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Abstract

BULLET DETECTION AND TRAJECTORY ESTIMATION USING A SINGLE CAM-
ERA

Kevin H. Murray

George Mason University, 2017

Thesis Director: Dr. Zoran Duric

Closed-loop fire control systems greatly increase a weapon system’s ability to success-

fully engage a target by measuring the trajectories of its outgoing projectiles. This has

been demonstrated with both line-of-sight and non-line-of-sight systems, but research in

autonomous Remote Weapon Stations (RWS’s) currently lacks this capability. One of the

major challenges in bringing this capability to RWS’s is that radar is not seen as an appro-

priate sensor due to its size, cost, and active nature.

The goal of this research was to determine if projectile trajectories could be accurately

measured with a camera. Algorithms were developed to detect small-caliber tracer rounds

in images and then combine those detections with a ballistic model to estimate trajectories.

These algorithms were successfully tested with live gunfire data, which showed that tracer

rounds were readily detectable and that estimated trajectories accurately predicted impact

points. Simulations also show that the algorithms can distinguish individual tracer trajec-

tories from machine gun fire and eliminate several types of outliers. These results open the

possibility of providing closed-loop fire-control to RWS’s by using a camera as the main

sensor.



Chapter 1: Introduction

1.1 Motivation

Closed-loop fire-control systems are able to correct a weapon’s aim by observing outgoing

projectile trajectories in comparison to the target location. This enables the system to

’walk-in’ its gunfire to the target. One example of this concept is the Phalanx CWIS,

which is a line-of-sight weapon system that uses radar to measure both the target position

and the angle of outgoing bullets [2]. Another example is the Visual Automated Scoring

System, which uses a UAV to make optical measurements of projectile impact locations for

non-line-of-sight weapons [3].

This capability is currently lacking in autonomous remote weapon stations (RWSs). An

RWS is a remotely operated, small caliber weapon that is often mounted on vehicles, such

as Humvees and small boats. RWSs typically include cameras and other sensors that allow

the weapon to be operated from a safe location. Recently, there has been a push to add

autonomy to RWSs. In [4], cameras are used to detect and track potential targets, and the

weapon can automatically aim and fire at the target when ordered to do so.

Manually controlled RWSs allow the operator to make fine adjustments to the weapon

aim based on visual observations of tracer rounds. This feedback is missing from current

approaches of autonomous RWSs. The motivation of this research is to provide closed-loop

fire-control for autonomous RWSs, using camera observations of outgoing bullets.

The approach taken with this research is in some ways a combination of the two pre-

viously mentioned closed-loop fire-control systems. RWSs are line-of-sight weapons, so like

the Phalanx, we will be making observations of bullets in flight. Unlike the Phalanx, radar

is not seen as a suitable instrument for an RWS for several reasons. The first is that preci-

sion radar systems appear to be impractically large for a mobile RWS. The second reason
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is that radar is an active sensor, which can potentially reveal the existence and position of

the RWS. The third is cost: radar is expensive while cameras are not. In fact, it may be

possible to use existing cameras on the RWS.

1.2 Scope

The scope of this research is to develop and test methods for estimating bullet trajectories

with a camera. It is assumed that if these estimates can be done accurately, closed-loop

fire-control based on this concept is possible.

I identified three main problems that needed to be solved in order to estimate bullet

trajectories:

1. Bullet detection - in order to measure the trajectory with a camera, we must detect

the bullet’s pixel coordinates in several camera frames.

2. Camera calibration - we need to accurately relate camera pixels to three dimensional

space. This allows the bullet’s pixel coordinates to be transformed into three dimen-

sional direction vectors.

3. Trajectory estimation - we need to transform direction measurements into a three-

dimensional trajectory.

1.3 Outline

This research is easily broken down into several loosely-connected subproblems, which are

presented here as individual chapters. Most of these chapters will present their own method-

ology, experimental results, and conclusions.

We will begin with background information on exterior ballistics, which is important

for both bullet detection and trajectory estimation. Chapter 2 provides background on

extrinsic ballistics in general, and some relevant ballistic models in particular.

2



A literature review is presented in chapter 3. This will be broken up in sections for each

of the individual subproblems.

In chapter 4, I will detail the camera calibration routine used in this research. This is

a significant topic because typical methods of calibration are not accurate for the narrow

angle of view lenses needed here.

Chapters 5 and 6 detail the investigation in bullet detection and trajectory estimation,

respectively, as completely separate topics. Here we are assuming that these will be com-

pletely separate processes, where the output of bullet detection will feed into trajectory

estimation. Then in chapter 7, we will see how these two processes can be combined using

random sample consensus (RANSAC).

Finally, overall conclusions and future work are discussed in chapter 8.
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Chapter 2: Background

2.1 Introduction

The purpose of this chapter is to provide background information on the science of exterior

ballistics that is relevant to this project. We are particularly concerned with small-caliber,

spin-stabilized bullets fired at a maximum range of 1,000 meters. Exterior ballistics is used

in two major ways in this project:

1. Bullet detection: combined with a camera model, an exterior ballistic model is used

to predict the pixel locations of a bullet within a sequence of camera frames.

2. Trajectory estimation: bullet trajectories will be estimated by combining camera ob-

servations of a bullet with an exterior ballistic model.

We will begin with an overview of exterior ballistics, including the relevant kinematics

and dynamics that affect bullet trajectories. The end of this chapter presents two exterior

ballistic models that are relevant to the type of trajectories in this project.

2.2 Exterior Ballistics

2.2.1 Overview

Exterior ballistics is the study of projectiles in free-flight. In the case of firearms, the free-

flight phase is the period after the bullet exits the barrel and before it impacts the target.

The trajectory of the bullet is determined by its initial conditions, environmental effects,

and the properties of the bullet. In this section, we will detail the most significant factors

that shape bullet trajectories; effects that are only significant to large-caliber weapons will

4



be ignored. This information was predominantly obtained from [5] and [6], but may be

considered common knowledge in the field of ballistics.

2.2.2 Kinematics

The kinematic state describes the bullet’s position, orientation, velocity, and axial spin

rate at time t. These components are shown in figure 2.1 and detailed below. The initial

conditions are represented by the state at t0.

• Position (x): the location of the bullet at any time, relative to the chosen coordinate

system. The initial position is typically considered to be the end of the gun barrel.

• Velocity (u): the instantaneous velocity. The initial velocity magnitude is also known

as the muzzle velocity.

• Orientation: the pitch (β) and yaw (α) of the bullet relative to the velocity direction.

Since we are dealing with axially-symmetric projectiles, the roll angle does not affect

the trajectory. Ideally, the pitch and yaw angles are zero, but 1-3 degrees is typical.

This causes an increase in drag and a lateral velocity.

• Axial spin rate (p): Rifle bullets are typically spun at several thousand Hz in order

to produce a gyroscopic effect that maintains alignment with the velocity direction.

This spin is assumed to be entirely about the bullet’s axis of revolution, so we are

only concerned with the scalar magnitude of spin. We will not be concerned with the

rate of change in the pitch and yaw angles, but an effect that partially results from

the yaw rate will be approximated in section 2.3.

2.2.3 Dynamics

The kinematic state of a bullet is continuously altered by various forces and torques, par-

ticularly from the environment. For instance, the velocity and axial spin of the bullet are

damped by atmospheric friction. The significant effects are shown in figure 2.2 and detailed

below.
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Figure 2.2: The environmental effects that alter bullet trajectories.
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• Gravity (g): for small-caliber weapons, this is very well-approximated by a vector of

constant magnitude and direction.

• Drag (D and lp): resistance force or torque due to friction between the bullet and air.

The magnitude is roughly proportional to the velocity squared and the density of air

(ρ). The drag force (D) direction is always opposite of the velocity direction and the

drag torque lp is always opposite the rotational velocity. Since we assume the only

significant rotational velocity is about the axial direction, we are only concerned with

the magnitude of the drag torque, lp.

• Wind (W): the speed and direction of the air mass relative to the ground. Crosswind

(wind perpendicular to shooting direction) causes a deflection of the bullet in the

same direction as the wind. Rangewind (wind parallel to shooting direction) alters

the force of drag, since drag is dependent on the bullet velocity relative to the air.

• Gyroscopic drift: a lateral velocity caused by the gyroscopic effect. Spin-stabilization

results in high angular momentum, with its vector representation parallel to the bul-

let’s axial direction. Additionally, the bullet has a small spin component along its

pitch axis throughout its trajectory, due to gravity. This results in a torque vector

pointing perpendicular to the velocity direction. A torque applied to an object with

angular momentum in a different direction results in gyroscopic precession, where the

object adds angular momentum that is perpendicular to both the angular momentum

and the applied torque. In this case, a bullet tends to rotate to the right or left when

viewed from a shooter looking down range. This results in a lift force that accelerates

the bullet to the right or left.

• Coriolis force (Λ): a fictitious force that arises due to describing bullet motion in a

non-inertial reference frame. Since we typically use a reference frame where points on

the surface of the Earth remain fixed, we do not account for the Earth’s rotation, and

thus we do not have a true inertial reference frame. The Earth’s rotation is accounted

for in this non-inertial reference frame by including this fictitious force.
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• Magnus effect (Npα): a force perpendicular to the bullet’s rotational velocity and

lateral air movement (caused either by a crosswind or the bullet having a nonzero

yaw). When this occurs, one side of the bullet has a tangential velocity in the same

direction as the airflow, and another side has a tangential velocity in the opposite

direction of the airflow. The airflow near the side of opposite tangential velocity tends

to detach from the surface of the bullet and become turbulent. The airflow near the

other side tends to attach to the surface of the bullet and gets thrown in a direction

further along the rotation. This causes a lift force in the direction the air is thrown.

2.2.4 Projectile Properties

The properties of the projectiles influence the magnitudes of the forces and torques described

above, and the resulting linear and angular accelerations.

• Mass (m): resistance to force. In exterior ballistics, the main effect of mass is to resist

drag.

• Diameter (d): the caliber of the projectile.

• Axial moment of inertia (Ix): resistance to torque along the bullet’s axis of revolution

(axial direction). Since we are not concerned with the rate of change of the pitch and

yaw angles, we are not concerned with the moments of inertial about those axes.

• Bullet reference area (S): the projected frontal area used in drag calculations.

• Drag coefficient (CD): dimensionless number used to quantify drag based on bullet

shape and airflow conditions. The value is typically measured experimentally and it

varies significantly based on Mach.

• Lift coefficient (CLα): dimensionless number used to quantify lift based on bullet

shape and airflow conditions. The value is typically measured experimentally and it

varies significantly based on Mach.
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• Magnus force coefficient (CNpα): dimensionless number used to quantify the Magnus

force based on bullet shape and airflow conditions. The value is typically measured

experimentally and it varies significantly based on Mach.

2.3 The Modified Point-Mass (MPM) Model

This model was first derived in [7]. It was developed as a simplification of computation-

ally expensive six degree of freedom models, which numerically solve for the position and

orientation of the projectile throughout its trajectory. Rather than estimating the varying

pitching and yawing motion during flight, the MPM model estimates the yaw due to gyro-

scopic drift, described in 2.2.3. This estimation is called the yaw of repose, and is labeled

αR.

The MPM model is shown in equations 2.1 and 2.2.

du

dt
= −ρSCD

2m
vv +

ρSCLα
2m

v2αR +
ρSdCNα

2m
p(v ×αR) + g + Λ (2.1)

αR =
2Ixp(g × v)

ρSdv4CMα

(2.2)

Equation 2.1 solves for the linear acceleration of the projectile by summing accelerations

due to drag, lift, Magnus force, gravity and Coriolis force. Here, u is the velocity while v is

the velocity relative to the wind. Equation 2.2 calculates the instantaneous yaw of repose

and is coupled with equation 2.1. The position of the projectile is calculated by twice

numerically integrating equation 2.1 with known initial conditions.

2.4 The Flat-Fire Point-Mass (FFPM) Model

This model reduces the point mass model into closed-form equations of motion by making

the following approximations:
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1. The projectile trajectory is flat: i.e. one component of its velocity is always much

higher than the other two components.

2. The relationship between Mach number and drag coefficient can be modeled with a

single parameter.

3. The effect of range wind is insignificant.

4. The Magnus effect, Coriolis force, and gyroscopic drift are all insignificant.

The FFPM equations of motion are derived in [5] and shown in equation 2.3. The FFPM

model requires that the coordinate system be set up such that there is no z-component of

velocity and the negative y-component lines up exactly with the direction of gravity.

x = x0 +
2V0xt√
V0xk3t+ 2

(2.3a)

y = y0 + x
V0y
V0x
− 1

2
gt2
[

1

3

(
1 +

√
Vx/V0x

)]
(2.3b)

z = z0 +Wz

(
t− x

V0x

)
(2.3c)

k3 =
ρSK3

√
a

2m
(2.3d)

Vx =

(√
V0x −

1

2
k3x

)2

+ 2Wx

[
1−

(√
V0x − 1

2k3x
)2

V0x

]
(2.3e)
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Chapter 3: Literature Review

As mentioned in chapter 1, this thesis is easily broken down into several subproblems. This

literature review is organized based on each of these subproblems.

3.1 Camera Calibration

Zhang’s method [8] is perhaps the de facto standard method of camera calibration. It is

performed by imaging a planar pattern at multiple unknown poses, providing correspon-

dences between world points on the pattern and observed pixel locations. It is simple to

carry out and is generally very accurate. However, as noted by [9], this method loses pre-

cision as the focal length is increased. Estimating the focal length requires observations of

the perspective foreshortening of the calibration target. At narrow angles of view, the focal

length becomes extremely sensitive to this foreshortening.

Another method is to use stars in the night sky as the calibration target, which I will

label stellar calibration. This works because the angular position of stars relative to Earth

is known to high precision. One particular approach to this method is found in [10]. In this

approach, the centroids of stars are detected using a series of steps: percentage threshold,

upscaling, image gradient, and maximization of an energy function (the normalized sum

of the border gradients). The detected stars are then matched with known stars in an

almanac, using a RANSAC algorithm to find the camera orientation and focal length that

best matches detected stars with known stars. Finally, an optimization algorithm is used

to calculate the optical center and distortion coefficients, and to refine the orientation and

focal length estimates. According to the authors, the advantage of this technique over

planar target calibration is that only a single image is required.

Identifying the stars in the image is perhaps the most difficult part of stellar calibration.
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In [11], a method of performing this identification was developed for the purpose of auto-

matically providing astrometric data to arbitrary images of the night sky. They first define

a scale and rotation invariant feature of a quadruple of stars. Then they compute an in-

verted index of a star almanac using this feature. When an image is input into the method,

features are computed and then searched for in the index. The result is an extremely robust

method that can identify stars in images of arbitrary focal length and orientation.

3.2 Bullet Detection

The literature on bullet detection is focused on making standard ammunition (non-tracers)

detectable in cameras. Thus, there are few details on actual image processing techniques.

Bullets tend to emit strongly in the mid-wave infrared (MWIR) band due to heating

from the propulsion in the gun barrel and from friction as they move at high speeds through

the atmosphere. In [12], a computational fluid dynamics analysis estimated bullet surface

temperatures of 500 K for bullets traveling at 800 m s−1. For a blackbody, this temperature

corresponds to a peak in electromagnetic radiation of about 6 µm, well within the MWIR

range of 3 µm to 8 µm.

In [13], it was shown that bullets could be detected with a (MWIR) camera. As their

application was for defensive systems, they showed detections with bullets traveling per-

pendicular to the camera’s principal axis, toward the camera, or somewhere in between.

In [14], surface temperatures of a bullet were experimentally measured with a MWIR

camera. It was shown that the temperature of a bullet varies greatly across its surface, with

the highest temperatures observed at the bullet tip and rifling grooves. High temperatures

were also measured at the tail of the bullet, but it was suspected that this was actually

MWIR from the muzzle blast being reflected off the bullet’s tail.

While the literature shows that bullets are generally detectable in MWIR, an exception

may be when viewing the rear of the bullet. This is a major concern for this project, since

the RWS cameras are located close to the gun, and thus only observe the rear of the bullet.
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3.3 Trajectory Estimation

The existing literature on trajectory estimation is thin, and only two relevant approaches

have been found. The previously discussed system in [13] uses estimated pixel-space trajec-

tories to locate the pixel coordinate of the shooter. Each bullet is tracked and fit with a line

in pixel space. As the firing angle of the weapon changes, these lines intersect with each

other at the pixel location of the shooter. For the purposes of this project, there are two

main limitations of this approach. The first is that it is limited to pixel space and cannot

estimate distance. The second is that while the linear fit of the trajectories is suitable for

short distances (and thus for locating the shooter), it doesn’t work well for estimating full

trajectories.

A more relevant approach is discussed in [15]. The purpose of that research was to

combine sensor data of a projectile in flight with a ballistic model. Specifically, they used

optimization algorithms to estimate the projectile’s ballistic parameters based on the sensor

data. In this way, they could reconstruct trajectories even when the sensor data only covered

a portion of the trajectory. The ballistic model they used was a closed-form approximation

of 6 degree-of-freedom models for fin-stabilized projectiles. Radar was the primary sensor,

which provided three-dimensional positions at known points in time.

3.4 Random Sample Consensus (RANSAC)

RANSAC is an iterative algorithm that isolates outliers from a dataset. It does this by

searching for model parameter values that result in the greatest number of inliers. At each

iteration, a set of parameter values are calculated based on a random subset of the data.

The entire dataset is then evaluated against these parameters, and any data that agree with

the parameter values (within some threshold) are considered inliers, and everything else is

considered outliers. The algorithm requires the following to be specified:

• The model that the data will be fitted to.
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• The minimum number of data points required to fit the model.

• A threshold value that distinguishes outliers from inliers.

• The minimum number of inliers required to accept a set of model parameters.

• The maximum number of iterations.

In order to obtain valid parameters, one iteration must randomly select a set of data

points that is entirely inliers. If the ratio of inliers to data points is known, the number

of iterations can be chosen such that there is a particular probability of obtaining valid

parameters. There is no way to guarantee the algorithm will compute a valid set of model

parameters.

The RANSAC algorithm was introduced by [16] in 1981. Since, then several modi-

fications and improvements have been proposed to increase performance and extend the

capability.

In [17], it was recognized that the computation time of RANSAC is proportional to the

size of the dataset, since each set of parameter values is evaluated against the entire dataset.

It was shown that the computation time could be significantly decreased by evaluating each

set of parameters against another random subset of the data, without a significant cost in

accuracy.

The original RANSAC algorithm made the assumption that there was a single in-

stance of the specified model in the data. Several researchers have developed extensions

of RANSAC that can identify multiple instances of a model. The most basic approach,

sequential RANSAC, works by running RANSAC multiple times. With each run, one of

the model instances is randomly identified, and its associated inliers are removed from the

dataset. This approach was successfully used in [18] and [19] for detecting planar regions

in stereo cameras. An advantage of this approach is that the number of model instances

does not need to be known; the process can be repeated until an insufficient number of

inliers remain. A disadvantage of this approach is that if an early extracted model instance

contains inaccurate inliers, this compounds into unstable extractions of subsequent model
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instances. This deficiency was resolved in [20] with their multiRANSAC algorithm, which

extracts model instances in parallel. The cost of this approach is a significantly increased

computation time, however.
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Chapter 4: Camera Calibration

4.1 Introduction

Since we are relating camera observations of a bullet to a three-dimensional trajectory, we

need an accurate method of calibrating camera pixels with three-dimensional space. This

chapter shows that using stars in the night sky is potentially more convenient and accurate

than standard methods of calibration.

Section 4.2 provides background information on the intrinsic camera model used in this

chapter, along with camera calibration in general. In section 4.3, we detail how the two

calibration methods discussed in the literature review will be evaluated. Section 4.4 provides

experimental results and discussions.

4.2 Background

An intrinsic camera model is used to relate three-dimensional space with camera pixels.

The camera model I use in this chapter is from [21], and copied in equations 4.1-4.5 below:


xp

yp

1

 =


fc(1) alpha c ∗ fc(1) cc(1)

0 fc(2) cc(2)

0 0 1



xd(1)

xd(2)

1

 (4.1)

xd =

xd(1)

xd(2)

 = (1 + kc(1)r2 + kc(2)r4 + kc(5)r6)xn + dx (4.2)
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xn =

Xc/Zc

Yc/Zc

 =

x
y

 (4.3)

dx =

2kc(3)xy + kc(4)(r2 + 2x2)

kc(3)(r2 + 2y2) + 2kc(4)xy

 (4.4)

r2 = x2 + y2 (4.5)

This model allows a point in world coordinates ([Xc Yc Zc]) to be projected into pixel

coordinates ([xp yp]), based on the intrinsic parameters of the camera, which are listed

below:

• fc: a 2x1 vector containing the x and y focal length, in pixels

• cc: a 2x1 vector containing the principal point, in pixel coordinates

• alpha c: the skew coefficient between the x and y axes

• kc: a 5x1 vector containing radial and tangential distortion coefficients

The purpose of intrinsic camera calibration is to estimate the values of these parameters.

When the parameters of the camera are known, the camera model can be used to calculate

the pixel location of a known three-dimensional point. And by inverting the camera model,

a three-dimensional ray can be calculated for any pixel coordinate.

Calibration is performed by imaging something with known geometry, which provides

correspondences between pixel coordinates and world coordinates. Optimization algorithms

are used to estimate the intrinsic parameters in the camera model that best transform the

known world coordinates into the observed pixel coordinates. Specifically, the algorithms

minimize the reprojection error, which is the average distance between the observed pixel
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coordinates of the geometry, and the expected pixel coordinates based on the estimated

intrinsic parameters and the geometry.

4.3 Methodology

The purpose of this research was to evaluate an appropriate method of camera calibration

for the narrow angle-of-view cameras used in this project. Specifically, I wanted to evaluate

the accuracy of the two calibration procedures mentioned in section 3.1.

According to [21], the principal point is often difficult to estimate precisely, and it may

be better to set it to the center pixel. That appears to be the case with this camera, as

the calibration procedure from [21] would not converge on a value for principal point, and

the stellar calibration method converged on nonsensical values. Also according to [21], the

skew coefficient can safely be assumed to be zero. For these reasons, both methods were

only used to estimated focal length and distortion.

The literature indicated that Zhang’s method may not be able to precisely estimate focal

length for a narrow angle-of-view camera. I expect that Zhang’s method is ill-conditioned

for narrow angle-of-view cameras because the observed perspective foreshortening changes

very little with large changes in focal length. Conversely, I expect that stellar calibration

does not have this problem, since the angles between stars are precisely known.

Both calibration procedures were evaluated with a monochrome, visible light Point Grey

camera (model FL3-U3-13Y3M-C). A 100 mm fixed focal length lens provided 3.52◦ by

2.82◦ angle of views (horizontal by vertical). The known focal length provides one known

intrinsic model parameter, but I do not have a method of obtaining truth data on the

distortion parameters. However, if Zhang’s method is ill-conditioned for narrow angle-

of-view cameras, then the intrinsic model it computes should have low reprojection error

on the planar pattern, but high reprojection error on the stellar data. Conversely, the

intrinsic model computed with stellar calibration should have low reprojection error on

both datasets. The methodologies for both calibration procedures are described in the

following subsections.
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4.3.1 Zhang’s Method

The particular implementation of Zhang’s method I tested came from [21], which includes

MATLAB R© software to estimate the camera’s intrinsic parameters.

The calibration target is shown in Figure 4.1. I used a target with a large pattern so

that I could make large angles between the target and the camera sensor plane and still

see the pattern. This way, the foreshortening effect would be maximized and I’d provide

the greatest opportunity to estimate the focal length. Even at a severe angle, however, it’s

easily apparent that the foreshortening effect is minimal, as shown in Figure 4.2.

I captured a total of 32 images of the target at widely varying poses, extracted the

pattern centroids, and then ran the pixel and target coordinate correspondences through

the algorithm provided in [21], which produces the estimated intrinsic parameters.
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Figure 4.1: The calibration target.

Figure 4.2: The calibration target at a severe angle relative to the image sensor.
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4.3.2 Stellar Calibration

For this procedure, I captured an image of the night sky of the constellation Orion’s Belt. I

used a two second exposure to maximize the number of stars seen without getting significant

motion blur from the Earth’s rotation. The image is shown in Figure 4.3.

Figure 4.3: Captured image of Orion’s belt.

I then input this image into the star identification software provided by [11]. The

detected and recognized stars are shown in Figure 4.4, and the successfully recognized

constellation is shown in Figure 4.5. A total of 23 stars were recognized in this image.

One of the outputs of this software is a set of correspondences between observed pixel

coordinates of the stars and the spherical coordinates of the stars. I used these correspon-

dences with the routine from [10] to estimate the intrinsic parameters of the camera.
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Figure 4.4: Detected and identified stars shown in the image of Orion’s Belt. Detected stars
are circled in red and identified stars are circled in green.

Figure 4.5: Constellation of Orion is successfully recognized.
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4.3.3 Reprojection Error

One of the algorithms provided by [21] calculates reprojection error by estimating the pose of

each planar target position, projecting the features onto the camera model, and comparing

the projected pixel locations to the actual pixel locations. Since both calibration procedures

used the same model parameters, I was able to calculate the reprojection error of both

models on the planar target data.

A similar approach was used to estimate the reprojection error using the stellar data.

I used the camera models and stellar correspondences to estimate the camera orientations,

then projected the known direction to the stars onto the camera models, and compared the

projected pixel locations to the actual pixel locations.

4.4 Experimental Results

The results of the calibration are shown in Table 4.1. As expected, Zhang’s method does

not obtain a precise estimate of the focal length, and it has a large reprojection error using

the stellar data. The stellar calibration method obtains a very precise estimate of the focal

length and has small reprojection error for both data sets.

Table 4.1: Calibration Results

Method Focal length (mm) Distortion Eplanar (px) Estars (px)

Zhang’s 108.1 [8.01, -8152, -0.03, -0.02, 0] 0.73 35.96
Stellar 99.96 [-1.11, 0.39, -0.01, 0.00, 0.48] 0.77 0.37
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Chapter 5: Bullet Detection

5.1 Introduction

As we are intending to measure bullet trajectories with a camera, extracting the pixel

coordinates of bullets is a fundamental requirement. This chapter discusses three image

processing filters that are selected or developed, and tested with actual gunfire data. Testing

is completely done using tracer rounds, but the possibility of detecting standard ammunition

will also be discussed. Once the filters are applied, pixel-time observations can be extracted

using standard thresholding and connected-component labeling.

Since RWSs are the primary application of this research, I am only considering config-

urations that are relevant to an RWS. Namely, that the gun and camera are close to each

other and well-aligned.

In section 5.2, I present three image filters that have been selected or developed for

isolating bullets in images. Section 5.3 details how these filters will be evaluated and section

5.4 provides experimental results and discussion.

5.2 Theory

This section details the development and selection of three image processing filters used for

detecting tracer rounds. I expect that these filters would also be applicable to detecting

standard ammunition in MWIR images, but this has not been tested.

Perhaps the most challenging aspect of bullet detection is that the appearance of a

bullet is so simple, there is little to distinguish it from the rest of the image. Only a single

appearance-based filter was tested: a difference of Gaussians filter, described in section

5.2.1. The other two filters are based on the motion of bullets: a simple difference filter
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(section 5.2.2) and a prediction filter (section 5.2.3).

5.2.1 Difference of Gaussians Filter

A Gaussian filter is a spatial low-pass filter, applied by convolving an image with a two-

dimensional Gaussian function (shown in eq. 5.1a). The cutoff frequency is described in

eq. 5.1b. This is alternatively represented as the cutoff wavelength, shown in eq. 5.1c. The

cutoff wavelength is in pixels, and represents the feature sizes that are suppressed. The

content at this wavelength has a response according to eq. 5.1d. Thus we can specify σ to

suppress features at or below a particular size, and to a magnitude specified by eq. 5.1d

(roughly, since this is not an ideal filter). The effect of varying σ is readily seen in figure

5.1.

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (5.1a)

fc =

√
2 ln c

2πσ
(5.1b)

wc =
2πσ√
2 ln c

(5.1c)

c =
1

response
(5.1d)
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Figure 5.1: The effect of varying σ in the Gaussian filter. Image obtained from [1].

We can also use the Gaussian function as a high-pass filter by simply subtracting the low-

pass filtered image from the original image. We can then create a bandpass filter by using

the Gaussian function as both a high-pass filter and a low-pass filter. This is the difference

of Gaussians (DoG) filter, and it is shown in eq. 5.2.

DoG(I) = I ∗ 1

2πσ21
e
−x2+y2

2σ21 − I ∗ 1

2πσ22
e
−x2+y2

2σ22 (5.2)

The first term in eq. 5.2 is the high-frequency filter and the second term (including the

negative sign) is the low-frequency filter. Thus it is required that σ2 > σ1.

For bullet detection, σ1 and σ2 need to be specified to produce cutoff wavelengths

surrounding the size distribution of bullets as they appear in images. This distribution

depends on the caliber of bullet being fired, the image sensor size, lens focal length, and

distance of the bullet from the camera. The first three factors are easily accounted for with
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known hardware. The last factor could be accounted for using a ballistic model, but with

machine gun fire, there may be multiple bullets in the field of view at the same time. For

that reason, I used a single DoG filter that surrounded the size distribution of a bullet

throughout its trajectory.

5.2.2 Difference Filter

The difference filter simply subtracts the previous image from the current image. This

is used as a simple motion detector. With an RWS having its camera near and aligned

with the gun, the apparent motion of the bullet is fairly low, with much of its motion due

to gravity. However, the motion between frames is generally greater than the size of the

bullet. The major drawback of this filter is that it assumes the camera is not moving. Any

camera motion would have to be accurately known and compensated for. For this research,

I assume a static camera.

5.2.3 Prediction Filter

Since we are detecting our own gunfire, we should be able to predict where we will see it.

The prediction filter computes a predicted trajectory using the Flat Fire ballistic model

(described in 2.4) and projects it into image space. This allows us to predict a pixel

coordinate location of the bullet at any point in time. This assumes that we know the

ballistic parameters required to generate a trajectory (trigger time, muzzle velocity, drag,

etc.) and the extrinsic and intrinsic parameters of the camera. I believe this is a reasonable

assumption, since these parameters can all be measured or controlled.

However, there will be some uncertainty in these ballistic and camera parameters, oth-

erwise we would never miss the target. The goal of the prediction filter is to propagate

uncertainty in these parameters into uncertainty in the pixel coordinates of a bullet. In

this way, it estimates a probability density function (PDF) of the bullet’s pixel location at

any point in time. The PDF can then be convolved with the original image, weighting each

pixel in the input image by the relative probability that the bullet appears at that pixel.
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The PDF is approximated as a two-dimensional Gaussian distribution with zero rotation.

The center of the Gaussian is the predicted pixel location of the bullet. The horizontal and

vertical standard deviations are estimated using uncertainty propagation. The procedure

for generating the prediction filter is as follows:

1. Estimate bullet location in Flat Fire (FF) coordinates according to eq. 2.3, with

estimated ballistic parameters:


x

y

z

 = FF (t, t0, x0, y0, z0, V0, ...) (5.3)

2. Transform bullet location into camera coordinates with estimated intrinsic and ex-

trinsic parameters, providing the center pixel of the Gaussian (using pinhole camera

approximation with zero skew):


c

r

1

 =


f/s 0 ox

0 f/s oy

0 0 1



R11 R12 R13 T1

R21 R22 R23 T2

R31 R32 R33 T3





x

y

z

1


(5.4)

3. Propagate uncertainty in all ballistic and camera parameters into uncertainty in pixel

column and row. This is done via Taylor expansion and assuming all parameters are

independent. The derivation of this uncertainty propagation is shown in Appendix A.

The result of this are estimates of the Gaussian standard deviations, in pixel columns

and rows.
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5.3 Methodology

The filters were tested with a rifle firing 5.56 mm tracer rounds and a monochrome, visible

light camera (Point Grey model FL3-U3-13Y3M-C). The camera was placed at a roughly

1.5 m offset from the gun and aligned with the firing direction to simulate the geometry of

an RWS. Targets were placed at ranges of 250 m to 300 m from the gun. Tracer trajectories

were recorded at frame rates between 70 Hz and 90 Hz. The resulting images were then

processed with the previously discussed filters.

For the difference of Gaussians filter, σ1 and σ2 were assigned based on the smallest and

largest apparent sizes of the tracer rounds throughout their trajectory. The assumption

here is that these values would be obtained by experiment and remain relatively consistent

in practice. For the value c, a response of 0.15 appeared to work best. The values obtained

for σ1 and σ2 were 0.62 px and 4.65 px, respectively. The Gaussians were discretized on

windows of 5x5 px and 29x29 px, respectively.

For the difference filter, each frame was simply subtracted by its previous frame.

For the prediction filter, ballistic and camera parameters were either measured or ob-

tained from other sources (e.g. the manufacturer or range tables). Uncertainties were more

difficult to obtain. In some cases, such as for muzzle velocity, this data does exist. In many

cases, I could only use values that appeared reasonable. Future testing would hopefully

refine these estimates.

5.4 Experimental Results

5.4.1 Difference of Gaussians

The difference of Gaussians filter shows good results throughout tracer trajectories. On

average, the filter reduced the brightness of input images by 94%, and only moderately

dampened the appearance of the tracer. An example of this filter is shown in figures

5.2 and 5.3, which are the input and output, respectively. The input and output image

histograms are shown in figures 5.4 and 5.5, respectively. The effect of the filter on tracers
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is shown in figure 5.6. While there is clearly some dampening of the tracer brightness, the

effect is moderate despite widely varying apparent sizes of the tracer.
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Figure 5.2: The input image to the difference of Gaussians filter. The tracer is slightly left
and up from the image center.

Figure 5.3: The output image from the difference of Gaussians filter. The tracer is slightly
left and up from the image center.
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Figure 5.4: The brightness histogram of the input image to the difference of Gaussians filter.

Figure 5.5: The brightness histogram of the output image from the difference of Gaussians
filter.
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Figure 5.6: The effect of the difference of Gaussian filter on three tracer rounds at varying
distances. The left column are inputs and the right column are corresponding outputs.
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5.4.2 Difference Filter

The difference filter shows excellent results throughout tracer trajectories. On average, the

filter reduced the brightness of input images by 95%, and had no noticeable effect on the

appearance of the tracer. However, this level of performance would not be expected in

practice, where the camera could be moving and experience vibration from the gun firing.

5.4.3 Prediction Filter

The prediction filter successfully tracks the motion of tracer rounds, and effectively crops

out regions of the image that are far from the expected location of the tracers. In this way

it acts as an outlier filter.

An example of a PDF calculated with this filter is shown in figure 5.7. This PDF was

calculated for a tracer at 100 ms into its flight, and just 38 ms after entering the camera’s

field of view. The effect of using this PDF as a filter is shown in figures 5.8 and 5.9, which

are the input and output, respectively.

For this PDF, there is more uncertainty in the pixel column than the pixel row. This is

largely due to firing time uncertainty, which has a greater effect on the pixel column because

the tracer moves primarily in the column direction shortly after it enters the camera’s field

of view. This effect decreases over time, at which point orientation uncertainty is the most

significant uncertainty.
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Figure 5.7: The probability density function (PDF) calculated for a tracer at 100 ms after
being fired.

Figure 5.8: The input image to the prediction filter. The tracer is left of the image center.
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Figure 5.9: The output image from the prediction filter. The tracer is left of the image
center.
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Chapter 6: Trajectory Estimation

6.1 Introduction

This chapter documents my research in transforming detected bullets into estimated trajec-

tories. Here it is assumed that we have already detected a bullet in several frames, giving

us a list of pixel-time (time, column, row) coordinates of the bullet.

In section 6.2, I present a method for transforming pixel-time observations of a bullet

into a three-dimensional trajectory. Section 6.3 details how this method will be evaluated,

and section 6.4 shows experimental results with live gunfire.

6.2 Theory

The approach used here is similar to [15], where ballistic model parameters are estimated

based on observations of the projectile in flight. I also use a parameter estimation technique,

but with a ballistic model more appropriate for small caliber projectiles, and with a camera

as the sensor rather than radar.

The first part of this section provides justification for using the Flat Fire ballistic model

in the parameter estimation procedure. The second part details the actual parameter esti-

mation procedure.

6.2.1 Model Selection

In chapter 2, two ballistic models were presented: the Modified Point Mass Model (MMPM)

and the Flat Fire Model (FFM). The MPMM was developed for complex trajectories, such

as artillery. For small-caliber projectiles, the trajectories it computes are considered nearly

exact when input parameters are precisely known [5].
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The disadvantage of the MPMM is that it is an open-form model, and thus requires

numerics to solve. This is especially problematic for the parameter estimation technique

developed in this chapter, where many trajectories are iteratively computed.

The FFM is a closed-form approximation for small-caliber trajectories. As such, it is

much faster to compute than the MPMM, but less accurate. The purpose of this section is

to evaluate the FFM’s accuracy for trajectories relevant to an RWS. I made this evaluation

by providing the same initial conditions, environment conditions (standard atmospheric

conditions), and projectile properties to both models, and compared the difference in target

impact position and time. To be relevant to an RWS, I used 7.62x51 mm NATO projectile

properties fired at 850 m/s.

I compared the models firing at elevations between −30◦ and +30◦, and at targets

between 100 and 900 yards. The distance between impact points is shown in figure 6.1 and

the difference in impact times is shown in figure 6.2.
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Figure 6.1: Difference in impact position between Flat Fire model and Modified Point-Mass
model for various weapon elevations and target distances.
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Figure 6.2: Difference in impact time between Flat Fire model and Modified Point-Mass
model for various weapon elevations and target distances.

The FFM clearly deviates from the MPMM at long ranges and severe elevation angles.

Combining long ranges with severe elevations is especially problematic, but this would be

an uncommon situation. Hitting a target at 1,000 yards requires less than 1◦ of elevation.

Severe elevations would only occur when the RWS and the target are at significantly different

altitudes. Based on these plots, I would expect the FFM to estimate impact position errors

within 20 in and impact time errors within 0.02 s for the majority of RWS engagements.

The impact position error could easily be well within the spread of the RWS weapon, and

the impact time error would only be significant for targets moving at very high speeds

perpendicular to the bullet trajectory. For these reasons, I use the FFM for the trajectory

estimation procedure developed in this chapter.
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6.2.2 Parameter Estimation

The parameter estimation technique searches for the set of FFM parameters that generate

a trajectory in agreement with camera observations. This concept is illustrated in figures

6.3, 6.4, and 6.5.

Figure 6.3: The camera makes pixel-time observations of the bullet in flight.
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Figure 6.4: A trajectory is generated with a set of FFM parameters and projected into
camera space using the known intrinsics of the camera, generating predicted pixel-time
measurements that disagree with those observed.

Figure 6.5: A trajectory is generated with a set of FFM parameters and projected into
camera space using the known intrinsics of the camera, generating predicted pixel-time
measurements that agree with those observed.
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These figures show that we can evaluate how well a set of FFM parameters fits the camera

observations of the bullet. The problem then becomes a matter of efficiently searching for the

set of FFM parameters that best agrees with the observations. The optimization algorithm

used to perform this search is covered in section 6.3.

Since we are using this procedure for self-correcting fire-control, many of the FFM pa-

rameters are known with fairly low uncertainty. For example, the bullet mass and diameter

should be precisely known and don’t need to be optimized. Alternatively, we may have

good, but imprecise, estimates on the initial velocity and gun azimuth/elevation. These

may need to be optimized, but the good initial estimates decrease the run time of the

optimization algorithm.

One parameter with significant uncertainty is the firing time of the bullet. While an

electronic trigger could provide a precise firing time, there is ambiguity between the firing

of tracer rounds and non-tracer rounds. Assuming a typical machine gun firing 850 rounds

per minute, with 1 in 5 rounds being a tracer, there will be a firing time uncertainty of

175 ms. If this were to remain unaccounted for, it would result in significant error in the

estimated trajectory. For example, this would result in an impact error of 65 cm for a target

at 300 m.

6.3 Methodology

The trajectory estimation procedure was tested with actual gunfire data. The objective of

the test was to evaluate how precisely this procedure could estimate impact positions of

tracer rounds based on observed pixel-time measurements. The geometry and instrumen-

tation of the test is illustrated in figure 6.6.
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Figure 6.6: The trajectory estimation test set up.

To be representative of an RWS, the gun and camera were placed close together and

well-aligned. The gun fired single-shot tracer rounds at a target 308 m downrange. A

monochrome, visible light camera (the ”gun camera” - Point Grey model FL3-U3-13Y3M-

C) recorded the tracer rounds in flight at 100 Hz. For some shots, a microphone was used

to trigger the camera from the muzzle blast, providing ground truth on the firing time. A

chronograph was used to obtain the average muzzle velocity of the tracers.

The target was a flat sheet of cardboard with fluorescent panels glued on top to provide

visual indications of bullet holes. An additional camera (the ”range camera”) was placed

near the target to observe each impact, so the location of each impact could be corresponded

with the tracers observed by the gun camera. A measured pattern on the target allowed

for a homography to be computed that related pixels in the range camera to coordinates

on the target. This allowed for each impact position to be accurately measured relative to

the target.
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The target was also tracked in the gun camera, as I would expect in an actual RWS

engagement. The target pixel coordinate, combined with the known intrinsics of the cam-

era and the target range, allowed for the target’s three-dimensional position in camera

coordinates to be known.

The dlib [22] implementation of the BOBYQA optimization algorithm [23] was used to

estimate the FFM parameters. BOBYQA is a nonlinear, constrained optimization algorithm

that does not require derivatives. The FFM parameters estimated for this test were as

follows: weapon firing time, weapon azimuth and elevation, weapon vertical and horizontal

offset relative to camera.

The post-processing procedure for each shot was as follows:

1. Extract pixel-time observations of the tracer in flight.

2. Estimate the FFM parameters that best agree with the observations.

3. Generate the FFM trajectory from the best-fit parameters, intersect it with the target

location, and estimate an impact position relative to the target.

The estimated impact position could then be compared with the actual impact position

derived from the range camera.

6.4 Experimental Results

This experiment was conducted with a total of 55 tracer round shots. An average of 27

pixel-time observations were made per shot. The resulting error between estimated impact

positions and actual impact positions was 4.53 cm on average, with a 2.59 cm standard

deviation.

A total of 8 shots included a recorded firing time via the microphone. This allowed the

estimated firing time to be compared to ground truth. The resulting error was 6.0 ms on

average, with a 4.5 ms standard deviation.
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While an average of 27 observations of the tracer were available to estimate each tra-

jectory, the estimation was also relatively accurate with significantly fewer observations.

This was evaluated by taking particular subsets of the tracer observations (e.g. the first 5

observations) and reestimating the trajectory. The accuracies of various subsets is shown

in table 6.1. This indicates that the trajectory estimation procedure has some robustness

against lower frame rates and missing segments of the trajectory.

Table 6.1: Trajectory estimation mean (µ) and standard deviation (σ) with subsets of
observations. All units in cm.

Random 5 Random 10 First 5 First 10 Mid 5 Mid 10 Last 5 Last 10

µ 8.56 4.73 25.16 12.02 7.86 6.44 12.86 11.32
σ 3.77 2.75 20.30 12.15 2.98 10.98 5.25 3.01
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Chapter 7: Outlier Removal and Multiple Model Extraction

with RANSAC

7.1 Introduction

Chapter 6 demonstrated how we can estimate trajectories for a set of pixel-time observations

of a bullet. The assumption made there was that the set of observations contained no

outliers. This chapter shows that we can make the trajectory estimation procedure robust

by extending it with the RANdom SAmple Consensus (RANSAC) algorithm.

This is important because three types of outliers are expected:

1. Non-bullet features: due to how simple bullets are in appearance, there will be similar

features that get through the filters.

2. Multiple bullets: if the RWS is firing a typical machine gun, there will be multiple

bullets in the field of view at the same time.

3. Ricocheted bullets: a ricocheted bullet can change direction dramatically, which would

drastically alter the estimated trajectory.

These outliers are resolved by extending the previously developed trajectory estimation

procedure with sequential RANSAC. Sequential RANSAC was chosen for its ease of use

and relatively fast compute times.

Section 7.2 details my extension of the trajectory estimation procedure with sequential

RANSAC. Section 7.3 describes how it will be tested against the three types of outliers

detailed above, and section 7.4 details the results.
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7.2 Theory

The trajectory estimation procedure is extended with the basic RANSAC algorithm as

shown in Algorithm 1. This allows a single trajectory to be extracted among a set of pixel-

time observations containing outliers. Note that if a set of FF params cannot be found that

produces enough inliers (mininliers), then the algorithm will return null.

Algorithm 1 Trajectory RANSAC

1: procedure TRANSAC
2: numparams← number of FF params to optimize
3: n← round(numparams÷ 2) . each point provides two equations
4: bestparams← {}
5: bestinliers← {}
6: iteration← 0
7: while iteration < max iterations do
8: points← n randomly selected observations
9: CS ← FF params fitted to points . the candidate set

10: inliers← all observations that agree with CS . within threshold
11: if |inliers| > mininliers and |inliers| > |bestinliers| then
12: bestparams← CS
13: bestinliers← inliers
14: increment iterations

The Trajectory RANSAC algorithm is then extended with sequential RANSAC in Al-

gorithm 2. This allows multiple trajectories to be extracted from a set of pixel-time ob-

servations. This algorithm repeats until no trajectories with at least mininliers can be

extracted.

Algorithm 2 Sequential Trajectory RANSAC

procedure seqTRANSAC
2: all bestparams← {{}} . list of bestparams

all bestinliers← {{}} . list of bestinliers
4: bestparams← {}

bestinliers← {}
6: iteration← 0

repeat
8: run TRANSAC

if |bestinliers| > 0 then
10: add bestinliers to all bestinliers

add bestparams to all bestparams
12: remove bestinliers from observation set

until |bestinliers| == 0

48



7.3 Methodology

Trajectory estimation with RANSAC is first tested against simulated data. This data

contains projected FF trajectories with the first two types of outliers listed in section 7.1.

The FF trajectories are generated by randomly selecting parameter values within fixed

ranges. They are then projected into pixel-time coordinates based on the camera and

geometry used in section 6.3. Gaussian noise is added to the pixel coordinates (σ = 3px)

and time coordinate (σ = 0.0005s).

To simulate outliers caused by non-bullet features, a uniform random distribution of

pixel-time coordinates is added, with the same size as the set of pixel-time coordinates

formed from the actual trajectory. The domain of this distribution is the resolution of the

camera and the timespan of the inlier set.

To simulate outliers caused by multiple bullets, two additional trajectories are projected

to pixel-time coordinates, in subsequent time steps of 0.376 s. This is in order to simulate

a machine gun burst firing 800 rounds per minute, with 1 in 5 bullets being a tracer round

(and only detecting the tracers). I consider two main types of trajectory groupings. In the

first type, all three trajectories are the same, just separated in time. This is to simulate

a very tight burst group. In the second type, each trajectory is generated from randomly

selected parameters.

The effectiveness of using RANSAC will be evaluated by comparing the known inliers

for each bullet against those that were extracted. The false negative and positive rates are

defined in equations 7.1 and 7.2, respectively, where A is the set of actual inliers and E is

the set of extracted inliers.

FN =
|A| − |A ∩ E|

|A|
(7.1)

FP =
|E| − |A ∩ E|

|E|
(7.2)
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The first simulation tests the Trajectory RANSAC algorithm for extracting the trajec-

tory when the set of pixel-time observations contains only one trajectory and outliers. The

second simulation tests the Sequential Trajectory RANSAC algorithm for extracting three

trajectories when the set of pixel-time observations contains three trajectories and outliers.

Trajectory estimation with RANSAC is then tested against actual gunfire data contain-

ing ricocheted tracer rounds. This data contains two subsequent tracer rounds (separated

by about 0.35 seconds), where both tracers dramatically change direction after striking the

ground, but retain their brightness. One image from this data is shown in figure 7.1, which

shows both tracers being clearly visible in the same frame, one of which has already struck

the ground.
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Figure 7.1: Two tracers visible in the same frame (highlighted with green rectangles). The
tracer on the right side of the image has already struck the ground (at the location marked
with the red circle), and quickly moved upward in image space. The second tracer later
impacts the same area and ricochets in a similar direction.
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7.4 Experimental Results

The first simulation experiment was evaluated 100 times with randomly generated trajec-

tories. The Trajectory RANSAC algorithm was successful in extracting the vast majority

of inliers in all cases. One example is shown in figures 7.2 and 7.3, which show the input

set of observations (with outliers) and the extracted set of inliers, respectively. On average,

the false positive rate was 0.001 and the false negative rate was 0.048.
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Figure 7.2: Input pixel-time observations containing one trajectory and outliers.

Figure 7.3: The extracted inliers using the Trajectory RANSAC algorithm.
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The second simulation experiment was evaluated 100 times with both types of trajectory

groupings. The results are shown in table 7.1. The Sequential Trajectory RANSAC algo-

rithm was successful in extracting the vast majority of inliers in all cases. The extraction

is especially accurate when all three trajectories are the same. Figures 7.4 and 7.5 show an

example of three trajectories with the same ballistic parameters successfully extracted.

Table 7.1: The false negative and false positive rates for the pixel-time extractions of the

three trajectories.

Group type Trajectory 1 Trajectory 2 Trajectory 3

False Neg False Pos False Neg False Pos False Neg False Pos

Same trajectory 0.010 0.001 0.013 0.001 0.009 0.001

Random trajectory 0.030 0.002 0.030 0.007 0.036 0.015

For the gunfire data with ricochets, pixel-time observations were first made using the

algorithms developed in chapter 5. As expected, the tracers were detected after they ric-

ocheted, however there were no random outliers. The set of pixel-time observations are

shown in figure 7.6. The Sequential Trajectory RANSAC algorithm successfully detected

the ricochet outliers and isolated the two trajectories. Figure 7.7 shows the extracted inliers.
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Figure 7.4: Input pixel-time observations containing three trajectories and outliers.

Figure 7.5: The extracted inliers using the Sequential Trajectory RANSAC algorithm, with
each trajectory successfully isolated.
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Figure 7.6: Pixel-time observations containing two trajectories that ricocheted after striking
the ground.

Figure 7.7: The extracted inliers using the Sequential Trajectory RANSAC algorithm, with
ricochet outliers detected and discarded, and the two trajectories isolated.
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Chapter 8: Conclusions

This thesis has demonstrated a proof of concept method of estimating trajectories based on

camera observations of bullets in flight. Tracer rounds were successfully detected with the

development of three image filters, and bullet impact points were precisely estimated using

a parameter estimation technique based on the Flat Fire ballistic model. This technique

was also made robust to outliers by extending it with the sequential RANSAC algorithm.

This work opens up the possibility of a closed-loop fire-control system using camera

observations of bullets. However, there are still some important hurdles to overcome to

make this a reality.

Firstly, these concepts were developed for a static camera that was vibrationally isolated

from the gun. This must be extended to a camera mounted on an RWS, where it may be

panning and vibrating. This motion would affect both bullet detection and trajectory

estimation procedures.

Secondly, the algorithms developed in this research were tested by post-processing

buffered data, where computation speed was not a factor. The bullet detection and trajec-

tory estimation procedures easily take several seconds in their current form. In order to be

useful in a self-correcting fire-control system, they must be made considerably faster.

While these issues are significant, I do not have reason to believe they are insurmount-

able. If they can be resolved, this approach to closed-loop fire-control would fill a significant

void with small-caliber weapons.
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Appendix A: Flat Fire Uncertainty Propagation

This appendix shows the derivation of the uncertainty propagation discussed in section 5.2.

We first propagate uncertainty through the flat fire reference frame, then through camera

coordinates, and finally into pixel coordinates.
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Through Camera Coordinates
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Through Pixel Coordinates
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