2-D AND 3-D LAYOUTS TO AID HUMAN COGNITION OF LOCAL
STRUCTURE IN MULTIVARIATE DATA

by

Ru Sun
A Dissertation
Submitted to the
Graduate Faculty
of
George Mason University
in Partial Fulfillment of
The Requirements for the Degree
of
Doctor of Philosophy
Computational Sciences and Informatics

Dr. Daniel Carr, Dissertation Director

Dr. James Gentle, Committee Member

Dr. Igor Griva, Committee Member

Dr. James Willett, Committee Member

v e e lesr A Dr. D. Papaconstantopoulos,
| Department Chatrperson
,/ - % (S Dr. Peter Becker, Associate Dean

for Graduate Programs, College of Science

MNior ca-clos b vikes Chandhoke, Dean,

College of Science

Date: M ust //, 2008 Summer Semester 2008

George Mason University
Fairfax, VA

2-D and 3-D Layouts to Aid Human Cognition of Local Structure in Multivariate Data

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Ru Sun
Master of Science
George Mason University, 2000

Director: Daniel B. Carr, Professor
Department of Statistics

Summer Semester 2008
George Mason University
Fairfax, VA

Copyright 2008 Ru Sun
All Rights Reserved

DEDICATION

Thisis dedicated to my God, my loving parents and my friends.

ACKNOWLEDGEMENTS

| would like to express my deepest gratitude to my advisor Professor Daniel B. Carr for
his supervision and constant guidance, support, encouragement, trust, and great patience
throughout the years. He is a mentor and afriend. | was so fortunate to work with him.

| wish to thank my group leaders Tom Neubig and Mary Batcher at Ernst & Young, LLF,
who granted me a flexible working arrangement, which made it possible for me to
dedicate more time and energy in research. My colleagues were very supportive and
covered many tasks for me at work. | am very grateful.

| am also fortunate to have aloving family and alarge group of friends who pray for me,
care about me and support me in every possible way. | can never thank them enough.

TABLE OF CONTENTS

Page

LIST OF TABLESottt st e e e e e e ne e e nnes vii
LIST OF FIGURES ...ttt n e e Viii
F N Y N 7 O SRS SSRI X
Chapter 1. 100 [Tox 1 o o SRS 1
11 Problem SEEEMENT.. ..o et nb e nne e 1
1.2 CONLIDULIONS ... ettt ee et e s se et e aeenee e e sae e 7
RS B O =7 (o] o SR 11
Chapter 2. [F 01 2(| {011 0o SRR 12
2.1 Singular Value Decomposition and Multidimensiona SCaling..........ccoovveveieeinienenennens 12
211 Singular Value DecompoSition (SVYD) .ccvieieeereeieriesese e sieseeeeseestesae e seesseeseeseessesesseesns 12

212 Multidimensional SCaling (MDS)....cccccoiviiriererieiereesesesesese e seesee e e e se e seeseeseeseenes 13

2.1.3 Similarity/Dissimilarity Measures for Complex StruCtUreS.........covevevierevesnseeeereesesee e 15

2.2 Saf-OrganiZing MapS........ccoiieeiiiiieese st ese st e et e st s estesreetestesneestesaeeeesseennans 18
2.3 Space Flling LayOutS - TrEEM @RSccviueeeerieeeiee e eee et see e sne e see e 20

P S o1 0T 1Y, (= S 26
25 Equally Spaced Rank Ordering........ccccoviieieieiiee ettt s 30
2.6 Other GraphiCal LAyOULS.........ccciiieieieiteeieseete s se et ae st sreebesteesesresseestesneennesrenneens 31
2.6.1 HEXAGON BINNIMNG......eiiiiiiiieieeiieeee ettt s ae bt e e se et b et sbe et e e e e e aeseeseesnas 31

2.6.2 TESSEAHONS ...ttt bt e e b e s a et e e e e srenas 32

A G B o g T I (= = O T TR P TP 33

2.6.4 BotaniCal ViSUBIIZAIONc.ecveiiieiieecieecte ettt ettt s be et e st e saeesaeesaeesreenbeenns 33

2.6.5 SAf SIMIlar LAYOULS.....ccceieieieeeeeeeesie st e e ae st st ne e se e e e sresresneeneeneenaeseesrennes 34

2.6.6 SPACE-FIIING CUIVESceeiieeiececeeeeees ettt st et s resre e ene e e e aeneenrennn 34

2.7 Discussion Of GraphiCal ISSUESceeiiiuieieie et e 35
270 2-D VS 3D bbbt h e b e b e e b e e b e e e e ean e eae e aeenneeans 35

P 1Y/« o DO 37

2.7.3 Other GraphiC ISSUBSciuiiueiuieuerteiesie sttt ettt see bt eese e besbe et sbesaeene e e e beseesreseas 38
Chapter 3. Recursive Partitioning Layout in 2-D to Produce Round Regions........... 40
3.1 Augmenting Treemaps Designed to ShOW CIUSLENSceveeveiecieie e 40
3.2 Compact AreaPartitioning (CAP) AlQOrithm ..o 45
3.3 An Multivariate Atmospheric Data Example with Enhanced Star Glyphs.............ccc...... 48
34 SUMMArY a0 ASSESSITIENToviieeiriitieie st etee e eeeste st e e e stesseestestesseessesseessesseensesressaensessens 65
Chapter 4. Point Layout for Hexagon GridS..........ccevveeereeneeee e 67
4.1 A Preliminary Hexagon Occupant Exchange Algorithm (HOE)cccocveeeveiiecevieenn, 69
4.2 The Current Hexagon Occupant Exchange Algorithm ... 71
4.3 Hexagon Cluster Layout Algorithm (HCL)ooiieeie e 79
A4 SUMIMAY .. .eeeeiineeeesiesseese st eee s e e ssesseeasesresseessesre e s e ame s e e sEeame e resreame e resmeenreaneennenresnnenrenreas 85

Chapter 5. Round Polytope Layout in 3-D ... 87

5.1 Truncated Octahedron Slicing - Lattice Point Based Approximationccccceceeeeen. 0
5.2 Truncated Octahedron Slicing - Solving Geometric Equation Approach......................... 99
TG TS U011 7= Y PSSR 101
Chapter 6. Conclusions and FULUrE WOTKcccoecviierecie e 102
APPENDIX - PROGRAMS ...ttt e 107
REFERENGCES ...t e 122

Vi

LIST OF TABLES

Table Page

Table 1. Roundness for VariouS SNaPeS.cu e e
Table 2. Comparison Between 250,000 and 2 million Lattice Points........................

Vil

LIST OF FIGURES

Figure Page
Figure 1. A Dendrogram EXAmMPIE.........cccueveeuereeneeiecieseesie et este e sae e e sneesns 21
Figure 2. A Treemap EXaMPIE. ... oo s 23
Figure 3. A Force-Directed Tree EXamPpleoovecveieiie i 29
Figure 4. Rectangular Recursive Partitioning of ACE Data..........cccceeeeveenencennceniesenee 42
Figure 5. The Rectangular Layout With Gaps.........cccveeereerieeieeseese e 43
Figure 6. The Rectangular Layout With 3-D Gaps.......cccceveeieneenenienee e 45
Figure 7. The Recursive Partitioning of aHEeXagoncccccveceveeiecceseese e 47
Figure 8. Boxplots for Temperature Variables ... 51
Figure 9. Boxplots for Water Vapor Variables.........cccvveveeveeceseese e 52
Figure 10. Boxplots for the Logarithm of Cloud Fraction Variables...........c.cccoveinnnennne. 53
Figure 11. Round Polygon Layout for AIRS Dataccccceeveeeeneeseceseere e seesie e 54
Figure 12. A Profile Glyph Examplefor 15 Variables.........ccooeveriiiinieieceeeeee 55
Figure 13. A Star Plot Glyph EXaMPIE.......c.cccuvieeiieie e 56
Figure 14. Signed Deviation Star GlYPN.........coooiiiiieeeee s 57
Figure 15. Folded Deviation Star GIYPh.........ccoceevieieie e 57
Figure 16. Round Polygon Layout with Signed Deviation Star Glyphs.........cccccceeveennee. 60
Figure 17. Round Polygon Layout with Signed Deviation Star Glyphs Omitting

TS 072 (- (0 (TP TSP 62
Figure 18. Enlarged View of Polygon Layout with Signed Deviation Star Glyphs......... 63
Figure 19. Round Polygon Layout with Folded Deviation Star Glyphs.........cccccceevenennee 64
Figure 20. Enlarged View of Polygon Layout with Folded Deviation Star Glyphs......... 65
Figure 21. Cluster Layout on Multivariate Datain 6 DiImensions..........c.ccoeveveneseeene. 70
Figure 22. Indices of a HEXagON FIrame.........ccvcveiicee i 72
Figure 23. Initial State Of the CasES.......cocveieriiiieeee e 75
Figure 24. Clusters of Cases after 2000 CYCIESocvvieerieie e 76
Figure 25. Case Placement WithOUt SOMING.........cooveirrierenienenee e s 78
Figure 26. Case Placement after SOrting.........ccvcoevveiereesieeie e esie e seese e ee e s 79
Figure 27. Spring Model Results to Determine Cluster Centroids.........c.covvererereeenne. 82
Figure 28. A Hexagon Grid Layout for the Clustered Global Grid Célls...........ccccuen.n... 83
Figure 29. Parts of the Same Multivariate Atmospheric Cluster — Winter 2002.............. 85
Figure 30. A Truncated OCtaNEAIONcoveieeieiice e 88
Figure 31. First Cut of a Truncated Octahedron Shown in Glistencccocevenereeenne. 92
Figure 32. First Cut of a Truncated Octahedron Shown iNn RGLcccccvevveciececcincnenee. 93
Figure 33. AIRS Data LayOut iN 3Dcccceieriiiienieeie et 94

Figure 34. AIRS Data Layout in Glisten with GlyphsS.........cccooiiiniinieneeeeeee 95
Figure 35. AIRS Data Layout in Glisten with Glyphs— A Different View...................... 96
Figure 36. AIRS Data Layout in Glisten with Glyphs — Selected Variables.................... 97

ABSTRACT

2-D AND 3-D LAYOUTS TO AID HUMAN COGNITION OF LOCAL STRUCTURE
IN MULTIVARIATE DATA

Ru Sun, Ph.D.
George Mason University, 2008

Dissertation Director: Dr. Daniel B. Carr

This dissertation addresses the development of new 2-D and 3-D layout
algorithms for statistical visualization purposes. These layouts serve tasks that include
placing near neighbors close together, showing group or cluster membership, alocating
gpace for glyphs and images used to characterize objects (cases), and approximating
distances between objects. These tasks serve goals that include conveying structure,
facilitating pattern discovery and hypothesis generation, and providing access to detailed
information. The layouts are for human use, so they include considerations of human
perception, cognition, and organizational regularity.

This dissertation targets applications involving the study of cases, variables,
clusters, and other multivariate objects. In these applications the notion of
distances/dissimilarities between objects is important. However, accurate distances can

not be maintained in low dimensional views. Researchers have developed a variety of

layout methods to represent multivariate objects (including data summaries) in low
dimensions. Common layout algorithms include multidimensional scaling, Kohonen self-
organizing maps, Treemaps and spring models. This dissertation compares and contrasts
the new layout agorithms with previous methods, develops new star glyphs, and
demonstrates the new algorithms using multivariate data produced by AIRS

(Atmospheric InfraRed Sounder) and other datasets.

Chapter 1. Introduction

1.1 Problem Statement

The amount of available digital data in the world is growing exponentially. The
sources of data include monitoring studies of human behavior and public opinions,
survey studies of the environment, satellite datasets in earth science, gene expression
datasets in bioinformatics and simulation studies of virtually anything imaginable. At the
same time, our ability to extract understandable summaries and insights from such studies
lags far behind. While data mining and automated modeling summarizations are
progressively employed, there is an ever-increasing role for visualization to address data
curation, pattern discovery, model construction, model criticism and communication.
Visualization techniques are becoming increasingly important for the analysis and
exploration of the deluge of large multidimensional data sets. The pioneering National
Science Foundation (NSF) report by McCormick et a. (1987) stated: “Visudization is a
method of computing.” Here the visualization refers to the process of transforming
information into a visual form, enabling researchers to perceive and comprehend the
content and structure of information. This emphasizes the importance of human visual
perception, cognition, understanding and decision making. Clearly, we need to

continually refine computational methods to serve these purposes.

Card et a. (1999) indicated, “Used effectively, visualization can accelerate
perception of data. By designing visualizations with human strengths and weaknesses in
mind, it is possible to exploit peopl€e's natural ability to recognize structure and patterns,
and circumvent human limitations in memory and attention.” Chen (2006) declared, “The
holy grail of information visualization is to make the insights stand out from otherwise
chaotic and noisy data” There are intimate connections among seeing, thinking and
understanding.

Human sensation, perception, cognition and understanding have limits. For
example, visible light is only a narrow band in the electromagnetic spectrum. Mankind
has invested tremendous efforts to devel op sensors for the other parts of the spectrum and
to produce transformations that convert the results into the visible spectrum. However,
research in converting patterns in data into cognitively useful forms has lagged behind.
We humans live in a 3-D world and see surfaces with shape, color, and texture through
mediums such as air or water. Even though we can imagine a world with higher
dimensions and can think with multivariate models, the externa input to our eyes is
limited to moving surfaces in the visible spectrum. In exploratory data analysis, most
plots are shown on a 2-D monitor using colored pixels in order to convey attribute
relationships in space and time. Analysts view the plots, draw conclusions, and decide
what to do next. The godl is to encode the data variables so that the important patterns,
structures, statistics or models can be noticed and comprehended by the carbon-based

computer that is the human mind.

While it is not possible to fully comprehend high dimensiona structure in low
dimensional layouts, layouts can help revea some structures and occasionally all of the
structures when they are very simple. Low dimensional structure is often embedded in
higher dimensions. Furnas and Buja (1994) discuss how compositions of projections
(display aspects of structure in low dimensions) and sections (constraints in high
dimensions) can display aspects of structure of modest dimension.

A paper written by Ankerst, Berchtold and Keim (1998) discussed the spatial
dimension arrangement problem. They considered the problem of finding an optimal one
or two-dimensional arrangement of the objects on a regular grid based on their
similarities. Theoretical considerations show that both the one and two-dimensional
arrangement problems are often computationally hard problems, i.e., they are NP-
complete. Usually heuristic agorithms are used. This keeps the door open to the
continuous development of heuristic algorithms intended to address specific layout tasks.

Layouts are often regular grids, lattices or quasi-regular structures that
approximately preserve properties such as cell roundness. The challenge here is to
develop/refine regular layouts and glyphs to show many objects (cases) or clusters and a
modest number of variables to help analysts see meaningful patterns that might otherwise
be missed.

The regularity of layouts can make the graphics seem more accessible. Tufte
(1983) describes small multiple layouts. He says that the advantage of small multiplesis
that once viewers understand the design of one piece, they can immediately access datain

al other pieces. The constancy of the design allows viewers to focus on changes in the

datarather than changes in the design, thus speeding up the information conveyance. The
regularity of lattice points and grid cells is aso advantageous.

Card et a. (1999) discuss 2-D versus 3-D spatia encodings. It is clear that more
cases can be shown in 3-D than 2-D. Nonetheless, visudization in 2-D is commonly
accepted as the effective way for presenting data. Compared to 2-D, 3-D graphs suffer
from the fundamental problem of occlusion, where objects closer to the viewer can hide
distant objects, and dense collections of objects can obscure their distributions.
Transparency (via apha blending) and masking provide limited help. 3-D graphs also
involve more challenges both in implementation and design. 3-D implementations require
significantly more processing power and involve more parameters to define objects,
surface properties, lighting models, locations, and motions. However, advances in
computing power and rendering hardware have substantially addressed the computing
problem.

2-D graphs are often displayed on a computer monitor and continuing problem is
the limited screen resolution, even though monitors in the market keep improving their
resolutions. Often there are not enough pixels on the monitor to display all the
information. A basic need is more visual space. Printed hard copies do alot better than a
screen due to their much higher resolution. A serious option to show more cases is to
make poster-size plots. Our visual and cognitive processes emphasize a small part of our
field of view. A large plot lets us shift our focal point to quickly refresh our limited visual
memory. Two obvious weaknesses of large printed plots are their production time and

lack of re-expression options offered by interactive and dynamic graphics. Other

weaknesses are that comparison accuracy decreases with distance, and that large plots
can appear intimidating.

Glyphs are graphical objects whose elements (e.g., position, size, shape, color,
orientation, etc.) are bound to multivariate values that describe details of the cases. Star
plots and Chernoff faces are among the more popular glyphs, and even time series lines
can be considered as glyphs. Historically much glyph plotting used a row and column
layout with a happenstance ordering. With such layouts, it is next to impossible to make
simple observations concerning the presence of clusters or to note if points fall close to
low dimensional manifolds. It seems that better organization of glyphs is attainable, but
criteria need to be chosen and a gorithms to be devel oped to produce the layouts.

When the glyphs are round, the row and column layout is less than ideal. Such
plots invoke the metaphor of putting round pegs in square holes. Carr (1991) discusses
the geometric and visual merits of hexagon and truncated octahedron gridsin 2-D and 3-
D. They are the roundest regular polygons and polytopes that tessellate the respective
dimensions. The number of neighbors, 6 and 14, is based on the number of shared faces
and is unambiguous. With sguares and cubes the number of neighbors is only 4 and 6
when faces are considered. Considering polygons or polytopes with shared vertices as
neighbors is less natural. This research addresses the challenge of developing layouts
better suited for round glyphs.

Another important layout task is to help analysts comprehend and assess the
results of clustering algorithms. For modest data sets, analysts often use a tree-like plot

called a dendrogram to show the results of hierarchical clustering (Everitt 1993, Johnson

and Shneiderman 1991, Gnanadesikan, Blashfield et a. 1989). The typical dendrogram
provides one-dimensional rank order for the cases. The default rank order (seriation)
produced by many algorithms reflects both the joining of groups and the original order of
the cases. This is not optimal since groups that are potentially far apart are forced to be
adjacent. While in most cases two-dimensional and three-dimensional layouts do not
fully solve the problem, the additional dimensions provide more flexibility for placing
similar points near each other. The problem is well-known and has been addressed using
severa approaches.

The notion of permuting the rows and columns of a matrix is not new. Bertin
(1984) has an example diagram that illustrates how the diagonalization process of atable
of correspondences between two lists helps to reveal structure. Carr and Olsen (1996)
discuss the merit of sorting rows and columns in two-way layouts of cases and variables.
They suggest using ordering methods other than those based on dendrograms. Their
preferred method is a height directed preorder traversal of a minimal spanning tree. When
variables are comparable units or transformed to be comparable units, Cleveland (1993)
suggests ordering cases based on the median of their multivariate values. The two-way
ordering problem can aso be addressed using singular value decomposition (SVD). The
first left eigenvector can be used to order cases, and the first right eigenvector can be
used to order variables. Two-way ordering leads to the correspondence anaysis, and its
solution can aso be found using SVD, as shown in Greenacre (1984).

Graphical layout issues need to be considered when designing plots. There are

cognitive and design principles to follow. Perceptual considerations are necessary to

design a clear and attractive layout. The goal is to exploit human perception and
cognitive processing capabilities and avoid weaknesses. For example, clusters are
separate, so | convey this in the cluster layouts by using white space (gaps) to show the
separations. The gap widths can also weakly encode the distances among adjacent
clusters. It helps researchers perceive the number of clustersin the data at first glance. 3-

D cues can a so enhance the perception of gaps between clusters.

1.2 Contributions
This dissertation enhances Wills' (1998) recursive partitioning agorithm for
clusters by adding gaps to visually separate clusters at each level of partitioning. It also
develops three new 2-D layout algorithms that allocate at most one case per cell.
1) The Compact Area Partitioning Algorithm (CAP) recursively partitions a
convex polygon to produce round regions to contain the cases,
2) The Hexagon Occupant Exchange Algorithm (HOE) exchanges cases in
hexagon cells to reduce a cost based on the distances of each case to cases in the
neighboring cells. The a gorithm supports different cost functions;
3) The Hexagon Cluster Layout Algorithm (HCL) uses a multidimensiona
scaling start followed by a spring model to find a centroid location for each
cluster in a hexagon grid. The agorithm then lays out cases one per cell around
the centroids and rearranges the cases within each cluster in a manner similar to

item 2). Some cells are left empty; and

4) This dissertation extends the CAP algorithm to 3-D, where it recursively
partitions a convex polytope to produce small round polytopes where a glyph for
each case can be plotted.

Another contribution involves designing two specia star glyphs, namely signed
deviation star glyphs and folded deviation star glyphs. They provide a more symmetric
encoding of large and small values than traditiona star glyphs, and show variables with
increased perceptual accuracy of extraction. | indicate that graphics produced using these
methodologies have merits based on cognitive principles and graphica design
considerations when compared to the alternatives. The layouts are illustrated in new
applications.

The Compact Area Partitioning Algorithm (CAP) is a new layout approach for
visualizing cases that have been clustered. It recursively divides a convex polygon to
layout clusters, so that the areas of the sub-polygons are proportional to the sizes of the
sub-clusters, and the sub-polygons are as round as possible. The goa is to visualy
emphasize the clusters and produce round regions to contain glyphs or links that provide
access to case details. Distinctive features of this algorithm include 1) use of area
partitioning lines with more orientations than the horizontal and vertical lines used in the
traditional Treemap algorithm, 2) selection of splits that create two polygons with the
smallest sum of dimensionless second moments about their centroids, and 3) optional use
of white space gaps to indicate the distance between the two groups to be laid out in the

two polygons created. The approach addresses the problem of slivers that can result when

horizontal or vertical partitioning of a rectangle to produce two areas of correct
proportions making one side of one rectangle smaller than a pixel.

Both the Hexagon Occupant Exchange Algorithm (HOE) and the Hexagon
Cluster Layout Algorithm (HCL) are developed to layout multivariate objects (cases) on
a hexagon lattice. In HOE, cases are initialy assigned randomly to hexagon lattice cells
so that some of the cells are occupied by cases and the remaining cells are empty. The
algorithm randomly selects pairs of cells. The occupants of the two selected cells are
exchanged if the change reduces the overall cost. The cost is a function of the
dissmilarities among the occupants of the neighboring cells. When both of the
neighboring cells are occupied by cases, the dissimilarity between the cases is used. Pre-
set dissimilarity values are used when at least one of the neighboring cells is empty. In
HCL, a spring model applied to a multidimensional scaling start determines the centroid
location for each cluster, The locations are mapped to a hexagon lattice. The algorithm
then lays out the cases or case representations in cells of expanding concentric circles
about the centroids. The spring model is set so that white space separates the clusters.
The cases within each cluster are rearranged so that similar cases are close together.

| extend the CAP agorithm to 3-D to recursively partition a convex polytope. The
exact geometrical equations and calculations are complicated, so | generate points on a
body-centered cube lattice and perform approximate empirical calculations to partition
the polytope of points. 3-D layouts often preserve local distances better than 2-D,
although they might be harder to visualize. The 3-D graphics tools used in this research

include Glisten and RGL and will be discussed in the context.

This dissertation also reviews various modern clustering methods as well as
layout algorithms, such as multidimensional scaling (Borg 1997, Kruska and Wish
1978), self-organizing maps (Kohonen 1995, Hulle 2000), spring models (Eades 1984),
seriation methods (Marcotorchino 1991), treemaps (Shneiderman, 1992) and extensions,
etc. Various similarity measures, cluster layout issues, computationa and graphical
presentation issues are a so discussed.

This dissertation develops practical graphical displays that are helpful in the
exploratory analysis of multivariate data sets and are suitable for presentation and
communication settings. The emphasis is on the representations that show objects with a
locally unified encoding such as a star glyph. This contrasts with linked representations,
such as scatterplot matrices, linked micromaps and parallel coordinates plots that convey
facets of the same object at different locations on the screen or other plotting devices.

The methodology developed here applies to situations involving cases for which
dissimilarities or distances are available. This covers the common n cases by p variables
data table where the variables are used to assess dissimilarity or distance between cases.
However, each case can be a summary or organizational representation of objects. For
example, a case could be a dendrogram which is an organizationa representation for
objects that might in other contexts aso be called cases. The cases can also be data
subsets, clusters, trees, models, processes or anything else, as long as meaningful
similarity/dissimilarity measures between cases can be assessed. Thus the algorithms are
general and can be applied in various settings. An extreme example starts with many

terabytes of satellite data. The resulting geophysical parameters over space and time are

10

aggregated within 5 degree latitude and longitude grid cells of the earth and summarized
as multiple multivariate multi-altitude clusters. These multiple summary clusters for each
grid cell provide the basis for computing the expected distance between cells. This is

used to cluster earth grid cells that are then organized by layout algorithms.

1.3 Organization

In this chapter, the problem and goals have been presented. The rest of the
dissertation is organized as follows. In Chapter 2, background and related methods are
introduced. In Chapter 3, recursive partitioning 2-D layouts and the CAP agorithm are
discussed. Chapter 4 covers the 2-D HOE and HCL algorithms. The extension of the
CAP agorithm to 3-D is presented in Chapter 5. Chapter 6 provides conclusions and

indicates future work.

11

Chapter 2. Background

Severa layout algorithms are used to represent multivariate information in 2-D or
3-D plots. The better known algorithms include multidimensional scaling, spring models,
self-organizing maps, treemaps, dendrograms, and heat maps. Some layouts are designed
for specific purposes. This chapter provides an overview and brief discussion of selected

layout algorithms and related issues that motivate the new agorithms in chapters 3 and 4.

2.1 Singular Vaue Decomposition and Multidimensional
Scaling

2.1.1 Singular Vaue Decomposition (SVD)

SVD is a standard decomposition in numerical analysis. An n x p matrix X has a
SVD of theform X = UDV', where U and V are matrices of orthonormal columns, and D
is a diagona matrix. Conventionally the diagonal elements of D (called singular values)
are sorted in decreasing order. In this case, D is uniquely determined by X. The number
of non-zero diagonal elementsisthe rank of X.

SVD can be used in calculating matrix pseudoinverses, matrix approximations, in

solving linear equations and in least square problems, etc. It finds applications in many

12

fields, such as digital signal processing, image processing and bioinformatics. SVD isthe
foundation of popular statistica methods for dimensionality reduction, including
principal component analysis, factor analysis, correspondence anaysis and
multidimensional scaling. It is also used in latent semantic indexing for documents
anaysis. The dimensionality reduction techniques are highly relevant in the task of data
visualization, since the goa is to show multidimensiona objects in lower dimensional

space.

2.1.2 Multidimensional Scaling (MDS)

Multidimensional Scaling (MDS) is a set of related mathematical techniques that
enable researchers to reveal the ‘hidden structure’ of data sets. MDS has its origins in
psychometrics, where it was proposed to help understand people's judgments of the
similarity of members of a set of objects. Each object is to be represented by a data point
in a multidimensional space. The goal of MDS analysis is to represent assessments of
dissimilarity among pairs of objects as distances between points in a relatively low
dimensional geometrical space, so that the distances between pairs of points have the
strongest possible relationship to the corresponding dissimilarities among the pairs of
objects. Ideally, two similar objects are represented by two points that are close together
in the new space, and two dissimilar objects are represented by two points that are far
apart. Given a dissmilarity matrix with rank p, metric MDS can produce a set of p-
variate points whose Euclidean distance matrix matches the dissimilarity matrix.

Typicaly MDS produces lower dimensional points whose Euclidean distance matrix is

13

an approximation to the dissimilarity matrix based on the Frobenius norm. The
visualization space is usually a two or three-dimensional Euclidean space, but sometimes
it may be non-Euclidean and may have more dimensions. The graphical display of the
similarities among objects provided by MDS enables researchers to explore structure in
low dimensional views.

MDS is a generic term that includes many different specific types and
approximations. Non-metric scaling attempts to preserve the rank order of values in the
dissimilarity matrix, while metric scaling attempts to preserve the dissimilarity matrix.
The number of similarity matrices and the nature of the MDS model can also classify
MDS types. This classification yields classical MDS (one matrix, unweighted model),
replicated MDS (several matrices, unweighted model), and weighted MDS (severd
matrices, weighted model). Y oung (1985) has a more detailed discussion.

The metric MDS originated with Richardson (1938) and was developed and
explicated by Torgerson (1958). Kruskal and Wish (1978) has a readable and brief
introduction to MDS. Borg (1997) gives a comprehensive presentation. MDS has become
agenera data analysis technique and found its applications in scientific visualization and
data mining in diverse fields such as cognitive science, information science, marketing,
sociology, political science, psychology and biology.

With MDS, objects can overplot. Overplotting is a problem in visualization that
should be avoided or kept under control. If the start is a MDS layout of cases, spring
models can be applied to push cases apart, so they are capable of being seen as separated.

Other agorithms such as generdization of Carr’'s (1994a) 1-D nudging algorithms could

14

also be used. Another overplotting avoidance approach puts each case in a different grid
cell and then exchange cases. The use of MDS in this dissertation is to help produce a
good start to layout cases in individual cells, so cases of each cluster are contiguous and

clusters are separated.

2.1.3 Similarity/Dissimilarity Measures for Complex Structures

Often the needs arise to layout general objects as well as individual data points.
The first step is to have an appropriate way of defining similarity (or dissimilarity)
between the objects (cases). Obviously the layout will only be as meaningful as the input
similarities.

There are many ways of measuring similarity/dissimilarity. Gentle (2005) has a
detailed discussion on measures for numeric data, categorical data, and groups of
observations. Often the term ‘distance’ is used loosely and interchangeably with
‘dissimilarity’, even though dissimilarity measures are not required to obey the triangle
inequality, as distance measures do. Distances can be dissimilarities. There are severd
ways of measuring distance. Some common ones are Euclidean distance, maximum
difference, Manhattan distance, binary difference, etc. Hammer, Harper and Ryan (2004)
give 12 indices that can be used to compute the distance matrix. Data are usually scaled
before calculating distances. Measures of similarity include covariance, correlation, rank
correlation, and cosine of the angles between two vectors. Any measure of dissimilarity
can be transformed into a measure of similarity by applying a monotonic decreasing

function.

15

For trees, many people have proposed similarity measures based on the number of
‘changes’ that it takes to transform one tree into another. A ‘change’ is defined as an
addition or subtraction to the branches or splitting variablesin the tree.

Musser (1999) proposed two different measures for comparing trees, both of
which are based on how well the data are fit by the tree:
¢ Correlation between fitted values
¢ Optimal ‘node-matching’

The first measure is simply to compute the correlation coefficient between the
fitted values of two trees. If the correlation is exactly 1, then the two trees are perfectly
correlated. They produce the same fitted values and the partition of the data is the same,
but their dendrograms might be different. A dendrogram is a tree diagram used to
illustrate the arrangement of clusters.

The second measure is based on matching nodes between trees. Each observation
is located in a single termina node in each tree. Node-matching tabulates the number of
observations in both terminal nodei of tree A and in terminal node j of tree B. If the two
trees were identical functionally, then this matrix of counts would be a permutation of a
diagonal matrix.

These two measures can give very different pictures of the similarity between two
dendrograms. It is possible that two dendrograms have mostly similar nodes but having
different fitted values. On the other hand, it is possible for two trees to produce similar

fitted values but the trees could group observationsinto very different nodes.

16

These two measures are not actual distance measures on the structure of the trees
because they are not metrics. A proper distance measure requires that if the distance
between two objects is O, then the two objects must be the same. However, two
dendrograms may have a correlation of 1.0 or they may have perfect node matching, and
still not be identical trees.

When the data set is large, it may not be practical to display all of the original
individual observations. A common approach first clusters the data, then treats the
clusters as cases and finally lays them out in the same way that individual points are laid
out. For this layout purpose, the distance between two clusters needs to be defined. Three
classical ways of defining distance between clustersincludes:

e the minimum distance between a point in one cluster and a point in the
other cluster,

e the average of the distances between the points in one cluster and the
points in the other cluster, and

e the maximum distance between a point in one cluster and a point in the
other cluster.

The hierarchical clustering algorithms using the above three cluster distance
definitions are caled single linkage, average linkage and complete linkage methods
respectively. The single linkage method tends to produce long, stringy clusters, while the
complete linkage method is likely to form more spherical clusters. As a compromise, the
average linkage method is the most widely used (Gnanadesikan and Blashfield et al.

1989).

17

Models or other multivariate objects may motivate the development of new

measures of similarity or dissimilarity.

2.2 Self-Organizing Maps

A sdf-organizing map (SOM, Kohonen's map) is a type of artificial neura
network that is trained using unsupervised learning to produce low dimensional
representation of the training samples while preserving the topological properties. It was
first proposed by Teuvo Kohonen in 1981 as a visualization tool, and has since been
successfully used for the analysis and organization of large data sets in various fields
(Kohonen 1995). The biological analogue is simple: There exists geographical
correspondence of the visual and somatosensory cortices to the respective receptor
surfaces. A topographical projection of the basilar membrane of the inner ear onto the
auditory cortex might exist, but there are many other neural maps in the brain for which
no ordered receptor surface exists. The only possibility remaining is that such abstract
feature maps are formed in a self-organizing process, where the global order in a brain
area emerges from local interactions around the active units during learning. Since an
active cell tends to make its neighbor cells act in a similar way, a continuous map of
different responses will be formed. During self-organization, neighboring neurons in the
map cooperate and code for similar events in the input space, whereas more distant
neurons compete and code for dissimilar events. The objective of the SOM agorithm is
the organization of the input patterns into a topologica structure represented by its

neurons, where the relationships between different patterns are preserved (Hulle 2000).

18

With SOM, high dimensional datasets are projected onto a 1-D, 2-D or 3-D space.
Typicaly, a SOM has a two or three dimensiona lattice of neurons and each neuron
represents a cluster. During the learning process, all neurons compete for each input
pattern; the neuron that is the most similar to the input pattern wins and only the winning
neuron is activated (winner-takes-all). The winner updates itself and the neighbor neurons
to approximate the distribution of the patterns in the input dataset. After the learning
process is complete, similar clusters will be close to each other. Topological ordering
helps in detecting both distinct and similar clusters quickly. The SOM algorithm is
efficient in handling large datasets. It has been used in data mining and exploratory data
analysis applied to large databases of financial data, medical data, gene expression data,
free-form text documents, digital images, human voice analysis, process measurements,
etc. (Toronen 1999, Vesanto 2002).

The SOM cells are typicaly square or hexagon cells in a grid and will not be
empty. The SOM toolbox developed for MATLAB can show the clustering result as a
‘U-matrix’. The U-matrix is constructed from the values of the neurons. Both the distance
between neighboring neurons and the distance of a neuron (defined as the average of the
distances between this neuron and all of its neighbors) are displayed in a U-matrix.

SOM can be viewed being similar to K-means clustering where K is specified by
the number of cells in the layout. Clustering is a two-phase process. determining the
number of clusters and clustering the data. Determining the number of clusters is not
trivial since the characteristics of the data set are usually not known a priori. This can be

accomplished by running the algorithm with varying numbers of clusters and selecting

19

the most appropriate clustering result. Trosset (2005) discusses and compares MDS,
SOM, and K-means clustering.

The agorithm in effect combines clustering with cluster layout and makes the
result hard to interpret in terms of what is known about the separate clustering and layout
tasks. This makes it harder to think about the cluster structure in the data

Hastie et al. (2003) indicate that in SOM, points close together in the original
feature space should map close together on the low dimension manifold, but points far
apart originally might also map close together. Guo et al. (2002) indicated that ‘ subspace
clustering methods such as multidimensional scaling or SOM have two maor
drawbacks: 1) new dimensions (as linear combinations of the origina dimensions) and
result clusters are hard to interpret; 2) they can not preserve clusters existing in different

subspaces.

2.3 Space Filling Layouts - TreeMaps

Researchers have developed many methods for the display of hierarchical
information structures, or for short, trees (cone tree by Robertson et al. 1991, botanical
trees by Kleiberg et a. 2001, treemaps by Johnson and Shneiderman 1991). Trees arisein
a recursive partitioning and agglomerative clustering context. There are two common
conventions to present trees. a straight-line convention and a containment convention.
The classic planar straight-line convention represents nodes as dots and edges as straight
lines connecting the nodes. The containment convention represents nodes as closed

regions with children nodes contained inside parent nodes.

20

The common approach for laying out the result of hierarchical clustering is a
binary tree or dendrogram. A dendrogram is a tree diagram used to illustrate the

arrangement of clusters, typically looks like this:

140
|

120
|

100
|

80
|
VT

Figure 1. A Dendrogram Example

The dendrogram follows the first convention of drawing trees. The common
dendrogram plots cases along one axis and use a second dimension to represent the
hierarchical joining of cases into clusters and the joining of clusters with clusters. Some
variants also use the second dimension to show the distance between clusters that are

joined. There are many options for determining exactly how the cases are put in alinear

21

order while avoiding the crossing of lines in the dendrogram. The dendrogram defaults
that are often used to separately order the rows and columns of microarray heat maps are
subject to improvement.

Dendrograms and other node-and-link diagrams from the first convention have
several problems. The linear ordering of cases limits the number of cases that can be
shown in adisplay. They do not use the available display area effectively: their practical
applicability is limited to small trees with at most a few hundred nodes, when the cut
level changes the tree structure often changes dramatically, cluster size is not obvious,

and the points appearing close in the dendrogram are not necessarily close in space.

While there are approaches that can deal with alarge number of cases by showing
some level of clustering and zooming in on selected clusters, the interest here focuses on
the two-dimensional layouts. The use of two-dimensional layouts for points representing
cases alows more cases to be shown without recourse to summarization in groups. The
containment convention of drawing trees can increase the efficiency of space filling and

reduce the visual complexity.

Treemaps developed by Johnson and Shneiderman (1991) are a space-filling
method of visualizing large hierarchical datasets. It fills recursively divided rectangles

with components of a hierarchy. A typical Treemap looks like this:

22

Figure 2. A Treemap Example

Treemaps follow the containment convention of drawing trees. A treemap works
by creating a nested sequence of rectangles that make up the map. The Slice-and-Dice
algorithm of the original treemap paper (Johnson and Shneiderman 1991) uses parallel
lines to divide each parent rectangle into smaller children rectangles, with the areas of the
sub-rectangles proportional to the number of nodes in the sub-clusters. The orientation of
the partitioning lines (vertical or horizontal) is an option. Squarified treemaps choose the
orientation to be parallel to the shorter sides of the parent rectangle. If the treeis not well
balanced, as often the case when the data has outliers, the proportions can be so extreme
that partitioning creates rectangles with a high aspect ratio caled ‘divers. Slivers-like
rectangles with afew pixels side or even less than a screen pixel side can be problematic
in terms of color perception, the number of pixels of line separation relative to the

23

rectangles, the visualization of the rectangle centroid dots when centroids are displayed,
and the lack of space to show glyphs or text. While a geospatial content is not the closest
of analogies, the context helps reinforce the disadvantage of divers. If we characterize
the land surface of the continental US at one kilometer? resolution grid, the natural grid
system would use 1 kilometer x 1 kilometer grid rather than a grid made up of rectangles
of 1 meter by 1000 kilometers. Conway and Sloane (1999) indicate the merit of round
regions in coding theory context. It is desirable to avoid generating dlivers in the
recursive partitioning of areas into fixed proportions. | and others (Sun and Carr 2005,
Balzer and Deussen 2005, Wattenberg 2005b) have proposed severa aternative layout
algorithms to address this concern by reducing the overall aspect ratios.

The further developments of Treemap layout include Nested Treemaps (Johnson
and Shneiderman 1991), Treemaps for Interactive View (Wills 1998), Clustered
Treemaps (Wattenberg 1999), Cushion Treemaps (van Wijk and van de Wetering 1999),
Squarified Treemaps (Bruls et a. 2000), Modifiable Treemaps (Vernier and Nigay 2000),
Ordered Treemaps (Shneiderman and Wattenberg 2001, Bederson et al. 2001), etc. These
variations improve different aspects of the original Treemaps, but are still restricted to a
rectangular display area and the two axis-aligned partitioning directions.

As Wills (1998) indicates, the points representing cases in a two-dimensional
space can be used in linked brushing (Becker and Cleveland 1987, Chen 2004, Martin
1995, Bartram and Ware 2002) to other graph representations for more detailed study.

The other representations can include paralel coordinate plots, scatterplot matrices,

24

maps, and so on. Linked brushing is a very important tool for exploring multivariate data
and identifying patterns and relationships among variables.

Another way to encode a few variables is to plot glyphs such as stars at the
centroid of the cells in the space filling layout. If the cells in the cluster layout have too
little area or are too thin, there is inadequate space for plotting glyphs. The aternative
algorithms developed here that produce round and compact cells have merit in the glyph
plotting context.

Wills (1998) describes a 2-D point layout algorithm to visualize the results of a
general hierarchical clustering algorithm. The basic idea is to represent the cases
belonging to a cluster as points inside a rectangle. His layout of case-representing points
allows the rectangles to be drawn for any level of the hierarchica clustering without
changing the position of points. The algorithm method starts with a specified rectangul ar
area and recursively divides each rectangle into two smaller rectangles. The relative areas
of the two rectangles are chosen to be proportiona to the number of cases in the two sub-
clusters being represented. Hierarchical clustering sequentialy joins two clusters
(including single case clusters) into one cluster so the process can be represented as a
binary tree. Reversing the process, the algorithm starts at the root of the tree which
represents a single cluster with all cases, determines the number of cases associated with
the two sub-trees and repeats the process for subsequent sub-trees. When a rectangle
contains just one case from aleaf node of the tree, the case is plotted at the center of the

rectangle and there is no further partitioning of the rectangle. The agorithm partitions the

25

longer side of the rectangle in the effort to produce rectangles that are closer to squares.
Nonethel ess the algorithm can produce dlivers.

Consider the case of starting with a 1280 x 1024 rectangle corresponding to pixels
on amonitor and consider a layout involving 6000 cases with one extreme outlier that is
joined with the rest of the cases at the very last step of the hierarchical agglomeration.
Splitting the long side of the rectangle yields two rectangles, one with width 1280 x
5999/6000 and one with width 1280/6000. The latter rectangle is a siver roughly 1/5
pixel wide and 1024 pixelstall. Of courseit is possible to use approximate splits based on
integer pixels or even to use three pixels so the resulting point will be inside a rectangle
rather than on top of a one pixel width rectangle. While not all clustered datasets will
produce divers, slivers happen often enough to be troublesome. Why not partition so a
corner of the rectangle contains the outlier? This question leads to the idea of partitioning
lines at more angles than just multiples of 90 degrees and not limiting the partitioned area

to rectangles, Sun and Carr (2005).

2.4 Spring Models

A graph G is defined as a set of vertices (or nodes) V connected by a set of edges
(or links) E. Various algorithms have been developed to draw graphs (Di Battista 1998,
Tamassia et al. 1988). The most widely known graph drawing techniques include spring-
embedder algorithms and force-directed graph drawing algorithms (Eades 1984). The
goal is to optimize the nodes arrangement in space such that strongly connected nodes

appear close to each other, and weakly connected nodes appear far apart. This layout
26

process is a key topic in the graph drawing community. The strength of connections
between nodes can be based on various similarity measures.

Network visualization is a mgor line of research in information visualization and
graph drawing is an established field that investigates how to draw a network using the
node-and-link representation in compliance with aesthetic criteria. Often large network
needs to be pruned or divided into smaller parts to reduce its complexity before
visualization. The pruning can be accomplished by reducing the number of links using
minimum spanning trees or other methods.

The spring-embedder model was originaly developed by Eades (1984) and now
is one of the most widely used algorithms for drawing graphs. The ideais to connect each
pair of nodes with a spring. The spring is associated with attractive forces (calculated
only for neighboring nodes) and repulsive forces (calculated for al pairs of nodes),
according to the distance or strength between the nodes connections. The approach
involves simulating pair-wise repulsive forces and attractive forces, pulling them closer
together or pushing them further apart. This is repeated iteratively until the system
reaches equilibrium.

Force-directed layout algorithm developed by Fruchterman and Reingold (1991)
is a significant enhancement of the spring-embedder model using a different method to
calculate the forces. Its unique feature is that all the nodes are moved together, making it
possible to reach configurations that are not necessarily the current local minimum. A
homogeneous model is commonly assumed. In such a model, the strengths of attractive

and repulsive forces depend on the distances between nodes. They do not depend on

27

properties of individual nodes or weights of individual edges other than through global
constants.

These algorithms have many advantages, one of them is that it requires no
specific knowledge of graph’s properties. They produce good quality results while being
flexible, ssimple, intuitive and interactive. These algorithms are reliable general-purpose
tools for graph layout applications and are widely used to obtain 2-D and 3-D layouts for
undirected graphs.

Davidson and Harel (1996) describe how simulated annealing is applied to graph
drawing. The simulated annealing model is oriented to the physical process of annealing,
which often leads to very regular structures (e.g. like crystals). A global energy level is
computed for a graph which is the sum of all energy levels of the nodes. The energy level
at a node is determined from the forces acting on it, much like the elongation of the
springs. The spring-embedder aims to minimize the global energy level by moving the
nodes in the direction of the forces.

Simulated annealing is a flexible optimization method. It typically starts with a
randomly chosen initial configuration and repeatedly reduces the value of a cost function.
The algorithm differs from the standard greedy optimization methods by allowing
‘“uphill’ moves. It is a necessary process to avoid being trapped at a loca energy
minimum in order to reach a global minimum. A key element is the choice of the cost
function.

Sun, Smith and Caudell (2003) give a low complexity force-directed tree layout

algorithm based on Lennard-Jones (LJ) potential that is widely used in computational

28

chemistry to simulate the interaction between two atoms or molecules. The recursive
method follows the containment convention of drawing trees. It lays out each node of the
tree as a disk. Each child node is contained inside its parent disk. Each node recursively
contains all of its descendants. The children inside each node were positioned based on

the total forces exerted on them. The layout looks like this:

@

Figure 3. A Force-Directed Tree Example

This layout reflects both global structure and local details and supports run-time
insertion and deletion. It is aso visually appealing. The LJ potentia plays the key rolein
avoiding overlaps. However, as circles do not form a tessellation of 2-D space, much
space among the circles was not used. Also, it is not straightforward to define neighbors

for circles.

29

Eick and Wills (1993) described an approach of placing nodes on the plane in the
field of exploratory visualization of networks where there is a strength or weight
associated with each link. Instead of using a pre-defined location, or using alayout purely
to reduce clutter, they presented a method which positions nodes such that the distance
between nodes is related to the strength of the link between them. Let d;; be the displayed

link length, and w;; be the weight of the link; they elected to minimize the function
1, (dij W; _1)2
W, ——) =) —————
Z(ij d”) z d”2
This idea can be used in a layout problem. Once distances between clusters are

defined, they can be treated as nodes and positioned on the plane, such that close clusters

stay close. The same approach can be applied to sub-clusters as well.

2.5 Equally Spaced Rank Ordering

Seriation is a data analytic tool for finding a permutation or ordering of a set of
objects using a data matrix (symmetric or asymmetric). The effect is to produce an
equally spaced rank ordering. In the 19" century, archaeologists and prehistory
researchers used seriation as a dating technique for ancient objects that are described
using certain attributes. More recently, Marcotorchino (1991) discussed several aspects of
the seriation problem including the problem setting, methodology and algorithms. There
are two agorithms: constrained and unconstrained optimization. In constrained
optimization, only rows are allowed to move. In unconstrained optimization, both rows

and columns are free to move. Brower and Kyle (1988) describe a seriation algorithm.
30

Let theinitial matrix be T, the set of objects be | and the set of variables be J. The
basic principle of uni-dimensional seriation is to reshape T, with a permutation of |
together with a permutation of J, such that there is a maximum density of high cell values
along the diagona of the resulting T’, in addition to low value areas in the upper and
lower parts, or only the lower part of T'. This seriation process helps reveal the embedded
latent structure. Bertin (1983) presents an example diagram. This method works well for
small datasets. It could run into serious problems when applied to large datasets. Streng
(1991) discusses classification and seriation by iterative reordering of a data matrix.
Marcotorchino (1991) discusses block-seriation methods, the unified approach of block-

seriation and its generalization.

2.6 Other Graphical Layouts

2.6.1 Hexagon Binning

Hexagon binning promoted by Carr et al. (1987) serves as a form of bivariate
histogram to visualize the bivariate density structure in datasets with large n. In the data
density context it serves to address point-overplotting problems and the use of bin
summaries can speed up computations. Binning can aso provide symbol congestion
control in the mapping context and provide space for plotting glyphs. Carr et al. (1992).
The underlying concept of hexagon binning is simple: 1) the plane is tessellated by a
regular grid of hexagons; 2) the number of points faling in each hexagon is counted; 3)

the hexagons are plotted using color classes or varying sizes in proportion to the counts.

31

The hexagonal bins are preferable over rectangular or square bins for their visual appeal

and representational accuracy.

2.6.2 Tessellations

A tessdllation or tiling of the plane is a collection of plane figures that fills the
plane with no overlaps or gaps. One may also speak of tessellations of the parts of the
plane or of other surfaces. Tessellation generalizes to higher dimensions. Tessellationisa
basic algorithm in computational geometry with many applications. The most commonly
used tessellations are VVoronoi tessellation and Delaunay triangulation.

The Voronoi (or Dirichlet) tessellation is one of the most popular tilings in
scientific graphics. Each pair of points is separated by a boundary based on the
perpendicular bisector of the line segment joining the points. Voronoi tessellations enable
the partitioning of an m-dimensional space without producing holes or overlaps.

The Delaunay triangulation is a dua graph of the Voronoi tessellation for the
same set of points. Delaunay triangulations maximize the minimum angle of al the
angles of the trianglesin the triangulation; they tend to avoid "dliver" triangles.

Balzer and Deussen (2005) developed Voronoi Treemaps to address the ‘dliver’
problem in treemaps. The agorithm starts with Voronoi tessellation of points within a
fixed polygon. The points are iteratively moved and tessellated to make the areas of their
containing Voronoi regions closer to the targeted relative areas until a convergence
criterion is met. The algorithm can be re-applied to the individua fixed polygons

produced by a Voronoi treemap to produce nested Voronoi treemaps. Voronoi Treemaps

32

are visually appealing. They can preserve the nested cluster property of Wills agorithm.
They are not conveniently structured to support reallocation based on the inclusion of

white space to separate clusters.

2.6.3 Cone Trees

Cone tree was introduced by Robertson et a. (1991). It is a three-dimensional
representation of hierarchical information. The hierarchy is presented in 3-D to maximize
the effective use of available screen space and enable visualization of the whole structure.
The node of the tree is located at the apex of the cone and its children are arranged
around the circular base of the cone in 3-D. Each cone is shaded transparently so that it
can be perceived yet not block the view of cones behind it. Moreover, cone trees provide
dynamic views - any node can be brought to the front by clicking on it and rotating the

tree.

2.6.4 Botanical Visualization

Kleiberg et a. (2001) propose a botanical visualization of huge hierarchical data
structures. The method is based on a simple observation that people can easily see the
branches, leaves and arrangement of a botanical tree in spite of the large number of these
items. The agorithm is based on botanical modeling to convert an abstract tree into a
geometric model. Non-leaf nodes are mapped to branches and child nodes to sub-

branches. The Kleiberg et a. (2001) paper gives an example of laying out a directory

33

structure of 47,551 files and 2,265 folders. The botanical trees are innovative in design

and visually intriguing, but their practical value remainsto be seen.

2.6.5 Self Similar Layouts

Koike and Y oshihara (1993) describe fractal tree layout algorithm that addresses
the problems associated with visualizing huge hierarchies. The geometrical characteristic
of afractal, self-similarity, allows users to visualy interact with a huge tree in the same
manner at every level of the tree. The fractal dimension is a measure of complexity that
makes it possible to control the total amount of displayed nodes. Fractals are very useful
in network evolution visualization. One of the most intriguing studies of the relationship

between fractals and networks is due to Pickover (1988).

2.6.6 Space-Filling Curves

The subject of space-filling curves has generated a great deal of interest since the
first such curve was discovered by Peano over a century ago. An N-dimensiona space-
filling curve is a continuous function from the unit interval [0,1] to the N-dimensional
unit hypercube [0,1]". In particular, a 2-D space-filling curve is a continuous curve that
passes through every point of the unit square. A space-filling curveistypically defined as
the limit of a sequence of curves.

In a space-filling curve, a line passes through every point in a space in a particular
order, according to an algorithm. The curve passes through points only once (i.e. the

curve doesn’t self-intersect), so each point lies a unique distance away from its beginning

34

along the curve. Thus a space-filling curve imposes a linear order of the cells in the N-
dimensional space. This is useful in sorting of objects that lie in the multidimensional
space.

There are many types of space-filling curves, eg., Peano’s, Sierpinski’s,
Hilbert’s, Lebesgue’'s, Schoenberg's, etc. They differ from each other in the way they
visit and cover the pointsin space. See Sagan (1994).

Wattenberg (2005) constructed a layout called jigsaw map combining the notion
of space filling curves and treemaps. It satisfies four desirable properties of a layout
function, namely nicely shaped regions, stability with regard to changing leaf values,
stability with regard to changing tree structure, and preservation of ordering information.
It maintains decent aspect ratios. However, the decoding of a jigsaw map is not

straightforward and the appearance is not very visually appealing.

2.7 Discussion of Graphical Issues

2.7.12-D vs. 3-D

3-D display usualy refers to 2-D perspective projections of 3-D environments.
These 2-D projections may also include other pictorial depth cues, such as lighting model
based shading of 3-D surfaces. The best-known example for 3-D visualization of trees is
the cone tree of Robertson et al. (1991), refined and extended by others to display larger
structures. The hope is that the extra dimension would give more space and a richer

environment for cognition.

35

The first quantitative estimate of the benefits of 3-D stereo viewing for perceiving
graphs was made by Ware and Franck (1996). They found that people performed better in
3-D than in 2-D. Ware and Mitchell (2008) conduct further experiments to study graph
comprehension using a very high resolution stereoscopic display. The results show a
much greater benefit for 3-D viewing than previous studies.

In Tavanti and Lind’s paper (2001), they summarized the theoretical conclusions
of some previous studies of 3-D displays, including Cone Trees and Data Mountain, as
follows:

e 3-D displays can be exploited to visualize large sets of hierarchical data;

e The perspective nature of 3-D representations makes it possible to show
more objects in a single screen, with objects shrinking along the
dimension of depth;

e If moreinformation isvisible at the same time, users gain a global view of
the data structure;

e There is experimental evidence that 3-D ‘ecologica’ (more realistic and
natural) layouts enhance subjects spatia performances.

Tavanti and Lind (2001) performed two tests to compare the performances of 2-D
display vs. 3-D display. The displays used in the experimental situation represented
hierarchical information structures. The 2-D tree consisted of 27 rectangles, divided into
four nodes and articulated into four levels of depth with dashed lines connecting the
rectangles to signify the nested structure of the tree. The 3-D tree was composed of a

window whose size corresponded to the visible part of the 2-D window. The tree aso

36

consisted of 27 rectangles, divided into four nodes and articulated into four levels of
depth. The difference is that the nested structure of the tree was expressed in terms of
depth, so that higher levels were represented by larger rectangles while deeper levels
were represented by smaller rectangles. The task is for subjects to click on the rectangles
in any order to uncover all the characters associated with each rectangle and memorize as
many characters positions as possible. Two measures were used to evauate the
performance: The number of correct responses and the association of a character to the
correct depth level in the tree. The test results showed that the 3-D display did improve

performances in this designed spatial memory task.

2.7.2 Glyph

A glyph is a graphical object designed to represent multiple data values at once.
To create a glyph, multiple data attributes are mapped in a systematic way to show the
different aspects of the appearance of the graphical object, such as position, orientation,
color, size, shape, texture or other features of a glyph (Ware, 2004).

Commonly used glyphs are Chernoff faces (Chernoff 1973), star plots, Exvis
sticks, whisker plots, time series, histograms, profile plots, line-height plots, etc. For
glyphs to be seen easily, they must stand out clearly from all other objects around them
on at least one coding dimension. For example, a large symbol will stand out among
small symbols, or a red symbol will be easily seen among yellow ones. Forsell (2005)
explored and discussed the construction of 3-D glyphs for the visualization of spatial

data.

37

The appropriate design and application of glyphs enables researchers to view the
layout of the whole case set and zoom in to check the details of certain cases of interest.
When possible, it is very important to have an overview of the cases. This allows the
detection of overal patterns and aids in deciding the next move. A genera heuristic of
visualization design is to start with an overview and alow the users to access details as
they choose. Shneiderman (1996) indicated, “overview first, zoom and filter, details on
demand’. In the information visualization community, dynamic interactive linking and
progressive disclosure are considered very important in exploratory data analysis and
knowledge discovery. In the statistics community, overviews are often based on
statistical summaries. My focus is on overview layouts that facilitate the inclusion of
glyphs and links that lead to revealing object details. The glyphs or cells containing links

may represent statistical summaries as opposed to individual cases.

2.7.3 Other Graphic Issues

Color is one of the effective attributes for associating categorical subdivisions
with quantitative values. Color works equally well with points, lines and bars, as long as
the object is not so small that users must strain to distinguish the colors. Appropriate use
of color for data display allows relationships and patterns within the data to be easily
observed. The careless use of color will obscure these patterns. Brewer (1994) described
guidelines of color usage for mapping and visualization. There is aso an online tool at

www.colorbrewer.org for selecting specific color schemes.

38

http://www.colorbrewer.org/

Tufte (1983, 1990, 1997), Kdler (1993), Grinstein and Levkowitz (1995) and
Ware (2004) contain useful and interesting discussions on color usage, as well as other
important graphical design issues.

Many other considerations are worthy being mentioned briefly here, such as the
advantage of perceptua grouping, the ways to label the plots, the usage of gridlines, etc.
Much literature can be found on these topics (Cleveland 1993, Cleveland and McGill

1984, Wilkinson 1999, Carr 1994a, 1994b, Kossyln 2006, etc.)

39

Chapter 3. Recursive Partitioning Layout in
2-D to Produce Round Regions

In this chapter | first introduce Wills' (1998) rectangular recursive partitioning
algorithm for clusters. Then | extend this by adding gaps to visually separate clusters at
each level of partitioning. The occurrence of very thin rectangles that | call ‘divers
motivates the Compact Area Partitioning Algorithm (CAP) that | developed to
recursively partition a convex polygon into round polygons for containing the cases. The
more compact, round polygons avoid slivers and can better accommodate glyphs or links
to be used in tasks such as linked brushing. Additionally, I introduce the AIRS dataset
and two specia star glyphs to be plotted in the round regions. The methods are illustrated

with examples.

3.1 Augmenting Treemaps Designed to Show Clusters

In section 2.3, | introduced Wills rectangular cluster layout (Wills 1998) that
motivated portions of this research. He recursively divides rectangular areas based on a
cluster tree to provide 2-D plotting coordinates for points. Drawing rectangles and sets of
points can show the clusters at any level of clustering without moving points. Wills

shows an example with 40,000 points representing zip code regions. He indicates “the
40

linking both to and from the cluster view allows users to explore the clusters with respect
to other variables and see if there are additional interesting dependencies.” Figure 4 isan
example of applying this agorithm to an ACE (Angeotensin-Converting Enzyme)
Inhibitor dataset. The variables of the data are chemical properties of compounds and are
coupled with measures of biological activity. This data was put together by Stan Y oung.
The focus remains on the layout algorithm, so | omit further dataset details. After laying
out the compounds, the placement of biologically active compounds in cluster nodes are
highlighted in red. The cluster view shows that the active compounds concentrated in a
few clusters. The encoding of biologica activity turns the plotted points into the most
elementary form of a glyph. The study of alinked scatterplot matrices that highlights the
properties of active compounds has the potential to shed insight into the property

boundaries between active and inactive enzymes.

41

AGCE: Case Cluster Layout
Red = Active

Figure 4. Rectangular Recursive Partitioning of ACE Data

When making the splits, white space (gaps) can be added between sub-areas to
show the separations. The width of the gap can be a monotonic function of the
dissmilarity between the two sub-clusters. This helps researchers see how far sub-
clusters are apart. The separation “distances” is typicaly secondary to showing
hierarchical cluster membership. | limit the gaps to two or three distinguishable sizes.
Factor of 2 size differences are easily distinguished (Kosslyn 1994), thus there are
distinctive separations rather than continuous separations. When the distance falls below
athreshold | stop showing separations. However, the partitioning continues until there is

only one case in each rectangle. The centers of the rectangles provide location to plot
42

points or glyphs. This partitioning procedure alows lines to be drawn at any level of

clustering without moving the points.

ACE: Case Cluster Layout

Taeee Sliver
-n:/

Figure 5. The Rectangular Layout with Gaps

Figure 5 shows the rectangular layout with gaps added. The first cut is the thick
vertical whiteline. The second cut is athick white horizontal line on theright. Thereisa
‘diver’ at the bottom right of the top right rectangle created by these two white lines. The
rectangular region is too thin to show in gray, so a single dot is plotted as labeled in

Figure 5. There are other cases of ‘long-thin’ areas, for example, the vertical areato the

43

right of the first cut at the top of the plot, and the horizontal area at the bottom left. The
example at the end of section 2.3 discusses an extreme outlier situation.

The subtraction of area for white space can alter the area available to plot points
and make the point density less uniform. A more sophisticated algorithm could cut
rectangles into three pieces, alocating white space rectangle in the middle of the two
rectangles for sub-clusters. Iteration could refine this by adjusting the relative sizes of the
rectangles for sub-clusters based on the amount of white space they contained in the
previous iteration.

A 3-D lighting model can be applied to create 3-D effects to further visually
convey the idea of separation. Carr and Sun (1999) discuss the usage of alighting model
in plots to add value to the appearance. The lines can be changed into grooves with
different depth and a lighting model applied to make the gray rectangles appear on
plateaus of different heights. See Figure 6 below. Getting the groove intersections to ook

exactly right requires some experimentation and better views are possible.

AGE: Case Cluster Layout

Figure 6. The Rectangular Layout with 3-D Gaps

3.2 Compact Area Partitioning (CAP) Algorithm
To produce more compact polygons to surround the cases and rounder regions for

glyphs and links, | introduce three extensions to Wills' algorithm.

1. | provide the option to start with a plotting region other than a rectangle.
Starting with a rectangle seems generally preferable for optimal use of a
rectangular display space but flexibility suggests being able to start with a

more compact polygon such as a hexagon.

45

2. | use partitioning lines at multiples of 60 degrees as well as multiples of 90
degrees. The 60 degree matches the angles used in hexagons. Since the
region being partitioned is a convex polygon, more bookkeeping is
required than with rectangular regions. | use iterative bisection method to
locate the position of a cutting line that partitions the polygon into two
sub-polygons with the areas proportiona to the number of cases in the
sub-clusters. The areas are calculated using determinants. Note that after
the first cut, the convex polygon to be partitioned in each step is rarely
symmetric. Consequently, for each cutting direction, there are two cutting
positions that yield areas with suitable relative sizes. | calculate both
cutting positions for each direction. The number of options to choose from

is twice the number of unique cutting directions.

3. To determine which pair of sub-polygons to select in terms of roundness, |
calculate the dimensionless second moment about the polygon centroids
(Conway and Sloane 1999) and pick the pair with the smallest sum of
dimensionless second moments. The criterion borrowed from coding
theory provides a measure of “roundness’ with circles and spheres having

the smallest valuesin 2-D and 3-D respectively.

To avoid getting infinity from tangent of right angles and for calculation
simplicity, | rotate the hexagon by 15 degrees. | consider cutting lines from six directions.
Three directions are the same as the sides of the hexagon, and the other three directions

are perpendicular to the lines connecting the center and hexagon vertices. This can be

46

generalized to any convex polygon and provides the option of cutting a corner of the

polygon to form a ‘rounder’ areathan along, thin rectangle.

Figure 7. The Recursive Partitioning of a Hexagon

Figure 7 shows the results of applying the CAP agorithm to the same ACE
dataset starting with a hexagon. The red lines indicate the levels of clustering. The dliver
that appeared in the previous rectangular layout is assigned a triangle corner in this new
layout, which is a ‘rounder’ areato accommodate a glyph or a link. The result somewhat

looks like acity map and | find this a more aesthetically pleasing layout than rectangles.

47

| presented the algorithm and result at the Joint Statistical Meetings in 2005 (Sun
and Carr 2005). We conjecture that the close points tend to be better and more uniformly
separated than using a rectangular layout but do not have a proof. If our conjecture is
true, the layout would be preferable for drawing round star glyphs at each point. To the

extent that the CAP algorithm avoids dlivers, it is clearly preferable.

There can be problems with the visualization of algorithmic results and algorithm
speed. All algorithms will fail in terms of direct visuaization when there are too many
points for the available plotting space. S-PLUS and R scripts take alittle time to run. The

current implementation in C is very fast.

3.3 An Multivariate Atmospheric Data Example with
Enhanced Star Glyphs

This layout-with-glyphs example uses cluster summaries produced from AIRS
data. The AIRS data refers to the massive dataset that is collected by the Atmospheric
Infrared Sounder (AIRS) which is an instrument onboard the polar-orbiting Earth
Observing System Aqua satellite. The AIRS instrument is a high resolution spectrometer
with 2,378 bands in the thermal infrared spectral region (3.74 - 15.4 micrometers) and 4
bands in the visible spectra region (0.4 - 1.0 micrometers). It measures Earth's
atmospheric parameters around the globe. All data are released to the public. “Currently
researchers are using AIRS data products to validate climate models and to test their

representations of critical climate feedbacks.” (http://daac.gsfc.nasa.gov/AIRS).

48

The Level 1 processing of this data handles geospatial and radiometric calibration.
Level 2 processing converts this to geophysical parameters such as temperature, water
vapor and cloud fraction. Level 3 processing produces summaries on equal angle grids of
the earth. Many terabytes of data are involved.

This data was formerly studied by Amy Braverman and Eric Fetzer (Braverman
and Fetzer 2006) from Jet Propulson Laboratory (JPL), Cadlifornia Institute of
Technology. They used the data for each 5° x 5° latitude and longitude cells of the earth
and applied an Entropy-Constrained Vector Quantization (ECVQ) algorithm to produce
multiple multivariate multi-altitude cluster summaries for each grid cell. ECVQ can be
understood as a clustering algorithm similar to K-means algorithm that includes an
entropy constraint allowing it to provide fewer clusters when aquality criterion is met.

Each cell contains 240 granules per day; each granule is 90 x 45 footprints; and
each footprint is associated with one 35-dimensional data vector with the following
components:

e Atmospheric temperature at 11 vertical levels (1-11),
e Atmospheric water vapor at 11 vertical levels (1-11),
e Cloud fraction at 10 vertical levels (1-10),
e Land fraction of footprint,
e Day/night flag, and
e Quality flag.
The input to ECVQ is al 35-dimensional data vectors with footprints inside each

cell, and the output from ECVQ is a set of representative vectors of clusters and their

49

associated weights and distortions (average sguared distance between original and
representative vectors).
The earth equal angle grid consists of 5° x 5° cells, and there are 36 latitude rows
and 72 longitude columns. The data used in the following example is a subset of the 2002
winter data, where latitude grid cell numbers are from 18 to 23, and longitude grid cell
numbers are from 60 to 65, thus it covers a 30° x 30° area. The data includes 382 cases,
where each caseis an ECVQ output representative vector of one cluster within agrid cell.
This particular summary for 36 grid cells has an average of a little over 10 clusters per
cell. | selected the following variables for the representation using glyphs:
e Temperature at 11 vertical levels,
e Water vapor at 11 vertical levels,
e Cloud fraction at 9 vertical levels,
e Land fraction, and
e Day/night flag.
| exclude the cloud fraction at level 2, since amost all of the values for this
variable are zero. The variable ‘quality flag' is also excluded. Figure 8, 9 and 10 show

boxplots of the distributions of the altitude specific variables.

50

o
o — —
™
- —/
. . —
[
o o — = [- |
@ —| - = : —
= L :
o = E =
c — ;
= = —
© — [- |
4 .
v < = —
1) O — = 1
s « .
[} L
) =
. =
o _
—_ —
2 - =
8 = _
@ =
o ==
S u
g i
o
QA
N =
=
—]
8
«

1 2 3 4 5 6 7 8 9 10 11

Altitude Level

Figure 8. Boxplots for Temperature Variables

The median temperatures decrease as the atitude level increases. Except for the

highest atitude, most outliers are associated with lower temperatures. The inter-quartile

ranges (IQR) shown in color tend to be distinct for the different atitudes, although alittle

overlap between altitude levels 2 and 3.

51

20
|

f T
o :
2 1y :
© o :
[a :
(o))
£ . _
X :
> : man|
0 f :
(] . !
S o _| : : :
= — : : 1
| : : :
% = : : B
> — : 3 o
) : . :
= L

i I —
[=

1 2 3 4 5 6 7 8 9 10 11

Altitude Level

Figure 9. Boxplots for Water Vapor Variables

Similar to the temperature variables, the median water vapor values decrease as

the altitude level increases. Water vapor values at altitude levels of 9, 10 and 11 are close

to zero.

52

=

]
]
1
[
]|

]
J

]
N
B 5
]
L

-

Logarithm of Cloud Fraction
6
|
|
N
[T

[T

[HEE T I

1
I
[

3 4 5 6 7 8 9 10 11

Altitude Level

Figure 10. Boxplots for the Logarithm of Cloud Fraction Variables

Since there are many high values for the cloud fraction distributions, | use the
logarithm of the cloud fraction in the boxplots to provide a more symmetric appearance.

| cluster the multiple vector summaries (cases) for the grid cells to provide a
cluster hierarchy for the layout of these cases. The clustering involves scaling the 33
variables to have mean 0 and standard deviation 1. The agglomerative clustering
algorithm uses the Euclidean distance among the scaled variables. Figure 11 shows the
result of applying the CAP agorithm to this hierarchical structure. The layout differs

from the layout of Figure 7 in that it shows al the final polygons containing a single case.

53

Figure 11. Round Polygon Layout for AIRS Data

The goa of showing many variables with a symmetric encoding using this layout
motivates the development of new glyphs. | begin the discussion of new star glyphs with
related glyphs for rectangular regions. The beginning glyph of interest has informally
been called a comb glyph. It is basically a bar plot with lines as bars and a line that
connects the base of the bars. Carr et al. (2000) discuss this as aline height plot and use it
to show 159 variables. Importantly they both sort the variables to simplify appearance
and add grid lines to improve the accuracy of assessing line length based on Weber's

Law (Cleveland 1994). (For AIRS data the variables are ordered by altitude level, so

54

reordering the variables has less merit in this setting.) When there are fewer and more
widely spaced lines, the line height glyph can be converted into a profile glyph. Figure 12
illustrates the general idea. Profile glyphs for a small number of variables can fit within
the rectangular portions of a hexagon layout. In genera, it seems more natura to put
round glyphs (e.g., star glyphs) in round polygons, such as hexagons or the polygons of

Figure 11.

Figure 12. A Profile Glyph Example for 15 Variables

Many variants of the star glyph aso use line lengths to encode values. The lines
radiate out of a center point and typicaly appear at equally spaced angles. Figure 13

shows an example.

55

Figure 13. A Star Plot Glyph Example

The common scaling for comb and profile glyphs linearly scales the variable
range into the interval 0 to 1. The lines with longer length tend to draw more visua
attention than very short lines, including those of length O that encodes the minimum
value of a variable. Readers may even wonder if there is missing value. The star glyph
with many lines has an additional overplotting problem that can hide short lines near the
origin.

| create two variations of star glyphs that provide a more symmetric treatment of
small and large values with both being encoded using long lines. The designs use short
lines to show values in the middle of the distribution, so the middle of the distribution
gets less visua attention and some patterns can be hidden by overplotting. Thus these two
glyph variations are primarily of benefit for observing both small and large values and for
the appeal of symmetry. Figure 14 and 15 show the two new glyph variations called

‘signed deviation’ and ‘folded deviation’ star glyphs respectively.

56

Figure 14. Signed Deviation Star Glyph

<

Figure 15. Folded Deviation Star Glyph

Both designs use reference circles in the background as a carry over from the use
of grid lines in line height plots as mentioned above. For both glyphs, the common

encoding first transforms the variables to have mean 0 and variance 1, and the reference

57

circles are drawn for 1 and 2 standard deviations. The glyph size is a scale factor chosen
so that the line lengths are in a reasonable range to stay mostly within the polygons and
not overplot on the other glyphs too much. Plotting dots on the 1 standard deviation
reference circle can help with the aignment to identify variables that are displayed as
very short or missing rays.

Other transformations can be chosen to address specific tasks. For example, a
power transformation preceding the glyph scaling can provide a more symmetric
distribution. Robust transformation based on the median and inter-quartile range (IQR)
may be used to reduce the impact of outliers on the transformation. The extreme values
can be Winsorized to allow a larger glyph scale factor. The Winsorized values can be
highlighted by plotting dots at the line ends to draw attention. Rather than transforming
variables individually, the transformation may be applied to composite of al variables
with the same unit of measure. Such star glyphs would primarily show altitude level
effects on temperature rather that the deviations within a given atitude. The same applies
to the variables of water vapor and cloud fraction.

The design for the signed deviation star glyph in Figure 14 generates p+2 angles
from O to 180 degrees, where p is the number of variables. It uses the angle of 0 and 180
to form a horizonta reference line. Carr et a. (1992) find angular grid lines helpful in
decoding bivariate ray glyphs more accurately where values (as opposed to variable
identity) are encoded using angles. Here the horizonta lines help distinguish between
variables with positive and negative values. Trosset (2005a) uses an angular encoding

that goes in both directions.

58

The rays go counter clockwise starting from the 3 o’clock position. Red rays are
the eleven temperature variables; blue rays are the eleven water vapor variables; green
rays are the nine cloud fractions; the remaining two purple rays are land fraction and
day/night flag. The values above means are shown above the horizontal line, and values
below their mean are shown below the line following the corresponding direction. For
example, the red lines on the left side above the reference line are the temperature
variables from high altitudes, while for negative scaled values shown below the reference
line, the red lines on the left actually correspond to the right side above the line had their
values being positive, thus represent variables from low altitudes. This involves more
mental effort to identify variables, and motivates the second design.

The design for the folded deviation star glyph in Figure 15 generates p+1 angles
from O to 360 degrees, where p is the number of variables. Same as in the signed
deviation star glyph, color encodes variable categories. Within each variable group, the
glyph uses two levels of the group’s color to encode the positive and the negative values -
the dark color represents positive values and the light color shows negative values. The
length of the ray for each variable is the same as in the signed deviation star glyph.

Figure 16 is the round polygon layout of AIRS data with the signed deviation star
glyphs. The glyphs are allowed to overplot alittle to improve the resolution. We can see
the partitioning of the groups and that glyphs in the same group have similar appearances.
This can serve as a visua validation of the clustering algorithm and we can identify
outliers at the corners of the area, as indicated. The highlighted portion was enlarged and

shown in Figure 18.

59

Land fraction
0.87 - outlier

Several cases of large ey e
cloud fraction 3 S
S

Temperature

Water vapnor
Cloud Fraction

Land fraction / Dav Niaht

Outlier in various dimensions

Figure 16. Round Polygon Layout with Signed Deviation Star Glyphs

The outliers at the high end of the water vapor variables shown in the boxplots in
Figure 9 belong to the case located at the bottom of this layout and marked with ‘Outlier
in various dimensions'. The three outliers in variable ‘cloud fraction 3' shown in the
boxplot in Figure 10 were put in acorner at the left side of Figure 16. Many long red rays
are below the horizontal line, which is expected because the boxplots in Figure 9 show

that most outliers are associated with low temperatures. By linking the overview layout in

60

Figure 16 with other statistical plots or summaries, users can have a better understanding

of the data.
The longer cutting lines in Figure 16 help to reveal clusters. Figure 17 shows the
same round polygon layout without the separating lines. Some clusters are evident from

the star glyphs.

61

5‘ e B & iRs
\‘>‘ \}‘Faﬁw*ﬁ Fyyyyv‘?{
};\(\‘f* Y—*—“v—‘t—\/*v;(7
ro, ’f)#\f*y)(\l(%*\‘

Figure 17. Round Polygon Layout with Signed Deviation Star Glyphs Omitting
Separators

The plot barely shows green lines in the negative directions. This is because there
are very many cloud fraction values near zero, whose deviations from the mean are

negative and small compared to the variations of larger values. Taking the logarithm

62

transformation used in Figure 10 would reduce the variation of larger values and reveal
more of the variation in the small values.

These overview layouts can be zoomed in to further reveal the details of the cases.
Figure 18 is a zoomed-in view of the highlighted part of Figure 16. This supports better

viewing of individual cases.

Figure 18. Enlarged View of Polygon Layout with Signed Deviation Star Glyphs

63

Figure 19 shows a round polygon layout with the folded deviation star glyphs.
Note that the long red rays below the horizontal line in Figure 16 indicating small

temperatures values are now displayed aslight red rays.

Figure 19. Round Polygon Layout with Folded Deviation Star Glyphs

64

Figure 20 shows the zoomed-in view of the same cases asin Figure 18.

| \ >
) \ \\ \\ \\

\ X \
p \ VZ ~
e, (BN

> \ “
\

S als

L N
o s 2 X \

e | \ \

Figure 20. Enlarged View of Polygon Layout with Folded Deviation Star Glyphs

3.4 Summary and Assessment

This chapter addresses the layouts of hierarchical structures as nested polygons
and the use of glyphs to show multivariate cases in the polygons at the bottom of the
hierarchical structure. The enhanced rectangular recursive partitioning layout shows the

separations between sub-clusters better by adding white space between the two sub-areas.

65

The round polygon layout produced by the CAP agorithm addresses the ‘sliver’ problem
caused by outliers that often appears in the rectangular layout by alocating ‘rounder’
areas, so that they can better accommodate the glyphs or links associated with the cases.
The layout is useful for an overview of all the cases. The signed deviation and folded
deviation star glyphs provide a more symmetric encoding of large and small values than
traditional star glyphs. The glyphs help to revea the variation in case variables within
and across clusters. The reference circles help to make more accurate comparisons. The
layouts and glyphs were illustrated with examples.

The CAP agorithm was produced in the year 2000-2001 time frame. Since then a
close competitor has emerged with merits of its own in terms of region and shape. Thisis
the Voronoi Treemap layout (Balzer and Deussen 2005). It is possible to produce a
nested cluster layout by repeated use of their algorithm. For a binary tree, the first layout
produces two polygons with cluster areas of appropriate sizes for the two sub-trees. The
algorithm is then applied iteratively to these polygons until polygons are created for the
leaf nodes.

The appearances of the layouts can be compared, but preference may be more
personal opinion than objective. | like fewer angles for the polygon edges.

Both methods address the area of polygons, both produced round regions. The
CAP agorithm makes it better suited for introducing white space between clusters.
Neither guarantees the regularity of hexagons that is advantageous for plotting. Hence |
turned to the development of algorithms for hexagons that provide an option when the

irregular regions are deemed less desirable.

66

Chapter 4. Point Layout for Hexagon Grids

This chapter addresses the layout of cases in a hexagon grid with white space.
Carr (1991) discusses the merits of lattices where the cells are hexagons in 2-D, truncated
octahedrons in 3-D and 24-cells in 4-D. Hexagons and truncated octahedrons are
polygons and polytopes with three important properties:

e They can tessellate the respective space (2-D, 3-D),

e They are the closest to being circular and spherical respectively of al
single polytopes in the tessellation space, and

e They have awell-defined number of neighbors (6 and 14 respectively).

In addition, although many agorithms use square (2-D) or cube bins (3-D) due to
their simplicity in computing, our visual system often works better with hexagons and
truncated octahedrons. In 2-D human beings have a strong reaction to horizontal and
vertical lines. When such lines are construction artifacts, as in the binning context, they
are distracting. Either reduced-size square glyphs that encode bin counts or round glyphs
in square cells accentuate the two sets of orthogonal lattice lines, typically oriented to be
horizontal and vertical. Hexagons with three non-orthogonal lines through opposite

neighbors help the data reveal itself by reducing emphasis on orthogonal visual lines.

67

Hexagon binning has been a part of S-PLUS for years and is currently being
integrated in R within the lattice package. New algorithms for other uses of hexagon
grids can expand the varieties of applications.

The basic task of the hexagon grid algorithms here is to place individual casesin
separate hexagon cells so that similar cases are close together. There are two helpful
distinctions. The first distinguishes between hexagon grids with more internal cells than
cases with the locations of the empty cells subject to change as well as the cases (cell
occupants), and occupied subsets of hexagon cells where only the cell-occupied cases are
exchanged. The second distinguishes between the layout of clusters and the layout of
cases based on similarity. Both can work using a dissimilarity matrix. The cluster
dissimilarity can ignore details other than cluster membership. Dissimilarity for a generic
empty case (occupant of an empty cell) can be added to the dissimilarity matrix so the
case exchange a gorithms can address the empty cell case without modification.

The agorithms have a cost function based on the dissimilarity of each case to its
immediate neighbors, thus local relationships drive the layout of cases. This contrasts to
algorithms such as classical multidimensional scaling, in which cases very far away from
the body of data can force cases of well separated in the body of the data to be close
together in the layout.

| present the research sequence starting with a smple and perhaps naive initia
layout algorithm, and progress to algorithms that take control of the initial layout and

then refine the placement of cases.

68

4.1 A Preliminary Hexagon Occupant Exchange Algorithm
(HOE)

Hexagon case exchange algorithms are not new, Wills (1999). The variation
investigated here addresses the exchange in the present of empty cells. Carr wrote the
first Hexagon Occupant Exchange (HOE) Fortran program used in this research. The
algorithm addresses the situation where roughly half of the cells are empty after the cases
are randomly loaded into a hexagon grid. There are two types of cells: occupied cells that
are attached to individual cases and empty cell that is not attached to cases. Theideaisto
make the empty cells‘flow’ between clusters.

The basic algorithm uses a congruential random number generator to randomly
pick two cells in the grid. The cases occupying these cells are swapped when the
exchange reduces a cost function of the twelve distances to the cases in the neighboring
cells. The iteration stops when the exchange no longer reduces the cost for several cycles.
The cost function used has two variants. The fastest version sums the twelve distances of
the two cases in the chosen cells with the cases in the immediate neighboring cells. The
slow one sums the two distances to the fourth closest case among the immediate
neighboring cells. Most of the study centers on the faster a gorithm.

The distances between cases in two occupied cells are the pre-calculated
dissimilarities between the cases. The distance between a generic empty case in an empty
cell and a case in an occupied cell and the distance between two generic empty cases are
two free parameters. My research concerns picking two percentiles of the distribution of

dissimilarities to use for the two parameters. When distinct clusters were not always

69

separated, Carr added a simulated annealing option. | was able to find percentiles that

worked for afew examples. Figure 21 shows one.

s om e = m k& T
I R R N ® & % @
R R R R - | I T T T
N B A B * % ¥ ¥
R B - ¥ T &
A A m L
o R

Figure 21. Cluster Layout on Multivariate Datain 6 Dimensions

The generated data in this example consists of clusters at the vertices of a

simplex in six dimensions. The data generation idea is from Friedman (1977). One vertex

70

is a the origin and the other simplex vertices are six standard deviations away in the
positive direction on each of the six axes. Random values from a standard normal
distribution are added to vector coordinates of the vertices. There are seven distinct
clustersin the data

The backgrounds of the occupied cells in the layout are drawn in different colors
to reflect cluster membership. With an unknown data structure, the color could encode
group information determined by a cluster agorithm or natural/known categories. The
clusters are separated in the layout. The empty cells visually emphasize local cluster
edges. The cyan cells with dots show the points around the origin. The ray angles provide
a clockwise encoding indicating the positive simplex coordinates. For example, the rays
pointing straight up indicate that the first coordinate was positive. | gave a presentation

on this algorithm at the Joint Statistical Meetings in 2000 and it was well received.

4.2 The Current Hexagon Occupant Exchange Algorithm
The current HOE agorithm is implemented in R. In the current version of the
program, another type of cell is added besides the *Occupied cells and ‘Empty cells,
namely Border cells that locate at the border of the hexagon frame. As a result, two
additional parameters need to be specified, the distance between a generic border case
(occupant of a border cell) and a case in an occupied cell, and the distance between a
generic border case and a generic empty case. The new algorithm drops the ssmulated

annealing that was in the original Fortran program.

71

The cdll indices of a hexagon frame are specified sequentially from the bottom
left going left to right and then row by row until it reaches the upper right, as shown in

Figure 22.

321 322|323 |324| 325|326 |327 | 328| 329|330 | 331
309310311 312|313 |314| 315| 316|317 | 318| 319|320
296 |297| 298|299 | 300 301|302 | 303 | 304| 305|306 | 307| 308
282| 283|284 |285| 286|287 | 288 289|290 291 | 292| 293|294 | 295
267|268 |269| 270|271 |272| 273|274 | 275|276 | 277|278 | 279| 280| 281
251| 252| 253|254 | 255| 256|257 | 258 | 259 | 260|261 | 262 | 263 | 264 | 265 | 266
234|235 |236 | 237 238|239 | 240| 241|242 | 243 | 244 | 245|246 | 247 | 248 | 249|250
216 217|218| 219|220 |221| 222|223 | 224| 225| 226|227 | 228| 229|230 | 231 | 232| 233
197 198|199 | 200 | 201| 202|203 | 204 | 205|206 | 207 | 208 | 209|210 (211 212| 213|214 | 215
177|178 |179|180| 181|182 183 | 184|185 |186| 187| 188|189 |190| 191|192 | 193 | 194| 195|196
156 |157| 158|159 | 160 |161| 162|163 | 164 | 165|166 | 167 168|169 170 171 172| 173|174 175/ 176
136|137 |138| 139| 140|141 | 142| 143|144 | 145| 146 | 147|148 | 149| 150|151 | 152 | 153| 154|155
117/ 118|119(120 |121| 122|123 |124| 125|126 |127 |128| 129|130 (131 132| 133|134 |135
99 100|101 102|103 104|105 /106 |107|108|109|110 111|112 /113|114 |115| 116
8283 84858687 88990 9192|9394 95| 96| 97|98
66 | 67 | 68|69 | 70| 71|72 |73 | 74| 75|76 | 77| 78|79 80 |81
51 |52 |53 | 54|55 56 57|58 |59 |60 61|62 |63| 64|65
37 (38|39 |40 | 41 |42 | 43| 44 | 45|46 | 47| 48 | 49 | 50
24 | 25|26 |27 282930 |31(32|33|34 |35 36
12|13 |14 | 15|16 |17 18 | 19|20 | 21| 22| 23
1112|3456 7|8 9]|10|11

Figure 22. Indices of a Hexagon Frame

For each cell, the row and column increments to get the 6 neighbor cells in
hexagon lattice start at the right and go around counter-clockwise. The details are listed
below:

Row increments — even rows are shifted 1/2 cell to the right of odd rows
1 1

0O * O
-1 -1

72

Column increments - the column increment to get neighbors depends on the row’s

even/odd status.
For even row:
0 1
1 * 1
0 1
For odd row:
1 0
1 * 1
1 0

A “neighbor matrix” is created so that for each cell, the cell numbers of its six
neighbors can be retrieved. The dissimilarity matrix is then created for the cases. | studied
simple cluster examples such as five clusters, with sizes 10, 20, 30, 40 and 50
respectively. My study of cluster layouts simplifies the dissimilarity matrix. The
dissimilarity of two cases in the same cluster is O; the dissimilarity of cases in different
clusters is a constant that can be made arbitrarily large. The dissimilarity matrix is
augmented by a row and a column for the generic empty cases, and by another row and
column for the generic border cases. This requires four parameters. occupied cell to
border cell cost, empty cell to border cell cost, occupied cell to empty cell cost, and
empty cell to empty cell cost.

The cost associated with the layout is implicitly the sum of distances to the cases
in the six neighbors of the cells, adding over all the cases in the grid. In practice the
algorithm keeps track of the cost reduction when exchanging cases. The algorithm has a
parameter giving the maximum allowed cycles and a stopping parameter that indicates
how many cycles to have without a cost reduction before exiting. During each cycle, the

73

algorithm randomly creates pairs of the cells without replacement and drops one cell if
the number of cells is odd. The two cases in each pair of cells have a chance to be
swapped, thus at most one randomly selected cell is not considered in one cycle when
there are odd number of cells. Thisis different from the preliminary algorithm where all
the pairs were randomly picked. It might take along time for a cell to get picked.
Graphics provide insights into how the algorithms work. Figure 23 shows the
initial state for one test. The five colors represent the five clusters in the example dataset
created. The numbers below the cell number in the occupied cells are the case numbers.

The four parameters are indicated at the bottom of the Figure.

74

derEmpty= 0.0

BorderCase = 0.5
EmptyCases = 1.0
EmptyEmpty = 0.5

Bo

Figure 23. Initial State of the Cases

75

BorderCase = 0.5
BorderEmpty= 0.0
EmptyCases = 1.0
EmptyEmpty = 0.5

Figure 24. Clusters of Cases after 2000 Cycles

Figure 24 shows the view when the algorithm stops. The cost for cases in
different clusters being adjacent is high enough so that no clusters touch. This example
provides an insight that was previously missed. The insight comes from the yellow,
orange and blue clusters being split into two pieces. Thereis clearly plenty of white space
for the yellow clusters to join. This means that the cost function leads to stable states that

are less than ideal. Previously the assumption was that partial clusters could be trapped

76

from growth because the within-grid bordering white cells were only one cell thick and
were bordered by cells from another cluster. This can be viewed as getting stuck in a
local minimum. The insight motivates thinking about solutions.

One possible solution to avoid the stable states includes costs that consider two
rings of cells around each grid cell. A second solution is to keep track of each loca
cluster size and break ties by moving cases of the smaller sub-cluster to the larger sub-
cluster. The algorithm’s bookkeeping gets more and more complex with no guarantee of
a good solution. Hence my attention turns to directly laying out the cases in clustersin a
hexagon grid with a‘better start’ instead of a random start, and then refining positions of
cases within each cluster. | address the refinement step now as it uses basically the same
algorithm that was just discussed, and address the new hexagon cluster graph layout in
Section 4.3.

The cases within each cluster can be exchanged so that similar cases are closer
together. This is the situation of exchanges without white space. Figure 25 is an initial
placement of acluster in a hexagon grid. The values for cases 1, 3 and 15 are then atered

to make them outliers with respect to their own cluster.

77

Hexagon Cell Ids in Blue, Case Ids in Black

Figure 25. Case Placement without Sorting

Figure 26 is the placement after applying the exchange algorithm. As can be seen,
cases 1, 3, and 15 are at the outside edge of the cluster. The neighboring empty cells
around the outside act like ‘outlier fly paper’. Outlier cases don’t pay a distance cost for
being by the neighbor cells that are empty. They have a bigger cost if they are surrounded
by six occupied cells. Outliers in a cluster may jump to some place else in the outer ring
of a cluster, but will not return to the interior unless competing against a more extreme

outlier also located in the interior.

78

Hexagon Cell Ids in Blue, Case Ids in Black

Figure 26. Case Placement after Sorting

4.3 Hexagon Cluster Layout Algorithm (HCL)

The Hexagon Cluster Layout (HCL) agorithm begins by explicitly laying out
clusters chosen for display in a hexagon grid. It then uses the HOE algorithm in section
4.2 to refine the placement of cases within each cluster, so more cases are placed by
similar cases based on a cost function.

Severa steps are involved in the explicit layout of cases of clusters. The first step

of the general procedure is to obtain a mean vector or representative vector for each

79

cluster. If datais available, the cases of each cluster can be averaged. If the averageisin
higher dimensions, classica multidimensional scaling can be used to obtain 2-D locations
that attempt to preserve the higher dimensional distances between pairs of means. Then
circles with areas proportiona to cluster sizes are associated to the corresponding
locations. A Lennard-Jones spring model with a central force adapted from a paper by
Sun, Smith and Caudell (2003) then moves the circles to be tight about the center, but at
least one hexagon cell apart. The resulting circle centers are overlaid on a hexagon grid to
produce the seed cells of the layout. The hexagon layout algorithm assigns cases of each
cluster to its seed cell and to neighboring cells in expanding hexagon rings about the seed
cell.

| illustrate the layout of cluster summaries using clusters of 5° x 5° grid cells of
the earth. The underlying datais similar to the AIRS Level 3 data described in chapter 3.
There the layout was for multiple multivariate multi-altitude cluster summary vectors for
36 5° x 5° grid cells. For this example there are 2,387 grid cells of the possible 36 x 72 =
2,592 grid cells. This is because NASA'’s data processing algorithms can not adequately
process some of the data such as that obtained over high atitude mountain ice. This, for
example, excludes grid cells over Antarctica.

NASA continues to refine its processing algorithms, and the summaries in this
chapter are based on a refinement that was not used for the summaries shown in chapter
3. Even this example is not based on the very latest algorithms. The focus here is on the
layout methodology and not on detailed data interpretation. The Level 3 summaries used

here are adequate for this purpose.

80

The clustering of earth grid cells here uses agglomerating clustering based on a
2,387 x 2,387 expected distance matrix provided by Amy Braverman from the Jet
Propulsion Laboratory. The expected distance calculation is different from common
distance calculation with one vector for each case being compared. Here each grid cell
has multiple summary vectors. The calculation involves bivariate probability weighted
sum of distances between suitably scaled summary vectors of al pairs of vectors
involving one vector from each grid cell. Details are available in Braverman and Fetzer
(2005).

The decision to use 20 clusters in the example is based on the need to restrict the
number of colors to show the grid cell cluster membership of the whole earth. Twenty
colors may seem too many, but there are eight ‘singleton’ clusters (cluster of size 1) and
black could be used for all of them. The twenty clusters appear in Figures 27 and 28.

In this complex situation, applying classica multidimensional scaling to the
expected distance matrix yields a 2-D “mean” vector for each grid cell. These are
averaged to obtain a mean for each cluster of grid cells. The spring model moves these
around substantially. The preservation of distances among the pseudo cluster means is
not crucia. The most important thing is that the clusters don’t overlap.

Figure 27 shows how the spring model lays out the 20 clusters as circular disks.

The circle areas are proportional to the number of grid cells in the clusters.

81

Figure 27. Spring Model Results to Determine Cluster Centroids

Figure 28 shows the cells on a hexagon grid. The sizes and positions of the

clusters correspond to the spring model layout shown in Figure 27. The advantage of

placing them in a hexagon grid is that there is a clear definition of neighbors and the

82

HOE algorithm further modifies the layout within each cluster, so that similar grid cells

are usually positioned together.

Seed Location: 2093 4648 9657 2647 3986 3730 1589 293
Cluster Size: 143 121 453 408 102 101 250 25

[s]

464 781 4141 2003 4524 3845 3512 1422 3498 2702 3645 4580
1 w24 1 1 1 1 374 1 1 1

ax)
2]

Figure 28. A Hexagon Grid Layout for the Clustered Global Grid Cells

The ‘Cluster Size' row at the bottom of the plot indicates the number of cases

within each cluster. The *Seed Location’ row displays the location of each corresponding

83

cluster’s center. The location is given by the hexagon index in the grid. The indices of the
hexagons in the grid were assigned using the same method described previously and
shown in Figure 22. For example, the dark blue cluster at the bottom of the plot has 459
casesin it, and its center is placed at the 967" hexagon cell.

Carr maps the clusters to a world map and shows one multivariate atmospheric
cluster on a second level for the winter 2002 data, as shown in Figure 29. This represents
the hexagon cluster cells as spheres in a plane and the grid cells of the earth as spheresin
a parallel plane. The design connects the spheres representing the same grid cell on the
earth with rendered tubes. The software called * Glisten’ (Carr 2004) provides sliders used
to filter out all the hexagon cluster cells and tubes except for one cluster shown in gray. It
IS interesting to notice the atmospheric similarity during the north hemisphere winter

between the Sahara desert and the southern U.S.

[= ntitled - OpenGL BEX]
File Edit View Tool Help
FHE PO L+

#[s]=[=[=[a[x|
EEEER

Figure 29. Parts of the Same Multivariate Atmospheric Cluster — Winter 2002
Source: Carr and Braverman (2007)

4.4 Summary
In this chapter | introduced two agorithms to layout cases in a hexagon grid in 2-
D. The Hexagon Occupant Exchange algorithm and Hexagon Cluster Layout algorithm
can be used together to produce Hexagon Cluster Graphs (HCG). HCG uses include:
e Calling attention to clusters,
e Showing sub-clustersinside clusters,
e Showing distances to cases in neighbor cells after first organizing cases to reduce
the distances, e.g. showing a distance gap in lines between neighboring nodes,
e Displaying node coordinates for linked brushing,

e Displaying edge coordinates for linked brushing,
85

e Displaying glyphs, icons or pictures at nodes, and
e Dynamic graphics framework that includes panning and zooming, progressive

disclosure, queries, linked brushing and other options..

86

Chapter 5. Round Polytope Layout in 3-D

Card et al. (1999) observes that “Although the challenges associated with 3-D
have made it less desirable to many people, there are also good reasons to use 3-D to
visualize information. Perhaps the most obvious advantage is the additional dimension to
encode information. However, a subtler but profound advantage is that this additional
dimension projects from the viewpoint toward infinity, creating a large visible workspace
for holding visualizations and the results of information work. With the advent of mass-
market graphically agile computers, 3-D visudlization is likely to become more
common”. Recently, Ware and Mitchell (2008) undertakes a graph comprehension study
using a very high resolution stereoscopic display with points and lines shown as lighting
model rendered spheres and tubes. The results show an order of magnitude increase in the
size of useful 3-D graphs over 2-D graphs. Therefore, | extend the 2-D CAP algorithm to
3-D, and discuss the extension of the HOE and HCL algorithms to 3-D in chapter 6 on
future work.

Slicing convex polytopes with planes is the generalization of dlicing convex
polygons with lines. | choose to focus on the truncated octahedron in 3-D, because like

the hexagon in 2-D, it is the roundest polytope that partitions the space. Truncated

87

octahedron is one of the 13 Archimedean solids. It has 14 faces, 36 edges, and 24

vertices. Figure 30 shows atruncated octahedron.

Figure 30. A Truncated Octahedron
Source: Wikipedia

A truncated octahedron has six sguare faces and eight hexagon faces. Assumeit is
centered at the origin. Let the orientation and size be such that the centers of the square
faces are on the X, Y, Z axis respectively, and their coordinates are (0,0,1), (0,0,-1),
(0,1,0), (0,-1,0), (1,0,0), (-1,0,0). The diagonals into the eight octants of the coordinate
system intersect the eight hexagon faces at: (0.5 0.5 0.5), (-0.5 0.5 0.5), (0.5-0.5 0.5),
(-0.5-0.5 0.5), (0.5 0.5-0.5), (-0.5 0.5-0.5), (0.5-0.5-0.5), (-0.5-0.5-0.5).

There are seven lines that run through the center of the truncated octahedron to
the centers of paired faces. This corresponds to the three lines that are perpendicular to

the hexagon sides in 2-D. There are twelve lines through the origin to each pair of

88

vertices. This corresponds to the three lines to the opposite vertices in the hexagon.
Cutting from these ‘vertex’ directions provides the possibility of cutting off vertices to
accommodate outliers. These 7+12=19 directions are used to partition a truncated
octahedron.

In the cluster layout context, the task of the generalized 2-D CAP agorithm isto
recursively partition a convex polytope with a plane, such that the volumes of the two
sub-polytopes are proportional to the sizes of the two sub-clusters, and the two sub-
polytopes are as round as possible. Thus two major tasks are involved, one is convex
polytope volume calculation, and the other is the definition and calculation of a
‘roundness’ measure. Conway and Sloane (1982) discuss calculation of volumes and
second moments of polytopes, and give the formula of the dimensionless second moment

in d dimensions as
Jlx=x|F dx
1 P -

G ==
d d (IdX)(d+2)/d
P

This dimensionless second moment can be used as a measure of roundness. Table

1 lists the roundness of various shapesin 2-D and 3-D.

Table 1. Roundness for Various Shapes

Square Hexagon Circle Cube Truncated Sphere
Octahedron

Roundness | 0.08333 0.0802 0.0796 0.08333 0.078%4 0.07697

89

5.1 Truncated Octahedron Slicing - Lattice Point Based
Approximation

To approximate the volume and dimensionless second moment of polytopes, |
generate a high resolution body-centered cube lattice and clip away points outside the
truncated octahedron. The body-centered cube lattice is composed of two sets of cube
lattices, one of which is shifted so that each point is at the center of a cube from the other
lattice (except for the edges). Thus lattice point generation is easy.

The idea is that the truncated octahedron and each sub-polytope are partitioned
based on how many cases are in each branch of the hierarchical structure. The truncated
octahedron is cut along each direction mentioned above, and the direction that produces
polytopes of points with the smallest roundness is chosen. The dimensionless second
moment of a polytope is approximated by the sum of squares of points about the point
average, divided by the number of points in the polytope, and adjusted for the volume of
the polytope. | calculate the initial volume-per-point constant and use this constant times
the number of points in each sub-polytope to approximate the volume of an irregular
polytope.

A chosen body-centered cube lattice for a unit cube consisted of 250,000 pointsis
clipped back to a truncated octahedron with 118,585 points. The dimensionless second
moment calculated for the truncated octahedron is 0.08027; when starting with 2 million
lattice points, the result truncated octahedron has 973,899 points and the approximated

roundness is 0.07939. Theoretically the dimensionless second moment for truncated

90

octahedron is 0.07854 (Conway and Sloane 1982). The error is about 1% and the
dimensionless second moment seems to be converging to the theoretical value as the
number of lattice points grows. Thus the lattice based calculation is a reasonable
approximation.

During each partitioning, there are amost aways two possible cuts along each
direction to produce the correct volume proportion. | pick the direction that produces the
‘roundest’ pair of sub-polytops based on the smallest sum of dimensionless second
moments. There could be ties on the smallest roundness. For now | just pick the direction
of the first occurrence. A possible aternative is to pick randomly. The partitioning goes
on until every leaf node in the hierarchica structure gets its own polytope.

Graphics can help to show what the algorithm is doing. Various 3-D software
packages are available to display 3-D graphs, including Glisten and RGL. The advantage
of using RGL is that the results can be shown directly after running the R program for
recursive partitioning, rather than exporting data and then importing it into another
software package.

Figure 31 from Glisten shows the polytope after one cut when the targeted
volume proportion is 0.3. The algorithm picks one direction that is perpendicular to a
square face. When starting with 2 million lattice points the roundness of the resulting two

sub-polytopesis 0.08858 and 0.1049 respectively.

91

Figure 31. First Cut of a Truncated Octahedron Shown in Glisten

Figure 32 shows a resulting sub-polytope in RGL and the targeted volume
proportion is 0.005. The algorithm cuts off a vertex of the truncated octahedron instead of
using a plane parallel to a face of the truncated octahedron as in the proportion of 0.3
case, shown in Figure 31. This agrees with the intuition and the purpose of the algorithm.
Starting with 2 million lattice points the roundness of the resulting two sub-polytopes is

0.07877 and 0.1889 respectively.

92

H -0.5 0 0.5 1

0l

0.5 1

c-1. 1)

e(1.1

i1, 1)

Figure 32. First Cut of a Truncated Octahedron Shown in RGL

| applied the algorithm to the 382 cases from the AIRS data described in Section
3.3. Figure 33 shows the cases at the center of the resulting individual polytopes from the

recursive partitioning.

93

1. 1)

Figure 33. AIRS Data Layout in 3D

The 3-D locations of the cases and the scaled data are loaded into Glisten to be
visualized. A glyph is plotted for each case. To simplify the example’s appearance, only
the 11 temperature variables are included in the signed deviation star glyphs. Pairs of
consecutive variables are colored red, green, blue, yellow, and cyan. Altitude 11 is

colored magenta. Figure 34 showsthe initial position of the cases.

94

Figure 34. AIRS Data Layout in Glisten with Glyphs

The case near the left edge and towards the bottom is the outlier located at the
bottom of Figure 16. As shown, there are many small values for the temperature variables
represented as long rays. Figure 35 shows arotated view of Figure 34. Looking from this
angle, we can see the similar cases together on the right side, which corresponds to the

cases on theright side in Figure 16.

95

Figure 35. AIRS Data Layout in Glisten with Glyphs — A Different View

Besides rotation, Glisten provides powerful tools such as filtering. We can view
and investigate one or two variables at atime and filter out all other variables. Figure 36

shows only temperature variables at atitude levels 3 and 4.

96

Figure 36. AIRS Data Layout in Glisten with Glyphs — Selected Variables

The filtered view simplifies the appearance and helps readers concentrate on
fewer variables. The case locations represented by gray spheres are more visible. The
rotation that helps to convey depth is not shown. The lighting model for tubes and
spheres helps with depth perception but it is not necessarily well rendered in print. Larger
glyphs would also improve the perception. It is desirable for the glyphs to always stay in

aplane during rotation. Carr et at. (1988). Glisten needs to be adapted to do this.
97

The distribution of roundness and number of points for the individual polytopes
doesn’t change much by increasing the number of initial lattice points from 250,000 to 2
million. Table 2 shows the comparisons. In both cases, there was at most one point
difference in terms of the number of points in the individual polytopes. The minimum,
median and maximum roundness of the polytopes for the 2 million-points case are
dightly smaller, and the mean is about the same. The R script’s running time for the
250,000-points case is about 1 minute, while for the 2 million-points case it is about 10
minutes on a Dell Latitude D620 laptop, with Intel Duo T2400 @ 1.83GHz CPU and

2GB RAM.

Table 2. Comparison Between 250,000 and 2 million Initial Lattice Points

Initial L attice Points 250,000 2,000,000
Points in Truncated Octahedron 118,585 973,899
Minimum # Points in Polytopes 310 2,549
Maximum # Points in Polytopes 311 2,550
Minimum Roundness 0.0879 0.0865
Median Roundness 0.1025 0.1022
Mean Roundness 0.1056 0.1056
Maximum Roundness 0.1901 0.1869

The truncated octahedron resulted from the 250,000 initial lattice points works

pretty well. Speed can be improved by recoding in C or other compiled language.

98

5.2 Truncated Octahedron Slicing - Solving Geometric
Equation Approach

The solving geometric equations approach involves calculating exact polytope
volumes and dimensionless second moments rather than using lattice point
approximations. These results could be used to evaluate the lattice based approximation
approach in terms of speed and accuracy.

There are previous studies and results regarding convex polytope volume and
dimensionless second moment calculation, including Conway and Sloane (1982),
Lawrence (1991), etc. Online tools like CGAL (Computational Geometry Algorithms
Library), Qhull, Polymake, etc. might also be helpful. The following result for prismatoid
volume calculation can be used to address the val ue proportion partitioning task.

A prismatoid is a polyhedron where all vertices lie in two parallel planes (If both
planes have the same number of vertices, it is caled a prismoid.). If the areas of the two
paralel faces are A; and Ag, the cross-sectional area of the intersection of the prismatoid
with a plane midway between the two parallel faces is A, and the height (the distance
between the two paralel faces) is h, then the volume of the prismatoid is given by V =
h(A; + 4A; + A3)/6. This formula can be used to calculate the volumes of the two sub-
polytopes as a plane sweeps through the pol ytope.

Given the areas at the ends and middle of a prismatoid, the volume for each
prismatoid can be computed. The areas of the end planes can be calculated directly from

the vertices involved. Cutting the edges of the prismatoid half way between the end

99

planes gives the intersection points to compute the area of the middle plane, and the area
completes what is needed to compute the volume of the prismatoid.

Consider the problem of finding the cutting plane location for the prismatoid that
produces the targeted volume proportion. Assuming there is a quadratic change in the
areas cross section when moving from one end of the prismatoid to the other, | can solve
for the three coefficients of this quadratic equation based on the areas A1, A2 and A3. The
integral of a quadratic equation is a cubic equation that gives the volume as a function of
the distance from one end of the prismatoid. | can then solve this cubic equation to get the
candidate two locations for a cutting plane as needed.

Finding the centroids of the resulting prismatoids and getting the dimensionless
second moment about the centroids seems harder. It is possible to feed the polytope's
vertices to a symbolic software to get the needed integrals. Another approach could use
results from Conway and Sloane (1982). One result for n-dimensional simplexes makes it
possible to find the second moment of any figure, provided that it can be decomposed
into simplexes.

Theorem: Let P be an arbitrary simplex in R" with vertices vi=(Vi1, ... Vin)

forO<i <n,then

a) the centroid of Pis at the barycenter v=(vg+...+V,)/(n+1) of the vertices;

1 Vo .. Vo
1 1 vu ... Vn
b) voI(P):—'det ; and
nl
1 an Vnn

¢) the normalized second moment about the origin 0 is

100

n+1

|
O T 12

ma wrana s

There are agorithms for decomposing a convex polytope into simplexes that can
support the use of this result. This whole calculation approach is feasible but not as

simple asit may seem.

5.3 Summary

In this chapter | extend the CAP algorithm to 3-D partitioning of convex
polytopes and investigate a truncated octahedron as a starting point. The lattice point
based approximation approach works pretty well in terms of resulting polytopes’ uniform
number of points and roundness. | also discuss the current research status and the
difficulties of using the solving geometric equation approach to address the truncated

octahedron slicing problem.

101

Chapter 6. Conclusions and Future Work

This dissertation develops 2-D and 3-D layouts that are useful to facilitate the
visua study of multivariate data. The layout agorithms compute locations for plotting
cases so that similar cases are close together. The locations can be used for linking the
cases to other views of the data. The classic example is linked brushing to views such as
scatterplot matrices. One example shows 3-D rendered tubes linking cases between two
paralel plane views of the cases. The tubes highlight specific clusters of the data. The
layouts typically emphasi ze the display of cluster structure.

The layouts algorithms | developed emphasize producing locations that are
surrounded by round polygonsin 2-D or round polytopes in 3-D. Roundness is defined as
the dimensionless second moment about the polygon or polytope centroid. This supports
the display of round multivariate glyphs. The algorithms fall into two classes that are
applicable in either two or three dimensions. The first class recursively slices polygons or
polytopes with lines or planes respectively to produce pairs of polygons or polytopes that
will hold two sub-clusters of a binary cluster tree. The centers of the polygons or
polytopes become the plotting locations for representing the leaf nodes of the cluster tree.

The algorithms are successful in addressing the tasks of linking and plotting case

102

descriptors such as multivariate glyphs. The regular polygon layouts can be used to
organize images.

| produced the 2-D dlicing algorithm called CAP in 2001. However, an example
was not published until 2005 when a paper addressing the same task appeared using a
competing agorithm based on iterative Voronoi tessellations. The dlicing agorithm
allows specification of the orientation of the cutting lines. The example uses six
orientations, so the points-surrounding polygons at various levels of clustering appear
simple. The Voronoi produced polygons have edges whose orientations are not restricted,
so the plots appear busier from one perspective, but tessellations have their own elegance.
For many situations the choice between the two algorithms likely makes little practical
difference.

In terms of 3-D dlicing, the locations produced by my algorithm are useful for
plotting glyphs as demonstrated. The R scripting language provides adequate speed for
modest applications with a few hundred cases. The algorithm will scale to much larger
examples when written to produce a compiled version. The polytope roundness
distribution suggests a little room for improvement. The roundness average is somewhat
better than the roundness of a tetrahedron. Future work will study a modification of the
criterion for picking the best orientation from the slicing plane options for each cut. | will
study different weighted averages of the roundness values for the two polytopes produced
by dlicing.

The 3-D dlicing implementation uses an approximation based on a high resolution

grid of points. My work in devel oping equation solving and integration implementation is

103

not complete. | intend to finish this work and see how close the approximations are to the
equation results. Currently 1 only have a roundness comparison result for a truncated
octahedron, and the 1% error can be decreased by use of afiner grid.

| am not aware of an iterative 3-D Voronoi region implementation. If this has not
been done | may pursueit.

The second layout approach places cases on regular lattice points. The near
neighbor regions for the 2-D algorithms developed here are hexagons, the roundest
regular polygons that tessellate 2-D. | developed new HOE algorithms that include the
use of empty cellsto call attention to different clusters.

The HOE agorithm still has a problem in putting cases of the same cluster
together. Future research will pursue exchanging larger block of cells and/or modifying
the cost function to avoid the stable states that prevent parts of clusters from joining.

The HCL algorithm solves the problem of keeping the cases of the same cluster
together. Future research will extend this to 3-D layouts with truncated octahedron cells.
The generalization of the spring models, the placement of cases in a grid and the
exchanging of cases within each cluster in 3-D are straightforward. The bookkeeping is a
little more complicated, since each truncated octahedron has 14 neighbors (six neighbors
share square faces, and eight neighbors share hexagon faces) instead of 6 neighbors for
hexagons.

| plan to produce two R packages, one for the recursive partitioning and the other
for the hexagon cluster layout. The current algorithms are implemented primarily as R

scripts. Recoding the key portions in C will improve the speed. Some aternative

104

implementations may become available for parts of the computations. For example,
partitioning a polytope by planes is an active area in computer graphics. The new tools
and methods developed in other fields may help in statistical visualization applications.

This research aso develops graphics to show additional information. | enhanced
Wills' (1998) recursive partitioning algorithm for cases of clusters by adding white space
to visually separate clusters at each level of partitioning. | showed the HOE algorithm
would push the outliers of the cluster to the boundary of the layout when used to
reorganize cases within a cluster. Thisis helpful in assessing clusters.

| developed two new star glyphs called signed deviation and folded deviation star
glyphs. These provide a more symmetric representation of small and large values than
traditional glyphs. The cost involves making it harder to see variation in intermediate
values. The strong benefit is being able to see variation in small values.

| will aso continue the research on 2-D and 3-D layouts of multivariate objects.
This includes continuing development of dissimilarity measures for complicated objects
such as models, molecules, dendrograms would be appropriate. | will aso dedicate
efforts in further improving visualization tools by adding more features. Each class of
objects viewed is likely to have its own type of graphics and manipulation needs. For
example, display and manipulation methods can be quite different for genes, molecules,
cluster trees, models and earth grids. | am also interested in doing research in layouts and
graphsin parallel planes with Daniel Carr and Michael Trosset.

The layouts on a 2-D surface could be extended to a sphere, especialy for the

earth data and its visualization/presentation. The advantage of a sphere is that

105

conceptually al things are there even though not all of them can be viewed at the same
time. Google developed tools that allow users to map the Google maps to a sphere as a
texture mapping. Similar techniques might be applied.

Finally I can pursue layouts in 4-D. 4-D views can be linked 2-D views, an
animated 3-D view, or simple 3-D glyph views. Of course the increased preservation of
inter-point distances trades off against the difficulty humans have judging the distance in

these representations.

106

APPENDIX - PROGRAMS

RHHTHHH R R CAP Al gorit hm i n SPLUS #####H#HH#H7HHH A HH B H T H BT
inter = function(l1,12){

tnmp = 11-12

x = -tnp[1]/tnp[2]

y = (12[1]1*11[2]-11[1]*12[2])/tnp[2]

return(x,y)

}

#
al lvertices <- function(lnmx){
nc <- ncol (I nx)
nr <- 2*nc*(nc-1)
vpnx mat ri x(0, nrow=nr , ncol =2)
subs 1:4-4
for(i in 1:(nc-1)){
for(j in (i+l):nc){
sl <- slopes[i]
s2 <- slopes[j]

subs = subs+4

tnpl = c(Inmx[1,i],sl)
tnmp2 = c(Inmx[2,i],s1)
tnp3 = c(Imx[1,j],s2)
tnmpd = c(Inmx[2,j],5s2)

vpl <- inter(tnpl, tnp3)

vp2 <- inter(tnpl,tnp4)

vp3 <- inter(tnmp2,tnp3)

vp4 <- inter(tnmp2,tnp4)

vpnx[subs,] <- rbind(vpl, vp2, vp3, vpd)
}

}

vpnx <- matrix(unlist(vpnx), ncol =2)
vpp <- rep(1,nr)

eps <- .00001

for (i in 1:nr){

itp <- vpnx[i, 2]-slopes*vpnx[i, 1] # y0-b*x0

for(j in 1:ncol (1 m)) {

rg <- range(lnx[1:2,j])

i}f((itp[i]<(rg[1]-698)) [l (itp[jl>(rgl2] +eps))) vpp[i]<-0

}
i f(sumvpp)>0) fvp <- matrix(vpnx[vpp==1], ncol =2)
return(fvp)

}

#
pol yarea <- function(vertex){
n <- nrow(vertex)
subs <- c(2:n,1)
x1l <- vertex[, 1]
X2 <- vertex[subs, 1]
yl <- vertex][, 2]
y2 <- vertex|[subs, 2]
area <- sun((x2-x1)*(yl+y2))/2
return(abs(area))

107

}
#

pl otarea <- function(fvp){

hul I <- chul I (fvp)
plot(fvp[,1],fvp[,2],type="n',xlab="",ylab="",6 axes=F)
pol ygon(fvp[hull, 1], fvp[hull, 2], density=0, col =3)

}

#

how ound <- function(vertex){

center <- apply(vertex, 2, nean)
sl <- (vertex[,1l]-center[1])"2
s2 <- (vertex[,2]-center[2])"2
S <- sum(sl+s2)/nrow(vertex)”2
s <- s/polyarea(vertex)
return(s)

}
#

resul tpolys <- function(vl,v2,icpt,slp){

vv <- rbind(vl, v2)
XX <- vv[, 1]

od <- order(xx)

X <- xx[od]

tmp <- c¢(T,diff(x)> 000001)

od <- od[tmp&c(tnp[-1],T)]

vv <- vv[od,]

if(nrowm(vv)<3) vv <- rbind(vv,vl[abs(vl[, 2]-slp*vl[, 1]-icpt)<.005,])
hul | <- chull (vv)

return(vv[hull,])

}
#

ptstolns <- function(vertex){

n <- nrow(vertex)

rstlines <- matrix(0, nrow=2, ncol =6)

for (i in 1:6){
diff <- vertex[,2]-slopes[i]*vertex][, 1]
ord <- order(diff)
rstlines[1,i] <- diff[ord[1]]
rstlines[2,i] <- diff[ord[n]]

return(rstlines)

}
#

nodup <- function(v){

XX <- 1000*v[, 1] +v[, 2]

od <- order(xx)

X <- xx[od]

i f(sum(diff(x)<.00001)>0)

{

plc <- seq(al ong=x)[c(F,diff(x)<.00001)]
od <- od[plc]

return(v[-od,])

} else

108

return(v)

#

splitit <- function(fraction, ab){

vert <- allvertices(ab)

vert <- nodup(vert)

hul | <- chull (vert)

orivert <- vert[hull,]
totarea <- polyarea(orivert)

rdness <- 1000
for(i in 1:6)

st <- ab[1,i]
ed <- ab[2,i]
kk <- 1

whi | e((ed-st)>0.01 || kk==1)
{

kk <- 0

abl <- ab

abl[1,i] <- (st+ed)/2

fvpl <- allvertices(abl)

fvpl <- nodup(fvpl)

hull <- chul I (fvpl)

area <- polyarea(fvpl[hull,])

nmyline <- area - fraction*totarea

i f(nyline<0) {ed <- (st+ed)/2} else {
st <- (st+ed)/2 }

}

ppoly <- resultpolys(orivert, fvpl[hull,], (st+ed)/2,slopes[i])
thisrd <- how ound(ppol y) +how ound(fvpl[hull,])

if(thisrd < rdness)

{

rdness <- thisrd
polyl <- fvpl[hull,]
pol y2 <- ppoly

}

hul | <- chul |l (pol y2)
poly2 <- poly2[hull,]

return(rdness, pol y1, pol y2)

}
#

ang <- (c(0,60,120)+15)*pi/ 180
angl <-(c(150, 90, 30) +15)*pi/ 180
angs <- c(ang, angl)
sl opes <- tan(angs)
a <- rep(2,3)/cos(ang)
109

ab <- rbind(-abs(a), abs(a))
fvp <- allvertices(ab)

hul I <- chul I (fvp[,1],fvp[,2])
fvp <- fvp[hull,]

gr aphsheet ()

par (oma=c(0, 0,0, 0), mar=c(0, 0,0, 0), pi n=c(8,8))
pl ot area(fvp)

ab <- ptstol ns(fvp)

#

clus.size <- function(mat){
n <- ncol (nmat)
vec <- rep(0,n)
for(i in 1:n){
j <- mat[1,i]
k <- mat[2,i]

if(k <0) vec[i] <- 2 el se
if(j <0) vec[i] <- 1+ vec[k] else vec[i] <- vec[]]+vec[K]

return(vec)

}

clus <- data. cl ust

mat <- t(clus$nerge)

di s <- clus$height

n <- ncol (mat)

nsize <- clus.size(mt)

drawpoly <- fvp

polys <- matrix(0, nrow=n-1, ncol =12)
polys <- rbind(polys,as.vector(ab))
p. point <- matrix(0, nrow=2, ncol =n+1)

y <= n

for (i in 1:2){
node <- y[1]
y < y[-1]

| eaf <- mat[, node]

cutit <- polys[node,]

cutit <- matrix(cutit, nrow=2)

j <- leaf[1]

k <- leaf[2]

if(j <0) jsize <- 1 else jsize <- nsize[j]
if(k <0) ksize <- 1 else ksize <- nsize[K]
fraction <- jsizel(jsize+ksize)

resl <- splitit(fraction, cutit)
res2 <- splitit(1-fraction, cutit)

i f(resl$rdness < res2$rdness)

{
polyl <- resi$polyl
pol y2 <- resl$pol y2
} else

polyl <- res2$pol y2
pol y2 <- res2$polyl
}

110

areal <- ptstol ns(polyl)
area2 <- ptstol ns(poly2)

if(jsize==1){

j <- abs(j)

p.point[,j] <- apply(polyl, 2, nean)
} else

polys[j,] <- as.vector(areal)

i f(ksize==1){

k <- abs(k)

p. point[,k] <- apply(poly2, 2, nean)
} else

pol ys[k,] <- as.vector(area2)

if (dis[n-i+1]>0.0) {
drawpoly <- rbind(drawpoly, c(NA NA), polyl, c(NA NA), poly?2)
}
y <- c(y,leaf[leaf>0])

}

gr aphsheet ()
par (oma=c(0, 0, 0, 0), mar =c(0, 0, 0, 0), pi n=c(8, 8))

pl ot area(fvp)
pol ygon(dr awpol y, densi t y=0, col =8, | wd=1)

ppp <- p.point[p.point!=0]

ppp <- matrix(ppp, ncol =2, byr ow=T)
poi nt s(ppp, cex=. 6, col =1, pch=16)

111

HUBHAHHBHBH R H AR R HOE | N R ##HAHAHHEH BT R R R
psubs = 1:3 # penalty subscripts

saneC usCost = 0
di ffClusCost = 3
bor der CaseD = 5 # the border to case distance

border EnmptyD = 0 # the border to enpty distance
enpt yCaseD = 1 # the enpty to case distance smaller than between clusters
enptyEnptyD = .5 # the enpty to enpty distance

1. Increnents matrix for accessing cell neighbors
rlnc = ¢(0,1,1,0,-1,-1)

clnc = matrix(c(
1,1,

0,1,

-1,0,

-1,-1,

-1,0,

0, 1), ncol =2, byr ow=T)

2. Indexing the allowed locations within a hexagon matrix

hSi ze = 10
cell Matrix = matrix(0, nrow=2*hSi ze+1, ncol =2*hSi ze+1)

cel | Mat Si ze=2*hSi ze+1
k=0
for (i in -hSize:hSize){
L=cel | Mat Si ze- abs(i)
jL=trunc((-L)/2)
jUstrunc((L-1)/2)
for (j injLjU({
k=k+1
cell Matrix[i+hSi ze+1, j +hSi ze+1] =k
1}

#3. Create a neighbor matrix indexed by allowed cell

nValid = max(cel | Matri x)
neib = matri x(0, nrow=6, ncol =nVal i d)

k=0
for (i in -hSize:hSize){
i L=cel | Mat Si ze-abs(i)
jL=trunc((-L)/2)
ju=strunc((L-1)/2)
ind = abs(i)%2+1
for(j injL:ju){
k=k+1
ni =i +rlnc
nj =j +cl nc[, i nd]
good = abs(ni)<=hSi ze & abs(nj)<=hSize
i f(any(good))
nei b[(1: 6) [good] , k] =cel | Mat ri x[cbi nd(ni +hSi ze+1, nj +hSi ze+1) [good,]]
)

nei b[nei b==0] = nValid+1 # border cells

#4. Create distance matrix for clusters of cases

112

cl ust Si ze= ¢(10, 20, 30, 40, 50)
nCase =sun(cl ustSize)
cl ust Cum =cumsumn(cl ust Si ze)

caseDi st Mat = matri x(di ffC usCost, ncol =nCase, nrow=nCase) # di stance

for (i in 1:1ength(clustSize)){
sizeN = clustSize[i]
je=clustCunii]
jb=je-sizeN+1
ind=jb:je
subs = as. matri x(expand. gri d(x=i nd, y=i nd))
caseDi st Mat[subs] = matri x(samed usCost, nrow=si zeN, ncol =si zeN)

}

di ag(caseDi st Mat) =0 # set distance fromcase to self as O

vec = rep(enptyCaseD, nCase)
caseDi st Mat rbi nd(caseDi st Mat, vec)
caseDi st Mat cbhi nd(caseDi st Mat, c(vec, enpt yEnpt yD))

vec = rep(borderCaseD, nCase+1)

caseDi st Mat = rbind(caseDi st Mat, vec)

caseDi st Mat = cbi nd(caseDi st Mat, c(vec, bor der CaseD))
subs= matri x(c(nCase+1, nCase+2, nCase+2, nCase+1), ncol =2)
caseDi st Mat [subs] = border EnptyD

#5. Create cell nenber vector for allowed |ocations

enptyCase = nCase+l
bor der Case = nCase+2

cel | Menber = rep(enptyCase, nVal i d+1)
casePosition = sanpl e(1: nValid, nCase, repl ace=F) #where to pl ace cases

cel | Menber [casePosi ti on] =1: nCase # placing them
cel | Menber [nVal i d+1] =bor der Case # universal border cell
cel | Menber d d= cel | Menber # save first state for conparison

#6. Create cost vector for allowed |ocations

cost = rep(0,nValid)
for (i in 1:nValid){
|l ocs= neib[,i]
cost[i] = sum(caseDi stMat[cell Menber[i], cell Menmber[l ocs]])
cost[i] = sun(sort(caseDi stMat[cell Menmber[i], cell Menber[locs]])[psubs])
}

cost Begi n = sum(cost)

#7. Graphics feedback setup

nr = nrow cell Matri x)
nc = ncol (cel | Matri x)
x=1:nc

y=(1l:nr)*sqrt(3)/2
cents = expand. grid(x=x, y=y)
cents$x = cents$x + c(rep(rep(c(0,.5),c(21,21)),10),rep(0,21))

113

good = t(cell Matrix)>0

cel | X=cent s$x[good]

cel | Y=cent s$y[good]

cellld = t(cell Matrix)[good]

pol yX c(-.50,.5,.5/0,-.5NA

polyY c(-1,-2,-1,1,2,1,NA)/ (2*sqgrt (3))
centsReps = rep(7,length(cell X))

8. Looping constants and initial values

valids = 1:nValid
nMVat Pairs = nVal i d% %2

9. Pick cell pairs and swap if closer to neighbors

cost Reduce = 0
for (min 1:2000){

sam = matri x(sanpl e(val i ds, 2*nMat Pai rs, r epl ace=F), nr ow=2)
for(k in 1: nMat Pairs){

| ocs = sani, k] # pair of |ocations

m dCases = cel | Menber [| ocs] # candi date cases to swap

i f(m n(m dCases) ==enptyCase)next # skip if both cells are enpty
a=l ocs[1]

b=l ocs[2]

A=m dCases|[1]

B=ni dCases|[2]

nei bsA = nei b[, a]
nei bsB = nei b[, b]
nei bCasesA = cel | Menber [nei bsA]
nei bCasesB = cel | Menber [nei bsB]
cost Cur =sun(caseDi st Mat [A, nei bCasesA]) +
sun(caseDi st Mat [B, nei bCasesB])
cost Cur =sum(sort (caseD st Mat [A, nei bCasesA]) [psubs]) +
sun{sort (caseDi st Mat [B, nei bCasesB]) [psubs])

#

i f (any(nei bsA==b)) {
nei bCasesA[nei bsA==b]
nei bCasesB[nei bsB==a]

W >

cost sBA = c(sunm(caseDi st Mat [B, nei bCasesA]),
sum(caseDi st Mat [A, nei bCasesB]))
costsBA = c(sun(sort(caseD st Mat [B, nei bCasesA]) [psubs]),
sun(sort (caseDi st Mat [A, nei bCasesB]) [psubs]))
cost New = sun{ cost sBA)
i f (cost Cur> cost New) {
cost[locs] = costsBA
cel | Menber[1 ocs] = rev(m dCases)
cost Reduce = cost Reduce + cost Cur-cost New

}
}

10. Hexagon PI ot

cell Case = cell Menber[1:1ength(cellld)]
114

clust = cut(cell Case, breaks=c(0, 10. 5, 30.5, 60. 5, 100. 5, 150. 5, nCase+2), | abel s=F)
nycol or = c("#B08OFF", "#FFA000", "#00FF00", " #FFFF00", "#0080FF" , " #FFFFFF")

wi ndows(w dt h=8, hei ght =8)
pl ot (c(0, 22),c(0,22*sqrt(3)/2),
type='n', axes=FALSE, yl ab="", xl ab="",
mai n=past e(' Last Cost Reduction =',round(costReduce)))
probsCh= format (rep(" ", 4))
di st Ch = format (round(c(borderCaseD, bor der Enpt yD, enpt yCaseD, enpt yEnpt yD) , 2))
nt ext (si de=1, | ine=-1, paste(' BorderCase = ', probsCh[1],distCh[1]), cex=.38)
nt ext (si de=1, |ine=0, paste(' BorderEnpty= ", probsCh[2],distCh[2]), cex=.38)
nt ext (si de=1, | ine=1, paste(' EnptyCases ", probsCh[3],distCh[3]), cex=.38)
nt ext (side=1,1ine=2, paste(' EnptyEnmpty ', probsCh[4],distCh[4]), cex=.38)
pol ygon(rep(cel | X, cent sReps) +pol yX,
rep(cel 1Y, cent sReps) +pol yY,
col =mycol or[cl ust])
pol ygon(rep(cel | X, cent sReps) +pol yX,
rep(cel 1Y, cent sReps) +pol yY,
densi t y=0, col ="#A0A0AQ")
text(cell X, cell Y+.2,cellld, cex=. 55, adj=.05)
good = cell Case <= nCase
text (cel | X[good], cell Y[good]-. 2, cel | Case[good], cex=. 55, adj =. 5)

115

HHHHHHH R HH AR AA#H#HH#S gned Devi ation Star G yph ######HHH#BHHHHHHBHHHHHH

gr aphsheet (col or. t abl e=col or. thb)
par (oma=c(0, 0,0, 0), mar=c(0, 0,0, 0), pi n=c(8, 8))

plotarea(fvp) # plot al
pol ygon(dr awpol y, densi t y=0, col =3, | wd=.5)

star.angs <- seq(0, 180, length=35)[-c(1,35)]
star.angs <- star.angs*pi/ 180 # 40 degrees apart, 9 values to show

synbol s(ppp[, 1], ppp[.2], circles=rep(.3/9, nrow ppp)), add=T, inches=F, col =3)
synbol s(ppp[, 1], ppp[. 2], circles=rep(.6/9, nrow ppp)), add=T, inches=F, col =3)

for(i in 1:nrow(nydata))

{

XxX. b <- rep(ppp[i, 1], 33)

yy.b <- rep(pppl[i, 2], 33)

XX.e <- ppp[i,1]+. 3*clus.data.s[i,]*cos(star.angs)/9
yy.e <- ppp[i,2]+.3*clus.data.s[i,]*sin(star.angs)/9

lines(c(ppp[i,1]-.6/9, ppp[i,1]+.6/9),c(ppp[i.,2], pppl[i,2]),col=3)

segment s(xx. b[1: 11] , yy. b[1: 11] , xx. e[1: 11] , yy. e[1: 11], col =4, | wd=1)
segnment s(xx. b[12: 22],yy. b[12: 22], xx. e[12: 22] , yy. e[12: 22], col =5, |wd=1)
segment s(xx. b[23: 31], yy. b[23: 31], xx. e[23: 31], yy. e[23: 31], col =6, |wd=1)
segnment s(xx. b[32: 33], yy. b[32: 33], xx. e[32: 33], yy. e[32: 33], col =7, |wd=1)
}

116

Hi#HHHH T HH##E Fol ded Devi ation Star G yph #######HHHHHHBHHHHHHTHRHH

gr aphsheet (col or. t abl e=col or. thb)
par (oma=c(0, 0,0, 0), mar=c(0, 0,0, 0), pi n=c(8, 8))

plotarea(fvp) # plot al

synbol s(ppp[, 1], ppp[.2], circles=rep(.3/9, nrow ppp)), add=T, inches=F, col =3)
synbol s(ppp[., 1], ppp[, 2], circles=rep(.6/9, nrow ppp)), add=T, inches=F, col =3)
for(i in 1:nrow(mnydata))

{

xx.b <- rep(ppp[i, 1], 33)

yy.b <- rep(ppp[i, 2], 33)

XX.e <- ppp[i,1]+.3*abs(clus.data.s[i,])*cos(star.angs)/9

yy.e <- ppp[i,2]+. 3*abs(clus.data.s[i,])*sin(star.angs)/9

pos <- clus.data.s[i,] >0

neg <- clus.data.s[i,] <O

subl <- (1:11)[pos[1l:11]]

sub2 <- (1:11)[neg[1:11]]

segnment s(xx. b[subl], yy. b[sub1], xx. e[sub1], yy. e[subl], col =4, |wd=1)
segment s(xx. b[sub2], yy. b[sub2], xx. e[sub2], yy. e[sub2], col =8, |wd=1)
subl <- (12:22)[pos[12: 22]]

sub2 <- (12:22)[neg[12: 22]]

segnment s(xx. b[subl], yy. b[sub1], xx. e[sub1], yy. e[subl], col =5, |wd=1)
segment s(xx. b[sub2], yy. b[sub2] , xx. e[sub2], yy. e[sub2], col =9, |wd=1)
subl <- (23:31)[pos[23:31]]

sub2 <- (23:31)[neg[23: 31]]

segnment s(xx. b[subl], yy. b[sub1], xx. e[sub1], yy. e[subl], col =6, |wd=1)
segment s(xx. b[sub2], yy. b[sub2], xx. e[sub2], yy. e[sub2], col =10, |wd=1)
subl <- (32:33)[pos[32:33]]

sub2 <- (32:33)[neg[32: 33]]

segment s(xx. b[subl], yy. b[sub1], xx. e[sub1], yy. e[subl], col =7, |wd=1)
segnment s(xx. b[sub2], yy. b[sub2], xx. e[sub2], yy. e[sub2], col =11, | wd=1)

}

117

HUBHAHHBHAH A HAHAHAFHS] mul at i on 3- D i N R ##HAHAHHBHBHBHHEHBH B H BT
1. Normal to cutting planes

dirc <- matrix(c(, ## Center of faces

Vertices

ol 9

' OO PRPUUIOORRRPRRPRLRRPROOR
o
gR o

UiRr ' O'RPOR:
o'u NOoP:

RUIR OO

-.5,1,0), ncol =3, byr ow=TRUE)
dirc.len <- (dirc”2) %%c(1,1,1)
dirc[,1] <- dirc[,1]/sqgrt(dirc.len)
dirc[,2] <- dirc[,2]/sqgrt(dirc.len)
dirc[,3] <- dirc[,3]/sqgrt(dirc.len)
dirc = t(dirc)

2. Cenerate points in a bodycentered-cube-lattice bccube

ctrs <- as.matrix(expand.grid(c(.5,-.5),¢c(.5,-.5),¢c(.5,-.5))) # the centers of
8 hexagons

n <- 100

dat <- seq(-1, 1,1 ength=n)

cube <- as.matrix(expand. grid(dat, dat, dat))
dx <-(dat[2]-dat[1])/2

bccube <- rbind(cube, cube+dx)

Renobve points shifted outside the cube
bccube <- bccube[bccube[, 1] <=1 & bccube[,2] <=1 & bccube[, 3] <= 1,]
nump <- nrowbccube) # point in the bccube

3. Renobve points to get a truncated octahedron TC

Slice of pairs of opposite corners to create a truncated octahedron
TO <- bccube
for(i in 1:4){
cur <- ctrs[i,]
const <- sunm(cur”2)
d <- as.matrix(TO % % cur
TO <- T(J abs(d) <=const,]
}

numleft <- nrow(TO
numleft/nump # 0.49429 The target is .5
8*num l eft/nump # 3.95432: approxi mate truncated octahedron vol une.

4. Thoughts and trial calculation of second di mensi onl ess noment

118

mmt . whol e <- sum(TO'2)/ num | eft
mt . whol e/ (8* num |l eft/nump)”(2/3)/3

5. Function Definition for conparing splits with the same fraction

conl= 3*(4/numleft)”(2/3)
con2=5/3
nd = ncol (dirc)

split.3d <- function(data, fraction){

nr
nf

nrow dat a)
round(nr*fraction)

GPS = matri x(0, nrow=nd, ncol =2)
tinme.record <- rep(NA, nd)

for (i

}

in 1:nd){
z1 = Sys.tinme()

cc <- data W%dirc[,i]
ord = order(cc)
subs=ord[1: nf]

pointL <- data[subs,]
pointH <- data - subs,]

gpL <- sun{(scal e(pointL, center=T, scal e=F)”2))/(conl*nf”~con2)
gpH <- sun{(scal e(poi ntH, center=T, scal e=F)"2))/(conl*(nr-nf)”con2)

gpl = gpL + gpH

cut fromthe opposite direction
subs = ord[1: (nr-nf)]
pointL <- data[subs,]
pointH <- data - subs,]

gpL <- sun{(scal e(pointL, center=T, scal e=F)"2))/(conl*(nr-nf)”con2)
gpH <- sun{(scal e(pointH, center=T, scal e=F)”2))/(conl*nf”~con2)

gp2 <- gpL + gpH

GPS[i,] =c(gpl, gp2)

z2 = Sys.tinme()

time.record[i] <- difftinme(z2, z1)
#end for | oop

[a—

ret urn(GPS)

}

fraction <- 0.3
GPS = split.3d(TQ fraction)

fraction = .0005
GPS = split.3d(TO fraction)

AIRS Exanple, ‘mat’ saves the cluster joining steps.

clus.size <- function(mat){
n <- ncol (mat)
vec <- rep(0,n)

119

for(i in 1:n){
j <- mat[1,i]
k <- mat[2,i]

if(k <0) vec[i] <- 2 el se
if(j <0) vec[i] <- 1+ vec[k] else vec[i] <- vec[]]+vec[K]

return(vec)

}

n <- ncol (mat) # nunber of joins
nsize <- clus.size(mt)

nylist=vector("list",n)

nylist[[n]] <- list(subs=1:nrow TO))
p.point <- matrix(0, nrow=3, ncol =n+1)
round. nea <- matrix(0, nrow=n+1, ncol =2)
y <= n

for (i in 1:n){

node <- y[1]

y < y[-1]

| eaf <- mat[, node]
j <- leaf[1]

k <- leaf[2]

if(j <0) jsize <- 1 else jsize <- nsize[j]
if(k < 0) ksize <- 1 else ksize <- nsize[K]
fraction <- jsizel(jsize+ksize)

current.subs <- nylist[[node]] $subs
dat <- T current. subs,]

GPS <- split.3d(dat, fraction)

tenp <- mn(GPS)
col Left = whi ch(GPS[, 1] ==t enp[1])
col Ri ght = which(GPS[, 2] ==tenp[1])

i f(length(col Left)>0)({
choseRow=col Left[1]
dir <- dirc[, choseRow
frac=fraction
cC <- as.matrix(dat) %W%dir
nf <- floor(nrowdat)*frac)
part <- order(cc)[1l:nf]
subs = current.subs[part]} else {

choseRow=col Ri ght [1]

dir <- dirc[, choseRow
frac=1-fraction

cC <- as.matrix(dat) W% dir

nf <- floor(nrowdat)*frac)

part <- order(cc)[(nf+1):nrow(dat)]
subs = current.subs[part]}

if(jsize==1) {

j < abs(j)

p.point[,j] <- apply(dat[part,], 2, nean)
round. nea[j, 1] <- nrow(dat[part,])

120

round. nea[j, 2] <-
sum((scal e(dat[part,], center=T, scal e=F)~2))/(conl*(nrow(dat[part,]))”~con2)
} else nylist[[j]] <- list(subs=subs)

i f(ksize==1) {
k <- abs(k)
p.point[,k] <- apply(dat[-part,], 2, nean)
round. nea[k, 1] <- nrow(dat[-part,])
round. nea[k, 2] <-
sunm((scal e(dat[-part,], center=T, scal e=F)"2))/(conl*(nrow(dat[-part,]))” con2)
} else nylist[[k]] <- list(subs=current.subs[!is.elenment(current.subs,subs)])

y <- c(y,leaf[leaf>0])
library(rgl)
open3d()

plot3d(c(-1,1),c(-1,1),c(-1,1),type="n")
pl ot 3d(t (p. point),type='s', col =" green',radi us=. 03, add=TRUE)

121

REFERENCES

122

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

REFERENCES

Ankerst, M., S. Berchtold, and D. A. Keim (1998). “Similarity Clustering of
Dimensions for an Enhanced Visualization of Multidimensional Data’, |EEE. 52-60.

Balzer, M. and O. Deussen (2005). “Voronoi Treemaps’, |EEE Symposium on
Information Visualization. 49-56. |EEE.

Bartram, L. and C. Ware (2002). “Filtering and Brushing with Motion”, Information
Visualization, Vol.1, No.1, 66-79.

Becker, R. A. and W. S. Cleveland (1987). “Brushing Scatterplots”, Technometrics,
29, 127-142.

Bederson, B. B., B. Shneiderman, and M. Wattenberg (2001). “Ordered and Quantum
Treemaps: Making Effective Use of 2D Space to Display Hierarchies’, ACM
Transactions on Graphics, Vol.21, No.4, 833-854.

Bertin, J. and W. J. Berg (1984). Semiology of Graphics. The University of
Wisconsin Press.

Borg, I. (1997). Modern multidimensional scaling : theory and applications.
Springer, New Y ork.

Braverman, A. and E. Fetzer (2006). “A Probabilistic Approach to Mining Massive
Earth Science Data Sets’, website
http://trs-new.jpl.nasa.gov/dspace/bitstreany2014/39338/1/05-3717.pdf.

Brewer, C. A. (1994). “Color Use Guidelines for Mapping and Visualization”,
Visualization in Modern Cartography, edited by A.M. MacEachren and D.R.F.
Taylor, 123-147, Elsevier Science, Tarrytown, NY .

123

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Brower, J. C. and K. M. Kyle (1988). “ Seriation of an original data matrix as applied
to palaeoecology”, Lethaia, 21, 79-93.

Bruls, M., K. Huizing, and J. J. van Wijk (2000). “ Squarified treemaps’, Proceedings
of the Joint Eurographics and IEEE TCVG Symposium on Visualization, 33-42.
Computer Society.

Cad, S. K., J. D. Mackinlay, and B. Shneiderman, Eds. (1999). Readingsin
Information Visualization — Using Vision to Think. Morgan Kaufmann.

Carr, D. B. (1991). “Looking at Large Data Sets Using Binned Data Plots”,
Computing and Graphicsin Statistics, edited by A. Bujaand P. Tukey, 7-39.
Springer, New Y ork.

Carr, D. B. (1994a). “ Converting Tablesto Plots’, Technical Report No. 101, Center
for Computational Statistics, George Mason University, Fairfax, VA, 22030.

Carr, D. B. (1994b). “Using Gray in Plots”, Satistical Computing & Graphics
Newsletter, Vol.5, No.2, 11-14.

Carr, D. B. and A. Braverman (2007). “Visuaizing Cluster-Compressed
Multivariable and Multialtitude Atmospheric Data’, Statistics Colloquium Series,
George Mason University.

http://www.gal axy.gmu.edu/stats/col loqui a/Colloqui aFal | 2007.html

Carr, D. B, R. J. Littlefield, W. L. Nicholson, and J. S. Littlefield (1987). “ Scatterplot
Matrix Techniquesfor Large N”, Journal of the American Satistical Association
Vol.82, N0.398, 424-436.

Carr, D. B. and W. L. Nicholson (1988). "EXPLOR4: A Program for Exploring
Four-Dimensional Data." Dynamic Graphics for Statistics, edited by W. S. Cleveland
and M. E. McGill, 309-329. Wadsworth, Belmont, California

Carr, D. B. and A. R. Olsen (1996). “Simplifying Visual Appearance by Sorting: An
Example Using 159 AVHRR Classes’, Satistical Computing & Graphics Newsletter,
Vol.7, No.1, 10-16.

Carr, D. B., A. R. Olsen, S. M. Pierson, and J. P. Courbois (2000). “Using Linked
Micromap Plots to Characterize Omernik Ecoregions’, Data Mining and Knowledge
Discovery, 4, 43-67.

124

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

Carr, D. B. and M. H. Sung (2004). “Graphs for Representing Statistics Index by
Nucleotide or Amino Acid Sequences,” Edited by J. Antoch. Proceeding in
Computational Satistics, 73-83, Physica Verlag, New Y ork.

Carr, D. B., A. R. Olsen, and D. White (1992). “Hexagon Mosaic Maps for Display of
Univariate and Bivariate Geographical Data’, Cartography and Geographical
Information Systems, Vol.19, No.4, 228-236, 271.

Carr, D. B. and R. Sun (1999). “Using Layering and Perceptual Groupingin
Statistical Graphics”, Satistical Computing & Graphics Newsletter, Vol.10, No.1,
25-31.

Chen, C. (2006). Information Visualization. Springer-V erlag London Limited.

Chen, H. (2004). “Compound brushing explained”, Information Visualization, Vol.3,
No.2, 96-108.

Chernoff, H. (1973). “Using Facesto Represent Pointsin K-dimensional Space
Graphically”, Journal of the American Satistical Association, Vol.68, 361-368.

Cleveland, W. S. (1993). Visualizing Data. Hobart Press.
Cleveland, W. S. (1994). The Elements of Graphing Data. Hobart Press.

Cleveland, W. S. and R. McGill (1984). “Graphical Perception: Theory,
Experimentation, and Application to the Devel opment of Graphics Methods’, Journal
of the American Statistical Association 79, 531-554.

Conway, J. H. and N. J. A. Sloane (1982). ‘Voronoi Regions of Lattices, Second
Moments of Polytopes, and Quantization’, |EEE transactions on information theory,
Vol. IT-28, No.2.

Conway, J. H. and N. J. A. Sloane (1999). Sohere Packings, Lattices and Groups.
Springer Verlag.

Davidson R. and D. Harel (1996). “Drawing Graphs Nicely Using Simulated
Annealing”. ACM Transactions on Graphics, Vol.15, No.4, 301-331.

Di Battista G. (1998). Graph Drawing: Algorithms for the Visualization of Graphs.
Upper Saddle River, NJ: Prentice Hall.

125

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Eades, P. (1984). “A heuristic for graph drawing”, Congressus Numerantium, 42,
149-160.

Eick, S. G. and G. J. Wills (1993). “Navigating Large Networks with Hierarchies”,
|EEE. 204-210.

Everitt, B. S. (1993). Cluster Analysis, 3" Edition. Halsted Press New Y ork.

Forsell, C., S. Seipel, and M. Lind (2005). “ Simple 3D Glyphs for Spatial
Multivariate Data”, IEEE Symposium on Information Visualization. |EEE.

Friedman, J. H. (1977). “ A Recursive Partitioning Decision Rule for Nonparametric
Classification”, |EEE Transactions on Computers, 404-408.

Fruchterman T. M. J. and E. M. Reingold (1991). “Graph drawing by force-directed
placement”, Software-Practice and Experience, 21, 1129-1164.

Furnas, G. W. and A. Buja (1994). “Prosection Views. Dimensional Inference
Through Sections and Projections’, Journal of Computational and Graphical
Statistcis, Vol.3, No.4, 323-353.

Gentle, J. E. (2005). Elements of Computational Statistics, Springer.

Gnanadesikan, R. and R. K. Blashfield, et al. (Panel on Discriminant Anaysis,
Classification, and Clustering) (1989). “Discriminant Anaysis and Clustering”,
Satistical Science, Vol.4, No.1, 34-69.

Greenacre, M. J. (1984). Theory and Applications of Correspondence Analysis.
Academic Press.

Grinstein, G. and H. Levkowitz, Eds. (1995). Perceptual Issuesin Visualization.
Springer, New Y ork.

Guo, D., D. Peuquet, and M. Gahegan (2002). “Opening the Black Box: Interactive
Hierarchical Clustering for Multivariate Spatial Patterns’, ACM, GIS’ 02.

Hammer, O., D. A. T. Harper, and P. D. Ryan (2004). PAST-Palaeontol ogical
Statistics, Version 1.19 documentation. http://folk.uio.no/ohammer/past/index.html

126

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Hastig, T., R. Tibshirani, and J. H. Friedman (2003). The Elements of Satistical
Learning, Springer.

Hulle, M. M. V. (2000). Faithful Representations and Topographic Maps, Wiley-
I nterscience Publication.

Johnson, B. J. and B. Shneiderman (1991). “Tree maps: A Space-Filling Approach to
the Visualization of Hierarchical Information Structures’, Proceedings of the 2™
International 1EEE Visualization Conference. 284-291. IEEE Computer Society.

Keller, P. (1993). Visual Cues. Practical Data Visualization. IEEE Computer Society
Press.

Kleiberg, E., H. van de Wetering, and J. J. van Wijk (2001). “Botanical Visualization
of Huge Hierarchies’, Proceedings of |EEE Visualization Conference.

Kohonen, T. (1995). Sdlf-Organizing Maps, Springer, Berlin.

Koike, H. and H. Y oshihara (1993). “ Fractal Approachesfor Visualizing Huge
Hierarchies’, Proceedings of IEEE Symposium on Visual Languages. 55-60.

Kosslyn, S. M. (1994). Elements of Graph Design. W.H.Freeman and Company, New
Y ork.

Kosslyn, S. M. (2006). Graph Design for the Eye and Mind. Oxford University Press,
New Y ork.

Krause, A. and M. Olson (2000). The Basics of Sand S-Plus, 2™ Edition. Springer,
New York.

Kruskal, J. B. and M. Wish (1978). Multidimensional Scaling. Sage Publications.

Lawrence, J. (1991). “Polytope Volume Computation”, Mathematics of Computation,
Vol.57, No.195, 259-271.

Pickover, C. A. (1988). “Pattern Formation and Chaos in Networks”,
Communications of the ACM, Vol.31, No.2, 136-151.

Marcotorchino, F. (1991). “ Seriation Problems: An Overview”, Applied Stochastic
Models and Data Analysis, Vol.7, 139-151.

127

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

Martin, A. R. and M. O. Ward (1995). “High Dimensiona Brushing for Interactive
Exploration of Multivariate Data”, Proceedings of the 6" conference on Visualization
'95, 271.

McCormick, B. H., T. A. Defanti, and M. D. Brown (1987). “Visualization in
Scientific Computing”, Computer Graphics, Vol.21, No.6.

Musser, B. J. (1999). “Extensions to Recursive Partitioning”, Doctoral Dissertation,
University of Minnesota, School of Statistics.

Richardson, M. W. (1938). “Multidimensiona Psychophysics’, Psychological
Bulletin 35: 659-660.

Robertson, G. G., J. D. Mackinlay, and S. K. Card (1991). “Cone trees: Animated 3D
Visualizations of Hierachical Information”, Proceedings of ACM CHI’ 91 Conference
on Human Factors in Computing Systems, Information Visualization. 189-194.

Sagan, H. (1994). Space-Filling Curves, Springer-Verlag, New Y ork.

Shneiderman, B. (1992). “Tree Visualization with Tree-maps; A 2D Space-Filling
Approach”, ACM Transactions on Graphics. Vol.11, No.1, 92-99.

Shneiderman, B. (1996). “The eyes have it: A task by data type taxonomy for
information visualizations’, Proceedings of |IEEE Workshop on Visual Language,
336-343.

Shneiderman, B. and M. Wattenberg (2001). “Ordered Treemap Layouts’,
Proceedings of the IEEE Symposium on Infor mation Visualization 2001.

Streng, R. (1991). “Classification and Seriation by lterative Reordering of a Data
Matrix”, In Classification, Data Analysis, and Knowledge Organization: Models and
Methods with Applications, 121-130, edited by Bock, H. H., and I|hm, P. Springer-
Verlag, New York.

Sun, L., S. Smith, and T. P. Caudell (2003). “A Low Complexity Recursive Force-
Directed Tree Layout Algorithm Based on the Lennard-Jones Potential”, University
of New Mexico Technical Report: EECE-TR-03-001.

Sun, R. and D. B. Carr (2005). “Hexagonal Layouts for Hierarchical Structures’,
Proceedings of Joint Statistical Meetings, August, 2005.

128

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

TamassiaR., G. D. Battista, and C. Batini (1988). “ Automatic Graph Drawing and
Readability of Diagrams’, IEEE Transactions on Systems, Man and Cybernetics,
Vol.18, No.1, 61-79.

Tavanti, M. and M. Lind (2001). “2D vs 3D, Implications on Spatial Memory”,
Proceedings of the IEEE Symposium on Information Visualization 2001.

Torgerson, W. S. (1958). Theory and Methods of Scaling. John Wiley, New Y ork.

Toronen, P., M. Kolehmainen, G. Wong, and E. Castren (1999). “Anaysis of Gene
Expression Data Using Self-Organizing Maps’, Federation of European Biochemical
Societies Letters 451, 142-146.

Trosset, M. (2005). “Visualizing Correlation”, Journal of Computational and
Graphical Statistics, Vol.14, No.1, 1-19.

Trosset, M. (2005). “Representing Clusters: K-Means Clustering, Self-Organizing
Maps, and Multidimensional Scaling”, Technical Report. Department of
Mathematics, College of William & Mary, P.O. Box 8795, Williamsburg, VA 23187.

Tufte, E. (1983). The Visual Display of Quantitative Information. Cheshire Press.
Tufte, E. (1990). Envisioning Information. Cheshire Press.
Tufte, E. (1997). Visual Explanations. Cheshire Press.

Van Wijk, J. J. and H. van de Wetering (1999). “Cushion treemaps: Visualization of
hierarchical information”, Proceedings of the IEEE Symposium on Information
Visualization. 73-78. IEEE Computer Society.

Venables, W. N. and B. D. Ripley (1999). Modern Applied Satistics with S-Plus, 3"
Edition. Springer, New Y ork.

Vernier, F. and L. Nigay (2000). “Modifiable treemaps containing variable-shaped
units’, Extended Abstracts of the IEEE Symposium on Information Visualization.
|[EEE Computer Society.

Vesanto, J. (2002). “ Data Exploration Process Based on the Self-Organizing Maps’,
Doctoral Dissertation, Helsinki University of Technology.

129

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

Ware, C. (2004). Information Visualization, Second Edition: Perception for Design,
2" Edition. Morgan Kaufmann.

Ware, C. and G. Franck (1996). “Evauating Stereo and Motion Cues for Visualizing
Information Netsin Three Dimensions’, ACM Transactions on Graphics, Vol.15,
No.2, 121-140.

Ware, C. and P. Mitchell (2008). “Visualizing Graphsin Three Dimensions’, ACM
Transactions on Applied Perception, Vol.5, No.1, 2:1-15.

Wattenberg, M. (1999). “Visualizing the stock market”, Extended Abstracts on
Human Factorsin Computing Systems. 188-189. ACM Press.

Wattenberg, M. (2005b). “A Note on Space-Filling Visualizations and Space-Filling
Curves’, IEEE Symposium on Information Visualization. |EEE.

Wilkinson, L. (1999). The Grammar of Graphics (Satistics and Computing) Springer
Verlag.

Wills, G. J. (1998). “An Interactive View for Hierarchical Clustering”, |IEEE, 26-31.

Wills, G. J. (1999). “Niche Works — Interactive Visualization of Very Large Graphs’,
Journal of Computational and Graphical Satistics, Vol.8, No.2, 190-212.

Young, F. (1985). “Multidimensional Scaling”, Kotz-Johnson (Ed.) Encyclopedia of
Satistical Sciences, Vol.5, John Wiley & Sons, Inc.

130

CURRICULUM VITAE

Ru Sun received her Bachelor of Science from Jilin University in 1993 and Master of
Science in 1996 from the same university in P. R. China, mgor in Computational
Mathematics & Applied Software. She came to the United States in 1997 and received a
Master of Science from George Mason University in 2000. She was employed as a
business consultant at the Quantitative Economics and Statistics group at Ernst & Young
in 2002 and has been working there since. The projects she has been involved in are in
various statistical areas: data analysis and visualization, sampling, forecasting, modeling,
survey, statistical testing, etc.

131

