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Abstract

GROUP SEQUENTIAL METHODS FOR ROC CURVES

Xuan Ye, PhD

George Mason University, 2015

Dissertation Director: Dr. Liansheng L. Tang

Comparative diagnostic studies in which each patient has two tests conducted or has

several diseased and nondiseased observations for each test will generate correlated or clus-

tered ROC curves. The traditional ROC comparison methods applied on the correlated

or clustered data can result in incorrect statistical inference. Furthermore, to design and

apply group sequential method in these comparative trials, we need to derive the theo-

retical variance-covariance structure and the joint distribution of sequential statistics. We

�rst derive the theoretical covariance structure of sequential correlated and clustered ROC-

s' di�erence and further verify the �ndings through simulation studies. Then based on

the independent increments covariance structure that we have proved, we conduct group

sequential studies for comparing ROC curves on both simulated and real data.



Chapter 1: Introduction

1.1 Diagnostic Tests and ROC, PPV and NPV Curves

Diagnostic tests are important in medical decision makings, such as cancer and glaucoma

diagnosis, since they provide reliable information about a patient's health condition and an

early diagnosis can possibly save a patient's life. The health care provider can make plans

for managing the patient with the diagnosis information (Sox et al. 1989) and possibly

better understand the disease mechanism through research (McNeil and Adelstein 1976).

Diagnostic test accuracy is de�ned as the ability of the test to discriminate the states

of health (Zweig and Campbell 1993). Hence the accuracy is measured by comparing

the test results to the true disease status. A diagnostic test may have binary, ordinal or

continuous results. For a binary test, the accuracy is commonly evaluated using sensitivity

and speci�city. Sensitivity is the probability of a positive test result when a patient has

the disease, and speci�city is the probability of a negative test result when a patient does

not have the disease. Sensitivity is also known as the true positive rate or TPR, and 1-

speci�city is also known as the false positive rate or FPR. These classi�cation probabilities

are commonly used in diagnostic evaluation study. We denote the disease status by D, with

D=1 for a case, and D=0 for a control. Let X denote the binary test result with X=0 for

a negative test result, and X=1 for a positive test result. We have that TPR = P (X =

1jD = 1); and FPR = P (X = 1jD = 0):

In addition to the classi�cation probabilities de�ned above, predictive values reecting

how well the test results predict the disease status are often used to assess the accuracy of a

test. The positive predictive value (PPV) and negative predictive value (NPV) are de�ned

as, for a binary test result, PPV = P (D = 1jX = 1) and NPV = P (D = 0jX = 0):

The predictive values depend on the prevalence of disease and the performance of the test
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in two subject groups. Hence, sensitivity and speci�city are often used to quantify the

inherent accuracy of the test, because they measure how well the test reects true disease

status. Predictive values are used to quantify the clinical value of the test, because the

patient and clinician are most interested in how likely the disease is actually present given

the test result, that is the measure of how well the test predicts the disease status. These

predictive values are also useful for prognostic testing evaluation. A prognostic testing is a

prediction about how something such as an illness will develop. A prognostic marker is a

marker measured in people with disease used to predict an aspect of their prognosis (Pepe

et al. 2004).

A perfect test is one that completely separates the case and control populations and has

zero misclassi�cation probabilities with TPR = 1 and FPR = 0. Consequently, the predict

values will also be optimal with PPV = 1 and NPV = 1. On the other hand, a test with no

added value contains no information about true disease status. That is PPV = P (D = 1)

or p, and NPV = P (D = 0) or 1� p, where p is the prevalence of disease. However, since

the test measurements usually follow normal or transformed normal distributions, it is very

unlikely to have a perfect test in practice.

For ordinal or continuous test results, the Receiver Operating Characteristic (ROC)

curve is commonly used for analysis. An ROC curve is a graphical plot which illustrates

the performance of a binary classi�er system as we vary the cuto� threshold. It is created

by plotting the fraction of true positives out of the total actual positives v.s. the fraction

of false positives out of the total actual negatives at various threshold values. Here the

sensitivity and speci�city depend on how well the test separates the two groups and the

threshold we choose. Given a diagnostic test, we let the threshold go from �1 to 1, the

ROC curve plots all possible pairs of FPR and TPR. Hence, the ROC is a relative operating

characteristic curve, because it is a comparison of two operating characteristics, TPR and

FPR, as the threshold changes, and the ROC curve is always monotonic.

In the ROC de�nition, a binary test is de�ned based on a pre-speci�ed threshold c, and

a patient is classi�ed to be positive if X > c, or negative if X � c. Therefore, TPR and FPR

2



are functions of the threshold value c, TPR(c) = P (X > cjD = 1); FPR(c) = P (X > cjD =

0): For c ranging over all possible values, the pairs (FPR(c), TPR(c)) form the ROC curve.

By this de�nition, the ROC curve can be expressed as R(�) = f(FPR(c); TPR(c)); c 2 Rg:
Throughout the thesis, we use R to represent the ROC function.

We denote distribution functions on the continuous test result as FD(c) = P (X �
cjD = 1) for the case population, and F �D(c) = P (X � cjD = 0) for the control population.

Similarly, we denote survival functions on the continuous test result as SD(c) = P (X >

cjD = 1) for the case population, and S �D(c) = P (X > cjD = 0) for the control population,

then the ROC curve can be easily expressed in a function form of FPR as

R(t) = SD(S
�1
�D
(t)); t 2 [0; 1]:

We let D be a Bernoulli random variable with prevalence p = P (D = 1), then F (x) =

pFD(x) + (1� p)F �D(x) is the marker distribution function for the entire population.

Under the assumption that the test results follow normal distributions in both the case

and the control populations, then this binormal ROC curve has the following property.

Assume that the binormal distributions for the test results are, Xj(D = 1) � N(�D; �
2
D);

and Xj(D = 0) � N(� �D; �
2
�D
); for the case and control populations respectively, the ROC

curve can be expressed as in Zhou et al. (2002)

R(t) = �(a+ b��1(t));

where a =
�D�� �D
�D

; b =
� �D
�D
:

Furthermore, there exists some monotone transformation of X such that the distributions

of the transformed test results are normal. Based on the fact that the ROC curve derived

from the monotone transformation on X is identical to the original one, the binormal ROC

curve function can be applied to any underlying distributions and is a common function

form of ROC curves.
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Many statistical analyses for ROC curves are based on the summary statistics which

include the area under the curve (AUC), partial area under the curve (pAUC), and the

weighted area under the curve (wAUC) (Zhou et al. 2011). The area under ROC curve

(AUC) is given by

AUC =

Z 1

0
R(u)du = P (XD > X �D):

Wieand et al. (1989) proposed a general method based on the weighted area under the

curve. We can apply this method to estimate the area under the curve, partial area under

the curve and TPR at a particular FPR using the weighted integration on FPRs. The

weighted AUC (wAUC) formula is

wAUC =

Z 1

0
R(u)dW (u);

where W (u) is a probability measure. If we use W (u) = u, then the weighted AUC is

the same as AUC equation above. Or if we use W (u) equals 0 for u 2 [0; u0) and 1 for

u 2 [u0; 1], then the wAUC is the sensitivity at FPR u0, which equals R(u0). The partial

AUC between FPRs u0 and u1 is given by

pAUC(u0; u1) =
1

u1 � u0

Z u1

u0

R(u)du;

which can be achieved by lettingW (u) = (u�u0)=(u1�u0) for u 2 (u0; u1); 0 for u 2 [0; u0];

1 for u 2 [u1; 1]; and applying it to the wAUC formula above.

Comparison of the accuracy of two diagnostic tests based on ROC curves is often con-

ducted using �xed sample designs. However, to address the ethics and e�ciency concerns of

clinical trial studies, there is a need to apply more exible designs such as a group sequential

design. At a series of interim looks during a comparative diagnostic trial, a group sequential

test monitors a statistic summarizing the di�erence in clinical data between the two groups.
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For a two-sided test, if the absolute value of this statistic exceeds some speci�ed critical

value, the trial is stopped and the null hypothesis of no di�erence between two groups is

rejected. The critical values are the boundaries for the sequence of test statistics. The

null hypothesis is accepted if the statistic stays within the test boundaries until the trial's

planned termination.

In this thesis, we incorporate group sequential methods into the design of comparative

diagnostic study with respect to ROC curves. We estimate ROC curves are estimated

empirically without assuming the distributions of the underlying diagnostic test data. We

study the di�erence between sequential empirical ROC curves on the process level. Then

we derive the asymptotic distribution theory for the di�erence between sequential empirical

ROC curves and derive the asymptotic covariance structure for comparative ROC statistics.

Relating the di�erence between empirical ROC curves to the Kiefer process, we further show

these results can be used to conduct a group sequential design using standard software.

In Figure 1.1, we plot three example ROC curves each evaluating one speci�c diagnostic

test. The ROC curve in red color is generated from the test distribution data shown

at the lower-left. Since the diagnostic test separates the case and control populations

almost completely with very little overlapping part, the corresponding ROC curve reaches

the upper-left corner with AUC close to 1. This indicates that this test is the best one

among the three diagnostic tests. The blue one, on the contrary, barely separates the two

populations with regard to the test results. Hence it is the least e�ective diagnostic test

with the smallest AUC. The black one lies in between with respect to the separation of the

case population and the control population.

Similarly, PPV and NPV for a continuous test results with a given threshold value c

are de�ned as, PPV (c) = P (D = 1jX > c) and NPV (c) = P (D = 0jX � c): Furthermore,

PPV and NPV curves are de�ned on PPV(c) and NPV(c) for all c 2 (�1;1). In practice,

PPV and NPV curves are usually indexed by a summary of the marker distribution rather

than a generic threshold (Pepe 2003; Moskowitz and Pepe 2004; Zheng et al. 2008). Here,

we consider the PPV and NPV curves indexed by FPR and by the percentile value in the

5



Figure 1.1: Example ROC curves

entire population.

The PPV and NPV curves indexed by FPR are de�ned as PPV (t) = P (D = 1jX >

S�1�D (t)) and NPV (t) = P (D = 0jX � S�1�D (t)) for all t 2 (0; 1) and can be written as

functions of the ROC curve,

PPV (t) =
R(t)p

R(t)p+ t(1� p)
;

and

NPV (t) =
(1� t)(1� p)

(1�R(t))p+ (1� t)(1� p)
:

The PPV and NPV curves can also be indexed by the percentile value in the entire

population. Here we use u to represent the rate of having negative results in the entire

population, i.e. u = P (X � c) or F (c) with cuto� c, which involves the mixed distribution

function for the entire population. In this case, the PPV and NPV curves are de�ned as

PPV (u) = P (D = 1jX > F�1(u)) and NPV (u) = P (D = 0jX � F�1(u)) for all u 2 (0; 1).

6



Under this setting, the PPV curve can be written as

PPV (u) =
SD(F

�1(u))p

1� u
;

and the NPV curve can be written as

NPV (u) =
u� p

p
+
1� u

u
PPV (u):

These de�nitions on PPV and NPV are indexed by a variable which involves the biomarker

distribution function of the entire population

1.2 Group Sequential Methods for Estimating and Compar-

ison of One ROC, PPV and NPV Curve

The diagnostic accuracy can be evaluated in a �xed sample design or a group sequential

design. In a �xed sample design, the ROC statistics are estimated after all subjects are

recruited and tests measured. While in a group sequential design, the ROC statistics are

estimated at interim analysis points as subjects are being accrued. In �xed sample design

approaches, the ROC curves and their comparison based on AUC summaries have been

studied (Pepe, Longton, and Janes 2009; Obuchowski 2005; Pepe 2000). The ROC curves

study and comparison based on pAUC were also investigated (Obuchowski 2005; Dodd and

Pepe 2003). However, since in a �xed sample trial the statistical analysis is conducted at

the end when data collection is completed, it has inherent ethical and e�ciency issues as

patients are involved in these trials. More exible designs have been proposed, such as

adaptive design and group sequential design, to address the ethical and e�ciency issues. A

group sequential method allows researchers to terminate the study early, if the candidate

diagnostic test is clearly superior or non-inferior to the established diagnostic test under

comparison (Jennison and Turnbull 2000). A group sequential method also allows early

7



termination for futility based on conditional estimation (Pepe et al. 2009; Jennison and

Turnbull 2000; Fleming et al. 1984). The adoption of the group sequential method may

substantially save the number of subjects needed, resulting in both time and resource use

e�ciency and ethical bene�ts.

Group sequential designs provide a chance to periodically monitor and analyze the

accruing data. In many trials in which data accumulate over a period of time, it is an

advantage if we can monitor results as they occur and take action accordingly. For trials

involving human subjects, there is also an ethical need to monitor results and possibly stop

the trial early. In clinical therapeutical trials, this ensures that individuals are not exposed

to unsafe, ine�ective treatment. In clinical diagnostic trials, this ensures that individuals

are not exposed to harmful or intrusive diagnostic procedures such as medical radiological

imaging. As the example of the comparative diagnostic trial on CT and PET shows, which

will be discussed in detail later, less patients will be exposed to harmful X-ray if we can

stop the study earlier at an interim analysis. For administrative reasons, we also need

interim analyses to ensure that the experiment is being executed as planned, the study

population satis�es inclusion/exclusion criteria and matches the intended use population,

and that the study protocol and test procedures are followed. There are also economic

bene�ts conducting group sequential methods as the trials now can be terminated earlier

for apparent superiority or futility.

However, if we use the usual critical values for the �xed sample design at each analysis,

the type I error rate will be greatly inated over the nominal � level (Armitage et al. 1969).

Hence, Pocock (1977), O'Brien and Fleming (1979), Fleming et al. (1984), Kim and Demets

(1992) and Wang and Tsiatis (1987) have developed group sequential methods which adjust

the critical values to maintain the overall type I error rate at an acceptable level. Also with

further calculations, we can determine the sample size needed for the group sequential test

to attain a desired power requirement.

To control the overall type I error rate, we can apply the idea of error spending as

demonstrated in the following two-sided testing context. Assuming the maximum number
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of analyses is J , which is �xed before the study begins. The type I error rate is partitioned

into probabilities of p1; � � � ; pJ , with the sum of �, i.e.
PJ

j=1 pj = �. At each interim

analysis point j, critical values cj for the standardized statistics Zj ; j = 1; � � � ; J , are

determined such that P (jZ1j > c1) = p1, P (jZ1j � c1; � � � ; jZj�1j � cj�1; jZj j > cj) =

pj for j = 2; � � � ; J .
Various methods have been proposed to apply the group sequential methodology in di-

agnostic test studies (Tang et al. 2008; Tang and Liu 2010; Liu et al. 2008; Pepe et al. 2009;

Mazumdar and Liu 2003). The nonparametric sequential methods based on AUC, pAUC

and wAUC statistics for ROC curves comparison have been introduced, and the method

for sample size recalculation at interim analyses has also been presented. Mazumdar (2004)

introduced group sequential design approaches in planning comparative diagnostic accuracy

trials. Assuming that the measurements of biomarkers are normally distributed, Mazum-

dar and Liu (2003) derived the asymptotic distribution of the standardized AUC di�erence

statistic and illustrated the boundary and sample size determination in a group sequential

design. To address the bias introduced by allowing early termination for futility in the

group sequential study, Koopmeiners et al. (2012) proposed conditional estimators and

con�dence intervals that correct for the bias if the underlying statistics have an indepen-

dent increments covariance structure. In the design of a two-stage study to develop and

validate a panel of biomarkers where a predictive model is developed in stage 1 and vali-

dated in stage 2 using only the samples that were not used for training, Koopmeiners and

Vogel (2013) proposed to apply group sequential method with interim analyses in stage

2, resulting in greater savings in the required number of samples. Tang and Liu (2010)

developed a nonparametric adaptive method for comparative diagnostic trials which allows

early stopping or the sample sizes recalculating based interim data analysis. Hsieh et al.

(1996) studied the asymptotic property of the empirical ROC curve and proved it converges

to the sum of two independent Brownian bridges. Extending the research, Koopmeiners

and Feng (2011) studied the single empirical ROC curve on process level without using

summary index. They derived the asymptotic properties of the sequential empirical ROC,
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PPV and NPV curves, proved the embedded independent increments covariance structure,

and applied the theory in group sequential designs.

Related to ROC curves, PPV and NPV curves are extensions of PPV and NPV to

continuous markers. Huang et al. (2007) introduced a predictiveness curve that provides a

common meaningful scale for comparing markers. Moskowitz and Pepe (2004), Zheng et al.

(2008) and Koopmeiners and Feng (2011) studied the PPV and NPV curves for continuous

markers.

The asymptotic properties of one sequential empirical ROC curve have been rigorously

studied in Koopmeiners and Feng (2011). In their paper, they estimated the ROC, PPV

and NPV curves empirically to avoid assumptions about the underlying distributional form

of the biomarkers. They derived asymptotic properties of the sequential empirical ROC, P-

PV and NPV curves under case-control sampling using sequential empirical process theory.

They proved that the sequential empirical ROC process converges to the sum of independent

Kiefer processes and extended the �nding to the empirical PPV and NPV processes. Then

they incorporated group sequential methods into the design of diagnostic biomarker studies.

They derived the asymptotic property on one sequential empirical ROC curve with J stop-

ping times, and rD;j ; r �D;j are the proportions of cases and controls, respectively, available

at a given time point j, and proved that ( bRrD;1;r �D;1
(t1); bRrD;2;r �D;2

(t2); � � � ; bRrD;J ;r �D;J
(tJ)), is

approximately multivariate normal.

Similarly, the asymptotic property on one sequential empirical PPV and NPV curve in-

dexed by FPR with J stopping times, (\PPV rD;1;r �D;1
(t1);\PPV rD;2;r �D;2

(t2); � � � ;\PPV rD;J ;r �D;J
(tJ))

is also approximately multivariate normal. The NPV curve has the same asymptotic prop-

erty.

Koopmeiners and Feng (2011) further proved the independent increments covariance

structure feature and illustrated the implementation of a group sequential study on one

ROC, PPV or NPV curve utilizing standard GSD software.

Thorough understanding of the joint asymptotic properties of two sequential empirical
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ROC curves, as well as the sequential di�erences of two empirical ROC curves at any FPR,

will help us conduct group sequential designs on the process level instead of the point level.

It can be shown that they asymptotically follow special Kiefer processes. This implies

that the sequential di�erences at di�erent FPRs are also asymptotically jointly normal.

Furthermore, the existing results on the summary ROC statistics can be obtained from our

�ndings.

1.3 Correlated ROC, PPV and NPV Curves

Correlated ROC data arise when two diagnostic tests are performed on the same set of

individuals in the case and control populations. Each patient is examined once using each

of the diagnostic tests resulting in correlated ROC curves. Comparison of two ROC curves

based on AUCs has been previously studied (Pepe, Longton, and Janes 2009). However,

when ROC curves are correlated, the correlated nature of the data must be taken into ac-

count in the analysis (DeLong et al. 1988). They presented an approach for the comparison

of ROC curves that are correlated. Wieand et al. (1989) studied a broad class of nonpara-

metric statistics for comparing two independent or correlated diagnostic markers. Zhou

et al. (2008) discussed the design and application of GSD method to the comparative ROC

studies based on the non-parametric Wilcoxon AUC estimators. This approach can be ap-

plied to AUC comparisons of two diagnostic tests measured on the same subjects resulting

in correlated ROC curves. Liu et al. (2008) developed a nonparametric group sequential

method to evaluate and compare the AUCs of clustered ROC curves, which can be either

independent or correlated. The procedure relies on the construction of a two-dimensional

statistics which are based on Mann-Whitney statistic (Whitehead 1999). Liu et al. (2005)

demonstrated that the partial area under the ROC curve (pAUC) is the probability of a

constrained stochastic ordering, which can be estimated using a weighted Mann-Whitney

statistic. The authors investigated the statistical properties and developed a testing proce-

dure to compare the partial area under two ROC curves, of which the two diagnostic tests
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are performed on the same group of cases and controls. Tang et al. (2008) derived that

the sequential weighted area under the ROC curve (wAUC) statistics has an independent

increments covariance structure, and applied it in the GSD for the sequential ROC curves

comparison.

In the �elds of PPV and NPV, we study two correlated PPV or NPV curves, which

can be indexed either by FPR or by the percentile value. For PPV indexed by FPR, with

prevalence level p, we de�ne

�(t) = PPV1(t)� PPV2(t);

which is the di�erence of two markers' PPV at a given FPR t. In general, we add hat to the

parameter to denote the estimator of the parameter. Hence, we have �̂(t) =\PPV 1(t) �

\PPV 2(t); which is the estimated di�erence of two markers' PPV at a given FPR t based on

empirical PPV estimation. And �̂rD;r �D(t) =
\PPV 1;rD;r �D(t)�\PPV 2;rD;r �D(t) represents the

estimation at a time point in a sequential trial. We then derive the asymptotic properties

of �̂rD;r �D(t) and apply it to the group sequential design of PPV curves comparison indexed

by FPR.

Similarly, for NPV indexed by FPR, we de�ne

�(t) = NPV1(t)�NPV2(t):

We have �̂(t) =\NPV 1(t) �\NPV 2(t); and �̂rD;r �D(t) =
\NPV 1;rD;r �D(t) �\NPV 2;rD;r �D(t).

Then following the same steps, we derive the asymptotic properties of �̂rD;r �D(t) and apply

it to the group sequential comparison study for NPV curves indexed by FPR.

For PPV, NPV indexed by the percentile value, i.e. the rate u of having negative results

in the population, we de�ne

�(u) = PPV1(u)� PPV2(u):
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We can estimate it using �̂(u) =\PPV 1(u)�\PPV 2(u); and �̂rD;r �D(u) =
\PPV 1;rD;r �D(u)�

\PPV 2;rD;r �D(u). Then we can derive the asymptotic properties of �̂rD;r �D(u) and apply it

to the group sequential comparison study for PPV curves indexed by the percentile value.

1.4 Clustered ROC Curves

Clustered ROC data have multiple measurements on both the case and the control units,

taken from the same study subject. For example, we might have measurements on both

left and right eyes for an ophthalmic diagnostic testing. While in other diagnostic settings,

we might get multiple measurements from both normal and diseased tissues of the same

subject. In addition, we might need to apply two di�erent diagnostic procedures on the

same set of subjects for a comparison study. Thus, there are multiple measurements for

each test per subject (Obuchowski 1997). In the paired comparison study design of two

ROC curves with clustered data, it is important to take into consideration of two types of

correlations. One is the correlation within a cluster, the other is the correlation between

the di�erent diagnostic tests from the same cluster (Li and Zhou 2008).

For clustered ROC data, Obuchowski (1997) proposed a nonparametric method using

Wilcoxon-Mann-Whitney statistics. Obuchowski (1997) expanded DeLong et al. (1988)

nonparametric method and applied the ideas of Rao and Scott (1992) to handle the clustered

data. For `th biomarker in the ith cluster, we useX`ij denotes the jth case result and assume

they follow the distribution F`;D, for ` = 1; 2, i = 1; : : : ; n, j = 1; : : : ;m`i, where n is the

total number of clusters and m`i represents the number of case results for biomarker ` from

cluster i. Similarly, Y`ik denotes the kth control result of `th marker in ith cluster, which

has distribution F`; �D, for k = 1; : : : ; n`i with n`i representing the number of control results

for biomarker ` from cluster i. We also let S`;D represents the survival function for X`ij

and S`; �D the survival function for Y`ik. The total number of biomarker case results from

all clusters is the sum of all m`i, i.e. M` =
Pn

i=1m`i, and the total number of biomarker

control results from all clusters is the sum of all n`i, i.e. N` =
Pn

i=1 n`i. The estimated
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AUC on the clustered ROC data for ` = 1; 2 is given by

[AUC` =
1

M`N`

nX
i=1

nX
i0=1

m`iX
j=1

n`i0X
k=1

 (X`ij ; Y`i0k);

where  is de�ned as

 (X`ij ; Y`i0k) =

8>>>>>><>>>>>>:
1; X`ij > Y`i0k

1
2 ; X`ij = Y`i0k

0; X`ij < Y`i0k

:

The case and control biomarker results are transformed intoX-components and Y -components,

then summed up for the ith cluster. Then the sum of squares of the X-components and

Y -components as well as the correlation between the case and control observations within

the same cluster are calculated. Based on these, Obuchowski (1997) estimated the variance

of [AUC and further stated that ([AUC �AUC)=(dvar([AUC))1=2 is asymptotically N(0; 1):

Obuchowski (1997) further proposed a method to calculate the covariance of two esti-

mated AUCs for comparing cluster-correlated ROC curves. Similarly, based on the sum

of the X-components and Y -components for the ith cluster from the `th ROC curve, she

derived the formula for the covariance between the estimated areas under two ROC curves.

The estimator of the variance of the di�erence between two cluster-correlated ROC curves

is given as dvar([AUC1 �[AUC2) = dvar([AUC1) +dvar([AUC2) � 2ccov([AUC1;[AUC2). She

further stated that (([AUC1 �[AUC2) � (AUC1 � AUC2))=(dvar([AUC1 �[AUC2))
1=2 is

asymptotically N(0; 1):

Furthermore, Li and Zhou (2008) proposed a uni�ed approach of nonparametric com-

parison of clustered ROC curves based on empirical ROC curve estimation. The empirical

ROC curves are de�ned by

bR`(u) = Ŝ`;D(Ŝ
�1
`; �D

(u));
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where Ŝ`;D(c) =
Pn

i=1

Pm`i
j=1 I(X`ij > c)=M` and Ŝ`; �D(c) =

Pn
i=1

Pn`i
k=1 I(Y`ik > c)=N`.

Assume that as n ! 1, n�1
Pn

i=1 n`i ! �`; and n�1
Pn

i=1m`i ! ` for some positive

constants �` and `, ` = 1; 2, then

p
n

0BBBBBBB@

F̂1; �D(c)� F1; �D(c)

F̂2; �D(c)� F2; �D(c)

F̂1;D(c)� F1;D(c)

F̂2;D(c)� F2;D(c)

1CCCCCCCA
d�!

0BBBBBBB@

WF1; �D(c)

WF2; �D(c)

WF1;D(c)

WF2;D(c)

1CCCCCCCA
as n!1;

where (WF1; �D(c);WF2; �D(c);WF1;D(c);WF2;D(c))
0 is a Gaussian processes vector with mean

0. Assume that F`; �D and F`;D are derivable and have density function F 0
`; �D

and F 0
`;D

respectively, then the joint limiting distribution of ( bR1(u); bR2(u)) is given by,

p
n

0B@ bR1(u)bR2(u)

1CA d�!

0B@ Z1(1� u)

Z2(1� u)

1CA as n!1;

where

Z`(u) = �
F 0
`;D(F

�1
`; �D

(u))

F 0
`; �D

(F�1
`; �D

(u))
WF`; �D(F

�1
`; �D

(u))) +WF`;D(F
�1
`; �D

(u))):

Let D(u) = R1(u) � R2(u), then for comparison of the areas under two ROC curves, as

n!1;

p
n(D̂(u)�D(u))

d�! V (u) = Z2(1� u)� Z1(1� u);
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where V (u) is the limiting process. And the di�erence between the wAUCs could be esti-

mated by the weighted integration of the two ROC curves' di�erence,

�̂ =

Z 1

0
D̂(u)dW (u):

In summary, although research has been conducted for clustered ROC curves, they are

either based on summary statistics or in the �eld of �xed sample studies. Understanding

the sequential properties of ROC curves without relying on summary statistics will give us

much exibility in sequential study designs. Hence, there is necessity to study the sequential

statistics theory in clustered ROCs on the process level and further apply the theory in group

sequential designs.

1.5 Summary

In this chapter, we give brief introduction on diagnostic tests and ROC, PPV and NPV

curves. We introduce the previous research conducted in the �eld of single sequential

empirical ROC, PPV and NPV curve (Koopmeiners and Feng 2011). We also introduce

comparison studies conducted in the �eld of correlated and clustered ROC data on the

summary level (Mazumdar and Liu 2003; Zhou et al. 2008; Obuchowski 1997). We talk

about correlated and clustered diagnostic data and the importance of group sequential

design for comparative diagnostic accuracy studies in the �eld.

The contributions of the thesis are listed in the following:

� We derive asymptotic property of the sequential di�erence of two correlated ROC,

PPV and NPV curves, and apply the theory in a group sequential method for a

comparative diagnostic accuracy trial with correlated data.

� We derive asymptotic property of one sequential clustered ROC curves. We further

extend the theory to the sequential di�erence of two clustered ROC curves, and apply

the theory in group sequential designs for clustered ROC curves' comparative studies.
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Chapter 2: Group Sequential Method for Comparing

Correlated ROC Curves

2.1 Introduction

As introduced in Chapter 1, in a �xed-sample trial, statistical analysis is conducted after

all samples' data are collected. However, data usually accumulate steadily over a period

of time in a clinical trial, it is natural to analyze the results as they occur and possibly to

terminate the trial early for success or futility. With a group sequential design, multiple

interim analysis points and rejections boundaries are pre-determined, and we can achieve

the speci�c power requirement with the same type I error rate, but with smaller expected

sample size than a �xed-sample method.

Some research has been done in asymptotic sequential property of a single ROC curve

(Koopmeiners and Feng 2011). They derived the asymptotic theory for the sequential empir-

ical ROC curve under the case-control sampling. In this chapter, we study the properties

of the di�erence between two correlated empirical ROC curves and present a method to

sequentially compare the empirical ROC curves.

In a comparative diagnostic trial, let Xi;D and Xi; �D denote the outcome of the ith

diagnostic test for the cases and controls, respectively with i = 1; 2. Suppose a larger value

is more likely to indicate the disease. The cumulative distribution functions of Xi;D and

Xi; �D are Fi;D and Fi; �D for the case and control populations respectively. Si;D and Si; �D are

the survival functions for the case and control populations. The sensitivity and speci�city

are given by Si;D(c) and Fi; �D(c) for a given cuto� value, c. The ROC curve for the ith

diagnostic test is de�ned by

Ri(t) = Si;D(S
�1
i; �D

(t)); t 2 [0; 1]; (2.1)
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where S�1(t) = inffx : F (x) � (1 � t)g. The ROC curve is a plot of sensitivity against

1-speci�city, as the threshold value c varies. Assume that there are a total of nD case

subjects and n �D control subjects in the study. Suppose that we observe Xi;D;j � Fi;D; j =

1; :::; nD, representing the measurements of the ith diagnostic test from nD subjects, and

Xi; �D;j � Fi; �D; j = 1; :::; n �D, the measurements of the ith diagnostic test from n �D subjects,

for i = 1; 2. Assume that measurements from di�erent subjects are independent, and

measurements of tests 1 and 2 within the same subject are possibly correlated. The survival

functions, Si;D; Si; �D, can be empirically estimated to yield the empirical ROC curve

bRi(t) = Ŝi;D(Ŝ
�1
i; �D

(t)); i = 1; 2; (2.2)

where Ŝi;D(t) =
PnD

j=1 I(Xi;D;j > t)=nD and Ŝi; �D(t) =
Pn �D

j=1 I(Xi; �D;j > t)=n �D. Also,

Ŝ�1
i; �D

(t) = inffx : F̂i; �D(x) � (1� t)g, where F̂i; �D(t) =
Pn �D

j=1 I(Xi; �D;j � t)=n �D.

2.2 Theoretical Results for Correlated ROC Curves

We give the theoretical results about the di�erence of two correlated ROC curves in the

following, where the theory on single ROC curve can be found in Koopmeiners and Feng

(2011) and the theory on correlated ROCs can be found in Ye and Tang (2015).

Suppose we have measurements from two diagnostic tests on nD case subjects and n �D

control subjects, where all subjects are independent. Let �(t) = R1(t) � R2(t), �̂(t) =

cR1(t) � cR2(t), and at an interim analysis in a group sequential design when accrued case

and control subjects' ratios are rD; r �D, we de�ne �̂rD;r �D(t) =
bR1;rD;r �D(t)� bR2;rD;r �D(t). For

the sequential empirical �(t) at two di�erent analysis points (rD; r �D) and (r
0
D; r

0
�D
), we have

vector
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0B@ n
�1=2
D [nDrD](�̂rD;r �D(t)��(t))

n
�1=2
D [nDr

0
D](�̂r0D;r

0

�D
(t)��(t))

1CA ; (2.3)

which can be expressed in terms of the empirical bR and true ROC curves as

0B@ 1 �1 0 0

0 0 1 �1

1CA
0BBBBBBB@

n
�1=2
D [nDrD]( bR1;rD;r �D(t)�R1(t))

n
�1=2
D [nDrD]( bR2;rD;r �D(t)�R2(t))

n
�1=2
D [nDr

0
D](
bR1;r0D;r

0

�D
(t)�R1(t))

n
�1=2
D [nDr

0
D](
bR2;r0D;r

0

�D
(t)�R2(t))

1CCCCCCCA
:

We have the random vector

0BBBBBBB@

n
�1=2
D [nDrD]q1;rD;r �D

n
�1=2
D [nDrD]q2;rD;r �D

n
�1=2
D [nDr

0
D]q1;r0D;r

0

�D

n
�1=2
D [nDr

0
D]q2;r0D;r

0

�D

1CCCCCCCA
; (2.4)

where qi;rD;r �D = bRi;rD;r �D(t)�Ri(t), for i = 1; 2, are random variables.

As nD ! 1 and n �D ! 1, for any diagnostic test i, i = 1; 2, after introducing an

additional term, the expressions can be rewritten as (Koopmeiners and Feng 2011)

n
�1=2
D [nDrD]( bRi;rD;r �D(t)�Ri(t)) (2.5)

=n
�1=2
D [nDrD](Ŝi;D;rD(Ŝ

�1
i; �D;r �D

(t))� Si;D(Ŝ
�1
i; �D;r �D

(t)))

+ n
�1=2
D [nDrD](Si;D(Ŝ

�1
i; �D;r �D

(t))� Si;D(S
�1
i; �D

(t))):

It was proved by Koopmeiners and Feng (2011) that both terms converge to Kiefer

processes. A Kiefer process, K(t,r), is a two-parameter zero-mean Gaussian process in t
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and r with covariance: Cov(K(t1; r1);K(t2; r2)) = (t1^t2�t1t2)(r1^r2), where ^ represents

the minimum of two operands. It behaves like a Brownian bridge in t and a Wiener process

(Brownian motion) in r. From Koopmeiners and Feng (2011) we have

n
�1=2
D [nDrD](ŜD;rD(Ŝ

�1
�D;r �D

(t))� SD(Ŝ
�1
�D;r �D

(t)))
d�! K1(R(t); rD); (2.6)

which is the �rst term of (2.5). And for the second term of (2.5), we have by Koopmeiners

and Feng (2011)

n
�1=2
D [nDrD](SD(Ŝ

�1
�D;r �D

(t))� SD(S
�1
�D
(t)))

d�! �1=2
rD
r �D

� fD(S
�1
�D
(t))

f �D(S
�1
�D
(t))

K2(t; r �D): (2.7)

Combining the results of both terms of (2.5), from (2.6) and (2.7) it is immediate that

n
�1=2
D [nDrD]( bRi;rD;r �D(t)�Ri(t))

d�!Ki;1(Ri(t); rD) + �1=2
rD
r �D

 
fi;D(S

�1
i; �D

(t))

fi; �D(S
�1
i; �D

(t))

!
Ki;2(t; r �D); (2.8)

where Ki;1 and Kj;2 are independent Kiefer processes, for i; j = f1; 2g representing diag-

nostic test 1 and test 2 respectively.

Then we rewrite the random vector components as sums of two terms as of Equation

(2.5),

0BBBBBBB@

n
�1=2
D [nDrD]( bR1;rD;r �D(t)�R1(t))

n
�1=2
D [nDrD]( bR2;rD;r �D(t)�R2(t))

n
�1=2
D [nDr

0
D](
bR1;r0D;r

0

�D
(t)�R1(t))

n
�1=2
D [nDr

0
D](
bR2;r0D;r

0

�D
(t)�R2(t))

1CCCCCCCA
(2.9)
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=

0BBBBBBBB@

n
�1=2
D [nDrD](Ŝ1;D;rD(Ŝ

�1
1; �D;r �D

(t))� S1;D(Ŝ
�1
1; �D;r �D

(t)))

n
�1=2
D [nDrD](Ŝ2;D;rD(Ŝ

�1
2; �D;r �D

(t))� S2;D(Ŝ
�1
2; �D;r �D

(t)))

n
�1=2
D [nDr

0
D](Ŝ1;D;r0D(Ŝ

�1
1; �D;r0�D

(t))� S1;D(Ŝ
�1
1; �D;r0�D

(t)))

n
�1=2
D [nDr

0
D](Ŝ2;D;r0D(Ŝ

�1
2; �D;r0�D

(t))� S2;D(Ŝ
�1
2; �D;r0�D

(t)))

1CCCCCCCCA

+

0BBBBBBBB@

n
�1=2
D [nDrD](S1;D(Ŝ

�1
1; �D;r �D

(t))� S1;D(S
�1
1; �D

(t)))

n
�1=2
D [nDrD](S2;D(Ŝ

�1
2; �D;r �D

(t))� S2;D(S
�1
2; �D

(t)))

n
�1=2
D [nDr

0
D](S1;D(Ŝ

�1
1; �D;r0�D

(t))� S1;D(S
�1
1; �D

(t)))

n
�1=2
D [nDr

0
D](S2;D(Ŝ

�1
2; �D;r0�D

(t))� S2;D(S
�1
2; �D

(t)))

1CCCCCCCCA
;

by (2.6) and (2.7), we know each component converges weakly to a sum of two Kiefer

processes.

n
�1=2
D [nDrD]( bRi;rD;r �D(t)�Ri(t))

d�!Ki;1(Ri(t); rD) + �1=2
rD
r �D

 
fi;D(S

�1
i; �D

(t))

fi; �D(S
�1
i; �D

(t))

!
Ki;2(t; r �D)

However, to prove the convergence of the vector, we will also need to prove the tightness

of the left-hand side of (2.9).

Lemma 2.1. For a multivariate stochastic process of k dimensions, if the marginal uni-

variate stochastic processes are tight, the multivariate stochastic process is also tight.

Recall that a probability measure P is tight if for each � there exists a compact set X

such that P (X) > 1� �.

Proof: We will prove the lemma with 2-dimensional space. Higher dimensional cases can be

proved similarly by induction. De�ne 2-dimensional random vector X(t) = (X1(t); X2(t))
T ,

Given the condition that the marginal univariate stochastic processes are tight, then at

the marginal univariate process level for each component, we have 8� > 0;9M1;M2; such

21



that

P (sup
t
jX1(t)j �M1) � 1� �=2; (2.10)

and

P (sup
t
jX2(t)j �M2) � 1� �=2: (2.11)

Let M = max(M1;M2). We have on the multivariate process level,

P

�
(sup

t
jX1(t)j �M)

\
(sup

t
jX2(t)j �M)

�

=P (sup
t
jX1(t)j �M) + P (sup

t
jX2(t)j �M)� P

�
(sup

t
jX1(t)j �M)

[
(sup

t
jX2(t)j �M)

�

�(1� �=2) + (1� �=2)� 1

=1� �;

due to the inequalities of (2.10) and (2.11). This proves the multivariate process is tight by

de�nition.

By Lemma 2.1 and Cram�er-Wold device (Karr 1993), we can show that the �nite dimen-

sional distribution of (2.9) converges in distribution to a multivariate normal distribution,

here without loss of generality assuming a vector dimension of four, and that the process

on the left-hand side of (2.9) is tight. Furthermore, we know that the vector of (2.9)

0BBBBBBB@

n
�1=2
D [nDrD]( bR1;rD;r �D(t)�R1(t))

n
�1=2
D [nDrD]( bR2;rD;r �D(t)�R2(t))

n
�1=2
D [nDr

0
D](
bR1;r0D;r

0

�D
(t)�R1(t))

n
�1=2
D [nDr

0
D](
bR2;r0D;r

0

�D
(t)�R2(t))

1CCCCCCCA
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d�!

0BBBBBBB@

K1;1(R1(t); rD)

K2;1(R2(t); rD)

K1;1(R1(t); r
0
D)

K2;1(R2(t); r
0
D)

1CCCCCCCA
+

0BBBBBBBBBB@

�1=2 rDr �D

�
f1;D(S�1

1; �D
(t))

f1; �D(S�1
1; �D

(t))

�
K1;2(t; r �D)

�1=2 rDr �D

�
f2;D(S�1

2; �D
(t))

f2; �D(S�1
2; �D

(t))

�
K2;2(t; r �D)

�1=2
r0D
r0�D

�
f1;D(S�1

1; �D
(t))

f1; �D(S�1
1; �D

(t))

�
K1;2(t; r

0
�D
)

�1=2
r0D
r0�D

�
f2;D(S�1

2; �D
(t))

f2; �D(S�1
2; �D

(t))

�
K2;2(t; r

0
�D
)

1CCCCCCCCCCA
;

uniformly for t 2 [a; b], rD 2 [c; 1], and r �D 2 [d; 1] where Ki;1 and Kj;2 are independent

Kiefer processes, for i; j = f1; 2g. Thus the random vector (2.4) is approximately multivari-

ate normal with covariance as derived in the following. The asymptotic covariance matrix

of (2.4) is � = faijgi=1;��� ;4; j=1;��� ;4; where

a11 = V ar(K1;1(R1(t); rD)) + V ar

 
�1=2

rD
r �D

 
f1;D(S

�1
1; �D

(t))

f1; �D(S
�1
1; �D

(t))

!
K1;2(t; r �D)

!

= rD(R1(t)�R2
1(t)) + �

r2D
r �D

 
f1;D(S

�1
1; �D

(t))

f1; �D(S
�1
1; �D

(t))

!2

(t� t2);

a12 = Cov
�
n
�1=2
D [nDrD](Ŝ1;D;rD(Ŝ

�1
1; �D;r �D

(t))� S1;D(Ŝ
�1
1; �D;r �D

(t)));

n
�1=2
D [nDrD](Ŝ2;D;rD(Ŝ

�1
2; �D;r �D

(t))� S2;D(Ŝ
�1
2; �D;r �D

(t)))
�

+ Cov
�
n
�1=2
D [nDrD](S1;D(Ŝ

�1
1; �D;r �D

(t))� S1;D(S
�1
1; �D

(t)));

n
�1=2
D [nDrD](S2;D(Ŝ

�1
2; �D;r �D

(t))� S2;D(S
�1
2; �D

(t)))
�
;

then expanding the empirical survival functions by de�nitions, we obtain

Cov

�
n
�1=2
D

[nDrD]X
i=1

�
I(X1;D;i > Ŝ�1

1; �D;r �D
(t))� S1;D(Ŝ

�1
1; �D;r �D

(t))
�
;
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n
�1=2
D

[nDrD]X
i=1

�
I(X2;D;i > Ŝ�1

2; �D;r �D
(t))� S2;D(Ŝ

�1
2; �D;r �D

(t))
��

+ Cov
�
n
�1=2
D [nDrD](S1;D(Ŝ

�1
1; �D;r �D

(t))� S1;D(S
�1
1; �D

(t)));

n
�1=2
D [nDrD](S2;D(Ŝ

�1
2; �D;r �D

(t))� S2;D(S
�1
2; �D

(t)))
�

d�! rD(SD(S
�1
1; �D

(t); S�1
2; �D

(t))�R1(t)R2(t)) (2.12)

+ �
r2D
r �D

f1;D(S
�1
1; �D

(t))

f1; �D(S
�1
1; �D

(t))

f2;D(S
�1
2; �D

(t))

f2; �D(S
�1
2; �D

(t))
(S �D(S

�1
1; �D

(t); S�1
2; �D

(t))� t2):

With regard to the previous step, the �rst term of (2.12) is derived using the sequential

empirical process result of section 2.12.1 (van der Vaart and Wellner 1996). For the second

term of (2.12), �rst we derive the following equation by expanding the empirical survival

function and then apply the same result of van der Vaart and Wellner (1996)

Cov
�
n
�1=2
�D

[n �Dr �D](Ŝ1; �D;r �D(t1)� S1; �D(t1)); n
�1=2
�D

[n �Dr �D](Ŝ2; �D;r �D(t2)� S2; �D(t2))
�

= Cov

�
n
�1=2
�D

[n �Dr �D]X
i=1

�
I(X1; �D;i > t1)� S1; �D(t1)

�
; n

�1=2
�D

[n �Dr �D]X
i=1

�
I(X2; �D;i > t2)� S2; �D(t2)

��

d�! r �D
�
S �D(t1; t2)� S1; �D(t1)S2; �D(t2)

�
: (2.13)

Then by Equation (2.13), Lemma 3.9.20 in van der Vaart and Wellner (1996), and The-

orem 3.9.4 in van der Vaart and Wellner (1996), we prove the second term of (2.12) in the

following

Cov
�
n
�1=2
D [nDrD](S1;D(Ŝ

�1
1; �D;r �D

(t))� S1;D(S
�1
1; �D

(t)));

n
�1=2
D [nDrD](S2;D(Ŝ

�1
2; �D;r �D

(t))� S2;D(S
�1
2; �D

(t)))
�
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= n�1D [nDrD]
2n �D[n �Dr �D]

�2Cov
�
n
�1=2
�D

[n �Dr �D](S1;D(Ŝ
�1
1; �D;r �D

(t))� S1;D(S
�1
1; �D

(t)));

n
�1=2
�D

[n �Dr �D](S2;D(Ŝ
�1
2; �D;r �D

(t))� S2;D(S
�1
2; �D

(t)))
�

d�! �
r2D
r �D

f1;D(S
�1
1; �D

(t))

f1; �D(S
�1
1; �D

(t))

f2;D(S
�1
2; �D

(t))

f2; �D(S
�1
2; �D

(t))
(S �D(S

�1
1; �D

(t); S�1
2; �D

(t))� S1; �D(S
�1
1; �D

(t))S2; �D(S
�1
2; �D

(t))

= �
r2D
r �D

f1;D(S
�1
1; �D

(t))

f1; �D(S
�1
1; �D

(t))

f2;D(S
�1
2; �D

(t))

f2; �D(S
�1
2; �D

(t))
(S �D(S

�1
1; �D

(t); S�1
2; �D

(t))� t2);

this concludes the derivation for element a12 as shown in Equation(2.12). For the other

elements in the asymptotic covariance matrix �,

a13 = Cov
�
K1;1(R1(t); rD);K1;1(R1(t); r

0
D)
�

+ Cov

 
�1=2

rD
r �D

 
f1;D(S

�1
1; �D

(t))

f1; �D(S
�1
1; �D

(t))

!
K1;2(t; r �D); �

1=2 r
0
D

r0�D

 
f1;D(S

�1
1; �D

(t))

f1; �D(S
�1
1; �D

(t))

!
K1;2(t; r

0
�D)

!

= (rD ^ r0D)(R1(t)�R2
1(t)) + (r �D ^ r0�D)�

rD
r �D

r0D
r0�D

 
f1;D(S

�1
1; �D

(t))

f1; �D(S
�1
1; �D

(t))

!2

(t� t2);

from the covariance structure of Kiefer processes. And

a14 = Cov
�
n
�1=2
D [nDrD](Ŝ1;D;rD(Ŝ

�1
1; �D;r �D

(t))� S1;D(Ŝ
�1
1; �D;r �D

(t)));

n
�1=2
D [nDr

0
D](Ŝ2;D;r0D(Ŝ

�1
2; �D;r0�D

(t))� S2;D(Ŝ
�1
2; �D;r0�D

(t)))
�

+ Cov
�
n
�1=2
D [nDrD](S1;D(Ŝ

�1
1; �D;r �D

(t))� S1;D(S
�1
1; �D

(t)));

n
�1=2
D [nDr

0
D](S2;D(Ŝ

�1
2; �D;r0�D

(t))� S2;D(S
�1
2; �D

(t)))
�

d�! (rD ^ r0D)(SD(S�11; �D
(t); S�1

2; �D
(t))�R1(t)R2(t))
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+ (r �D ^ r0�D)�
rD
r �D

r0D
r0�D

f1;D(S
�1
1; �D

(t))

f1; �D(S
�1
1; �D

(t))

f2;D(S
�1
2; �D

(t))

f2; �D(S
�1
2; �D

(t))
(S �D(S

�1
1; �D

(t); S�1
2; �D

(t))� t2):

The derivation of a14 is the same as a12 except that when applying the sequential empirical

process result of section 2.12.1, (van der Vaart and Wellner 1996), we have to include rD^r0D
and r �D ^ r0�D terms.

Similarly, we can get the following elements of the covariance matrix.

a22 = rD(R2(t)�R2
2(t)) + �

r2D
r �D

�
f2;D(S�1

2; �D
(t))

f2; �D(S�1
2; �D

(t))

�2

(t� t2);

a23 = a14;

a24 = (rD ^ r0D)(R2(t)�R2
2(t)) + (r �D ^ r0�D)� rDr �D

r0D
r0�D

�
f2;D(S�1

2; �D
(t))

f2; �D(S�1
2; �D

(t))

�2

(t� t2);

a33 = r0D(R1(t)�R2
1(t)) + �

r02D
r0�D

�
f1;D(S�1

1; �D
(t))

f1; �D(S�1
1; �D

(t))

�2

(t� t2);

a34 = r0D(SD(S
�1
1; �D

(t); S�1
2; �D

(t))�R1(t)R2(t))

+ �
r02D
r0�D

f1;D(S
�1
1; �D

(t))

f1; �D(S
�1
1; �D

(t))

f2;D(S
�1
2; �D

(t))

f2; �D(S
�1
2; �D

(t))
(S �D(S

�1
1; �D

(t); S�1
2; �D

(t))� t2);

and

a44 = r0D(R2(t)�R2
2(t)) + �

r02D
r0�D

 
f2;D(S

�1
2; �D

(t))

f2; �D(S
�1
2; �D

(t))

!2

(t� t2):

Hence the random vector of (2.3) is approximately normal with covariance matrix derived

approximately as A�AT , where � is the asymptotic covariance matrix of (2.4) and A =
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0B@ 1 �1 0 0

0 0 1 �1

1CA. The approximate covariance matrix of (2.3)

Cov

0B@ n
�1=2
D [nDrD](�̂rD;r �D(t)��(t))

n
�1=2
D [nDr

0
D](�̂r0D;r

0

�D
(t)��(t))

1CA

d�!

0B@ a11 + a22 � 2a12 a13 + a24 � 2a14

a13 + a24 � 2a14 a33 + a44 � 2a34

1CA :

Without the loss of generality, let r0D � rD and r0�D � r �D, that is, the time point of

(r0D; r
0
�D
) comes after (rD; r �D). Approximately,

Cov(�̂rD;r �D(t); �̂r0D;r
0

�D
(t)) = Cov(�̂rD;r �D(t)��(t); �̂r0D;r

0

�D
(t)��(t))

= nD
1

nDrD

1

nDr0D
(a13 + a24 � 2a14):

And the variance,

V ar(�̂r0D;r
0

�D
(t)) = V ar(�̂r0D;r

0

�D
(t)��(t))

= nD
1

nDr0D

1

nDr0D
(a33 + a44 � 2a34):

It can be shown that

Cov(�̂rD;r �D(t); �̂r0D;r
0

�D
(t)) = V ar(�̂r0D;r

0

�D
(t)) (2.14)

d�! 1

nDr0D
(R1(t)�R2

1(t)) +
1

n �Dr
0
�D

 
f1;D(S

�1
1; �D

(t))

f1; �D(S
�1
1; �D

(t))

!2

(t� t2)

+
1

nDr0D
(R2(t)�R2

2(t)) +
1

n �Dr
0
�D

 
f2;D(S

�1
2; �D

(t))

f2; �D(S
�1
2; �D

(t))

!2

(t� t2)
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� 2
1

nDr0D
(SD(S

�1
1; �D

(t); S�1
2; �D

(t))�R1(t)R2(t))

� 2
1

n �Dr
0
�D

f1;D(S
�1
1; �D

(t))

f1; �D(S
�1
1; �D

(t))

f2;D(S
�1
2; �D

(t))

f2; �D(S
�1
2; �D

(t))
(S �D(S

�1
1; �D

(t); S�1
2; �D

(t))� t2);

for r0D � rD and r0�D � r �D.

The method above deals only two sequential analysis points and their asymptotic prop-

erties. The exact method can be applied to any �nite set of sequential analysis points as

shown below assuming the number of interim analysis is J.

0BBBBBBB@

n
�1=2
D [nDrD;1](�̂rD;1;r �D;1

(t1)��(t1))

n
�1=2
D [nDrD;2](�̂rD;2;r �D;2

(t2)��(t2))

...

n
�1=2
D [nDrD;J ](�̂rD;J ;r �D;J

(tJ)��(tJ))

1CCCCCCCA
;

which can be expressed in terms of the empirical\ROC and true ROC curves as

0BBBB@
1 �1 � � � 0 0

...
...

. . .
...

...

0 0 � � � 1 �1

1CCCCA

0BBBBBBBBBB@

n
�1=2
D [nDrD;1]( bR1;rD;1;r �D;1

(t1)�R1(t1))

n
�1=2
D [nDrD;1]( bR2;rD;1;r �D;1

(t1)�R2(t1))

...

n
�1=2
D [nDrD;J ]( bR1;rD;J ;r �D;J

(tJ)�R1(tJ))

n
�1=2
D [nDrD;J ]( bR2;rD;J ;r �D;J

(tJ)�R2(tJ))

1CCCCCCCCCCA
:

Following the same steps, we will come to the same results with the asymptotic properties

of independent increments covariance structure for any �nite interim analysis.

The estimated ROC curves has interesting joint asymptotic properties at the process

level as indicated above. We then would be able to analyze ROC curves at di�erent FPRs,

say R1(t1); R2(t2). We can do analysis of two ROC curves at multiple points, since they all
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follow multivariate normal distribution with the variance-covariance stated before.

Furthermore, we can compare multiple points of ROC curves based on weighted average.

It can be shown that the sequential weighted average of �̂(t) on several FPRs has similar

feature of asymptotic multivariate normality and its asymptotic covariance matrix is given

by Cov(
KP
i=1

!i�̂rD;r �D(ti);
KP
i=1

!i�̂r0D;r
0

�D
(ti)) = V ar(

KP
i=1

!i�̂r0D;r
0

�D
(ti)), where !i is the weight

on �̂rD;r �D(ti) with
PK

i=1 !i = 1. This is due to the fact that Cov(�̂rD;r �D(ti); �̂r0D;r
0

�D
(tj))=

Cov(�̂r0D;r
0

�D
(ti); �̂r0D;r

0

�D
(tj)) for r

0
D � rD and r0�D � r �D.

To carry out a group sequential test, we analyze the accumulating data in groups rather

than after an additional observation as in a fully sequential test or after all data is collected

as in a �xed sample test. A group sequential design (GSD) is convenient to conduct and

provide an opportunity for stopping the trial earlier than planned. It achieves the goals

of lower expected sample sizes and shorter average study lengths. GSD methods utilize

di�erent strategies of allocating the overall type I error probability.

From the previous theorem, we know that the sequential empirical di�erence of two ROC

curves is also a Gaussian process. The sequential empirical di�erence at any �nite set of

analysis points follow a multivariate normal distribution. And the sequential score statistic

has an \independent increment" covariance structure (Jennison and Turnbull 2000), which

facilitates the sequential comparison of ROC curves and any standard GSD software can

be readily applied.

Suppose we are interested in a two-sided test with the hypothesis of H0 : R1(t0) �
R2(t0) = 0 on a particular FPR t0, and Ha : R1(t0) � R2(t0) 6= 0. Let �(t0) = R1(t0) �

R2(t0), and �̂(t0) = cR1(t0)�cR2(t0). Then under H0, we can do the Z-test with the statistic

Z = �̂(t0)p
V ar(�̂(t0))

. And for a �xed sample test we reject H0 if jZj > Z�=2. However, suppose

we will do the GSD with a sampling plan of J interim analyses. At the j th analysis, test

results are available on the �rst nDr
(j)
D case subjects and the �rst n �Dr

(j)
�D

control subjects,
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where nD and n �D are the maximum case and control sample size respectively, and r
(j)
D and

r
(j)
�D

are the ratios of the case and control subjects accrued so far at j th analysis. Given

type I error rate � and power 1�� at �(t0) = ��, the �xed sample size is calculated based

on �; �; �; and V ar(�̂(t0)). The maximum sample size for the GSD are proportional to the

�xed sample size, and this ratio R(J; �; �) depends only on J; �; � and the particular GSD

method used.

Consider a GSD plan involving up to J analyses of sample data. At the time of the j th

analysis, let Ij = 1=�2
�̂j(t)

, �j = Ij=IJ = �2
�̂J (t)

=�2
�̂j(t)

. De�ne B(�j) =
p
�jIj�̂j(t). For j <

k, Cov(B(�j); B(�k)) = �j . This can be proved using the previous �nding of Equation 2.14.

Thus B(�j) behaves asymptotically like a Brownian motion process. Then the standard

GSD software like R package gsDesign can be readily applied. Similarly, we can apply the

transformation on the sequential weighted average of �̂(t) on several FPRs and come up

with the same conclusion. The transformation used is Ij = 1=V ar(
PK

i=1 !i�̂j(ti)), �j =

Ij=IJ = V ar(
PK

i=1 !i�̂J(ti))=V ar(
PK

i=1 !i�̂j(ti)). De�ne B(�j) =
p
�jIj(

PK
i=1 !i�̂j(ti)).

Then for j < k, again we have Cov(B(�j); B(�k)) = �j .

The GSD needs to be speci�ed and the maximum sample sizes need to be determined

before conducting the trial. At the �rst interim analysis, we calculate the Z test statistic

based on the empirical estimation of R1(t0), R2(t0) and V ar(�̂(t0)). We compare the Z

statistic to the boundaries of Pocock, O'Brien-Flemming, or error spending method that

are calculated to control Type I error rate. The boundaries aj are de�ned to control the

overall type I error rate: P (jZj j > aj j �(t0) = 0) for some j = 1:::J . If this Z statistic

falls in the rejection boundaries, we then reject the null hypothesis, and the clinical trial is

stopped with null hypothesis rejection and no more subjects will be accrued. Otherwise, we

will continue accruing su�cient subjects to be able to proceed to the next analysis point.

At the j th analysis, the �rst nDr
(j)
D case subjects and the �rst n �Dr

(j)
�D

control subjects are

used to compute the interim statistic Zj . We will repeat the process until the last J th
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analysis point. At the last analysis, we will either reject the null hypothesis or accept it

and stop the clinical trial.

The previous �ndings and method can also be used to obtain the properties of the

sequential wAUC or AUC statistics. Such an extension can be done in comparing summary

statistics of two ROC curves through the integration of �(t) from 0 to 1 with regarding

to any given weight probability measure function. The AUC and pAUC statistic become

special cases, as indicated in Tang et al. (2008). More importantly, because of the results in

equation (2.14), we can compare a wide range of ROC summary measures, including curves

at di�erent FPRs or their weighted averages of the ROC curves.

2.3 Simulation Studies

2.3.1 Consistency of Covariance Matrix Estimator

We conduct a simulation study to assess the �nite sample properties of the results in The-

orem 2.14. Diagnostic test data are drawn from bivariate normal distributions. For a case,

the bivariate normal model is (X1; X2)
T � Nf(10; 6)T ;�1g, and for a control, the bivariate

normal model is (Y1; Y2)
T � Nf(0; 4)T ;�2g, where

�1 =

0B@ 2 �2
p
2

�2
p
2 4

1CA and �2 =

0B@ 1 �

� 1

1CA ; with � = 0:5 :

We conduct 5000 simulation with nD = 200; n �D = 200, and for the simulated data, we

calculate the variance-covariance of the �(t) at various combinations of rD; r �D with t=0.5.

Here, the ROC curves are estimated with the empirical functions. Then we compare the

simulated covariance matrix to the theoretical covariance matrix derived using the results

of Theorem 2.14. Table 2.1 shows that observed variance-covariance values are very close

to theoretical values when sample sizes are su�ciently large.
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Table 2.1: The values of elements (�10�3) in observed and theoretical covariance matrix

Observed covariance matrix Theoretical covariance matrix

nD = 200; n �D = 200

�0:2;0:3(0:5) 3.718 1.850 1.458 0.755 3.720 1.898 1.499 0.782
�0:4;0:5(0:5) 1.927 1.490 0.773 1.898 1.499 0.782
�0:5;0:7(0:5) 1.529 0.790 1.499 0.782
�1;1(0:5) 0.787 0.782

2.3.2 Simulated Type I Error Rate in GSDs

To investigate �nite sample performance of the GSD procedure, we conduct a simulation

study in a two-group sequential test (J=2), and a �ve-group sequential test (J=5). The null

hypothesis of equal ROC(t) is set to be true and the nominal type I error rate was set to be

� = 0:05 for two-sided tests. Two set of diagnostic test data are simulated from bivariate

normal (Binorm) and bivariate lognormal(Bilognorm) models. The bivariate normal models

is (X1; X2)
T � Nf(1; 10)T ;�1g for the case data. And for the control data, the bivariate

normal model is (Y1; Y2)
T � Nf(0; 8)T ;�2g, where

�1 =

0B@ 1 2�

2� 4

1CA �2 =

0B@ 1 2�

2� 4

1CA with � = (0; 0:25; 0:5; 0:75; 0:9)

In this case, the ROC curves are identical from the formula of ROC curve under bi-normal

models (Zhou et al. 2011): R(t) = �(a+ b��1(t)), where a = (�1 � �0)=�1 and b = �0=�1,

(�1; �1) and (�0; �0) are the normal parameters in the case and control groups. The bivariate

lognormal data are generated by taking exponential of the simulated bivariate normal data.

Because the ROC curves are invariant to a monotone transformation, the ROC curves

under the bivariate lognormal models are also identical. The diagnostic tests distribution

comparison and ROC graph are shown in Figure 2.1. Di�erent numbers of case and control

subjects, nD; n �D = (50; 250; 500), are considered in our simulation study.
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Figure 2.1: Two correlated identical ROC curves

For each simulation setting, 5000 random data sets are generated and the GSD method

applied to the simulated data. The Z statistics at each interim analysis point are then

calculated based on the empirical ROC di�erence and estimated variances. The GSD test

procedure compares the Z statistics with corresponding test boundaries of design, and the

decision of rejection or failing to rejection is obtained for each simulated dataset. We then

calculate the overall rejection rates for all simulated datasets. Table 2.2 gives the rejection

rates of all di�erent model and sample size combinations with a nominal � level 0.05 under

the O'Brien and Fleming's criterion. And Table 2.3 is the results for the Pocock's criterion.

As we can see, the simulated Type I error rates are close to the nominal rate and tend to be

closer as the overall sample sizes increase. The type I error rates are also plotted in Figure

2.2 and Figure 2.3. In these �gures, the type I error rates are plotted as bars showing their

deviations from the nominal rate of 0.05 which is the vertical line.

We take the same two identical ROC curves as mentioned above and the null hypothesis

of H0:
P

t=f0:2;0:5;0:8g�(t)=3 = 0 as an example for the sequential weighted average test.

For the simulation with nD = 250; n �D = 250 and J = 5, we get the type I error rates
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Table 2.2: Type I error rates (�10�2) using the O'Brien-Fleming GSD with � = 0:05

� = 0 � = 0:25 � = 0:5 � = 0:75 � = 0:9
nD n

�D t Binorm Bilog Binorm Bilog Binorm Bilog Binorm Bilog Binorm Bilog

Two-group sequential design (J=2)
50 50 0.2 6.94 10.96 7.02 10.30 6.20 9.74 5.98 8.60 4.26 5.80

0.4 5.38 8.98 4.90 8.34 4.36 7.44 4.08 6.80 3.38 5.26
0.5 3.86 9.14 4.14 8.78 3.86 8.74 3.60 6.90 2.60 4.64
0.6 3.84 9.00 3.74 7.94 3.18 7.22 2.52 5.72 1.64 3.56
0.8 1.58 3.62 1.56 3.46 1.24 2.58 0.82 1.80 0.42 0.62

250 250 0.2 6.10 7.38 5.72 7.00 5.28 6.42 5.00 5.86 5.54 5.84
0.4 4.36 5.56 4.24 5.60 4.42 5.58 4.72 5.92 4.58 5.62
0.5 3.98 6.96 4.70 6.80 4.62 7.14 4.74 7.18 4.44 6.18
0.6 4.32 7.88 4.08 7.14 4.74 7.78 4.06 6.60 4.02 6.62
0.8 3.52 6.20 3.60 5.90 3.86 5.90 3.02 5.06 2.68 3.90

250 500 0.2 5.30 6.04 5.36 5.82 5.24 5.70 5.52 5.42 5.34 5.46
0.4 4.72 5.42 5.36 6.04 5.54 5.92 5.18 5.74 4.74 5.28
0.5 5.10 6.64 4.84 6.04 5.48 6.96 4.88 6.38 4.82 5.88
0.6 4.86 6.44 5.32 7.20 4.88 6.58 5.08 6.70 4.78 6.14
0.8 3.80 5.80 3.88 5.32 3.72 5.28 4.10 5.42 3.60 4.24

500 500 0.2 5.44 7.00 5.68 7.04 5.32 6.60 5.18 5.80 5.42 5.62
0.4 5.14 6.10 5.00 5.62 4.56 5.28 4.66 5.08 4.48 4.58
0.5 4.52 6.08 4.76 5.94 5.32 6.36 4.38 5.78 4.70 5.72
0.6 4.30 7.14 4.84 7.36 4.36 6.68 4.40 6.08 4.60 6.46
0.8 4.14 6.84 4.18 6.42 4.00 6.16 3.86 5.50 3.84 5.02

Five-group sequential design (J=5)
50 50 0.2 8.06 13.94 8.06 12.98 7.16 11.22 6.42 10.26 4.84 6.96

0.4 5.90 9.86 5.00 9.38 4.80 8.42 4.44 7.36 3.38 5.50
0.5 4.26 9.82 4.28 9.42 4.20 9.56 3.60 7.58 2.46 4.44
0.6 3.68 9.80 3.66 8.84 3.20 7.82 2.52 5.68 1.54 3.24
0.8 1.38 3.20 1.34 2.80 0.86 2.08 0.68 1.30 0.30 0.46

250 250 0.2 6.64 8.18 6.38 7.90 5.84 7.62 5.70 6.58 5.74 6.42
0.4 4.54 6.12 4.76 6.24 4.54 6.16 5.08 6.36 4.84 6.08
0.5 4.38 7.70 4.84 7.60 5.10 7.90 4.90 7.32 4.42 6.52
0.6 4.68 8.66 4.18 7.66 5.12 8.46 4.34 7.52 4.36 6.88
0.8 3.32 6.34 3.46 6.04 3.82 6.18 3.04 4.84 2.26 3.60

250 500 0.2 5.58 6.48 5.60 6.38 5.76 6.20 5.72 5.72 5.42 5.68
0.4 4.86 5.72 5.80 6.38 5.64 6.36 5.48 6.00 4.82 5.50
0.5 5.36 7.12 5.18 6.78 5.66 7.40 5.32 6.74 5.00 6.34
0.6 4.76 7.08 5.18 7.40 5.14 7.18 5.32 7.24 4.98 6.32
0.8 3.90 5.86 3.68 5.76 3.92 5.58 4.00 5.86 3.06 4.56

500 500 0.2 5.60 7.70 5.80 7.58 5.56 6.98 5.48 6.44 5.84 6.16
0.4 5.32 6.16 5.12 5.88 4.84 5.52 4.74 5.36 4.50 4.88
0.5 4.70 6.38 4.76 6.30 5.46 7.04 4.62 6.20 4.82 6.20
0.6 4.36 7.36 5.00 7.78 4.62 7.42 4.56 6.70 4.62 6.74
0.8 4.04 7.24 4.28 6.76 4.16 6.70 4.00 6.18 3.86 5.52
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Table 2.3: Type I error rates (�10�2) using the Pocock GSD with � = 0:05

� = 0 � = 0:25 � = 0:5 � = 0:75 � = 0:9
nD n

�D t Binorm Bilog Binorm Bilog Binorm Bilog Binorm Bilog Binorm Bilog

Two-group sequential design (J=2)
50 50 0.2 7.40 12.50 7.40 12.28 6.90 11.74 6.26 9.84 4.12 6.70

0.4 5.36 9.90 5.06 9.66 4.88 8.86 3.78 7.18 2.74 4.56
0.5 4.16 9.54 4.00 9.22 3.82 8.66 2.80 6.66 1.88 3.58
0.6 3.54 8.84 3.12 7.78 2.64 6.56 1.86 4.56 0.88 2.42
0.8 1.14 2.34 0.92 2.04 0.72 1.70 0.38 0.98 0.16 0.32

250 250 0.2 6.36 8.12 6.06 7.30 5.88 7.00 5.28 6.56 5.20 5.70
0.4 4.44 6.40 4.84 6.38 4.94 6.68 4.72 6.30 4.46 5.86
0.5 4.34 7.90 4.74 7.70 4.80 7.94 4.16 7.20 3.88 6.54
0.6 4.32 8.96 4.18 7.84 4.20 8.06 3.82 6.82 3.54 6.48
0.8 3.00 6.30 3.06 5.84 3.14 5.90 2.34 4.22 1.60 2.64

250 500 0.2 5.74 6.48 5.72 6.68 6.12 6.46 5.90 6.04 5.78 5.32
0.4 4.92 5.92 5.48 6.70 5.42 6.28 4.98 5.82 4.72 5.44
0.5 5.30 7.28 5.40 7.24 5.30 7.18 4.64 6.58 5.04 6.48
0.6 4.94 7.68 4.98 7.62 4.72 7.08 4.84 6.76 4.70 6.28
0.8 3.72 5.54 3.72 5.34 3.58 5.26 3.20 4.80 2.28 3.14

500 500 0.2 5.72 7.24 5.98 7.42 5.26 6.60 5.40 6.14 5.86 6.14
0.4 5.38 6.58 5.00 5.96 4.82 5.78 4.62 5.64 4.38 4.86
0.5 4.58 6.30 4.68 6.50 5.08 7.14 4.48 6.16 4.66 6.28
0.6 4.66 7.38 4.76 7.68 4.36 7.06 4.04 6.66 4.52 6.86
0.8 4.00 6.90 4.14 6.88 4.00 6.50 3.56 5.84 3.24 5.06

Five-group sequential design (J=5)
50 50 0.2 11.02 19.42 10.16 18.52 9.24 16.34 6.68 12.38 4.44 7.14

0.4 6.60 11.92 5.80 11.06 5.08 9.36 3.46 6.64 1.78 3.42
0.5 4.66 9.74 4.08 9.14 3.78 8.10 2.54 5.62 1.36 2.60
0.6 3.06 7.68 2.96 7.14 2.56 5.94 1.68 3.96 0.50 1.56
0.8 0.64 1.62 0.54 1.30 0.34 0.70 0.24 0.38 0.08 0.14

250 250 0.2 7.44 10.28 7.58 10.82 6.74 9.42 6.16 8.86 5.38 7.06
0.4 4.70 7.80 5.34 8.32 4.94 7.84 4.62 7.22 3.76 6.06
0.5 4.76 9.14 5.14 9.10 5.06 9.44 4.36 8.42 3.30 6.40
0.6 4.22 10.32 3.96 8.78 4.16 9.06 3.60 7.30 2.96 6.22
0.8 2.10 5.06 2.48 4.78 1.98 4.62 1.66 3.32 0.86 1.84

250 500 0.2 6.88 7.82 6.46 7.74 6.54 7.58 6.28 7.00 5.26 5.58
0.4 5.06 6.56 5.98 7.30 5.20 6.52 5.34 6.84 4.32 6.10
0.5 5.16 8.04 5.04 7.98 4.68 7.68 4.68 7.24 3.96 5.96
0.6 5.04 8.20 4.76 7.82 4.28 7.56 4.60 6.94 3.54 5.78
0.8 2.88 5.08 2.76 4.54 2.48 4.22 2.18 3.62 1.22 1.80

500 500 0.2 6.10 8.40 6.26 8.66 5.68 7.96 5.98 7.42 5.36 6.52
0.4 5.22 6.88 4.86 7.22 4.96 6.62 4.88 6.10 4.62 5.92
0.5 4.72 7.80 4.88 8.02 4.70 8.54 5.12 7.38 4.34 7.02
0.6 4.74 9.08 4.90 9.08 4.30 8.52 3.76 7.16 3.98 6.98
0.8 3.28 6.52 3.16 6.40 3.44 6.30 2.72 5.00 2.02 3.72
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Figure 2.2: Type I error rates plot using the O'Brien-Fleming GSD with � = 0:05, J = 2

as following. When � = 0, error=0.0526 for bi-normal distribution, error=0.0768 for bi-

lognormal distribution. When � = 0:25, error=0.053 and 0.0694 for bi-normal and bi-

lognormal distributions respectively. When � = 0:5, error=0.0514 and 0.07 for bi-normal

and bi-lognormal distributions respectively. When � = 0:75, error=0.0546 and 0.0654; when

� = 0:9, error=0.062 and 0.0668 for bi-normal and bi-lognormal distributions respectively.

More results are shown in Table 2.4.

2.3.3 Expected Sample Size in GSDs

Furthermore, we conduct simulation studies on two correlated ROC curves that are not

equal at certain FPR under investigation. While maintaining the � level and speci�c power

(1 � �) requirement, we show that the expected sample size with GSD is substantially

less than the one with �xed sample size design. We use both the formula of (2.14) and

bootstrap method to estimate the variance, and both results from the two methods are

presented. This would be an additional veri�cation of our variance covariance formula.
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Figure 2.3: Type I error rates plot using the O'Brien-Fleming GSD with � = 0:05, J = 5

Since the data are not independent and identically distributed, we conduct re-sampling in

such a way that it preserves the underlying correlation. Hence, we perform re-sampling on

subjects in bootstrap method.

Given two correlated ROC curves, with pre-speci�ed � and speci�c power requirement,

using the following formula we can determine the �xed sample size for a two-sided hypothesis

testing study:

n � (��1(1� �=2) + ��1(1� �))2
�2

�2
;

where � is the di�erence of two ROC curves at investigational FPR t0. Let � = 0:05, power

(1 � �) = 90%. We simulate the correlated ROC data from a bivariate normal model, for

the case data (X1; X2)
T � Nf(6; 5:5)T ;�1g , and for the control data the bivariate normal

37



Table 2.4: Test based on average: type I error rates (�10�2) using the O'Brien-Fleming
GSD with � = 0:05

� = 0 � = 0:25 � = 0:5 � = 0:75 � = 0:9
nD n

�D t Binorm Bilog Binorm Bilog Binorm Bilog Binorm Bilog Binorm Bilog

Two-group sequential design (J=2)
50 50 0.2,0.5,0.8 5.52 9.74 5.54 9.34 5.52 9.04 5.92 8.92 6.70 8.64
250 250 0.2,0.5,0.8 5.12 7.04 5.14 6.58 4.88 6.28 5.02 5.92 5.02 5.34
250 500 0.2,0.5,0.8 5.28 6.38 5.22 6.26 5.40 6.22 5.56 5.92 5.82 5.88
500 500 0.2,0.5,0.8 4.96 6.80 5.48 6.70 5.66 6.66 5.42 6.52 6.02 6.94

Five-group sequential design (J=5)
50 50 0.2,0.5,0.8 6.02 11.30 5.84 11.06 6.40 11.00 7.42 12.02 10.30 12.46
250 250 0.2,0.5,0.8 5.26 7.68 5.30 6.94 5.14 7.00 5.46 6.54 6.20 6.68
250 500 0.2,0.5,0.8 5.54 6.88 5.60 6.48 5.92 6.74 6.10 6.66 6.96 6.84
500 500 0.2,0.5,0.8 5.28 7.10 5.70 7.14 5.62 7.22 5.68 6.74 6.40 8.02

model is (Y1; Y2)
T � Nf(3; 3)T ;�2g, where

�1 =

0B@ 4 4�

4� 4

1CA ; �2 =

0B@ 1 �

� 1

1CA with � = f0; 0:25; 0:5; 0:75; 0:9g

The corresponding distributions and ROC curves are shown in Figure 2.4.

For the scenario with � = 0:5, � = 0:0387 at t0 = 0:5, with the � level and 90% power

requirement at this � , we determine that sample size need to be 923 of both the case

and control subjects for a �xed sample study. Then with the ratios provided in Jennison

and Turnbull (2000), where with O'Brien-Fleming method, for J=2, the ratio is 1.007; for

J=5, the ratio is 1.026. With Pocock method, for J=2, the ratio is 1.1; for J=5, the ratio

is 1.207. Multiply the �xed sample size with the corresponding ratio, we know that to

maintain the � and power level, for a group sequential study assuming equal group sizes,

the total sample sizes are: with O'Brien-Fleming method, for J=2, the sample size is 929;

for J=5, the sample size is 947. With Pocock method, for J=2, the sample size is 1015; for

J=5, the sample size is 1114. The following simulation results, either using formula or using

Bootstrap method (Table 2.7), show that the expected sample sizes of GSDs are less than

the �xed sample size (923), while still meet the �(0:05) and power (90%) requirements.
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Figure 2.4: An example correlated ROC curves for GSD

With the same setting except the power requirement set to 80%, we determine that

sample size need to be 689 for a �xed sample study. Then with the ratios provided in

Jennison and Turnbull (2000), where with O'Brien-Fleming method, for J=2, the ratio

is 1.008; for J=5, the ratio is 1.028. With Pocock method, for J=2, the ratio is 1.11; for

J=5, the ratio is 1.229. Similarly, we calculated the sample sizes needed for group sequential

studies assuming equal interim group sizes and obtain the following. With O'Brien-Fleming

method, for J=2, the sample size is 695; for J=5, the sample size is 709. With Pocock

method, for J=2, the sample size is 765; for J=5, the sample size is 847. The following

simulation results, both using formula and using Bootstrap (Table 2.7), show that the

expected sample sizes of GSDs are less than the �xed sample size (689), while still meet the

�(0:05) and power (80%) requirements.

In both scenarios, the expected sample sizes in GSD are smaller than �xed sample design

size, such that the trials utilizing GSD method are expected to end earlier with less subjects

than using the �xed sample design. This has advantages both economically and ethically.
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Table 2.5: Power(%) using the O'Brien-Fleming GSD with � = 0:05
Power=80% Power=90%

Analytical Method Bootstrap Analytical Method Bootstrap
� t Normal Lognormal Normal Lognormal Normal Lognormal Normal Lognormal

Two-group sequential design (J=2)
0.2 79.5 80.2 77.9 80.0 89.5 89.6 89.1 88.7
0.4 80.7 81.1 81.1 80.4 90.8 91.3 90.8 90.8

0 0.5 79.2 81.3 79.7 79.7 90.2 90.9 90.3 89.1
0.6 81.1 81.1 80.0 79.4 90.3 90.9 90.3 90.0
0.8 79.9 81.1 80.5 81.2 91.2 90.4 89.6 90.2

0.2 80.6 80.3 79.7 80.7 90.0 90.8 91.3 89.2
0.4 80.7 80.2 78.6 78.9 90.1 89.7 89.3 89.7

0.25 0.5 79.0 80.7 76.3 78.3 88.5 90.4 88.2 88.5
0.6 79.3 80.8 79.2 78.6 89.8 90.4 89.6 89.8
0.8 79.4 81.8 80.6 81.0 90.9 91.7 90.9 91.0

0.2 79.3 82.1 79.8 79.1 90.1 90.8 89.4 89.9
0.4 80.6 80.8 78.4 79.2 89.9 90.5 90.2 89.5

0.5 0.5 79.3 81.5 78.9 79.0 89.7 91.4 90.0 89.2
0.6 78.9 80.4 78.7 77.8 90.7 89.3 88.7 88.9
0.8 80.2 82.0 80.3 80.7 90.2 91.4 90.4 90.0

0.2 81.1 81.5 78.0 77.8 89.6 90.8 89.6 89.0
0.4 81.3 82.3 79.1 78.9 91.0 91.4 90.3 89.1

0.75 0.5 80.8 82.4 78.8 80.3 90.2 90.6 89.8 89.7
0.6 81.0 82.0 80.3 80.3 91.1 92.1 90.6 91.2
0.8 79.5 80.9 79.7 79.5 90.9 91.4 90.6 89.4

0.2 80.7 82.0 76.3 76.7 91.2 92.5 87.4 88.1
0.4 82.4 84.4 79.5 78.8 91.6 92.8 90.2 89.9

0.9 0.5 82.3 84.9 80.5 80.4 92.0 93.0 90.3 89.9
0.6 82.3 85.4 81.1 81.3 92.8 92.7 91.2 91.3
0.8 83.8 84.3 81.2 81.1 92.1 93.3 91.3 91.9

Five-group sequential design (J=5)
0.2 78.3 80.8 78.4 78.3 89.5 89.3 88.9 90.2
0.4 80.5 82.5 80.8 80.0 91.1 90.9 90.2 90.3

0 0.5 80.4 80.9 79.2 80.6 90.4 90.4 89.1 89.9
0.6 82.1 82.1 80.4 80.9 90.1 91.9 89.5 89.9
0.8 80.3 81.5 80.2 80.2 90.4 90.0 90.3 90.1

0.2 80.3 80.6 79.4 78.8 90.3 90.9 89.7 90.2
0.4 79.7 80.6 78.8 79.1 89.6 89.7 88.8 90.3

0.25 0.5 78.5 80.6 77.0 77.9 88.6 89.5 89.1 90.1
0.6 80.3 80.8 79.4 79.2 90.0 89.9 89.1 89.1
0.8 81.5 81.7 80.9 80.7 90.7 91.1 90.7 90.5

0.2 80.6 81.9 79.8 79.1 90.7 90.8 89.5 89.3
0.4 79.7 80.6 79.5 79.6 89.8 90.4 90.2 89.4

0.5 0.5 79.3 80.7 78.9 79.3 89.6 90.5 89.6 88.4
0.6 78.3 80.9 77.9 77.4 90.2 89.9 89.0 89.8
0.8 81.5 81.8 80.5 81.4 90.6 91.3 90.2 89.5

0.2 80.3 82.8 78.1 78.7 90.7 90.9 88.5 88.5
0.4 81.1 81.4 79.4 79.6 90.4 91.2 90.1 90.7

0.75 0.5 81.0 82.6 79.8 79.6 90.7 91.8 89.9 90.1
0.6 82.6 83.2 80.3 80.0 91.3 92.2 90.9 91.3
0.8 80.4 82.6 78.9 80.3 90.8 90.5 90.1 89.5

0.2 81.3 83.0 76.9 77.0 91.4 91.2 88.6 88.1
0.4 82.2 84.4 79.2 79.8 92.2 93.1 90.7 90.3

0.9 0.5 82.8 84.7 80.5 81.0 92.4 93.4 90.8 90.9
0.6 83.3 85.9 81.7 80.7 92.0 93.3 91.3 91.4
0.8 83.5 84.2 81.1 80.6 92.2 93.0 91.3 91.1
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Table 2.6: Power(%) using the Pocock GSD with � = 0:05
Power=80% Power=90%

Analytical Method Bootstrap Analytical Method Bootstrap
� t Normal Lognormal Normal Lognormal Normal Lognormal Normal Lognormal

Two-group sequential design (J=2)
0.2 80.2 79.5 79.1 78.5 89.5 89.9 88.5 89.9
0.4 80.8 82.6 79.8 80.6 90.6 91.4 90.5 91.6

0 0.5 80.0 80.9 78.8 79.5 90.3 90.8 89.7 90.5
0.6 81.1 81.3 80.4 80.3 91.0 91.3 90.3 89.9
0.8 80.3 81.3 79.4 80.3 91.2 90.8 89.9 90.4

0.2 81.1 81.7 79.7 79.6 91.3 90.6 90.3 89.1
0.4 79.2 79.8 79.9 79.6 90.2 91.2 90.1 89.6

0.25 0.5 78.2 79.3 78.8 77.1 89.3 90.1 89.2 88.3
0.6 78.3 80.2 78.9 78.9 89.4 90.6 89.4 89.2
0.8 80.8 82.5 80.8 79.8 90.0 91.8 90.8 91.0

0.2 80.1 81.8 77.9 79.4 90.3 90.9 89.6 88.8
0.4 80.0 81.9 79.7 79.4 89.9 90.8 89.1 89.4

0.5 0.5 79.2 80.7 78.7 79.4 90.4 90.3 89.6 88.9
0.6 79.3 80.3 78.2 79.0 89.1 89.4 88.8 88.8
0.8 80.8 81.3 80.2 80.6 90.5 91.0 90.3 90.2

0.2 80.2 81.6 76.7 77.6 90.1 90.7 88.6 90.2
0.4 79.4 81.7 79.1 79.5 90.5 91.5 90.4 89.2

0.75 0.5 80.6 82.9 79.6 78.4 90.2 91.1 89.6 90.3
0.6 80.7 83.0 80.8 78.8 91.7 92.5 90.6 90.5
0.8 80.5 80.7 79.2 79.3 91.3 91.0 90.4 90.0

0.2 81.3 83.1 77.0 77.8 90.8 91.0 87.9 87.9
0.4 83.2 84.2 79.9 78.7 92.1 92.6 90.3 90.0

0.9 0.5 83.2 84.5 80.4 80.6 92.7 93.2 91.4 90.5
0.6 82.3 84.5 80.6 80.0 92.2 93.4 90.9 91.0
0.8 82.6 84.5 80.3 80.8 92.0 93.5 91.2 91.0

Five-group sequential design (J=5)
0.2 80.2 80.8 78.8 79.8 90.6 90.3 90.4 88.5
0.4 80.3 82.1 80.4 80.4 91.7 91.8 90.1 89.7

0 0.5 80.4 82.1 80.3 80.1 90.6 91.1 90.4 89.6
0.6 80.3 82.1 80.1 81.0 90.1 91.2 91.3 90.7
0.8 79.9 80.6 79.9 79.5 90.7 91.1 90.0 90.0

0.2 80.6 81.7 80.8 79.7 90.2 91.5 90.4 90.4
0.4 79.6 81.3 78.8 80.9 89.6 90.5 89.8 89.8

0.25 0.5 79.7 80.3 78.1 78.4 88.8 90.3 88.1 89.2
0.6 79.2 81.0 78.4 79.7 89.9 90.8 88.8 90.0
0.8 81.8 82.8 80.2 81.2 90.9 91.9 90.1 90.4

0.2 81.4 82.0 79.7 80.1 90.6 90.9 89.9 89.8
0.4 79.5 82.1 78.2 78.5 90.2 90.5 89.6 89.6

0.5 0.5 79.7 81.3 77.9 78.2 89.9 90.7 88.9 90.5
0.6 78.6 80.4 78.1 77.4 89.9 90.0 89.7 89.8
0.8 80.3 82.3 80.1 80.9 90.2 91.4 90.0 90.6

0.2 81.5 82.7 77.8 78.4 90.7 90.4 88.5 88.6
0.4 81.7 83.1 78.8 79.9 90.8 91.3 89.9 90.8

0.75 0.5 81.3 83.0 80.4 79.3 90.9 91.6 90.0 89.8
0.6 81.8 83.7 80.6 80.4 91.8 92.4 91.1 90.6
0.8 80.5 81.4 80.2 79.2 90.3 91.7 91.1 90.5

0.2 81.4 83.5 77.1 77.2 90.6 92.0 87.8 89.2
0.4 81.8 85.6 78.9 78.7 91.6 93.3 90.8 90.6

0.9 0.5 83.2 84.2 80.4 80.4 92.9 93.6 91.0 92.0
0.6 83.2 84.1 80.1 80.4 92.2 93.6 91.2 91.4
0.8 83.3 85.5 80.5 80.9 91.8 92.6 91.2 90.6
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Table 2.7: Expected sample sizes using GSD with � = 0:05
Power=80% Power=90%

Analytical Method Bootstrap Analytical Method Bootstrap
� t OF Pocock OF Pocock OF Pocock OF Pocock

Two-group sequential design (J=2)
0.2 613 582 617 585 775 709 781 716
0.4 754 708 757 716 950 859 954 870

0 0.5 839 781 838 791 1042 954 1050 951
0.6 967 900 974 915 1218 1104 1221 1099
0.8 1414 1337 1424 1331 1789 1605 1793 1624

0.2 549 517 555 523 695 623 698 635
0.4 660 620 659 624 830 748 837 759

0.25 0.5 729 690 733 695 923 838 931 844
0.6 859 816 857 811 1084 984 1083 989
0.8 1337 1252 1331 1254 1678 1508 1684 1519

0.2 450 424 453 430 569 515 575 522
0.4 551 523 555 523 697 629 699 635

0.5 0.5 628 592 630 596 794 718 801 725
0.6 725 688 732 689 912 826 918 842
0.8 1153 1079 1161 1085 1462 1312 1462 1323

0.2 319 304 323 311 404 368 411 373
0.4 407 387 414 390 516 471 524 473

0.75 0.5 473 442 481 452 598 540 606 546
0.6 564 533 574 537 715 638 727 647
0.8 876 827 884 830 1105 991 1106 993

0.2 214 199 219 208 269 241 280 251
0.4 283 259 286 268 354 316 364 323

0.9 0.5 335 303 340 315 420 366 428 382
0.6 398 366 403 377 498 436 507 452
0.8 634 580 644 600 797 700 815 721

Five-group sequential design (J=5)
0.2 554 541 560 551 683 624 685 634
0.4 683 675 685 668 833 748 840 782

0 0.5 752 733 754 742 924 834 929 848
0.6 868 857 875 861 1069 976 1085 988
0.8 1277 1255 1282 1256 1559 1425 1571 1444

0.2 498 482 502 485 605 555 611 562
0.4 595 584 603 596 738 673 737 671

0.25 0.5 664 646 663 661 816 744 818 756
0.6 774 763 779 774 949 879 963 889
0.8 1198 1169 1203 1187 1465 1346 1469 1360

0.2 406 393 410 405 498 452 507 463
0.4 501 493 503 503 615 555 614 570

0.5 0.5 567 556 572 570 698 642 700 656
0.6 658 650 662 658 806 738 815 744
0.8 1041 1018 1046 1033 1274 1178 1285 1180

0.2 290 280 296 297 354 324 366 341
0.4 369 358 374 372 454 413 457 425

0.75 0.5 428 411 435 430 525 478 531 492
0.6 508 497 519 508 624 564 633 584
0.8 789 768 804 791 966 884 978 897

0.2 192 189 200 204 236 218 245 234
0.4 255 251 260 267 310 286 319 297

0.9 0.5 298 295 306 310 364 327 375 351
0.6 356 347 362 370 434 396 445 416
0.8 570 559 581 587 692 640 710 656
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Table 2.8: GSD design sample sizes (maximum) with � = 0:05
Power=80% Power=90%

� t O'Brien-Fleming Pocock O'Brien-Fleming Pocock
Two-group sequential design (J=2)

0.2 683 752 913 997
0.4 843 928 1127 1231

0 0.5 925 1018 1236 1350
0.6 1076 1185 1439 1572
0.8 1571 1730 2100 2294

0.2 614 676 821 897
0.4 731 805 977 1067

0.25 0.5 804 885 1075 1174
0.6 948 1044 1267 1384
0.8 1477 1627 1976 2158

0.2 501 552 670 732
0.4 612 674 818 894

0.5 0.5 695 765 929 1015
0.6 799 880 1068 1167
0.8 1278 1407 1709 1866

0.2 355 391 474 518
0.4 452 498 604 660

0.75 0.5 525 578 701 766
0.6 627 691 839 916
0.8 961 1058 1284 1403

0.2 233 257 312 340
0.4 308 339 412 450

0.9 0.5 364 400 486 531
0.6 434 478 580 633
0.8 690 760 923 1008

Five-group sequential design (J=5)
0.2 696 832 930 1094
0.4 860 1028 1148 1351

0 0.5 943 1127 1260 1482
0.6 1098 1312 1466 1725
0.8 1602 1915 2140 2517

0.2 626 748 836 984
0.4 745 891 996 1171

0.25 0.5 820 980 1095 1288
0.6 967 1155 1291 1519
0.8 1507 1801 2013 2368

0.2 511 611 683 803
0.4 624 746 834 981

0.5 0.5 709 847 947 1114
0.6 815 974 1088 1280
0.8 1303 1558 1741 2048

0.2 362 432 483 568
0.4 461 551 616 724

0.75 0.5 535 639 715 840
0.6 640 765 855 1006
0.8 980 1171 1309 1539

0.2 238 284 318 373
0.4 314 376 420 494

0.9 0.5 371 443 495 583
0.6 442 529 591 695
0.8 704 842 940 1106
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Table 2.9: Fixed sample design sample sizes with � = 0:05
� t Power=80% Power=90%

0.2 677 906
0.4 836 1119

0 0.5 917 1228
0.6 1068 1429
0.8 1558 2086

0.2 609 815
0.4 725 970

0.25 0.5 798 1067
0.6 940 1259
0.8 1466 1962

0.2 497 666
0.4 607 813

0.5 0.5 689 923
0.6 792 1061
0.8 1267 1697

0.2 352 471
0.4 448 600

0.75 0.5 520 696
0.6 623 833
0.8 953 1275

0.2 231 309
0.4 306 409

0.9 0.5 361 483
0.6 430 576
0.8 685 917
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2.4 A Hypothetical Sequential Diagnostic Trial

In this section, we illustrate the GSD in a hypothetical lung cancer diagnostic trial. Both CT

and PET can be used for diagnosing the staging of non-small cell lung cancer. The AUC for

staging non-small cell lung cancer is between 52% and 85% for CT and between 81% and 96%

for PET (Lardinois et al. 2003; Silvestri et al. 2003). In our example, we choose the AUCs

to be 75% for CT and 90% for PET from the reasonable range. Consider testing the null

hypothesis of �(t) = 0 for t=f0.2,0.4,0.5,0.6,0.8g and correlation between two diagnostic

tests' data as � = 0:5 and are bi-normally distributed. Our example is a possible case

under the alternative hypothesis condition, with �(t) = f0:289; 0:182; 0:135; 0:094; 0:032g
for t=f0.2,0.4,0.5,0.6,0.8g respectively. In Table 2.10, we show the interim looks of one

simulation data with statistics and corresponding boundaries (O'Brien-Fleming) displayed

at the bottom.

Suppose nD = 250; n �D = 250, FPR =0.5, and the number of looks is 5. At the �rst

endpoint, with nD = 50; n �D = 50 subjects recruited and tested, the Z-statistic is 2.202,

which is within the rejection boundaries for the null hypothesis. Thus we fail to reject the

null hypothesis, and continue to recruit 50 additional cases and 50 additional controls. The

di�erence between the ROC curves at FPR=0.5 and its variance can be estimated using

the derived formula on the accruing data from the 100 cases and controls. The statistic

of 1.247 is calculated and is smaller than the boundary 3.23. Again, we fail to reject the

null hypothesis, and continue to recruit another 50 cases and controls. At the third interim

analysis with overall 150 cases and controls, we calculate the Z-statistic to be 2.637, which

is greater than the boundary 2.63. Therefor, we reject the null hypothesis of �(0:5) = 0

at this step, and conclude that the two imaging tests are signi�cantly di�erent in their

accuracy at the false positive rate of 0.5.

We also experiment with an example of comparing the average of three ROC points at

di�erent FPRs. Suppose FPR=(0.2,0.5,0.8) are of interest, and nD = 250; n �D = 250. All

other settings remain the same as the previous example. The AUCs are set to be 75% for

45



Table 2.10: Interim test statistics of the diagnostic trial example

Interim Z-Statistic

FPR 1 2 3 4 5

0.2 1.562 2.174 3.544

0.4 1.632 2.364 3.386

0.5 2.202 1.247 2.637

0.6 1.424 2.019 2.557 2.791

0.8 1.472 1.692 1.885 2.269 2.218

Boundaries �4:56 �3:23 �2:63 �2:28 �2:04

CT and 90% for PET with �(t) = f0:289; 0:135; 0:032g for t=f0.2,0.5,0.8g, respectively.
The average of the �(t) at the three FPRs is 0.152. We also reject the null hypothesis,

H0 :
P

t2f0:2;0:5;0:8g

(R1(t)=3�R2(t)=3) = 0, with the expected sample size to be 111 for either

cases or controls.

2.5 Discussion

In this chapter, we have derived asymptotic properties of the sequential di�erences of two

empirical ROC curves at the process level. We then used these results to develop distribution

theory for the sequential di�erence of two empirical ROC curves at a FPR. We also extended

the work to the asymptotic properties of the sequential di�erence of weighted ROC averages

at several FPRs. Our approach not only enables us to investigate the di�erence of two

correlated ROC curves, but also enables us to investigate the joint behavior of multiple

points of two correlated ROC curves' di�erences and their weighted averages. Based on

this, standard GSD software can be readily applied to design group sequential comparative

diagnostic tests studies.

Based on the theorems developed, we conducted a simulation study to assess the �-

nite sample properties of the results in Theorem 2.14. The simulation study veri�ed the

asymptotic variance-covariance matrix by comparing the theoretical covariance matrix to
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the observed covariance matrix from the simulated data. We veri�ed that they match each

other closely when sample size n is su�ciently large. We also conducted simulation studies,

both for one point and for average of multiple points on ROC curves. With � level set to

0.05, the test Type I error rate is approximately 0.05 and tend to be closer to the number

as we increase the sample sizes.

Furthermore, we demonstrate that the expected sample size of group sequential design

can be substantially smaller than that of a �xed sample size design while maintaining

the pre-speci�ed � level and power requirement. We also conduct the simulation studies

using both the formula method and the bootstrap method, which serves as an additional

veri�cation of our derived variance formula.

We further applied the GSD to a lung cancer diagnosis example, and our results clearly

illustrate the advantage of sequentially monitoring the comparative diagnostic trial based

on our theorem. The example shows that we are able to reject the null hypothesis under

the alternative hypothesis with a substantially smaller expected sample size.

In our study, we used empirical cumulative distribution functions and Kernel density

estimation to generate an estimate of ��̂(t). Due to the limitation of Kernel density esti-

mation, it will be desirable if we can develop a new non-parametric estimation method for

variance without involving density estimation. Currently, we mainly deal with two correlat-

ed ROC curves and provide the variance covariance formula. We will extend the research

to more general cases like clustered ROC curves and their di�erences. We can also apply a

similar approach to compare multiple ROC curves.
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Chapter 3: Group Sequential Method for Comparing

Correlated PPV, NPV Curves

3.1 Introduction

The diagnostic test's accuracy can also be quanti�ed by how well the test result predicts

true disease status, which leads to the predictive values de�nition of PPV and NPV. Most

of the time, we are more concerned in how likely the disease is present given the test result.

Hence PPV and NPV quantify the clinical value of the diagnostic test. On the other hand,

the classi�cation probabilities, TPR and FPR, quantify the inherent accuracy of the test

or how well the diagnostic test reects true disease status. In many studies, the predictive

values are reported in addition to the disease-speci�c classi�cation probabilities. It is worth

noting that the predictive values depend on not only the performance of the diagnostic

test in diseased and non-diseased subjects, but also the prevalence of disease in population.

Pepe (2003) points out that there is a direct relationship between predictive values and the

classi�cation probabilities as long as the prevalence is known. In fact, the complete joint

distribution of (D;X) requires three parameters, which could be either (TPR;FPR; p) or

(PPV;NPV; u), where p represents the prevalence and u represents the proportion of the

population that are classi�ed as negative. The relationship between two parameterizations

can be derived by application of Bayes' theorem (Pepe 2003). PPV can be expressed as a

function of TPR, FPR, and the prevalence p,

PPV = p � TPR=(p � TPR+ (1� p)FPR):
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Similarly for NPV as a function of the three parameters,

NPV = (1� p)(1� FPR)=((1� p)(1� FPR) + p(1� TPR)):

So is the proportion of the population that are classi�ed as negative,

1� u = p � TPR+ (1� p)FPR:

In this chapter, we will derived the asymptotic properties of correlated PPV and NPV

curves both indexed by the FPR and indexed by the percentile value u. Then we will use

simulation studies to show the consistency of covariance matrix estimator. We will also

apply the results in a group sequential study and present the type I error rates through

simulation.

3.2 Theoretical Results of Correlated PPV, NPV Curves

3.2.1 PPV and NPV indexed by the FPR

For PPV indexed by the FPR, we de�ne the following di�erence of two correlated PPV at

any given FPR of t,

�(t) = PPV1(t)� PPV2(t);

and the estimated di�erence of two correlated PPV based on proportions of the accrued

case and control subjects,

�̂rD;r �D(t) =
\PPV 1;rD;r �D(t)�\PPV 2;rD;r �D(t);

where rD; r �D represents the proportions of the case and control subjects that has been

accrued with test results available, respectively.

Let p be the disease status prevalence for the entire population, since PPV(t) is a
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function of ROC curve, we can write

PPV (t) =
R(t)p

R(t)p+ t(1� p)
:

We put the derivation of the asymptotic distribution theory on one PPV (t) curve in

the following, which can be found in Koopmeiners and Feng (2011).

n
�1=2
D [nDrD](\PPV rD;r �D(t)� PPV (t))

=n
�1=2
D [nDrD]

 
R̂rD;r �D(t)p

R̂rD;r �D(t)p+ t(1� p)
� R(t)p

R(t)p+ t(1� p)

!

=

�
R̂rD;r �D

(t)p

R̂rD;r �D
(t)p+t(1�p)

� R(t)p
R(t)p+t(1�p)

�
R̂rD;r �D(t)�R(t)

n
�1=2
D [nDrD](R̂rD;r �D(t)�R(t))

Next, we will need to show that R̂rD;r �D(t)
a:s:��! R(t) uniformly for t 2 [a; b], rD 2 [c; 1] and

r �D 2 [d; 1],

sup
c�rD�1

sup
d�r �D�1

sup
a�t�b

jR̂rD;r �D(t)�R(t)j

= sup
c�rD�1

sup
d�r �D�1

sup
a�t�b

jŜD;rD(Ŝ�1�D;r �D(t))� SD(S
�1
�D
(t)))j

� sup
c�rD�1

sup
d�r �D�1

sup
a�t�b

jŜD;rD(Ŝ�1�D;r �D(t))� SD(Ŝ
�1
�D;r �D

(t)))j

+ sup
c�rD�1

sup
d�r �D�1

sup
a�t�b

jSD(Ŝ�1�D;r �D(t)))� SD(S
�1
�D
(t))j

=
nD
[nDc]

sup
c�rD�1

sup
d�r �D�1

sup
a�t�b

[nDc]

nD
jŜD;rD(Ŝ�1�D;r �D(t))� SD(Ŝ

�1
�D;r �D

(t)))j
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+
n �D

n �Dd
sup

c�rD�1
sup

d�r �D�1
sup
a�t�b

n �Dd

n �D

jSD(S�1�D (S �D(Ŝ
�1
�D;r �D

(t))))� SD(S
�1
�D
(t))j

� nD
[nDc]

sup
c�rD�1

sup
d�r �D�1

sup
a�t�b

[nDrD]

nD
jŜD;rD(Ŝ�1�D;r �D(t))� SD(Ŝ

�1
�D;r �D

(t)))j

+
n �D

n �Dd
sup

c�rD�1
sup

d�r �D�1
sup
a�t�b

n �Dr �D
n �D

jSD(S�1�D (S �D(Ŝ
�1
�D;r �D

(t))))� SD(S
�1
�D
(t))j

Using the Glivenko-Cantelli theorem Theorem 1.51, 1.52 of Cs�org}o and Szyszkowicz

(1998), and as nD !1 and n �D !1, nD
[nDc]

! 1
c and

n �D
[n �Dd]

! 1
d respectively, we have

nD
[nDc]

sup
c�rD�1

sup
d�r �D�1

sup
a�t�b

[nDrD]

nD
jŜD;rD(Ŝ�1�D;r �D(t))� SD(Ŝ

�1
�D;r �D

(t)))j a:s:��! 0;

and

n �D

n �Dd
sup

c�rD�1
sup

d�r �D�1
sup
a�t�b

n �Dr �D
n �D

jSD(S�1�D (S �D(Ŝ
�1
�D;r �D

(t))))� SD(S
�1
�D
(t))j a:s:��! 0;

where the uniform continuity feature of SD(S
�1
�D
(t)) is applied to get the second statement.

Combining two results gives that,

sup
c�rD�1

sup
d�r �D�1

sup
a�t�b

jR̂rD;r �D(t)�R(t)j a:s:��! 0: (3.1)

By Mean Value Theorem, we know there is a value eR(t) between R̂rD;r �D(t) and R(t)

such that �
R̂rD;r �D

(t)p

R̂rD;r �D
(t)p+t(1�p)

� R(t)p
R(t)p+t(1�p)

�
R̂rD;r �D(t)�R(t)

=
t(1� p)p� eR(t)p+ t(1� p)

�2
And by Euation(3.1), and the de�nition of eR(t) above, we know that eR(t) a:s:��! R(t). This
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feature and the uniform continuity of t(1�p)p

(R(t)p+t(1�p))2
, gives us that

sup
c�rD�1

sup
d�r �D�1

sup
a�t�b

�������
t(1� p)p� eR(t)p+ t(1� p)

�2 � t(1� p)p

(R(t)p+ t(1� p))2

������� a:s:��! 0;

which will give the following equation,

�
R̂rD;r �D

(t)p

R̂rD;r �D
(t)p+t(1�p)

� R(t)p
R(t)p+t(1�p)

�
R̂rD;r �D(t)�R(t)

a:s:��! t(1� p)p

(R(t)p+ t(1� p))2
; (3.2)

uniformly for t 2 [a; b], rD 2 [c; 1] and r �D 2 [d; 1]. This and the Equation(2.8) gives us the

result of

n
�1=2
D [nDrD](\PPV `;rD;r �D(t)� PPV`(t)) (3.3)

d�! t(1� p)p

(R`(t)p+ t(1� p))2

 
K`;1(R`(t); rD) + �1=2

rD
r �D

 
f`;D(S

�1
`; �D

(t))

f`; �D(S
�1
`; �D

(t))

!
K`;2(t; r �D)

!

Alternatively we can use the delta method to prove the asymptotic property in the

following. Let map � : D[0; 1] 7! D[0; 1], where D[0,1] is the set of all functions z : [0; 1] 7! R
that are right continuous and whose limits from the left exist everywhere in [0,1]. In which,

the functions in D[0,1] are called c�adl�ag. Here, � is a map from a ROC function to a PPV

function.

PPV = �(R)

=
R � p

R � p+ t(1� p)
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This functional � is Hadamard di�erentiable as shown in the the following using the

de�nition in section 3.9.1 of van der Vaart and Wellner (1996), again we let R represents

ROC function,

�(R+ tnhn)� �(R)

tn

=
1

tn

�
(R+ tnhn)p

(R+ tnhn)p+ t(1� p)
� R � p
R � p+ t(1� p)

�

=
p � t(1� p)hn

((R+ tnhn)p+ t(1� p))(R � p+ t(1� p))

! t(1� p)p

(R � p+ t(1� p))2
� h; n!1;

for all converging sequences tn ! 0 and hn ! h. And the �0R is continuous linear map with

�0R(h) =
t(1� p)p

(R � p+ t(1� p))2
� h:

Since � is Hadamard di�erentiable, by Theorem 3.9.4 (van der Vaart and Wellner 1996),

and based on the results on correlated ROC curves in Equation(2.8), we obtain

n
�1=2
D [nDrD](\PPV `;rD;r �D(t)� PPV`(t)) (3.4)

=n
�1=2
D [nDrD]

�
�( bR`;rD;r �D(t))� �(R`(t))

�
d�! t(1� p)p

(R`(t)p+ t(1� p))2

 
K`;1(R`(t); rD) + �1=2

rD
r �D

 
f`;D(S

�1
`; �D

(t))

f`; �D(S
�1
`; �D

(t))

!
K`;2(t; r �D)

!
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For a PPVs' comparison study, by (3.4) and Cram�er-Wold device, applying to the fol-

lowing vector,

V =

0BBBBBBB@

n
�1=2
D [nDrD](\PPV 1;rD;r �D(t)� PPV1(t))

n
�1=2
D [nDrD](\PPV 2;rD;r �D(t)� PPV2(t))

n
�1=2
D [nDr

0
D](
\PPV 1;r0D;r

0

�D
(t0)� PPV1(t

0))

n
�1=2
D [nDr

0
D](
\PPV 2;r0D;r

0

�D
(t0)� PPV2(t

0))

1CCCCCCCA

d�!

0BBBBBBBBBBB@

t(1�p)p
(R1(t)p+t(1�p))2

�
K1;1(R1(t); rD) + �1=2 rDr �D

�
f1;D(S�1

1; �D
(t))

f1; �D(S�1
1; �D

(t))

�
K1;2(t; r �D)

�
t(1�p)p

(R2(t)p+t(1�p))2

�
K2;1(R2(t); rD) + �1=2 rDr �D

�
f2;D(S�1

2; �D
(t))

f2; �D(S�1
2; �D

(t))

�
K2;2(t; r �D)

�
t0(1�p)p

(R1(t0)p+t0(1�p))2

�
K1;1(R1(t

0); r0D) + �1=2
r0D
r0�D

�
f1;D(S�1

1; �D
(t0))

f1; �D(S�1
1; �D

(t0))

�
K1;2(t

0; r0�D)

�
t0(1�p)p

(R2(t0)p+t0(1�p))2

�
K2;1(R2(t

0); r0D) + �1=2
r0D
r0�D

�
f2;D(S�1

2; �D
(t0))

f2; �D(S�1
2; �D

(t0))

�
K2;2(t

0; r0�D)

�

1CCCCCCCCCCCA
;

And

Y =

0B@ n
�1=2
D [nDrD](�̂rD;r �D(t)��(t))

n
�1=2
D [nDr

0
D](�̂r0D;r

0

�D
(t0)��(t0))

1CA ;

which can be expressed in terms of the empirical\PPV and true PPV curves as

0B@ 1 �1 0 0

0 0 1 �1

1CA
0BBBBBBB@

n
�1=2
D [nDrD](\PPV 1;rD;r �D(t)� PPV1(t))

n
�1=2
D [nDrD](\PPV 2;rD;r �D(t)� PPV2(t))

n
�1=2
D [nDr

0
D](
\PPV 1;r0D;r

0

�D
(t0)� PPV1(t

0))

n
�1=2
D [nDr

0
D](
\PPV 2;r0D;r

0

�D
(t0)� PPV2(t

0))

1CCCCCCCA
:

Thus the random vector V is approximately multivariate normal with covariance as

derived in the following. We use � to represent the asymptotic covariance matrix Cov(V),

54



� = faijgi=1;��� ;4; j=1;��� ;4: Hence the random vector Y is approximately normal with covari-

ance matrix derived approximately in the following.

0B@ 1 �1 0 0

0 0 1 �1

1CA�

0BBBBBBB@

1 0

�1 0

0 1

0 �1

1CCCCCCCA

=

0B@ a11 + a22 � 2a12 a13 + a24 � a14 � a23

a13 + a24 � a14 � a23 a33 + a44 � 2a34

1CA :

It can be shown that

Cov(�̂rD;r �D(t); �̂r0D;r
0

�D
(t0)) = Cov(�̂r0D;r

0

�D
(t); �̂r0D;r

0

�D
(t0)); (3.5)

and as a special case when t0 = t,

Cov(�̂rD;r �D(t); �̂r0D;r
0

�D
(t)) = V ar(�̂r0D;r

0

�D
(t)); (3.6)

for r0D � rD and r0�D � r �D.

The proof of the asymptotic property is given in the following. For simplicity, we de�ne

C`(t) ,
t(1� p)p

(R`(t)p+ t(1� p))2
:

We then derive the elements in � as:

a11 = C2
1 (t)

0@rD(R1(t)�R2
1(t)) + �

r2D
r �D

 
f1;D(S

�1
1; �D

(t))

f1; �D(S
�1
1; �D

(t))

!2

(t� t2)

1A ;
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a12 = C1(t)C2(t)frD(SD(S�11; �D
(t); S�1

2; �D
(t))�R1(t)R2(t))

+ �
r2D
r �D

f1;D(S
�1
1; �D

(t))

f1; �D(S
�1
1; �D

(t))

f2;D(S
�1
2; �D

(t))

f2; �D(S
�1
2; �D

(t))
(S �D(S

�1
1; �D

(t); S�1
2; �D

(t))� t2)g;

a13 =C1(t)C1(t
0)
�
(rD ^ r0D)(R1(t) ^R1(t

0)�R1(t)R1(t
0))

+ (r �D ^ r0�D)�
rD
r �D

r0D
r0�D

f1;D(S
�1
1; �D

(t))

f1; �D(S
�1
1; �D

(t))

f1;D(S
�1
1; �D

(t0))

f1; �D(S
�1
1; �D

(t0))
(t ^ t0 � tt0)

�
;

a14 = C1(t)C2(t
0)f(rD ^ r0D)(SD(S�11; �D

(t); S�1
2; �D

(t0))�R1(t)R2(t
0))

+ (r �D ^ r0�D)�
rD
r �D

r0D
r0�D

f1;D(S
�1
1; �D

(t))

f1; �D(S
�1
1; �D

(t))

f2;D(S
�1
2; �D

(t0))

f2; �D(S
�1
2; �D

(t0))
(S �D(S

�1
1; �D

(t); S�1
2; �D

(t0))� tt0)g:

Similarly, we can obtain the following elements of the covariance matrix.

a22 = C2
2 (t)

0@rD(R2(t)�R2
2(t)) + �

r2D
r �D

 
f2;D(S

�1
2; �D

(t))

f2; �D(S
�1
2; �D

(t))

!2

(t� t2)

1A ;

a23 = C1(t
0)C2(t)f(rD ^ r0D)(SD(S�11; �D

(t0); S�1
2; �D

(t))�R1(t
0)R2(t))

+ (r �D ^ r0�D)�
rD
r �D

r0D
r0�D

f1;D(S
�1
1; �D

(t0))

f1; �D(S
�1
1; �D

(t0))

f2;D(S
�1
2; �D

(t))

f2; �D(S
�1
2; �D

(t))
(S �D(S

�1
1; �D

(t0); S�1
2; �D

(t))� tt0)g;

a24 = C2(t)C2(t
0)f(rD ^ r0D)(R2(t) ^R2(t

0)�R2(t)R2(t
0))
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+ (r �D ^ r0�D)�
rD
r �D

r0D
r0�D

f2;D(S
�1
2; �D

(t))

f2; �D(S
�1
2; �D

(t))

f2;D(S
�1
2; �D

(t0))

f2; �D(S
�1
2; �D

(t0))
(t ^ t0 � tt0)g;

a33 = C2
1 (t

0)

 
r0D(R1(t

0)�R2
1(t

0)) + �
r02D
r0�D

�
f1;D(S�1

1; �D
(t0))

f1; �D(S�1
1; �D

(t0))

�2

(t0 � t02)

!
;

a34 = C1(t
0)C2(t

0)fr0D(SD(S�11; �D
(t0); S�1

2; �D
(t0))�R1(t

0)R2(t
0))

+ �
r02D
r0�D

f1;D(S
�1
1; �D

(t0))

f1; �D(S
�1
1; �D

(t0))

f2;D(S
�1
2; �D

(t0))

f2; �D(S
�1
2; �D

(t0))
(S �D(S

�1
1; �D

(t0); S�1
2; �D

(t0))� t02)g;

a44 = C2
2 (t

0)

 
r0D(R2(t

0)�R2
2(t

0)) + �
r02D
r0�D

�
f2;D(S�1

2; �D
(t0))

f2; �D(S�1
2; �D

(t0))

�2

(t0 � t02)

!
:

With regard to Equation(3.5), it can be shown that the LHS converges to RHS. First, both

sides can be expressed in the following formula:

LHS =
1

rDnDr0D
(a13 + a24 � a14 � a23)

RHS =
1

r0DnDr
0
D

(a�13 + a�24 � a�14 � a�23)

where a�ij is aij with rD; r �D substituted by r0D; r
0
�D
respectively. Then substitute the covari-

ance elements with the formula we derived above, we obtain

LHS = (3.7)

C1(t)C1(t
0)

�
1

nDr0D
(R1(t) ^R1(t

0)�R1(t)R1(t
0))

+
1

n �Dr
0
�D

f1;D(S
�1
1; �D

(t))

f1; �D(S
�1
1; �D

(t))

f1;D(S
�1
1; �D

(t0))

f1; �D(S
�1
1; �D

(t0))
(t ^ t0 � tt0)

�

+ C2(t)C2(t
0)

�
1

nDr0D
(R2(t) ^R2(t

0)�R2(t)R2(t
0))
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+
1

n �Dr
0
�D

f2;D(S
�1
2; �D

(t))

f2; �D(S
�1
2; �D

(t))

f2;D(S
�1
2; �D

(t0))

f2; �D(S
�1
2; �D

(t0))
(t ^ t0 � tt0)

�

� C1(t)C2(t
0)

�
1

nDr0D
(SD(S

�1
1; �D

(t); S�1
2; �D

(t0))�R1(t)R2(t
0))

+
1

n �Dr
0
�D

f1;D(S
�1
1; �D

(t))

f1; �D(S
�1
1; �D

(t))

f2;D(S
�1
2; �D

(t0))

f2; �D(S
�1
2; �D

(t0))
(S �D(S

�1
1; �D

(t); S�1
2; �D

(t0))� tt0)

�

� C1(t
0)C2(t)

�
1

nDr0D
(SD(S

�1
1; �D

(t0); S�1
2; �D

(t))�R1(t
0)R2(t))

+
1

n �Dr
0
�D

f1;D(S
�1
1; �D

(t0))

f1; �D(S
�1
1; �D

(t0))

f2;D(S
�1
2; �D

(t))

f2; �D(S
�1
2; �D

(t))
(S �D(S

�1
1; �D

(t0); S�1
2; �D

(t))� tt0)

�

= RHS

And as a special case where t0 = t, we obtain the following:

Cov(�̂rD;r �D(t); �̂r0D;r
0

�D
(t)) = V ar(�̂r0D;r

0

�D
(t)) (3.8)

= C2
1 (t)

 
1

nDr0D
(R1(t)�R2

1(t)) +
1

n �Dr
0
�D

f1;D(S
�1
1; �D

(t))

f1; �D(S
�1
1; �D

(t))

f1;D(S
�1
1; �D

(t))

f1; �D(S
�1
1; �D

(t))
(t� t2)

!

+ C2
2 (t)

 
1

nDr0D
(R2(t)�R2

2(t)) +
1

n �Dr
0
�D

f2;D(S
�1
2; �D

(t))

f2; �D(S
�1
2; �D

(t))

f2;D(S
�1
2; �D

(t))

f2; �D(S
�1
2; �D

(t))
(t� t2)

!

� 2C1(t)C2(t)

�
1

nDr0D
(SD(S

�1
1; �D

(t); S�1
2; �D

(t))�R1(t)R2(t))

+
1

n �Dr
0
�D

f1;D(S
�1
1; �D

(t))

f1; �D(S
�1
1; �D

(t))

f2;D(S
�1
2; �D

(t))

f2; �D(S
�1
2; �D

(t))
(S �D(S

�1
1; �D

(t); S�1
2; �D

(t))� t2)

�

for r0D � rD and r0�D � r �D. This completes the proof of Equation (3.5) and (3.6).

The method above deals only two sequential analysis points and their asymptotic prop-

erties. In fact, the exact method can be applied to any �nite set of sequential analysis

58



points as shown below assuming the number of interim analysis is J.

Y =

0BBBBBBB@

n
�1=2
D [nDrD;1](�̂rD;1;r �D;1

(t1)��(t1))

n
�1=2
D [nDrD;2](�̂rD;2;r �D;2

(t2)��(t2))

...

n
�1=2
D [nDrD;J ](�̂rD;J ;r �D;J

(tJ)��(tJ))

1CCCCCCCA
;

which can be expressed in terms of the empirical\PPV and true PPV curves as

0BBBB@
1 �1 � � � 0 0

...
...

. . .
...

...

0 0 � � � 1 �1

1CCCCA

0BBBBBBBBBB@

n
�1=2
D [nDrD;1](\PPV 1;rD;1;r �D;1

(t1)� PPV1(t1))

n
�1=2
D [nDrD;1](\PPV 2;rD;1;r �D;1

(t1)� PPV2(t1))

...

n
�1=2
D [nDrD;J ](\PPV 1;rD;J ;r �D;J

(tJ)� PPV1(tJ))

n
�1=2
D [nDrD;J ](\PPV 2;rD;J ;r �D;J

(tJ)� PPV2(tJ))

1CCCCCCCCCCA
:

Following the same steps, we will come to the same results of the asymptotic properties

with independent increments covariance structure for any �nite interim analysis.

Similarly, for NPV indexed by the FPR we de�ne the following di�erence of two corre-

lated NPV at any given FPR of t,

�(t) = NPV1(t)�NPV2(t):

We know that

NPV (t) =
(1� t)(1� p)

(1�R(t))p+ (1� t)(1� p)
;

and its estimator

\NPV (t) =
(1� t)(1� p)

(1� bR(t))p+ (1� t)(1� p)
:
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Hence we de�ne map � : D[0; 1] 7! D[0; 1], where D[0,1] is the set of all c�adl�ag functions

z : [0; 1] 7! R. Here, � is a map from a ROC function to a NPV function.

NPV = �(R) =
(1� t)(1� p)

(1�R)p+ (1� t)(1� p)
:

This functional � is also Hadamard di�erentiable using the de�nition in section 3.9.1 of

van der Vaart andWellner (1996). Then by Theorem 3.9.4 (van der Vaart andWellner 1996),

and the results on correlated ROC curves in Equation(2.8), we can derive the asymptotic

property of sequential empirical process of NPV. We can further prove that Equation (3.5)

and (3.6) also hold true for correlated NPV curves indexed by FPR.

Due to the independent increments covariance structure for any �nite interim analysis

points, as shown in Equation (3.5) and (3.6) for correlated PPV and NPV curves indexed

by FPR, we can readily apply these in group sequential designs using standard method to

calculate the rejection boundaries at each interim analysis point. This will be demonstrated

in the simulation study section with a covariance matrix estimator study and a type I error

rate simulation study.

3.2.2 PPV and NPV indexed by the Percentile Value

We now consider PPV and NPV curves indexed by the proportion of the population that

are classi�ed as negative, u.

We know from Bayes' theorem that

PPV (u) =
SD(F

�1(u))p

1� u
:

The PPV estimator at an interim point is given as

\PPV rD;r �D(u) =
ŜD;rD(F̂

�1
rD;r �D

(u))p

1� u
;
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where rD; r �D represents the proportions of the case and control subjects that has been

accrued with test result available at the interim point respectively. We have

\PPV rD;r �D(u)� PPV (u) =
p

1� u

�
ŜD;rD(F̂

�1
rD;r �D

(u)� SD(F
�1(u))

�
;

Now de�ne the di�erence of two correlated PPV at any given proportion of u,

�(u) = PPV1(u)� PPV2(u);

and at the interim point noted by rD; r �D,

�̂rD;r �D(u) =
\PPV 1;rD;r �D(u)�\PPV 2;rD;r �D(u):

To derive the asymptotic properties of the sequential di�erences �̂rD;r �D(u), �rst we have

for the following random vector,

V =

0BBBBBBB@

n
�1=2
D [nDrD](\PPV 1;rD;r �D(u)� PPV1(u))

n
�1=2
D [nDrD](\PPV 2;rD;r �D(u)� PPV2(u))

n
�1=2
D [nDr

0
D](
\PPV 1;r0D;r

0

�D
(u0)� PPV1(u

0))

n
�1=2
D [nDr

0
D](
\PPV 2;r0D;r

0

�D
(u0)� PPV2(u

0))

1CCCCCCCA

d�!

0BBBBBBBBB@

r1(u)K1;1(F1;D(F
�1
1 (u)); rD) + q1(u)

rD
r �D
K1;2(F1; �D(F

�1
1 (u)); r �D)

r2(u)K2;1(F2;D(F
�1
2 (u)); rD) + q2(u)

rD
r �D
K2;2(F2; �D(F

�1
2 (u)); r �D)

r1(u
0)K1;1(F1;D(F

�1
1 (u0)); r0D) + q1(u

0)
r0D
r0�D
K1;2(F1; �D(F

�1
1 (u0)); r0�D)

r2(u
0)K2;1(F2;D(F

�1
2 (u0)); r0D) + q2(u

0)
r0D
r0�D
K2;2(F2; �D(F

�1
2 (u0)); r0�D)

1CCCCCCCCCA
;
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where for simplicity we de�ne

rv(u) = �p(1� p)

1� u

fv; �D(F
�1
v (u))

fv(F
�1
v (u))

;

and

qv(u) =
p(1� p)

1� u

fv;D(F
�1
v (u))

fv(F
�1
v (u))

p
�:

We also de�ne the following for simplicity, which will be used later,

hv;D(u) = Fv;D(F
�1
v (u));

and

hv; �D(u) = Fv; �D(F
�1
v (u)):

To derive the asymptotic variance-covariance matrix, please note thatKv;1(Fv;D(F
�1
v (u)); rD)

can be replaced by

n
�1=2
D [nDrD](F̂v;D;rD(F

�1
v (u))� Fv;D(F

�1
v (u)));

and that Kv;2(Fv; �D(F
�1
v (u)); r �D) can be replace by

n
�1=2
�D

[n �Dr �D](F̂v; �D;r �D(F
�1
v (u))� Fv; �D(F

�1
v (u))):

Then the random vector

Y =

0B@ n
�1=2
D [nDrD](�̂rD;r �D(u)��(u))

n
�1=2
D [nDr

0
D](�̂r0D;r

0

�D
(u0)��(u0))

1CA
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can be expressed in terms of the empirical\PPV and true PPV curves as

0B@ 1 �1 0 0

0 0 1 �1

1CA
0BBBBBBB@

n
�1=2
D [nDrD](\PPV 1;rD;r �D(u)� PPV1(u))

n
�1=2
D [nDrD](\PPV 2;rD;r �D(u)� PPV2(u))

n
�1=2
D [nDr

0
D](
\PPV 1;r0D;r

0

�D
(u0)� PPV1(u

0))

n
�1=2
D [nDr

0
D](
\PPV 2;r0D;r

0

�D
(u0)� PPV2(u

0))

1CCCCCCCA
:

The random vector V is approximately multivariate normal with covariance as de-

rived in the following. We write the asymptotic covariance Cov(V) as �, and � =

faijgi=1;��� ;4; j=1;��� ;4:
Hence the random vector Y is approximately normal with covariance matrix derived

with the following formula.

0B@ 1 �1 0 0

0 0 1 �1

1CA�

0BBBBBBB@

1 0

�1 0

0 1

0 �1

1CCCCCCCA

=

0B@ a11 + a22 � 2a12 a13 + a24 � a14 � a23

a13 + a24 � a14 � a23 a33 + a44 � 2a34

1CA :

Furthermore, it can be shown that

Cov(�̂rD;r �D(u); �̂r0D;r
0

�D
(u0)) = Cov(�̂r0D;r

0

�D
(u); �̂r0D;r

0

�D
(u0)); (3.9)

and as a special case when u0 = u,

Cov(�̂rD;r �D(u); �̂r0D;r
0

�D
(u)) = V ar(�̂r0D;r

0

�D
(u)); (3.10)

for r0D � rD and r0�D � r �D.
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We provide the details of the proof in the following. First, we derive each element in

the covariance matrix �,

a11 = r21(u)rD(h1;D(u)� h21;D(u)) + q21(u)
r2D
r �D

(h1; �D(u)� h21; �D(u));

a12 =r1(u)r2(u)Cov
�
n
�1=2
D [nDrD](F̂1;D;rD(F

�1
1 (u))� F1;D(F

�1
1 (u)));

n
�1=2
D [nDrD](F̂2;D;rD(F

�1
2 (u))� F2;D(F

�1
2 (u)))

�
+ q1(u)q2(u)

r2D
r2�D
Cov

�
n
�1=2
�D

[n �Dr �D](F̂1; �D;r �D(F
�1
1 (u))� F1; �D(F

�1
1 (u)));

n
�1=2
�D

[n �Dr �D](F̂2; �D;r �D(F
�1
2 (u))� F2; �D(F

�1
2 (u)))

�
=r1(u)r2(u)rD(FD(F

�1
1 (u); F�1

2 (u))� h1;D(u)h2;D(u))

+ q1(u)q2(u)
r2D
r �D

(F �D(F
�1
1 (u); F�1

2 (u))� h1; �D(u)h2; �D(u));

a13 = r1(u)r1(u
0)(rD ^ r0D)(h1;D(u) ^ h1;D(u0)� h1;D(u)h1;D(u

0))

+ q1(u)q1(u
0)
rD
r �D

r0D
r0�D

(r �D ^ r0�D)(h1; �D(u) ^ h1; �D(u0)� h1; �D(u)h1; �D(u
0));

a14 = r1(u)r2(u
0)(rD ^ r0D)(FD(F�1

1 (u); F�1
2 (u0))� h1;D(u)h2;D(u

0))

+ q1(u)q2(u
0)
rD
r �D

r0D
r0�D

(r �D ^ r0�D)(F �D(F
�1
1 (u); F�1

2 (u0))� h1; �D(u)h2; �D(u
0));

a22 = r22(u)rD(h2;D(u)� h22;D(u)) + q22(u)
r2D
r �D

(h2; �D(u)� h22; �D(u));
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a23 = r1(u
0)r2(u)(rD ^ r0D)(FD(F�1

1 (u0); F�1
2 (u))� h1;D(u

0)h2;D(u))

+ q1(u
0)q2(u)

rD
r �D

r0D
r0�D

(r �D ^ r0�D)(F �D(F
�1
1 (u0); F�1

2 (u))� h1; �D(u
0)h2; �D(u));

a24 = r2(u)r2(u
0)(rD ^ r0D)(h2;D(u) ^ h2;D(u0)� h2;D(u)h2;D(u

0))

+ q2(u)q2(u
0)
rD
r �D

r0D
r0�D

(r �D ^ r0�D)(h2; �D(u) ^ h2; �D(u0)� h2; �D(u)h2; �D(u
0));

a33 = r21(u
0)r0D(h1;D(u

0)� h21;D(u
0)) + q21(u

0)
r02D
r0�D

(h1; �D(u
0)� h21; �D(u

0));

a34 = r1(u
0)r2(u

0)r0D(FD(F
�1
1 (u0); F�1

2 (u0))� h1;D(u
0)h2;D(u

0))

+ q1(u
0)q2(u

0)
r02D
r0�D

(F �D(F
�1
1 (u0); F�1

2 (u0))� h1; �D(u
0)h2; �D(u

0));

a44 = r22(u
0)r0D(h2;D(u

0)� h22;D(u
0)) + q22(u

0)
r02D
r0�D

(h2; �D(u
0)� h22; �D(u

0)):

With regard to Equation(3.9), we have that

Cov(�̂rD;r �D(u); �̂r0D;r
0

�D
(u0)) =

1

rDnDr0D
(a13 + a24 � a14 � a23);

and

Cov(�̂r0D;r
0

�D
(u); �̂r0D;r

0

�D
(u0)) =

1

r0DnDr
0
D

(a�13 + a�24 � a�14 � a�23):
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where a�ij is aij with rD; r �D substituted by r0D; r
0
�D
respectively. Then,

LHS =
1

nD
fr1(u)r1(u0) 1

r0D
(h1;D(u) ^ h1;D(u0)� h1;D(u)h1;D(u

0))

+ q1(u)q1(u
0)
1

r0�D
(h1; �D(u) ^ h1; �D(u0)� h1; �D(u)h1; �D(u

0))

+ r2(u)r2(u
0)
1

r0D
(h2;D(u) ^ h2;D(u0)� h2;D(u)h2;D(u

0))

+ q2(u)q2(u
0)
1

r0�D
(h2; �D(u) ^ h2; �D(u0)� h2; �D(u)h2; �D(u

0))

� r1(u)r2(u
0)
1

r0D
(FD(F

�1
1 (u); F�1

2 (u0))� h1;D(u)h2;D(u
0))

� q1(u)q2(u
0)
1

r0�D
(F �D(F

�1
1 (u); F�1

2 (u0))� h1; �D(u)h2; �D(u
0))

� r1(u
0)r2(u)

1

r0D
(FD(F

�1
1 (u0); F�1

2 (u))� h1;D(u
0)h2;D(u))

� q1(u
0)q2(u)

1

r0�D
(F �D(F

�1
1 (u0); F�1

2 (u))� h1; �D(u
0)h2; �D(u))g

=RHS:

This completes the proof of Equation (3.9). And as a special case when u0 = u, for Equation

(3.10) we have

Cov(�̂rD;r �D(u); �̂r0D;r
0

�D
(u)) = V ar(�̂r0D;r

0

�D
(u))

=
1

nD
fr21(u)

1

r0D
(h1;D(u)� h21;D(u)) + q21(u)

1

r0�D
(h1; �D(u)� h21; �D(u))

+ r22(u)
1

r0D
(h2;D(u)� h22;D(u)) + q22(u)

1

r0�D
(h2; �D(u)� h22; �D(u))
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� 2r1(u)r2(u)
1

r0D
(FD(F

�1
1 (u); F�1

2 (u))� h1;D(u)h2;D(u))

� 2q1(u)q2(u)
1

r0�D
(F �D(F

�1
1 (u); F�1

2 (u))� h1; �D(u)h2; �D(u))g

for r0D � rD and r0�D � r �D.

The method above handles two sequential analysis points and their asymptotic proper-

ties. In fact, the method can be applied to any �nite set of sequential analysis points as

shown below assuming the number of interim analysis is J.

Y =

0BBBBBBB@

n
�1=2
D [nDrD;1](�̂rD;1;r �D;1

(u1)��(u1))

n
�1=2
D [nDrD;2](�̂rD;2;r �D;2

(u2)��(u2))

...

n
�1=2
D [nDrD;J ](�̂rD;J ;r �D;J

(uJ)��(uJ))

1CCCCCCCA
;

which can be expressed in terms of the empirical\PPV and true PPV curves as

0BBBB@
1 �1 � � � 0 0

...
...

. . .
...

...

0 0 � � � 1 �1

1CCCCA

0BBBBBBBBBB@

n
�1=2
D [nDrD;1](\PPV 1;rD;1;r �D;1

(u1)� PPV1(u1))

n
�1=2
D [nDrD;1](\PPV 2;rD;1;r �D;1

(u1)� PPV2(u1))

...

n
�1=2
D [nDrD;J ](\PPV 1;rD;J ;r �D;J

(uJ)� PPV1(uJ))

n
�1=2
D [nDrD;J ](\PPV 2;rD;J ;r �D;J

(uJ)� PPV2(uJ))

1CCCCCCCCCCA
:

Following the same steps, we will come to the same results of the asymptotic properties.

For NPV indexed by the percentile value, we can either follow the steps in the previous

subsection to derive the asymptotic properties of NPV indexed by the percentile value, or

apply functional delta method to the previous subsection's results since NPV curve can be
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expressed as a function of PPV curve as

NPV (u) =
u� p

u
+
1� u

u
PPV (u):

3.3 Simulation Studies

3.3.1 Consistency of Covariance Matrix Estimator

We conduct a simulation study to assess the �nite sample properties of the results in The-

orem 3.6. Diagnostic test data are drawn from bivariate normal distributions. For a case,

the bivariate normal model is (X1; X2)
T � Nf(10; 6)T ;�1g, and for a control, the bivariate

normal model is (Y1; Y2)
T � Nf(0; 4)T ;�2g, where

�1 =

0B@ 2 �2
p
2

�2
p
2 4

1CA and �2 =

0B@ 1 �

� 1

1CA ; with � = 0:5 :

We conduct 5000 simulation with nD = 200; n �D = 200, and for the simulated data, we

calculate the variance-covariance of the �(t) = PPV 1(t)�PPV 2(t) at various combinations

of rD; r �D with FPR t=0.5. Here, the PPV functions are estimated with the empirical

functions. Then we compare the simulated covariance matrix to the theoretical covariance

matrix derived using the results of Theorem 3.6. The results are presented in Table 3.1, for

prevalence p 2 f0:1; 0:2; 0:3g.

3.3.2 Simulated Type I Error Rate in GSDs

To investigate �nite sample performance of the GSD procedure, we conduct a simulation

study in a two-group sequential test (J=2), and a �ve-group sequential test (J=5). The

null hypothesis of equal PPV(t) is set to be true and the nominal type I error rate was set

to be � = 0:05 for two-sided tests. The diagnostic test data are simulated from bivariate
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Table 3.1: The values of elements (�10�5) in observed and theoretical �PPV covariance
matrix

Observed covariance matrix Theoretical covariance matrix

p = 0:1; nD = 200; n �D = 200

�0:2;0:3(0:5) 9.493 4.711 3.711 1.898 8.302 4.151 3.321 1.660
�0:4;0:5(0:5) 4.814 3.712 1.906 4.151 3.321 1.660
�0:5;0:7(0:5) 3.772 1.929 3.321 1.660
�1;1(0:5) 1.932 1.660

p = 0:2; nD = 200; n �D = 200

�0:2;0:3(0:5) 23.634 11.701 9.216 4.706 20.480 10.240 8.192 4.096
�0:4;0:5(0:5) 11.937 9.195 4.716 10.240 8.192 4.096
�0:5;0:7(0:5) 9.340 4.769 8.192 4.096
�1;1(0:5) 4.771 4.096

p = 0:3; nD = 200; n �D = 200

�0:2;0:3(0:5) 32.550 16.077 12.657 6.454 27.938 13.969 11.175 5.588
�0:4;0:5(0:5) 16.370 12.600 6.453 13.969 11.175 5.588
�0:5;0:7(0:5) 12.789 6.522 11.175 5.588
�1;1(0:5) 6.516 5.588

normal models. The bivariate normal models is (X1; X2)
T � Nf(1; 10)T ;�1g for the case

data. And for the control data, the bivariate normal model is (Y1; Y2)
T � Nf(0; 8)T ;�2g,

where

�1 =

0B@ 1 2�

2� 4

1CA �2 =

0B@ 1 2�

2� 4

1CA with � = (0; 0:25; 0:5; 0:75; 0:9)

With the above setting, we also simulate two cases with prevalence level p set to be 0.1

and 0.2 respectively. In all cases, the ROC curves are identical from the formula of ROC

curve under bi-normal models (Zhou et al. 2011). Hence the PPV curves are identical

according to formula PPV (t) = R(t)p
R(t)p+t(1�p) . Di�erent numbers of case and control subjects,

nD; n �D = (50; 250; 500), are considered in our simulation study.

For each simulation setting, 5000 random data sets are generated and the GSD method

applied to the simulated data. The Z statistics at each interim analysis point are then
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calculated based on the empirical ROC di�erence and estimated variances. The GSD test

procedure compares the Z statistics with corresponding test boundaries of design, and the

decision of rejection or failing to rejection is obtained for each simulated dataset. We then

calculate the overall rejection rates for all simulated datasets. Table 3.2 gives the rejection

rates of all di�erent model and sample size combinations with a nominal � level 0.05 under

the O'Brien and Fleming's criterion. And Table 3.3 is the results for the Pocock's criterion.

As we can see, the simulated type I error rates are close to the nominal rate and tend to be

closer as the overall sample sizes increase. The type I error rates are also plotted in Figure

3.1 and Figure 3.2. In these �gures, the type I error rates are plotted as bars showing their

deviations from the nominal rate of 0.05 which is the vertical line.

Figure 3.1: PPV indexed by FPR, type I error rates plot using the O'Brien-Fleming GSD
with � = 0:05, J = 2
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Table 3.2: PPV indexed by FPR, type I error rates (�10�2) using the O'Brien-Fleming
GSD with � = 0:05

� = 0 � = 0:25 � = 0:5 � = 0:75 � = 0:9
nD n

�D t p=0.1 0.2 p=0.1 0.2 p=0.1 0.2 p=0.1 0.2 p=0.1 0.2

Two-group sequential design (J=2)
50 50 0.2 4.82 3.66 3.82 2.90 3.78 2.88 2.36 2.02 1.16 0.84

0.4 3.84 3.46 3.72 3.36 3.02 2.32 2.46 2.08 1.40 1.16
0.5 3.68 3.26 2.56 2.66 2.56 2.40 1.88 1.76 0.74 0.60
0.6 3.00 2.72 2.42 2.20 2.36 1.98 1.48 1.20 0.72 0.58
0.8 0.98 0.88 0.96 0.86 0.86 0.76 0.68 0.52 0.32 0.28

250 250 0.2 4.40 4.56 4.46 5.46 4.44 3.82 3.80 3.70 2.80 2.74
0.4 5.00 4.86 4.96 4.44 3.84 3.82 3.72 3.60 2.80 2.70
0.5 4.72 4.72 4.38 4.22 4.28 4.16 3.56 3.48 2.54 2.48
0.6 4.64 4.50 4.48 4.36 3.56 3.42 3.16 3.14 2.64 2.60
0.8 3.98 3.94 3.42 3.34 3.22 3.18 2.96 2.94 2.06 2.04

250 500 0.2 5.10 4.50 4.66 4.46 3.92 3.96 3.96 3.90 3.22 3.06
0.4 4.56 3.94 4.70 4.92 4.06 3.96 3.24 3.54 3.30 3.26
0.5 4.74 4.64 4.04 4.26 4.66 3.84 3.96 3.86 3.72 3.66
0.6 4.74 4.70 4.62 4.60 4.04 3.94 3.98 3.96 3.12 3.26
0.8 3.96 3.86 3.48 3.80 3.52 3.72 3.46 3.50 1.92 1.86

500 500 0.2 4.98 4.90 4.90 4.84 4.94 4.78 3.92 3.80 3.28 3.22
0.4 4.60 4.44 3.76 3.96 4.86 4.60 3.50 3.58 2.76 2.80
0.5 4.76 4.38 4.46 4.42 4.16 4.10 4.32 4.26 3.26 3.34
0.6 4.22 4.18 4.50 4.48 4.22 4.06 3.56 3.54 3.02 3.08
0.8 4.10 4.10 3.94 3.92 3.30 3.28 3.42 3.38 2.42 2.40

Five-group sequential design (J=5)
50 50 0.2 5.02 3.90 4.22 3.78 3.06 2.74 2.12 1.84 1.18 0.70

0.4 3.92 3.86 3.80 2.94 3.06 2.88 2.00 1.88 0.88 0.62
0.5 3.94 3.02 3.12 2.70 2.46 2.66 1.98 1.44 0.76 0.56
0.6 3.00 2.70 2.70 2.36 2.16 2.14 1.78 1.30 0.60 0.54
0.8 0.96 0.96 0.74 0.78 0.50 0.42 0.26 0.30 0.08 0.08

250 250 0.2 5.10 4.10 4.34 3.86 4.80 4.04 4.04 4.10 3.32 3.14
0.4 4.32 4.08 4.72 4.40 4.12 4.08 3.42 3.34 2.84 2.56
0.5 4.32 4.50 4.22 4.32 4.16 4.16 3.60 3.56 2.30 2.12
0.6 4.54 4.46 3.62 3.82 4.12 3.64 3.50 3.06 2.38 2.34
0.8 3.88 3.20 3.80 3.40 2.96 2.96 2.96 2.44 1.78 1.76

250 500 0.2 5.32 4.66 4.80 4.66 4.58 4.20 4.16 3.88 3.02 2.88
0.4 4.58 4.96 4.80 4.56 4.10 4.64 3.66 3.66 3.32 3.52
0.5 4.52 4.52 4.68 4.54 4.34 4.48 4.02 4.00 3.16 3.24
0.6 4.72 4.82 4.36 4.16 4.08 4.30 3.86 4.04 2.86 2.84
0.8 4.06 3.92 3.56 3.56 3.78 3.84 2.88 2.86 2.36 1.98

500 500 0.2 5.02 4.96 5.18 5.00 4.68 4.52 4.44 4.40 3.66 3.46
0.4 4.46 4.32 4.92 4.26 4.70 4.44 4.16 4.10 3.46 3.16
0.5 4.64 4.58 4.66 4.76 4.66 4.48 4.22 4.22 3.30 3.42
0.6 4.54 4.76 4.90 4.78 4.16 4.00 4.42 4.36 3.14 3.16
0.8 4.58 4.56 4.24 4.22 3.76 3.56 3.32 3.28 2.58 2.56
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Table 3.3: PPV indexed by FPR, type I error rates (�10�2) using the Pocock GSD with
� = 0:05

� = 0 � = 0:25 � = 0:5 � = 0:75 � = 0:9
nD n

�D t p=0.1 0.2 p=0.1 0.2 p=0.1 0.2 p=0.1 0.2 p=0.1 0.2

Two-group sequential design (J=2)
50 50 0.2 5.06 3.62 3.94 2.74 3.08 2.16 1.84 1.40 0.72 0.64

0.4 3.50 3.02 3.30 2.72 2.74 2.04 1.66 1.38 0.78 0.66
0.5 3.72 2.72 2.78 2.18 2.08 1.94 1.14 1.08 0.24 0.26
0.6 2.40 2.28 2.02 1.78 1.58 1.46 0.82 0.68 0.28 0.22
0.8 0.52 0.46 0.58 0.64 0.44 0.36 0.14 0.14 0.06 0.06

250 250 0.2 5.00 4.52 4.30 4.02 4.10 3.50 3.64 2.68 2.16 2.06
0.4 4.96 4.52 4.28 3.86 3.78 3.62 3.50 3.38 2.00 1.96
0.5 3.90 3.78 4.52 4.44 3.78 3.56 2.98 2.96 2.08 2.22
0.6 4.50 4.36 3.96 3.50 3.46 3.40 2.88 2.88 1.80 1.64
0.8 3.32 2.84 3.02 2.84 2.42 2.42 1.96 1.96 0.98 0.96

250 500 0.2 5.08 4.92 4.48 3.98 3.82 3.72 3.30 3.32 3.18 3.00
0.4 5.14 5.32 4.16 4.10 3.80 3.78 3.34 2.96 3.12 2.74
0.5 4.46 4.48 4.16 4.22 3.94 3.86 3.62 3.50 2.68 2.72
0.6 4.54 4.44 4.00 3.78 4.22 3.52 3.66 3.60 2.40 2.40
0.8 3.08 3.14 3.34 3.08 3.28 3.20 2.56 2.50 1.52 1.36

500 500 0.2 4.72 4.82 4.52 4.44 4.82 4.04 3.68 3.80 3.34 3.18
0.4 4.54 4.44 4.38 4.42 4.10 4.12 4.34 4.02 2.90 2.46
0.5 4.56 4.40 4.76 4.06 3.64 3.08 3.94 3.92 2.94 2.64
0.6 4.54 4.18 4.62 4.46 3.64 3.56 3.14 3.08 3.04 3.28
0.8 3.54 3.52 3.46 3.44 2.98 2.92 2.86 2.78 2.06 2.04

Five-group sequential design (J=5)
50 50 0.2 4.26 3.22 3.84 2.40 3.00 1.28 1.20 0.96 0.36 0.30

0.4 3.86 2.44 2.92 2.12 2.14 1.46 1.08 0.72 0.24 0.16
0.5 3.02 1.80 2.36 1.68 1.62 0.96 0.50 0.48 0.20 0.18
0.6 1.68 1.58 1.58 0.90 1.10 0.70 0.42 0.38 0.06 0.06
0.8 0.38 0.32 0.24 0.22 0.16 0.08 0.06 0.02 0.02 0.02

250 250 0.2 4.30 4.16 4.92 4.06 3.94 3.52 3.36 2.88 1.90 1.60
0.4 4.72 3.90 4.28 4.20 3.66 3.56 2.54 2.10 1.78 1.50
0.5 3.28 3.40 3.74 3.36 3.42 3.16 2.78 2.42 1.34 1.24
0.6 4.04 3.68 4.20 3.04 3.04 2.92 2.32 2.34 1.18 1.22
0.8 2.30 1.98 1.88 1.80 1.72 1.42 1.00 1.16 0.60 0.60

250 500 0.2 5.04 4.06 4.24 3.82 4.50 3.48 3.34 3.36 2.34 1.86
0.4 4.58 3.78 0.045 4.14 4.28 3.14 3.42 3.34 2.44 2.10
0.5 4.36 3.82 3.96 4.06 3.22 3.22 3.50 2.90 2.26 2.10
0.6 4.04 4.36 4.16 3.54 3.28 3.04 2.68 2.82 1.88 1.46
0.8 2.58 2.50 2.38 2.18 2.06 2.20 1.14 1.18 0.72 0.64

500 500 0.2 5.50 4.90 4.62 3.88 5.02 4.26 3.80 3.20 2.32 2.12
0.4 4.28 4.86 4.50 4.88 3.78 3.52 3.72 3.24 2.42 2.32
0.5 4.96 4.32 4.60 3.84 3.58 3.76 3.32 2.70 2.44 2.10
0.6 4.34 4.44 4.24 3.74 3.52 3.52 3.16 2.90 2.26 2.26
0.8 3.10 3.08 3.24 3.18 2.98 2.40 1.90 1.90 1.28 1.00
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Figure 3.2: PPV indexed by FPR, type I error rates plot using the O'Brien-Fleming GSD
with � = 0:05, J = 5

3.4 Discussion

In this chapter, we have derived asymptotic properties of the sequential di�erences of two

empirical PPV or NPV curves at the process level. We have studied both cases of indexed

by FPR or indexed by percentile value. We then used these results to develop distribution

theory for the sequential di�erence of two empirical PPV or NPV curves at a FPR or

percentile value. Our approach not only enables us to investigate the di�erence of two

correlated PPV/NPV curves, but also enables us to investigate the joint behavior of multiple

points of two correlated ROC curves' di�erences. Based on this, standard GSD software

can be readily applied to design group sequential comparative diagnostic tests studies for

correlated PPV and NPV.

Based on the theorems developed, we conducted a simulation study to assess the �-

nite sample properties of the results in Theorem 3.6. The simulation study veri�ed the

asymptotic variance-covariance matrix by comparing the theoretical covariance matrix to
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the observed covariance matrix from the simulated data. We veri�ed that they match

each other closely when sample size n is su�ciently large. We also conducted simulation

studies on correlated PPV curves. With � level set to 0.05, the test Type I error rate is

approximately 0.05 and tend to be closer to the number as we increase the sample sizes.
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Chapter 4: Group Sequential Method for Comparing

Clustered ROC Curves

4.1 Introduction

We de�ne the clustered ROC sequential empirical process in the following. First, the em-

pirical distribution function de�ned in the clustered case based on proportion of subjects

as

F̂[nt](x) =
1

M[nt]

[nt]X
i=1

miX
j=1

I(Xij � x);

where t is the percentage of subjects accrued so far at this interim analysis point, and

M[nt] =
[nt]P
i=1

mi. For simplicity, M[nt] can be written as Mt, and F̂[nt](x) written as F̂t(x).

The sequential empirical process is de�ned as

M�1=2
n M[nt](F̂[nt](x)� F (x))

=

s
M[nt]

Mn

q
M[nt](F̂[nt](x)� F (x)):

With the assumption that as n ! 1, n�1
Pn

i=1mi ! � for some positive constant �,

we have that as n!1,

M[nt] ^M[ns]

Mn
! (t ^ s):
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4.2 Theoretical Results for Clustered ROC Vector

4.2.1 One Clustered ROC Result

In a diagnostic study with clustered data, suppose we have a total of n subjects in the

study. Within each subject i, we observe Xij ; j = 1; � � � ;mi, which are the measurements

from mi healthy units within subject i. We also observe Yij ; j = 1; � � � ; ni, which are

the measurements from ni diseased units within subject i, for i = 1; � � � ; n. We further

assume that the observations Xij ; j = 1; � � � ;mi follow the survival function S �D, and the

observations Yij ; j = 1; � � � ; ni follow the survival function SD.

It is reasonable to assume that measurements from di�erent subjects are independent

and measurements within the same subject are possibly correlated. There are correlations

within the same disease status group as well as between two groups within the same subject.

This kind of study will generate clustered ROC data, hence any statistical inference will

need to account for the within-subject correlations.

In a group sequential study scenario, we de�ne Mr =
P[nr]

i=1mi, M =
Pn

i=1mi, and

Nr =
P[nr]

i=1 ni, N =
Pn

i=1 ni, where r represents the percentage of subjects accrued so far

at this analysis point. And assume that as n!1, n�1
Pn

i=1mi ! �, and n�1
Pn

i=1 ni ! 

for some positive constants � and . The following theory is needed to establish the limiting

distribution of bR(t) at any �nite number of interim analysis points.

The proof of the univariate process convergence is presented in the following. First we

verify that the Theorems 1.51, 1.52 of Cs�org}o and Szyszkowicz (1998) are also valid for

clustered case. We need to prove that Dvoretzky-Kiefer-Wolfowitz inequality, which had

been proved for i.i.d case, is also valid for clustered data. We have the following lemma.

Lemma 4.1. For a clustered dataset, in which multiple samples can be collected from the

same subject, let mi be the number of samples collected from subject i and the total number

M =
Pn

i=1mi. Within each subject i, we observe Xij ; j = 1; � � � ;mi, which are the mi

observations within subject i and assume that they all follow the same distribution function
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F (x), then we have

Pfsup
x2R

1

M

�� nX
i=1

miX
j=1

(I(Xij � x)� F (x))
�� > �g � C exp(�2n�2);

i.e.

Pfsup
x2R

��F̂n(x)� F (x)
�� > �g � C exp(�2n�2);

for all � > 0 and n � 1.

Proof: By Dvoretzky-Kiefer-Wolfowitz Inequality, given any natural number n, let

X1; X2; � � � ; Xn be independent and identically distributed random variables with distri-

bution function F. Let ~Fn(x) be the associated empirical distribution function de�ned by

~Fn(x) =
1
n

Pn
i=1 I(Xi � x); for x 2 R. The inequality bounds the probability that the

random function ~Fn di�ers from F by more than a given constant � > 0 anywhere on the

real line. Speci�cally, by Dvoretzky et al. (1956), we know there is a constant C such that

Pfsup
x2R

p
nj ~Fn(x)� F (x)j > �g � C exp(�2�2) (4.1)

for all � > 0. By Massart (1990), the optimal choice of C is obtained by C=2, which is

Pfsup
x2R

p
nj ~Fn(x)� F (x)j > �g � 2 exp(�2�2); (4.2)

as well as

Pfsup
x2R

j ~Fn(x)� F (x)j > �g � 2 exp(�2n�2): (4.3)

We now prove that the Dvoretzky-Kiefer-Wolfowitz inequality also holds for the clustered

empirical process. i.e. (4.1), (4.2), (4.3) is also true for clustered estimator F̂n(x). We �rst
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consider a special case, mi � m, for i = 1; � � � ; n, then F̂n(x) = 1
mn

Pn
i=1

Pm
j=1 I(Xij � x).

sup
x2R

(F̂n(x)� F (x))

= sup
x2R

1

m

mX
j=1

(
1

n

nX
i=1

I(Xij � x)� F (x))

� 1

m

mX
j=1

sup
x2R

(
1

n

nX
i=1

I(Xij � x)� F (x)) (4.4)

Next, we consider the positive and negative parts separately, de�ne x+ = max(x; 0) and

x� = �min(x; 0). Both are non-negative and have that jxj = x+ + x�. For the positive

part, since supx2R(F̂n(x)� F (x))+ = supx2R(F̂n(x)� F (x)), hence

Pfsup
x2R

(F̂n(x)� F (x))+ > �g

=Pfsup
x2R

(F̂n(x)� F (x)) > �g

�Pf 1
m

mX
j=1

sup
x2R

(
1

n

nX
i=1

I(Xij � x)� F (x)) > �g;

by applying (4.4). Since the average of m values greater than � implies that at lease one

of them values should be greater than �, which can be easily proved by contradiction. Hence

Pf 1
m

mX
j=1

sup
x2R

(
1

n

nX
i=1

I(Xij � x)� F (x)) > �g

�Pf
[m

j=1
sup
x2R

(
1

n

nX
i=1

I(Xij � x)� F (x)) > �g

�
mX
j=1

Pfsup
x2R

(
1

n

nX
i=1

I(Xij � x)� F (x)) > �g
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�
mX
j=1

Pfsup
x2R

j 1
n

nX
i=1

I(Xij � x)� F (x)j > �g:

Note that each of the m elements consists of i:i:d: samples from n subjects, applying

Dvoretzky-Kiefer-Wolfowitz Inequality (4.3),

mX
j=1

Pfsup
x2R

j 1
n

nX
i=1

I(Xij � x)� F (x)j > �g

�m � c exp(�2n�2)

=c exp(�2n�2):

Note that sup
x2R

( 1n
Pn

i=1 I(Xij � x)� F (x)), for j = 1; � � � ;m, are identically distributed.

Similarly, we have

Pfsup
x2R

(F̂n(x)� F (x))� > �g

=Pfsup
x2R

(F (x)� F̂n(x)) > �g

�c exp(�2n�2):

Hence combining the two results,

P

�
sup
x2R

���F̂n(x)� F (x)
��� > �

�

�P
�
sup
x2R

(F̂n(x)� F (x))+ > �

�
+ P

�
sup
x2R

(F̂n(x)� F (x))� > �

�

�C exp(�2n�2):

For general cases that mi are not constant, let m = max(mi). For i = 1; � � � ; n, j =
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1; � � � ;m, de�ne Oij = 1 if jth value is observed for subject i, otherwise Oij = 0. Here we

assume the missing indicator variable is independent ofXi for i = 1; � � � ; n, that is we assume

missing completely at random (MCAR). Then F̂n(x) =
1
M

Pn
i=1

Pm
j=1 I(Xij � x;Oij = 1),

where M =
Pn

i=1

Pm
j=1 I(Oij = 1). Following the previous steps, we can come to the same

conclusion.

Hence (4.2), (4.3) are also true for clustered empirical process. We summarize the

conclusion in Lemma 4.1.

In a sequential test setting, we have the next lemma.

Lemma 4.2. With the same cluster setting as in Lemma 4.1, but in sequential test scenario

with t represents the percentage of subjects accrued so far at current analysis point, and

M[nt] =
P[nt]

i=1mi, M =
Pn

i=1mi,

Pf sup
0�t�1

sup
x2R

M�1M[nt]jF̂[nt](x)� F (x)j > �g � Cn exp(�2n�2);

for all � > 0 and n � 1.

Proof:

Pf sup
0�t�1

sup
x2R

M�1M[nt]jF̂[nt](x)� F (x)j > �g

=Pf sup
0�t�1

sup
x2R

M�1
�� [nt]X
i=1

miX
j=1

(I(Xij � x)� F (x))
�� > �g;

where t changes the supremum only at certain values, hence we have

Pf sup
0�t�1

sup
x2R

M�1
�� [nt]X
i=1

miX
j=1

(I(Xij � x)� F (x))
�� > �g
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�Pfsup
x2R

M�1
�� nt1X
i=1

miX
j=1

(I(Xij � x)� F (x))
�� > �g

+ Pfsup
x2R

M�1
�� nt2X
i=1

miX
j=1

(I(Xij � x)� F (x))
�� > �g

� � �

+ Pfsup
x2R

M�1
�� nX
i=1

miX
j=1

(I(Xij � x)� F (x))
�� > �g;

where nt1 = 1; � � � ; ntk = k; � � � ; ntn = n, for k = 1; � � � ; n. In other words, tk = k=n, for

k = 1; � � � ; n. Of which, each of the n item has the following property derived by applying

Lemma 4.1,

Pfsup
x2R

M�1
�� ntkX
i=1

miX
j=1

(I(Xij � x)� F (x))
�� > �g

=Pfsup
x2R

M�1
[ntk]

�� ntkX
i=1

miX
j=1

(I(Xij � x)� F (x))
�� > �

M

M[ntk]
g

�C exp(�2ntk�2 M2

M2
[ntk]

)

�C exp(�2n�2):

Hence,

LHS � Cn exp(�2n�2);

which proved the lemma. �
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Applying Lemma 4.2 and summing up all items with n from 1 to 1,

1X
n=1

Pf sup
0�t�1

sup
x2R

M�1M[nt]jF̂[nt](x)� F (x)j > �g �
1X
n=1

Cn exp(�2n�2) <1; (4.5)

then apply Borel-Cantelli lemma, we have

Lemma 4.3. In clustered data setting and in sequential scenario with t represents the

percentage of subjects accrued so far at current analysis point, and M[nt] =
P[nt]

i=1mi, ,

M =
Pn

i=1mi,

sup
0�t�1

sup
x2R

M�1M[nt]jF̂[nt](x)� F (x)j a:s:��! 0;

which is the clustered version of Theorem(1.52) of Cs�org}o and Szyszkowicz (1998). And

Lemma 4.4. If F is continuous,

sup
0�t�1

sup
0�y�1

M�1M[nt]jF (F̂�1
[nt](y))� yj a:s:��! 0:

We need two additional lemmas which are presented in the following with proofs. We

start with the expression

sup
c�r�1

sup
a�t�b

jF (F̂�1
r (t))� tj

=
M

Mr
sup
c�r�1

sup
a�t�b

Mr

M
jF (F̂�1

r (t))� tj

� M

Mc
sup
c�r�1

sup
a�t�b

Mr

M
jF (F̂�1

r (t))� tj:

By Lemma 4.4, we know that

sup
c�r�1

sup
a�t�b

Mt

M
jF (F̂�1

r (t))� tj !a:s: 0;
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and M
Mc

! 1
c , therefore,

sup
c�r�1

sup
a�t�b

jF (F̂�1
r (t))� tj !a:s: 0: (4.6)

Furthermore, F�1(t) is continuous by the assumptions that distribution function F (x)

is continuous and strictly increasing, and hence is uniformly continuous on [a,b] by Heine-

Cantor theorem. Hence,

sup
c�r�1

sup
a�t�b

jF̂�1
r (t)� F�1(t)j !a:s: 0 : (4.7)

Due to continuity of F (x), S�1 = F�1(1� t), so (4.6),(4.7) also apply to S�1(t). Hence
we have

Lemma 4.5.

sup
c�r�1

sup
a�t�b

jS(Ŝ�1r (t))� tj !a:s: 0 ;

and

Lemma 4.6.

sup
c�r�1

sup
a�t�b

jŜ�1r (t)� S�1(t)j !a:s: 0 :

Lemma 4.7. With the same clustered setting as in Lemma 4.2. Let F̂n(t) be the empirical

distribution function based on the cluster correlated samples from subject 1; � � � ; n; and let

B1j(t); B2j(t); � � � be a sequence of independent Brownian bridges, for j = 1; � � � ;m. There

is a version of the sequence Bnj(t) such that

P

0@ sup
0�r�1

sup
t2R

��M[nr](F̂[nr](t)� F (t))�
[nr]X
i=1

miX
j=1

Bij(t)
�� > (C1 log n+ x) log n

1A < C2 exp(�C3x):

Proof: First, from Theorem 4 of Koml�os et al. (1975), we have the following. Let
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X1; X2; � � � be a sequence of i.i.d. random variables with the same distribution function

F (t). Let ~Fn(t) be the empirical distribution function based on the sample X1; X2; � � � ; Xn;

and let B1(t); B2(t); � � � be a sequence of independent Brownian bridges. There is a version

of the sequence Bn(t) such that

P

0@ sup
0�r�1

sup
t2R

��[nr]( ~F[nr](t)� F (t))�
[nr]X
i=1

Bi(t)
�� > (C1 log n+ x) log n

1A < C2 exp(�C3x);

(4.8)

for all x > 0, where C1; C2 and C3 are positive constants.

Hence if mi � m, then for each jth measurement of all subjects, we have by applying

(4.8) for j = 1; � � � ;m,

P

0@ sup
0�r�1

sup
t2R

��[nr]( [nr]X
i=1

I(Xij � t)=[nr]� F (t))�
[nr]X
i=1

Bij(t)
�� > (C1 log n+ x) log n

1A
< C2 exp(�C3x) (4.9)

where B1j(t); B2j(t); � � � be a sequence of independent Brownian bridges, for j = 1; � � � ;m.

For the supremum item, we have

sup
0�r�1

sup
t2R

�
M[nr](F̂[nr](t)� F (t))�

[nr]X
i=1

miX
j=1

Bij(t)
�

= sup
0�r�1

sup
t2R

�
m[nr](

1

m[nr]

[nr]X
i=1

mX
j=1

I(Xij � t)� F (t))�
[nr]X
i=1

mX
j=1

Bij(t)
�

= sup
0�r�1

sup
t2R

mX
j=1

�
[nr](

[nr]X
i=1

I(Xij � t)=[nr]� F (t))�
[nr]X
i=1

Bij(t)
�

�
mX
j=1

sup
0�r�1

sup
t2R

�
[nr](

[nr]X
i=1

I(Xij � t)=[nr]� F (t))�
[nr]X
i=1

Bij(t)
�
: (4.10)
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For the positive part, we have that

Pf sup
0�r�1

sup
t2R

�
M[nr](F̂[nr](t)� F (t))�

[nr]X
i=1

miX
j=1

Bij(t)
�+

> (C1 log n+ x) log ng

=Pf sup
0�r�1

sup
t2R

�
M[nr](F̂[nr](t)� F (t))�

[nr]X
i=1

miX
j=1

Bij(t)
�
> (C1 log n+ x) log ng;

then by (4.10) we know that

Pf sup
0�r�1

sup
t2R

�
M[nr](F̂[nr](t)� F (t))�

[nr]X
i=1

miX
j=1

Bij(t)
�
> (C1 log n+ x) log ng

�Pf
mX
j=1

sup
0�r�1

sup
t2R

�
[nr](

[nr]X
i=1

I(Xij � t)=[nr]� F (t))�
[nr]X
i=1

Bij(t)
�
> (C1 log n+ x) log ng

=Pf 1
m

mX
j=1

sup
0�r�1

sup
t2R

�
[nr](

[nr]X
i=1

I(Xij � t)=[nr]� F (t))�
[nr]X
i=1

Bij(t)
�
> (

C1

m
log n+

x

m
) log ng:

Since if the average of m values is greater than a constant, it implies that at least one of

the m values should be greater than the constant. Hence, the probability

Pf 1
m

mX
j=1

sup
0�r�1

sup
t2R

�
[nr](

[nr]X
i=1

I(Xij � t)=[nr]� F (t))�
[nr]X
i=1

Bij(t)
�
> (

C1

m
log n+

x

m
) log ng

�Pf
m[
j=1

sup
0�r�1

sup
t2R

�
[nr](

[nr]X
i=1

I(Xij � t)=[nr]� F (t))�
[nr]X
i=1

Bij(t)
�
> (

C1

m
log n+

x

m
) log ng

�
mX
j=1

Pf sup
0�r�1

sup
t2R

�
[nr](

[nr]X
i=1

I(Xij � t)=[nr]� F (t))�
[nr]X
i=1

Bij(t)
�
> (

C1

m
log n+

x

m
) log ng

�
mX
j=1

Pf sup
0�r�1

sup
t2R

��[nr]( [nr]X
i=1

I(Xij � t)=[nr]� F (t))�
[nr]X
i=1

Bij(t)
�� > (

C1

m
log n+

x

m
) log ng:
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Applying (4.9), we know the sum of the probabilities

mX
j=1

Pf sup
0�r�1

sup
t2R

��[nr]( [nr]X
i=1

I(Xij � t)=[nr]� F (t))�
[nr]X
i=1

Bij(t)
�� > (

C1

m
log n+

x

m
) log ng

�m � C2 exp(�C3
x

m
)

=C2 exp(�C3x):

Similarly, for the negative part we have

Pf sup
0�r�1

sup
t2R

�
M[nr](F̂[nr](t)� F (t))�

[nr]X
i=1

miX
j=1

Bij(t)
��

> (C1 log n+ x) log ng

=Pf sup
0�r�1

sup
t2R

� [nr]X
i=1

miX
j=1

Bij(t)�M[nr](F̂[nr](t)� F (t))
�
> (C1 log n+ x) log ng

�C2 exp(�C3x):

Hence combining both positive and negative parts,

Pf sup
0�r�1

sup
t2R

��M[nr](F̂[nr](t)� F (t))�
[nr]X
i=1

miX
j=1

Bij(t)
�� > (C1 log n+ x) log ng

=Pf sup
0�r�1

sup
t2R

�
M[nr](F̂[nr](t)� F (t))�

[nr]X
i=1

miX
j=1

Bij(t)
�+

> (C1 log n+ x) log ng

+ Pf sup
0�r�1

sup
t2R

�
M[nr](F̂[nr](t)� F (t))�

[nr]X
i=1

miX
j=1

Bij(t)
��

> (C1 log n+ x) log ng

�C2 exp(�C3x):

This proved the lemma. �
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By Lemma 4.7 and Borel-Cantelli lemma gives that with any � > 0,

lim sup
n!1

n1=2

(log n)2
sup

0�r�1
sup
t2R

��M�1=2M[nr](F̂[nr](t)�F (t))�M�1=2

[nr]X
i=1

mX
j=1

Bij(t)
�� � c+� a:s:

(4.11)

Theorem 4.1. With the same clustered setting as in Lemma 4.2, as n!1, we have

M�1=2M[nr](F̂[nr](t)� F (t))!d
~K(t; r);

where ~K process f ~K(t; r); t 2 R; 0 � r � 1g is a separable 2-time parameter real-valued

Gaussian process with ~K(t; 0) = 0, E ~K(t; r) = 0. And for all (ti; ri) 2 R� [0; 1]; i = 1; 2;

E ~K(t1; r1) ~K(t2; r2)

=(r1 ^ r2) � 1
n

nX
i=1

Cov

0@r n

M

miX
j=1

fI(Xij � t1)� F (t1)g;
r

n

M

miX
j=1

fI(Xij � t2)� F (t2)g
1A ;

n!1.

Proof: Because of the equation (4.11), also because that Bij(t) in (4.11) are Brownian

Bridges, andBij(t) andBi0j0(t) are independent for any i 6= i0, we haveM�1=2
P[nr]

i=1

Pm
j=1Bij(t)

converges in distribution to a Gaussian process ~K indexed by (t,r), which behaves like a

Brownian motion in r. �

From Theorem 4.1 we can derived the following properties of some special cases. If we

assume each subject has the same number of observations, i.e. mi � m, and observations

of every subject follow the same joint distribution with identical correlation coe�cient �

between observations, then the covariance formula stated in the theorem will be simpli�ed
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as

(r1 ^ r2)�
�
F (t1) ^ F (t2)� F (t1)F (t2)

+ (m� 1)�
p
F (t1)(1� F (t1))

p
F (t2)(1� F (t2))

�
:

Furthermore, if m = 1 or � = 0 it has Kiefer process variance-covariance structure

(r1 ^ r2) � (F (t1) ^ F (t2)� F (t1)F (t2)) :

With previously proved lemmas and theorem, now we look at one clustered ROC se-

quential empirical process as n!1. We have the following by adding and subtracting an

intermediate term,

N�1=2Nr( bRr(t)�R(t)) (4.12)

=N�1=2Nr(ŜD;r(Ŝ
�1
�D;r
(t)� SD(S

�1
�D
(t))))

=N�1=2Nr(ŜD;r(Ŝ
�1
�D;r
(t))� SD(Ŝ

�1
�D;r
(t)))

+N�1=2Nr(SD(Ŝ
�1
�D;r
(t))� SD(S

�1
�D
(t))):

For the one ROC sequential empirical expression in (4.12), �rst we know from Theorem

4.1 that

N�1=2Nr(ŜD;r(x)� SD(x))!d WSD(x; r):

where WSD is a 2-time parameter real-valued Gaussian process indexed by (x; r) as ~K

process de�ned in Theorem 4.1.

By letting x = S�1�D (t), we have:

N�1=2Nr(ŜD;r(S
�1
�D
(t))� SD(S

�1
�D
(t)))!d WSD(S

�1
�D
(t); r):
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This equation along with Lemma 4.6 and the uniform continuity of the Gaussian process,

we have:

N�1=2Nr(ŜD;r(Ŝ
�1
�D;r
(t))� T (Ŝ�1�D;r(t)))!d WSD(S

�1
�D
(t); r); (4.13)

which is the �rst term of (4.12). The second term of (4.12) can be transformed in the

following

N�1=2Nr(SD(Ŝ
�1
�D;r
(t))� SD(S

�1
�D
(t)))

=N�1=2Nr(SD(S
�1
�D
(S �D(Ŝ

�1
�D;r
(t))))� SD(S

�1
�D
(t)))

=
N�1=2Nr

M�1=2Mr

(SD(S
�1
�D
(S �D(Ŝ

�1
�D;r
(t))))� SD(S

�1
�D
(t)))

S �D(Ŝ
�1
�D;r
(t))� t

M�1=2Mr(S �D(Ŝ
�1
�D;r
(t))� t)

=
N�1=2Nr

M�1=2Mr

(SD(S
�1
�D
(S �D(Ŝ

�1
�D;r
(t))))� SD(S

�1
�D
(t)))

S �D(Ŝ
�1
�D;r
(t))� t

M�1=2Mr(S �D(Ŝ
�1
�D;r
(t))� Ŝ �D;r(Ŝ

�1
�D;r
(t)))

+
N�1=2Nr

M�1=2Mr

(SD(S
�1
�D
(S �D(Ŝ

�1
�D;r
(t))))� SD(S

�1
�D
(t)))

S �D(Ŝ
�1
�D;r
(t))� t

M�1=2Mr(Ŝ �D;r(Ŝ
�1
�D;r
(t))� t):

Applying Mean Value Theorem and the fact that

d(SD(S
�1
�D
(x)))

dx
=
S0D(S

�1
�D
(x))

S0�D(S
�1
�D
(x))

;

we know there exists a value S �D(
~S�1�D;r(t)) between S �D(Ŝ

�1
�D;r
(t)) and t that meets the following

condition. Note that S �D(
~S�1�D;r(t)) can be deemed as the c in the Mean Value Theorem stated
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in Chapter 2.

(SD(S
�1
�D
(S �D(Ŝ

�1
�D;r
(t))))� SD(S

�1
�D
(t)))

S �D(Ŝ
�1
�D;r
(t))� t

=
S0D(S

�1
�D
(S �D(

~S�1�D;r(t))))

S0�D(S
�1
�D
(S �D(

~S�1�D;r(t))))
: (4.14)

By Lemma 4.5, we have that S �D(Ŝ
�1
�D;r
(t))!a:s: t, uniformly for t 2 [a; b]; and r 2 [c; 1].

Hence, S �D(
~S�1�D;r(t)) !a:s: t, uniformly for t 2 [a; b]; rD 2 [c; 1]. Then using the uniform

continuity of
S0D(S�1

�D
(t))

S0�D(S�1
�D
(t))

, we have

sup
c�r�1

sup
a�t�b

�����S
0
D(S

�1
�D
(S �D(

~S�1�D;r(t))))

S0�D(S
�1
�D
(S �D(

~S�1�D;r(t))))
� S0D(S

�1
�D
(t))

S0�D(S
�1
�D
(t))

�����!a:s: 0;

by (4.14) it implies,

sup
c�r�1

sup
a�t�b

�����(SD(S
�1
�D
(S �D(Ŝ

�1
�D;r
(t))))� SD(S

�1
�D
(t)))

S �D(Ŝ
�1
�D;r
(t))� t

� S0D(S
�1
�D
(t))

S0�D(S
�1
�D
(t))

�����!a:s: 0: (4.15)

By de�nition of Ŝ �D;r; Ŝ
�1
�D;r
, we have for all r 2 [c; 1],

sup
a�t�b

jŜ �D;r(Ŝ
�1
�D;r
(t))� tj �a:s:

1

Mr
;

Therefore,

sup
c�r�1

sup
a�t�b

M�1=2MrjŜ �D;r(Ŝ
�1
�D;r
(t))� tj �a:s:

1

M1=2
;

Hence

sup
c�r�1

sup
a�t�b

M�1=2MrjŜ �D;r(Ŝ
�1
�D;r
(t))� tj !a:s: 0: (4.16)
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And from Lemma 4.6 and the uniform continuity of Gaussian process, we have

M�1=2Mr(S �D(Ŝ
�1
�D;r
(t))� Ŝ �D;r(Ŝ

�1
�D;r
(t)))!d WS �D

(S�1�D (t)); r): (4.17)

By (4.15),(4.16),(4.17), it is easy to see that

N�1=2Nr(SD(Ŝ
�1
�D;r
(t))� SD(S

�1
�D
(t)))!d (



�
)1=2 � S

0
D(S

�1
�D
(t))

S0�D(S
�1
�D
(t))

WS �D
(S�1�D (t); r): (4.18)

Applying (4.13) , (4.18) to (4.12) gives the result.

N�1=2Nr(ŜD;r(Ŝ
�1
�D;r
(t)� SD(S

�1
�D
(t))))

d�!WSD(S
�1
�D
(t); r) + (



�
)1=2 � S

0
D(S

�1
�D
(t))

S0�D(S
�1
�D
(t))

WS �D
(S�1�D (t); r); (4.19)

where WSD and WS �D
are Gaussian processes.

From (4.19) we have the following theorem.

Theorem 4.2. If S �D and SD are absolutely continuous survival function (with respect to

Lebesgue measure) with a strictly negative derivative functions S0�D and S0D on the real line.

For t1; t2; � � � ; tJ 2 (0; 1), r1; r2; � � � ; rJ 2 (0; 1], and a vector of arbitrary points on the

sequential empirical clustered ROC curve, (R̂r1(t1); R̂r2(t2); � � � ; R̂rJ (tJ))
T is approximately

multivariate normal

R̂rj (tj) � N(R(tj); V ar(R̂rj (tj)); j = 1; � � � ; J;

which has the variance-covariance structure as shown in (4.20), and has the property of

Cov(R̂ri(ti); R̂rj (tj)) = Cov(R̂rj (ti); R̂rj (tj)) for ri � rj.
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For simplicity, we de�ne the following notations

Cov(X; t1; X; t2)

, lim
n!1

n�1
nX
i=1

Cov

0@r n

M

miX
j=1

fI(Xij > t1)� S �D(t1)g;
r

n

M

miX
j=1

fI(Xij > t2)� S �D(t2)g
1A ;

which is the limit of within subject covariance between healthy unit measurements.

Cov(Y; t1; Y; t2)

, lim
n!1

n�1
nX
i=1

Cov

0@r n

N

niX
j=1

fI(Yij > t1)� SD(t1)g;
r
n

N

niX
j=1

fI(Yij > t2)� SD(t2)g
1A ;

which is the limit of within subject covariance between diseased unit measurements.

Cov(X; t1; Y; t2)

, lim
n!1

n�1
nX
i=1

Cov

0@r n

M

miX
j=1

fI(Xij > t1)� S �D(t1)g;
r
n

N

niX
j=1

fI(Yij > t2)� SD(t2)g
1A ;

which is the limit of within subject covariance between diseased unit measurements and

healthy unit measurements.

Based on the assumption that study subjects are independent, we get the covariance

equation,

Cov(R̂ri(ti); R̂rj (tj)) (4.20)

=
1

nrirj
(ri ^ rj)

�
Cov(Y; S�1�D (ti); Y; S

�1
�D
(tj))
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+


�
�
 
S
0

D(S
�1
�D
(ti))

S
0

�D
(S�1�D (ti))

! 
S
0

D(S
�1
�D
(tj))

S
0

�D
(S

�1

�D
(tj))

!
Cov(X;S�1�D (ti); X; S

�1
�D
(tj))

+ (


�
)1=2 �

 
S
0

D(S
�1
�D
(tj))

S
0

�D
(S�1�D (tj))

!
Cov(X;S�1�D (tj); Y; S

�1
�D
(ti))

+ (


�
)1=2 �

 
S
0

D(S
�1
�D
(ti))

S
0

�D
(S�1�D (ti))

!
Cov(X;S�1�D (ti); Y; S

�1
�D
(tj))

�
:

For a special case with ti = tj = t as we are often interested in a particular point t on

the sequential empirical ROC curvers, we have the following corollary.

Corollary 4.1. For t 2 (0; 1], and a vector of points on the sequential empirical clustered

ROC curve, (R̂r1(t); R̂r2(t); � � � ; R̂rJ (t))
T is approximately multivariate normal

R̂rj (t) � N(R(t); V ar(R̂rj (t)); j = 1; � � � ; J;

and has the variance-covariance structure as shown in (4.21).

Cov(R̂ri(t); R̂rj (t)) = V ar(R̂rj (t)) (4.21)

=
1

nrj

�
Cov(Y; S�1�D (t); Y; S�1�D (t))

+


�
�
 
S
0

D(S
�1
�D
(t))

S
0

�D
(S�1�D (t))

!2

Cov(X;S�1�D (t); X; S�1�D (t))

+ 2 � (
�
)1=2 �

 
S
0

D(S
�1
�D
(t))

S
0

�D
(S�1�D (t))

!
Cov(X;S�1�D (t); Y; S�1�D (t))

�
;

for ri � rj .

Proof: Immediate from Theorem 4.2. �

Corollary 4.2. For a special clustered dataset where mi � ni � 1, then for t1; t2; � � � ; tJ 2
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(0; 1), r1; r2; � � � ; rJ 2 (0; 1], and a vector of arbitrary points on the sequential empirical

clustered ROC curve, (R̂r1(t1); R̂r2(t2); � � � ; R̂rJ (tJ))
T is approximately multivariate normal

R̂rj (tj) � N(R(tj); V ar(R̂rj (tj)); j = 1; � � � ; J;

which has the variance-covariance structure as shown in (4.22), and also has the property

of Cov(R̂ri(ti); R̂rj (tj)) = Cov(R̂rj (ti); R̂rj (tj)) for ri � rj.

Cov(R̂ri(ti); R̂rj (tj)) (4.22)

=
1

nrirj
(ri ^ rj)

�
(R(ti) ^R(tj)�R(ti)R(tj))

+

 
S
0

D(S
�1
�D
(ti))

S
0

�D
(S�1�D (ti))

! 
S
0

D(S
�1
�D
(tj))

S
0

�D
(S

�1

�D
(tj))

!
(ti ^ tj � titj)

+

 
S
0

D(S
�1
�D
(tj))

S
0

�D
(S�1�D (tj))

!
(S �D;D(S

�1
�D
(tj); S

�1
�D
(ti))� tjR(ti))

+

 
S
0

D(S
�1
�D
(ti))

S
0

�D
(S�1�D (ti))

!
(S �D;D(S

�1
�D
(ti); S

�1
�D
(tj))� tiR(tj))

�
:

where S �D;D is the joint survival function on healthy and diseased unit measurements.

Proof: Immediate from Theorem 4.2. �

4.2.2 Comparison of Clustered ROCs

In a comparison study of clustered ROCs, we have a total of n subjects in the study. Within

each subject i, we observe X
(v)
ij ; j = 1; � � � ;m(v)

i , which are the measurements of vth marker

from m
(v)
i healthy units within subject i. And we observe Y

(v)
ij ; j = 1; � � � ; n(v)i , which are

the measurements of vth marker from n
(v)
i diseased units within subject i, i = 1; � � � ; n
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and v = 1; 2 representing di�erent biomarkers. We further assume that the observations

X
(v)
ij ; j = 1; � � � ;m(v)

i follow the survival function S
(v)
�D
, and the observations Y

(v)
ij ; j =

1; � � � ; n(v)i follow the survival function S
(v)
D .

And we assume that measurements from di�erent subjects are independent and mea-

sures within the same subject are possibly correlated. These will generate clustered ROC

data. In this setting, we allows for both between-biomarker and within-biomarker within-

subject correlations. Di�erent markers might have di�erent numbers of measurements per

disease/non-disease group per subject.

For simplicity, we de�ne M
(v)
r =

P[nr]
i=1m

(v)
i , M (v) =

Pn
i=1m

(v)
i , N

(v)
r =

P[nr]
i=1 n

(v)
i ,

N (v) =
Pn

i=1 n
(v)
i , where r represents the percentage of subjects accrued so far at this

analysis point. And assume that as n ! 1, n�1
Pn

i=1m
(v)
i ! �(v), and n�1

Pn
i=1 n

(v)
i !

(v) for some positive constants �(v) and (v), for v = 1; 2. The following theory is needed

to establish the limiting distribution of (dR(1)(t);dR(2)(t)) at �nite number of interim analysis

points.

0BBBBBBB@

M (1)�1=2
M

(1)
r1 (bS(1)�D;r1(t)� S

(1)
�D
(t))

M (2)�1=2
M

(2)
r2 (bS(2)�D;r2(t)� S

(2)
�D
(t))

N (1)�1=2
N

(1)
r3 (bS(1)D;r3

(t)� S
(1)
D (t))

N (2)�1=2
N

(2)
r4 (bS(2)D;r4

(t)� S
(2)
D (t))

1CCCCCCCA
(4.23)

=

0BBBBBBBBBBBBBBB@

r
M

(1)
r1

M(1) � [nr1]�1=2
[nr1]P
i=1

r
[nr1]

M
(1)
r1

m
(1)
iP

j=1
fI(X(1)

ij > t)� S
(1)
�D
(t)gr

M
(2)
r2

M(2) � [nr2]�1=2
[nr2]P
i=1

r
[nr2]

M
(2)
r2

m
(2)
iP

j=1
fI(X(2)

ij > t)� S
(2)
�D
(t)gr

N
(1)
r3

N(1) � [nr3]�1=2
[nr3]P
i=1

r
[nr3]

N
(1)
r3

n
(1)
iP

j=1
fI(Y (1)

ij > t)� S
(1)
D (t)gr

N
(2)
r4

N(2) � [nr4]�1=2
[nr4]P
i=1

r
[nr4]

N
(2)
r4

n
(2)
iP

j=1
fI(Y (2)

ij > t)� S
(2)
D (t)g

1CCCCCCCCCCCCCCCA
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Let

Vi(t) =

0BBBBBBBBBBBBBBB@

q
n

M(1)

m
(1)
iP

j=1
fI(X(1)

ij > t)� S
(1)
�D
(t)g

q
n

M(2)

m
(2)
iP

j=1
fI(X(2)

ij > t)� S
(2)
�D
(t)g

q
n

N(1)

n
(1)
iP

j=1
fI(Y (1)

ij > t)� S
(1)
D (t)g

q
n

N(2)

n
(2)
iP

j=1
fI(Y (2)

ij > t)� S
(2)
D (t)g

1CCCCCCCCCCCCCCCA
; i = 1; � � � ; n;

which are independent random vectors for i = 1; � � � ; n. Applying the Cramer-Wold device

and the Lyapunov central limit theorem, and the result of Cs�org}o and Szyszkowicz (1998)

for sequential empirical distribution processes, it can be show that (4.23)
d�! W(t; r) in

D(R� [0; 1])4, where

W(t; r) =

0BBBBBBBB@

W
S
(1)
�D

(t; r1)

W
S
(2)
�D

(t; r2)

W
S
(1)
D

(t; r3)

W
S
(2)
D

(t; r4)

1CCCCCCCCA
(4.24)

is a mean-zero Gaussian process in D(R� [0; 1])4, whose variance-covariance function is as

following. The scalar part is

0BBBBBBB@

r1 r1 ^ r2 r1 ^ r3 r1 ^ r4
r2 ^ r1 r2 r2 ^ r3 r2 ^ r4
r3 ^ r1 r3 ^ r2 r3 r3 ^ r4
r4 ^ r1 r4 ^ r2 r4 ^ r3 r4

1CCCCCCCA
;
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and the covariance part, a 4� 4 matrix, is the limit of

1

n

nX
i=1

Cov(Vi(t); Vi(t)) as n!1:

Each component of the vector is a marginal mean-zero Gaussian process. TakeW
S
(1)
�D

(t; r)

as an example, at any two index (t1; r1) and (t2; r2) of this process, its covariance is the

limit of

(r1^r2)� 1
n

nX
i=1

Cov

0B@r n

M (1)

m
(1)
iX

j=1

fI(X(1)
ij > t1)� S

(1)
�D
(t1)g;

r
n

M (1)

m
(1)
iX

j=1

fI(X(1)
ij > t2)� S

(1)
�D
(t2)g

1CA

as n!1.

If assume each subject has the same number of observations, i.e. m
(1)
i � m, and observa-

tions of every subject follow the same joint distribution with identical correlation coe�cient

� between observations, then the aforementioned formula will be simpli�ed as

(r1 ^ r2)�
�
S
(1)
�D
(t1) ^ S(1)�D (t2)� S

(1)
�D
(t1)S

(1)
�D
(t2)

+ (m� 1)�

q
S
(1)
�D
(t1)(1� S

(1)
�D
(t1))

q
S
(1)
�D
(t2)(1� S

(1)
�D
(t2))

�
:

When m = 1 or � = 0 it has Kiefer process variance-covariance structure

(r1 ^ r2) �
�
S
(1)
�D
(t1) ^ S(1)�D (t2)� S

(1)
�D
(t1)S

(1)
�D
(t2)
�
:

We further assume that for v = 1; 2, S
(v)
�D

and S
(v)
D have derivatives S

(v)0

�D
and S

(v)0

D

respectively which are negative and continuous on [S
(v)�1

�D
(b) � �; S

(v)�1

�D
(a) + �], for some

0 < a < b < 1 and � > 0. Then as n ! 1, by (4.24), the compact di�erentiability of
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the inverse function and the functional delta method Theorem 3.9.4 of van der Vaart and

Wellner (1996),

0BBBBBBB@

M (1)�1=2
M

(1)
r (bS(1)�1

�D;r
(t)� S

(1)�1

�D
(t))

M (2)�1=2
M

(2)
r (bS(2)�1

�D;r
(t)� S

(2)�1

�D
(t))

N (1)�1=2
N

(1)
r (bS(1)D;r(t)� S

(1)
D (t))

N (2)�1=2
N

(2)
r (bS(2)D;r(t)� S

(2)
D (t))

1CCCCCCCA
d�!

0BBBBBBBBBBBB@

W
S
(1)
�D

(S
(1)�1

�D
(t);r)

S
(1)0

�D
(S

(1)�1

�D
(t))

W
S
(2)
�D

(S
(2)�1

�D
(t);r)

S
(2)0

�D
(S

(2)�1

�D
(t))

W
S
(1)
D

(t; r)

W
S
(2)
D

(t; r)

1CCCCCCCCCCCCA

inD([a; b]�[0; 1])�D([a; b]�[0; 1])�D([S(1)�1

�D
(b); S

(1)�1

�D
(a)]�[0; 1])�D([S(2)�1

�D
(b); S

(2)�1

�D
(a)]�

[0; 1]) as n!1. Furthermore,

0BBBBBBB@

N (1)�1=2
N

(1)
r (bS(1)�1

�D;r
(t)� S

(1)�1

�D
(t))

N (2)�1=2
N

(2)
r (bS(2)�1

�D;r
(t)� S

(2)�1

�D
(t))

N (1)�1=2
N

(1)
r (bS(1)D;r(t)� S

(1)
D (t))

N (2)�1=2
N

(2)
r (bS(2)D;r(t)� S

(2)
D (t))

1CCCCCCCA
d�!

0BBBBBBBBBBBB@

(
(1)

�(1)
)1=2 �

W
S
(1)
�D

(S
(1)�1

�D
(t);r)

S
(1)0

�D
(S

(1)�1

�D
(t))

(
(2)

�(2)
)1=2 �

W
S
(2)
�D

(S
(2)�1

�D
(t);r)

S
(2)0

�D
(S

(2)�1

�D
(t))

W
S
(1)
D

(t; r)

W
S
(2)
D

(t; r)

1CCCCCCCCCCCCA

Combining this result and Lemma 3.9.27 of van der Vaart and Wellner (1996) and the func-

tional delta method implies that,

0B@ N (1)�1=2
N

(1)
r (bS(1)D;r(

bS(1)�1

�D;r
(t))� S

(1)
D (S

(1)�1

�D
(t)))

N (2)�1=2
N

(2)
r (bS(2)D;r(

bS(2)�1

�D;r
(t))� S

(2)
D (S

(2)�1

�D
(t)))

1CA
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d�!

0BBBBBBBBB@

W
S
(1)
D

(S
(1)�1

�D
(t); r) + (

(1)

�(1)
)1=2 � S

(1)0

D (S
(1)�1

�D
(t))

S
(1)0

�D
(S

(1)�1

�D
(t))
W

S
(1)
�D

(S
(1)�1

�D
(t); r)

W
S
(2)
D

(S
(2)�1

�D
(t); r) + (

(2)

�(2)
)1=2 � S

(2)0

D (S
(2)�1

�D
(t))

S
(2)0

�D
(S

(2)�1

�D
(t))
W

S
(2)
�D

(S
(2)�1

�D
(t); r)

1CCCCCCCCCA

in D([a; b] � [0; 1])2. By expanding the vector to include two analysis points, r and r0, we

have

0BBBBBBB@

N (1)�1=2
N

(1)
r (bS(1)D;r(

bS(1)�1

�D;r
(t))� S

(1)
D (S

(1)�1

�D
(t)))

N (2)�1=2
N

(2)
r (bS(2)D;r(

bS(2)�1

�D;r
(t))� S

(2)
D (S

(2)�1

�D
(t)))

N (1)�1=2
N

(1)
r0 (

bS(1)D;r0(
bS(1)�1

�D;r0
(t))� S

(1)
D (S

(1)�1

�D
(t)))

N (2)�1=2
N

(2)
r0 (

bS(2)D;r0(
bS(2)�1

�D;r0
(t))� S

(2)
D (S

(2)�1

�D
(t)))

1CCCCCCCA
(4.25)

d�!

0BBBBBBBBBBBB@

W
S
(1)
D

(S
(1)�1

�D
(t); r) + (

(1)

�(1)
)1=2 � S

(1)0

D (S
(1)�1

�D
(t))

S
(1)0

�D
(S

(1)�1

�D
(t))
W

S
(1)
�D

(S
(1)�1

�D
(t); r)

W
S
(2)
D

(S
(2)�1

�D
(t); r) + (

(2)

�(2)
)1=2 � S

(2)0

D (S
(2)�1

�D
(t))

S
(2)0

�D
(S

(2)�1

�D
(t))
W

S
(2)
�D

(S
(2)�1

�D
(t); r)

W
S
(1)
D

(S
(1)�1

�D
(t); r0) + (

(1)

�(1)
)1=2 � S

(1)0

D (S
(1)�1

�D
(t))

S
(1)0

�D
(S

(1)�1

�D
(t))
W

S
(1)
�D

(S
(1)�1

�D
(t); r0)

W
S
(2)
D

(S
(2)�1

�D
(t); r0) + (

(2)

�(2)
)1=2 � S

(2)0

D (S
(2)�1

�D
(t))

S
(2)0

�D
(S

(2)�1

�D
(t))
W

S
(2)
�D

(S
(2)�1

�D
(t); r0)

1CCCCCCCCCCCCA

The proof of the marginal univariate process convergence is presented in Section 4.2.1.

To prove the convergence of the random vector, we will also need to prove the tightness of the

left-hand side of (4.25). By the Lemma 2.1 in Chapter 2, we can prove that the multivariate

stochastic process is tight from the fact that each marginal univariate stochastic process is

tight.

99



Through some modi�cation, we have

0BBBBBBB@

N (1)�1=2
N

(1)
r (bS(1)D;r(

bS(1)�1

�D;r
(t))� S

(1)
D (S

(1)�1

�D
(t)))

N (1)�1=2
N

(1)
r (bS(2)D;r(

bS(2)�1

�D;r
(t))� S

(2)
D (S

(2)�1

�D
(t)))

N (1)�1=2
N

(1)
r0 (

bS(1)D;r0(
bS(1)�1

�D;r0
(t))� S

(1)
D (S

(1)�1

�D
(t)))

N (1)�1=2
N

(1)
r0 (

bS(2)D;r0(
bS(2)�1

�D;r0
(t))� S

(2)
D (S

(2)�1

�D
(t)))

1CCCCCCCA
, V

d�!

0BBBBBBBBBBBB@

W
S
(1)
D

(S
(1)�1

�D
(t); r) + (

(1)

�(1)
)1=2 � S

(1)0

D (S
(1)�1

�D
(t))

S
(1)0

�D
(S

(1)�1

�D
(t))
W

S
(1)
�D

(S
(1)�1

�D
(t); r)

(
(1)

(2)
)1=2W

S
(2)
D

(S
(2)�1

�D
(t); r) + (

(1)

�(2)
)1=2 � S

(2)0

D (S
(2)�1

�D
(t))

S
(2)0

�D
(S

(2)�1

�D
(t))
W

S
(2)
�D

(S
(2)�1

�D
(t); r)

W
S
(1)
D

(S
(1)�1

�D
(t); r0) + (

(1)

�(1)
)1=2 � S

(1)0

D (S
(1)�1

�D
(t))

S
(1)0

�D
(S

(1)�1

�D
(t))
W

S
(1)
�D

(S
(1)�1

�D
(t); r0)

(
(1)

(2)
)1=2W

S
(2)
D

(S
(2)�1

�D
(t); r0) + (

(1)

�(2)
)1=2 � S

(2)0

D (S
(2)�1

�D
(t))

S
(2)0

�D
(S

(2)�1

�D
(t))
W

S
(2)
�D

(S
(2)�1

�D
(t); r0)

1CCCCCCCCCCCCA

Now we want to prove that Cov(�̂r(t); �̂r0(t)) = V ar(�̂r0(t)), for r � r0. We de�ne

Y ,

0B@ N (1)�1=2
N

(1)
r (�̂r(t)� �̂r(t))

N (1)�1=2
N

(1)
r0 (�̂r0(t)� �̂r0(t))

1CA

=

0B@ 1 �1 0 0

0 0 1 �1

1CAV :

The random vector V is asymptotically multivariate normal with covariance Cov(V),

or � = faijgi=1;��� ;4; j=1;��� ;4: Hence the random vector Y is asymptotically normal with

covariance matrix derived approximately in the following.

0B@ 1 �1 0 0

0 0 1 �1

1CA�

0BBBBBBB@

1 0

�1 0

0 1

0 �1

1CCCCCCCA
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=

0B@ a11 + a22 � 2a12 a13 + a24 � a14 � a23

a13 + a24 � a14 � a23 a33 + a44 � 2a34

1CA :

Then we have,

Cov(�̂r(t); �̂r0(t)) = N (1) 1

N
(1)
r

1

N
(1)
r0

(a13 + a24 � a14 � a23); (4.26)

and

V ar(�̂r0(t)) = N (1) 1

N
(1)
r0

1

N
(1)
r0

(a33 + a44 � 2a34): (4.27)

For simplicity, we de�ne the following notations for v1; v2 = 1; 2. For the limit of within

subject covariance between healthy unit measurements, whether of the same marker or not,

we de�ne

Cov(X(v1); t1; X
(v2); t2)

, lim
n!1

n�1
nX
i=1

Cov
�r n

M (v1)

m
(v1)
iX
j=1

fI(X(v1)
ij > t1)� S

(v1)
�D

(t1)g;

r
n

M (v2)

m
(v2)
iX
j=1

fI(X(v2)
ij > t2)� S

(v2)
�D

(t2)g
�
:

For the limit of within subject covariance between diseased unit measurements, whether

of the same marker or not, we de�ne

Cov(Y (v1); t1; Y
(v2); t2)

, lim
n!1

n�1
nX
i=1

Cov
�r n

N (v1)

n
(v1)
iX
j=1

fI(Y (v1)
ij > t1)� S

(v1)
D (t1)g;
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r
n

N (v2)

n
(v2)
iX
j=1

fI(Y (v2)
ij > t2)� S

(v2)
D (t2)g

�
:

For the limit of within subject covariance between diseased unit measurements and

healthy unit measurements, whether of the same marker or not, we de�ne

Cov(X(v1); t1; Y
(v2); t2)

, lim
n!1

n�1
nX
i=1

Cov
�r n

M (v1)

m
(v1)
iX
j=1

fI(X(v1)
ij > t1)� S

(v1)
�D

(t1)g;

r
n

N (v2)

n
(v2)
iX
j=1

fI(Y (v2)
ij > t2)� S

(v2)
D (t2)g

�
:

Expanding the (4.26), for each item in the equation we can derive the following based

on the assumption that study subjects are independent.

1

r
a13

=
1

r
(r ^ r0)

�
Cov(Y (1); S

(1)�1

�D
(t); Y (1); S

(1)�1

�D
(t))

+
(1)

�(1)
�
0@S(1)0D (S

(1)�1

�D
(t))

S
(1)0

�D
(S

(1)�1

�D
(t))

1A2

Cov(X(1); S
(1)�1

�D
(t); X(1); S

(1)�1

�D
(t))

+ 2 � (
(1)

�(1)
)1=2 �

0@S(1)0D (S
(1)�1

�D
(t))

S
(1)0

�D
(S

(1)�1

�D
(t))

1ACov(X(1); S
(1)�1

�D
(t); Y (1); S

(1)�1

�D
(t))

�
;
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1

r
a24

=
1

r
(r ^ r0)

�
(1)

(2)
Cov(Y (2); S

(2)�1

�D
(t); Y (2); S

(2)�1

�D
(t))

+
(1)

�(2)
�
0@S(2)0D (S

(2)�1

�D
(t))

S
(2)0

�D
(S

(2)�1

�D
(t))

1A2

Cov(X(2); S
(2)�1

�D
(t); X(2); S

(2)�1

�D
(t))

+ 2 � (1)( 1

(2)�(2)
)1=2 �

0@S(2)0D (S
(2)�1

�D
(t))

S
(2)0

�D
(S

(2)�1

�D
(t))

1ACov(X(2); S
(2)�1

�D
(t); Y (2); S

(2)�1

�D
(t))

�
;

1

r
a14

=
1

r
(r ^ r0)

�
(
(1)

�(2)
)1=2Cov(Y (1); S

(1)�1

�D
(t); Y (2); S

(2)�1

�D
(t))

+ (1)(
1

�(1)�(2)
)1=2 �

0@S(1)0D (S
(1)�1

�D
(t))

S
(1)0

�D
(S

(1)�1

�D
(t))

1A0@S(2)0D (S
(2)�1

�D
(t))

S
(2)0

�D
(S

(2)�1

�D
(t))

1ACov(X(1); S
(1)�1

�D
(t); X(2); S

(2)�1

�D
(t))
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(1)

�(2)
)1=2 �

0@S(2)0D (S
(2)�1

�D
(t))

S
(2)0

�D
(S

(2)�1

�D
(t))

1ACov(X(2); S
(2)�1

�D
(t); Y (1); S

(1)�1

�D
(t))

+ (1)(
1

�(1)(2)
)1=2 �

0@S(1)0D (S
(1)�1

�D
(t))

S
(1)0

�D
(S

(1)�1

�D
(t))

1ACov(X(1); S
(1)�1

�D
(t); Y (2); S

(2)�1

�D
(t))

�
;

and

1

r
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=
1

r
(r ^ r0)

�
(
(1)

�(2)
)1=2Cov(Y (1); S

(1)�1

�D
(t); Y (2); S

(2)�1

�D
(t))
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+ (1)(
1

�(1)�(2)
)1=2 �

0@S(1)0D (S
(1)�1

�D
(t))

S
(1)0

�D
(S

(1)�1

�D
(t))

1A0@S(2)0D (S
(2)�1

�D
(t))

S
(2)0

�D
(S

(2)�1

�D
(t))

1ACov(X(1); S
(1)�1

�D
(t); X(2); S

(2)�1

�D
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(1)
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0@S(2)0D (S
(2)�1

�D
(t))
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�D
(t))

1ACov(X(2); S
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(t); Y (1); S
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1ACov(X(1); S
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(t); Y (2); S

(2)�1

�D
(t))

�
:

And similarly for (4.27), we expand for each item in the equation in the following:

1
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a33
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r0
�
Cov(Y (1); S

(1)�1

�D
(t); Y (1); S

(1)�1
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(1)�1
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(1)�1
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1A2

Cov(X(1); S
(1)�1
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(t); X(1); S

(1)�1

�D
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�(1)
)1=2 �

0@S(1)0D (S
(1)�1
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(t))
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(t))

1ACov(X(1); S
(1)�1
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(1)�1

�D
(t))

�
;

1
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a44

=
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r0
r0
�
(1)

(2)
Cov(Y (2); S

(2)�1

�D
(t); Y (2); S

(2)�1

�D
(t))

+
(1)

�(2)
�
0@S(2)0D (S

(2)�1

�D
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S
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�D
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and

1
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�D
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�
:

Summing up the above expanded items, we then get (4.26) and prove that it equals

(4.27) as following.

Cov(�̂r(t); �̂r0(t)) (4.28)
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N
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1
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��

=N (1) 1

N
(1)
r0

1

N
(1)
r0

(a33 + a44 � 2a34)

=V ar(�̂r0(t)); for r � r0:

Hence, Cov(�̂r(t); �̂r0(t)) = V ar(�̂r0(t)), for r � r0. The variance / covariance formula

consists of ten components with each represents the correlation within diseased or non-

diseased group within the same marker, the correlation within diseased or non-diseased

group between markers, the correlation between diseased and non-diseased group within

the same marker, and the correlation between diseased and non-diseased group between

markers. All the above correlations are within the same subject, and data between subjects

are independent according the assumption.
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4.3 Simulation Studies

4.3.1 Consistency of Covariance Matrix Estimator

We conduct a simulation study to assess the �nite sample properties of the results in The-

orem 4.28. We generated the clustered measurements using a setting similar to Emir et al.

(2000). First, we generate X(1) = Y1

p
�+Y2

p
1� � and X(2) = Y1

p
�+Y3

p
1� �, where

Yi = (Yi1; � � � ; Yi;2m)T ; i = 1; 2; 3, are i.i.d. multivariate normal random vectors with mean

0 and cov(Yij ; Yik) = �jj�kj, for j; k = 1; � � � ; 2m. Here we assume m
(v)
i � n

(v)
i � m, for

i = 1; � � � ; n and v = 1; 2. For the covariance matrix simulation study, we let m = 4, and

randomly assign m values to be from diseased tissues, and the other m values to be from

nondiseased tissues. The values for subject i form marker v at location j is X
(v)
ij if the

location is \nondiseased", and is X
(v)
ij +1 if it is \diseased". Here, the � and � measure the

between-marker and within-marker correlations.

We conduct 5000 simulation with n = 400, and for the simulated data, we calculate

the variance-covariance of the �(t) at various proportions of r with t=0.5. Here, the

ROC curves are estimated with the empirical functions. Then we compare the simulated

covariance matrix to the theoretical covariance matrix derived using the results of Theorem

(4.28). The results are presented in Table 4.1, which illustrates that the observed variance-

covariance values are very close to the theoretical values when sample size is su�ciently

large.

4.3.2 Simulated Type I Error Rate in GSDs

To investigate �nite sample performance of the GSD procedure, we conduct a simulation

study in a two-group sequential test (J=2), and a �ve-group sequential test (J=5). The

data generating procedure is similar to the setting for the covariance simulation in Sec-

tion 4.3. The null hypothesis of equal ROC(t) is set to be true and the nominal type I

error rate was set to be � = 0:05 for two-sided tests. Two set of diagnostic test data
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Table 4.1: The values of elements (�10�4) in observed and theoretical clustered covariance
matrix

Observed covariance matrix Theoretical covariance matrix

n = 400

�0:2(0:5) 9.475 4.628 3.668 1.821 9.302 4.651 3.721 1.860
�0:4(0:5) 4.894 3.794 1.839 4.651 3.721 1.860
�0:5(0:5) 3.874 1.831 3.721 1.860
�1(0:5) 1.897 1.860

are simulated from the aforementioned model, and the ROC curves are identical. Various

combination of �; � and subject number n are considered in our simulation study, where

n = (50; 100; 250; 500), � = (0; 0:25; 0:5; 0:75), � = (0; 0:5; 0:75). The FPR points investi-

gated are t = (0:2; 0:4; 0:5; 0:6; 0:8).

For each simulation setting, 5000 random data sets are generated and the GSD method

applied to the simulated data. The Z statistics at each interim analysis point are then

calculated based on the empirical ROC di�erence and estimated variances. The GSD test

procedure compares the Z statistics with corresponding test boundaries of design, and the

decision of rejection or failing to rejection is obtained for each simulated dataset. Then

we can calculate the overall rejection rates for all simulated datasets. Table 4.2 gives the

rejection rates for all parameter and sample size combinations with a nominal � level 0.05

under the O'Brien and Fleming's criterion. And Table 4.3 is the results for the Pocock's

criterion. Furthermore, simulation results for lognormal data are presented in Table 4.4

and 4.5. Lognormal data has similar results as normal data due to invariance to monotone

transformation. All these tables show that the simulated Type I error rates are close to the

nominal rate and tend to be closer as the overall sample sizes increase. Note that this is

true for all � and � combinations and for all FPR points we analyze. The type I error rates

are also plotted in Figure 4.1 and Figure 4.2. In these �gures, the type I error rates are

plotted as bars showing their deviations from the nominal rate of 0.05 which is the vertical

line.
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Table 4.2: Type I error rates (�10�2) using the O'Brien-Fleming GSD with � = 0:05,
normal data

� = 0 � = 0:25 � = 0:5 � = 0:75
n t �=0 0.5 0.75 �=0 0.5 0.75 �=0 0.5 0.75 �=0 0.5 0.75

Two-group sequential design (J=2)
50 0.2 5.32 4.98 3.80 5.36 4.46 4.06 5.28 4.50 3.30 4.54 4.16 3.60

0.4 4.58 4.68 3.66 4.90 4.58 3.92 4.94 4.46 3.34 5.06 4.04 3.96
0.5 4.90 4.62 4.00 5.18 3.80 3.54 4.54 4.54 2.96 4.62 3.72 2.96
0.6 5.04 4.14 3.36 4.72 4.16 3.36 4.34 3.40 3.04 4.08 3.64 3.24
0.8 3.72 2.84 2.26 3.94 2.76 2.54 4.00 3.26 2.36 3.92 3.76 2.64

100 0.2 4.60 4.90 4.34 4.74 4.36 4.50 5.14 4.34 4.36 5.26 4.42 3.82
0.4 5.36 4.08 4.18 5.16 4.84 3.70 4.68 4.40 3.72 4.96 4.12 3.88
0.5 5.02 4.24 4.12 4.68 4.70 4.32 4.62 4.94 3.62 4.52 4.80 3.32
0.6 4.38 4.36 3.44 4.70 4.16 4.34 4.08 4.42 3.72 4.10 4.08 3.90
0.8 3.90 3.72 3.72 4.28 3.98 3.44 4.06 3.64 3.02 4.40 4.14 3.36

200 0.2 4.86 4.96 4.58 5.10 4.50 4.46 4.42 4.90 4.62 5.00 4.62 3.78
0.4 5.14 4.64 4.26 5.44 4.44 4.70 4.90 4.52 4.10 4.50 4.62 3.94
0.5 5.06 4.62 3.80 4.82 4.30 4.54 4.48 4.24 4.50 4.44 4.38 3.96
0.6 4.20 4.24 3.58 5.18 4.30 3.96 4.32 4.20 4.10 4.78 4.40 3.76
0.8 4.34 4.32 3.56 4.18 4.24 3.66 4.34 3.78 3.72 4.68 4.12 3.96

Five-group sequential design (J=5)
50 0.2 6.42 5.26 4.60 6.10 5.56 4.08 5.94 5.02 3.50 4.94 4.62 3.34

0.4 5.54 4.92 3.70 5.18 4.62 4.08 4.96 4.60 3.18 4.46 4.14 3.24
0.5 4.78 4.72 3.86 5.34 4.20 3.62 4.94 4.98 3.62 5.16 4.18 3.68
0.6 5.60 4.44 3.28 4.72 4.06 3.24 4.64 4.22 2.98 4.62 4.48 3.12
0.8 3.46 3.56 2.12 3.68 2.88 2.26 3.58 3.10 2.54 3.44 3.94 2.22

100 0.2 5.28 5.24 4.54 5.94 4.48 4.12 5.12 5.10 4.30 4.36 4.64 4.00
0.4 4.64 4.72 5.10 5.02 4.80 3.98 4.72 4.68 4.10 4.64 4.52 3.50
0.5 5.04 5.58 3.84 5.68 4.82 3.90 4.96 4.58 3.80 4.52 3.84 3.62
0.6 5.02 4.44 4.12 4.68 4.58 3.80 5.36 3.92 4.12 4.42 4.36 3.36
0.8 3.98 3.58 3.02 3.98 3.56 2.96 3.82 3.70 3.26 4.56 4.26 2.94

200 0.2 4.86 5.38 4.38 4.86 4.64 4.24 4.88 4.74 3.94 5.20 5.06 3.96
0.4 4.98 4.60 4.60 4.70 4.84 4.80 5.64 5.20 4.52 4.54 4.22 3.94
0.5 4.68 5.02 4.18 5.32 4.40 4.34 4.88 5.00 3.74 4.46 4.84 4.74
0.6 5.18 4.24 4.08 4.54 4.48 4.20 4.90 5.26 4.20 5.08 4.86 4.00
0.8 4.50 4.50 4.14 4.18 4.34 4.42 4.52 4.58 3.42 4.96 4.00 3.76
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Figure 4.1: Type I error rates plot using the O'Brien-Fleming GSD with � = 0:05,J = 2,
normal data

Figure 4.2: Type I error rates plot using the O'Brien-Fleming GSD with � = 0:05,J = 5,
normal data
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Table 4.3: Type I error rates (�10�2) using the Pocock GSD with � = 0:05, normal data

� = 0 � = 0:25 � = 0:5 � = 0:75
n t �=0 0.5 0.75 �=0 0.5 0.75 �=0 0.5 0.75 �=0 0.5 0.75

Two-group sequential design (J=2)
50 0.2 5.46 5.14 3.78 5.18 4.50 3.64 5.38 4.86 3.46 4.56 4.14 2.92

0.4 5.38 4.68 4.02 5.50 4.66 3.38 4.82 4.00 3.22 4.64 3.62 3.10
0.5 5.30 4.52 3.54 4.80 4.76 3.44 4.68 3.74 3.14 4.82 3.92 3.06
0.6 4.82 4.70 3.32 5.20 4.24 3.10 4.48 4.28 3.00 4.08 4.50 3.08
0.8 2.82 2.42 1.68 3.22 2.32 1.58 2.96 2.84 1.76 3.42 2.60 1.98

100 0.2 5.42 4.58 3.64 5.40 4.24 4.14 5.20 4.52 4.22 4.34 4.00 3.18
0.4 5.08 4.20 4.36 5.02 4.72 4.02 4.70 3.92 3.52 4.14 4.14 3.70
0.5 5.08 4.18 3.90 4.80 3.94 3.26 5.14 4.22 3.32 4.56 4.24 3.56
0.6 4.76 4.42 3.74 4.56 3.96 3.20 4.06 4.60 3.62 5.20 4.42 3.64
0.8 3.26 3.28 2.50 3.96 3.54 2.54 3.70 3.72 2.84 3.94 3.38 2.92

200 0.2 5.22 4.70 3.88 5.36 4.80 3.96 5.02 4.44 3.98 4.26 4.92 3.76
0.4 5.16 4.84 3.92 5.20 5.20 3.88 4.64 4.52 3.94 4.90 4.02 4.22
0.5 5.28 4.96 3.84 5.04 4.84 3.82 4.64 4.22 3.64 5.10 4.40 3.88
0.6 4.80 4.74 3.96 5.10 4.32 4.04 4.62 4.56 4.06 4.70 3.70 3.90
0.8 4.36 3.82 3.72 4.16 3.72 3.50 4.34 3.18 3.40 4.10 4.88 3.40

Five-group sequential design (J=5)
50 0.2 7.90 6.02 4.58 7.40 6.14 3.96 6.94 5.26 3.92 5.64 4.38 2.90

0.4 7.00 5.60 3.90 6.62 4.90 3.40 5.58 4.56 2.98 5.64 3.96 2.98
0.5 5.56 4.68 3.28 6.38 4.92 3.08 6.00 4.32 2.42 5.22 4.72 2.72
0.6 5.34 4.30 3.14 4.92 3.84 2.90 5.20 3.58 2.44 5.64 3.86 2.50
0.8 2.26 1.26 1.14 2.38 1.70 0.76 2.64 2.10 1.26 3.10 2.58 1.32

100 0.2 6.44 5.68 4.18 5.90 4.66 3.86 5.22 4.58 3.62 4.92 4.00 2.84
0.4 5.70 5.58 4.06 5.98 5.56 4.06 5.66 4.82 3.62 4.98 3.60 2.98
0.5 5.40 4.28 4.04 5.20 4.42 3.68 4.48 4.44 3.02 4.76 4.00 2.94
0.6 4.80 4.32 3.08 5.20 4.10 3.58 4.88 3.84 2.66 4.78 4.26 3.54
0.8 3.16 2.56 1.64 3.04 2.64 1.74 3.18 2.60 1.78 3.76 2.54 2.10

200 0.2 5.88 5.56 5.00 5.88 4.86 4.20 5.92 4.78 4.06 4.78 4.82 3.64
0.4 5.40 4.98 4.52 5.30 5.12 3.76 5.08 4.36 3.74 4.78 4.18 3.50
0.5 5.50 4.50 4.08 4.50 4.44 3.90 5.10 4.62 3.80 4.26 4.46 3.34
0.6 5.34 4.38 3.78 4.78 4.24 3.52 5.10 4.24 3.88 4.20 4.18 3.26
0.8 3.60 3.08 2.80 4.14 3.20 3.02 4.22 3.52 2.36 3.76 3.26 2.50

111



Table 4.4: Type I error rates (�10�2) using the O'Brien-Fleming GSD with � = 0:05,
lognormal data

� = 0 � = 0:25 � = 0:5 � = 0:75
n t �=0 0.5 0.75 �=0 0.5 0.75 �=0 0.5 0.75 �=0 0.5 0.75

Two-group sequential design (J=2)
50 0.2 5.76 5.10 3.66 5.62 4.88 3.84 5.36 4.68 3.92 4.72 3.78 3.34

0.4 5.02 4.46 3.62 5.72 4.38 3.60 5.18 4.34 3.50 4.10 4.20 3.46
0.5 5.68 4.12 3.54 4.66 4.04 3.60 4.70 3.88 3.38 4.74 4.60 3.48
0.6 5.06 4.08 3.12 4.74 4.22 2.88 4.68 3.76 2.70 4.28 4.14 3.00
0.8 3.88 3.48 2.42 3.70 3.04 2.12 3.82 2.68 2.62 3.76 3.52 2.38

100 0.2 5.74 4.84 4.30 5.00 4.82 3.86 4.32 4.76 4.02 4.82 4.64 4.08
0.4 4.56 4.42 4.04 4.90 4.34 3.98 4.90 4.56 3.86 4.30 4.26 3.82
0.5 4.82 4.66 3.84 4.54 4.74 4.30 5.16 4.70 3.92 4.42 3.82 3.58
0.6 4.74 4.08 4.24 4.48 4.10 4.24 4.30 4.42 3.90 4.40 4.48 3.46
0.8 4.10 3.36 3.50 4.00 3.12 3.66 4.04 3.36 3.02 3.84 3.74 3.46

200 0.2 5.20 5.04 4.34 4.78 5.00 3.76 4.84 4.50 3.88 4.36 4.40 3.84
0.4 4.96 5.24 4.22 4.90 4.90 4.22 4.64 4.94 3.78 4.46 4.26 4.26
0.5 5.36 4.68 4.88 4.88 4.78 4.26 5.10 4.16 3.86 4.40 3.92 4.12
0.6 4.92 4.68 4.38 4.44 4.08 4.18 4.84 4.06 4.26 5.00 4.48 4.36
0.8 4.06 3.78 4.18 4.00 4.10 4.10 4.38 3.84 3.06 4.68 4.34 3.78

Five-group sequential design (J=5)
50 0.2 5.66 5.16 3.76 5.32 5.06 3.70 5.24 4.66 3.78 4.86 4.28 3.76

0.4 5.80 4.64 4.10 5.68 4.10 3.48 4.96 4.86 3.74 4.86 4.62 3.18
0.5 5.20 5.22 3.72 5.14 4.68 3.70 5.42 4.36 3.56 4.82 4.14 3.62
0.6 5.08 4.82 4.00 4.50 4.50 3.46 4.22 4.16 3.32 4.66 3.98 3.08
0.8 3.76 3.24 2.18 4.00 2.72 2.28 3.22 2.72 2.70 3.86 3.42 1.94

100 0.2 5.26 4.92 3.96 5.40 4.92 3.90 5.32 4.68 3.96 5.34 4.12 3.82
0.4 5.80 4.88 4.14 5.08 4.46 3.80 4.74 4.20 3.94 4.40 4.82 2.92
0.5 4.82 4.72 4.36 5.38 5.12 3.72 4.52 4.44 3.72 4.88 3.98 3.60
0.6 4.52 4.88 3.88 5.06 4.58 4.28 4.46 4.48 3.72 4.62 4.14 3.36
0.8 3.98 3.46 3.14 3.68 3.72 3.34 3.80 3.38 3.48 4.72 3.50 3.60

200 0.2 5.32 5.64 4.58 4.70 4.60 3.94 4.66 4.34 4.06 4.70 4.88 3.86
0.4 5.34 4.02 4.88 5.14 4.46 4.74 4.40 4.66 4.40 4.38 4.56 4.24
0.5 5.48 4.28 4.14 5.26 5.02 4.70 4.86 4.16 4.02 4.80 4.54 4.00
0.6 4.74 5.00 4.66 5.26 4.22 4.44 4.62 4.30 3.84 5.12 4.28 4.02
0.8 4.82 4.44 3.54 3.90 3.70 3.42 4.70 4.26 3.32 4.28 4.74 3.82
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Table 4.5: Type I error rates (�10�2) using the Pocock GSD with � = 0:05, lognormal data

� = 0 � = 0:25 � = 0:5 � = 0:75
n t �=0 0.5 0.75 �=0 0.5 0.75 �=0 0.5 0.75 �=0 0.5 0.75

Two-group sequential design (J=2)
50 0.2 5.94 4.90 3.48 6.94 4.64 4.00 4.98 4.32 3.56 5.22 3.78 3.00

0.4 6.14 4.76 3.48 5.68 4.66 3.38 4.74 4.08 3.32 4.64 3.92 3.54
0.5 5.08 4.68 3.74 4.72 4.18 3.76 4.94 4.18 2.86 4.86 3.56 2.90
0.6 4.68 3.92 2.94 4.42 4.30 2.78 4.88 3.86 3.00 4.40 3.52 2.54
0.8 2.84 2.22 1.38 3.04 2.64 1.68 2.66 2.42 1.44 3.50 2.54 1.48

100 0.2 5.42 4.58 3.56 5.88 4.92 4.22 4.84 4.58 3.56 4.56 3.74 3.34
0.4 5.10 4.72 3.78 4.98 4.14 4.08 5.04 4.34 3.80 4.86 4.62 3.42
0.5 4.92 3.94 3.76 4.42 4.40 3.90 4.20 4.40 3.68 4.38 4.48 3.18
0.6 4.80 4.00 3.78 4.32 4.38 3.22 4.50 3.68 3.30 4.46 4.20 2.98
0.8 4.30 3.08 2.26 4.06 3.26 2.78 3.72 3.30 2.86 4.26 3.16 2.58

200 0.2 4.74 5.18 4.20 5.00 5.00 3.86 4.30 5.08 4.34 4.40 4.40 3.74
0.4 4.78 4.68 3.88 4.64 4.16 4.26 5.56 4.58 4.32 4.48 4.56 3.64
0.5 4.84 4.36 4.86 4.72 4.68 4.22 4.84 4.30 3.68 4.18 4.78 3.36
0.6 5.32 4.06 3.50 5.02 4.98 3.64 4.62 4.40 3.76 4.70 4.32 3.74
0.8 4.08 3.96 3.18 3.78 3.88 3.26 3.84 4.08 2.78 4.52 3.88 3.54

Five-group sequential design (J=5)
50 0.2 8.38 6.22 4.50 7.90 5.84 3.76 6.74 5.04 3.56 5.48 4.44 3.00

0.4 7.06 5.68 3.92 6.86 4.98 3.04 6.02 4.42 2.86 5.76 4.08 2.82
0.5 6.08 4.78 3.44 5.46 4.44 2.84 5.18 4.06 2.82 5.02 4.16 2.44
0.6 5.24 4.20 2.84 5.98 3.80 2.58 4.78 3.66 2.24 4.96 3.48 2.56
0.8 2.42 2.18 0.94 2.16 1.64 1.02 2.46 2.12 0.86 3.02 2.08 1.50

100 0.2 6.88 5.76 4.46 5.60 5.34 3.96 5.48 4.32 3.26 5.20 4.84 3.28
0.4 6.20 5.36 3.78 5.68 4.80 4.00 5.40 4.46 3.66 4.60 4.78 2.96
0.5 5.68 4.78 3.94 5.74 4.80 3.14 5.04 3.82 3.06 4.60 4.36 3.02
0.6 4.76 4.50 3.48 4.38 4.38 2.94 4.76 3.82 3.36 4.56 3.66 2.94
0.8 3.52 2.50 2.20 3.14 2.26 2.22 3.50 2.92 1.70 3.28 2.92 2.28

200 0.2 5.60 5.16 4.32 5.16 4.36 4.56 5.08 4.30 4.00 4.56 4.24 3.44
0.4 5.94 5.00 4.62 5.10 4.76 4.24 5.00 4.72 3.52 5.36 4.42 3.66
0.5 5.36 4.72 4.40 5.04 4.06 4.12 5.16 4.08 4.18 4.82 4.32 3.60
0.6 5.18 3.90 4.02 5.28 4.00 3.46 4.94 4.28 3.30 4.98 4.22 3.00
0.8 3.94 3.08 2.64 3.76 3.34 2.94 4.02 3.48 2.98 4.26 3.40 2.62
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4.3.3 Expected Sample Size in GSDs

Furthermore, we conduct simulation studies on two clustered ROC curves that are not

equal at certain FPR under investigation. While maintain the � level and speci�c power

requirement, we show that the expected sample size with GSD is less than the one with

�xed sample size design. Given two clustered ROC curves, with pre-speci�ed � and speci�c

power requirement, using the following formula, we can determine the sample size for a

�xed sample study, for a two-sided test:

n � (��1(1� �=2) + ��1(1� �))2
�2

�2
;

where � is the di�erence of two ROC curves at FPR t0 and �2 can be estimated using

the simulation method. Let � = 0:05, power (1 � �) = 90% or 80%, using similar data

generating setting as previous, we try three di�erent scenarios where the value increase for

diseased units varies. In the following result tables, we use abbreviation \OF" for O'Brien-

Fleming method and \LogN" for lognormal datasets.

We apply the method on three cases in comparing two clustered ROC curves. As show

in Figure 4.3-4.5, case I has the biggest di�erence between two investigational ROC curves,

while case III has the smallest di�erence.

The simulation results in Tables 4.6 - 4.20 illustrate several points. The simulated pow-

ers are close to the expected values, 80% or 90%, where the sample sizes are determined

to achieve the pre-speci�ed power requirement. In each case we �nd that the power goals

are closely met for both O'Brien-Fleming and Pocock methods with di�erent number of

interim looks and also for di�erent �, � combinations and at di�erent FPR. Lognormal and

normal data yield similar result as we know that ROC is invariant to monotone transfor-

mation. Inspection of Tables 4.18 4.20 reveals that the �xed sample design sample sizes for

di�erent FPR vary substantially due to the di�erence in variance and � at di�erent FPR.

Consequently, the GSD design sizes and GSD expected sample sizes vary substantially at
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di�erent FPR. This is the case for both OBrien-Fleming and Pocock GSD methods. Fur-

thermore, Pocock method tend to have larger GSD design size and smaller expected sample

size compared to OBrien-Fleming method.

We give detailed steps for a GSD study using an example in the following, which explains

GSD design maximum sample size determination with speci�c power requirement, as well

as the calculations of the expected GSD sample size and actual achieved power through

simulation. Case I given the setting with � = 0:5, � = 0:5, FPR = 0:5 and 90% power

requirement for the prede�ned value increase for diseased units. In this case where � =

0:0614, we determine that sample size need to be 227.84 for a �xed sample study. All �xed

sample design sample size requirements for this case are shown in Table 4.18. Then with the

ratios provided in Jennison and Turnbull (2000), where with O'Brien-Fleming method, for

J=2 the ratio is 1.007; for J=5 the ratio is 1.026. With Pocock method, for J=2 the ratio is

1.1; for J=5 the ratio is 1.207. Multiply the �xed sample size with the corresponding ratio,

we know to maintain the � and power level, for a group sequential study assuming equal

group sizes, the maximum sample sizes needed are: with O'Brien-Fleming method, for J=2

the sample size is 230; for J=5 the sample size is 234. With Pocock method, for J=2 the

sample size is 251; for J=5 the sample size is 276. The following simulation results (Table

4.6, 4.7, 4.12, 4.15), shows that the expected sample sizes of GSDs are less than the �xed

sample size (228), while still meet the �(0:05) and power requirements.

With the same setting except the power requirement set to 80%, we determine that

sample size need to be 170.19 for a �xed sample study (Table 4.18). Then with the ratios

provided in Jennison and Turnbull (2000), where with O'Brien-Fleming method, for J=2

the ratio is 1.008; for J=5 the ratio is 1.028. With Pocock method, for J=2 the ratio is

1.11; for J=5 the ratio is 1.229. Similarly, we calculated the sample sizes needed for group

sequential studies assuming equal interim group sizes. With O'Brien-Fleming method, for

J=2 the sample size is 172; for J=5 the sample size is 175. With Pocock method, for J=2

the sample size is 189; for J=5 the sample size is 210. The simulation results (Table 4.6,

4.7, 4.12, 4.15) shows that the expected sample sizes of GSDs are less than the �xed sample
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size (171), while still meet the �(0:05) and power (80%) requirements.

Similarly, the sample size determination and simulation results for Case II can be found

in Tables 4.8, 4.9, 4.13, 4.16 and 4.19. And Case III in Tables 4.10, 4.11, 4.14, 4.17 and

4.20.

Figure 4.3: Empirical ROC curves of clustered data, case I
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Figure 4.4: Empirical ROC curves of clustered data, case II

Figure 4.5: Empirical ROC curves of clustered data, case III
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Table 4.6: Power(%) using the O'Brien-Fleming GSD with � = 0:05, case I
Power=80% Power=90%

� = 0 � = 0:5 � = 0:75 � = 0 � = 0:5 � = 0:75
� t Normal LogN Normal LogN Normal LogN Normal LogN Normal LogN Normal LogN

Two-group sequential design (J=2)
0.2 76.7 77.6 77.2 77.3 77.6 78.0 88.4 88.3 87.9 87.2 88.3 89.0
0.4 78.1 78.7 77.8 79.0 75.4 78.0 89.3 89.1 88.8 88.3 88.6 88.1

0 0.5 78.2 77.8 79.0 78.4 78.3 78.6 89.5 89.6 89.2 90.2 88.2 89.6
0.6 77.7 77.2 79.2 79.6 80.5 80.0 88.6 89.0 90.0 90.2 90.8 90.5
0.8 78.8 79.2 81.2 80.8 79.7 79.6 89.2 89.3 90.6 91.3 91.3 90.7

0.2 79.2 78.1 77.6 78.8 75.7 76.6 88.3 87.9 88.1 88.2 88.1 88.8
0.4 77.9 78.4 77.6 78.6 77.6 77.4 89.6 88.8 88.0 88.3 89.6 88.8

0.25 0.5 78.3 79.3 79.3 78.9 77.3 77.1 89.2 88.9 89.5 89.6 89.3 88.3
0.6 79.7 78.7 80.2 80.5 80.2 79.4 89.4 89.7 89.6 91.0 90.7 90.9
0.8 78.5 78.9 79.4 78.9 80.7 80.7 89.5 88.5 90.1 90.3 90.8 90.8

0.2 78.0 77.7 76.5 76.8 75.7 74.9 88.7 89.0 86.7 87.0 86.9 86.9
0.4 77.3 79.2 78.5 77.4 78.5 77.9 88.7 88.2 89.7 89.4 88.8 89.0

0.5 0.5 78.9 78.5 78.9 78.6 78.2 78.2 89.1 89.2 89.5 89.2 88.6 89.2
0.6 78.5 80.0 78.9 78.3 79.8 78.9 88.8 89.4 90.2 89.9 89.2 89.3
0.8 80.2 80.8 79.1 77.7 79.1 78.7 90.1 90.9 89.4 89.9 89.6 90.0

0.2 77.3 78.0 76.1 76.6 76.2 77.2 88.4 88.6 87.1 87.8 87.0 87.8
0.4 77.2 77.9 77.5 77.7 77.1 77.2 88.3 88.5 88.0 87.5 88.1 87.4

0.75 0.5 78.9 79.2 77.3 77.6 77.2 78.3 89.4 88.0 89.5 88.6 88.7 88.4
0.6 78.2 77.6 78.9 77.5 78.5 79.0 88.7 87.9 89.7 90.0 89.5 88.9
0.8 78.1 79.1 80.7 80.2 77.3 78.5 89.7 89.3 91.1 90.1 88.9 88.7

Five-group sequential design (J=5)
0.2 78.6 77.9 77.1 78.2 78.7 78.1 87.9 87.9 88.3 87.9 89.5 89.6
0.4 77.6 78.3 77.8 78.7 78.9 78.9 88.2 88.5 89.2 89.0 87.8 88.6

0 0.5 78.3 78.0 78.9 78.3 79.5 79.7 88.6 88.8 89.9 88.8 90.1 89.7
0.6 78.5 77.9 79.9 80.5 81.0 80.0 87.7 88.6 89.9 90.2 91.2 91.0
0.8 79.0 77.9 81.6 80.4 80.6 80.2 88.9 89.4 91.0 91.1 90.6 91.1

0.2 77.6 77.8 77.6 77.2 77.1 77.3 87.9 88.0 88.7 88.0 88.0 89.2
0.4 77.5 78.1 77.0 76.7 78.6 78.2 88.3 88.8 89.1 88.5 88.6 89.1

0.25 0.5 78.1 79.9 79.2 78.6 78.7 77.9 88.5 89.1 89.7 90.0 89.4 88.5
0.6 79.4 79.1 80.6 80.8 80.0 80.3 89.5 89.9 91.1 90.4 90.5 91.3
0.8 78.2 78.9 79.4 79.8 80.4 80.5 89.3 89.5 90.5 89.7 91.6 91.6

0.2 78.0 78.0 77.4 77.2 76.7 77.0 89.5 90.4 87.0 88.1 88.2 87.9
0.4 78.0 77.5 79.7 78.3 78.3 78.7 88.8 88.3 88.7 89.6 88.5 89.5

0.5 0.5 79.4 79.9 79.2 79.8 78.3 78.8 90.3 89.3 89.4 89.4 88.6 89.7
0.6 80.3 80.7 79.0 79.7 78.8 79.4 89.4 89.3 89.5 89.8 90.3 90.0
0.8 80.2 80.3 79.4 78.7 78.6 79.3 90.9 89.7 89.4 90.2 89.9 89.7

0.2 78.5 78.5 76.6 77.3 77.1 77.6 88.8 88.9 87.5 87.4 88.4 88.1
0.4 79.1 77.7 77.8 77.6 76.5 76.3 88.9 88.7 89.5 89.0 87.9 88.4

0.75 0.5 78.6 76.3 76.5 76.4 78.7 77.8 88.3 88.8 87.8 88.2 89.4 90.0
0.6 78.5 78.2 78.7 79.3 78.9 77.7 89.4 89.7 88.7 89.5 89.1 89.5
0.8 78.9 79.1 80.5 81.1 78.8 78.2 89.5 90.3 90.4 90.4 89.3 88.3
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Table 4.7: Power(%) using the Pocock GSD with � = 0:05, case I
Power=80% Power=90%

� = 0 � = 0:5 � = 0:75 � = 0 � = 0:5 � = 0:75
� t Normal LogN Normal LogN Normal LogN Normal LogN Normal LogN Normal LogN

Two-group sequential design (J=2)
0.2 77.4 78.5 77.3 77.4 78.3 77.5 87.5 87.8 89.0 87.8 89.0 89.0
0.4 79.1 78.1 78.5 78.3 77.4 76.9 88.7 88.4 89.4 89.3 88.1 89.0

0 0.5 77.0 79.0 77.8 80.0 78.7 79.5 89.1 89.0 88.9 89.3 90.2 90.4
0.6 78.4 78.8 79.1 80.1 79.4 80.7 88.5 88.1 90.1 89.8 91.2 90.8
0.8 78.6 78.9 80.1 79.5 79.8 80.5 89.6 89.0 91.5 90.6 91.2 91.1

0.2 77.2 78.4 77.0 78.0 76.3 76.8 88.4 87.5 88.6 88.0 87.8 88.0
0.4 78.4 78.5 77.7 78.2 77.8 77.4 88.4 88.4 88.6 89.1 88.8 88.7

0.25 0.5 77.5 78.8 79.1 77.3 77.0 76.5 88.7 88.5 89.5 89.4 89.9 88.9
0.6 79.5 78.6 79.6 80.3 80.5 81.2 89.4 89.2 90.0 90.7 91.2 91.4
0.8 77.5 78.9 79.7 79.8 80.9 80.2 89.1 89.3 89.8 89.7 91.5 90.9

0.2 78.6 78.2 75.6 75.9 75.9 76.9 89.4 89.1 87.1 87.6 87.4 88.1
0.4 77.7 77.7 78.6 79.2 79.2 76.7 88.4 88.3 89.2 88.4 88.8 88.7

0.5 0.5 78.4 78.8 79.2 78.3 76.5 76.6 89.9 89.6 89.9 90.4 89.4 88.8
0.6 79.5 78.1 78.2 79.1 79.2 78.9 90.2 89.1 90.0 89.6 89.6 89.2
0.8 81.4 80.5 78.2 79.6 78.2 78.8 90.7 89.8 89.8 89.4 89.9 89.6

0.2 79.2 79.2 75.6 77.2 77.1 76.1 88.3 88.9 87.6 87.1 87.3 88.4
0.4 78.2 77.6 77.3 77.1 76.4 77.0 88.4 89.3 89.2 88.6 87.4 88.3

0.75 0.5 78.0 78.9 77.5 77.8 78.4 78.1 88.5 87.6 88.5 88.7 89.5 89.1
0.6 79.5 78.1 78.8 78.4 78.7 77.4 88.7 88.6 89.2 88.9 89.4 89.7
0.8 79.5 78.8 80.7 80.4 77.9 78.2 89.4 89.8 91.0 90.7 89.3 89.9

Five-group sequential design (J=5)
0.2 77.8 78.7 78.8 77.7 79.1 78.8 88.5 88.8 89.3 88.8 90.0 89.6
0.4 78.2 78.8 78.0 78.4 79.4 78.2 88.5 89.3 88.6 90.0 89.2 88.1

0 0.5 78.6 77.7 79.3 78.7 79.3 78.9 88.9 89.0 89.0 88.8 89.5 89.7
0.6 78.0 78.8 79.1 79.7 81.7 80.0 88.6 88.4 91.1 90.2 90.6 90.7
0.8 78.9 79.6 79.7 80.0 80.5 79.5 89.3 89.3 91.2 91.2 90.8 91.1

0.2 77.1 78.5 78.5 77.7 78.1 78.0 89.1 89.5 88.4 88.1 88.4 88.6
0.4 78.8 78.6 79.9 77.2 78.8 77.7 88.8 89.5 89.1 89.2 89.9 90.0

0.25 0.5 79.6 78.4 79.1 79.1 79.2 77.3 89.8 89.0 89.5 89.8 89.5 89.1
0.6 79.1 79.1 80.4 80.0 80.9 79.7 89.7 89.8 91.0 89.9 91.6 90.8
0.8 78.9 77.4 79.2 79.9 82.0 80.7 89.3 88.9 90.2 89.7 91.2 91.5

0.2 79.5 80.1 76.1 77.3 77.4 77.3 88.6 88.9 88.0 87.8 88.3 88.2
0.4 79.4 78.5 78.0 79.6 78.9 78.9 88.8 88.9 89.3 89.1 88.9 90.1

0.5 0.5 78.9 79.5 80.4 79.0 78.1 79.0 89.5 89.7 89.3 89.9 89.4 90.1
0.6 79.4 79.5 80.1 79.7 78.8 79.0 89.5 88.4 90.1 89.8 89.1 89.2
0.8 80.2 80.8 79.1 77.7 79.1 79.6 90.7 90.6 89.8 89.5 89.9 90.1

0.2 78.4 79.1 76.6 76.3 77.9 78.4 89.3 89.2 88.1 87.9 89.0 88.9
0.4 78.8 78.5 76.6 78.2 77.7 78.7 89.0 89.4 89.1 88.0 88.2 88.9

0.75 0.5 77.7 78.9 76.9 78.8 78.7 78.8 89.4 88.7 88.9 88.2 89.4 89.4
0.6 77.5 79.1 79.4 79.4 78.8 78.7 89.3 89.9 89.1 90.0 89.5 89.1
0.8 79.9 79.7 81.6 82.1 78.4 78.1 89.8 89.2 90.8 90.7 89.0 89.0
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Table 4.8: Power(%) using the O'Brien-Fleming GSD with � = 0:05, case II
Power=80% Power=90%

� = 0 � = 0:5 � = 0:75 � = 0 � = 0:5 � = 0:75
� t Normal LogN Normal LogN Normal LogN Normal LogN Normal LogN Normal LogN

Two-group sequential design (J=2)
0.2 77.3 77.3 77.6 78.9 77.8 78.2 89.1 87.6 89.4 88.9 89.9 87.9
0.4 79.2 79.2 77.6 79.2 77.7 76.3 89.2 89.1 89.2 89.4 88.4 88.1

0 0.5 78.5 77.6 78.3 78.7 78.3 79.0 88.2 88.4 88.9 89.5 88.7 90.1
0.6 77.5 76.6 78.4 79.2 79.8 79.7 89.4 88.5 89.9 90.0 90.8 91.0
0.8 77.8 78.2 79.7 79.2 79.7 79.3 89.5 88.5 89.8 89.9 88.7 90.1

0.2 78.7 78.6 78.1 77.9 77.0 76.7 89.0 88.8 88.6 88.4 88.6 87.8
0.4 78.8 77.8 77.7 79.3 78.4 78.4 89.0 89.2 88.6 88.2 88.6 89.7

0.25 0.5 79.6 79.5 78.6 78.9 78.1 77.5 89.5 88.9 90.7 89.3 88.7 88.5
0.6 79.0 79.1 80.8 80.3 80.8 80.7 89.9 89.2 91.4 90.4 91.6 90.5
0.8 77.8 78.5 79.6 79.9 79.6 80.9 88.8 88.4 90.8 90.5 90.1 90.7

0.2 80.2 79.6 76.6 77.6 76.2 77.0 89.6 89.4 87.8 87.6 87.1 87.1
0.4 77.7 78.7 78.2 79.0 77.4 77.8 88.8 89.2 88.4 88.8 88.9 89.7

0.5 0.5 79.8 78.8 78.6 79.0 78.4 77.2 89.9 89.4 90.6 89.7 89.2 88.5
0.6 79.5 79.3 78.0 77.9 78.9 79.0 90.0 89.6 88.9 88.9 90.0 90.0
0.8 81.2 79.8 79.3 79.0 80.7 79.8 90.0 90.7 89.6 89.4 90.5 90.9

0.2 78.8 78.1 77.6 77.4 76.3 76.3 90.1 89.5 87.7 87.9 87.8 87.6
0.4 77.8 77.8 78.5 77.9 75.8 76.5 88.4 88.2 89.1 88.0 86.8 87.4

0.75 0.5 77.8 77.8 76.6 78.2 77.8 78.2 88.9 88.5 88.5 88.1 88.4 88.3
0.6 78.0 78.8 78.3 78.3 77.6 77.4 89.0 89.1 88.9 89.3 88.3 88.4
0.8 79.2 79.6 79.6 80.6 79.9 78.9 89.6 90.0 90.8 90.2 89.5 88.7

Five-group sequential design (J=5)
0.2 77.2 77.2 79.1 79.1 78.0 78.1 88.1 87.6 89.2 89.2 88.4 88.6
0.4 77.7 78.2 78.1 78.3 76.9 76.9 89.0 88.9 88.7 89.6 88.2 89.0

0 0.5 79.0 77.8 78.6 79.1 78.7 79.3 89.1 89.5 89.1 89.4 89.6 89.1
0.6 78.5 78.4 80.4 79.8 79.5 80.7 88.9 88.8 90.5 89.7 90.3 90.1
0.8 78.2 78.1 79.3 79.6 80.0 79.1 88.2 88.3 89.9 89.3 89.3 90.0

0.2 78.3 80.0 78.5 77.4 78.4 77.5 88.3 89.4 88.5 89.0 88.5 89.5
0.4 79.1 79.4 78.7 79.8 76.7 77.9 88.8 88.8 89.5 89.2 88.9 89.8

0.25 0.5 78.2 79.1 79.3 80.1 77.2 76.8 88.7 88.1 89.7 89.5 88.7 89.2
0.6 79.5 79.5 80.7 80.8 81.7 81.1 89.2 90.0 91.1 89.8 90.8 91.3
0.8 78.1 78.9 79.8 79.6 79.3 80.3 89.0 89.5 90.8 90.4 91.1 89.9

0.2 79.4 79.5 76.8 76.6 76.6 76.8 90.3 90.3 87.8 88.8 87.5 88.2
0.4 79.3 78.4 79.0 78.8 79.2 78.1 89.5 89.0 89.5 89.3 90.0 88.7

0.5 0.5 79.9 80.1 79.7 79.6 77.4 78.3 90.3 90.2 89.9 90.4 88.4 88.6
0.6 79.3 79.9 79.5 78.3 80.0 79.6 89.9 89.9 89.8 88.9 90.7 90.2
0.8 81.6 81.4 78.9 80.2 81.0 79.8 90.2 90.5 89.5 89.6 90.7 90.2

0.2 79.6 79.0 78.3 78.6 76.6 77.5 90.1 90.1 89.0 87.9 88.8 88.3
0.4 80.0 79.4 79.0 77.5 77.7 77.0 89.4 89.1 89.0 88.7 87.3 88.7

0.75 0.5 78.6 79.4 78.2 78.7 78.5 77.8 88.4 88.7 87.5 88.3 89.2 89.3
0.6 78.2 78.7 78.3 78.7 78.0 78.8 89.3 89.6 89.1 89.2 88.5 87.9
0.8 79.2 79.4 80.1 81.7 79.4 78.8 89.4 89.8 91.2 90.6 89.5 89.8
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Table 4.9: Power(%) using the Pocock GSD with � = 0:05, case II
Power=80% Power=90%

� = 0 � = 0:5 � = 0:75 � = 0 � = 0:5 � = 0:75
� t Normal LogN Normal LogN Normal LogN Normal LogN Normal LogN Normal LogN

Two-group sequential design (J=2)
0.2 76.6 77.3 78.2 79.1 77.1 78.7 88.4 87.6 89.9 89.8 88.7 88.7
0.4 78.6 79.0 77.3 78.5 78.0 77.2 88.2 88.9 89.7 89.0 88.1 88.4

0 0.5 78.7 77.8 78.5 78.7 78.9 78.4 88.7 89.3 89.1 88.4 88.9 89.2
0.6 78.0 77.0 79.2 78.8 79.9 80.8 88.4 88.8 89.3 90.1 90.6 90.9
0.8 77.5 77.9 78.8 79.3 79.8 78.2 88.8 89.1 90.6 89.3 89.3 90.0

0.2 79.0 77.4 78.3 78.4 77.6 78.7 88.9 90.0 88.2 89.1 88.6 88.6
0.4 78.6 77.7 78.8 78.6 77.1 77.9 89.6 89.3 89.3 88.5 89.1 88.6

0.25 0.5 79.3 79.2 79.4 79.3 77.9 77.2 90.2 88.4 89.6 89.6 88.8 88.5
0.6 78.4 80.3 80.0 79.8 81.0 81.6 90.0 89.1 90.7 90.9 90.6 90.4
0.8 78.0 78.2 79.3 79.6 80.5 80.9 89.4 89.1 90.8 91.2 90.1 90.1

0.2 78.7 79.8 76.9 76.1 77.2 76.4 89.2 89.8 88.8 87.4 87.3 87.4
0.4 79.0 78.7 78.3 79.3 78.1 78.6 89.1 89.9 89.4 89.2 89.5 88.7

0.5 0.5 81.2 79.4 79.9 79.4 78.1 77.8 89.7 89.5 89.4 89.8 89.2 88.5
0.6 78.8 78.6 78.7 78.7 79.0 79.7 89.7 89.6 88.9 89.8 89.7 89.3
0.8 80.1 80.2 79.1 77.7 79.8 80.0 90.5 90.6 88.6 90.3 90.4 90.4

0.2 80.1 78.0 77.8 78.2 77.0 77.1 89.8 89.4 87.6 88.7 88.2 88.7
0.4 78.5 78.0 77.7 78.5 78.0 76.6 89.2 88.7 89.4 89.5 88.2 88.2

0.75 0.5 77.1 77.7 77.6 77.3 78.3 77.6 89.0 89.0 89.1 88.5 89.8 89.5
0.6 78.7 77.7 77.5 78.5 77.2 77.8 89.4 88.6 88.9 89.5 88.9 87.8
0.8 79.2 78.8 80.9 80.9 79.3 78.5 89.8 89.6 90.6 90.6 89.0 89.3

Five-group sequential design (J=5)
0.2 77.7 78.3 78.7 79.4 78.7 78.4 88.2 88.7 89.3 89.3 89.9 88.9
0.4 78.2 78.0 79.0 79.0 77.5 77.6 88.9 89.0 89.6 88.9 88.7 88.7

0 0.5 78.6 79.1 79.6 79.8 79.0 79.1 89.1 88.3 88.6 89.0 89.5 90.2
0.6 77.9 78.7 80.2 79.6 81.0 81.0 88.7 88.6 90.0 89.8 90.6 91.0
0.8 77.8 78.7 79.0 79.4 79.2 79.8 88.9 88.2 90.3 89.8 90.8 89.8

0.2 78.8 79.1 79.4 78.0 78.7 78.4 89.1 88.6 89.2 88.4 88.7 89.5
0.4 77.7 79.8 78.4 79.0 77.8 78.7 88.9 88.7 89.4 90.0 88.8 88.6

0.25 0.5 79.5 79.7 80.0 79.0 79.0 79.1 90.1 89.3 89.6 89.2 88.8 88.5
0.6 79.6 79.7 80.4 80.6 80.0 80.4 89.9 89.9 91.1 90.5 90.4 91.2
0.8 77.6 77.7 80.0 81.6 80.6 80.4 89.2 89.0 90.2 90.2 90.5 90.6

0.2 79.1 79.8 76.4 77.3 76.4 77.0 90.4 89.9 88.1 88.7 87.1 87.6
0.4 78.6 79.4 78.6 77.7 77.7 78.8 88.4 88.8 88.4 89.3 89.8 90.0

0.5 0.5 79.3 80.6 79.7 80.2 78.0 77.6 90.2 89.9 89.6 89.0 89.4 89.7
0.6 78.6 80.2 79.3 78.7 79.8 79.3 89.6 89.4 89.2 89.1 89.7 89.7
0.8 81.2 80.3 79.7 78.3 79.8 80.5 89.8 90.5 90.3 88.8 91.1 90.4

0.2 79.4 80.3 76.8 78.0 77.7 76.6 89.6 90.1 88.9 88.5 88.2 88.1
0.4 78.5 78.3 78.9 79.4 78.0 77.4 89.0 88.9 89.7 88.9 87.4 87.4

0.75 0.5 78.4 78.5 78.6 77.9 79.0 79.5 88.6 88.5 89.1 89.0 89.5 89.5
0.6 79.2 78.5 79.1 78.7 77.7 77.8 89.7 89.2 89.6 89.7 89.0 89.1
0.8 80.1 78.1 80.1 80.7 80.8 78.7 89.2 89.8 90.9 90.5 88.8 88.8
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Table 4.10: Power(%) using the O'Brien-Fleming GSD with � = 0:05, case III
Power=80% Power=90%

� = 0 � = 0:5 � = 0:75 � = 0 � = 0:5 � = 0:75
� t Normal LogN Normal LogN Normal LogN Normal LogN Normal LogN Normal LogN

Two-group sequential design (J=2)
0.2 77.2 77.4 79.7 78.6 78.0 78.7 87.5 87.7 89.5 90.4 89.0 89.0
0.4 77.9 78.4 79.1 77.7 78.0 78.7 88.8 87.8 89.4 89.2 89.0 89.0

0 0.5 77.8 78.5 77.7 78.5 79.0 78.6 87.9 88.7 89.3 88.8 89.8 90.1
0.6 77.6 77.9 79.2 77.9 80.4 79.9 88.4 88.5 88.8 89.1 90.0 89.3
0.8 75.6 76.4 79.3 78.2 79.7 79.3 86.9 87.4 89.9 89.8 89.6 89.5

0.2 80.4 78.8 79.2 79.3 80.0 79.9 89.9 90.1 89.0 89.9 89.6 89.7
0.4 80.1 80.5 79.5 79.1 80.1 79.2 90.4 91.1 89.2 89.0 89.2 89.0

0.25 0.5 80.8 79.1 79.2 78.8 79.2 78.4 89.7 88.9 88.6 89.9 89.4 89.5
0.6 80.5 81.6 81.9 81.6 82.0 81.7 90.7 90.8 91.9 91.0 91.3 91.2
0.8 79.9 80.0 81.9 80.4 81.4 81.8 90.1 90.0 90.5 91.0 90.7 90.8

0.2 81.3 80.1 79.1 78.6 77.1 77.0 90.1 89.9 89.2 88.9 88.9 88.2
0.4 78.9 79.8 79.5 80.1 79.7 79.0 89.8 89.4 90.5 90.4 90.2 89.7

0.5 0.5 80.3 79.9 80.1 79.7 79.0 78.8 90.3 89.9 91.0 90.7 89.8 89.4
0.6 81.5 81.1 79.3 80.0 80.8 81.2 89.7 90.1 90.4 89.9 90.2 90.7
0.8 81.4 80.7 79.1 79.9 81.1 81.1 90.9 91.7 90.3 89.2 90.7 91.2

0.2 80.0 79.6 78.0 77.8 79.0 77.9 90.7 90.8 89.1 89.6 89.4 89.3
0.4 78.5 76.2 78.3 79.5 77.2 77.2 89.3 87.9 89.2 89.5 87.3 87.5

0.75 0.5 78.4 78.4 77.4 76.8 78.0 78.9 89.9 89.4 88.8 88.7 89.2 89.1
0.6 79.9 79.0 80.3 79.3 78.0 78.8 90.2 90.0 89.3 90.0 89.1 88.7
0.8 78.6 78.7 80.4 81.3 79.0 79.0 89.6 90.5 90.5 90.5 89.1 89.4

Five-group sequential design (J=5)
0.2 77.5 77.2 80.1 79.6 78.3 79.5 87.9 87.8 90.4 89.6 90.1 88.7
0.4 77.4 77.0 78.2 79.4 78.9 78.2 88.7 88.3 89.2 89.9 88.6 89.2

0 0.5 76.8 77.3 78.7 78.4 78.9 79.2 88.2 87.5 88.1 88.4 89.5 89.9
0.6 77.3 77.4 78.1 77.5 80.8 80.0 88.1 88.2 89.5 89.6 90.2 90.4
0.8 74.8 74.1 79.1 78.9 80.0 79.2 86.1 87.7 89.5 89.3 89.2 89.8

0.2 79.3 79.0 79.4 79.9 79.9 79.2 89.7 90.3 89.8 90.1 89.7 89.5
0.4 79.9 80.2 79.9 79.1 79.5 80.2 89.1 90.1 89.5 90.7 89.5 90.7

0.25 0.5 80.0 79.6 80.0 80.5 79.5 78.4 89.8 90.6 89.8 88.9 89.4 88.9
0.6 79.8 81.2 81.4 81.7 81.3 80.7 90.9 90.8 91.1 91.9 90.9 91.5
0.8 79.4 79.3 81.2 81.3 81.0 81.6 90.2 90.3 90.4 90.6 91.4 91.2

0.2 81.6 80.2 78.4 78.4 78.4 78.1 89.7 90.4 89.6 88.4 88.8 88.5
0.4 80.3 80.3 79.9 80.0 79.8 79.5 89.6 89.4 89.9 89.7 90.0 90.0

0.5 0.5 80.3 80.0 81.4 82.0 78.8 79.3 90.2 90.4 89.9 91.1 89.2 89.5
0.6 81.1 81.4 80.7 80.7 80.9 81.0 90.8 90.3 90.9 90.1 91.0 90.3
0.8 80.9 82.1 80.3 81.1 81.2 82.1 91.4 91.0 90.4 90.1 90.6 91.1

0.2 80.7 79.2 79.6 78.5 78.3 78.8 90.0 90.3 89.7 89.0 88.7 89.4
0.4 78.6 77.9 79.0 79.1 77.8 77.9 89.1 88.5 89.7 89.8 88.5 87.8

0.75 0.5 78.7 78.0 78.1 78.1 79.1 79.7 88.6 89.0 89.2 88.4 89.1 89.1
0.6 78.9 78.8 78.5 79.8 79.2 78.2 89.9 89.6 89.7 89.4 89.7 89.9
0.8 80.0 79.3 80.1 80.8 80.0 79.0 89.9 89.0 89.8 90.4 89.8 89.1
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Table 4.11: Power(%) using the Pocock GSD with � = 0:05, case III
Power=80% Power=90%

� = 0 � = 0:5 � = 0:75 � = 0 � = 0:5 � = 0:75
� t Normal LogN Normal LogN Normal LogN Normal LogN Normal LogN Normal LogN

Two-group sequential design (J=2)
0.2 77.7 76.6 79.1 79.1 78.9 78.4 87.6 87.8 90.6 89.2 89.1 89.6
0.4 76.3 78.0 78.8 78.4 78.8 78.7 87.8 88.0 89.6 89.7 87.9 88.9

0 0.5 77.5 78.3 77.4 77.4 79.2 79.6 87.8 87.4 88.2 88.8 89.0 89.6
0.6 78.6 76.5 78.9 79.1 80.0 79.8 87.6 87.9 88.7 89.3 90.3 89.8
0.8 74.7 76.3 78.8 79.4 79.0 79.5 87.6 86.0 89.3 89.2 89.6 89.5

0.2 79.2 80.2 79.4 79.3 79.6 80.0 89.8 90.3 89.5 89.5 90.2 89.8
0.4 80.2 80.4 79.0 79.0 79.6 78.6 89.4 90.1 89.8 89.1 89.9 90.5

0.25 0.5 79.2 79.5 80.4 79.4 78.5 78.7 90.2 90.5 90.2 90.4 89.9 88.7
0.6 81.3 80.2 81.7 82.4 80.9 80.8 90.2 90.7 92.0 91.5 90.8 91.1
0.8 79.2 79.7 81.3 80.7 80.5 81.6 89.8 90.1 90.6 90.1 90.8 90.9

0.2 80.8 81.0 77.9 78.9 77.1 77.2 90.0 90.7 88.6 89.7 87.5 88.2
0.4 79.0 78.8 79.0 80.0 79.1 80.1 89.8 90.2 89.4 91.4 90.5 90.4

0.5 0.5 79.9 80.0 80.5 80.3 79.2 78.8 90.4 90.7 90.4 90.7 90.4 89.9
0.6 81.8 80.8 80.2 81.2 80.1 81.9 90.0 91.5 89.6 90.1 91.6 90.9
0.8 82.0 81.1 79.6 80.0 80.3 80.2 90.9 90.8 89.8 90.0 90.6 90.7

0.2 80.4 79.6 78.8 77.1 79.0 78.7 89.1 90.2 88.8 89.0 89.1 89.5
0.4 78.0 78.1 78.9 79.4 76.2 77.0 88.1 87.4 89.9 89.5 87.9 88.5

0.75 0.5 78.2 78.2 77.4 77.9 79.0 79.1 89.2 89.2 88.4 88.0 89.6 89.7
0.6 79.6 80.3 79.2 78.4 78.2 78.4 89.4 89.5 89.6 89.5 89.6 88.7
0.8 80.5 79.0 80.3 81.0 77.7 79.0 89.2 90.3 90.8 90.8 88.8 88.9

Five-group sequential design (J=5)
0.2 77.2 77.9 80.0 80.1 79.1 79.9 88.3 88.1 90.7 89.3 89.1 89.6
0.4 78.6 77.1 79.9 78.4 77.8 78.8 89.3 89.1 88.5 88.9 88.9 89.5

0 0.5 78.9 77.4 79.2 78.1 79.7 78.3 88.1 88.4 88.8 88.7 91.0 89.8
0.6 78.3 77.6 79.9 80.0 81.1 79.8 88.2 87.7 89.1 89.1 90.6 89.7
0.8 76.1 75.7 78.3 79.0 79.0 79.2 86.0 87.1 89.2 89.0 90.3 89.5

0.2 80.5 79.6 80.2 81.4 79.7 80.2 90.1 89.8 90.3 90.1 89.3 89.7
0.4 80.4 80.5 80.5 79.8 80.1 79.8 90.3 90.0 90.2 89.2 90.0 90.1

0.25 0.5 79.1 79.8 79.5 80.4 78.7 79.8 89.3 90.5 89.4 90.2 89.5 89.5
0.6 80.3 81.4 82.2 82.1 81.1 81.6 90.7 90.0 91.8 91.7 90.6 90.6
0.8 79.4 78.7 80.5 80.6 81.0 81.4 89.9 90.0 91.3 90.9 91.4 90.9

0.2 80.4 80.3 78.3 78.7 77.3 77.2 90.2 90.3 88.7 88.3 87.9 88.7
0.4 80.3 79.3 79.6 81.3 78.7 79.6 90.1 89.7 90.9 90.1 90.2 89.9

0.5 0.5 80.7 80.2 80.0 81.4 79.5 80.0 90.7 90.5 90.6 90.7 89.7 89.4
0.6 80.6 80.4 80.0 79.9 81.4 81.2 91.1 90.6 90.8 89.7 90.7 91.0
0.8 81.4 82.0 78.9 80.1 81.7 81.4 90.7 90.7 91.2 89.8 91.3 91.4

0.2 80.5 80.9 77.9 78.4 78.1 78.9 90.0 90.6 89.4 88.5 89.0 89.2
0.4 78.6 79.5 79.3 78.9 77.9 77.3 88.6 89.1 90.0 89.3 88.5 88.5

0.75 0.5 78.7 78.5 77.9 78.7 79.3 79.8 89.2 89.4 88.9 87.9 88.9 89.5
0.6 80.5 78.7 80.1 79.3 77.8 78.5 90.1 89.2 89.3 90.1 88.6 89.1
0.8 80.4 80.4 80.7 79.8 78.9 78.5 90.1 89.6 90.2 90.3 89.1 90.2
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Table 4.12: Expected sample sizes using GSD with � = 0:05, case I
Power=80% Power=90%

� = 0 � = 0:5 � = 0:75 � = 0 � = 0:5 � = 0:75
� t OF Pocock OF Pocock OF Pocock OF Pocock OF Pocock OF Pocock

Two-group sequential design (J=2)
0.2 187 178 132 127 98 93 238 217 168 154 124 114
0.4 195 184 140 132 102 97 248 227 175 162 128 118

0 0.5 219 209 161 155 121 115 277 255 205 186 154 139
0.6 260 248 205 192 160 149 328 301 258 237 199 180
0.8 523 496 453 425 357 335 662 604 573 514 451 401

0.2 178 172 129 123 94 91 228 209 164 151 119 109
0.4 187 177 136 128 100 95 236 215 172 158 128 115

0.25 0.5 212 202 158 150 117 111 270 245 201 184 148 135
0.6 259 243 203 194 156 147 328 299 256 231 197 178
0.8 505 482 437 412 357 333 644 584 550 501 452 402

0.2 174 166 125 119 94 90 222 201 159 146 119 110
0.4 176 168 134 128 101 96 225 207 169 155 127 116

0.5 0.5 206 194 156 148 117 111 259 235 198 181 149 135
0.6 248 236 195 185 150 142 316 287 249 225 191 172
0.8 518 482 429 402 345 324 656 599 541 490 434 391

0.2 174 165 133 129 102 97 221 202 169 156 130 118
0.4 176 166 140 133 106 101 222 204 178 163 135 123

0.75 0.5 199 190 161 153 126 119 254 232 204 187 160 144
0.6 247 234 206 194 158 149 312 285 260 237 200 181
0.8 520 492 471 445 357 337 659 597 594 534 452 407

Five-group sequential design (J=5)
0.2 170 167 120 118 89 87 210 193 147 135 109 100
0.4 177 174 127 125 91 91 218 201 156 145 114 106

0 0.5 200 198 147 145 110 109 246 226 179 169 136 127
0.6 236 236 186 185 142 140 293 270 228 209 174 161
0.8 475 468 408 410 322 321 586 545 500 458 393 365

0.2 163 160 118 116 86 85 201 187 144 132 106 98
0.4 169 166 124 119 91 91 209 191 151 140 112 103

0.25 0.5 194 188 144 142 106 105 237 216 177 164 130 122
0.6 235 231 183 180 141 140 287 264 224 204 172 159
0.8 459 457 397 392 323 319 565 527 486 452 392 363

0.2 159 154 113 113 85 84 195 182 141 130 106 98
0.4 160 158 122 122 91 91 197 183 149 138 113 104

0.5 0.5 187 183 141 141 107 107 229 211 176 162 132 123
0.6 226 225 177 175 137 136 277 256 219 200 166 155
0.8 471 465 387 386 312 312 573 527 479 444 382 354

0.2 158 156 121 121 92 92 196 178 150 138 114 107
0.4 159 157 127 127 96 97 197 181 156 144 118 111

0.75 0.5 182 181 147 146 114 113 225 206 180 167 139 130
0.6 224 224 187 182 143 142 274 254 230 214 175 164
0.8 474 466 425 420 324 326 582 534 522 482 399 375
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Table 4.13: Expected sample sizes using GSD with � = 0:05, case II
Power=80% Power=90%

� = 0 � = 0:5 � = 0:75 � = 0 � = 0:5 � = 0:75
� t OF Pocock OF Pocock OF Pocock OF Pocock OF Pocock OF Pocock

Two-group sequential design (J=2)
0.2 417 400 299 282 214 204 527 489 378 344 269 245
0.4 426 405 300 286 212 203 541 493 380 346 271 248

0 0.5 474 448 343 326 251 238 597 547 435 395 318 289
0.6 552 527 429 407 321 305 705 646 543 494 404 369
0.8 1049 1005 885 842 687 647 1333 1221 1122 1016 865 789

0.2 404 388 288 275 209 199 512 474 367 338 261 241
0.4 409 389 293 279 213 202 521 475 368 339 270 246

0.25 0.5 456 433 338 319 244 231 579 529 427 386 306 282
0.6 553 525 425 401 319 300 696 635 535 485 403 366
0.8 1049 988 891 837 691 646 1322 1203 1117 1013 873 790

0.2 395 374 276 266 203 193 494 456 352 322 256 237
0.4 387 367 290 275 214 204 489 452 369 330 270 246

0.5 0.5 448 420 333 317 241 228 560 511 420 389 305 278
0.6 532 499 406 386 311 290 672 612 511 465 393 358
0.8 1061 990 861 818 692 652 1342 1206 1099 999 874 789

0.2 388 366 293 279 222 212 488 445 373 343 279 257
0.4 378 362 302 289 222 209 481 442 384 352 280 255

0.75 0.5 427 404 336 322 261 248 543 498 430 393 328 301
0.6 519 492 427 407 318 303 656 603 538 488 403 368
0.8 1057 1009 952 889 714 673 1339 1224 1194 1080 908 821

Five-group sequential design (J=5)
0.2 383 372 270 266 193 191 468 436 333 305 237 219
0.4 386 380 274 267 195 194 477 441 336 307 238 221

0 0.5 429 423 311 308 229 227 529 489 383 360 280 260
0.6 506 501 386 384 290 287 617 570 471 435 355 328
0.8 957 947 806 799 622 625 1178 1096 989 914 767 701

0.2 369 363 262 257 189 187 452 419 322 300 233 217
0.4 371 370 265 262 193 193 458 415 327 299 236 222

0.25 0.5 417 410 306 299 222 220 511 463 376 346 272 254
0.6 497 488 384 375 288 289 613 561 467 429 352 327
0.8 952 946 804 792 629 616 1161 1081 985 911 758 706

0.2 355 353 253 252 184 184 438 397 310 287 227 214
0.4 350 348 263 260 193 193 433 403 325 296 237 222

0.5 0.5 405 396 301 297 219 219 497 454 370 342 270 251
0.6 482 476 366 364 280 278 595 545 448 421 342 320
0.8 953 933 782 777 621 621 1175 1094 967 887 760 704

0.2 353 344 267 267 201 199 430 397 329 305 247 229
0.4 341 341 274 270 200 200 423 391 337 308 249 231

0.75 0.5 386 384 307 304 238 234 479 445 378 350 291 269
0.6 474 462 387 383 288 286 580 534 476 440 357 333
0.8 966 942 857 846 647 638 1190 1093 1044 959 796 737
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Table 4.14: Expected sample sizes using GSD with � = 0:05, case III
Power=80% Power=90%

� = 0 � = 0:5 � = 0:75 � = 0 � = 0:5 � = 0:75
� t OF Pocock OF Pocock OF Pocock OF Pocock OF Pocock OF Pocock

Two-group sequential design (J=2)
0.2 1659 1563 1198 1151 838 800 2099 1918 1523 1374 1063 966
0.4 1628 1554 1163 1106 821 774 2073 1901 1468 1351 1035 953

0 0.5 1802 1724 1280 1223 932 884 2269 2082 1633 1483 1179 1076
0.6 2080 1976 1568 1495 1165 1097 2640 2439 1992 1811 1466 1333
0.8 3712 3559 3166 2983 2420 2287 4694 4307 3988 3658 3043 2799

0.2 1654 1574 1169 1105 836 794 2080 1903 1478 1348 1052 960
0.4 1644 1540 1138 1078 823 776 2079 1909 1426 1312 1048 946

0.25 0.5 1797 1682 1293 1217 917 867 2255 2051 1641 1485 1160 1056
0.6 2151 2027 1638 1530 1170 1102 2694 2481 2076 1868 1469 1346
0.8 3925 3742 3272 3073 2486 2353 4951 4505 4118 3721 3146 2863

0.2 1576 1493 1107 1057 791 756 2004 1825 1412 1288 1010 923
0.4 1526 1453 1132 1070 806 768 1915 1752 1428 1303 1023 929

0.5 0.5 1705 1613 1284 1207 916 867 2166 1963 1621 1474 1148 1051
0.6 2067 1941 1537 1451 1156 1099 2605 2367 1931 1762 1458 1323
0.8 3943 3653 3178 3004 2498 2335 4982 4533 3995 3635 3122 2848

0.2 1526 1440 1146 1084 858 820 1904 1757 1458 1335 1092 1005
0.4 1442 1368 1153 1094 827 783 1810 1677 1454 1325 1049 962

0.75 0.5 1618 1525 1265 1213 968 918 2043 1840 1611 1463 1224 1123
0.6 1967 1863 1575 1490 1176 1122 2507 2277 1991 1831 1489 1368
0.8 3885 3687 3378 3156 2544 2418 4925 4515 4267 3872 3224 2940

Five-group sequential design (J=5)
0.2 1502 1482 1078 1060 765 749 1834 1716 1330 1217 942 871
0.4 1481 1454 1059 1035 744 742 1836 1700 1304 1206 918 843

0 0.5 1643 1611 1170 1153 848 837 2035 1881 1434 1327 1049 955
0.6 1898 1881 1428 1395 1052 1038 2347 2157 1757 1607 1293 1185
0.8 3412 3372 2877 2859 2189 2174 4215 3934 3533 3274 2705 2467

0.2 1502 1463 1057 1036 756 738 1846 1682 1304 1172 925 853
0.4 1488 1442 1036 1009 744 733 1832 1650 1271 1150 916 847

0.25 0.5 1624 1596 1166 1156 832 826 1986 1819 1440 1312 1020 941
0.6 1947 1908 1479 1432 1056 1041 2382 2151 1802 1628 1298 1190
0.8 3559 3511 2955 2912 2263 2198 4353 4002 3621 3283 2763 2513

0.2 1423 1394 1005 995 719 716 1746 1597 1242 1151 886 825
0.4 1375 1362 1024 1000 737 727 1696 1563 1252 1144 899 822

0.5 0.5 1547 1513 1157 1144 829 820 1904 1759 1428 1301 1016 931
0.6 1868 1829 1379 1362 1048 1023 2275 2079 1700 1572 1281 1173
0.8 3582 3465 2877 2842 2243 2198 4354 3938 3535 3208 2756 2509

0.2 1375 1340 1041 1041 781 779 1691 1557 1285 1181 966 886
0.4 1303 1294 1046 1035 750 747 1614 1495 1283 1170 925 863

0.75 0.5 1468 1447 1153 1138 880 870 1806 1649 1417 1318 1081 1001
0.6 1795 1734 1433 1412 1064 1064 2213 2006 1752 1612 1304 1223
0.8 3534 3427 3070 2999 2304 2301 4351 3999 3765 3449 2837 2603
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Table 4.15: GSD design sample sizes (maximum) with � = 0:05, case I
Power=80% Power=90%

� = 0 � = 0:5 � = 0:75 � = 0 � = 0:5 � = 0:75
� t OF Pocock OF Pocock OF Pocock OF Pocock OF Pocock OF Pocock

Two-group sequential design (J=2)
0.2 208 229 146 161 108 118 278 303 195 213 144 157
0.4 216 238 153 169 110 121 289 316 205 224 147 161

0 0.5 242 267 178 196 132 146 324 354 238 260 177 193
0.6 286 315 225 248 172 189 382 417 301 329 229 251
0.8 574 632 496 546 385 424 767 838 663 725 514 562

0.2 200 220 143 157 103 114 267 291 191 209 138 150
0.4 206 227 149 164 109 120 276 301 199 217 146 159

0.25 0.5 234 258 174 192 127 139 313 342 233 255 169 185
0.6 285 314 223 246 170 187 381 416 298 326 227 248
0.8 555 611 477 526 387 426 742 810 638 697 518 565

0.2 194 214 137 150 102 112 259 283 183 199 136 149
0.4 195 215 148 163 110 121 261 285 198 216 146 160

0.5 0.5 227 250 172 189 127 140 303 331 230 251 170 186
0.6 275 303 214 236 163 179 367 401 287 313 217 237
0.8 573 631 466 513 371 408 766 837 623 681 496 542

0.2 193 212 146 161 111 122 258 282 195 213 149 162
0.4 194 213 154 169 115 126 259 283 205 224 153 167

0.75 0.5 221 243 176 193 136 150 295 322 235 256 182 199
0.6 272 299 226 249 172 189 363 397 303 330 230 251
0.8 575 633 519 572 387 426 768 839 694 758 518 565

Five-group sequential design (J=5)
0.2 212 253 149 178 110 131 283 333 199 234 146 172
0.4 220 263 156 187 112 134 294 346 209 245 150 176

0 0.5 247 295 182 217 135 161 330 388 242 285 180 212
0.6 291 348 230 275 175 209 389 458 307 361 234 275
0.8 585 699 506 605 392 469 782 919 676 795 524 616

0.2 203 243 146 174 105 126 272 320 195 229 140 165
0.4 210 251 152 181 111 133 281 330 203 238 148 175

0.25 0.5 239 286 178 213 129 154 319 375 237 279 172 203
0.6 291 348 228 272 173 207 388 457 304 358 232 272
0.8 566 676 487 582 395 472 756 889 650 765 527 620

0.2 198 237 139 166 104 124 264 311 186 219 139 163
0.4 199 238 151 180 112 134 266 312 201 237 149 175

0.5 0.5 231 276 175 210 130 155 309 363 234 276 173 204
0.6 280 335 219 261 166 198 374 440 292 343 221 260
0.8 584 698 475 568 378 452 781 918 635 747 505 594

0.2 197 235 149 178 113 136 263 309 199 234 151 178
0.4 197 236 157 187 117 140 264 310 209 246 156 183

0.75 0.5 225 269 179 214 139 166 301 353 239 281 186 218
0.6 277 331 231 276 175 210 370 435 308 363 234 275
0.8 586 701 529 633 395 472 783 921 707 832 527 620
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Table 4.16: GSD design sample sizes (maximum) with � = 0:05, case II
Power=80% Power=90%

� = 0 � = 0:5 � = 0:75 � = 0 � = 0:5 � = 0:75
� t OF Pocock OF Pocock OF Pocock OF Pocock OF Pocock OF Pocock

Two-group sequential design (J=2)
0.2 464 511 331 364 234 257 620 678 442 483 313 341
0.4 472 519 332 366 233 257 631 689 444 485 311 340

0 0.5 524 577 378 416 275 303 700 765 505 552 368 402
0.6 612 674 472 520 353 389 818 894 631 689 473 516
0.8 1158 1275 979 1078 753 829 1548 1691 1310 1431 1006 1099

0.2 451 497 319 351 228 251 603 659 427 466 305 333
0.4 454 500 323 355 233 256 607 663 432 471 311 340

0.25 0.5 508 560 373 411 266 292 680 742 499 545 355 388
0.6 609 671 471 519 352 387 815 890 630 688 470 513
0.8 1151 1267 982 1081 758 834 1539 1681 1313 1435 1013 1107

0.2 438 482 304 334 221 243 586 640 406 443 295 322
0.4 429 472 320 353 233 257 573 626 428 468 312 340

0.5 0.5 495 545 369 406 263 290 662 723 493 539 352 384
0.6 588 647 445 490 339 373 786 858 595 650 453 495
0.8 1174 1292 950 1046 754 831 1570 1714 1271 1388 1009 1102

0.2 430 474 323 356 242 266 575 628 432 472 323 353
0.4 419 462 334 368 241 265 561 613 447 488 321 351

0.75 0.5 471 519 371 409 284 313 630 689 496 542 380 415
0.6 573 631 469 517 347 382 766 837 627 685 464 507
0.8 1177 1296 1047 1153 783 862 1574 1720 1400 1529 1047 1143

Five-group sequential design (J=5)
0.2 473 566 337 403 238 285 632 744 450 529 318 375
0.4 481 575 339 405 238 284 642 756 453 532 317 373

0 0.5 534 639 385 461 281 336 714 839 515 606 375 441
0.6 624 746 481 575 360 431 833 980 643 756 481 566
0.8 1181 1412 999 1194 768 918 1578 1856 1334 1570 1025 1206

0.2 460 550 325 389 233 278 615 723 435 511 311 365
0.4 463 553 329 393 237 284 618 727 440 517 317 373

0.25 0.5 518 620 381 455 271 324 693 815 508 598 362 425
0.6 622 743 481 574 359 429 830 977 642 755 479 563
0.8 1174 1403 1002 1197 773 924 1568 1844 1338 1574 1032 1214

0.2 447 534 310 370 225 269 597 702 414 486 301 354
0.4 437 523 327 390 238 284 584 687 436 513 318 374

0.5 0.5 505 604 376 450 268 321 675 794 503 591 358 422
0.6 599 716 454 543 346 413 801 942 606 713 462 543
0.8 1197 1431 969 1158 769 920 1599 1881 1295 1523 1028 1209

0.2 439 524 330 394 246 294 586 689 440 518 329 387
0.4 428 511 341 407 245 293 571 672 455 535 328 385

0.75 0.5 481 575 379 452 290 347 642 755 506 595 387 456
0.6 584 698 478 572 354 423 780 918 639 752 473 556
0.8 1201 1435 1068 1276 798 954 1604 1887 1426 1678 1067 1255
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Table 4.17: GSD design sample sizes (maximum) with � = 0:05, case III
Power=80% Power=90%

� = 0 � = 0:5 � = 0:75 � = 0 � = 0:5 � = 0:75
� t OF Pocock OF Pocock OF Pocock OF Pocock OF Pocock OF Pocock

Two-group sequential design (J=2)
0.2 1826 2011 1335 1470 931 1025 2442 2667 1785 1950 1244 1359
0.4 1804 1986 1290 1420 904 995 2412 2635 1725 1884 1209 1320

0 0.5 1997 2199 1418 1562 1034 1138 2671 2917 1897 2072 1382 1510
0.6 2303 2536 1738 1914 1289 1419 3080 3365 2324 2539 1723 1882
0.8 4068 4480 3506 3860 2671 2941 5441 5943 4688 5121 3571 3901

0.2 1845 2032 1301 1433 924 1018 2467 2695 1740 1901 1236 1350
0.4 1835 2021 1261 1389 912 1004 2454 2681 1686 1842 1220 1332

0.25 0.5 2000 2203 1436 1581 1011 1113 2675 2922 1920 2098 1352 1477
0.6 2402 2645 1840 2026 1304 1436 3212 3509 2460 2688 1743 1904
0.8 4368 4810 3646 4015 2782 3064 5842 6382 4876 5326 3721 4064

0.2 1765 1943 1228 1352 871 959 2360 2578 1641 1793 1164 1272
0.4 1698 1870 1254 1381 897 988 2271 2481 1677 1832 1199 1310

0.5 0.5 1912 2105 1434 1579 1006 1108 2556 2792 1918 2095 1346 1470
0.6 2305 2538 1703 1876 1287 1418 3083 3367 2278 2488 1721 1880
0.8 4417 4863 3527 3884 2763 3043 5906 6452 4717 5153 3695 4036

0.2 1695 1867 1271 1400 947 1043 2267 2476 1700 1857 1267 1384
0.4 1592 1753 1274 1402 907 999 2129 2325 1703 1860 1213 1325

0.75 0.5 1785 1966 1399 1541 1069 1177 2388 2608 1871 2044 1430 1562
0.6 2192 2413 1747 1924 1293 1424 2931 3201 2336 2552 1729 1889
0.8 4327 4765 3777 4159 2809 3094 5787 6321 5051 5517 3757 4104

Five-group sequential design (J=5)
0.2 1862 2226 1361 1627 949 1134 2488 2927 1818 2139 1268 1491
0.4 1839 2199 1316 1573 922 1102 2458 2891 1758 2068 1231 1449

0 0.5 2037 2435 1447 1729 1054 1260 2721 3201 1933 2274 1408 1657
0.6 2349 2808 1772 2119 1314 1571 3138 3692 2368 2786 1756 2066
0.8 4149 4960 3575 4274 2724 3256 5543 6521 4777 5619 3639 4281

0.2 1881 2249 1327 1586 943 1127 2514 2957 1773 2086 1260 1482
0.4 1871 2237 1286 1537 930 1112 2500 2941 1718 2021 1243 1462

0.25 0.5 2040 2439 1465 1751 1031 1232 2726 3206 1957 2302 1377 1620
0.6 2450 2929 1876 2243 1330 1590 3273 3850 2507 2949 1776 2090
0.8 4455 5326 3718 4445 2837 3392 5952 7002 4968 5844 3791 4459

0.2 1800 2151 1252 1497 888 1062 2404 2828 1672 1967 1186 1396
0.4 1732 2071 1279 1529 915 1093 2314 2722 1708 2010 1222 1437

0.5 0.5 1950 2331 1463 1749 1026 1227 2605 3064 1954 2299 1371 1613
0.6 2351 2810 1737 2077 1313 1569 3141 3695 2321 2730 1754 2063
0.8 4504 5385 3597 4301 2818 3369 6018 7079 4806 5654 3765 4429

0.2 1729 2067 1296 1549 966 1155 2310 2717 1732 2037 1291 1518
0.4 1623 1941 1299 1553 925 1106 2169 2551 1735 2041 1236 1454

0.75 0.5 1821 2177 1427 1706 1090 1304 2433 2862 1906 2242 1457 1714
0.6 2235 2672 1782 2130 1319 1577 2986 3513 2380 2800 1762 2073
0.8 4413 5276 3852 4605 2865 3425 5896 6936 5146 6054 3828 4503
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Table 4.18: Fixed sample design sample sizes with � = 0:05, case I
Power=80% Power=90%

� t � = 0 � = 0:5 � = 0:75 � = 0 � = 0:5 � = 0:75

0.2 206 145 107 276 194 143
0.4 214 152 109 287 203 146

0 0.5 240 177 131 322 236 175
0.6 283 224 170 379 299 228
0.8 569 492 382 762 659 511

0.2 198 142 102 265 190 137
0.4 205 148 108 274 198 145

0.25 0.5 232 173 126 311 231 168
0.6 283 221 169 379 296 226
0.8 550 474 384 737 634 514

0.2 193 136 101 258 181 135
0.4 194 147 109 259 196 145

0.5 0.5 225 171 126 301 228 169
0.6 273 213 161 365 285 216
0.8 568 462 368 761 619 492

0.2 191 145 110 256 194 148
0.4 192 153 114 257 204 152

0.75 0.5 219 174 135 293 233 181
0.6 270 225 171 361 300 228
0.8 570 515 384 763 689 514
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Table 4.19: Fixed sample design sample sizes with � = 0:05, case II
Power=80% Power=90%

� t � = 0 � = 0:5 � = 0:75 � = 0 � = 0:5 � = 0:75

0.2 460 328 232 616 439 310
0.4 468 330 231 626 441 309

0 0.5 520 375 273 696 502 365
0.6 607 468 351 812 627 469
0.8 1149 972 747 1538 1301 999

0.2 448 317 226 599 424 303
0.4 450 320 231 603 429 309

0.25 0.5 504 370 263 675 495 353
0.6 605 468 349 809 626 467
0.8 1142 974 752 1528 1304 1006

0.2 434 301 219 581 403 293
0.4 425 318 231 569 425 310

0.5 0.5 491 366 261 658 490 349
0.6 583 442 337 780 591 450
0.8 1164 943 748 1559 1262 1002

0.2 427 321 240 571 429 321
0.4 416 331 239 557 443 319

0.75 0.5 468 368 282 626 493 378
0.6 568 465 344 761 623 461
0.8 1168 1039 777 1563 1390 1040
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Table 4.20: Fixed sample design sample sizes with � = 0:05, case III
Power=80% Power=90%

� t � = 0 � = 0:5 � = 0:75 � = 0 � = 0:5 � = 0:75

0.2 1812 1324 923 2425 1772 1236
0.4 1789 1280 897 2395 1713 1200

0 0.5 1981 1407 1025 2652 1884 1373
0.6 2285 1724 1279 3059 2308 1711
0.8 4036 3478 2649 5403 4655 3547

0.2 1830 1291 917 2450 1728 1228
0.4 1821 1251 905 2437 1675 1211

0.25 0.5 1984 1425 1003 2656 1907 1342
0.6 2383 1825 1293 3190 2443 1731
0.8 4334 3617 2760 5801 4842 3695

0.2 1751 1218 864 2343 1630 1156
0.4 1685 1244 890 2256 1665 1191

0.5 0.5 1896 1423 998 2539 1905 1336
0.6 2287 1690 1277 3061 2262 1709
0.8 4382 3499 2741 5865 4684 3669

0.2 1682 1261 940 2251 1688 1258
0.4 1579 1264 900 2114 1691 1205

0.75 0.5 1771 1388 1061 2371 1858 1420
0.6 2174 1733 1283 2910 2320 1717
0.8 4293 3747 2787 5747 5016 3731
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Table 4.21: AUC, power(%) using the O'Brien-Fleming GSD with � = 0:05, case I

Power=80% Power=90%

� = 0 � = 0:5 � = 0:75 � = 0 � = 0:5 � = 0:75
� Normal LogN Normal LogN Normal LogN Normal LogN Normal LogN Normal LogN

Two-group sequential design (J=2)
0 79.2 79.1 80.3 80.2 80.4 80.4 89.1 89.7 90.2 89.5 91.0 90.5

0.25 80.2 79.9 78.9 80.1 81.1 79.5 89.7 89.3 89.8 89.5 90.0 90.4
0.5 80.4 79.8 78.8 79.8 81.1 80.9 89.8 89.9 90.3 89.8 90.2 90.2
0.75 80.5 79.3 79.4 78.3 79.4 79.6 89.6 90.5 90.0 89.7 89.7 89.8

Five-group sequential design (J=5)
0 79.9 79.4 79.0 79.5 80.4 81.4 89.6 89.9 89.9 90.1 90.2 90.4

0.25 80.0 79.4 80.3 80.1 79.5 80.7 89.7 89.2 89.5 89.4 89.9 90.2
0.5 78.9 79.6 79.4 80.4 80.8 80.4 89.1 90.1 89.2 88.9 90.3 89.9
0.75 80.0 81.2 79.5 79.5 80.3 80.0 90.0 90.5 89.6 89.4 90.3 90.1

For statistical studies comparing AUCs of two clustered ROC, we get the following

results using same approach. Instead of analyzing on particular FPR, here we study the

summary measurement, AUC, of the investigational ROC curves. We follow the same steps

as discussed earlier conducting the study, which includes sample size calculation, GSD size

determination, simulation for powers, and calculation of expected sample size.

The simulation results in Tables 4.21 - 4.35 shows that the simulated powers are close

to the expected values, 80% or 90%, with sample sizes calculated using power approach. In

each case we �nd that the power goals are closely met for both OBrien-Fleming and Pocock

methods with di�erent number of interim looks and also for di�erent �, � combinations.

Not surprisingly, we have similar results for lognormal and normal data. Furthermore,

Pocock method tend to have larger GSD design size and smaller expected sample size than

OBrien-Fleming method.

4.4 Example of Glaucomatous Deterioration Detection

In this section, we illustrate the GSD in a glaucomatous deterioration detection diagnostic

trial. Glaucoma is a progressive optic neuropathy. The related symptoms include loss of

retinal ganglion cells, and morphological changes to the optic nerve and retinal nerve �ber
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Table 4.22: AUC, power(%) using the Pocock GSD with � = 0:05, case I

Power=80% Power=90%

� = 0 � = 0:5 � = 0:75 � = 0 � = 0:5 � = 0:75
� Normal LogN Normal LogN Normal LogN Normal LogN Normal LogN Normal LogN

Two-group sequential design (J=2)
0 79.3 80.4 79.8 80.6 80.8 80.7 89.7 89.2 89.6 89.7 90.8 91.2

0.25 79.5 80.1 79.9 79.8 80.5 80.8 89.8 89.4 88.9 89.3 89.8 90.7
0.5 79.2 79.8 81.7 81.1 80.5 79.2 89.9 90.7 89.6 89.2 90.0 89.2
0.75 79.4 80.0 80.9 79.9 79.7 79.9 90.0 90.5 89.5 89.6 89.3 89.2

Five-group sequential design (J=5)
0 79.4 81.0 81.1 80.1 80.9 80.7 89.4 90.4 91.0 90.5 90.9 91.5

0.25 79.4 79.4 79.4 78.9 80.3 80.1 89.9 88.8 90.1 89.3 90.2 88.8
0.5 80.1 79.9 81.3 80.1 81.5 80.6 89.8 90.0 89.6 90.1 90.2 89.7
0.75 80.9 81.1 80.2 80.3 80.5 80.0 89.8 89.9 90.0 90.2 90.5 90.5

Table 4.23: AUC, power(%) using the O'Brien-Fleming GSD with � = 0:05, case II

Power=80% Power=90%

� = 0 � = 0:5 � = 0:75 � = 0 � = 0:5 � = 0:75
� Normal LogN Normal LogN Normal LogN Normal LogN Normal LogN Normal LogN

Two-group sequential design (J=2)
0 79.5 80.0 79.8 79.4 80.9 81.1 89.5 89.0 89.3 89.2 90.4 90.9

0.25 79.0 79.7 79.5 80.6 79.4 80.4 89.4 89.5 90.4 89.7 89.9 88.9
0.5 80.2 80.8 80.2 79.1 79.8 80.1 89.3 90.0 90.3 89.8 89.9 90.1
0.75 80.2 79.3 78.8 79.5 79.7 79.5 90.4 89.5 89.9 89.5 90.3 89.7

Five-group sequential design (J=5)
0 80.5 79.5 80.4 78.8 81.0 80.2 89.6 89.3 90.2 90.0 90.4 90.9

0.25 79.1 79.6 79.0 78.9 78.7 79.7 90.2 89.4 90.0 89.8 89.8 90.4
0.5 80.9 80.2 79.1 78.7 80.1 79.4 89.7 89.0 88.5 89.9 89.4 90.2
0.75 80.1 80.1 78.6 80.1 79.7 79.2 90.3 89.3 90.2 88.8 89.7 90.3
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Table 4.24: AUC, power(%) using the Pocock GSD with � = 0:05, case II

Power=80% Power=90%

� = 0 � = 0:5 � = 0:75 � = 0 � = 0:5 � = 0:75
� Normal LogN Normal LogN Normal LogN Normal LogN Normal LogN Normal LogN

Two-group sequential design (J=2)
0 79.7 78.7 79.9 79.8 80.7 80.1 88.3 89.8 89.7 89.8 90.0 90.2

0.25 79.2 79.7 79.2 79.5 79.3 79.6 89.9 89.3 89.5 89.4 89.7 90.0
0.5 80.2 80.3 79.3 79.1 80.3 80.4 90.5 89.5 89.8 88.8 89.6 89.4
0.75 79.6 80.8 79.0 80.4 80.4 79.7 89.9 90.3 89.0 89.8 89.3 90.0

Five-group sequential design (J=5)
0 78.5 79.8 80.0 80.2 80.5 80.4 90.1 88.6 90.0 90.2 89.3 90.3

0.25 79.7 79.6 80.1 79.4 80.3 79.0 89.8 89.5 89.4 89.7 89.5 89.9
0.5 80.7 78.7 79.0 79.7 79.9 81.4 90.2 89.9 89.9 89.8 90.4 89.2
0.75 80.5 79.3 78.8 79.4 81.3 80.7 89.1 89.0 89.3 89.7 89.5 89.8

Table 4.25: AUC, power(%) using the O'Brien-Fleming GSD with � = 0:05, case III

Power=80% Power=90%

� = 0 � = 0:5 � = 0:75 � = 0 � = 0:5 � = 0:75
� Normal LogN Normal LogN Normal LogN Normal LogN Normal LogN Normal LogN

Two-group sequential design (J=2)
0 79.0 79.4 79.9 79.1 80.0 79.9 89.0 89.3 89.6 89.4 89.6 88.5

0.25 80.2 81.3 79.5 79.1 79.6 79.3 90.2 90.0 89.5 89.6 89.5 89.2
0.5 80.8 79.8 80.2 79.0 80.5 81.4 90.9 90.1 89.5 89.8 90.5 90.0
0.75 80.5 80.2 79.7 78.6 79.2 79.7 90.6 90.1 89.0 90.0 89.8 89.6

Five-group sequential design (J=5)
0 78.7 78.8 79.3 78.1 79.2 80.1 89.2 89.0 89.5 89.4 90.7 90.0

0.25 80.6 80.8 79.9 79.3 79.1 80.2 90.3 90.4 90.1 90.1 89.9 89.6
0.5 80.3 80.5 80.0 80.3 79.7 81.1 89.3 90.2 89.9 89.8 90.2 90.6
0.75 80.3 79.2 78.7 78.9 80.0 79.8 89.8 90.3 89.3 89.2 90.3 89.5
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Table 4.26: AUC, power(%) using the Pocock GSD with � = 0:05, case III

Power=80% Power=90%

� = 0 � = 0:5 � = 0:75 � = 0 � = 0:5 � = 0:75
� Normal LogN Normal LogN Normal LogN Normal LogN Normal LogN Normal LogN

Two-group sequential design (J=2)
0 78.8 78.1 79.0 79.0 78.7 79.8 88.0 89.2 89.4 89.0 89.6 89.3

0.25 80.4 79.4 79.9 79.4 79.8 79.1 90.6 90.1 89.7 90.3 90.0 89.7
0.5 80.5 80.7 80.4 80.3 79.9 80.7 90.6 90.6 89.4 90.1 90.2 90.3
0.75 79.8 80.1 79.4 78.8 79.9 79.4 90.2 89.3 89.1 89.9 89.8 89.1

Five-group sequential design (J=5)
0 79.1 78.5 79.0 79.9 78.3 79.0 89.7 89.7 89.8 90.0 89.3 89.4

0.25 80.7 81.5 79.6 79.5 80.2 79.9 90.3 90.6 90.4 90.5 90.0 90.4
0.5 80.7 81.4 80.2 80.6 81.0 81.0 90.4 90.3 90.2 90.4 89.2 90.1
0.75 80.0 80.5 79.5 79.4 79.7 79.7 90.0 89.5 89.8 89.7 90.2 90.5

Table 4.27: AUC, expected sample sizes using GSD with � = 0:05, case I
Power=80% Power=90%

� = 0 � = 0:5 � = 0:75 � = 0 � = 0:5 � = 0:75
� OF Pocock OF Pocock OF Pocock OF Pocock OF Pocock OF Pocock

Two-group sequential design (J=2)
0 123 118 69 65 37 35 157 142 87 79 47 43

0.25 114 108 63 60 35 33 145 132 80 74 44 41
0.5 104 100 60 57 34 32 131 121 76 70 43 39
0.75 95 91 61 58 34 33 121 111 77 71 44 40

Five-group sequential design (J=5)
0 111 109 62 60 34 32 137 124 76 68 41 37

0.25 104 101 57 56 32 30 127 116 71 64 38 35
0.5 94 91 54 52 31 29 117 107 67 61 37 33
0.75 87 83 54 53 31 30 107 95 67 61 39 35
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Table 4.28: AUC, expected sample sizes using GSD with � = 0:05, case II
Power=80% Power=90%

� = 0 � = 0:5 � = 0:75 � = 0 � = 0:5 � = 0:75
� OF Pocock OF Pocock OF Pocock OF Pocock OF Pocock OF Pocock

Two-group sequential design (J=2)
0 273 256 150 141 81 76 346 317 190 173 102 92

0.25 255 243 140 133 75 71 322 293 175 161 95 87
0.5 232 221 132 125 73 69 294 267 167 154 91 83
0.75 209 196 132 124 74 70 263 241 164 153 93 87

Five-group sequential design (J=5)
0 247 242 135 134 72 70 304 278 167 153 89 82

0.25 231 225 127 124 68 66 284 258 156 143 83 77
0.5 210 205 120 117 65 64 260 235 148 133 80 72
0.75 189 182 119 116 67 65 233 211 145 132 82 74

Table 4.29: AUC, expected sample sizes using GSD with � = 0:05, case III
Power=80% Power=90%

� = 0 � = 0:5 � = 0:75 � = 0 � = 0:5 � = 0:75
� OF Pocock OF Pocock OF Pocock OF Pocock OF Pocock OF Pocock

Two-group sequential design (J=2)
0 1075 1023 585 560 310 293 1356 1242 738 678 391 358

0.25 1022 962 556 528 292 276 1289 1182 698 637 368 336
0.5 925 874 520 489 279 263 1166 1072 661 598 352 324
0.75 806 763 499 476 282 266 1013 932 630 578 354 325

Five-group sequential design (J=5)
0 975 954 531 529 282 278 1200 1102 651 600 343 313

0.25 929 908 504 495 266 257 1136 1043 616 559 325 298
0.5 838 825 471 457 253 245 1027 941 578 530 310 287
0.75 725 712 454 440 254 248 894 830 558 512 313 283
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Table 4.30: AUC, GSD design sample sizes (maximum) with � = 0:05, case I

Power=80% Power=90%

� = 0 � = 0:5 � = 0:75 � = 0 � = 0:5 � = 0:75
� OF Pocock OF Pocock OF Pocock OF Pocock OF Pocock OF Pocock

Two-group sequential design (J=2)
0 138 152 77 85 42 46 185 202 103 112 56 61

0.25 128 141 71 79 39 43 171 187 95 104 52 57
0.5 118 130 68 75 38 42 157 172 91 99 51 55
0.75 108 119 69 76 39 43 145 158 92 100 53 57

Five-group sequential design (J=5)
0 141 168 78 94 43 51 188 221 105 123 57 67

0.25 131 156 73 87 40 47 174 205 97 114 53 62
0.5 120 144 69 83 39 46 160 189 92 109 51 60
0.75 111 132 70 84 40 48 148 173 93 110 54 63

Table 4.31: AUC, GSD design sample sizes (maximum) with � = 0:05, case II

Power=80% Power=90%

� = 0 � = 0:5 � = 0:75 � = 0 � = 0:5 � = 0:75
� OF Pocock OF Pocock OF Pocock OF Pocock OF Pocock OF Pocock

Two-group sequential design (J=2)
0 305 336 168 185 90 99 408 446 225 245 120 131

0.25 285 314 157 172 84 92 381 417 209 228 112 122
0.5 261 287 148 163 81 89 348 381 198 216 108 118
0.75 235 258 147 162 83 92 313 342 196 214 111 122

Five-group sequential design (J=5)
0 311 372 171 205 91 109 416 489 229 269 122 143

0.25 291 348 160 191 86 102 389 457 213 251 114 134
0.5 266 318 151 181 83 99 355 418 202 237 110 129
0.75 239 286 150 179 85 102 319 376 200 235 113 133

138



Table 4.32: AUC, GSD design sample sizes (maximum) with � = 0:05, case III

Power=80% Power=90%

� = 0 � = 0:5 � = 0:75 � = 0 � = 0:5 � = 0:75
� OF Pocock OF Pocock OF Pocock OF Pocock OF Pocock OF Pocock

Two-group sequential design (J=2)
0 1192 1313 654 720 345 380 1595 1742 875 956 461 504

0.25 1147 1263 621 684 326 359 1534 1676 830 907 436 477
0.5 1040 1145 582 640 313 344 1391 1519 778 849 418 457
0.75 900 990 558 614 314 346 1203 1314 746 815 420 459

Five-group sequential design (J=5)
0 1216 1454 667 798 352 420 1625 1911 891 1049 470 553

0.25 1170 1399 633 757 333 398 1563 1839 846 995 445 523
0.5 1061 1268 593 709 319 381 1417 1667 792 932 426 501
0.75 917 1097 569 680 320 383 1226 1442 760 894 428 503

Table 4.33: AUC, �xed sample design sample sizes with � = 0:05, case I
Power=80% Power=90%

� � = 0 � = 0:5 � = 0:75 � = 0 � = 0:5 � = 0:75

0 137 76 41 183 102 55
0.25 127 71 39 170 95 52
0.5 117 67 38 156 90 50
0.75 108 68 39 144 91 52

Table 4.34: AUC, �xed sample design sample sizes with � = 0:05, case II
Power=80% Power=90%

� � = 0 � = 0:5 � = 0:75 � = 0 � = 0:5 � = 0:75

0 303 167 89 405 223 119
0.25 283 155 83 379 208 111
0.5 259 147 80 346 197 107
0.75 233 146 83 311 195 111
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Table 4.35: AUC, �xed sample design sample sizes with � = 0:05, case III
Power=80% Power=90%

� � = 0 � = 0:5 � = 0:75 � = 0 � = 0:5 � = 0:75

0 1183 649 342 1583 869 458
0.25 1138 616 324 1523 824 433
0.5 1032 577 310 1381 772 415
0.75 892 553 312 1194 741 417

layer. The global prevalence of glaucoma for population aged 40-80 years is 3.54%. The

number of people with glaucoma worldwide was estimated to be 64.3 million in 2013, which

will increase to 76.0 million in 2020 and 111.8 million in 2040 (Tham et al. 2014). If

glaucoma is not diagnosed and treated, damage can progress and cause a loss of peripheral

vision and may eventually lead to complete sight loss. In fact, glaucoma is one of the leading

causes of global preventable blindness. Glaucoma does not cause symptoms in early stages,

which makes it hard to be diagnosed, but an eye exam might detect the signs of glaucoma.

The visual �eld deterioration due to glaucoma can be tested using imaging techniques. But

it is challenging to accurately identify the progressive eyes in glaucoma patients since the

structure of the image data is complex and it is very di�cult to detect the changes. Li

and Zhou (2008) studied the accuracy of probability scores generated from two Bayesian

hierarchical models on classifying the stable and progressive eyes. The study includes 171

patients and visual �eld tests were given to these patients over 8 years of follow-up study.

Some patients were measured on both eyes and others were measured only on one eye.

Because some data are from both eyes of the same patient, test scores from the hierarchical

models calculated from both eyes of the same patients are cluster-correlated. We applied

the previously mentioned method to the dataset to generate empirical ROC curves for both

models. Our study covers the GSD methods for the trial both on a point estimate of the

ROC curve and on the AUC di�erences. The empirical ROC curves of the two biomarkers

are shown in Figure 4.6.
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Figure 4.6: Empirical ROC curves of two models for glaucoma deterioration detection

Consider testing the null hypothesis of �(t) = 0 for t=f0.2,0.4,0.5,0.6,0.8g. The Glau-
coma example is a possible case under the alternative hypothesis condition, with �(t) =

f0:506; 0:365; 0:212; 0:165; 0:024g for t=f0.2,0.4,0.5,0.6,0.8g respectively. With empirical

ROC estimates and Bootstrap method for the variance estimation, in Table 4.36 we show

the interim looks of one run with statistics and corresponding boundaries displayed at the

bottom for O'Brien-Fleming GSD method with J = 5. The sequential empirical ROCs at

the interim analysis point and the �nal step are calculated and displayed in Figure 4.8,

where the last graph is identical to Figure 4.6. Similarly, the sequential empirical ROCs for

J = 2 are shown in Figure 4.7.
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Table 4.36: Interim test statistics of the glaucomatous deterioration detection example

Interim Z-Statistic

FPR 1 2 3 4 5

0.2 1.613 2.324 5.411

0.4 0.000 2.280 3.756

0.5 0.000 1.345 2.105 2.673

0.6 0.000 1.707 2.543 3.262

0.8 0.000 0.000 0.000 0.461 0.741

Boundaries �4:56 �3:23 �2:63 �2:28 �2:04

Figure 4.7: Sequential empirical ROC curves at interim analyses for glaucoma deterioration
detection (J=2)
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Figure 4.8: Sequential empirical ROC curves at interim analyses for glaucoma deterioration
detection (J=5)
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Suppose FPR =0.2 and the number of looks for O'Brien-Fleming GSD is 5. At the

�rst endpoint, with 34 subjects' test results become available, the Z-statistic is 1.613, which

lies within the rejection boundaries of the hypothesis testing. Thus we fail to reject the

null hypothesis, and continue to recruit 34 additional subjects. The di�erence between the

ROC curves at FPR=0.2 and its variance can be estimated using the accrued subjects' data

up to this point which is 64 in total. The statistic is calculated to be 2.324 which again is

smaller than the boundary 3.23. Again, we fail to reject the null hypothesis, and continue to

recruit another 34 subjects. At the third interim analysis with overall 102 subjects' data, we

calculate the Z-statistic to be 5.411, which is greater than the boundary 2.63. Therefor, we

reject the null hypothesis of �(0:2) = 0 at this step, and conclude that the two biomarkers

are signi�cantly di�erent in their accuracy at the false positive rate of 0.2.

For testing of AUCs' di�erence, the AUCs are estimated to be 0.70 and 0.95 for model

1 and model 2 respectively, where AUCs are estimated using Wilcoxon-Mann-Whitney

statistics (DeLong et al. 1988). We applied the O'Brien-Fleming GSD with J=2 or 5 to

the trial respectively. We found that we can reject the null hypothesis of equal AUCs of

the two ROCs at the �rst (J=2) and the third interim analysis (J=5), which used 85 and

102 subjects respectively. Using the same procedure but with Pocock GSD, we can reject

the null hypothesis of equal AUCs at the �rst (J=2) and the second interim analysis (J=5),

which will use 85 and 68 subjects respectively.

4.5 Discussion

The empirical distribution function de�ned in this chapter puts equal weight on each ob-

servation. In future, we can use the following de�nition which puts equal weight on each

subject instead of observations.

F̂[nt](x) =
1

[nt]

[nt]X
i=1

1

mi

miX
j=1

I(Xij � x);
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where t is the percentage of subjects accrued so far at this analysis point. F̂[nt](x) can be

simpli�ed as F̂t(x).

The sequential empirical process is then de�ned as

n�1=2[nt](F̂[nt](x)� F (x)):

With the new de�nition, it is also of interest to derive the asymptotic properties of the

clustered ROC curves and apply it in group sequential ROC comparison study. We can also

remove the requirement that the average of mi converges to a constant.

Furthermore, the group sequential method we propose can also be extended to comparing

multiple clustered-correlated ROC curves.
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Chapter 5: Discussion

5.1 Summary

This dissertation covers three issues in the group sequential diagnostic biomarkers' com-

parison studies. We consider group sequential designs that allow early termination for

signi�cant di�erence. Chapter 2 derived asymptotic theory for correlated ROC curves,

which is necessary to apply existing standard group sequential methodology to comparing

correlated ROCs. Chapter 3 extended this to the �eld of correlated PPV and NPV curves,

both indexed by the FPR and by the percentil value. Chapter 4 developed the asymptotic

theory for clustered ROC curves.

In Chapter 2 we �rst investigated the asymptotic properties of the sequential empirical

di�erence of two correlated ROC curves. We �rst extended the work of Koopmeiners and

Feng (2011) by showing that the sequential empirical di�erence of two correlated ROC

curves converges to a Gaussian process and show that the sequential empirical estimate

of �(t), a point on the ROCs' di�erence curve, has an independent increments covariance

structure.

We then can conduct group sequential comparison studies on two correlated diagnostic

biomarkers. The proof of the independent increments allows us to apply existing standard

group sequential methodology to correlated diagnostic biomarker comparison studies. We

showed the weak convergence of the sequential empirical di�erence of ROC curves to a

Gaussian process, and based on this we derived asymptotic theory. Through integration,

this would also allow us to derive asymptotic theory for the sequential empirical summary

measure di�erence of correlated ROC curves. In the thesis we only present results for a

point di�erence on the ROC curves, however it is straight forward to derive distribution

theory for other summary measures used to evaluate the performance di�erence between
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diagnostic biomarkers. These results provide great exibility for designing group sequential

diagnostic biomarkers comparison studies.

The covariance structure were veri�ed by a simulation study. We also conducted group

sequential simulation studies on Type I error rates compared to the nominal value. Another

group sequential simulation studies show that actual sample size could be substantially

decreased due to early study termination while still maintain the power requirement and �

level. We also presented an example on a lung cancer trial with CT and PET comparison

study.

In Chapter 3, we studied the sequential di�erence of empirical correlated PPV and

NPV curves, either indexed by FPR or indexed by percentile value. We showed that the

sequential empirical di�erence of correlated PPV and NPV curves converge to a Gaussian

process with independent covariance structure.

In Chapter 4, we derived the distribution theory for the sequential empirical ROC

di�erence of two diagnostic biomarkers in a clustered data setting. We further studied

the group sequential design for ROCs comparison in this clustered data setting based on

the asymptotic properties. We also conducted simulation studies to verify the covariance

structure, and group sequential simulation studies on Type I error rates and expected sample

sizes.

5.2 Future Work

This dissertation studies the group sequential comparison methods for two correlated or

clustered diagnostic biomarkers. Based on the distribution theory we derived for the se-

quential empirical di�erences, we can apply the existing group sequential methodology to

the comparison study.

In correlated ROCs comparison study, we can use either the variance formula derived or

Bootstrap method to estimate the empirical di�erence's variance, while Bootstrap method is

much more computationally intensive. However, using the empirical cumulative distribution

functions and Kernel density estimation to estimate the variance has some limitation due to
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the di�culty in Kernel density estimation. It is desirable if we can develop a non-parametric

estimation method for variance without involving density estimation. Currently, we mainly

deal with two correlated ROC curves with variance covariance formula developed. We can

also apply similar approach to compare multiple ROC curves.

For clustered ROCs comparison study, currently the empirical distribution function

de�ned in the thesis have equal weights on each observation. Another approach would be

to put equal weights on each subject instead of observation. The group sequential method

we propose can also be extended to PPV and NPV comparison as well as comparing multiple

cluster-correlated ROC curves.
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Appendix A: R Packages Used

1. library(gsDesign): gsDesign is a package that derives group sequential designs and

describes their properties. The library is used to calculate the boundaries at interim

analysis points for a group sequential design.

2. library(MASS): We use the functions provided by the library to generate multi-

variate normal and lognormal random variables. We used the function mvrnorm() to

generate multivariate normal random variable for simulation studies.

3. library(mvtnorm): To calculate the theoretical values, we used function pmvnorm()

which computes the distribution function of the multivariate normal distribution for

arbitrary limits and correlation matrices in Chapter 2.

4. library(ROCR): We use the plot() function provided by the package for all ROC

curve graphs plotting.

Simulation and example programs are written in R, with some core functions imple-

mented with C.
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