PDAL method the unconstrained minimiza-

tion is replaced with a PDAL step. This PDAL step is formed very similar to the

PDAL method shown in Chapter 4. First the gradient of Lk(u, q, λ, σu, σl, χu, χl) with

respect to (u, q) is computed.

∇uLk(u, q, λ, σu, σl, χu, χl) = (u− ud)− A†λ+ kpA
†(Au− q)

+ σuΨ
′(kb(ηu − u))− σlΨ ′(kb(u− ηl))

= (u− ud)− A†(λ− kp(Au− q)) + σuΨ
′(kb(ηu − u))

− σlΨ ′(kb(u− ηl)

∇qLk(u, q, λ, σu, σl, χu, χl) = αq + λ− kp(Au− q)

+ χuΨ
′(kb(βu − q))− χlΨ ′(kb(βl − q))

(5.5)

By inserting λ̂ and the updated û and q̂ into ∇Lk(u, q, λ, σu, σl, χu, χl) and setting
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the system of equations to 0 the following system of equations is found.

(û− ud)− A†λ̂+ σuΨ
′(kb(ηu − û))− σlΨ ′(kb(û− ηl)) = 0 (5.6a)

αq̂ + λ̂+ χuΨ
′(kb(βu − q̂))− χlΨ ′(kb(q̂ − βl)) = 0 (5.6b)

λ̂− λ+ kp(Aû− q̂) = 0 (5.6c)

This system of equations is the same as the primal dual system of equations (4.14)

seen in Chapter 4, with the following definition for J (u, q).

J (u, q) =
1

2
‖u− ud‖2

L2(Ω) +
α

2
‖q‖2 − σuΨ(kb(ηu − u))− σlΨ(kb(u− ηl))

− χuΨ(kb(βu − q))− χlΨ(kb(q − βl))
(5.7)

Since Ψ is concave and 1
2
‖u − ud‖2

L2(Ω) is convex we know that J (u, q) is strongly

convex. Therefore the assumptions from Theorem 4.3.2 all hold and the PDAL inner

step of the NR-PDAL step should have local quadratic convergence.

The NR-PDAL method can now be defined as a sequential constrained mini-

mization method, which first solves the PDAL system (5.6) under fixed Lagrange

multipliers σ and χ. The Lagrange multipliers are then updated using (5.4b) and

(5.4c).

5.2 Local Convergence Analysis

In this section the local convergence of the NR-PDAL method is analyzed, and shown

to have linear local convergence when k is held fixed.

Theorem 5.2.1. Define (u∗, q∗, λ∗, σ∗u, σ
∗
l , χ

∗
u, χ

∗
l ) to be the solution to Problem (2.3).
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Then there exists a k0 > 0 and δ > 0 such that for all kp, kb > k0 and 0 < ε <

min{σu ∈ Auη, σl ∈ Alη, χu ∈ Auβ, χl ∈ Alβ} the following are true:

(i) There exists a solution (û, q̂, λ̂) to system of equations (5.6) for a given (σ, χ).

(ii) For the solution (û, q̂, λ̂) from (i) the following are bounds on ‖(û, q̂, λ̂)−(u∗, q∗, λ∗)‖

and ‖(σ̂u, σ̂l, χ̂u, χ̂l)− (σ∗u, σ
∗
l , χ

∗
u, χ

∗
l )‖.

max{‖û− u∗‖, ‖q̂ − q∗‖, ‖λ̂− λ∗‖, ‖σ̂u − σ∗u‖, ‖σ̂l − σ∗l ‖, ‖χ̂u − χ∗u‖, ‖χ̂l − χ∗l ‖}

≤ C

kb
max{‖σu − σ∗u‖, ‖σl − σ∗l ‖, ‖χu − χ∗u‖, ‖χl − χ∗l ‖}

(5.8)

Proof. Begin with the following definitions. Define

τ = (τlη, τuη, τuβ, τlβ) (5.9)

where τiη = k−1
b (σi − σ∗i ) and τiβ = k−1

b (χi − χ∗i ), for i = u, l. Also define the sets
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Sε(0, δ) = {x ∈ Ω | τε ≤ δ} for ε = uη, lη, uβ, lβ and Dεδ(σ
∗
u, σ

∗
l , χ

∗
u, χ

∗
l , k0), where

Dε,δ(σ
∗, χ∗, k0) =



kp ≥ k0

kb ≥ k0

σu > ε, |σu − σ∗u| ≤ kbδ for x ∈ Auη

σl > ε, |σl − σ∗l | ≤ kbδ for x ∈ Alη

σu ≤ kbδ for x ∈ Puη

σl ≤ kbδ for x ∈ Plη

χu > ε, |χu − χ∗u| ≤ kbδ for x ∈ Auβ

χl > ε, |χl − χ∗l | ≤ kbδ for x ∈ Alβ

χu ≤ kbδ for x ∈ Puβ

χl ≤ kbδ for x ∈ Plβ

(5.10)

The Implicit Function theorem is used throughout this analysis in order to develop

the bounds claimed by the Theorem 5.2.1. In order to use this an appropriate mapping

functional must be defined. Begin by defining Θ′k(u, q, λ, σ̂u, σ̂l, χ̂u, χ̂l, τ).

Θ′k(û, q̂, λ̂, σ̂u, σ̂l, χ̂u, χ̂l, τ) =



û− ud − A†λ̂+ σ̂u − σ̂l

αq̂ − λ̂+ χ̂u − χ̂l

λ̂− λ+ kp(Aû− q̂)

k−1
b (kbτuη + σ∗u)Ψ

′(kb(ηu − û))− k−1
b σ̂u

−k−1
b (kbτlη + σ∗l )Ψ

′(kb(û− ηl))− k−1
b σ̂l

k−1
b (kbτuβ + χ∗u)Ψ

′(kb(βu − q̂))− k−1
b χ̂u

−k−1
b (kbτlβ + χ∗l )Ψ

′(kb(q̂ − βl))− k−1
b χ̂l

(5.11)

Within Puη it is known that σ∗u = 0, and therefore within this region τuη = k−1
b (σu −
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σ∗u) = k−1
b σu. This, along with the definition σ̂u = σuΨ

′(kb(ηu − û)) implies that

k−1
b (kbτuη + σ∗u)Ψ

′(kb(ηu − û))− k−1
b σ̂u = k−1

b (kbk
−1
b σu)Ψ

′(kb(ηu − û))

− k−1
b σuΨ

′(kb(ηu − û))

= k−1
b σuΨ

′(kb(ηu − û))− k−1
b σuΨ

′(kb(ηu − û))

= 0

(5.12)

everywhere within Puη. Similar analysis can be performed for σl, χu, and χl in their

respective passive regions.

k−1
b (kbτlη + σ∗l )Ψ

′(kb(û− ηl)− k−1
b σ̂l = 0 in Plη

k−1
b (kbτuβ + χ∗u)Ψ

′(kb(βu − q̂))− k−1
b χ̂u = 0 in Puβ

k−1
b (kbτlβ + χ∗l )Ψ

′(kb(q̂ − βl))− k−1
b χ̂l = 0 in Plβ

(5.13)

Due to this behavior the last two equations in Θ′k(û, q̂, λ̂, σ̂u, σ̂l, χ̂u, χ̂l, τ) may be
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altered to only apply to the active regions, resulting in a new mapping function.

Θk(û, q̂, λ̂, σ̂u, σ̂l, χ̂u, χ̂l, τ) =



û− ud − A†λ̂+ σ̂u − σ̂l

αq̂ − λ̂+ χ̂u − χ̂l

λ̂− λ+ kp(Aû− q̂)

k−1
b (kbτuη + σ∗u)Ψ

′(kb(ηu − û))− k−1
b σ̂u for x ∈ Auη

−k−1
b (kbτlη + σ∗l )Ψ

′(kb(û− ηl))− k−1
b σ̂l for x ∈ Alη

k−1
b (kbτuβ + χuu∗)Ψ ′(kb(βu − q̂))− k−1

b χ̂u for x ∈ Auβ

−k−1
b (kbτlβ + χ∗l )Ψ

′(kb(q̂ − βl))− k−1
b χ̂l for x ∈ Alβ

(5.14)

In order to use the implicit function theorem for Θk(û, q̂, λ, σ̂u, σ̂l, χ̂u, χ̂l, τ) we

must show that the function satisfies the conditions of the theorem. The first of these

conditions requires

Θk(u
∗, q∗, λ∗, σ∗u, σ

∗
l , χ

∗
u, χ

∗
l , 0) = 0 (5.15)

which can be seen using the definition of τ , σ̂u, σ̂l, χ̂u, χ̂l, and the optimality conditions

(2.4).

The second condition required by the implicit function theorem is invertibility of

∇Θk(û, q̂, λ̂, σ̂u, σ̂l, χ̂u, χ̂l, τ) at (u∗, q∗, λ∗, σ∗u, σ
∗
l , χ

∗
u, χ

∗
l , 0). First define the following

operators.

Ψuη = −(kbτuη + σ∗u)Ψ
′′(kb(ηu − û))

Ψlη = (kbτlη + σ∗l )Ψ
′′(kb(û− ηl))

Ψuβ = −(kbτuβ + χ∗u)Ψ
′′(kb(βu − q̂))

Ψlβ = (kbτlβ + χ∗l )Ψ
′′(kb(q̂ − βl))

(5.16)
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Then evaluate ∇Θ.

∇Θk(û, q̂, λ̂, σ̂u, σ̂l, χ̂u, χ̂l, τ) =



Iu 0 −A† Iσu −Iσl 0 0

0 αIq −Iλ 0 0 Iχu −Iχl

kpA −kpIq I 0 0 0 0

Ψuη 0 0 −k−1
b Iσu 0 0 0

Ψlη 0 0 0 −k−1
b Iσl 0 0

0 Ψuβ 0 0 0 −k−1
b Iχu 0

0 Ψlβ 0 0 0 0 −k−1
b Iχl



(5.17)

Divide the third line of ∇Θk(û, q̂, λ̂, σ̂, χ̂, τ) by kp and the last four lines by kb and

evaluate at τ = 0.

∇Θk(u
∗, q∗, λ∗, σ∗u, σ

∗
l , χ

∗
u, χ

∗
l , 0)

=



Iu 0 −A† Iσu −Iσl 0 0

0 α −Iλ 0 0 Iχu −Iχl

A −Iq k−1
p I 0 0 0 0

−σ∗uΨ ′′(0) 0 0 −k−1
b Iσu 0 0 0

σ∗l Ψ
′′(0) 0 0 0 −k−1

b Iσl 0 0

0 −χ∗uΨ ′′(0) 0 0 0 −k−1
b Iχu 0

0 χ∗l Ψ
′′(0) 0 0 0 0 −k−1

b Iχl


(5.18)
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The operator ∇Θk(u
∗, q∗, λ∗, σ∗u, σ

∗
l , χ

∗
u, χ

∗
l , 0) may be directly shown to be invert-

ible under appropriately specified A, but for the general case presented here Lemma

4.3.1 will be used to show invertibility. Recall that conditions of the Lemma re-

quires an invertible operator that close enough to ∇Θk(u
∗, q∗, λ∗, σ∗u, σ

∗
l , χ

∗
u, χ

∗
l , 0).

One potential operator can be found by evaluating ∇Θk(u
∗, q∗, λ∗, σ∗u, σ

∗
l , χ

∗
u, χ

∗
l , 0) as

kb approaches infinity.

∇Θ∞(u∗, q∗, λ∗, σ∗, χ∗, 0) = lim
k→∞
∇Θk(u

∗, q∗, λ∗, σ∗, χ∗, 0)

=



Iu 0 −A† Iσu −Iσl 0 0

0 α −Iλ 0 0 Iχu −Iχl

A −Iq k−1
p I 0 0 0 0

−σ∗uΨ ′′(0) 0 0 0 0 0 0

σ∗l Ψ
′′(0) 0 0 0 0 0 0

0 −χ∗uΨ ′′(0) 0 0 0 0 0

0 χ∗l Ψ
′′(0) 0 0 0 0 0


(5.19)

Define w = (wu, wq, wλ, wσu , wσl , wχu , wχl), where wu ∈ W , wq ∈ L2(Ω), wλ ∈ L2(Ω),
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wσu , wσl ∈ C∗, wχu , wχl ∈ L2(Ω) and evaluate ∇Θ∞(u∗, q∗, λ∗, σ∗u, σ
∗
l , χ

∗
u, χ

∗
l , 0)w = 0.

wu − A†wλ + wσu − wσl = 0 (5.20a)

αwq − wλ + wχu − wχl = 0 (5.20b)

Awu − wq +
1

kp
wλ = 0 (5.20c)

−σ∗uΨ ′′(0)wu = 0 σ∗l Ψ
′′(0)wu = 0 (5.20d)

−χ∗uΨ ′′(0)wq = 0 χ∗l Ψ
′′(0)wq = 0 (5.20e)

If ∇Θ∞(u∗, q∗, λ∗, σ∗u, σ
∗
l , χ

∗
u, χ

∗
l , 0) was not invertible then there must exist a w such

that wξ = 0 for at least one of ξ = u, q, λ, σu, σl, χu, χl. By definition of Ψ we have

Ψ ′′(0) < 0, and by the strict complementarity assumption we know that σ∗u > 0,

σ∗l > 0, χ∗u > 0, and χ∗l > 0. Therefore (5.20d) and (5.20e) imply that wu = 0 and

wq = 0. Equation (5.20c) then implies that wλ = 0. One is then left with (5.20a) and

(5.20b) implying wσu − wσl = 0 and wχu − wχl = 0. Furthermore, as ∇Θ∞ operates

only in the respective active regions, the w’s associated with inequality constraints

in (5.20b) and (5.20a) are active in separate regions. Therefore either wσu = 0 or

wσl = 0 in any given region. Similarly, either wχu = 0 or wχl = 0 in any given region.

wσu = wσl = wχu = wχl = 0. Therefore ∇Θ∞(u∗, q∗, λ∗, σ∗u, σ
∗
l , χ

∗
u, χ

∗
l , 0)w = 0 if an

only if w = 0, and there must exist a ρ0 > 0 such that

‖∇Θ−1
∞ (u∗, q∗, λ∗, σ∗u, σ

∗
l , χ

∗
u, χ

∗
l , 0)‖ ≤ ρ0. (5.21)

Lemma 4.3.1 requires a bound on the difference between the two operators under
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consideration. This bound can be found by computing

∇Θ∞(u∗, q∗, λ∗, σ∗u, σ
∗
l , χ

∗
u, χ

∗
l , 0)−∇Θk(u

∗, q∗, λ∗, σ∗u, σ
∗
l , χ

∗
u, χ

∗
l , 0) =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 k−1
b Iσu 0 0 0

0 0 0 0 k−1
b Iσl 0 0

0 0 0 0 0 k−1
b Iχu 0

0 0 0 0 0 0 k−1
b Iχl



(5.22)

and therefore

‖∇Θ∞(u∗, q∗, λ∗, σ∗u, σ
∗
l , χ

∗
u, χ

∗
l , 0)−∇Θk(u

∗, q∗, λ∗, σ∗u, σ
∗
l , χ

∗
u, χ

∗
l , 0)‖ = ‖k−1

b ‖ (5.23)

Then application of Lemma 4.3.1 implies that ∇Θk(u
∗, q∗, λ∗, σ∗u, σ

∗
l , χ

∗
u, χ

∗
l , 0) is in-

vertible, and is bounded.

‖∇Θ−1
k (u∗, q∗, λ∗, σ∗u, σ

∗
l , χ

∗
u, χ

∗
l , 0)‖ ≤ 2ρ2

0‖k−1
b ‖ ≤ 2ρ2

0. (5.24)

At the solution it has now been shown that Θk(u
∗, q∗, λ∗, σ∗u, σ

∗
l , χ

∗
u, χ

∗
l , 0) = 0

and that ∇Θk(u
∗, q∗, λ∗, σ∗u, σ

∗
l , χ

∗
u, χ

∗
l , 0) is invertible. This allows the second implicit

function theorem to be used to complete the proof of (i). First define ξ(τ, kb), for

ξ = u, q, λ, σu, σl, χu, χl, to be functions in S(K, δ) = {(k, τ) : k0 ≤ k ≤ k1, ‖τ‖ ≤ δ}.

By the second implicit function theorem there exists a k1 > k0 such that for any

k ∈ [k0, k1] there exists a δ > 0 such that ξ(0, kb) = ξ∗, for ξ = u, q, λ, σu, σl, χu, χl.
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This completes the proof of claim (i).

(ii): The claimed bound on the Lagrange multipliers within Puη, Plη, Puβ, and Plβ

are considered first. From the previous section we saw that there must exist a δ > 0

such that for any (kb, τ) ∈ S(K, δ) there exists an ε0 > 0 such that

max{‖u(τ, kb)− u∗‖, ‖q(τ, kb)− q∗‖, ‖λ(τ, kb)− λ∗‖} ≤ ε0. (5.25)

In the passive regions it is also known that there exist a Uuη > 0, Ulη > 0, Uuβ > 0,

and Ulβ > 0 such that

ηu − û >
Uuη
2

û− ηl >
Ulη
2

(5.26a)

βu − q̂ >
Uuβ
2

q̂ − βu >
Ulβ
2

(5.26b)

Recall that in the passive regions σ∗u = 0, σ∗l = 0, χ∗u = 0, and χ∗ = 0, then σ̂u, σ̂l,

χ̂u, and χ̂l may be written as follows.

σ̂u = (σu − σ∗u)Ψ ′(kb(ηu − û)) σ̂l = (σl − σ∗l )Ψ ′(kb(û− ηl)) (5.27a)

χ̂u = (χu − χ∗u)Ψ ′(kb(βu − q̂)) χ̂l = (χl − χ∗l )Ψ ′(kb(q̂ − βl)) (5.27b)

By the conditions required of Ψ(t) there must exist a aσu > 0, aσl > 0, aχu > 0, and
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aχl > 0 such that

Ψ ′(kb(ηu − û)) < aσu(kb(ηu − û) + 1)−1 (5.28a)

Ψ ′(kb(û− ηl)) < aσl(kb(û− ηl) + 1)−1 (5.28b)

Ψ ′(k(βu − q̂)) < aχu(kb(βu − q̂) + 1)−1 (5.28c)

Ψ ′(k(q̂ − βl)) < aχl(kb(q̂ − βl) + 1)−1 (5.28d)

Therefore

σ̂u = σ̂u − σ∗u ≤ aσu(σu − σ∗u)(kb(ηu − û) + 1)−1

≤ (aσu(σu − σ∗u))(kb(ηu − û))−1

≤ aσu(σu − σ∗u)2(Uuηkb)
−1

(5.29)

and similarly

σ̂l = σ̂l − σ∗l ≤ aσl(σl − σ∗l )2(Ulηkb)
−1 (5.30a)

χ̂u = χ̂u − χ∗u ≤ aχu(χu − χ∗u)2(Uuβkb)
−1 (5.30b)

χ̂l = χ̂l − χ∗l ≤ aχl(χl − χ∗l )2(Ulβkb)
−1 (5.30c)
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which confirms the bounds

max{‖σ̂u − σ∗u‖, σ̂l − σ∗l ‖,‖χ̂u − χ∗u‖, ‖χ̂l − χ∗l ‖}

≤ C0

kb
‖max{‖σu − σ∗u‖, σl − σ∗l ‖, ‖χu − χ∗u‖, ‖χl − χ∗l ‖}

(5.31)

where C0 = max
{
aσu

Uuη
2
, aσl

Ulη
2
, aχu

Uuβ
2
, aχl

Ulβ
2

}
.

The mapping Θk will again be used in order to prove the claimed bounds for

(û, q̂, λ̂) everywhere in Ω and (σ̂u, σ̂l, χ̂u, χ̂l) in their respective active regions. For

this usage the derivative of Θk with respect to τ must be evaluated and set to 0. Set

∇τΘk(û, q̂, λ̂, σ̂u, σ̂l, χ̂u, χ̂l, τ) =

[
dΘk(·)
dτuη

, dΘk(·)
dτlη

, dΘk(·)
dτuβ

, dΘk(·)
dτlβ

]
= [0, 0, 0, 0] (5.32)

where

dΘk(·)
dτuη

=



ûτuη − A†λ̂τuη + σ̂u,τuη − σ̂l,τuη

αq̂τuη + σ̂τuη + χ̂u,τuη − χ̂l,τuη

λ̂τuη + kp(Aûτuη − q̂τuη)

Ψ ′(kb(ηu − û))− (kbτuη + σ∗u)Ψ
′′(kb(ηu − û))ûτuη − k−1

b σ̂u,τuη

σ∗l Ψ
′′(kb(û− ηl))ûτuη − k−1

b σ̂l,τuη

−χ∗uΨ ′′(kb(βu − q̂))q̂τuη − k−1
b χ̂u,τuη

χ∗l Ψ
′′(kb(q̂ − βl))q̂τuη − k−1

b χ̂l,τuη



(5.33)
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dΘk(·)
dτlη

=



ûτlη − A†λ̂τlη + σ̂u,τlη − σ̂l,τlη

αq̂τlη + σ̂τlη + χ̂u,τlη − χ̂l,τlη

λ̂τlη + kp(Aûτlη − q̂τlη)

−σ∗uΨ ′′(kb(ηu − û))ûτlη − k−1
b σ̂u,τlη

Ψ ′(kb(û− ηl))− (kbτlη + σ∗l )Ψ
′′(kb(û− ηl))ûτlη − k−1

b σ̂l,τlη

−χ∗uΨ ′′(kb(βu − q̂))q̂τlη − k−1
b χ̂u,τlη

χ∗l Ψ
′′(kb(q̂ − βl))q̂τlη − k−1

b χ̂l,τlη



(5.34)

dΘk(·)
dτuβ

=



ûτuβ − A†λ̂τuβ + σ̂u,τuβ − σ̂l,τuβ

αq̂τuβ + σ̂τuβ + χ̂u,τuβ − χ̂l,τuβ

λ̂τuβ + kp(Aûτuβ − q̂τuβ)

−σ∗uΨ ′′(kb(ηu − û))ûτuβ − k−1
b σ̂u,τuβ

σ∗l Ψ
′′(kb(û− ηl))̂uτuβ − k−1

b σ̂l,τuβ

Ψ ′(kb(βu − q̂))− (kbτuβ + χ∗u)Ψ
′′(kb(βu − q̂))q̂τuβ − k−1

b χ̂u,τuβ

χ∗l Ψ
′′(kb(q̂ − βl))q̂τuη − k−1

b χ̂l,τuη



(5.35)

dΘk(·)
dτlβ

=



ûτlβ − A†λ̂τlβ + σ̂u,τlβ − σ̂l,τlβ

αq̂τlβ + σ̂τlβ + χ̂u,τlβ − χ̂l,τlβ

λ̂τlβ + kp(Aûτlβ − q̂τlβ)

−σ∗uΨ ′′(kb(ηu − û))ûτlβ − k−1
b σ̂u,τlβ

σ∗l Ψ
′′(kb(û− ηl))ûτlβ − k−1

b σ̂l,τlβ

−χ∗uΨ ′′(kb(βu − q̂))q̂τlη − k−1
b χ̂u,τlη

Ψ ′(kb(q̂ − βl))− (kbτlβ + χ∗l )Ψ
′′(kb(q̂ − βl))q̂τlβ − k−1

b χ̂l,τlβ



(5.36)

Recognize that (5.32) can be represented as a linear operator on (ξτuη , ξτlη , ξτuβ , ξτlβ)

for ξ = u, q, λ, σu, σl, χu, χl. Rewrite (5.32) as the linear operator, moving the Ψ ′(·)
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terms to the right hand side since they are not multiplied by the dependent variables.

The variables σ̂u, σ̂l, χ̂u, and χ̂l are decomposed into their active and passive regions,

with the values corresponding to the active region are retained on the left hand side

and the portion corresponding to the passive region are moved to the right hand side.

Tk(û, q̂, λ̂, σ̂u, σ̂l, χ̂u, χ̂l, τ)



ûτuη ûτlη ûτuβ ûτlβ

q̂τuη q̂τlη q̂τuβ q̂τlβ

λ̂τuη λ̂τlη λ̂τuβ λ̂τlβ

σ̂u,τuη σ̂u,τlη σ̂u,τuβ σ̂u,τlη

σ̂l,τuη σ̂l,τlη σ̂l,τuβ σ̂l,τlη

χ̂u,τuη χ̂u,τlη χ̂u,τuβ χ̂u,τlη

χ̂l,τuη χ̂l,τlη χ̂l,τuβ χ̂l,τlη



= tk(û, q̂, λ̂, σ̂u, σ̂l, χ̂u, χ̂l)

(5.37)

57



where

Tk(·) = (5.38a)



Iu 0 −A† Iσu −Iσl 0 0

0 αIq Iλ 0 0 Iχu −Iχl
kpA −kpIq Iλ 0 0 0 0

−(kbτuη − σ∗u)Ψ ′(kb(ηu − û)) 0 0 −k−1
b Iσu 0 0 0

(kbτlη − σ∗l )Ψ ′(kb(û− ηl)) 0 0 0 −k−1
b Iσl 0 0

0 −(kbτuβ − χ∗u)Ψ ′′(kb(βu − q̂)) 0 0 0 −k−1
b Iχu 0

0 (kbτlβ − χ∗l )Ψ ′′(kb(q̂ − βl)) 0 0 0 0 −k−1
b Iχl



tk(·) =



−σ̂uτuη σ̂uτlη −σ̂uτuβ σ̂uτlβ

−σ̂lτuη σ̂lτlη −σ̂lτuβ σ̂lτlβ

−χ̂uτuη χ̂uτlη −χ̂uτuβ χ̂uτlβ

−χ̂lτuη χ̂lτlη −χ̂lτuβ χ̂lτlβ

0 0 0 0

−Ψ ′(kb(ηu − û)) 0 0 0

0 −Ψ ′(kb(û− ηl)) 0 0

0 0 −Ψ ′(kb(βu − q̂)) 0

0 0 0 −Ψ ′(kb(q̂ − βl))



(5.38b)

Within regions Puη, Plη, Puβ, and Plβ recall that

σ̂u = kbτuηΨ
′(kb(ηu − û)) (5.39a)

σ̂l = kbτlηΨ
′(kb(û− ηl)) (5.39b)

χ̂u = kbτuβΨ
′(kb(βu − q̂)) (5.39c)

χ̂l = kbτlβΨ
′(kb(q̂ − βl)). (5.39d)
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Compute the derivatives of σ̂u, σ̂l, χ̂u, and χ̂l with respect to τ .

σ̂u,τuη = kb
(
Ψ ′(kb(ηu − û))− τuηΨ ′′(kb(ηu − û))kbuτuη

)
(5.40a)

σ̂u,τX = −τuηΨ ′′(kb(ηu − û))kbuτX , X = lη, uβ, lβ (5.40b)

σ̂l,τlη = kb
(
Ψ ′(kb(û− ηl)) + τlηΨ

′′(kb(û− ηl))kbuτlη
)

(5.40c)

σ̂l,τX = τlηΨ
′′(kb(û− ηl))kbuτX , X = uη, uβ, lβ (5.40d)

χ̂u,τuβ = kb
(
Ψ ′(kb(βu − q̂))− τuβΨ ′′(kb(βu − q̂))kbqτuβ

)
(5.40e)

χ̂u,τX = −τuβΨ ′′(kb(βu − q̂))kbqτX , X = uη, lη, lβ (5.40f)

χ̂l,τlβ = kb
(
Ψ ′(kb(q̂ − ηl)) + τlηΨ

′′(kb(q̂ − ηl))kbqτlη
)

(5.40g)

χ̂l,τX = τlβΨ
′′(kb(q̂ − βl))kbqτX , X = uη, lη, uβ (5.40h)

Recall that the goal of this step is to use the implicit function theorem by investigating

∇τΘk at τ = 0. At τη = 0 and τβ = 0 the following is known about the solution

variables.

û(0, k) = u∗ q̂(0, k) = q∗ λ̂(0, k) = λ∗

σ̂u(0, k) = σ∗u > 0 in Auη σ̂u(0, k) = 0 in Puη

σ̂l(0, k) = σ∗l > 0 in Alη σ̂l(0, k) = 0 in Puη

χ̂u(0, k) = χ∗u > 0 in Auβ χ̂u(0, k) = 0 in Puβ

χ̂l(0, k) = χ∗l > 0 in Alβ χ̂l(0, k) = 0 in Plβ

(5.41)
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The system Tk(u
∗, q∗, λ∗, σ∗u, σ

∗
l , χ

∗
u, χ

∗
l , 0)(· · · ) = tk(u

∗, q∗, λ∗, σ∗u, σ
∗
l , χ

∗
u, χ

∗
l , 0) may

now be evaluated.

Tk(u
∗,q∗, λ∗, σ∗u, σ

∗
l , χ
∗
u, χ

∗
l , 0) =



Iu 0 −A† Iσu −Iσl 0 0

0 αIq Iλ 0 0 Iχu −Iχl

kpA −kpIq Iλ 0 0 0 0

−σ∗uΨ ′(0) 0 0 −k−1
b Iσu 0 0 0

σ∗l Ψ
′(0) 0 0 0 −k−1

b Iσl 0 0

0 −χ∗uΨ ′(0) 0 0 0 −k−1
b Iχu 0

0 χ∗l Ψ
′(0) 0 0 0 0 −k−1

b Iχl



(5.42)

tk(u
∗,q∗, λ∗, σ∗u, σ

∗
l , χ
∗
u, χ

∗
l , 0) =



−kbΨ ′(kb(ηu − û)) 0 0 0

0 kbΨ
′(kb(û− ηl)) 0 0

0 0 −kbΨ ′(kb(βu − q̂)) 0

0 0 0 kbΨ
′(kb(q̂ − βl))

0 0 0 0

−Ψ ′(kb(ηu − û)) 0 0 0

0 −Ψ ′(kb(û− ηl)) 0 0

0 0 −Ψ ′(kb(βu − q̂)) 0

0 0 0 −Ψ ′(kb(q̂ − βl))


(5.43)

Recognize that Tk(u
∗, q∗, λ∗, σ∗u, σ

∗
l , χ

∗
u, χ

∗
l , 0) = ∇Θk(u

∗, q∗, λ∗, σ∗u, σ
∗
l , χ

∗
u, χ

∗
l , 0), and

therefore it is known that there must exist a ρ0 such that ‖Tk(u∗, q∗, λ∗, σ∗u, σ∗l , χ∗u, χ∗l , 0)−1‖ ≤

2ρ2
0. The norm of the left hand side, tk(u

∗, q∗, λ∗, σ∗u, σ
∗
l , χ

∗
u, χ

∗
l , 0), may also be
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bounded by utilizing the known upper bounds on Ψ ′(t), ηu − û, û − ηl, βu − q̂, and

q̂− βl. In particular, by applying (3.6a) and (5.26) one receives the following bound.

Ψ ′(kb(ηu − û)) ≤ a

kb(ηu − û) + 1

≤ a

kb(ηu − û)

≤ 2a(kbUûη)
−1

(5.44)

A similar analysis may be performed for the remaining terms in tk(·), which results

in the following bound.

‖tk(u∗, q∗,λ∗, σ∗u, σ∗l , χ∗u, χ∗l , 0)‖

≤ max{‖2akb(Uuηkb)−1‖, ‖2akb(Ulηkb)−1‖, ‖2akb(Uuβkb)−1‖, ‖2akb(Ulβkb)−1‖,

‖2a(Uuηkb)
−1‖, ‖2a(Ulηkb)

−1‖, ‖2a(Uuβkb)
−1‖, ‖2a(Ulβkb)

−1‖}

≤ 2amax{‖(Uuη)−1‖, ‖(Ulη)−1‖, ‖(Uuβ)−1‖, ‖(Ulβ)−1‖}.

(5.45)

For some small δ > 0, the smoothness of the map Θk(û, q̂, λ̂, σ̂u, σ̂l, χ̂u, χ̂l) implies
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that for (kb, τuη, τlη, τuβ, τlβ) ∈ S(k, δ),

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

ûτuη ûτlη ûτuβ ûτlβ

q̂τuη q̂τlη q̂τuβ q̂τlβ

λ̂τuη λ̂τlη λ̂τuβ λ̂τlβ

σ̂u,τuη σ̂u,τlη σ̂u,τuβ σ̂u,τlβ

σ̂l,τuη σ̂l,τlη σ̂l,τuβ σ̂l,τlβ

χ̂u,τuη χ̂u,τlη χ̂u,τuβ χ̂u,τlβ

χ̂l,τuη χ̂l,τlη χ̂l,τuβ χ̂l,τlβ

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

≤ ‖T−1
k (·)‖‖tk(·)‖ ≤ 2ρ2

0C3 (5.46)

where C3 = 2amax{‖(Uuη)−1‖, ‖(Ulη)−1‖, ‖(Uuβ)−1‖, ‖(Ulβ)−1‖}.

The norm of the derivatives with respect to τ is now bounded. To recover the

terms required for the claim we perform an integration step.

∫
τ

0



ûτuη ûτlη ûτuβ ûτlβ

q̂τuη q̂τlη q̂τuβ q̂τlβ

λ̂τuη λ̂τlη λ̂τuβ λ̂τlβ

σ̂u,τuη σ̂u,τlη σ̂u,τuβ σ̂u,τlβ

σ̂l,τuη σ̂l,τlη σ̂l,τuβ σ̂l,τlβ

χ̂u,τuη χ̂u,τlη χ̂u,τuβ χ̂u,τlβ

χ̂l,τuη χ̂l,τlη χ̂l,τuβ χ̂l,τlβ



d



u

q

λ

σu

σl

χu

χl



=



û(τ, k)− û(0, k)

q̂(τ, k)− q̂(0, k)

λ̂(τ, k)− λ(0, k)

σ̂u(τ, k)− σu(0, k)

σ̂l(τ, k)− σl(0, k)

χ̂u(τ, k)− χu(0, k)

χ̂l(τ, k)− χl(0, k)



=



û(τ, k)− u∗

q̂(τ, k)− q∗

λ̂(τ, k)− λ∗

σ̂u(τ, k)− σ∗u

σ̂l(τ, k)− σ∗l
χ̂u(τ, k)− χ∗u

χ̂l(τ, k)− χ∗l



(5.47)

62



It can therefore be seen that

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

û(τ, k)− u∗

q̂(τ, k)− q∗

λ̂(τ, k)− λ∗

σ̂u(τ, k)− σ∗u

σ̂l(τ, k)− σ∗l

χ̂u(τ, k)− χ∗u

χ̂l(τ, k)− χ∗l

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

=

∥∥∥∥∫ τ

0

T−1
k (·, ξ)tk(·)dξ

∥∥∥∥

≤
∫ τ

0

‖T−1
k (·, ξ)‖‖tk(·)‖dξ

≤
∫ τ

0

‖ρ0C3‖dξ

≤ ρ0C3‖τ‖

(5.48)

Recalling the definition of τ in (5.9) we see that

‖τ‖ = max{‖k−1
b (σu − σ∗u)‖, ‖k−1

b (σl − σ∗l )‖, ‖k−1
b (χu − χ∗u)‖, ‖k−1

b (χl − χ∗l )‖}

= k−1
b max{‖(σu − σ∗u)‖, ‖(σl − σ∗l )‖, ‖(χu − χ∗u)‖, ‖(χl − χ∗l )‖}

(5.49)

Noting that τ is simply a function of σ and χ it can be seen that

max{‖û− u∗‖, ‖q̂ − q∗‖, ‖λ̂− λ∗‖, ‖σ̂u − σ∗u‖, ‖σ̂l − σ∗l ‖, ‖χ̂u − χ∗u‖, ‖χ̂l − χ∗l ‖}

≤ ρ0C3

kb
max{‖σu − σ∗u‖, ‖σl − σ∗l ‖, ‖χu − χ∗u‖, ‖χl − χ∗l ‖}

(5.50)
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Recognize that the term on the left hand side of this inequality is only over the La-

grange multipliers associated with the constraints in their respective active domains.

Inclusion of (5.31) therefore implies that

max{‖û− u∗‖, ‖q̂ − q∗‖, ‖λ̂− λ∗‖, ‖σ̂u − σ∗u‖, ‖σ̂l − σ∗l ‖, ‖χ̂u − χ∗u‖, ‖χ̂l − χ∗l ‖}

≤ C

kb
max{‖σu − σ∗u‖, ‖σl − σ∗l ‖, ‖χu − χ∗u‖, ‖χl − χ∗l ‖}

(5.51)

where C = max{C0, ρ0C3}. This completes the claim.
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Chapter 6: Super-linear Convergence of a

PDNRAL Method for Control-Constrained

Optimization with Elliptic Equality Constraints

The subject of this chapter is a full primal dual NRAL method, this time for an

optimization problem with elliptic PDE constrained that has constraints on the just

control.

minimize J(u, q) =
1

2
‖u− ud‖2

L2(Ω) +
α

2
‖q‖2

L2(Ω)

subject to Au = q in Ω

β(q) ≥ 0 a.e. in Ω

(6.1)

where u ∈ W , and A : W → L2(Ω) is a uniformly elliptic, self-adjoint operator, and

q, ud, and β are all in L2(Ω). Furthermore β is required to be concave and strictly

monotonic, and α > 0.

Problem (6.1), assumed to satisfy strict complementarity. Furthermore, the strong

convexity of J (u, q) allow one to assume that the second order optimality conditions

are satisfied.
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6.1 Optimality Conditions

Begin by defining the Lagrangian for problem (6.1) in the usual way, with λ ∈ W

and let χ ∈ L2(Ω).

L(u, q, λ, χ) =
1

2
‖u− ud‖2

L2(Ω) +
α

2
‖q‖2

L2(Ω) − (λ,Au− q)− (χ, β(q)) (6.2)

The first order optimality conditions for this problem are known [23]. Let (u∗, q∗)

be the solution to Problem (6.1), then there must exist a Lagrange multipliers λ∗ ∈ W

and χ∗ ∈ L2(Ω) such that the following conditions hold.

∇uL(u∗, q∗, λ∗, χ∗) = (u∗ − ud)− A†λ∗ = 0 (6.3a)

∇qL(u∗, q∗, λ∗, χ∗) = αq∗ + λ∗ − χ∗∇qβ(q∗) = 0 (6.3b)

∇λL(u∗, q∗, λ∗, χ∗) = Au∗ − q∗ = 0 (6.3c)

χ∗ ≥ 0 β(q∗) ≥ 0 (χ∗, β(q∗)) = 0 (6.3d)

6.2 The PDNRAL Method

The derivation of the PDNRAL method begins much in the same way as the NR-

PDAL method from Chapter 5. The Lagrangian is first augmented and modified in

the normal NRAL way.

Lk(u, q, λ, χ) =
1

2
‖u− ud‖2

L2(Ω) +
α

2
‖q‖2

L2(Ω) − (λ,Au− q)

+
k

2
(Au− q, Au− q)− 1

k
(χ, Ψ(kβ(q)))

(6.4)
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Compute the gradient of Lk.

∇uLk(u, q, λ, χ) = (u− ud)− A†λ+ kA†(Au− q)

= (u− ud)− A†(λ− k(Au− q))

∇qLk(u, q, λ, χ) = αq + λ− k(Au− q)− χΨ(kβ(q))∇qβ(q)

(6.5)

Construct the variables λ̂ and χ̂ using the NRAL Lagrange multiplier update inspired

formula.

λ̂ = λ− k(Aû− q̂) (6.6a)

χ̂ = χΨ ′(kβ(q̂)) (6.6b)

In the NR-PDAL method the λ̂ variable, along with the updated û and q̂, was

inserted into (6.5) to construct the inner system to be solved at each PDAL step,

which was followed by the NR multiplier update. The PDNRAL method is a full

primal dual method which solves for all variables at once, doing away with the inner

optimization step. Therefore both λ̂ and χ̂ are inserted into (6.5), which leads to the

following system of equations which must be solved.

∇uL(û, q̂, λ̂, χ̂) = (û− ud)− A†λ̂ = 0

∇qL(û, q̂, λ̂, χ̂) = αq̂ + λ̂− χ̂∇qβ(q̂) = 0

λ̂− λ+ k(Aû− q̂) = 0

χ̂− χΨ ′(kβ(q̂)) = 0

(6.7)
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The PDNRAL method then becomes solving (6.7) using Newton’s method.

6.3 Local Convergence Analysis

The finite dimensional primal-dual NRAL method was first introduced as the Exterior

Point Method (EPM) in [18], where it was shown to have 1.5-q-superlinear conver-

gence under appropriate conditions. The analysis that follows is done in function

space over this elliptically constrained optimization problem with control constraints,

and confirms that the method retains superlinear convergence.

The first step in this analysis is the definition of the merit function v(u, q, λ, χ) ∈

W × L2 ×W × L2.

v(u, q, λ, χ) = max{‖∇uL(u, q, λ, χ)‖, ‖∇qL(u, q, λ, χ)‖, ‖Au− q‖,

−min(β(q)), ‖χβ(q)‖,−min(χ)}
(6.8)

This function serves as both a measure of error in the current solution as well as

an input to the update strategy for the barrier/penalty parameter k. After each

successful Newton step a new k will be the be selected.

k =
1√

v(u, q, λ, χ)
(6.9)

The system of equations that is solved at each Newton step can be computed in

the usual way, by linearizing (6.7) about the solution u∗, q∗, λ∗, and χ∗. The Newton

68



system is

Mk(u, q, λ, χ)



δu

δq

δλ

δχ


= ak(u, q, λ, χ) (6.10)

where

Mk(u, q, λ, χ) =



Iu 0 −A† 0

0 αIq − χ∇2
qqβ(q) Iλ −∇qβ(q)

kA −ku −Iλ 0

0 kχΨ ′′(kβ(q))∇qβ(q) 0 Iχ


(6.11)

and

ak(u, q, λ, χ) =



−(u− ud) + A†λ

−αq − λ+ χ∇qβ(q)

−k(Au− q)

χ(Ψ ′(kβ(q))− 1)


(6.12)

The convergence analysis requires the particular bounds on v(u, q, λ, χ), which are

proven in the following lemma.

Lemma 6.3.1. Define z = (u, q, λ, χ) and z∗ to be the solution to Problem (6.1).

Define Bε(z
∗) = {z : ‖z− z∗‖ ≤ ε}. Then there exists a small enough ε > 0 such that

for all z ∈ Bε(z
∗) there exists a L1 and L2 such that L2 > L1 > 0 and

L1‖z − z∗‖ ≤ v(z) ≤ L2‖z − z∗‖ (6.13)
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Proof. By definition of v(z) and its implication that v(z∗) = 0 it is evident that there

must exist an L2 > 0 such that v(z) ≤ L2‖z − z∗‖.

The lower bound L1‖z − z∗‖ is computed first for χ in ΩP . Within ΩP it must

be that there exists a τ1 > 0 such that β(q) ≥ τ1. By definition of v(z) we have the

‖χβ(q)‖ ≤ v(z), and therefore

v(z) ≥ ||χβ(q)‖ ≥ ‖χτ1‖ = τ1‖χ‖ (6.14)

In order to bound the remainder of the variables in ‖z− z∗‖ the optimality condi-

tions (6.3) will be linearized about z∗, with χ only being considered within ΩA. After

incorporation of the known optimality conditions the resulting system of equations is

M∞(z)



u− u∗

q − q∗

λ− λ∗

χ− χ∗


=



−(u− ud) + A†λ

−αq − λ+ χ∇qβ(q)

−Au+ q

−β(q)


(6.15)

where

M∞(z) =



Iu 0 −A† 0

0 αIq − χ∇2
qqβ(q) Iλ −∇qβ(q)

A −Iu 0 0

0 −∇qβ(q) 0 0


. (6.16)

To prove that M∞(z) is invertible one can use a contradiction by assuming it is not

invertible. Then there must exist a non-zero vector w = (wu, wq, wλ, wχ) such that
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M∞(z)w = 0. Write M∞(z)w = 0 as the following system of equations:

Iu 0

0 αIq − χ∇2
qqβ(q)


wu
wq

+

−A† 0

Iλ −∇qβ(q)


wλ
wχ

 =

0

0

 (6.17a)

A −Iu

0 −∇qβ(q)


wu
wq

 =

0

0

 (6.17b)

Multiplying (6.17a) by (wu, wq) gives

(
wu wq

)Iu 0

0 αIq − χ∇2
qqβ(q)


wu
wq

+

(
wu wq

)−A† 0

Iλ −∇qβ(q)


wλ
wχ

 =

0

0


(6.18)

The second term on the left hand side of (6.18) can be rearranged to show that

(
wu wq

)−A† 0

Iλ −∇qβ(q)


wλ
wχ

 =

(
wλ wχ

)A −Iu

0 −∇qβ(q)


wu
wq

 (6.19)

But (6.17b) is already known, and therefore the terms on both sides of (6.19) are

equal to zero. All that remains of (6.18) then is

(
wu wq

)Iu 0

0 αIq − χ∇2
qqβ(q)


wu
wq

 =

0

0

 (6.20)

Since M∞(z) is constructed in ΩA it is known that χ > 0. Additionally it is known

that∇2
qqβ(q) < 0. Therefore αIq−χ∇2

qqβ(q) > 0, and (6.20) implies that wu = wq = 0.
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With wu and wq equal to zero one is left with he second term in (6.17a), which is

equivalent to

−A†wλ = 0 (6.21a)

wλ −∇qβ(q)wχ = 0 (6.21b)

By the self-adjoint requirement on A we know that A† is also uniformly elliptic. This

fact, along with wλ∂Ω
= 0 allows for the Weak Maximum Principle to be used to state

that wλ = 0. With wλ = 0 and recalling strict monotonicity of β(q), (6.21b) requires

wχ = 0. Therefore M∞(z)w = 0 only if w = 0, and M∞(z) must be invertible. Then

there must exist a ρ0 > 0 such that ‖M∞(z)−1‖ < ρ0. This implies that ‖z − z∗‖ is

bounded, and this bound will be used to form the lower bound on v(z).

‖z − z∗‖ ≤ ρ0

∥∥∥∥∥∥∥∥∥∥∥∥∥

−(u− ud) + A†λ

−αq − λ+ χ∇qβ(q)

−Au+ q

−β(q)

∥∥∥∥∥∥∥∥∥∥∥∥∥
∞

= ρ0 max{‖u− ud − A†λ‖ΩA , ‖αq + λ− χ∇qβ(q)‖ΩA , ‖Au− q‖ΩA , ‖β(q)‖ΩA}

(6.22)
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Using definition of v(z) and ‖ · ‖ΩA ≤ ‖ · ‖Ω it can be seen than

max{‖u− ud − A†λ‖ΩA ,‖αq + λ− χ∇qβ(q)‖ΩA , ‖Au− q‖ΩA}

≤ max{‖u− ud − A†λ‖Ω, ‖αq + λ− χ∇qβ(q)‖Ω, ‖Au− q‖Ω}.

≤ v(z)

(6.23)

Within ΩA there must exist a τ2 > 0 such that |β(q)| ≤ τ2, and therefore

‖β(q)‖ ≤ τ2 (6.24)

Finally then, v(z) can be bounded below by

L1‖z − z∗‖ ≤ v(z) (6.25)

where

L−1
1 = max{‖u− ud − A†λ‖Ω, ‖αq + λ− χ∇qβ(q)‖Ω, ‖Au− q‖Ω, τ2} (6.26)

The upper and lower bounds on v(z) now defined the convergence analysis of the

PDNRAL method for control constrained problems may proceed.

Theorem 6.3.2. Define z∗ = (u∗, q∗, λ∗, χ∗) to be the solution to Problem (6.1), and

define Bε(z
∗) = {z : ‖z − z∗‖ ≤ ε}. Let ẑ = (û, q̂, λ̂, χ̂) be the solution to the single

step after the solution to the system of equations (6.10), where k = v(z)−0.5. Then
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there exists a small positive ε� 1 such that for any z ∈ Bε(z
∗) the error on ẑ is

‖ẑ − z∗‖ ≤ ρ‖z − z∗‖
3
2 (6.27)

for some ρ > 0.

Proof. Define ∂z = (∂u, ∂q, ∂λ, ∂χ) to be the step taken at each PDNRAL step,

i.e. the solution to (6.10). To analyze this problem the system of equations will be

modified by splitting the χ equations into both the active and passive regions. This

modified system of equations results in a new Mk(z) and ak(z).

M̂k(z) =



Iu 0 −A† 0 0

0 αIq −Iλχ∇2
qqβ(q) −∇qβ(q)Iχ,ΩA −∇qβ(q)Iχ,ΩP

kA −kIq −Iλ 0 0

0 kχΩAΨ
′′(kβ(q))∇qβ(q) 0 Iχ,ΩA 0

0 kχΩPΨ
′′(kβ(q))∇qβ(q) 0 0 Iχ,ΩP


(6.28)

âk(z) =



−(u− ud) + A†λ

−αq − λ+ χ∇qβ(q)

−k(Au− q)

χΩA(Ψ ′(kβ(q))− 1)

χΩP (Ψ ′(kβ(q))− 1)


(6.29)

Using χ̂ΩP = χΩP + ∂χΩP the equation for χΩP can be rewritten as

χ̂ΩP = χΩPΨ
′(kβ(q))− kχΩPΨ

′′(kβ(q))∇qβ(q)∂q. (6.30)
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Using requirements (3.6a) and (3.6b) there must exist an a > 0 such that Ψ ′(kβ(q)) ≤

a(kβ(q) + 1)−1, and a b > 0 such that −Ψ ′′(kβ(q)) ≤ b(kβ(q) + 1)−2. Additionally it

is known that within ΩP there exists a ξ1 and ξ2 such that β(q) ≥ ξ1.

χ̂ΩP ≤ χΩP

(
a(kβ(q) + 1)−1 + kb(k(β(q) + 1)−2)∇qβ(q)∂q

)
≤ χΩP

(
a(kβ(q))−1 + kb(k(β(q))−2)∇qβ(q)∂q

)
≤ χΩP k

−1
(
aξ−1

1 + bξ−2
1 ∇qβ(q)∂q

)
(6.31)

Continuity of β(q) and boundedness of the space ΩP imply there exists a ξ2 > 0 and

ξ3 > 0 and such that ‖∇qβ(q)‖ ≤ ξ2 and ‖∂q‖ ≤ ξ3. Then the norm of χ̂ΩP can be

further bounded.

‖χ̂ΩP ‖ ≤
∥∥χΩP k

−1
(
aξ−1

1 + bξ−2
1 ∇qβ(q)∂q

)∥∥
≤ k−1‖χΩP ‖

∥∥aξ−1
1 + bξ−2

1 ∇qβ(q)∂q
∥∥

≤ k−1‖χΩP ‖
∥∥aξ−1

1 + bξ−2
1 ξ2ξ3

∥∥
(6.32)

By definition it is known that ‖χ−χ∗‖ ≤ ‖z− z∗‖. There exists an L1 > 0 such that

L2‖χ− χ∗‖ ≥ v(z). But by the k update strategy k = v(z)−
1
2 , and therefore

k−1 ≤ (L2‖z − z∗‖)
1
2 . (6.33)

Finally, within ΩP χ∗ = 0, so ‖χ‖ ≤ ‖z − z∗‖. This results in the claimed bound on

χ within ΩP .

‖χ̂ΩP ‖ ≤ (L2)
1
2

∥∥aξ−1
1 + bξ−2

1 ξ2ξ3

∥∥ ‖z − z∗‖ 3
2 = C1‖z − z∗‖

3
2 (6.34)

75



The remaining functionals (u, q, λ, and χΩA) will be treated via the primal dual

system M̂k(z)∂z = âk(z) with the χΩP equation eliminated. The λ and χΩA equations

are also modified by dividing them by k and kχΩAΨ
′′(kβ(q)), respectively, resulting

in the reduced system of equations Mk(z)∂̂z = ak, where

Mk(z) =



Iu 0 −A† 0

0 αIq − χ∇2
qqβ(q) Iλ −∇qβ(q)Iχ,Ωq

A −Iq −k−1Iλ 0

0 Iq 0 (kχΩAΨ
′′(kβ(q)))−1


(6.35)

and

ak =



−(u− ud) + A†λ

−αq − λ+ χ∇qβ(q)

−Au+ q

(kΨ ′′(kβ(q)))−1(Ψ ′(kβ(q))− 1)


(6.36)

The bounds on ∂̂z will be formed by comparison with a single step, ∂z, found via

Newton’s method applied to the subset of (6.3) where that subset consists of just ΩA.

Define z = z + ∂z.

‖ẑ − z∗‖ = ‖(z + ∂̂z) + (∂z − ∂z)− z∗‖

= ‖z − z∗ + ∂̂z − ∂z‖

≤ ‖z − z∗‖+ ‖∂̂z − ∂z‖

(6.37)

76



This Newton step, ∂z, is computed as the solution to M∞(z)∂z = a∞(z), where

M∞(z) =



Iu 0 −A† 0

0 αIq − χ∇2
qqβ(q) Iλ −∇qβ(q)Iχ,Ωq

A −Iq 0 0

0 Iq 0 0


(6.38)

and

a∞ =



−(u− ud) + A†λ

−αq − λ+ χ∇qβ(q)

−Au+ q

−β(q)


. (6.39)

Invertibility of the operator M∞(z) has already been established, and there must

exist a ρ0 > 0 such that ‖M∞(z)−1‖ < ρ0. Invertibility of Mk(z) is established using

Lemma 4.3.1. Recognize that

‖M∞ −Mk‖ =

∥∥∥∥∥∥∥∥∥∥∥∥∥

0 0 0 0

0 0 0 0

0 0 k−1Iλ 0

0 0 0 −(kχΩAΨ
′′(kβ(q)))−1

∥∥∥∥∥∥∥∥∥∥∥∥∥
≤ max{‖k−1‖, ‖(kχΩAΨ

′′(kβ(q)))−1‖}

(6.40)

By the definition of Ψ ′′(t) condition (3.5d) there must exist a ξ4 > 0 such that
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Ψ ′′(t) ≥ ξ−1
4 , and therefore

‖Ψ ′′(kβ(q))−1‖ ≤ ‖ξ4‖. (6.41)

Additionally within ΩA there must exist a ξ5 > 0 such that χA ≥ ξ5.

Therefore the bounds on ‖M∞ −Mk‖ may be written as

‖M∞ −Mk‖ ≤ max{‖k−1‖, ‖(kχΩAΨ
′′(kβ(q)))−1‖}

≤ max{‖(L2‖z − z∗‖)
1
2‖, ‖(L2‖z − z∗‖)

1
2‖‖ξ5‖‖ξ4‖}

≤ max{L
1
2
2 , L

1
2
2 ξ5ξ4}‖z − z∗‖

1
2

= C2‖z − z∗‖
1
2

(6.42)

The invertibility of M∞(z) and bounds on ‖M∞(z) −Mk(z)‖ allow use of Lemma

4.3.1 to state that Mk(z) is invertible and the following bounds hold.

‖M−1
k (z)‖ ≤ 2ρ0 (6.43)
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With invertibility of M∞(z) and Mk(z) (6.37) may be rewritten as

‖ẑ − z∗‖ ≤ ‖z − z∗‖+ ‖M−1
∞ (z)a∞(z)−M−1

k (z)ak(z)‖

=≤ ‖z − z∗‖+ ‖M−1
∞ (z)a∞(z)−M−1

k (z)ak(z)−M−1
k (z)a∞(z) +M−1

k (z)a∞(z)‖

≤ ‖ẑ − z∗‖+ ‖M−1
∞ (z)‖‖M−1

k (z)‖‖M∞(z)−Mk(z)‖‖a∞(z)‖

+ ‖M−1
k (z)‖‖a∞(z)− ak(z)‖

≤ ‖ẑ − z∗‖+ 2ρ2
0C2‖z − z∗‖

1
2 ‖a∞(z)‖+ 2ρ0‖a∞(z)− ak(z)‖

(6.44)

The definitions of v(z), a∞(z), and Lemma 6.3.1 imply that

‖a∞(z)‖ ≤ v(z) ≤ L2‖z − z∗‖. (6.45)

The remaining bound that must be established on

‖a∞(z)− ak(z)‖ =

∥∥∥∥∥∥∥∥∥∥∥∥∥

0

0

0

−β(q)− (kΨ ′′(kβ(q)))−1(Ψ ′(kβ(q))− 1)

∥∥∥∥∥∥∥∥∥∥∥∥∥
= ‖ − β(q)− (kΨ ′′(kβ(q)))−1(Ψ ′(kβ(q))− 1)‖

(6.46)

The Lagrange interpolatory equation will be used twice in order to construct a form

in which allows this term to be bounded. Let t1, t2, t3 and t4 be in R, then there
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must exist a θ1 and θ2 ∈ (0, 1) such that

Ψ ′′(θ1t1 + (1− θ1)t2) =
Ψ ′(t1)− Ψ ′(t2)

t1 − t2
(6.47)

and

Ψ ′′′(θ2t3 + (1− θ2)t4) =
Ψ ′′(t3)− Ψ ′′(t4)

t3 − t4
(6.48)

Recognize that with in ΩA we have β(q∗) = 0, and that Ψ ′(0) = 1. Let t1 = kβ(q)

and t2 = kβ(q∗). Then (6.47) becomes

Ψ ′(kβ(q))− 1 = Ψ ′′(θ1kβ(q))kβ(q) (6.49)

Equation (6.49) may then be inserted into (6.46).

‖a∞(z)− ak(z)‖ =

∥∥∥∥−β(q)− (Ψ ′′(θ1kβ(q))kβ(q))

kΨ ′′(kβ(q))

∥∥∥∥
=

∥∥∥∥−β(q)
Ψ ′′(kβ(q))− Ψ ′′(θ1kβ(q))

Ψ ′′(kβ(q))

∥∥∥∥
(6.50)

Next define t3 = θ1kβ(q) and t4 = kβ(q). Then (6.48) becomes

Ψ ′′(θ1kβ(q))− Ψ ′′(kβ(q)) = Ψ ′′′(t5)(θ1 − 1)kβ(q) (6.51)
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where t5 = (θ2θ1 + (1− θ2))kβ(q). Inserting (6.51) results in

‖a∞(z)− ak(z)‖ =

∥∥∥∥β(q)
Ψ ′′′(t5)(θ1 − 1)kβ(q)

Ψ ′′(kβ(q))

∥∥∥∥
≤ |θ1 − 1|‖k−1kβ(q)‖‖Ψ ′′′(t5)‖‖kβ(q)‖‖Ψ ′′(kβ(q))−1‖

≤ |θ1 − 1|‖k−1‖‖kβ(q)‖2‖Ψ ′′′(t5)‖‖Ψ ′′(kβ(q))−1‖

(6.52)

Using the known bounds on v(z), k−1 = v(z)−
1
2 , it is known that

‖kβ(q)‖ ≤
(

(L1‖z − z∗‖)−
1
2

)
(v(z))

≤
(

(L1‖z − z∗‖)−
1
2

)
(L2‖z − z∗‖)

≤ L
− 1

2
1 L2‖z − z∗‖

1
2 .

(6.53)

Then using (3.7), (6.41), and (6.33)

‖a∞(z)− ak(z)‖ ≤ |θ1 − 1|(L2‖z − z∗‖)
1
2 (L−1

1 L2
2‖z − z∗‖)c‖ξ4‖

≤ C4‖z − z∗‖
3
2 .

(6.54)

Finally, using (6.53) and (6.44) the bound on ‖ẑ − z∗‖ is established.

‖ẑ − z∗‖ ≤ ‖z − z∗‖+ 2ρ2
0C2L2‖z − z∗‖

3
2 + 2ρ0C4‖z − z∗‖

3
2

≤ ‖z − z∗‖+ C5‖z − z∗‖
3
2

(6.55)

where C5 = 2ρ2
0C2L2 + 2ρ0C4. Since z is the results of a single step of Newton’s

Method it is expected that the region Bε(z
∗) is small enough such that the method
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must have quadratic convergence, and therefore there must exist a C6 > 0 such that

‖z − z∗‖ ≤ C6‖z − z∗‖2. Define C = max{C6, C5} and recognized that ‖z − z∗‖2 ≤

‖z − z∗‖ 3
2 , then (6.55) becomes

‖ẑ − z∗‖ ≤ C‖z − z∗‖
3
2 (6.56)

which completes the claim.
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Chapter 7: Numerical Investigations of Analyzed

Methods

Thus far in this document the PDAL, NR-PDAL, and PDNRAL methods have been

used exclusively in their infinite dimensional form. In the remainder of this document,

the implementations of the three methods will be described. The implementations

are used for sample problems relevant to the method, and the predicted convergence

rates from Chapters 4, 5, and 6 are confirmed.

7.1 Implementations Background Matter

The infinite dimensional form of these methods can only be used for actually solving

these constrained problems for very limited cases. In order to implement a more

general solver some portion of the method must be modified such that the infinite

dimensional systems of equations are replaced with discretized versions. Multiple

discretization methods, such as the finite difference, finite volume, and finite element

methods are available and can be used for this purpose. In this work the finite element

method was selected as the discretization method.

All following implementations use the libMesh [25] C++ library to aid in con-

structing the Finite Element solvers. The libMesh library is a collection of data man-

agement and numerical routines designed to ease the process of creating finite element

implementations for solving PDEs. This includes many of the required features of any

similar library, including definitions of many element types and quadrature methods,

and the ability to create, store, query, and manipulate meshes.
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7.2 PDAL Implementation and Example

In order to numerically verify quadratic convergence a sample problem was con-

structed and solved using the PDAL method. The following problem (7.1) is a pa-

rameter estimation problem with an elliptic PDE constraint.

minimize
1

4

(
‖u− ud‖2

L2(Ω) + α‖q‖2
L2(Ω)

)2

subject to −∇2u = q in Ω

u = 0 on ∂Ω

(7.1)

By denoting

J (u, q) =
1

4

(
‖u− ud‖2

L2(Ω) + α‖q‖2
L2(Ω)

)2

(7.2)

and A = −∇2 we see that this is the same form as Problem (4.1).

The first order optimality conditions (4.14) for this problem will be derived, along

with the Newton system (4.15). In this problem statement, u ∈ W is the state, ud is

the desired value of u, q ∈ L2(Ω) is a coefficient of the PDE and is the control which

is to be found. The domain Ω is the space on which the PDE is to be evaluated. ∂Ω

is the boundary of Ω.

The Lagrangian for this problem is

L(u, q, λ) =
1

4

(
‖u− ud‖2 + α‖q‖2

)2 −
(
λ,∇2u+ q

)

where λ ∈ H1
0 (Ω) and λ∂ are the Lagrange multipliers associated with the PDE and

boundary constraints, though because u = 0 is enforced on the boundary the final

term is not required and can be dropped. The first order optimality conditions for
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this problem

∇uL(u, q, λ)(h) = ((u− ud)3 + αq2(u− ud), h)− (λ,∇2h) = 0 (7.3a)

∇qL(u, q, λ)(h) = (αq(u− ud)2 + α2q3, h)− (λ, h) = 0 (7.3b)

∇λL(u, q, λ)(h) = (∇2u, h) + (q, h) = 0 (7.3c)

Since (7.3) must be true for all h ∈ W we can choose h ∈ W0. Application of the

Fundamental Lemma of the Calculus of Variations to (7.3b) and (7.3c) immediately

leads to the following two equations.

αq(u− ud)2 + α2q3 − λ = 0

∇2u+ q = 0

Equation (7.3a) cannot be directly dealt with in a similar way due to the Laplacian

of h. But Green’s second identity can be used to transfer the Laplacian onto λ,

resulting in

((u− ud)3 + αq2(u− ud), h)− (∇2λ, h) = 0 (7.5)

which does allow use of the Fundamental Lemma of the Calculus of Variations, leading

to the adjoint equation

(u− ud)3 + αq2(u− ud)−∇2λ = 0

as the optimality condition in Ω derived from (7.3a). Finally, the complete set of first
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order optimality conditions is then

(u− ud)3 + αq2(u− ud)−∇2λ = 0 in Ω

αq(u− ud)2 + α2q3 − λ = 0 in Ω

∇2u+ q = 0 = 0 in Ω

The augmented Lagrangian for (7.1) is

Lk(u, q, λ) =
1

4

(
‖u− ud‖2

L2 +
α

2
‖q‖2

L2

)2

−
(
λ,∇2u+ q

)
Ω

+
k

2
‖∇2u+ q‖2 (7.7)

The first order optimality conditions resulting from (7.7), when using the dummy

variable λ̂ is

(û− ud)3 + αq̂2(û− ud)−∇2λ̂ = 0 in Ω (7.8a)

αq̂(û− ud)2 + α2q̂3 − λ̂ = 0 in Ω (7.8b)

λ̂− λ+ k
(
∇2û+ q̂

)
= 0 in Ω. (7.8c)

In order to derive the Newton system equivalent to (4.15), equations (7.8) are lin-

earized about the solution, which leads to the following system of equations. Note

that the hats (̂) are removed for clarity, as the Newton system always refers to the
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current u, q, and λ.

(u+ δu− ud)3 + α(q + δq)2(u+ δu− ud)−∇2(λ+ δλ) = 0 (7.9a)

αq(u+ δu− ud)2 + α2(q + δq)3 − (λ+ δλ) = 0 (7.9b)

δλ+ k
(
∇2(u+ δu) + (q + δq

)
= 0. (7.9c)

By dropping the second order terms and reallocating terms to their appropriate side

we get the final Newton system that is solved in each PDAL step.

3(u− ud)2 + αq2)δu+ 2αq(u− ud)δq −∇2δλ = −(u− ud)3 − αq2(u− ud) +∇2λ (7.10a)

2αq(u− ud)δu+ α(u− ud)2 + 3α2q2)δq − δλ = −αq(u− ud)2 − α2q3 − λ (7.10b)

∇2δu+ δq +
1

k
δλ = −∇2u− q (7.10c)

The general method for solving (7.1) with the PDAL method is an iterative

method, and is shown in Algorithm 1. This algorithm, like any Newton based method,

iterates by solving (7.10) and updating the variables with the resulting solution. This

method, still in its function space description, is of limited direct use due to the na-

ture of (7.1).This system of equstions is a non-linear system of PDEs, for which there

is generally no analytical solution. This system of equations must therefore be solved

numerically, using some choice of discretization methods.

Multiple discretization schemes may be selected to solve (7.10), and the Finite

Element Method was chosen here. The first step required to solve (7.10) using a

standard Galerkin Finite Element scheme is first representing the equation in its weak

form. Let ϕ ∈ W0, and multiply all equations (7.10) through by ϕ and integrate over
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Algorithm 1 Function Space PDAL Algorithm

Choose initial values for u, q, and λ.
Pick k > 0.
repeat

Solve (7.10) for δu, δq, and δλ given current values of u, q, and λ
Update the variables

u = u+ δu

q = q + δq

λ = λ+ δλ

(7.11)

Compute the error:

E = ‖(u− ud)−∇2λ− λq‖+ ‖αq − λu‖ (7.12)

until E < tol

Ω..

((3(u− ud)2 + αq2)δu, ϕ) + (2αq(u− ud)δq, ϕ)− (∇2δλ, ϕ)

= −((u− ud)3, ϕ)− α(q2(u− ud), ϕ) + (∇2λ, ϕ) (7.13a)

(2αq(u− ud)δu, ϕ) + (α(u− ud)2 + 3α2q2)δq, ϕ)− (δλ, ϕ)

= −(αq(u− ud)2, ϕ)− (α2q3, ϕ)− (λ, ϕ) (7.13b)

(∇2δu, ϕ) + (δq, ϕ) +
1

k
(δλ, ϕ) = −(∇2u, ϕ)− (q, ϕ) (7.13c)

Apply Green’s identities to reduce all differentiation to first order and we arrive at
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the following system of equations.

((3(u− ud)2 + αq2)δu, ϕ) + (2αq(u− ud)δq, ϕ) + (∇δλ,∇ϕ)

= −((u− ud)3, ϕ)− α(q2(u− ud), ϕ)− (∇λ,∇ϕ) (7.14a)

(2αq(u− ud)δu, ϕ) + (α(u− ud)2 + 3α2q2)δq, ϕ)− (δλ, ϕ)

= −(αq(u− ud)2, ϕ)− (α2q3, ϕ)− (λ, ϕ) (7.14b)

−(∇δu,∇ϕ) + (δq, ϕ) +
1

k
(δλ, ϕ) = (∇u,∇ϕ)− (q, ϕ) (7.14c)

The system of equations (7.14) solves equations (7.10) in the weak sense if (7.14) is

true for all ϕ ∈ W0.

The second step required for solving (7.10) using the Finite Element Method is

to discretize the domain. Let the domain Ωh be defined to be a triangularization

of the full domain Ω. Similarly, uh, δuh, λh, δλh, qh, and δqh are defined to be the

discretized versions of u, δu, λ, δλ, q, and δq, respectively. The Lagrange interpolation

functions were chosen to represent the test function ϕ from (7.14). Therefore we set

ϕ(x) =
∑n

j=1 ϕj(x) for all x ∈ Ωh, where n is the number of elements in Ωh.

The standard continuous Galerkin method [35] was followed by defining the dis-

cretized representations of u, δu, q, δq, λ, and δλ.

ξ(x) ≈ ξh(x) =
n∑
j=1

ξjϕj(x) for ξ = u, δu, q, δq, λ, δλ (7.15)

Finally, equations (7.14) were discretized by inserting these approximations and the

interpolatory test functions. To simplify the resulting equation the homogeneous
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Dirichlet boundary conditions on u and λ were imposed, which then lead to the

following linear system of equations.


((3(ui − ud,i)2 + αq2i )ϕi, ϕj) (2αqi(ui − ud,i)ϕi, ϕj) (∇ϕi,∇ϕj)

(2αqi(ui − ud,i)ϕi, ϕj) ((α(ui − ud,i)2 + 3α2q2i )ϕi, ϕj) −(ϕi, ϕj)

−(∇ϕi,∇ϕj) (ϕi, ϕj)
1
k (ϕi, ϕj)



δui

δqi

δλi

 =


−((ui − ud,i)3, ϕi)− α(q2i (ui − ud,i), ϕi)− (∇λi,∇ϕi)

−(αqi(ui − ud,i)2, ϕi)− (α2q3i , ϕi)− (λi, ϕi)

(∇ui,∇ϕi)− (qi, ϕi)



(7.16)

For ease of implementation (7.16) will be redefined as


Kuu Kuq Kuλ

Kqu Kqq Kqλ

Kλu Kλq Kλλ



δui

δqi

δλi

 =


bu

bq

bλ

 (7.17)
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where

Kuu = ((3(ui − ud,i)2 + αq2
i )ϕi, ϕj) (7.18a)

Kuq = (2αqi(ui − ud,i)ϕi, ϕj) (7.18b)

Kuλ = (∇ϕi,∇ϕj) (7.18c)

Kqu = (2αqi(ui − ud,i)ϕi, ϕj) (7.18d)

Kqq = ((α(ui − ud,i)2 + 3α2q2
i )ϕi, ϕj) (7.18e)

Kqλ = −(ϕi, ϕj) (7.18f)

Kλu = −(∇ϕi,∇ϕj) (7.18g)

Kλq = (ϕi, ϕj) (7.18h)

Kλλ =
1

k
(ϕi, ϕj) (7.18i)

and

bu = −((ui − ud,i)3, ϕi)− α(q2
i (ui − ud,i), ϕi)− (∇λi,∇ϕi) (7.19a)

bq = −(αqi(ui − ud,i)2, ϕi)− (α2q3
i , ϕi)− (λi, ϕi) (7.19b)

bλ = (∇ui,∇ϕi)− (qi, ϕi) (7.19c)

The Finite Element library libMesh [25] was used to implement the discretized

system of equations (7.17) using second order elements. The resulting implementation

is documented in Algorithm 2. The MUMPS direct solver [1] was used through its
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interface within PETSc [3] to solve (7.14) at each step. The variables u, q, and λ were

initialized to zero throughout Ω, and homogeneous Dirichlet boundary conditions on

the Newton directions δu and δλ were imposed on the solution at each PDAL step.

Problem (7.1) was solved using the PDAL method in the two dimensional space

Ω = [−1, 1]. The desired state ud was defined as

ud(x, y) = e−x(cos(πx))(x− 1)3(x+ 1)3.

The regularization parameter α was set to 10−6.

The resulting implementation of the PDAL method was run with multiple mesh

densities, with edge lengths ranging from 1
16

to 1
512

. The convergence parameter

ek = max{‖uk − uk−1‖L2(Ω), ‖qk − qk−1‖L2(Ω)}

was monitored during each run to confirm quadratic local convergence and to check

for mesh independence of the PDAL method. The iterations ended when ek ≤ 10−12.

The resulting state, control, and Lagrange multipliers are seen in Figure 7.1.

The results in Figure 7.2 do demonstrate the desired quadratic convergence start-

ing between iterations 18 and 22, depending on the mesh case. In addition, the

behavior of the method under different mesh densities remained nearly constant, re-

quiring only one additional iteration per mesh as as the meshes became more refined.

7.3 NR-PDAL Implementation and Example

A second parameter estimation problem with elliptic constraints was constructed in

order to verify the predicted linear convergence of the NR-PDAL method. But in this

case state and control constraints were added. For this problem the linear operator,
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Algorithm 2 PDAL Implementation

Construct vectors u, q, λ, δu, δq, and δλ and initialize them to 0
Initialize k = k0

Compute the initial error E
while E < tol do

for each element n do
Compute the elemental matrices
for each quadrature point p do

Get values of JxW, ϕ, and ∇ϕ at point p
Compute the values of u, q, λ, and ∇λ at point p
Kn
uu =

∑nu
i=0

∑nu
j=0 JxW((3(u− ud(p))2 + αq2)ϕ[i], ϕ[j])

Kn
uq =

∑nu
i=0

∑nq
j=0 JxW(2αq(u− ud(p))ϕ[i], ϕ[j])

Kn
uλ =

∑nu
i=0

∑nλ
j=0 JxW(∇ϕ[i],∇ϕ[j])

bnu =
∑nu

i=0 JxW(−((u−ud(p))3, ϕ[i])−α(q2(u−ud(p)), ϕ[i])− (∇λ,∇ϕ[i]))

Kn
qu =

∑nq
i=0

∑nu
j=0 JxW(2αq(u− ud(p))ϕ[i], ϕ[j])

Kn
qq =

∑nq
i=0

∑nq
j=0 JxW((α(u− ud(p0 =))2 + 3α2q2)ϕ[i], ϕ[j])

Kn
qλ =

∑nq
i=0

∑nλ
j=0 JxW(−ϕ[i], ϕ[j])

bnq =
∑nq

i=0 JxW(−(αq(u− ud(p))2, ϕ[i])− (α2q3, ϕ[i])− (λ, ϕ[i]))

Kn
λu =

∑nλ
i=0

∑nu
j=0 JxW(−∇ϕ[i],∇ϕ[j]))

Kn
λq =

∑nλ
i=0

∑nq
j=0 JxW(ϕ[i], ϕ[j])

Kn
λλ =

∑nλ
i=0

∑nλ
j=0 JxW( 1

k
ϕ[i], ϕ[j])

bnλ =
∑nλ

i=0 JxW((∇u,∇ϕ[i])− (q, ϕ[i]))
end for
Add elemental Kn matrix and bn to the global system (7.17)

end for
Zero out the off-diagonal elements in each row corresponding to the homogeneous
boundary conditions on δu and δλ.
Solve (7.17) for (δui, δqi, δλi)

T using the MUMPS direct solver
Update the variables

ui = ui + δui

qi = qi + δqi

λi = λi + δλi

(7.20)

Compute the error E and merit function v(u, q, λ).

Update k = v−1(u, q, λ)
end while
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Figure 7.1: State, Control, and Lagrange Multiplier for the PDAL Example
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Figure 7.2: Convergence for the PDAL example

A, is set to be −∇2, and the domain Ω is the real line [−1, 1]. A single lower bound

ηl = (x− 8))/10 (7.21)

and a single upper bound

βu = 12 (7.22)

are used in this example. The resulting problem can then be generally stated as

minimize J(u, q) =
1

2
‖u− ud‖2 +

α

2
‖q‖2

subject to −∇2u = q in Ω

u ≥ ηl a.e. in Ω

βu ≥ q a.e. in Ω

(7.23)
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where u, ud ∈ W and q, ηl, βu ∈ L2. The desired state is set to be

ud = e−xcos(πx)(x− 1)3(x+ 1)3 (7.24)

Finally, the regularization parameter α is set to 1e-7.

The Lagrangian for this problem is

L(u, q, λ, σ, κ) =
1

2
‖u−ud‖2+

α

2
‖q‖2−(λ,−∇2u−q)−(σl, u−ηt)−(χu, βu−q) (7.25)

where λ ∈ L2, σl ∈ C∗, and χu ∈ L2. The Lagrangian will be modified using the

method described in Chapter 5. Let Ψ be as defined in in Section 3.1. kp and kb

are defined to be positive barrier parameters for the PDE constraint and inequality

constraints, respectively. The resulting modified Lagrangian becomes

Lk(u, q, λ, σl, χu) =
1

2
‖u− ud‖2 +

α

2
‖q‖2 − (λ,−∇2u− q) +

kp
2

(∇2u− q,∇2u− q)

− 1

kb
(σl, Ψ(kb(u− ηt))−

1

kb
(χu, Ψ(kb(βu − q))

(7.26)

Following the construction of the NR-PDAL method described in Chapter 5, the

inner step is the solution to the constrained elliptic constrained problem, which is

followed by the Lagrange multiplier updates. The constrained problem for this system
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at iteration s, as defined by the primal-dual system (5.6), becomes

(us − ud)−∇2λs + σu,s−1Ψ
′(kp(ηu − us) = 0

αqs + λs + χu,s−1Ψ
′(kp(βu − qs) = 0

λs − λs−1 + kb(∇2us − qs) = 0

(7.27)

and the Lagrange multiplier updates, (5.4b) and (5.4c), are the following.

σu,s = σu,s−1Ψ
′(kb(ηu − us)) (7.28a)

χl,s = χl,s−1Ψ
′(kb(βl − qs)) (7.28b)

For this problem, the Newton system to be solved at each PDAL step is found via

linearization of to (7.29) about us, qs, and, λs.

δu− σlkbΨ ′′(kb(u− ηl))δu+∇2δλ = −(u− ud) + σlΨ
′(kb(u− η))−∇2λ

αδq + χukbΨ
′′(kb(βu − q))δq + δλ = −αq + χuΨ

′(kb(βu − q))− λ

kp∇2δu+ kpδq + δλ = kp(∇2u+ q)

(7.29)

The NR-PDAL method, which can be described as a sequentially constraint mini-

mization technique, is composed of the inner PDAL step, which solves for (7.27) using

the linearization (7.29). The functional space algorithm is shown here.

As in Chapter 4 this Newton system is still only defined in its infinite dimensional

form, and must be discretized. The Finite Element method is again chosen to solve

this system of equations. Therefore the system (7.29) must be first written in its weak
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Algorithm 3 Function Space NR-PDAL Algorithm

Choose initial values for u, q, λ, σu, and χl.
Pick kp > 0 and kb > 0.
repeat

repeat
Solve (7.27) for δu, δq, and δλ given current values of u, q, λ, σu, and χl.
Update the variables

u = u+ δu

q = q + δq

λ = λ+ δλ

(7.30)

Compute the error in the inner step: abc

E = ‖(u− ud)−∇2λ+ σuΨ
′(kp(ηu − u))‖+ ‖αq − λ+ χuΨ

′(kp(βl − q))‖
(7.31)

until E < tol
Update Lagrange Multipliers on the inequality constraints

σu = σuΨ
′(kp(ηu − u))

χl = χlΨ
′(kp(βl − q))

(7.32)

Compute the total error, Et
Update the kb and kp parameters.

until Et < tol
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form. Let ϕ ∈ W0 and multiply (7.29) through by ϕ, then reduce all differentiation

to first order.

(δu− σu,skbΨ ′′(kb(us − ηl))δu, ϕ)− (∇δλ,∇ϕ) = −(us − ud, ϕ) + (σu,sΨ
′(kb(us − ηl)), ϕ) + (∇λs, ϕ)

α(δq + χl,skbΨ
′′(kb(βl − qs))δq, ϕ) + (δλ, ϕ) = −α(qs, ϕ) + (χl,sΨ

′(kb(βs − qs)), ϕ)− (λs, ϕ)

−kp(∇δu,∇ϕ) + kp(δq, ϕ) + (δλ, ϕ) = kp(−(∇us,∇ϕ) + (qs, ϕ))

(7.33)

The domain Ωh is defined to be a triangularization of the full domain Ω. The La-

grange interpolation functions are chosen to represent the test function ϕ, and the

standard continuous Galerkin method [35] was followed in by defining the discretized

approximations. Let

ξ(x) ≈ ξh(x) =
n∑
j=1

ξjϕj(x) for all x ∈ Ω (7.34)

for ξ = us, δu, qs, δq, λs, δλ, σu,s, and χl,s. These discretized variables are then in-

serted into (7.33), resulting the following system of equations, which was implemented

using the FE software library libMesh [25]. Note that the iteration count, s, is

dropped for clarity from here through the remainder of this section.


(ϕi − σu,ikbΨ ′′(kb(ui − ηl)ϕi, ϕj) 0 −(∇ϕi,∇ϕj)

0 α(ϕi + χl,ikbΨ
′′(kb(βl − qi))ϕi, ϕj) (ϕi, ϕj)

−kp(∇ϕi,∇ϕj) kp(ϕi, ϕj) (ϕi, ϕj)



δuh

δqh

δλh

 =


−(ui − ud, ϕi) + (σu,iΨ

′(kb(ui − ηu)), ϕi) + (∇λi, ϕi)

−α(qi, ϕi) + (χl,iΨ
′(kb(βl − qi)), ϕ)− (λi, ϕi)

kp(−(∇ui,∇ϕi) + (qi, ϕi))


(7.35)
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The results from each solution are used to update the current values of u, q, and λ.

Redefine (7.35) as the following in order to ease the description of the implemen-

tation of the NR-PDAL method for this example problem.


Kuu 0 Kuλ

0 Kqq Kqλ

Kλu Kλq Kλλ



δui

δqi

δλi

 =


bu

bq

bλ

 (7.36)

where

Kuu = ((1− σu,ikbΨ ′′(kb(ui − ηl)))ϕi, ϕj) (7.37a)

Kuλ = −(∇ϕi,∇ϕj) (7.37b)

Kqq = α((1 + χl,ikbΨ
′′(kb(βl − qi)))ϕi, ϕj) (7.37c)

Kqλ = (ϕi, ϕj) (7.37d)

Kλu = −kp(∇ϕi,∇ϕj) (7.37e)

Kλq = kp(ϕi, ϕj) (7.37f)

Kλλ = (ϕi, ϕj) (7.37g)
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and

bu = −(ui − ud, ϕi) + (σu,iΨ
′(kb(ui − ηu)), ϕi) + (∇λi, ϕi) (7.38a)

bq = −α(qi, ϕi) + (χl,iΨ
′(kb(βl − qi)), ϕ)− (λi, ϕi) (7.38b)

bλ = kp(−(∇ui,∇ϕi) + (qi, ϕi)) (7.38c)

After each inner PDAL step completes, the discretized Lagrange multipliers asso-

ciated with the inequalities are updated in the standard NR way.

σu,i = σu,iΨ
′(kp(ui − ηu)) (7.41a)

χl,i = χl,iΨ
′(kp(βl − qi)) (7.41b)

It can be seen from the convergence analysis that the linear convergence should

hold when problems have either a state constraint, a control constraint, or indepen-

dent constraints on both. Therefore this example problem was modified in three ways.

In each version of the problem the step size was monitored by evaluating

ej = max {‖uj − uj−1‖L2 , ‖qj − qj−1‖L2} (7.42)

at each NR-PDAL iteration.

The space [−1, 1] was discretized with multiple mesh densities, with element

lengths ranging from 1/128 to 1/512. Multiple values of k were also used to confirm

that the convergence constant depends on k. These same configurations were used

for the case with both the state and control constraint, the state constraint only, and

the control constraint only. The initial values for u, q, and λ were all set to zero. The

initial values of the inequality constraint Lagrange multipliers were set to 1e-4.
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Algorithm 4 NR-PDAL Implementation

Construct vectors u, q, λ, σu, βl, δu, δq, and δλ
Initialize kp = k0 and kb = k0.
Compute the initial error E
while Et < tol do

while E < tol do
for each element n do

Compute the elemental matrices and associated parameters (notably JxW, which is the

Jacobian transformation multiplied by the weighting function of the element).
for each quadrature point p do

Get values of JxW, ϕ, and ∇ϕ at point p
Compute the values of u, q, λ, ∇λ, σu, and χl at point p
Kn
uu =

∑nu
i=0

∑nu
j=0 JxW((1− σu[i]kbΨ ′′(kb(u[i]− ηl(u[i]))))ϕ[i]ϕ[j])

Kn
uλ =

∑nu
i=0

∑nλ
j=0 JxW(−∇ϕ[i] · ∇ϕ[j])

bnu =
∑nu
i=0 JxW(−(u− u(x, y)ϕ[i]) +∇λ∇[i] + λuϕ[i])

Kn
qu =

∑nq
i=0

∑nu
j=0 JxW(λϕ[i]ϕ[j])

Kn
qq =

∑nq
i=0

∑nq
j=0 JxW(αϕ[i]ϕ[j])

Kn
qλ =

∑nq
i=0

∑nλ
j=0 JxW(−k∇ϕ[i]∇ϕ[j] + (kqϕ[i]ϕ[j])

bnq =
∑nq
i=0 JxW(−α(u− ud(x, y))ϕ[i] +∇λ · ∇ϕ[i] + λuϕ[i])

Kn
λu =

∑nλ
i=0

∑nu
j=0 JxW(k∇ϕ[i]∇ϕ[j] + (kqϕ[i]ϕ[j]))

Kn
λq =

∑nλ
i=0

∑nq
j=0 JxW(uϕ[i]ϕ[j])

Kn
λλ =

∑nλ
i=0

∑nλ
j=0 JxW(ϕ[i]ϕ[j])

bnλ =
∑nλ
i=0 JxW(−∇u∇ϕ[i]− quϕ[i] + f(x, y)ϕ[i])

end for
Add elemental Kn matrix and bn to the global system (7.17)

end for
Account for boundary conditions on δu and δλ.

Solve (7.17) for (δui, δqi, δλi)
T using the MUMPS direct solver

Update the variables
ui = ui + δui

qi = qi + δqi

λi = λi + δλi

(7.39)

Compute the error E
end while
Update the Lagrange multipliers associated with inequality constraints

σu,i = σu,iΨ
′(kp(ui − ηu))

χl,i = χl,iΨ
′(kp(βl − qi))

(7.40)

Compute the error Et
end while
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Table 7.1: State and Control Constraints

1/128 1/256 1/512
k = kb = kp Inner Outer C Inner Outer C Inner Outer C

100 96 42 0.628 598 461 0.977 4666 4397 0.998
1000 44 21 0.350 198 111 0.863 835 651 0.981

10000 71 19 0.403 140 51 0.678 230 135 0.905

The resulting state, control, and Lagrange multipliers for the case with state and

control constraints are seen in Figure 7.3. The characteristic spike in the highly

non-regular state inequality Lagrange multiplier, σ, is quite evident. Evidence of

oscillations in the solution can be seen in the control, q, which can result from the

continuous Galerkin method with solutions with the steep gradients seen in the σ and

q.

Tables 7.1, 7.2, and 7.3 provide the iteration counts and convergence constants for

the three cases. The convergence rates are comparable for either of the case which

included state constraints, and the convergence rate is slow, approaching values near

one as the mesh density increases. In the case with only the control constraint, on the

other hand, demonstrated improved convergence for all values of k and mesh density,

and actually experienced improved convergence rates as the mesh density increased.

Despite the slow convergence rates experienced in these cases, it should be noticed

that all cases which converged the results do indicate the predicted linear convergence.

The author believes that this indicates the function space NR-PDAL method to show

promise as a method for solving state constrained optimization problems. The rapid

linear convergence experienced and improved performance on refined meshes in the

control constrained problem show that the NR-PDAL method should perform well

for these types of problems.
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Figure 7.3: State, Control, and Lagrange Multipliers for the NR-PDAL Example
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Table 7.2: State Constraint Only

1/128 1/256 1/512
k = kb = kp Inner Outer C Inner Outer C Inner Outer C

100 78 42 0.628 577 461 0.969 4592 4346 0.998
1000 56 21 0.349 180 111 0.863 781 620 0.980

10000 47 19 0.402 123 51 0.678 222 143 0.910

Table 7.3: Control Constraint Only

1/128 1/256 1/512
k = kb = kp Inner Outer C Inner Outer C Inner Outer C

100 44 9 0.054 64 19 0.515 44 9 0.054
1000 39 8 0.064 53 14 0.514 39 8 0.064

10000 38 7 0.144 48 10 0.511 38 6 0.143

7.4 PDNRAL Implementation and Example

The third elliptically constrained parameter estimation problem, only this time with

just control constraints, was constructed in order to verify the predicted super-linear

convergence of the PD-NRAL method. As in the other problem, the linear operator

A is set to −∇2, and the domain Ω is the real line [−1, 1].

The desired state is set as

ud = e−xcos(πx)(x− 1)3(x+ 1)3 (7.43)

and a single upper bound

β(q) = 10− q (7.44)

is placed on the control.
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The resulting problem is then stated as

minimize J(u, q) =
1

2
‖u− ud‖2 +

α

2
‖q‖2

subject to −∇2u = q in Ω

β(q) ≥ 0 a.e. in Ω

(7.45)

where u, ud ∈ W ,and q, β(q) ∈ L2. Finally, the regularization parameter α is set to

1e-7.

The Lagrangian for this problem is

L(u, q, λ, κ) =
1

2
‖u− ud‖2 +

α

2
‖q‖2 − (λ,∇2u+ q)− (χu, β(q)) (7.46)

where λ, χ ∈ L2. The Lagrangian will again be modified by following the steps in

Chapter 6. Let Ψ be define as in Section 3.1. A single positive barrier parameter,

k, is used on the PDE constraint and inequality constraint. These steps define the

following modified Lagrangian.

Lk(u, q, λ, βu) =
1

2
‖u− ud‖2 +

α

2
‖q‖2 − (λ,∇2u+ q) +

k

2
(∇2u+ q,∇2u+ q)

− 1

k
(χ, Ψ(k(β(q))))

(7.47)

Unlike the NR-PDAL method, this method is a full primal-dual method, and

as such the inner system solution followed by a Lagrange multiplier update step is

replaced by the solution of a single set of equations. This primal dual system is
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defined by (6.7), which for this specific problem becomes

(û− ud)−∇2λ̂ = 0 (7.48a)

αq̂ − λ̂− χ̂∇β(q̂) = 0 (7.48b)

λ̂− λ+ k(∇2û+ q̂) = 0 (7.48c)

χ̂− χΨ ′(k(β(q̂))) = 0 (7.48d)

In order to solve for (7.48) using standard Newton iterations it must be linearized.

The linearization of (7.48), is show below, with the hats (̂) removed as all variables

(u, q, λ, and χ) are considered to be at the same update level in the Newton system.

Mk(u, q, λ, χ)



δu

δq

δλ

δχ


= ak(u, q, λ, χ) (7.49)

Mk(u, q, λ, χ) =



Iu 0 −∇2 0

0 αIq −Iλ Iχ

k∇2 kIu Iλ 0

0 −kχΨ ′′(k(β(q))) 0 Iχ


(7.50)
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and

ak(u, q, λ, χ) =



−(u− ud) +∇2λ

−αq + λ− χ

−k(∇2u+ q)

χ(Ψ ′(k(β(q))− 1)


(7.51)

where Mk(u, q, λ, χ) and ak(u, q, λ, χ).

In order to solve the infinite dimensional (7.49) for this example problem, it must

be first discretized. Again the Finite Element method is selected as the discretization

method used to numerically solve this system of equations. Begin by defining ϕ ∈ W0

and rewriting (7.49) in its weak form with appropriate reduction of differentiation to

first order.

(δu, ϕ) + (∇δλ,∇ϕ) = −(u− ud, ϕ)− (∇λ,∇ϕ) (7.52a)

α(δq, ϕ)− (δλ, ϕ) + (δχ, ϕ) = −α(q, ϕ) + (λ− χ, ϕ) (7.52b)

−k(∇u,∇ϕ) + k(uδq, ϕ) + (δλ, ϕ) = −k(∇u,∇ϕ)− (q, ϕ) (7.52c)

−k(χΨ ′′(k(β(q))), ϕ) + (δχ, ϕ) = (χ(Ψ ′(k(β(q))− 1)), ϕ) (7.52d)

The domain Ωh is defined to be a triangularization of the full domain Ω. The

Lagrange interpolation functions are chose to represent the test function ϕ, and the

standard continuous Galerkin [35] is again followed by defining the discretized ap-

proximations. Let

ξ(x) ≈ ξh(x) =
n∑
j=1

ξjϕj(x) for all x ∈ Ω (7.53)
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for ξ = u, δu, q, δq, λ, δλ, χ, and δχ. These variables are inserted into (7.52), resulting

in the following system of equations, which was implemented using the FE software

library libMesh [25].



(ϕi, ϕj) 0 (∇ϕi,∇ϕj) 0

0 α(ϕi, ϕj) −(ϕi, ϕj) (ϕi, ϕj)

−(∇ϕi,∇ϕj) (ϕi, ϕj) k−1(ϕi, ϕj) 0

0 −k(χiΨ
′′(k(β(qi)))ϕi, ϕj) 0 (ϕi, ϕj)





∂ui

∂qi

∂λi

∂χi



=



−(ui − ud, ϕi)− (∇λi,∇ϕi)

−α(qi, ϕi) + (λi − χi, ϕi)

−(∇ui,∇ϕi)− (qi, ϕj)

(χiΨ
′(k(β(qi)))− 1, ϕi)



(7.54)

Like in the previous section, this system of equations will be recast into the fol-

lowing simplified system of equations to allow for a better algorithmic description of

the PDNRAL method for this example problem.



Kuu 0 Kuλ 0

0 Kqq Kqλ Kqχ

Kλu Kλq Kλλ 0

0 Kχλ 0 Kχχ





δui

δqi

δλi

δχi


=



bu

bq

bλ

bχ


(7.55)
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where

Kuu = Kχχ = Kλq = −Kqλ = Kqχ = (ϕi, ϕj) (7.56a)

Kqq = α(ϕi, ϕj) (7.56b)

Kλλ = k−1(ϕi, ϕj) (7.56c)

−Kuλ = Kλu = (∇ϕi,∇ϕj) (7.56d)

Kχλ = −(χiΨ
′′(k(β(qi)))ϕi, ϕj) (7.56e)

and

bu = −(ui − ud, ϕi)− (∇λi, ϕi) (7.57a)

bq = −α(qi, ϕi) + (λi − χi, ϕi) (7.57b)

−(∇ui,∇ϕi)− (qi, ϕj) (7.57c)

(χiΨ
′(k(β(qi)))− 1, ϕi) (7.57d)

As with the previous problem, the space [−1, 1] was discretized with multiple

mesh densities (with element lengths ranging from 1/128 to 1/2048). The initial

value for u, q, and λ was set to 0. The inequality constraint Lagrange multiplier, χ,

was set to 1.0. The resulting state, control, and Lagrange multipliers for the case with

state and control constraints are seen in Figure 7.4. The convergence rates for the

different discretizations is shown in Figure 7.5, which demonstrates the predicted non-

linear convergence rate. Also demonstrated in this graph is nearly mesh independent

convergence rates, which shows that the PDNRAL method can be a good choice for
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Algorithm 5 PDNRAL Implementation

Construct vectors u, q, λ, χ, δu, δq, δλ, and δχ
Initialize k = k0.
Compute the initial error E
while E < tol do

for each element n do
Compute the elemental matrices and associated parameters (notably JxW,
which is the Jacobian transformation multiplied by the weighting function of
the element).
for each quadrature point p do

Get values of JxW, ϕ, and ∇ϕ at point p
Compute the values of u, q, λ, ∇λ, σu, and χl at point p
Kn
uu =

∑nu
i=0

∑nu
j=0 JxW(ϕ[i]ϕ[j])

Kn
uλ =

∑nu
i=0

∑nλ
j=0 JxW(−∇ϕ[i] · ∇ϕ[j])

bnu =
∑nu

i=0 JxW(−(u− u(x, y)ϕ[i]) +∇λ∇[i] + λuϕ[i])

Kn
qq =

∑nq
i=0

∑nq
j=0 JxW(αϕ[i]ϕ[j])

Kn
qλ =

∑nq
i=0

∑nλ
j=0 JxW(ϕ[i]ϕ[j])

Kn
qχ =

∑nq
i=0

∑nχ
j=0 JxW(ϕ[i]ϕ[j])

bnq =
∑nq

i=0 JxW(−αq[i]ϕ[i]− (λ[i] + χ[i])ϕ[i])

Kn
λu =

∑nλ
i=0

∑nu
j=0 JxW(∇ϕ[i]∇ϕ[j])

Kn
λq =

∑nλ
i=0

∑nq
j=0 JxW(−ϕ[i]ϕ[j])

Kn
λλ =

∑nλ
i=0

∑nλ
j=0 JxW(ϕ[i]ϕ[j]/k)

bnλ =
∑nλ

i=0 JxW(−∇u[i]∇ϕ[i] + q[i]ϕ[i])

Kn
χq =

∑nχ
i=0

∑nq
j=0 JxW(kχ[i]Ψ ′(k(β(q[i])ϕ[i]ϕ[j])

Kn
χχ =

∑nχ
i=0

∑nχ
j=0 JxW(ϕ[i]ϕ[j])

bnχ =
∑nχ

i=0 JxW((χ[i]Ψ ′(kβ(q[i]))− 1)ϕ[i]))

end for
Add elemental Kn matrix and bn to the global system (7.17)

end for
Zero out the off-diagonal elements in each row corresponding to the homogeneous
boundary conditions on δu and δλ.
Solve (7.17) for (δui, δqi, δλi, δχi)

T using the MUMPS direct solver
Update the variables

ui = ui + δui

qi = qi + δqi

λi = λi + δλi

χi = χi + δχi

(7.58)

Compute the error E
end while

111



-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

-1 -0.5 0 0.5 1

State: u

-20

-15

-10

-5

0

5

10

15

-1 -0.5 0 0.5 1

Control: q

-1

0

1

2

3

4

-1 -0.5 0 0.5 1

Control Inequality Lagrange Multiplier

-2

-1

0

1

2

3

4

5

-1 -0.5 0 0.5 1

PDE Lagrange Multiplier

Figure 7.4: State, Control, and Lagrange Multipliers for the PDNRAL Example
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Figure 7.5: Convergence Plots for PDNRAL Example Problem

solving problems of this type.
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Chapter 8: Conclusion

Function space optimization methods based on the Nonlinear Rescaling method have

been examined here. A new variant of these methods, the NR-PDAL, was proposed

and analyzed. This method was proven to have linear convergence rates for elliptically

constrained problems with state and control constraints. An example problem was

constructed which confirmed that the NR-PDAL method can experience the predicted

linear convergence.

Two other methods were considered. The first of these is the PDAL method, which

is a key component of the NR-PDAL method, was analyzed for elliptically constrained

optimization problems. This method was proven to have quadratic convergence rates

for problems of this type. In addition, the discretized problem was demonstrated

to retain the quadratic convergence. Additionally, the PDAL method showed mesh

independent convergence rates. These items all imply that the function space PDAL

is an excellent method to use for problems of this type.

The last method examined was the function space PDNRAL method for ellip-

tically constrained problems with control constraints. It was proven that for these

problems the method is capable of superlinear convergence. An addition, a test

case was constructed which demonstrated that the discretized implementation of the

PDNRAL does retain superlinear convergence, and has little mesh dependence in the

convergence rate.

It should be noted that while the NR-PDAL implementation for problems includ-

ing state constraints did exhibit linear convergence rates, those rates were slow in

the more refined mesh cases. In addition, the algorithm did not converge with lower

114



k values for the more refined mesh cases. This is not unexpected behavior, as the

convergence analysis for the NR-PDAL method requires k to be large enough. For

the refined mesh cases, k needed to be larger in order to attain convergence. There

was a limit to how high the k could go in the implementations. The author believes

that these issues are a function of the method used to discretize the function space

algorithm. The standard continuous Galerkin method used for the finite element dis-

cretization may not be appropriate for the highly non-regular Lagrangian associated

with state constraint. This method was chosen for its simplicity, and in the end was

sufficient to demonstrate the linear convergence rate of the model. But future work

could be performed to modify the discretized implementation of the NR-PDAL to

improve the stability and convergence rate that result from the state constraint.

The excellent performance of the NR-PDAL and PDNRAL methods for problems

with only control constraints indicates that the method may be promising for solving

regularized state constrained problems [2, 40, 28] as well. The regularization is often

performed by replacing the pure state constraint, such as ηu ≥ u, with the following

mixed control-state constraint,

ηu ≥ u+ εq (8.1)

for some small regularization parameter ε > 0. The inclusion of the regularization

term, εq, has a rather profound effect, in that it converts the Lagrange multiplier

from the simple measure (σu ∈ C∗) to a function in L2. The author expects that

using the NR-PDAL method on regularized state constraints should lead to similar

performance as control constrained problems.

In the end, methods derived from the NR principle have been proven and demon-

strated to work both in theory and in practice for elliptically constrained problems

with state and/or control constraints.
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