
GOLDEN-CHIP FREE SIDE CHANNEL DELAY ANALYSIS TEST
FOR HARDWARE TROJAN AND RECYCLED IC DETECTION

by

Ashkan Vakil
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
In Partial fulfillment of

The Requirements for the Degree
of

Doctor of Philosophy
Computer Engineering

Committee:

Dr. Avesta Sasan, Dissertation Director

Dr. Khaled Khasawneh, Committee Member

Dr. Jim Jones, Committee Member

Dr. Behzad Esmaeili, Committee Member

Dr. Monson Hayes, Department Chair

Dr. Kenneth Ball, Dean, The Volgenau School
of Engineering

Date: Spring Semester 2021
George Mason University
Fairfax, VA

Golden-Chip Free Side Channel Delay Analysis Test for Hardware Trojan and Recycled
IC Detection

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Ashkan Vakil
Master of Science

University of Bridgeport, 2015

Director: Dr. Avesta Sasan, Professor
Department of Electrical and Computer Engineering Department

Spring Semester 2021
George Mason University

Fairfax, VA

Copyright © 2021 by Ashkan Vakil
All Rights Reserved

ii

Dedication

I dedicate this dissertation to my family, who support me during the challenges throughout
my journey; to the challenge, that confronting it leads to improvement; and lastly to im-
provement itself, that without it I could not realize the preciousness of time, which is the
most valuable.

iii

Acknowledgments

I would like to express the deepest appreciation to my advisor, Dr. Sasan, who has continued
supporting me during this chapter of my life.

iv

Table of Contents

Page

List of Tables . vii

List of Figures . viii

Abstract . xi

1 Introduction . 1

1.1 Hardware Trojan . 1

1.2 Recycled IC . 3

1.3 Challenges and Proposed Solution . 5

1.4 Motivation . 6

2 Background . 8

2.1 Hardware Trojan . 8

2.2 Recycled IC . 10

3 Threat Model and Challenges . 13

3.1 Threat Model . 13

3.1.1 Trojan Threat Model . 13

3.1.2 Recycled IC Threat Model . 13

3.2 Side Channel Detection Challenge: Variability 14

4 Proposed Detection Solution . 18

4.1 Definitions and Model Parameters . 18

4.2 Modeling and Tracking the Process Drift . 20

4.3 Modeling and Mitigating process variation 25

4.3.1 Systematic Process Variation . 25

4.3.2 Random Process Variation . 25

4.4 Modeling Timing Impact of Voltage Noise 27

4.4.1 Delay Equivalent Voltage . 27

4.4.2 Using VDEV for STA annotation . 30

4.5 Trojan Detection Flow . 36

4.5.1 Detection Flow . 36

4.5.2 Diagnostic Analysis: . 40

v

4.6 Recycled IC Detection Flow . 43

4.6.1 ADP set identification . 43

4.6.2 Building The Neural Assisted Golden Timing Model 46

4.6.3 Computing Added Delays . 47

4.6.4 Inferring MAP-LAP mean shift . 47

4.6.5 Classification . 47

5 Results and Discussion . 49

5.1 Proposed Voltage Modeling Accuracy . 49

5.1.1 Verification of Delay Equivalent Voltage 49

5.1.2 Improvement in STA accuracy . 52

5.2 NN-Watchdog Accuracy . 53

5.3 HW Trojan Detection Accuracy . 54

5.3.1 Experimental Setup . 54

5.3.2 Trojan Detection Results . 56

5.3.3 Results of Diagnostic Analysis . 60

5.4 Recycled IC Detection . 62

6 Conclusion . 65

Bibliography . 66

vi

List of Tables

Table Page

4.1 Description for each of 48 features, extracted from each timing-path for build-

ing the NN training set. (LP: Launch portion of timing-path, CP: Capture

portion of timing-path, DP: Data portion of timing-path, M: Metal Layer, x:

drive strength of the gate) . 20

4.2 hyper-parameters of regressor models used in this table. 24

5.1 The Accuracy of Three NN-Watchdog regression model (Ridge Regression,

MLP and Stacking-regressor) trained for different benchmarks on NGTM-10.

The µ and σ are the Mean and Standard deviation of the regression error

over the validation set. As discussed in Section 4.2, the Fast, Typical and

Slow process are simulated using skewed Spice model with (X,Y) = (5,5),

(0,0), (-5,-5), respectively. µ and σ are reported in pico seconds. 53

5.2 Threshold values used for TT and TP Trojan detection in Fast-bin in Algo-

rithm 2 when using NGTM-10 model . 59

5.3 Percentage of False Positives (FPos) and True Positives (TPos) when Stack-

ing model , as described in Algorithm 2 is used to detect TP with different

binning strategies (Slow, Typical, Fast, and no Binning). For this simulation,

the NN is trained using a Trojan in dataset (NGTM-1 model). 60

5.4 In this table, the result of our diagnostic test for reducing the false-positive

rate of our proposed model is reported. The diagnostic test is also able to

pinpoint the location of nets hosting the Trojan Trigger or Payload. The

expected number of suspect nets (by the model) after running the diagnostic

test is indicated by E(n). 61

5.5 The mean error of each ADP set group for all benchmarks. 64

vii

List of Figures

Figure Page

1.1 Impact of aging on critical path delay. 4

2.1 Threshold-voltage shift of a PMOS transistor under NBTI effect 12

3.1 (left): Trojan taxonomy, (right): Trojan trigger circuit types 13

3.2 The impact of random process variation on the delay of a timing-path when

sampled across multiple dies (after fabrication). 16

3.3 Improvement in the process over time non-linearly changes the delay of dif-

ferent timing-paths (process drift). The process drift affects each timing-path

differently. 17

4.1 In a new device, one cannot distinguish between MAP and LAP timing paths

as no aging occurred. Computing the AD for timing paths gives us a zero-

mean distribution. As the IC ages, the delay of all timing paths increases,

however, the delay-increase is more significant in the MAP set of timing

paths. Therefore, the normal distribution of AD morphs into a bimodal

distribution as the IC ages. Identification of MAP and LAP sets of timing

paths allows us to compute the mean for each set. The shift in the mean is

an indication of the extent of aging. In this figure, it is assumed that there is

no process drift (but there exist process variation), the step size of the tester

is very small, STA is perfect, and CFST reported delay for a timing path

at age zero (fresh IC) matches STA. We will update these assumptions to

realistic ones when discussing our proposed solution. 19

4.2 Abstract view of a fully-connected NN (left) and a Random forest (right) as

two base models to form test-time process watchdog. 22

4.3 Top figure shows a two-layer stacked regressor. Bottom figure shows the

cross-validation method used for obtaining hyper parameters at a two layer

stacked regressor. 23

4.4 Computing the mean delay of a path using CFST delay measurements with

step size S, clock period T, over m samples (dies). 25

viii

4.5 Inverter chain delay based on individual cell voltages when modeled by actual

and VDEV voltages. 28

4.6 (left): Larger error for linear interpolation of a cell delay when using three

timing session; (right): Generating two additional timing sessions using CCS

non-linear interpolation followed by non-linear interpolation of the cell delay

which resulting in a smaller interpolation error. 30

4.7 (left) The naming convention for different sections of timing path, (right):

Delay components of a timing path . 31

4.8 Modeling rail voltages, considering IR drop across board, package and die,

for STA annotation. 34

4.9 Trojan Detection Flow: The model includes changes in the design and test

stages. The test stage divides the timing-paths into long and short paths.

The short paths are subjected to power side-channel Trojan detection as

described in [1] (not covered in this work), and the long paths are subjected to

delay side-channel analysis using NGTM as reference timing model, adjusted

by a NN that is trained as a process watchdog and by using CFST to find

the start-to-fail frequencies for timing-paths under test. 37

4.10 Diagnostic Test: (left): a Trojan free design where a suspicious net is tested

for Trojan through many timing paths passing through it. The delta dif-

ference between predicted delay (NN adjusted STA delay) and CFST test

delay (collected from multiple ICs) for each timing path is computed. In a

Trojan-free design, the process variation results in a variation of the resulting

delta value, but the mean of this delta difference is close to 0. (right): A

design with HT on the suspicious net. The delta difference, in this case, is

also a distribution. However, the existence of HT pushes the mean of this

distribution away from 0. (bottom): The distribution of delta difference for

the design with and without HT is shown. The Trojan is detected if the

mean value of the delta difference distribution is greater than the detection

threshold obtained from Alg. 2. 41

4.11 SPICE netlist for aging each gate type. 45

ix

5.1 setup for a) the SPICE simulation when using actual voltages obtained from

Redhawk; b) the SPICE simulation when using computed VDEV voltages for

LP and CP; c) the SPICE simulation when using hard margins (using 10%

IR drop and 5% uncertainty) . 50

5.2 The timing slacks in three nearly timing closed design (Ethernet, AES128

and S38417) using conventional margin based and VDEV flow for generation

of NGTM . 51

5.3 VDEV based slacks v.s. margin-based slacks 52

5.4 Histogram of NN-Watchdog Error trained for different benchmarks. 54

5.5 Trojan Payload detection results for 3 benchmarks. (top): Detection rate,

(bottom): False positive rate. The SSTA bar represents the HW Trojan

Payload detection using a (Mean shifted) STA. The NGTM bars represent

the Trojan Payload detection when Neural-assisted timing model is deployed.

Each bar shows the NN trained when X Trojans are included in the training

set, with X ∈ {0, 1, 5, 10, and15}. 57

5.6 Trojan Trigger detection results for 3 benchmarks. (top): Detection rate,

(middle): Detection rate for sensitized designs, and (bottom): False positive

rate. 58

5.7 Associated ROC curve for (top): TP, and (bottom): TT, when NGTM-1

models are used. ROC curves capture the True Positive Rate versus False

Positive Rate. 59

5.8 Histograms depicting delay-increase on timing-paths used for classification

after one month of aging. For each benchmarks, there exists a bimodal

distribution for the AD distinguishing the MAP and LAP paths from each

other. 63

x

Abstract

GOLDEN-CHIP FREE SIDE CHANNEL DELAY ANALYSIS TEST FOR HARDWARE
TROJAN AND RECYCLED IC DETECTION

Ashkan Vakil, PhD

George Mason University, 2021

Dissertation Director: Dr. Avesta Sasan

The distributed manufacturing supply chain of Integrated Circuits (IC) introduces many

vulnerabilities during IC’s life cycle. An adversary in an untrusted foundry can exploit these

weaknesses to design malicious hardware attacks that target the integrity, reliability, and

trustworthiness of fabricated ICs.

This work introduces a set of physical-aware and learning-assisted modeling techniques,

followed by test methodologies, for Hardware security in the post-fabrication stage. The pro-

posed detection approach targets to identify Hardware-Trojan infected chips and recycled-

ICs. Unlike the prior art, this flow does not require a Golden fabricated chip as a fingerprint

to compare the side-channel signals. Instead, by modeling the voltage drop and voltage noise

pre-fabrication and training a Neural Network post-fabrication, our proposed technique can

improve the timing model collected during timing closure and produces a Neural Assisted

Golden Timing Model (NGTM) for side-channel delay-signal analysis.

The Neural Network acts as a process tracking watchdog for correlating the static timing

data (produced at design time) to the delay information obtained from a clock frequency

sweeping test. Proposed detection flow enables Hardware Trojan detection close to 90%,

and 100% recycled-IC detection in the simulated scenarios.

Chapter 1: Introduction

In the past decade, to reduce the fabrication cost and for economic feasibility, the manufac-

turing supply chain of Integrated Circuits (IC) has adopted a globally distributed model [2].

The use of untrusted entities in this global supply chain has raised pressing concerns about

the security of fabricated ICs, including the possibility of IP piracy/theft, Trojan insertion,

overbuilding, and counterfeiting [3]. Researches have constantly provided solutions for each

threat, i.e. using encryption and activation mechanisms to lock the circuit before authorized

application [4–10], although, at the same time, the attack models have evolved into more

comprehensive and dormant models. Hardware (HW) Trojan insertion and Counterfeiting

are the threats that we target here, and propose modeling and testing methodologies to

detect them.

1.1 Hardware Trojan

One of these security threats is the adversarial infestation of fabricated ICs with a HW

Trojan. A Trojan can be broadly defined as a malicious modification to a circuit to control,

modify, disable, or monitor its logic. The spectrum of harm caused by HW Trojans is

broad. It can range from passive Trojans for activity monitoring or stealing information

to weaponized Trojans that could cause catastrophic consequences in the critical military,

space, or medical applications [11]. Thereby, detecting HW Trojans is highly crucial, and

it has become a significant concern for governments and industries.

One solution for detecting HW Trojan is through destructive Reverse Engineering (RE)

schemes to check and ensure that the manufactured chips’ logical structure and functional

integrity is untouched. Relying on RE to produce a golden model from fabricated ICs has

severe limitations. The destructive process of de-layering, combined with advanced image

1

processing techniques could be used for the generation of a netlist, but not a golden model

containing all process information (such as doping levels and the extent of parametric vari-

ation in that process) as such information can not be extracted using imaging techniques.

Besides, IC reverse engineering requires significant investment, is extremely challenging in

advanced geometries, and is quite time and resource consuming. One may argue that a

Trojan-induced logic-change can be detected during Manufacturing test process. However,

HW Trojans are stealthy in nature, and are designed such that they are rarely activated.

This makes detecting the Trojans during manufacturing testing highly difficult if not im-

possible.

Conventional manufacturing VLSI test and verification methodologies fall short in de-

tecting HW Trojans due to the different and un-modeled nature of these malicious alter-

ations. This has led many researchers to investigate solutions for detection of HW Trojans

through statistical analysis of side-channel information collected from ICs, including side-

channel power analysis [1, 12–16], power supply transient signal analysis [17, 18], regional

supply currents analysis [19], temperature analysis [20], wireless transmission power analysis

[21], and side-channel delay analysis [22–28].

The problem with many of the previous HW Trojan detection solutions is the need for

some sort of a golden model from which the parametric signature of the fabricated ICs

are collected and used to define a decision boundary (power, delay, temperature, etc) for

separating the Trojan-infested ICs. However, building a golden IC is extremely difficult or

even impossible: In many cases, especially in advanced technology node, the choice of the

foundry is limited to one or a very few, none of which may be trusted. Even if a trusted

foundry exists, fabrication of a small volume of ICs for obtaining a golden IC is usually

cost prohibitive[15]. Moreover, the process used in each foundry is quite different and a

golden IC that is fabricated in one foundry can not be used for assessing an IC fabricated

in another foundry.

2

1.2 Recycled IC

A counterfeit IC can be an unauthorized copy of the exact IC, a slightly modified version,

a recycled IC, or a defective one [29]. Counterfeit ICs have high impact on the IC manu-

facturing business model, as they have lower performance and more failure over time, when

deployed. Recycled ICs, ICs that have been already used but are pretended to be new,

have contributed to more than 80% of the counterfeit ICs in recent years[30]; posing around

$169 billion revenue loss to the global electronics supply chain[31]. Based on U.S. Cham-

ber of Commerce reports, counterfeit ICs have even found their way into military supply

chain [32]. A recycled chip exhibits a lower performance and a higher failure rate over

time, since its embedded transistors have already been aged, i.e., their characteristics have

been derated due to the chip usage. This increases the probability of chip failure sooner

than expected; shortening the chip lifespan. The short lifetime and low performance of the

recycled ICs not only affect the end-users but also puts a significant financial burden on the

industry and government sectors. Therefore, a concrete solution to detect recycled ICs is

highly required.

Among the various designs’ robustness concerns affecting CMOS devices, aging effects

have been receiving a lot of attention. In practice, aging mechanisms degrade the reliability

and performance of CMOS devices over their lifetime. Due to aging, the electrical behav-

ior of transistors deviates from their original intended behavior, resulting in performance

degradation and the ultimate chip failure [33, 34]. Among aging mechanisms, the effect of

Bias Temperature Instability (BTI) and Hot Carrier Injection (HCI) are more dominant

than other aging mechanisms [35]. In this work, we focus on these two aging mechanisms

when detecting the recycled chips.

Guardbanding is the current industrial practice to cope with transistor aging and volt-

age droops. It entails slowing down the clock frequency (i.e., adding timing margin during

design) based on the worst degradation the transistors might experience during their life-

time [36]. The guardbands ensure that the chip functionality is intact for an average period

3

of 5 to 7 years. However, inserting wide guardbands degrades performance and increases

energy consumption. Hence, chip design companies usually have small guardbands, typi-

cally 5-10% [37]. Fig. 1.1 shows an overview of the guardband assignment for each chip

during the manufacturing. In this figure, the delay of the critical path is C0 when the chip

is new. As the chip is used, its critical path delay gradually increases due to aging; reaching

T0 after a period of t = Y years. Accordingly, for the chip to be usable during its expected

lifetime (Y Year), it needs to be clocked at a frequency no higher than F0 = 1/T0. Thus,

the designers add a guardband G = T0−C0 to prevent any aging-induced chip malfunction

during its expected lifespan (i..e, Y years in Fig. 1.1). However, if the chip is a recycled

one, the remaining life expectancy is less than Y, i.e., it can experience a malfunction much

sooner than the expected lifetime (Y).

Figure 1.1: Impact of aging on critical path delay.

Device workload as well as environmental conditions, including temperature and voltage

source, all affect the device aging rate. In fact, each logical cell residing in a chip is aged

differently based on the duration of logical ‘1’ and ‘0’ values applied to its input pins, or

the toggling count that its transistors observe.

4

1.3 Challenges and Proposed Solution

The application of side-channel information of a trusted model in security test has been

a research direction for many years. The trusted model can either be obtained using a

fabricated trusted chip (golden chip), or a trusted time-closed design. As mentioned earlier,

having a fabricated golden chip is costly and sometimes not possible for higher technol-

ogy nodes. On the other hand, the variation that happens during fabrication process has

high impact in more advance technology node. Knowing this, in case of using a trusted

time-closed model as the golden model, the side-channel information should account for

this variation; meaning the proposed detection solution should be able to differentiate the

variation-induced change in side-channel signals from what has been added due to a security

threat. Otherwise, ignoring the impact of variation would result in false positives or false

negatives, which in turn, for instance in case of counterfeit test, it might results in disposing

a new IC or deploying a recycled one, respectively.

In side-channel with delay signal analysis, using side-channel information of a trusted

netlist faces serious challenges: The change in the delay of timing paths could also be the

result of (systematic and random) Process Variation (PV) and/or process drift. PV is the

unintended variation in the physical and electrical property (strength) of transistor devices

due to the physical limitation of manufacturing devices in building perfect transistors.

Process drift is the intended change in the process over time, made by the fabrication

lab to improve the process. Although such improvement guarantees a working transistor

made using Spice models generated for an older version of the process, the strength and

characteristic of devices (and in the result their speed) would change over time. Therefore,

by having access to the original GDSII and timing model (generated for the original Spice

Model), a tester can not determine if the change in side-channel information is due to PV

and/or process drift or if it is due to a hardware attack.

In our proposed flow, we do not assume the existence of a golden fabricated IC. Instead,

we develop and train a Neural Assisted Golden Timing Model (NGTM) post-fabrication

5

combined with a voltage variation modeling during the Static Timing Analysis (STA) to

make the NGTM fingerprint. This NGTM model is then used in a security test to be

compared with the side-channel signals collected from the suspicious circuit. The security

test, then assigns a tag to each IC under the test and indicate if the IC is clean. The threat

that our security test is targeting specifies how to choose instances for training the model,

and defines the structure of our security test.

When the security test targets to detect Trojan threat, the side-channel signals are

tested per timing-path and for all paths in the chip under the test. In case of Recycled IC

detection, the security test aims to differentiate between aged and new devices by assessing

the impact of aging on the delay of carefully selected timing paths in a chip under test.

Different timing paths, for having different topologies, for being made of different types

of devices, and for experiencing different switching activities would age differently. Hence,

in an aged IC, one could expect to see a disparity in the aging-induced increase in the

delay across timing-paths. Therefore, the security test focuses on analyzing the average of

aging-induced-delay of groups of timing-paths, rather than being per timing-path.

1.4 Motivation

This work is motivated by two previous papers: The side-channel power analysis in [15] and

side-channel delay analysis in [22], a short description of which is given next:

The side-channel statistical power analysis solution for Trojan detection in [15] pro-

posed that the trusted region for the operation of a Trojan free IC can be learned using

a combination of a trusted simulation model, measurements from the carefully engineered

and distributed Process Control Monitor (PCM) structures, and advanced statistical tail

modeling techniques. The mentioned work, however, relies on side-channel power analysis

for the detection of hardware Trojan. For observing a meaningful change in leakage or

dynamic power, the size of HW Trojan has to be large. Hence, this technique falls short

of detecting Hardware Trojans implemented using a small number of gates. This is when

our proposed solution can detect even a single added logic gate in a tested timing path.

6

Besides, [15] relies on the usage of PCMs (with a defined structure that is repeated and

distributed over the IC) for extracting the process parameters. However, the number and

accuracy of PCMs are limited. Although PCM can roughly track the process corner from

chip to chip and could be used for the rough calibration of timing and spice models, they

fall short of accurately characterizing the behavior of different gates and metal layers. This

is when in our proposed solution, every timing path could be used as a PCM for training the

neural assisted timing augmentation engine, and therefore the impact of different timing

path topology, different gate types/sizes, and the change in the capacitive or resistive load

of different metal layers are taken into account.

The side channel delay analysis solution in [22] uses Clock Frequency Sweeping Test

(CFST) to detect the hardware Trojan. However, it relies on the existence of a Golden

IC for delay comparison. Our proposed side-channel Trojan detection scheme is inspired

by this work (and used CFST for the generation of label data points for each feature set),

however, our proposed mechanism does not need a Golden IC.

7

Chapter 2: Background

2.1 Hardware Trojan

In practice, a HW Trojan can be inserted at any stage of the design flow[38–42]. Upon

activation of the Trojan, the Trojan delivers its payload which can result in a denial of service

in the whole or part of the circuit, corruption of the circuit’s functionality, an alteration in

the characteristic of the circuit such as aging factors, or leaking secret information [41,42].

Countermeasures against HW Trojans can be categorized into the design-for-security,

run-time monitoring, and detection solutions [42]. The design-for-security approaches opt

to reduce the chances of Trojan insertion (e.g., through hardware obfuscation),or increase

the chance of detection. However, they can neither guarantee a Trojan free IC nor detect

them. The run-time techniques monitor the functionality of the IC (usually through snap-

shots of its operation) at run-time [43], and compare it against known behavior signatures.

However, if the Trojan impact does not persist, it does not create the expected signature,

or affects the IC’s behavior in a way that is not modeled (in the monitoring solution), the

monitoring schemes will fail to detect the Trojan. On the other hand, detection approaches

aim to directly or indirectly detect the presence of HW Trojans. Detection solutions could

be destructive or non-destructive [42]. The destructive solutions, that could provide an

ultimate proof for Trojan’s presence in the selected IC, require full reverse engineering of

the IC.

The non-destructive detection approaches can detect the Trojans by either activating

them or via side-channel signal analysis [41,42,44]. The former relies on finding a set of input

patterns that trigger the possible Trojan such that the Trojan results in a noticeable impact

(e.g., change in expected output). On the other hand, the side-channel based detection

methods attempt to identify the Trojan presence through side-channel information obtained

8

from an IC, e.g., power consumption [1,13,14,45], electromagnetic emanations [46], or path

delays [22–24].

Detecting Trojans by activating them during manufacturing test is significantly chal-

lenging. In principal, Trojans are designed to be activated through a rare sequence or

combination of events, only known to the adversary [22, 42]. Testing an IC exhaustively

using all sets of possible patterns is not practically feasible [22]. Note that not all HW

Trojans alter the functionality. For example, a HW Trojan may be designed to leak se-

cret information (with antenna or noise); making such Trojan immune to activation-based

solutions as the functional impact of such HW Trojan is not observable.

Trojan activation solutions’ limited coverage has encouraged the research to focus on

side-channel analysis-based detection techniques. One widely studied Trojan detection di-

rection is through side-channel power analysis [1,47–50] that focuses on power consumed by

The Trojan Circuit (TC). However, for side-channel power analysis, TC should be partially

or fully activated. Therefore it is better suited for Trojans, trigger of which is connected to

shorter timing paths with a higher degree of controllability. At the same time, the power

signature of the TC should be significant enough to stand out (make a noticeable change in

the power consumption of the IC) as the demanded current of an IC can be monitored with

limited precision (through package balls or, at best case, through power delivery networks

pads). Hence, the observed current signature is the accumulation of the transistors’ cur-

rent needed for the normal function of the IC and those added for implementation of TC.

Therefore, the size of a TC should be large enough to be observable using such techniques.

The delay side-channel test, on the other hand, focuses on the change of the delay and

measures path delays to detect a Trojan [12]. The delay analysis proposed in [23] monitors

the critical timing-paths to detect Trojans. However, it fails to consider the near-critical

or shorter timing paths. The authors of [24] insert shadow registers to measure the delay

of each timing-path. However, this results in a large area overhead. Finally, the solution

suggested by [22] uses Clock Frequency Sweeping Test (CFST) to detect Trojans. However,

it relies on the existence of a Golden IC for delay comparison. This work inspires our

9

proposed side-channel Trojan detection scheme; however, our proposed solution relaxes the

need for the presence of a Golden (trusted) fabricated IC.

2.2 Recycled IC

Recycled IC detection methods can be classified into several categories. The first category

deals with conventional test methods that perform physical (e.g. detecting repackaged ICs

using 3-Dimensional imaging technologies) and electrical (studying the ICs’ parameters such

as threshold voltage, path delays, etc) tests [51] [52]. Such tests are conducted in specific

labs following several testing standards such as AS6171, AS5553, and CCAP-101 [53]. These

methods are costly, time-consuming, and have a low detection rate.

The second category of Recycled IC detection schemes, i.e., statistical approaches,

mainly deploy machine-learning models to differentiate new and aged chips from each other.

For instance, in [54], Ke Huang et al. used a Support Vector Machine (SVM) based tech-

nique to classify the chips into recycled versus new using parametric measurements collected

from a set of brand new chips including Iddq, Fmax, Vmin, etc. These measurements are

usually collected in the test facilities to verify the correct functionality of the chips before

shipping them to customers. On the other hand, in [55], the authors detect recycled ICs

based on the aging rates in similar components that may have resided in the target chip.

The assumption is that if the device is aged, similar components in the device (e.g., different

full adders in an N-bit adder module) may age differently as they are exposed to different

input patterns during run time. In this method, the correlation of dynamic supply current

(IDDT) between similar logic blocks is calculated, based on which, the IC is reported as

new or recycled. The main drawback of the prior art statistical solutions is their reliance

on the availability of a golden chip.

The third group, the so-called DFAC (Design For Anti Counterfeiting) strategies, detect

the recycled ICs via on-chip sensors[52]. The on-chip sensor-based approaches try to com-

pare the frequency of an embedded element, e.g., a Ring Oscillator (RO) with a reference

10

point to identify the recycled ICs. For instance, Guin et al. [56] proposed to insert two ring

oscillators inside the chip, one is not used frequently while the other is always on. Compar-

ing the frequency of these oscillators reveals if the chip is recycled. As this is sensitive to

PV, its detection accuracy is low. To resolve this issue, [31] tried to mitigate the impact

of PV by replacing the reference RO with a Non Volatile Memory (NVM) that stores the

frequency of the RO when it is new. The stored value is compared with the frequency of

the RO when the device is checked regarding its freshness. Any discrepancy demonstrates

that the device is not new. To prevent tampering such NVM, the authors proposed to use

digital signature verification (e.g., chip unique ID). This method suffers from high power

consumption related to its always-on RO.

Aging mechanisms including Bias Temperature Instability (BTI), Hot-Carrier Injection

(HCI), Time-Dependent Dielectric Breakdown (TDDB), and Electromigration (EM) result

in performance degradation and eventual failure of digital circuits over time [57]. Among

all, BTI and HCI are the two leading factors in the performance degradation of digital

circuits [35]. Both mechanisms increase the switching delay of transistors, leading to an

increase in path delays.

BTI Aging: BTI aging includes Negative Bias Temperature Instability (NBTI) and

Positive Bias Temperature Instability (PBTI). NBTI affects a PMOS transistor when a

negative voltage is applied to its gate. A PMOS transistor experiences two phases of NBTI

depending on its operating condition. The first phase, the so-called stress phase, occurs

when the transistor is on (Vgs < Vt). In this case, positive interface traps are generated at

the Si-SiO2 interface which leads to an increase of the threshold voltage of the transistor.

The second phase, denoted as the recovery phase, occurs when the transistor is off (Vgs > Vt).

The threshold voltage drift that occurred during the stress phase will partially recover in

the recovery phase.

Threshold voltage drifts of a PMOS transistor under stress depend on the physical

parameters of the transistor, supply voltage, temperature, and stress time [58]. The last

three parameters (known as external parameters) are used as acceleration factors of the

11

aging process. Figure 2.1 shows the threshold voltage drift of a PMOS transistor that is

continuously under stress for 6 months and a transistor that alternates between stress and

recovery phases every other month. As shown, the NBTI effect is high in the first couple of

months but the threshold voltage tends to saturate for long stress times. It is noteworthy to

mention that PBTI affects the NMOS transistors in a similar fashion that NBTI affects the

PMOS transistors. Accordingly, for the sake of space, we do not discuss PBTI separately.

Figure 2.1: Threshold-voltage shift of a PMOS transistor under the NBTI effect. Values on the Y-axis are
not shown to make the graph generic for different technologies.

HCI Aging: HCI occurs when hot carriers are injected into the gate dielectric during

transistor switching and remain there. HCI is a function of switching activity and degrades

the circuit by shifting the threshold voltage and the drain current of transistors under stress.

HCI mainly affects NMOS transistors.

HCI-induced threshold voltage drift is highly sensitive to the number of transitions

occurring in the gate input of the transistor under stress. In practice, HCI has a sublinear

dependency on the clock frequency, usage time, and activity factor of the transistor under

stress, where activity factor represents the ratio of the cycles the transistor is switching and

the total number of cycles the device is utilized. HCI effect is exacerbated as the operating

temperature increases [35].

12

Chapter 3: Threat Model and Challenges

3.1 Threat Model

The adversary in this research is an untrusted foundry with access to GDSII (Graphic

Database System format).

3.1.1 Trojan Threat Model

The goal of the adversary is to insert a Trojan that is triggered based on a combination, or a

sequence of rare events. A Trojan, As illustrated in figure 3.1, consists of 1) Trojan’s Trigger

inputs (TT), 2) Trojan’s Triggering (which could be sequential or combinational) Circuit

(TTC), and 3) Trojan Payload (TP). Upon activation, the TP alters the circuit functionality.

We assume that no Golden IC exists, and the Trojan is inserted in all fabricated ICs.

3.1.2 Recycled IC Threat Model

Similar to the Trojan threat model, we assume that the IC designer is trustworthy while

the supply chain is untrusted. In particular, we assume that an adversarial supplier can

Figure 3.1: (left): Trojan taxonomy, (right): Trojan trigger circuit types

13

potentially provide the system integrator with a recycled IC, the usage of which (in a critical

application) may result in catastrophic consequences (due to the effect of aging on the chip’s

reliability). We assume that the IC/system designer has access to the chip netlist and its

GDSII file. However, she does not have a golden chip to use it as a basis to determine if

the chip-under-test is recycled or new.

3.2 Side Channel Detection Challenge: Variability

The TT of an HW Trojan poses an additional capacitive load on its driving cell, resulting

in a slower rise and fall, while its TP adds a gate delay to its victim timing path. In a

perfect world, A Trojan can be detected by tracking and analyzing the changes in the delay

of timing-paths compared to that predicted by STA.

The impact of aging on the threshold voltage of transistor devices within an IC causes

shift in the timing behavior of leaf cells. This shift in timing increases the delay of timing-

paths. The added delay is not uniformly distributed for all timing paths, as some paths go

through more switching activities. One can utilize the different aging behavior of timing-

paths and indicates if the chip is brand new with observing the delay-differences of timing-

paths in STA and the suspicious chip under the test.

The challenge for this solution is that STA suggested delay information can be signif-

icantly different from delay information that is collected at the test time. This is due to

several factors most notable of which are: 1- voltage noise, 2- Process Variation (random

and systematic variations), and 3- process drift. Thus, it is not determined if the difference

between STA and test results is due to a security threat, or these variations.

Voltage Noise: In an ASIC chip, the current flow to and return from transistors via

the Power Delivery Network (PDN), which consist of a sequence of resistive, inductive and

capacitive elements. A flow of current through a resistive element manifests a voltage (IR)

drop that is proportional to the current flow (I) and element’s resistance (R). Furthermore,

the current flow is orchestrated by the die switching activity that changes per clock cycle

14

[59]; Hence, due to inductive nature of PDN, transistors also experience an inductive voltage

drop which is proportional to the PDN’s inductance profile (L) and the rate of change in

the current, denoted by d(i)/d(t), which exacerbates at scaled geometries with increased

current demand and higher frequencies [60]. In addition, there are both intentional and

device/metal topology related decoupling capacitance (DECAP), that decouple the power

and ground lines. This results in the PDN to act as an RLC network. In the result, the

voltage that a transistor experience is below the voltage supplied from the voltage regulator

and also changes dynamically from cycle to cycle causing variation in the delay of timing

paths [61]. The cycle to cycle voltage variation, which in physical design flow is denoted

by voltage noise, causes clock jitter [62] leading to uncertainty in clock arrival time to the

clock pin of registers.

During STA the IR drop and voltage noise are modeled by (1) specifying a rail voltage

value below supplied voltage to account for IR drop, and (2) using register-endpoint un-

certainty to guard against voltage-variation-induced clock network jitter [62]. The chosen

values for the rail-voltage and uncertainty should be pessimistic to capture the worst-case

(to prevent setup/hold timing failure). However, the majority of timing-paths experience

smaller IR-drop and voltage noise [37]. This poses a security threat; the pessimistic margins

build large unused timing slack into the majority of timing-paths, which is not visible to the

physical designer and test engineer. The unused timing slacks can be used by an adversary

in an untrusted foundry to design a Trojan and hide its delay impact.

Random Process Variation: The random process variation refers to the variations

in the physical and electrical properties of transistors due to the physical limitations faced

during the fabrication process [63]. The random process variation impacts the delay and

drive strength of fabricated transistors and makes threat detection more difficult as the test

engineer needs to differentiate between the delays imposed by random process variation and

the timing impact of either an HW Trojan or aging-induced delay. Figure 3.2 illustrates

the effect of the random process variation on the slack of timing paths.

15

Figure 3.2: The impact of random process variation on the delay of a timing-path when sampled across
multiple dies (after fabrication).

Systematic Process Variation: Systematic Process Variation is the result of imper-

fection in one or several process steps, as a result of which, a systematic shift occurs in the

behavior of transistors or wires. For example, the systematic shift may speed up all NMOS

transistors, increase the capacitance of a given metal layer, or reduce PMOS transistors’

strength. Unlike random process variation (mitigation of which is disclosed when we de-

scribe our IC classification methodology), the systematic (inter-die) process variation affects

all devices similarly. Therefore, systematic process variation behaves similarly to process

drift, with the difference that process drift is the intended consequence of improving the

fabrication process. On the other hand, the systematic process variation is an unintended

consequence of imperfection in one or several processing steps. For example, if during the

Chemical Mechanical Polishing step, the height of a specific metal layer, e.g., M4, was less

or more than the process defined height, the expected resistance, and capacitance of all M4

net segments systematically shifts. In practice, the systematic process drift can be treated

similarly to process drift.

Process Drift: The SPICE model for the fabrication process in a new technology node

is released soon after the process is stabled and is used to characterize the standard cell

16

libraries deployed in a physical design house. The SPICE model and standard cell libraries

are padded with carefully crafted margins to guarantee a high yield. Furthermore, the

foundry keeps improving the process over time to improve yield and reduce cost and may

update the process by deploying newer and more capable stepping devices. Hence, the

fabrication process and the released SPICE model drift apart over time. The improvement

in the process builds large unused slacks in a fabricated IC that is designed using the

older SPICE model. This practice poses a security problem as these unused and hidden

timing slacks (to the test engineer) can be used by an adversary in the untrusted foundry to

design stealthy HW Trojan(s), or hide the aging-induced delay of recycled ICs. Figure 3.3

illustrates the impact of the Process Drift on the slack of timing paths.

Figure 3.3: Improvement in the process over time non-linearly changes the delay of different timing-paths
(process drift). The process drift affects each timing-path differently.

17

Chapter 4: Proposed Detection Solutions

Proposed detection technique integrates multiple variation modeling and mitigation tech-

niques into a side-channel delay analysis solution for the purpose of HW Trojan testing and

recycled IC detection. Using our proposed model, we characterize and mitigate the impact

of voltage noise, process variation, and process drift to improve the correlation between the

adjusted timing model and the fabricated ICs’ timing behavior. This resulted timing model

is then used in a classification test to identify the security status of each chip under the test.

We first describe how each of these variation sources is modeled and mitigated, and then

explain how each mitigation technique is integrated into the proposed scheme to improve

the chances of detection.

4.1 Definitions and Model Parameters

Before describing our solution, we elaborate on the model parameters used:

Clock Frequency Sweeping Test (CFST): An existing delay testing solution in

which delay of different timing paths is examined while increasing the clock frequency [64].

The target is to find the start to fail frequency for different timing paths. The test accuracy

is limited by the tester frequency step size and maximum achievable frequency. The delay

reported for each timing path may be affected by both process variation and process drift.

Age Distinguished Paths (ADP): Depending on the circuit topology and workload,

some of the timing paths in a circuit age more, and some age less than others. Hence, we

can distinguish between two sets of timing paths: 1) Most aging Affected Paths (MAP) and

2) Least aging Affected Paths (LAP).

For simplicity, lets first assume that there is no process drift (but there exist process

variation), the step size of the tester equipment is sufficiently small, Static Timing Analysis

18

Figure 4.1: In a new device, one cannot distinguish between MAP and LAP timing paths as no aging
occurred. Computing the AD for timing paths gives us a zero-mean distribution. As the IC ages, the delay
of all timing paths increases, however, the delay-increase is more significant in the MAP set of timing paths.
Therefore, the normal distribution of AD morphs into a bimodal distribution as the IC ages. Identification
of MAP and LAP sets of timing paths allows us to compute the mean for each set. The shift in the mean
is an indication of the extent of aging. In this figure, it is assumed that there is no process drift (but there

exist process variation), the step size of the tester is very small, STA is perfect, and CFST reported delay

for a timing path at age zero (fresh IC) matches STA. We will update these assumptions to realistic ones
when discussing our proposed solution.

is perfect, and CFST reported delay for a timing path at age zero (new IC) matches that

of the STA within the boundary of process variation. Let’s denote the STA-reported delay

of path p with STA(p), and the delay reported by CFST by CFST (p). We define added

delay AD for path p as AD(p) = CFST (p) − STA(p). Given a set of timing paths, if we

compute AD for each path, we will see a zero-mean normal distribution of ADs if the IC

is not aged (in an ideal world). This is illustrated in figure 4.1(top). As the IC ages, the

MAP and LAP timing paths would age at different rates (figure 4.1(middle)). Therefore,

the normal distribution (observed at age zero) will morph into a bimodal distribution, where

the difference in the mean of two clusters increases over time, highlighting the separation

between MAP and LAP group. This is the basis for our aged-IC detection.

However, in a real-world, we have to deal with process drift, reduce the impact of process

19

Table 4.1: Description for each of 48 features, extracted from each timing-path for building the NN training
set. (LP: Launch portion of timing-path, CP: Capture portion of timing-path, DP: Data portion of timing-

path, M: Metal Layer, x: drive strength of the gate)

Total of 48 Features, 3 Feature Extracted from each timing-path

Setup Time Path delay reported in STA Sum of fanout over cells in DP

45 Feature Extracted, 15 from each sub-path (CP, LP and DP)

number of gates subpath Delay # cells of x0 strength

cells of x1 strength # cells of x2 strength # cells of x4 strength

cells of x8 strength # cells of x16 strength # cells of x32 strength

Total Length of M1 Total Length of M2 Total Length of M3

Total Length of M4 Total Length of M5 Total Length of M6

variation, identify MAP and LAP groups ahead of time, deal with the inaccuracy of tester,

account for inaccuracy of the STA and the fact that it does not match the CFST test

result. In the next section, we describe our proposed model that deals with each of these

phenomenons, for building a reliable aging detection solution.

4.2 Modeling and Tracking the Process Drift

Process drift results in a non-uniform shift in the delay of different timing-paths. To model

the timing impact of process drift, we design and train a Neural Network (NN) to act

as a process tracking watchdog (NN-Watchdog). This NN-Watchdog is used to predict

the difference between the slack reported by STA at design time and that sampled from

fabricated IC at test time. To train the NN-Watchdog, we need a labeled data-set. Each

data point in our data-set is a collection of 48 input features and a label value. The input

features, detail of which is in table 4.1, are extracted from physical design EDA and the

STA engine. The label for each data point is the difference between the slack reported by

STA (at design time), and that obtained by CFST [22] (at test time).

To assess the effectiveness of NN-Watchdog (and for lack of access to fabricated ICs),

we modeled the process drift by extracting the shift in delay values from SPICE simulations

performed using a skewed SPICE model. For this purpose, we first extracted the SPICE

20

model for each timing-path in the input training. Then, to mimic a systematic process

drift, the SPICE model was skewed such that the NMOS and PMOS transistors were ∼X%

faster, and the Metal capacitance for Metal layers 1 to 7 was derated by Y%. Selection of

X and Y gives us a consistently faster or slower process model. For example, the selection

of (X,Y) = (5, 5), (0, 0), (−5,−5) produces Fast, Typical, and Slow process models in our

simulations.

The resulting dataset was then used to train and evaluate the NN-Watchdog. The

threat, that our proposed security test is targeting, defines the way we split the dataset

for each of the training and evaluation steps. In case of Trojan detection, the resulting

database was then divided into 1) training-set for training the NN (60% of timing-paths),

2) verification-set used for assessing the trained model accuracy while training (20% of

timing-paths), and 3) test-set used for reporting the results (20% of timing-paths). In

case of recycled IC detection, ADP should set the rules to split dataset for training and test

purposes: the training is done using the MAP portion of the dataset, then the NN-watchdog

is tested on the LAP portion of the dataset. The reason behind this dataset-split is to bar

the NN-Watchdog to learn the impact of aging on MAP and LAP paths. To explain more,

let’s assume a scenario in which the device has been aged: in this case, both MAP and

LAP paths are aged, but MAP paths are experiencing more deviation in delay of those

paths. Having the NN-Watchdog trained on only MAP, the model assumes the excessive

aging-induced delay is similar for both MAP and LAP paths, although in practice, the LAP

paths are aged less. The outcome is having more error in predicting the delay of LAP paths.

In this research, we have evaluated 3 different models to predict the process-induced

change in the timing path delays. Details of each model is given next:

(1) Linear Regression (Ridge Regression) Model (baseline): Ridge Regression

[65] is a regularized linear regression model and it is useful for modeling and tracking

multicollinearity phenomena.

(2) Multi-Layer Perceptron Regression: Multi-Layer Perceptron (MLP), is a non-

linear neural network composed of an input layer, one or more hidden layers, and an output

21

Figure 4.2: Abstract view of a fully-connected NN (left) and a Random forest (right) as two base models to
form test-time process watchdog.

layer (figure 4.2-left). Details and setup of MLP regressor used in this work is summarized

in table 4.2.

(3) Stacking Regression Model: The structure of Stacking Regression model [66],

which is also known as stacked generalization [67], is depicted in Figure 4.3. The Stacking

Regression is an ensemble learning technique in which different estimators are arranged into

two layers to form a regressor with lower variance in comparison to each (member) regres-

sor. More precisely, at a two-layer stacked regressor (Figure 4.3-top), we used regressors

XGB[68], Enet[69], Lasso[70], Ridge[65], MLP[71] and RandomForest[72] for our first layer

regression. The predictions of these regressors, ŷη1 to ŷη6 , are stacked together and fed to

the second layer of regressor(s). In general, the second layer may also consist of multiple

regressors. The overall prediction ŷfin is obtained by averaging the results of the second

layer regressors. In our model, we have only deployed a single Lasso [70] regressor in the

second layer, as including additional regressor result in only negligible improvement in the

model’s prediction performance at the cost of increased complexity.

Among the regressors used in two-layer stacked regressors, Enet, Lasso and Ridge are

linear. In these models, the difference in the performance stems from their associated

regularization penalty. More precisely, Equation 4.1 shows the optimization problem for-

mulated for Enet. Lasso and Ridge are special cases of Enet in which Lasso only considers

22

Figure 4.3: Top figure shows a two-layer stacked regressor. Bottom figure shows the cross-validation method
used for obtaining hyper parameters at a two layer stacked regressor.

L1 norm of parameters (‖W‖ =
∑N

j=1 |Wj |) while Ridge considers L2 norm of parameters

(‖W‖2 =
∑N

j=1 |Wj |2) for regularization.

Ŵ = argmin
W

(‖y −XW‖2 + λ2 ‖W‖2 + λ1 ‖W‖) (4.1)

Random Forest and XGB can be considered as ensembles of decision-trees. The main

difference between these two categories is the way that decision trees are combined. In

23

Table 4.2: hyper-parameters of regressor models used in this table.

Model Hyper-Parameters

Ridge alpha=1, max iter=5000

Lasso alpha=0.001, max iter=5000

RF n estimators=1024, bootstrap=True, min leaf=1, min split=2

Xgb n estimators=1024, learning rate=0.05

Enet alpha=0.001, max iter=1000

MLP in layer=42, hidden layer=23, out layer=1, activation=’tanh’, opti-
mizer=’adam’, learning rate=’adaptive’, start lr=’0.1’

Random Forest, also known as a bagging-based algorithm, a subset of features is randomly

selected to form a forest of decision trees, see figure 4.2-right. Each of these trees is trained

independently, and the final regression model is determined by averaging the result of each

decision tree. In XGB, also known as a boosting-based algorithm, decision trees depend

on each other, and through cascading, the error of previous trees is minimized (Boosting).

Details and setup of each regressor used in the stacked model (which is used in this research)

are summarized in table 4.2.

Figure 4.3-bottom shows the cross-validation technique for defining the hyper-parameters

of each one of the used regressors. Cross-validation consists of four steps: 1) Randomly par-

titioning the training set into k equal sets, also known as K-fold. 2) Holding out one of

the training sets, highlighted with red, from the (k-1)-remaining folds, and training on the

(k-2)-fold. The left-out fold, highlighted with gray, is used for validation. This procedure

continues for (k-1) times, which results in a stack of prediction of (k-1)-folds, which is stored

in YFi . 3) Training the layer two regressors based on the obtained dataset, YFi , and evalu-

ating the level-2 regressors based on the holdout set, Fi. 4) Selecting the hyper-parameters

that result in a lower average loss. Once the hyper-parameters are corrected, both layers

are trained on the whole training set, without k-folding, and the final results are reported

by evaluating the trained stacked model on the test set.

24

4.3 Modeling and Mitigating process variation

We divide the process variation into two categories: 1) Random Class that includes the

independent intra-die process variation, and 2) systematic class including all forms of inter-

die and correlated intra-die variation.

4.3.1 Systematic Process Variation

We perform speed binning on fabricated ICs and divided them into different speed bins

(Fast, Normal, and Slow), arguing that ICs in the same bin are similarly affected by the

systematic process variation. Then for each bin, we train an NN-Watchdog. Besides, know-

ing that systematic variation impacts all devices within an IC similarly, the NN-Watchdog

also provides a remedy to model this process variation.

4.3.2 Random Process Variation

To reduce the impact of random variation, we refer to the Central Limit Theorem, which

establishes that averaging over a set with independent elements with zero-mean distribution

will result in a normal distribution with a zero-mean, and a smaller variance equal to 1
N

times the original variance [73]. This indicates that averaging, reduces the overall impact

of process variation significantly.

To reduce the impact of random process variation in case of Trojan threat, using the

Actual Path Delay
Recorded Path Delay

Sa
m

p
le

 C
o

u
n

t

Step Size and Start to Fail Freq. … T-4S T-3S T-2S T-S T
… C4=2 C3=5 C2=1 C1=0 C0=0

𝑪𝒊 = 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑺𝒂𝒎𝒑𝒍𝒆𝒔 𝒊𝒏 𝑺𝒕𝒆𝒑 𝒊

𝑺 = 𝑺𝒕𝒆𝒑 𝑺𝒊𝒛𝒆 𝑻 = 𝑪𝒍𝒐𝒄𝒌 𝑷𝒆𝒓𝒊𝒐𝒅

𝒎 = 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑺𝒕𝒆𝒑𝒔

𝝁 =
 𝒊=𝟏
𝒎 𝑪𝒊 × (𝑻 − 𝒊 × 𝑺)

 𝒊=𝟏
𝒎 𝑪𝒊

𝝁

Figure 4.4: Computing the mean delay of a path using CFST delay measurements with step size S, clock
period T, over m samples (dies).

25

formulation presented in figure 4.4, we collect the delay of each timing path (in our test set)

from many ICs and compute their average delay to be used in our HW Trojan detection

solution. When the timing-path delay is averaged across N different dies, the variance of

the random variables representing the average delay is N times smaller than the variance

of individual samples (σ2
AV G = σ2

sample/N). Note that the mean value is computed from

discrete delay samples obtained from CFST test, and the tester’s size (S), as illustrated in

figure 4.4, affects the value of the computed mean.

When the test targets recycled IC detection, our detection methodology relies on identi-

fying the mean shift between the LAP and the MAP group, meaning we take the average of

slacks of timing-paths in MAP group, and compare it with the average slack of timing-paths

in LAP group. So in case of MAP group, the mean of added delay (AD) for timing paths

in MAP can be denoted by random variable X̄, where

X̄ =
1

n

∑
pi∈MAP

Xi (4.2)

With this information:

E(X̄) = E(
1

n

∑
pi∈MAP

Xi) =
1

n
E(

∑
pi∈MAP

Xi) = 0 (4.3)

V AR(X̄) = V AR(
1

n

∑
Xi) =

1

n2
V AR(

∑
Xi) =

nσ2

n2
=
σ2

n
(4.4)

The same analogy applies to the mean of AD computed for the LAP group. In another

word, the mean shift (used for detection) is a 0-mean random variable with standard de-

viation σ/
√
n, where n represents the number of paths in MAP or LAP group. Therefore,

by choosing a large number of paths (n) for each of LAP and MAP set (we collect thou-

sands), the impact of process variation on mean-shift value becomes negligible, and process

variation does not affect the final classification.

To emulate the systematic process variation (within the same process corner), we created

2 additional derivatives (slightly modified copy) for each of our skewed SPICE models. Each

skewed SPICE model was altered to make the transistors in the first derivative 1% slower,

26

and in the second derivative 1% faster. To model Random process variation, each SPICE

simulation is subjected to 100 Monte Carlo simulations (modeling CFST performed on 100

different dies in the same speed-bin), where the threshold voltage (Vth), Oxide thickness

(Tox) and channel Length (L) are varied (based on a normal distribution) to model the

variation of path delays from chip to chip according to the expected variation in 32nm

technology node.

4.4 Modeling Timing Impact of Voltage Noise

To improve the accuracy of our timing model (NGTM), we utilize a methodology [37] that

models the voltage drop and voltage noise. The voltage modeling flow models the voltage

drop and endpoint uncertainty (due to the voltage-induced clock jitter) using a differential

voltage pair (different voltages for launch and capture path of a timing-path). The differen-

tial voltage pair is obtained based on a statistical analysis performed on the design-specific

IR simulation results. By using this voltage modeling scheme, the voltage-induced clock

jitter uncertainty becomes path specific. This removes the need for a large hard margin,

resulting in the majority of timing-paths to benefit from the smaller and dynamically com-

puted margins. We first introduce a new metric, coined as Delay Equivalent Voltage

(VDEV) that could be used to express the effective voltage of a timing path. Then we

illustrate how we can extract and use this metric to margin a design against IR drop and

voltage noise, and illustrate how the computed IR drop and voltage noise generated from

this flow track the physical and PDN changes.

4.4.1 Delay Equivalent Voltage

Consider the inverter-chain in figure 4.5. Each inverter, after physical placement, is con-

nected to a different point of the on-chip PDN and experience a unique voltage signature.

The Timing Window (TW) of a cell is defined as the time interval in which the cell prop-

agates an arriving input signal to its output. The supplied voltage to a cell can only affect

27

(V1, D1) (V2, D2) (Vn, Dn)
(VDEV, d1) (VDEV, d2) (VDEV, dn)
Stage 1 Stage 2 Stage n

Physical delay model
DEV delay model

Model

Figure 4.5: Inverter chain delay based on individual cell voltages when modeled by actual and VDEV voltages.

the delay of a cell during its TW. Let’s assume that during its TW the inverter at stage i

experiences the average voltage Vi, and accumulated delay of the inverter and next stage

wire when voltage Vi is supplied, is Di. Hence, the total delay of the inverter chain is∑
Di. The VDEV is now defined as a single voltage that when applied to all inverters in the

chain, the delay of the chain remains unchanged. In another word, the application of VDEV

changes the delay of inverter i from Di to a new delay di, such that:
∑N

i=1Di =
∑N

i=1 di.

Using the alpha power model, the delay of a cell is defined as:

Di ≈
kiVi

(Vi − Vth(i))α
(4.5)

In this equation ki is a technology dependent constant, Vi and Vth(i) are respectively

the voltage and threshold voltage of ith cell, and α is the velocity saturation constant,

where based on choice of technology node and process is bounded by 1 < α < 2 [74]. By

differentiating this equation over voltage, the delay impact of small variation in the supplied

voltage can be expressed as:

dDi = −
ki − αkiVi

Vi−Vth(i)
(Vi − Vth(i))α

dVi (4.6)

Let’s consider dDi as the difference in delay of a cell when instead of Vi, the voltage

VDEV is applied. Additionally, let’s define dVi as:

28

dVi = VDEV − Vi (4.7)

Based on its definition, when applying the voltage VDEV to all cells in a logic path we

expect the same delay (dpath) as of when each cell is annotated with its own unique voltage.

More precisely, if the application of VDEV to ith cell in a logic path causes delay variation

dD(i), the overall path delay variation should be zero. Hence:

∆dpath =

N∑
i=1

dDi =

N∑
i=1

−
(ki − αkiVi

Vi−Vth(i)
)× (VDEV − Vi)

(Vi − Vth(i))α
= 0 (4.8)

Let’s define voltage headroom as Ωi = Vi
Vth(i)

. After simplification and by using (4.5), we

can rewrite the equation for VDEV as:

VDEV =

∑N
i=1

Di[Ωi(1−α)−1]
Ωi−1∑N

i=1
Di[Ωi(1−α)−1]

Vi(Ωi−1)

(4.9)

Based on this equation, the VDEV of a timing path, by knowing the individual voltages

of each cell could be calculated. In this equation, the Vth(i) and Vi are known, and we only

need the Di, which is the delay of a cell when voltage Vi is applied. In order to compute the

Di quickly and effectively, we could use linear interpolation between delays specified in the

library at different voltages. However, to improve the accuracy of the result, as illustrated

in figure 4.6, we use non-linear interpolation between PVT corners defined using Composite

Current Source (CCS) delay libraries [75]. In order to enable CCS non-linear interpolation,

we need to have at least 3 CCS-enabled standard cell libraries at different voltages (for the

same process and temperature). With this setup, we can generate timing sessions for each

voltage within the range of voltages covered by CCS libraries. Using this setup, we perform

timing analysis for multiple voltages in the desired range of IR drop and generate additional

voltage-delay reference points. Now, let’s consider that after IR analysis we obtain a cell

voltage to be Vi. We first identify two closest timing sessions whose applied rail voltage

29

V1 V2 V3

DV3

DV2

DV1

Dn

Dx

Vn

Error

V1 V2 V3

DV5

DV3

DV1

Dn

Vn

Error

V3 V4

DV2

DV4

Dx

A

Real delay
Non-linear model

B

PV1T

PV2T

PV3T PV4T PV5T

PV1T

PV2T PV3T

Figure 4.6: (left): Larger error for linear interpolation of a cell delay when using three timing session;

(right): Generating two additional timing sessions using CCS non-linear interpolation followed by non-linear
interpolation of the cell delay which resulting in a smaller interpolation error.

value encapsulates the Vi. Then we obtain the delay of the desired cell in each of the timing

session. Let’s denote the two timing sessions’ voltages by VSlow and VFast and the delay of

the desired cell in each timing session by DSlow and DFast respectively. The delay of the

desired cell with voltage Vi could be obtained using the linear interpolation in equation 4.10.

As illustrated in figure 4.6, by generating additional timing sessions (generated using CCS

nonlinear interpolation), the error of the final linear interpolation for Di is considerably

reduced.

Di = DFast +
DSlow −DFast

VSlow − VFast
× (Vi − VFast) (4.10)

4.4.2 Using VDEV for STA annotation

In order to improve the accuracy of NGTM, we replace the IR drop and uncertainty hard

margins, with a statistical representation of VDEV , and bound the voltage of launch and

capture sub-paths in each timing path separately. To do this, we rely on a recently supported

feature of modern timing engines that support two different voltages for launch and capture

paths when performing setup and hold timing checks.

The most contributing factor to clock Jitter is the dynamic change of voltage (voltage

noise) from cycle to cycle. Hence, by providing a set of two different voltage for launch

30

and capture path, we can capture the worst case clock jitter effectively and remove the

related endpoint register’s uncertainty altogether. Let’s consider the timing path in figure

4.7 during a setup check in two consecutive clock cycles; In the first clock cycle, the voltage

of the cells in the common, and launch portion of clock path, leading to the launch register,

will determine how fast the clock reaches the clock pin of launch register. In the second

cycle, the voltage of the cells in the common and capture portion of the clock, determine

how fast the clock signal reaches the capture register’s clock pin. Considering that voltage

changes from cycle to cycle, the arrival time of the clock to the launch and capture registers

changes at each cycle. The worst-case arrival time of the clock, leading to the worst-case

jitter is when the voltage in the first cycle is low (late lunch), and in the next cycle is high

(early capture). Hence, if based on a dynamic IR drop analysis, we can provide the expected

worst-case rail voltage values (the IR drop), and could statistically determine the worst-

case change in rail voltage value from a cycle to the next, we could completely remove the

uncertainty for the endpoint register, relying on the two (min and max) voltages to compute

the worst-case jitter for each timing path. In this case, instead of using a fixed uncertainty

value for the entire design, the amount of jitter is automatically computed for each timing

path based on its launch and capture topology (the type and number of cells in each sub-

path). Note that the original formulation for protecting the timing path against voltage

noise jitter is overly pessimistic, as the degree of uncertainty was computed when worst

tcs-cr

tpd
tsetup

tcs-lr

tcqB

GND

VDD

Capture

Data
Launch

Common

A

Figure 4.7: (left) The naming convention for different sections of timing path, (right): Delay components of
a timing path

31

case voltage noise was applied to the worst case topology (longest clock path). However, in

our proposed formulation, the impact of voltage noise on clock jitter is determined based

on topology of each timing path, reducing the extent of pessimism by avoiding the double

margining (worst case voltage noise + worst case path) against voltage noise.

In order to derive the proper voltages to perform the setup and hold check in a timing

engine, we need to set up an IR simulation. For this, the IR drop is divided into that of

the package+ die, and that of the board. The IR drop in the board is of both resistive and

inductive nature. However, the frequency of the RLC oscillation of the board is usually in

the range of KHz to few MHz, which is much smaller than die frequency. Additionally, due

to the large difference in their time constant (and frequency), the cycle to cycle variation on

the die and RLC oscillation on the board could be considered as independent. Hence, using

ANSYS Redhawk [76] we only simulated the package + die and used the worst-case of IR

drop in the board as a constant IR drop. The worst-case IR drop in the board, in typical

industrial designs, based on the quality of board and DECAP engineering, is between 2%

to 4% [77]. The package s-parameter model is then extracted and used in IR simulation.

The starting voltage for IR analysis (at package balls) was then set to voltage regulator’s

voltage minus 4% drop in the board.

For IR simulation, due to time-consuming nature of IR analysis, we are constrained to

perform the IR analysis for no more than a couple of hundreds of cycles. Hence, in order

to capture the worst-case scenarios in our IR simulation (worst case IR drop and cycle to

cycle voltage variation), we resort to the following methodology: For a given netlist, we

find its max-power vector, and fast profile the power consumption across thousands of cycle

using PrimeTime PTPX or Redhawk. From the obtained cycle-accurate power trace, we

identify the following 5 scenarios: the part of the trace that contains (1) cycles resulting

in the highest sustained power consumption (for at least 5 cycles), (2) cycles with largest

increase in the power consumption from one cycle to the next, (3) cycles with largest drop

in power consumption from one cycle to the next, (4) cycles with largest increase in the

average power over two 10 cycles segments of the trace, and (5) cycle trace containing

32

the largest decrease in the average power over two 10 cycle segments of the power trace.

These 5 scenarios are chosen to detect the worst case IR drop and worst case cycle to cycle

voltage variation (possibly due to phase change in the input vector) of the design. Each

of this scenarios is padded with 30 cycles of pre-simulation (10 of which is ignored when

computing the VDEV resulting in a total simulation of less than 200 cycles). By simulating

a netlist for 200 cycles, we will obtain an effective voltage per cell per cycle. Using this

simulation environment, the timing engine’s voltages for launch and capture rail values

could be computed as follows:

Using taxonomy in figure 4.7.(right) the Common+Launch+Data portion was consid-

ered as Launch-Path (LP) and the Common+Capture portion was considered as Capture-

Path (CP). Using methodology described in section 4.4.1, we extracted the VDEV for each

of LP and CP of each timing path. Let VDEVL(Ci, LPj) be the VDEV of the LP of the jth

timing path at cycle i− > (i+1). The mean value of VDEV across all cycles for all measured

paths is obtained from:

µVDEVL =
1

C × P

C∑
i=1

P∑
j=1

VDEVL(Ci, LPj) (4.11)

In this equation, C is the number of simulated cycles; and P is the number of timing

paths. The standard deviation of VDEVL is then used to capture the extent of launch voltage

variation, which is obtained from:

σVDEVL =

√√√√√ C∑
i=1

P∑
j=1

(VDEVL(Ci, LPj)− µVDEVL)2

C × P
(4.12)

To protect the circuit against aging effects such a Negative-Bias and Positive-Bias Tem-

perature Instability (NBTI and PBTI) and Hot Carrier Injection (HCI), we could also

include a measure VAging = VNBTI + VHCI + VPBTI to account for this phenomenon. At

33

Voltage Regulator

C4 Balls

BOARD

PACKAGE

DIE

Package Bumps

Transistor Level

1
0

%
 M

ar
gi

n 5
%

 M
ar

gi
n

Conventional Proposed

𝝁𝑰𝑹𝑫𝒓𝒐𝒑

𝟑 × 𝝈𝑽𝑫𝑬𝑽𝑳
𝑨𝒈𝒊𝒏𝒈 𝟑 × 𝝈(𝑽𝑫𝑰𝑭𝑭𝑳𝑪)

𝑽𝑫𝑰𝑭𝑭𝑳𝑪 = 𝑽𝑫𝑬𝑽𝑳 𝑵 − 𝑽𝑫𝑬𝑽𝑪(𝑵 + 𝟏)

𝑴
𝒊𝒏
𝑫
𝒓
𝒐
𝒑
(𝑽

𝒎
𝒊𝒏
)

𝑰𝑹
𝑫
𝒓
𝒐
𝒑

𝑴
𝒂
𝒙
𝑫
𝒓
𝒐
𝒑
(𝑽

𝒎
𝒂
𝒙
) 𝑴

𝒐
𝒅
𝒆
𝒍𝒆
𝒅
𝑰𝑹

𝑽
𝒂
𝒓
𝒊𝒂
𝒕𝒊𝒐

𝒏

𝝁
𝑽
𝑫
𝑬
𝑽
𝑳

𝑽 = 𝟎

Figure 4.8: Modeling rail voltages, considering IR drop across board, package and die, for STA annotation.

this point, as illustrated in figure 4.8, we compute the voltage representing the largest drop

on a sub-path (Vmax) using:

Vmax = µVDEVL −K × σVDEVL − VAging (4.13)

Where K (e.g. K=3) is the guardband factor. We then, need to determine the extent of

the voltage noise. The voltage noise of timing path P, from cycle i to cycle i+ 1 is obtained

from:

VDiff [Ci, Pj] = VDEVL [Ci, Pj]− VDEVC [Ci+1, Pj] (4.14)

Considering P timing paths, and C cycles, there exist P × (C − 1) data points for

the voltage noise for all investigated timing paths. Using this data points the σVDiff and

µVDiff , similar to equations (4.11) and (4.12) are extracted. Using these values, the voltage

representing the maximum recovery from Vmax within one cycle, denoted by Vmin (minimum

voltage drop) is obtained from:

VMin = VMax + 3σVDiff + µVDiff (4.15)

Note that Vmin represents the maximum voltage departure of a timing path from Vmax

34

that is achievable in a single clock cycle. By using Vmin and Vmax as voltage values for

LP and CP of a timing path, both IR drop and voltage noise are modeled. The voltage

difference allows the timing engine to effectively compute the jitter per timing path and there

is no longer a need for using an uncertainty margin for register endpoints for this purpose.

Additionally, the jitter will be unique for each timing path depending on its topology, reducing

the unnecessary jitter margin for the majority of timing paths. Note that if we had input test

vectors covering all worst scenarios, and we were able to simulate the IR drop for very large

input vectors, we could have annotated each timing paths, based on its own distribution

of VDEV . However, in reality, for IR analysis and for practical purposes, we are limited to

IR simulation for 100s of cycles. For this reason, we still need to statistically margin the

voltage drop and voltage variation. However, in this case, the computed voltages (1) are

computed based on realistic worst-case values observed in the design and not the rule of

thump. (2) track the changes in PDN and physical design. Hence, not only the physical

designer can safely reduce the margins to voltages suggested by proposed voltage modeling

scheme, but could also observer the IR and timing impact of changes in PDN and physical

design, and make more informed decisions. Algorithm 1 captures the process explained

previously.

Algorithm 1 Computing Vmax and Vmin Rail Voltage Values

1: µVDEVL
← mean of (VDEVL [Paths][Cycles]); K ← 3;

2: σVDEVL
← Standard deviation of (VDEVL [Paths][Cycles]);

3: Vmax ← µVDEVL
− (k × σVDEVL

)− VAging;
4: for all C in (Cycles− 1) do
5: for all P in Paths do
6: Vdiff [P][C]← VDEVL [P][C]− VDEVC [P][C + 1];

7: µVDiff ← mean of (Vdiff [Paths][Cycles]);

8: σVDiff ← Standard deviation of (Vdiff [Paths][Cycles]);

9: Vmin ← Vmax + (K × σVDiff) + µVDiff ;

Usage of computed voltages is straightforward; State-of-the-art timing engines support

dual rail voltages for LP and CP. For example, using Synopsys PrimeTime [78], the Vmax

and Vmin could be applied using the following command:

35

PT > set rail voltage − dynamic − vmin < Vmin > (4.16)

PT > set rail voltage − dynamic − vmax < Vmax > (4.17)

Note that the proposed rail voltage modeling is far less pessimistic that annotating

each cell with its worst case and best case voltage (as adopted by recent EDA tools) for

the purpose of setup and hold timing check. This is because by using VDEV we have

accounted for the accumulated impact of delay variation due to individual cell voltage drops

across all cells in a timing path. In addition, this voltage modeling technique accounts

for the maximum voltage difference between the launch and capture portion of a timing

path that could be developed within one clock cycle. Whereas if the cell voltage is

annotated with their highest and lowest observed voltage (as adopted by several EDAs),

such differential voltage is substantially exaggerated and is not based on physical reality, as

such differential voltage could not be developed within one clock cycle.

4.5 Trojan Detection Flow

4.5.1 Detection Flow

Figure 4.9 shows the overall flow of the proposed Trojan detection flow. We augment the

design stage with an additional step for statistical modeling of the voltage noise and IR

drop using proposed voltage modeling. Accordingly, the STA reports the timing slack of

each timing path based on its estimate of voltage drop and voltage noise (as opposed to a

global pessimistic margin). This, as we will illustrate in the result section, will improve the

correlation between timing slack predicted by timing engine, and the timing slack observed

at test time using CFST. The final GDSII is then sent to the foundry for fabrication. The

fabricated ICs may be tested in the untrusted foundry for functionality. The working ICs

are then sent to a trusted facility for Trojan detection.

To detect a Trojan, we need to find the TT/TP induced slack change. As figure 3.1

36

Trojan Detection TestsFabricationDesign

Netlist

Physical
Design

Voltage Noise
Modeling

Timing Closure

Met
Spec?

Configuration

TDF Pattern

Feature
Extraction

Nodes on
short or

long path?

Trojan
Analyzer

TDF Test
Pattern

With Trojan Trojan Free

Chip Finishing

Tester CFST

NN Training

NN-Watch-Dog

Configuration
Trojan Signature

Power based HT
Detection

N
o

t in
 th

e
 s

c
o

p
e

o
f th

is
 w

o
rk

No

Yes

Long Path

Short Path

Speed
Binning

Train or
Test?

Train

Test

Slack adjustment

M
o

d
e

l

G
D

SI
I

G
TM

D
ie

Figure 4.9: Trojan Detection Flow: The model includes changes in the design and test stages. The test stage
divides the timing-paths into long and short paths. The short paths are subjected to power side-channel
Trojan detection as described in [1] (not covered in this work), and the long paths are subjected to delay
side-channel analysis using NGTM as reference timing model, adjusted by a NN that is trained as a process
watchdog and by using CFST to find the start-to-fail frequencies for timing-paths under test.

shows, a TT adds capacitive load to driving cell of its observed net, and the TP appends

an additional gate delay to every timing path that passes through its victim net. To detect

a victimized or a monitored net (by a TP or TT), and for having no prior knowledge on

which nets are affected, we need to include all nets in our delay analysis. We define a

P2P-wire as a net that connects the output pin of a driver cell (or a primary input) to the

input pin of one of its fanout cells (or a primary output). Hence a gate with a fanout of

4 has 4 P2P-wires. Each P2P-wire will be tested for rise and fall transitions. To increase

the detection rate and to account for process variation, this process may be repeated for

N different timing-paths passing through that net. The second criteria for selecting the

timing-paths is the maximum frequency of the tester equipment; The delay of the selected

paths should be larger than the limit imposed by the maximum reachable frequency of

the tester equipment. If the P2P-wire in no timing-path is long enough for CFST, it is

regarded as a candidate for Trojan detection via power-based detection schemes. Note that

37

timing-paths with a small number of gates (in their data sub-path) have high controllability,

making them ideal for the power-based Trojan detection schemes (e.g. [12–14,45]) that rely

on full or partial activation of such paths. For all other timing-path candidates, we generate

the Path Delay Fault (PDF) test vectors using an Automatic Test Pattern Generation tool

(ATPG). If ATPG cannot generate a test pattern for a path, the path selection changes. If

ATPG cannot generate a test vector for any path through that P2P-wire, it is discarded.

Algorithm 2 Trojan Detection Flow

1: N = # paths to be tested through each net in the design
2: Nets ← all nets in the design.
3: for all net in Nets do . net selection of Path Delay Fault (PDF) test

4: T imingPaths + = select N timing-paths passing through net

5: Perform speed binning on all dies and assign them to B bins.
6: for all bin in B do . NN training
7: NNbin ← Train a NN-Watchdog according to the algorithm 3
8: σNNbin

← the standard deviation of NNbin
9: for all die in bin do

10: Slack = 0
11: for all path in T imingPaths do
12: CFST(bin,die,path) ← path slack measured by CFST die in the bin

13: Slack(bin,path) += CFST(bin,die,path)

14: for all path in T imingPaths do
15: µS(bin,path) = Slack(bin,path)/sizeof(bin);

16: TTh= 4×σNNbin
. Detection Threshold = 4σ to reduce false positive

17: for all path in T imingPaths do
18: GTM(path) ← query the slack of path from GTM

19: NNSD(path) ← slack shift suggested by NNbin(path)

20: AS(path) = GTM(path) + NNWatchdog(path) . Adjusted Slack

21: δ = µS(bin,path) - AS(path) . Shifted delay after adjustment

22: if (δ > TTh) then . Trojan Classifier

23: Likely Trojan Set ← path

Algorithm 2 describes our proposed Trojan detection flow. As described in this algo-

rithm, after selecting the set of timing paths for PDF testing, we speed-bin the fabricated

dies. In the next step, we collect the NN-Watchdog training data using the flow described

in algorithm 3. Then, we train a process tracking NN-Watchdog for each bin and extract

the standard deviation of each NN-Watchdog in predicting the shifted delays. For each bin,

we perform CFST and measure the start to fail frequencies for the selected timing-paths.

The slack difference (δ) between the mean of slacks reported by the CFST and the NN-

Watchdog adjusted slack from GTM (in the same bin) represents the likelihood of a timing

path being affected by a Trojan. To make a binary decision, we use a threshold to assess

38

the significance of δ and classify the timing paths into benign or malignant (Trojan) classes.

Algorithm 3 Generating a training set for the NN-Watchdog

1: NP ← mR2 . R is the registers count, and m is a large number (e.g. 10)

2: T imingPaths ← Select NP timing-paths (min of m path per endpoint)

3: for all path in T imingPaths do
4: feature(path) ← Extract path features from GTM . input feature

5: GTM(path) ← Extract path slack from GTM

6: Slack(path) = 0

7: for all die in Dies do
8: for all path in T imingPaths do
9: CFST(die,path) ← Slack of path in CFST test of die

10: Slack(path) += CFST(die,path)

11: for all path in T imingPaths do
12: Slack(path) = Slack(path)/NP ;

13: ∆slack(path) = Slack(path) - GTM(path) . label

14: data-points(path) ← (features(path),∆slack(path))

When choosing a value for Trojan-detection threshold, we face a trade-off between the

false positive rate and the accuracy of Trojan detection. The false positive could be the

result of 1) inaccuracy in the GTM, 2) inaccuracy of NN-watchdog, and 3) random process

variation for sampling over a small number of ICs. To reduce the false positive rate, the

threshold used for detection should be large enough, to account for these. Since we average

the delay of each timing-path over many IC samples, the impact of random process variation

in the average delay could be reduced to a desirable range. However, we still have to

account for the inaccuracy of the NN and systematic variation. Hence, we define the

detection threshold to be TTh = n×max(σNN , σprocessvariation), in which the σprocessvariation

is the expected variance of systematic process variation (excluding random) and σNN is

the standard deviation of the NN. Since σNN is the aggregated impact of NN inaccuracy

(for under-fitting or over-fitting of the trained model) and impact of systematic process

variation, the variance of σNN tends to be larger than σprocessvariation, and we can simply

use TTh = n× σNN (n is selected as 4 in algorithm 2).

To verify the choice of threshold values TTh, we utilized Youden[79] method to extract

the threshold value from a Receiver Operating Characteristic (ROC) curve that we generate

over our SPICE simulation data (details in chapter 5). Note that at test time, we do not know

which timing-paths are affected by HW Trojan. Hence, the optimal threshold of detection

39

cannot be determined using the Youden method.

Change in the temperature affects the speed of transistors and alters the RC characteris-

tics of the connecting wires. But, the temperature change is an extremely slow phenomenon.

That’s why one can design temperature sensors with sampling frequencies far lower than

operational clock frequency [80,81]. At test time, a test vector is loaded into the scan chain

using a slow clock, then the circuit operates at-speed for two cycles (launch and capture)

using a fast clock. Finally, the scan is offloaded using a slow clock. The heat dissipation

when using a slow clock is quite low, and the duration of at-speed test is only two cycles

for each test pattern, limiting the extent of temperature changes to a fraction of a degree

Celsius. Hence, at test time the die temperature can be tightly controlled to discount the

delay impact of temperature variations.

To proceed with Trojan detection, as described in Algorithm 2, we first separate the

fabricated dies according to their speed and performance into different speed-bins. Then,

we train a process tracking NN-Watchdog for each bin and extract the standard deviation

of each NN-Watchdog in predicting the shifted delays. In the next step, we perform CFST

and measure the start-to-fail frequencies for different timing-paths. If the mean value of the

slack difference between the slack reported by the CFST and the NN-watchdog adjusted

slack from STA (in the same bin) is less than our detection threshold, the path classified as

Trojan-Free.

A Trojan is detected if one of its TTs or TPs (Trojan signatures) is detected in the

previous step. In the result section, in addition to reporting the rate of TT and TP detection,

we also report the overall Trojan detection performance of our solution. In this case,

a Trojan is detected if our proposed solution can detect at least one of its triggers or

payload(s).

4.5.2 Diagnostic Analysis:

Our detection flow could classify a timing path as likely affected by Trojan for two reasons:

1) The timing path hosts the trigger or payload of HT, resulting in a true-positive, 2) the

40

Figure 4.10: Diagnostic Test: (left): a Trojan free design where a suspicious net is tested for Trojan through

many timing paths passing through it. The delta difference between predicted delay (NN adjusted STA

delay) and CFST test delay (collected from multiple ICs) for each timing path is computed. In a Trojan-free
design, the process variation results in a variation of the resulting delta value, but the mean of this delta
difference is close to 0. (right): A design with HT on the suspicious net. The delta difference, in this case,
is also a distribution. However, the existence of HT pushes the mean of this distribution away from 0.
(bottom): The distribution of delta difference for the design with and without HT is shown. The Trojan
is detected if the mean value of the delta difference distribution is greater than the detection threshold
obtained from Alg. 2.

timing path is severely affected by process variation such that the resulting increase in

the path delay is greater than the threshold, resulting in a false-positive. Our proposed

diagnostic test opts to deeply investigate the detected HT and extract the reason behind

the increase in each timing path’s delay resulted in detecting such a Trojan. This diagnostic

step’s benefit is twofold: 1) reducing false positive, 2) pinpointing to the location of HT.

Algorithm 4 captures the flow of our proposed diagnostic solution. The overall strategy

is quite simple and based on the following assumption: In a false positive case, the increase

in the delay is due to process variation, and the total delay increase is distributed over

different segments of the suspicious timing paths. Thus, by selecting N timing paths (that

share least number of nets with the suspicious timing path whose net segments are being

41

Algorithm 4 Diagnostics

1: bin ← the speed bin that this IC is allocated to
2: NNbin ← NNbin trained for bin in Alg. 2
3: µS ← vector of mean values from Alg. 2
4: MP ← Malicious Paths detected in Alg. 2
5: tth ← Detection threshold from Alg. 2
6: n ← 50 . number of new paths for diagnostics test
7: dth ← threshold for diagnostics
8: for all path in MP do
9: LNets ← list of nets in path

10: U = unique(LNets) . remove repeated nets in the list

11: for all net in U do
12: Pinc ← timing paths in MP that include net net
13: for all path in Pinc do
14: Lexc ← all nets in timing path path except net

15: Ltest ← get n timing paths that include net and contains least number of nets in Lexclude
16: for all tp in Ltest do
17: STA(tp) ← query the slack of tp from STA

18: NNwatchdog(tp) ← slack shift from NNbin(tp)

19: AS(tp) = STA(tp) + NNwatchdog(tp)

20: ∆ += µS(bin,tp) - AS(tp)

21: µδ = ∆ / size(Ltest) . average shift over all paths

22: if (µδ > tth) then

23: Ldiagnostic append(net)

tested), we expect a small increase in the delay of N chosen paths compared to the NN-

adjusted timing model prediction.

To run our diagnostic test, we select N timing paths that pass through the selected net

for each net in the suspect timing path such that the selected timing path and the suspicious

path do not include any common path segments other than the selected net. Then the delay

of each of these timing paths is assessed against our NN-adjusted timing model. The delta

δ between the average delay of that timing path reported by the CFST test and the delay

of that timing path expected from our model is computed. We then compute the mean of

δ (µδ) across all selected timing paths passing through that net. If the µδ is smaller than

a threshold value (close to 0), then the CFST slack and adjusted slack for all timing paths

through that net match (no mean-shift), indicating no Trojan and the net is removed from

the suspicious list. However, suppose µδ is a positive number larger than the threshold.

In that case, that indicates a mean-shift in the difference between predicted delay (NN

adjusted delay) and recorded CFST delay across all timing paths passing through that net.

This is an indication of a Trojan. In this case, the algorithm also pinpoints the location of

the Trojan (the net where the means shift in the distribution of delays occurs). If it is not

42

possible to select N exclusive timing paths passing through a single net, a set of nets are

selected to point to the HT location. Using this scheme, we reduce the false-positive rate,

thus increasing the detection precision.

4.6 Recycled IC Detection Flow

Our approach consists of six main steps, described next:

• ADP set identification: Selecting a viable set of Age Distinguishing Paths (ADP),

and dividing it into MAP and LAP subsets.

• Building the Neural Assisted Timing Model: Generating the NGTM model

that accounts for process drift, timing prediction of which matches that of CFST test

on MAP subset of timing paths. This step intends to model the impact of process

drift and systematic process variation.

• Computing Added Delays: Inferring the slack of timing paths in the ADP set

for both LAP and MAP subsets from the NGTM (created in the previous step)

as expected value, and from CFST as actual value, and computing the AD(p) =

CFST (p)−NGTM(p) for each path in each subset.

• Inferring MAP-LAP mean shift: Computing the mean-shift of AD for MAP and

LAP subsets; This step intends to reduce the impact of process variation and tester

discrete step size on our detection threshold.

• Classification: Using a binary classifier to mark the IC as aged or new.

4.6.1 ADP set identification

Age distinguishing paths consist of two subsets of MAP and LAP timing paths. In order

to collect the ADP set and assign timing paths to each of MAP and LAP, we propose the

following set of modeling steps, each of which is described next:

• Train a regression model for gate-specific age perdition

43

• Build an Aging-Induced Path-Delay Prediction Model

• Build an ADP set Classifier

Regression model for gate-specific age prediction: To build a model that predicts aging-

induced delay increase for each gate, we first create a database that includes each gate type

and its corresponding aging-induced delay increase after i months when the gate is fed with

different workloads. To emulate different workloads, the gate is simulated under different

conditions where in each condition of CONDi,j , its output signal Duty Cycle and Toggle

Count are DCi and TCj , respectively. Here, Duty Cycle (DC) denotes the percentage of

the time that the signal is ‘0’.

In practice, we consider I different DC and J different TC values for the gate output,

and for each condition (among all I × J conditions) we generate a table of input patterns

(among many possibilities) that satisfies the considered toggle count and duty cycle on the

output.

To tailor a more precise timing model for each circuit, we determine an approximate

range of TCs that the circuit’s gates outputs experience during run time by simulating the

main circuit with a set of random inputs. We use the SAIF file which is generated via

simulation to extract the maximum and minimum TCs of all signals in the circuit, refer

to as TCmin and TCmax hereafter. Then, we sweep DC in range of [0, 1] with the steps of

st, and TC in range of [TCmin, TCmax] with the steps of tc. In this study, st and tc are

considered as 0.05 and TCmax−TCmin
50 , respectively.

As the next step, the aging-induced delay change for each gate type in the considered

TC and DC combinations are extracted via HSPICE aging simulations for i months using

the FO4 model for each gate (as shown in figure 4.11, and are included in the database

which is further deployed for training a non-linear regression model to predict the delay of

each gate type experiencing unseen TC and DC combinations in its output.

Aging-Induced Path-Delay Prediction Model: Having the SAIF file used to specify the

TCmin and TCmax and the regression model from the previous step, enables us to infer the

44

Figure 4.11: SPICE netlist for aging each gate type.

aging-induced delay change of each gate in the design after i months of aging, when the

device experiences the switching activity and duration cycle in that SAIF file. Instead of

building a new timing model, we use a trick to use existing STA engines for aging-induced

path-delay prediction. For this purpose, we replace the delay of each cell, with the delay

increment suggested by the regression model (developed in the previous step) and re-time

the design. The timing report, in the result of query to the STA tool, provides us with

the net delay increase of each timing path, accounting for possible skew in the launch and

capture portion of each timing path (if they age differently or have different topology). At

this point, we have all information needed to extract the ADP set, described next.

ADP set Classifier: The ADP set, is composed of MAP and LAP subset. Timing paths

assigned to each subset have to satisfy two requirements. The first requirement that is

common for both MAP and LAP groups is that the selected timing paths should have

available slack s in the original (design time) timing model. Where s satisfies the inequality

45

fmax > 1/(T − s), in which T is clock period, and fmax is the maximum clock frequency

of the tester. The reason for this path selection is to be able to use CFST to measure the

delay of the timing paths, which is needed as a part of our model building. The second

requirement is to have a high value of aging-induced path delay prediction for paths in the

MAP subset, and low values for timing paths in the LAP subset.

Identifying MAP and LAP subset could be easily achieved by plotting the histogram

of aging-induced path delay predictions for all timing paths that meet the first condition

(fmax > 1/(T − s)) and identifying set of timing paths that are (predicted to be) least and

most affected by aging. This process could be automated by fitting a bimodal function on

the resulting plot.

f = Gauss(µLAP , σLAP) +Gauss(µMAP , σMAP) (4.18)

To differentiate MAP and LAPs from each other, we argue that a timing-path belongs to

the MAP group if its aging-induced path delay prediction is greater than µMAP −2×σMAP ;

while it is included in the LAP group if it is less than µLAP + 2 × σLAP . Note that the

timing paths with mid-range value for aging-induced path delay prediction (that extend the

tail of MAP and LAP towards one another) are removed, and are mot included in ADP.

4.6.2 Building The Neural Assisted Golden Timing Model

The mean of aging-induced delay in LAP and MAP paths deviates from each other as the

device ages. We utilize this observation to identify recycled chips. More precisely, the

expected delay of timing path, as reported by STA, could be compared with the delay

obtained from CFST: AD = CFST (p)−NGTM(p). This AD could be due to the process

variation, process drift (mentioned in section 3.2), and the impact of aging. To remove the

impact of variation from this AD, we employ the NGTM by training the NN-Watchdog

over the MAP subset of timing-paths. Having this setting, the new AD only represents the

impact of aging.

46

4.6.3 Computing Added Delays

Now that we have the NGTM for the ADP set, we can compute the Added Delay (AD) of

each path from:

AD(p) = CFST (p)−NGTM(p) (4.19)

Note that this model is tuned to predict the delay of the MAP subset of ADP for the

current chip, that could be aged or new. If the IC is new, the AD value for MAP and

LAP subset should fall in the same distribution (when collected across many timing paths).

However, if the IC is aged, the Model(p) prediction (which is tuned for MAP subset) will

be incorrect, resulting in large inconsistency between CFSF (p) and NGTM(p).

4.6.4 Inferring MAP-LAP mean shift

Assuming there are n paths in MAP subset, and m paths in LAP subset, we define the

mean-shift MS as the

MS =
1

n

∑
p∈MAP

AD(p)− 1

m

∑
p∈LAP

AD(P) (4.20)

4.6.5 Classification

The last step for detecting aged ICs is a classification based on a simple thresholding mech-

anism, Using threshold value Th, the IC is identified as aged when Th ≤MS. Choosing a

value for Th introduces a trade-off between false positive and sensitivity of the test. The

smaller Th the value, the more sensitive the test, and could even identify slightly aged de-

vices at the expense of possible higher false-positive rate. In this work, we set the threshold

to the step size of the CFST tester (to reduce the false positive rate), which we assumed to

be 10ps. However, note that there are other mechanisms that could be justified for setting

the threshold such as 1) goal-driven threshold to identify devices aged more than m months,

2) error-driven thresholds (such as mσ of the error of neural network), 3) simulation-driven

47

thresholds based on the average change of delay of affected timing paths after m months of

aging, etc. each of which could be justified based on the ICs use case.

48

Chapter 5: Results and Discussion

In this chapter, we first look at the improvements obtained by employing proposed voltage

modeling, then we look at the accuracy of the NN-Watchdog in tracking the process drift,

and then we present the result of applying our proposed test flow, for both Trojan and

Recycled IC detection.

5.1 Proposed Voltage Modeling Accuracy

In this section, the accuracy of our flow in modeling the voltage noise and improvement in

the timing closure are quantified.

5.1.1 Verification of Delay Equivalent Voltage

For the verification purpose, we used Ethernet, S38417 and AES128 netlists from IWLS

benchmark suit [82]. Using Synopsys Design and IC Compiler, we first hardened these IPs

using 32nm cell libraries. Then we run a dynamic vectorless IR simulation using Ansys

Redhawk and extracted cell voltages for 100 cycles of dynamic simulation, padded with 10

cycles of pre-simulation using a toggle rate of 10% and 100% for data and clock cells respec-

tively. Subsequently, we collected 4K timing paths from the routed design and calculated

the VDEV for each timing path. To accurately model the behavior of a timing path for

setup timing check, the voltages applied to the launch and capture path should come from

two consecutive cycles. For this reason, for each cycle of simulation, we have computed the

VDEV for each of launch and capture segment of each timing path for every cycle. In the

SPICE simulation of a timing path, when its LP is annotated with the VDEV of cycle n,

the CP is annotated with VDEV of cycle n+ 1. For the base case, we also annotate the LP

and CP of each timing path with voltage observed in two consecutive cycles from Redhawk

49

analysis. Hence, when IR simulation for C cycles is available, the setup check could be

constructed C − 1 times. The hold check, on the other hand, uses the voltage of the launch

and capture in the same cycle.

Monte Carlo
Uncertainty =

0
(pSec)

CMargin based
Uncertainty =

x
(pSec)

VRail

VRail

VDEVD

VDEVC

VDEVLBV7 V8V5 V12
V3

V1 V2

V4

V6

V9 V10V11

A

Figure 5.1: setup for a) the SPICE simulation when using actual voltages obtained from Redhawk; b) the

SPICE simulation when using computed VDEV voltages for LP and CP; c) the SPICE simulation when using

hard margins (using 10% IR drop and 5% uncertainty)

Figure 5.1 (A and B) illustrate our setup for two sets of SPICE simulation, one when

VDEV is used and one when individual cell voltages are applied, and the resulting slack is

compared. In order to further illustrate the accuracy of VDEV , a third SPICE simulation is

set up where the timing paths slacks are computed using the 10% IR drop rule for the cell

voltages and 5% rule for the uncertainty. For verification, we computed the difference in

the computed slacks when actual voltages are applied to that of when the modeled voltages

(VDEV or voltage obtained from 10% drop) is applied. In the SPICE simulation, the slack

is computed using:

Slack = tcs−cr + Tclk − tcs−lr − tclk−q − tp − tsetup − U (5.1)

where tcs−lr and tcs−cr are the delays of clock path from its source to the launch and

capture register respectively, tp is the longest propagation delay of data path, Tclk is the

clock period, tclk−q and tsetup are the inherent clock to Q, and setup delay for the launch

and capture registers respectively, and U is the applied uncertainty. Using this equation,

the slack differences are obtained from equations:

50

Figure 5.2: The timing slacks in three nearly timing closed design (Ethernet, AES128 and S38417) using
conventional margin based and VDEV flow for generation of NGTM

∆DEV = |SlackActual − SlackVDEV | (5.2)

∆Conv = |SlackActual − SlackVConv | (5.3)

In this equations, SlackActual is the slack obtained from the application of actual voltages

in each cycle, the SlackVDEV is the slack obtained from application of VDEV values where

uncertainty constraint is set to zero, and SlackVConv is the slack obtained by application of

a rail voltage and voltage noise related uncertainty (similar to Synopsis PrimeTime). The

histogram obtained from SPICE simulations of the timing paths for ∆slack is illustrated in

figure 5.2. As illustrated, for both benchmarks the ∆DEV is a zero-mean distribution with

much smaller standard deviation compared to the ∆Conv. Smaller difference verifies the

smaller error. Considering the Ethernet, S38417 and AES128 were designed for 1.4 GHz

of frequency, the maximum path delay error for both benchmarks is reduced from ∼ 10%

when using the conventional model, to around ∼ 1% when using VDEV .

51

-0.2 -0.1 0 0.1
Slack di,erence (nSec)

0

50

100

C
ou

n
t

(a) Histogram of Slack difference "Ethernet"

-0.1 0 0.1 0.2
Slack di,erence (nSec)

0

50

100

C
ou

n
t

(c) Histogram of Slack difference "AES"

-0.04 -0.02 0 0.02 0.04
Slack di,erence (nSec)

0

50

100

C
ou

n
t

(e) Histogram of Slack difference "S38417"

0 100 200 300 400 500
Path count

0

0.1

0.2

S
la

ck
(n

S
ec

) (b) Slacks for both modelings, "Ethernet"

STA
DEV

STA
conv

0 100 200 300 400 500
Path count

-0.1
0

0.1
0.2

S
la

ck
(n

S
ec

) (d) Slacks for both modelings, "AES128"

STA
DEV

STA
conv

0 100 200 300 400 500
Path count

0

0.2

0.4

S
la

ck
(n

S
ec

) (b) Slacks for both modelings, "S38417"

STA
DEV

STA
conv

Figure 5.3: VDEV based slacks v.s. margin-based slacks

5.1.2 Improvement in STA accuracy

To illustrate the timing impact of using rail voltages driven from VDEV modeling flow,

we performed a case study on Ethernet, S38417 and AES128 benchmarks. The STA was

once obtained based on conventional flow (STAConv) and once using the proposed voltage

modeling flow (STADEV) for IR drop and voltage noise.

Figure 5.3 illustrates the available slack for the critical timing path in STAConv and the

recalculated slack based on STADEV . The slacks are sorted in ascending order as reported

by STAConv. Hence, at each X location of this graph, the black dot represents the available

timing slack based on the conventional hard-margin-based timing analysis flow, and the

red dot represents the new timing slack obtained by using the proposed voltage modeling

scheme. As illustrated, most timing paths see an additional timing slack, some as large as

100 pSec. From this graph, we can easily observe that the conventional flow, has penalized

many timing paths with unnecessary margins. These margins, if available during physical

52

design flow, could be used for improving the Power, Performance and Area (PPA) of design

by means of introducing additional VT swapping or cell downsizing. In addition, in both

benchmarks, there are several timing paths that are timing closed in STAConv, however, we

see violation in STADEV , indicating that the original margins were not pessimistic enough.

Hence, using STADEV could discover and fix this types of violations.

5.2 NN-Watchdog Accuracy

We evaluated the effectiveness of NN-watchdog on the three largest IWLS benchmarks [82]

(Ethernet, S38417, and AES128). For training and test purposes, We collected a labeled

dataset for each of these benchmarks using the methodology described in Algorithm 3 in

section 4.5.1. We divided the dataset into a training and a test set with 80% and 20% of

samples in each set accordingly. Besides, we evaluated the effectiveness of three regressors

1) Ridge, 2) MLP, and 3) Stacking-Regressor. Ridge is a linear regressor that has enhanced

efficiency when it comes to parameter estimation problems. We use this model as a baseline.

MLP, see Figure 4.2, is a non-linear regression. The stacking-Regressor (figure 4.3) is an

ensemble of both linear and non-linear regressors, and represent our improved NN-watchdog

model in this work.

Table 5.1 depicts the mean and standard deviation of the NN-Watchdog in predicting

the shift in the delay of timing-paths when subjected to process drift. The process drift is

represented using Fast, Typical, and Slow process corners which are simulated using skewed

Table 5.1: The Accuracy of Three NN-Watchdog regression model (Ridge Regression, MLP and Stacking-

regressor) trained for different benchmarks on NGTM-10. The µ and σ are the Mean and Standard deviation
of the regression error over the validation set. As discussed in Section 4.2, the Fast, Typical and Slow process
are simulated using skewed Spice model with (X,Y) = (5,5), (0,0), (-5,-5), respectively. µ and σ are reported
in pico seconds.

Size Fast Typical Slow
Benchmarks # Gates Train/Test Ridge MLP Stacked Ridge MLP Stacked Ridge MLP Stacked

µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ

AES128 114K 21K/4K 0.17 9.26 -0.14 7.45 0.09 5.16 -0.03 12.54 0.04 8.12 0.02 5.13 0.07 13.52 -0.02 7.15 0.01 5.14
Ethernet 40K 20K/4K 0.09 28.43 0.79 9.65 0.03 6.52 -0.12 28.82 0.28 9.13 0.01 6.51 0.08 29.43 -0.65 8.36 0.01 6.50
S38417 6K 4K/1K 0.07 12.41 0.12 6.87 0.09 5.03 0.17 13.93 0.08 7.07 0.09 5.02 -0.03 12.91 0.25 6.38 0.07 5.04

53

AES128

Ethernet S38417

-250-100 -100-125 125 00 100
Error Error Error

C
o
u
n
t

C
o
u
n
t

C
o
u
n
t

20k 20k 2k

100 0

Figure 5.4: Histogram of NN-Watchdog Error trained for different benchmarks.

Spice model with (X,Y) = (5,5), (0,0), (-5,-5), respectively as discussed in Section 4.2. As

shown, the standard deviation is reasonably small. To put this in perspective, we can

compare the error distribution of NN-Watchdog with the error distribution obtained by

finding the difference between delay of timing-paths reported by SPICE (dSPICE) and that

obtained from STA (dSTA). Figure 5.4 depicts the distribution of NN-Watchdog error

and mean-shifted delay-difference model (∆SPICE−STA = dSTA − dSPICE) over a large

selection of timing-paths. As illustrated, all models generate acceptable value for mean

delay. The non-linear models (MLP and Stacked) result in a considerably smaller standard

deviation across the board. As illustrated, the standard deviation in stacked regressor

has also considerably improved compared to MLP, showcasing ensemble learning solutions’

power in generating superior models. The lower standard deviation of the stacking-regressor

model makes its prediction (of slack change) more accurate, resulting in a more precise

detection solution, when integrated into our flow.

5.3 HW Trojan Detection Accuracy

5.3.1 Experimental Setup

We selected 720 timing-paths from non-critical to critical range, covering a range of 400 ps

of slack from 3 largest IWLS benchmarks [82] (Ethernet, S38417 and AES128). Each bench-

mark is hardened and timing closed at 1.4 GHz in 32nm technology. For each benchmark,

we divided the selected timing-paths into two groups (360 each) for inserting TTs and TPs.

We further divided each subgroup into three smaller groups of 120 paths each to implement

54

small, medium, and large size Trojans. The TP size is controlled by the selection of logic

gates with different inherent delays. The TT size is controlled by the distance it is placed

from the triggering net. During NN-Watchdog training, we do not know if a timing-path

selected for training contains a Trojan. Hence, we also evaluated the impact of including

Trojans affected timing paths in the training; We trained 3 NN-Watchdogs with 0, 1, 5, 10

and 15 Trojan paths included in their training set. The rest of the Trojans are used for

evaluating the proposed Trojan detection accuracy as a part of its test-set.

To model the voltage variation, we used Redhawk [76] and simulated 50 cycles of vec-

torless IR simulation when clock and data toggle rates are 100% and 10% respectively. In

the SPICE simulation, each timing-path is assigned a random value from a normal distri-

bution for the Vth of its transistors (to model the process variation), and each of its gates

is annotated with the gate voltage reported by Redhawk in one simulation cycle. Note that

each SPICE simulation presents a CFST test performed on a different die at a different

time. Furthermore, the slack reported by the SPICE simulation for each timing-path was

adjusted to the neighboring larger clock sweeping frequency step, modeling the CFST step

size. The step size in the state-of-the-art tester equipment can be as small as 10-15ps.

Hence, we selected the step size of the tester as 15ps.

In our simulations, we assessed the effectiveness of Trojan detection using two ap-

proaches. 1) Shifted STA (SSTA): when STA results are used as Golden Timing Model

to detect HW Trojans. The process drift makes the direct usage of STA results quite

ineffective. To account for process drift in SSTA, we have computed a static shift value, ob-

tained from averaging the observed shift from many sampled timing-paths, and have shifted

all reported slacks by STA using this value. For this approach, we have set the detection

threshold to the fixed value of 45ps which is the delay of a 2-input NAND gate in our stan-

dard cell library. 2) Neural shifted Golden Timing Model (NGTM) in which the voltage

noise is modeled using VDEV voltage modeling, while the process drift is modeled using

NN-Watchdog. To show the stacked learning model’s effectiveness, we have also evaluated

the usage of both MLP and stacked-regression as NN-watchdog. When collecting a dataset

55

for training the NN-watchdog, there is no guarantee that the Trojan affected timing path(s)

is not included in the training set. Therefore, we have investigated the accuracy of NGTM

when the training set contains 0, 1, 5, 10, and 15 timing-paths affected by HW Trojans. In

this approach, we have set our Trojan detection threshold to 4 × σ of regressor standard

deviation. The choice of 4× σ significantly reduces the number of false positives. Compar-

ing the standard deviation of the stacked and MLP model, based on table 5.1, provides a

valuable insight on why the NN-watchdog designed using the stacked-regression model is

expected to be more sensitive/accurate compare to the MLP-regression model: It benefits

from a lower detection threshold, while statistically benefit from a similar false-positive rate.

5.3.2 Trojan Detection Results

To evaluate the quality of selected threshold values for our proposed Trojan detection flow,

we have extracted and reported the optimal threshold from the ROC-curve using Youden[79]

method. Note the optimal threshold can not be extracted in real-life examples as it requires

the ground-truth table (knowing exactly which timing path are and are not affected by

Trojan), and could only be used for quality assessment purposes. The Youden method

generates a different detection threshold for each of TT and TP based ROC curve.

Figure 5.5 captures the result of TP detection in Fast (X,Y)=(5,5) speed bin. The

top row compares the accuracy of SSTA and NGTM in detecting TPs. The bottom row

reports the false positive rate of detection for each model across different benchmarks. This

figure evaluates Trojan detection’s effectiveness when each of the Stacked-regression and

MLP-regression models (for predicting the shift in slack) is used. The NGTM model is

reported five times (NGTM-X), where each has been trained with X Trojans included in

their training set, where X ∈ [0, 1, 5, 10, 15]. As reported, the inclusion of a small number of

HW Trojan samples in our data set minimally impact the detection rate of Stacking model

(using NGTM) on the test set, as the detection rate and false-positive rate of Stacking model

for NGTM-0 is similar to the NGTM-X for X ∈ [0, 1, 5, 10, 15]. The similarity of detection

rate and false-positive rate is simply because the number of Trojans is not statistically

56

S
S
T
A

N
G

T
M

-0

N
G

T
M

-1

N
G

T
M

-5

N
G

T
M

-1
0

N
G

T
M

-1
5

0

20

40

60

80

100

%
 T

ru
e
 P

o
si

ti
v
e

S38417

S
S
T
A

N
G

T
M

-0

N
G

T
M

-1

N
G

T
M

-5

N
G

T
M

-1
0

N
G

T
M

-1
5

0

20

40

60

80

100
Ethernet

S
S
T
A

N
G

T
M

-0

N
G

T
M

-1

N
G

T
M

-5

N
G

T
M

-1
0

N
G

T
M

-1
5

0

20

40

60

80

100
AES128

S
S
T
A

N
G

T
M

-0

N
G

T
M

-1

N
G

T
M

-5

N
G

T
M

-1
0

N
G

T
M

-1
5

0
2
4
6
8

10
12
14

%
 F

a
ls

e
 P

o
si

ti
v
e

S
S
T
A

N
G

T
M

-0

N
G

T
M

-1

N
G

T
M

-5

N
G

T
M

-1
0

N
G

T
M

-1
5

0
2
4
6
8

10
12
14

S
S
T
A

N
G

T
M

-0

N
G

T
M

-1

N
G

T
M

-5

N
G

T
M

-1
0

N
G

T
M

-1
5

0
2
4
6
8

10
12
14

Detection Threshold: Youden 45ps 4σ Model: MLP Stacked

Figure 5.5: Trojan Payload detection results for 3 benchmarks. (top): Detection rate, (bottom): False

positive rate. The SSTA bar represents the HW Trojan Payload detection using a (Mean shifted) STA. The
NGTM bars represent the Trojan Payload detection when Neural-assisted timing model is deployed. Each
bar shows the NN trained when X Trojans are included in the training set, with X ∈ {0, 1, 5, 10, and15}.

significant to affect the training (e.g., 15 Trojan data versus 20K Trojan free data points)

process.

The NGTM not only results in a significant increase in the TP detection rate (to over

95%) but also significantly depresses the false positive rate. This confirms NN-watchdog’s

ability in modeling the complicated, non-linear, path-specific shift of delays resulting from

process drift. Finally, note that a small number of Trojans in the training set does not affect

the accuracy of trained NN-watchdog as the impact of a few samples in a large training set

is statistically insignificant.

Figure 5.6 depicts the result of our TT detection in the FAST speed bin with (X,X) =

(5,5). Like the TP case, it compares the effectiveness of SSTA and multiple forms of NGTM

(Trojan contaminated model) for detecting TTs. The figure shows how the improvement

in the standard deviation of NN-watchdog significantly improves the detection rate for TTs

(over 40% in some cases). As shown, NGTM has a lower rate for detecting TTs than TPs due

to the smaller impact of TT on the delay of affected observed nets compared to TP (which

57

S
S
T
A

N
G

T
M

-0

N
G

T
M

-1

N
G

T
M

-5

N
G

T
M

-1
0

N
G

T
M

-1
5

0

20

40

60

80

100

 %
 T

ru
e
 P

o
si

ti
v
e

S38417

S
S
T
A

N
G

T
M

-0

N
G

T
M

-1

N
G

T
M

-5

N
G

T
M

-1
0

N
G

T
M

-1
5

0

20

40

60

80

100
Ethernet

S
S
T
A

N
G

T
M

-0

N
G

T
M

-1

N
G

T
M

-5

N
G

T
M

-1
0

N
G

T
M

-1
5

0

20

40

60

80

100
AES128

S
S
T
A

N
G

T
M

-0

N
G

T
M

-1

N
G

T
M

-5

N
G

T
M

-1
0

N
G

T
M

-1
5

0

20

40

60

80

100

S
e
n
si

ti
ze

d

 %
 T

ru
e
 P

o
si

ti
v
e

S
S
T
A

N
G

T
M

-0

N
G

T
M

-1

N
G

T
M

-5

N
G

T
M

-1
0

N
G

T
M

-1
5

0

20

40

60

80

100

S
S
T
A

N
G

T
M

-0

N
G

T
M

-1

N
G

T
M

-5

N
G

T
M

-1
0

N
G

T
M

-1
5

0

20

40

60

80

100

S
S
T
A

N
G

T
M

-0

N
G

T
M

-1

N
G

T
M

-5

N
G

T
M

-1
0

N
G

T
M

-1
5

0
2
4
6
8

10
12
14

 %
 F

a
ls

e
 P

o
si

ti
v
e

S
S
T
A

N
G

T
M

-0

N
G

T
M

-1

N
G

T
M

-5

N
G

T
M

-1
0

N
G

T
M

-1
5

0
2
4
6
8

10
12
14

S
S
T
A

N
G

T
M

-0

N
G

T
M

-1

N
G

T
M

-5

N
G

T
M

-1
0

N
G

T
M

-1
5

0
2
4
6
8

10
12
14

Detection Threshold: Youden 45ps 4σ Model: MLP Stacked

Figure 5.6: Trojan Trigger detection results for 3 benchmarks. (top): Detection rate, (middle): Detection

rate for sensitized designs, and (bottom): False positive rate.

is at least equal to one gate delay). Like the TP case, we observe that contamination of the

training set with few HW Trojan data points does not impact the accuracy of trained NN-

Watchdog. As illustrated, the choice of the learning model (MLP vs. Stacked) for training

the NN-watchdog has a significant impact on Trojan detection accuracy. As illustrated the

stacking-regression, for having a smaller threshold (selected based on 4 × σ of regression

model error) could improve the detection rate by 10% to 15%, resulting in over 95% Trojan

detection rate. This is when the false-positive rate of the overall solution, when constructed

based on the stacking-regression model, is equal to or lower than its MLP-based counterpart.

The selection of the Youden threshold for detection, although significantly improves the TT

detection, results in higher false positive, and perhaps is not a preferred mechanism for

setting the detection threshold.

58

0 1

FPR

0

1

T
ro

ja
n
 P

a
y
lo

a
d

 T

P
R

S38417

0 1

FPR

0

1

T
P
R

Ethernet

0 1

FPR

0

1

T
P
R

AES128

0 1

FPR

0

1

T
ro

ja
n
 T

ri
g
g
e
r

 T

P
R

0 1

FPR

0

1

T
P
R

0 1

FPR

0

1

T
P
R

MLP Stacked

Figure 5.7: Associated ROC curve for (top): TP, and (bottom): TT, when NGTM-1 models are used. ROC
curves capture the True Positive Rate versus False Positive Rate.

Figure 5.7 illustrates the ROC curve from which the Youden threshold (as described in

Section 4.5.1) is extracted for NGTM-1. The threshold values used for detection using each

of these methods is reported in table 5.2.

Table 5.2: Threshold values used for TT and TP Trojan detection in Fast-bin in Algorithm 2 when using
NGTM-10 model

Benchmarks
MLP Stacking Model

TP TT TP TT
Youden 4× σNN Youden 4× σNN Youden 4× σNN Youden 4× σNN

AES128 27.1 32.48 16.3 32.48 18.66 20.52 11.68 20.52

Ethernet 35.5 36.52 15.4 36.52 22.48 26.04 13.17 26.04

S38417 24.7 28.28 17.2 28.28 17.82 20.08 12.05 20.08

Table 5.3 captures the results of TP Trojan detection in all speed bins. As reported,

the speed binning provides more accurate results for TP detection compared to the No-

speed-binning case. This is due to the larger standard deviation of the NN-Watchdog when

training over extracted delays from all dies without considering the impact of systematic

process variation.

59

Table 5.3: Percentage of False Positives (FPos) and True Positives (TPos) when Stacking model , as described

in Algorithm 2 is used to detect TP with different binning strategies (Slow, Typical, Fast, and no Binning).

For this simulation, the NN is trained using a Trojan in dataset (NGTM-1 model).

Benchmarks
Slow Typical Fast No-Binning

TPos FPos TPos FPos TPos FPos TPos FPos

AES128 98.88 0.11 97.78 0.17 94.44 0.18 86.67 0.31

Ethernet 96.67 0.17 95.56 0.12 92.22 0.15 88.89 0.48

S38417 96.67 0.19 94.44 0.23 91.11 0.39 82.22 0.45

5.3.3 Results of Diagnostic Analysis

Our diagnostic test flow, as described in section 4.5.2, significantly reduces the false-positive

rate of our Trojan detection solution. The result of running our diagnostic test is reported

in Table 5.4. As shown in this table, the diagnostic test can significantly reduce the false

positive rate, bringing it down to zero false positives for most NGTM, regardless of regressor

choice (MLP vs. Stacking). Note that the choice of regression model determines our Trojan

detection accuracy, and the diagnostic test flow does not help with increasing the detection

accuracy. Hence, although our diagnostic test could impressively suppress the false-positive

rate, the stacking learning model still has a clear advantage over the MLP model (or other

liner models). In a few cases, the diagnostic test cannot reduce the false positive to zero. The

reason for this observation is that the majority of timing paths selected for the diagnostic

test are affected by process variation such that they see a slight increase in their delay,

which is comparable to the Trojan Trigger impact. Besides, in some cases, the diagnostic

test cannot generate enough timing paths that consist of a small portion of a malicious

path, limiting the analysis on each segment (net) of a malicious timing path. To further

reduce the false positive, one may a) increase the number of timing paths chosen for the

diagnostic test, b) run the diagnostic test on a different die (if the Trojan is inserted in

all dies), c) change the selection of timing paths used for diagnosis, or d) increase the

detection-threshold for Trojan detection (trading off accuracy vs false-positive rate). We

have purposely not repeated the experiment with additional timing paths to illustrate that

the diagnostic test could still miss some of the false positives and highlight the need for

60

Table 5.4: In this table, the result of our diagnostic test for reducing the false-positive rate of our proposed
model is reported. The diagnostic test is also able to pinpoint the location of nets hosting the Trojan
Trigger or Payload. The expected number of suspect nets (by the model) after running the diagnostic test

is indicated by E(n).

Benchmark NN Model
FPo Before
Diagnostics

FPo After
Diagnostics

E(n)

A
E

S
1
2
8

NGTM-0 99 0 1.39
NGTM-1 111 0 1.41
NGTM-5 195 0 1.47
NGTM-10 191 0 1.48
NGTM-15 231 0 1.47

E
th

e
rn

e
t

NGTM-0 137 0 1.61
NGTM-1 161 0 1.62
NGTM-5 119 0 1.65
NGTM-10 187 3 1.65
NGTM-15 111 2 1.68

S
3
8
4
1
7

NGTM-0 19 0 1.66
NGTM-1 21 4 1.66
NGTM-5 12 2 1.65
NGTM-10 13 1 1.57
NGTM-15 16 0 1.54

repeating the diagnostic test with one of the solutions proposed above.

Another advantage of our proposed diagnostic test, as previously suggested, is its ability

to pinpoint the location (net) containing the Trojans’ TT or TP. In some cases, however, we

cannot produce enough test patterns for a single suspicious net, and we have to consider a set

of nets for the diagnostic test. In such a case, the number of nets that should be diagnosed

for Trojan is more than one. Table 5.4 summarizes the result of our diagnostic test. As

indicated, the expected number of timing paths that may have a TT or TP Trojan, denoted

by E(n), is between 1 and 2 timing paths. E(n) ’s small value would significantly help with

next-step verification for partially or fully-invasive Trojan detection (for verification) and

save significant time scanning the IC for the Trojan.

61

5.4 Recycled IC Detection

We targeted 5 different IPs including s35932, s38417, s38584, b17, and AES128 from IWLS

benchmark suite[82] and hardened them using a commercial 32nm technology via the Syn-

opsys EDA toolset [83]. We used Synopsys HSPICE for the transistor-level simulations, and

the HSPICE built-in MOSRA Level 3 model to assess the effect of NBTI and HCI aging [84].

The aging simulations were performed under temperature= 125°C and Vdd=0.85V for 12

months with 1- month steps.

For each benchmark, using the Synopsys PrimeTime tool, we extracted N=10 longest

paths feeding each endpoint (flip-flop or primary output). To account for the tester fre-

quency step size, in our experiments we only select a subset of these paths whose delay is

at least 250ps, resulting in the selection of 3455, 2390, 2121, 2626, and 21460 timing paths

for the s35932, s38417, s38584, b17, and AES128 benchmarks, respectively.

To take the impact of process variations into account, in our simulation-based setup,

the random patterns we use to generate our NGTM is different from the set of patterns we

use in aging simulations to extract the aging-induced path delays and creating the ADP

classifier. Note that the ADP set classifier is unique for each GDSII netlist and is generated

per design. Using the ADP set classifier, we fit a bimodal curve on ADP set’s histogram for

each design to identify MAP and LAP groups. The histograms and fitted bimodal curves

for each target circuitry after one month of usage are shown in figure. 5.8. This figure

clearly depicts the deviation of MAP and LAP paths from each other when the device is

aged. This observation confirms the applicability of the proposed path classification scheme

in detecting recycled chips.

As the next step after classifying the timing paths, for each benchmark, we extracted the

features presented in table 4.1 from its GDSII file, and used them to generate 13 datasets

per benchmark related to i months of aging where 0 ≤ i ≤ 12. Each dataset includes the

extracted features and the slacks collected from one of these 13 aging simulations. We used

these datasets to generate a unique NGTM for each circuit-under-test.

We deployed the extracted NGTM for each benchmark circuits aged between zero and

62

s35932 s38417 s38584

b17 AES128

Figure 5.8: Histograms depicting delay-increase on timing-paths used for classification after one month of
aging. For each benchmarks, there exists a bimodal distribution for the AD distinguishing the MAP and
LAP paths from each other.

12 months, and calculated the MAP-LAP mean shift via equation 4.20. The results are

shown in table 5.5. As depicted, the mean shift between LAP and MAP paths significantly

increases for an aged device compared to its fresh (age=0) counterpart. The more the device

is aged, the higher the value of the mean shift between its LAPs and MAPs. However, as

expected the rate of mean-shift increase is higher initially. This is because the aging effect is

high in the first couple of months but the aging-induced threshold voltage tends to saturate

for long stress times (refer to figure 2.1). In particular, as table 5.5 shows for the s35932

benchmark, the mean shift changes from -0.63ps to 12.39ps (20x increase) after 1 month,

while it increases 50% in the following month compared to its value in month 1. The same

trend can be observed in other benchmarks. On average, over all benchmarks, the mean

shift increases 29.15, 36.02, 44.19, 53.71, and 72.23 ps after 1, 3, 6, 9, and 12 months of

aging. Accordingly, the proposed method can accurately differentiate the new and recycled

chips from each other.

63

Table 5.5: The mean error of each ADP set group for all benchmarks.

B
e
n

ch
m

a
rk

A
g
in

g
(M

o
n
th

s)
0

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

s3
5
9
3
2

T
ra

in
&

T
e
st

(M
A

P
)

0
.0

0
0
.1

2
0
.2

8
0
.0

3
0
.0

5
0
.0

7
0
.0

9
0
.2

0
0
.3

9
0
.5

1
0
.1

0
0
.3

7
0
.4

3

E
v
a
lu

a
te

(L
A

P
)

0
.6

3
−

1
2
.2

7
−

1
9
.3

9
−

2
2
.3

2
−

2
3
.8

8
−

2
3
.8

7
−

2
7
.4

7
−

2
8
.5

4
−

3
0
.7

2
−

3
0
.9

1
−

3
2
.1

5
−

3
5
.7

1
−

3
9
.0

4

M
e
a
n

S
h

ift
−

0
.6

3
1
2
.3

9
1
9
.6

7
2
2
.3

5
2
3
.9

2
2
3
.9

4
2
7
.5

6
2
8
.7

4
3
1
.1

1
3
1
.4

2
3
2
.2

5
3
6
.0

8
3
9
.4

7
C

o
rre

c
tly

Id
e
n
tifi

e
d

X
X

X
X

X
X

X
X

X
X

X
X

X

s3
8
4
1
7

T
ra

in
&

T
e
st

(M
A

P
)

−
0
.0

5
−

0
.8

9
−

0
.5

4
−

0
.7

6
2
.8

1
−

0
.4

9
0
.2

7
−

0
.2

0
−

1
.8

1
−

0
.9

6
−

1
.8

5
0
.8

9
1
.8

8

E
v
a
lu

a
te

(L
A

P
)

0
.5

7
−

2
8
.9

3
−

3
1
.0

7
−

3
2
.7

6
−

3
3
.0

5
−

3
3
.5

5
−

3
6
.5

4
−

4
0
.9

1
−

4
1
.0

1
−

4
3
.6

0
−

4
4
.5

2
−

4
9
.9

9
−

6
2
.8

7

M
e
a
n

S
h

ift
−

0
.6

2
2
8
.0

4
3
0
.5

3
3
2
.0

0
3
5
.8

7
3
3
.0

6
3
6
.8

2
4
0
.7

1
3
9
.2

0
4
2
.6

4
4
2
.6

7
5
0
.8

9
6
4
.7

5
C

o
rre

c
tly

Id
e
n
tifi

e
d

X
X

X
X

X
X

X
X

X
X

X
X

X

s3
8
5
8
4

T
ra

in
&

T
e
st

(M
A

P
)

0
.0

0
−

0
.2

0
−

2
.5

4
1
.4

0
−

1
.4

3
1
.7

9
1
.2

2
−

1
.0

5
−

2
.9

9
−

0
.3

0
−

2
.9

2
−

2
.8

6
−

2
.9

5

E
v
a
lu

a
te

(L
A

P
)

0
.4

6
−

2
6
.4

6
−

3
1
.5

0
−

3
4
.4

7
−

3
9
.0

1
−

4
1
.0

2
−

4
8
.1

7
−

4
6
.4

2
−

4
9
.2

8
−

4
9
.5

3
−

5
3
.0

1
−

5
5
.1

5
−

5
7
.4

6

M
e
a
n

S
h

ift
−

0
.4

6
2
6
.2

6
2
8
.9

6
3
5
.8

7
3
7
.5

8
4
2
.8

1
4
9
.3

9
4
5
.3

7
4
6
.2

9
4
9
.2

3
5
0
.0

8
5
2
.3

0
5
4
.5

2
C

o
rre

c
tly

Id
e
n
tifi

e
d

X
X

X
X

X
X

X
X

X
X

X
X

X

b
1
7

T
ra

in
&

T
e
st

(M
A

P
)

0
.0

2
−

2
.7

5
−

2
.1

0
−

5
.4

6
−

1
.1

2
0
.6

4
0
.2

4
−

1
.0

5
−

0
.9

9
0
.6

6
−

0
.4

2
−

4
.5

8
−

4
.2

1

E
v
a
lu

a
te

(L
A

P
)

0
.1

4
−

3
8
.2

2
−

4
0
.6

5
−

4
4
.9

9
−

4
8
.2

1
−

5
3
.9

4
−

5
7
.1

8
−

6
8
.9

4
−

7
3
.4

0
−

9
1
.6

1
−

1
0
0
.8

3
−

1
0
4
.6

6
−

1
0
7
.8

5

M
e
a
n

S
h

ift
−

0
.1

2
3
5
.4

7
3
8
.5

5
3
9
.5

3
4
7
.0

9
5
4
.5

8
5
7
.4

2
6
7
.8

9
7
2
.4

1
9
2
.2

7
1
0
0
.4

2
1
0
0
.0

8
1
0
3
.6

4
C

o
rre

c
tly

Id
e
n
tifi

e
d

X
X

X
X

X
X

X
X

X
X

X
X

X

A
E

S
1
2
8

T
ra

in
&

T
e
st

(M
A

P
)

0
.0

2
1
.0

6
0
.8

7
0
.6

5
1
.9

4
0
.3

5
0
.3

1
2
.0

9
1
.2

8
1
.8

4
1
.3

6
1
.4

9
0
.6

3

E
v
a
lu

a
te

(L
A

P
)

0
.5

3
−

3
5
.3

1
−

3
9
.7

7
−

4
2
.5

5
−

4
7
.9

5
−

4
4
.7

1
−

4
6
.6

8
−

4
5
.1

8
−

5
2
.3

2
−

5
1
.5

2
−

5
5
.2

5
−

6
2
.8

5
−

8
4
.8

6

M
e
a
n

S
h

ift
−

0
.5

0
3
6
.3

7
4
0
.6

5
4
3
.2

0
4
9
.8

9
4
5
.0

6
4
6
.9

9
4
7
.2

8
5
3
.6

0
5
3
.3

6
5
6
.6

1
6
4
.3

5
8
5
.4

9
C

o
rre

c
tly

Id
e
n
tifi

e
d

X
X

X
X

X
X

X
X

X
X

X
X

X

64

Chapter 6: Conclusion

In this work, we presented a novel variation modeling and timing signature, and a promising

methodology for Trojan and Recycled IC detection based on side-channel delay analysis,

that does not require the availability and usage of a Golden IC. The proposed scheme relies

on 1) improving the timing model at design time to account for voltage noise, and 2) training

a Neural Network at test time that is used as a process tracking watchdog to model the

process drift (while accounting for process variation). Our proposed solution does not rely

on the existence of a Golden IC. We also presented a methodology to distinguish between

two sets of timing paths that age more/less overtime.

We have reported that our Trojan detection flow could achieve close to 90% Trojan

detection, and have shown a 100% Recycled IC detection in the selected benchmarks.

65

Bibliography

[1] M. Lecomte et al., “An on-chip technique to detect hardware trojans and assist coun-

terfeit identification,” IEEE Trans. on VLSI Systems, vol. 25, no. 12, pp. 3317–3330,

2017.

[2] A. Yeh, “Trends in the global ic design service market,” DIGITIMES research, 2012.

[3] K. Z. Azar, H. M. Kamali, H. Homayoun, and A. Sasan, “Threats on logic locking: A

decade later,” in Great Lakes Symposium on VLSI (GLSVLSI), 2019, pp. 471–476.

[4] H. M. Kamali, K. Z. Azar, K. Gaj, H. Homayoun, and A. Sasan, “LUT-lock: A Novel

LUT-based Logic Obfuscation for FPGA-bitstream and ASIC-hardware Protection,”

in IEEE Computer Society Annual Sympo. on VLSI (ISVLSI), 2018, pp. 405–410.

[5] S. Roshanisefat, H. M. Kamali, K. Z. Azar, S. M. P. Dinakarrao, N. Karimi, H. Homay-

oun, and A. Sasan, “DFSSD: Deep Faults and Shallow State Duality, A Provably Strong

Obfuscation Solution for Circuits with Restricted Access to Scan Chain,” in VLSI Test

Symposium (VTS), 2020, pp. 1–6.

[6] H. M. Kamali, K. Z. Azar, H. Homayoun, and A. Sasan, “SCRAMBLE: The State,

Connectivity and Routing Augmentation Model for Building Logic Encryption,” in

IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2020, pp. 153–159.

[7] S. Roshanisefat, H. M. Kamali, A. Sasan, “SRCLock: SAT-resistant Cyclic Logic Lock-

ing for Protecting the Hardware,” in Great Lakes Symposium on VLSI (GLSVLSI),

2018, pp. 153–158.

66

[8] H. M. Kamali, K. Z. Azar, H. Homayoun, A. Sasan, “Full-Lock: Hard Distributions

of SAT Instances for Obfuscating Circuits using Fully Configurable Logic and Routing

Blocks,” in Design Automation Conference (DAC), 2019, pp. 89–94.

[9] ——, “InterLock: An Intercorrelated Logic and Routing Locking,” in IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), 2020, pp. 1–9.

[10] G. Kolhe, S. M. PD, S. Rafatirad, H. Mahmoodi, A. Sasan, and H. Homayoun, “On

custom lut-based obfuscation,” in Proceedings of the Great Lakes Symposium on VLSI

(GLSVLSI), 2019, pp. 477–482.

[11] N. Karimi, J.-L. Danger, and S. Guilley, “On the effect of aging in detecting hardware

trojan horses with template analysis,” in International Symposium on On-Line Testing

And Robust System Design (IOLTS). IEEE, 2018, pp. 281–286.

[12] D. Agrawal et al., “Trojan detection using IC fingerprinting,” in Security and Privacy,

2007. SP’07. IEEE Symp. on. IEEE, 2007, pp. 296–310.

[13] R. Rad, et al., “A sensitivity analysis of power signal methods for detecting hard-

ware trojans under real process and environmental conditions,” IEEE Trans. on VLSI

Systems, vol. 18, no. 12, pp. 1735–1744, 2010.

[14] H. Salmani et al., “New design strategy for improving hardware trojan detection and

reducing trojan activation time,” in IEEE Int. Workshop on Hardware-Oriented Secu-

rity and Trust, 2009, pp. 66–73.

[15] Y. Liu et al., “Hardware trojan detection through golden chip-free statistical side-

channel fingerprinting,” in Proceedings of the 51st Annual Design Automation Confer-

ence. ACM, 2014, pp. 1–6.

[16] C. Lamech et al., “Rebel and tdc: Two embedded test structures for on-chip mea-

surements of within-die path delay variations,” in Proceedings of the International

Conference on Computer-Aided Design. IEEE Press, 2011, pp. 170–177.

67

[17] R. Rad et al., “Sensitivity analysis to hardware trojans using power supply transient

signals,” in 2008 IEEE International Workshop on Hardware-Oriented Security and

Trust. IEEE, 2008, pp. 3–7.

[18] R. M. Rad et al., “Power supply signal calibration techniques for improving detec-

tion resolution to hardware trojans,” in 2008 IEEE/ACM International Conference on

Computer-Aided Design, 2008, pp. 632–639.

[19] D. Du et al., “Self-referencing: A scalable side-channel approach for hardware tro-

jan detection,” in International Workshop on Cryptographic Hardware and Embedded

Systems. Springer, 2010, pp. 173–187.

[20] K. Hu et al., “High-sensitivity hardware trojan detection using multimodal character-

ization,” in Proceedings of the Conference on Design, Automation and Test in Europe.

EDA Consortium, 2013, pp. 1271–1276.

[21] Y. Liu et al., “Hardware trojans in wireless cryptographic ics: silicon demonstration

& detection method evaluation,” in 2013 IEEE/ACM International Conference on

Computer-Aided Design (ICCAD). IEEE, 2013, pp. 399–404.

[22] K. Xiao et al., “A clock sweeping technique for detecting hw trojans impacting circuits

delay,” IEEE Design Test, vol. 30, pp. 26–34, 2013.

[23] Y. et al., “Hw trojan detection using path delay fingerprint,” in IEEE Int. Workshop

on HW-Oriented Security & Trust, 2008, pp. 51–57.

[24] J. Li et al., “At-speed delay characterization for ic authentication and trojan horse

detection,” in Int. Workshop on Hardware-Oriented Security and Trust, 2008, pp. 8–

14.

[25] Y. Jin et al., “Hardware trojan detection using path delay fingerprint,” in Hardware-

Oriented Security and Trust, 2008. HOST 2008. IEEE Int. Workshop on. IEEE, 2008,

pp. 51–57.

68

[26] X. Cui et al., “Hardware trojan detection using the order of path delay,” ACM Journal

on Emerging Technologies in Computing Systems (JETC), vol. 14, no. 3, p. 33, 2018.

[27] I. Exurville et al., “Resilient hardware trojans detection based on path delay measure-

ments,” in 2015 IEEE International Symposium on Hardware Oriented Security and

Trust (HOST). IEEE, 2015, pp. 151–156.

[28] D. Ismari et al., “On detecting delay anomalies introduced by hardware trojans,”

in 2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

IEEE, 2016, pp. 1–7.

[29] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor, and Y. Makris, “Coun-

terfeit integrated circuits: A rising threat in the global semiconductor supply chain,”

Proceedings of the IEEE, vol. 102, no. 8, pp. 1207–1228, 2014.

[30] U. Guin et al., “On selection of counterfeit ic detection methods,” in IEEE North

Atlantic Test Workshop, 2013.

[31] M. Alam, S. Chowdhury, M. M. Tehranipoor, and U. Guin, “Robust, low-cost, and

accurate detection of recycled ics using digital signatures,” in HOST, 2018, pp. 209–

214.

[32] GIPC. (2016) Counterfeits and their impact on consumer safety.

“https://www.theglobalipcenter.com/gipc-testimony-to-u-s-senate-committee-on-

the-judiciary-on-counterfeits-and-their-impact-on-consumer-safety/“.

[33] N. Karimi, J.-L. Danger, and S. Guilley, “On the effect of aging in detecting hardware

trojan horses with template analysis,” in int’l Symp. on On-Line Testing And Robust

System Design (IOLTS), 2018, pp. 281–286.

[34] ——, “Impact of aging on the reliability of delay PUFs,” Journal of Electronic Testing,

Theory and Application (JETTA), vol. 34, no. 5, pp. 571–586, 2018.

69

[35] F. Oboril et al., “Extratime: Modeling and analysis of wearout due to transistor aging

at microarchitecture-level,” in Int’l Conf. on Dependable Systems and Networks, 2012,

pp. 1–12.

[36] N. Karimi, A. K. Kanuparthi, X. Wang, O. Sinanoglu, and R. Karri, “Magic: Malicious

aging in circuits/cores,” ACM Trans. on Architecture and Code Optimization (TACO),

vol. 12, no. 1, pp. 1–25, 2015.

[37] A. Vakil et al., “IR-ATA: IR annotated timing analysis, a flow for closing the loop

between PDN design, IR analysis & timing closure,” in Asia and South Pacific Design

Automation Conf., 2019, pp. 152–159.

[38] H. Li, Q. Liu, and J. Zhang, “A survey of hardware trojan threat and defense,” Inte-

gration, vol. 55, pp. 426–437, 2016.

[39] N. Jacob, D. Merli, J. Heyszl, and G. Sigl, “Hardware trojans: current challenges and

approaches,” IET Computers & Digital Techniques, vol. 8, no. 6, pp. 264–273, 2014.

[40] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor, “Hardware tro-

jans: Lessons learned after one decade of research,” ACM Transactions on Design

Automation of Electronic Systems (TODAES), vol. 22, no. 1, pp. 1–23, 2016.

[41] M. Tehranipoor et al., “A survey of hw trojan taxonomy and detection,” IEEE Design

Test of Computers, vol. 27, no. 1, pp. 10–25, Jan 2010.

[42] S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan, “Hardware trojan attacks:

threat analysis and countermeasures,” Proceedings of the IEEE, vol. 102, no. 8, pp.

1229–1247, 2014.

[43] S. R. Hasan, C. A. Kamhoua, K. A. Kwiat, and L. Njilla, “Translating circuit behavior

manifestations of hardware trojans using model checkers into run-time trojan detection

monitors,” in 2016 IEEE Asian Hardware-Oriented Security and Trust (AsianHOST).

IEEE, 2016, pp. 1–6.

70

[44] F. Wolff et al., “Towards trojan-free trusted ics: Problem analysis and detection

scheme,” in Design, Automation and Test in Europe, 2008, pp. 1362–1365.

[45] S. Wei et al., “Scalable hardware Trojan diagnosis,” IEEE Trans. on VLSI Systems,

vol. 20, no. 6, pp. 1049–1057, 2012.

[46] O. Söll, T. Korak, M. Muehlberghuber, and M. Hutter, “Em-based detection of hard-

ware trojans on fpgas,” in 2014 IEEE International Symposium on Hardware-Oriented

Security and Trust (HOST). IEEE, 2014, pp. 84–87.

[47] H. Salmani and M. Tehranipoor, “Layout-aware switching activity localization to en-

hance hardware trojan detection,” IEEE Transactions on Information Forensics and

Security, vol. 7, no. 1, pp. 76–87, 2011.

[48] R. Rad, J. Plusquellic, and M. Tehranipoor, “Sensitivity analysis to hardware tro-

jans using power supply transient signals,” in 2008 IEEE International Workshop on

Hardware-Oriented Security and Trust. IEEE, 2008, pp. 3–7.

[49] M. Potkonjak, A. Nahapetian, M. Nelson, and T. Massey, “Hardware trojan horse de-

tection using gate-level characterization,” in 2009 46th ACM/IEEE Design Automation

Conference. IEEE, 2009, pp. 688–693.

[50] D. Du, S. Narasimhan, R. S. Chakraborty, and S. Bhunia, “Self-referencing: A scalable

side-channel approach for hardware trojan detection,” in International Workshop on

Cryptographic Hardware and Embedded Systems. Springer, 2010, pp. 173–187.

[51] M. M. Tehranipoor, U. Guin, and D. Forte, “Counterfeit integrated circuits,” in Coun-

terfeit Integrated Circuits. Springer, 2015, pp. 15–36.

[52] B. Shakya, U. Guin, M. Tehranipoor, and D. Forte, “Performance optimization for

on-chip sensors to detect recycled ics,” in int’l Conf. on Computer Design (ICCD),

2015, pp. 289–295.

71

[53] (2013) G-19A test laboratory standards development committee, Fraudulent Coun-

terfeit Electronic Parts; Avoidance, Detection, Mitigation, and Disposition.

“https://www.sae.org/standards/”.

[54] K. Huang, Y. Liu, N. Korolija, J. M. Carulli, and Y. Makris, “Recycled ic detection

based on statistical methods,” TCAD, vol. 34, no. 6, pp. 947–960, 2015.

[55] Y. Zheng, A. Basak, and S. Bhunia, “Caci: Dynamic current analysis towards robust

recycled chip identification,” in DAC, 2014, pp. 1–6.

[56] U. Guin, D. Forte, and M. Tehranipoor, “Design of accurate low-cost on-chip struc-

tures for protecting integrated circuits against recycling,” Trans. on Very Large Scale

Integration (VLSI) Systems, vol. 24, no. 4, pp. 1233–1246, 2015.

[57] K. K. Kim, “On-chip delay degradation measurement for aging compensation,” Indian

Journal of Science and Technology, vol. 8, no. 8, p. 777, 2015.

[58] S. Khan, N. Z. Haron, S. Hamdioui, and F. Catthoor, “NBTI monitoring and design

for reliability in nanoscale circuits,” in Int’l Symp. on Defect and Fault Tolerance in

VLSI and Nanotechnology Systems, 2011, pp. 68–76.

[59] P. Vuillod, L. Benini, A. Bogliolo, and G. De Micheli, “Clock skew optimization for

peak current reduction,” in Proceedings of the 1996 Int. Symp. on Low power electronics

and design. IEEE Press, 1996, pp. 265–270.

[60] S. Pant and D. Blaauw, “Static timing analysis considering power supply variations,”

in ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design,

2005., Nov 2005, pp. 365–371.

[61] R. Ahmadi and F. N. Najm, “Timing analysis in presence of power supply and ground

voltage variations,” in ICCAD-2003. International Conference on Computer Aided De-

sign (IEEE Cat. No.03CH37486), Nov 2003, pp. 176–183.

72

[62] K. Arabi et al., “Power supply noise in socs: Metrics, management, and measurement,”

IEEE Design & Test of Comp., vol. 24, no. 3, 2007.

[63] V. Wang et al., “A design model for random process variability,” in Int. Symp. on

Quality Electronic Design, 2008, pp. 734–737.

[64] K. Xiao et al., “A clock sweeping technique for detecting hw trojans impacting circuits

delay,” IEEE Design Test, vol. 30, pp. 26–34, 2013.

[65] M. Gruber, Improving Efficiency by Shrinkage: The James–Stein and Ridge Regression

Estimators. Routledge, 2017.

[66] L. Breiman, “Stacked regressions,” Machine learning, vol. 24, no. 1, pp. 49–64, 1996.

[67] D. H. Wolpert, “Stacked generalization,” Neural networks, vol. 5, no. 2, pp. 241–259,

1992.

[68] T. Chen et al., “Xgboost: A scalable tree boosting system,” in Proceedings of the 22nd

acm sigkdd int’l Conf. on knowledge discovery and data mining, 2016, pp. 785–794.

[69] H. Zou et al., “Regularization and variable selection via the elastic net,” Journal of the

royal statistical society: series B (statistical methodology), vol. 67, no. 2, pp. 301–320,

2005.

[70] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal

Statistical Society: Series B (Methodological), vol. 58, no. 1, pp. 267–288, 1996.

[71] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning: data

mining, inference, and prediction. Springer Science & Business Media, 2009.

[72] T. K. Ho, “Random decision forests,” in int’l Conf. on document analysis and recogni-

tion, vol. 1. IEEE, 1995, pp. 278–282.

73

[73] M. Rosenblatt, “A central limit theorem and a strong mixing condition,” Proceedings

of the National Academy of Sciences of the United States of America, vol. 42, no. 1,

p. 43, 1956.

[74] T. Sakurai and A. R. Newton, “Alpha-power law mosfet model and its applications to

cmos inverter delay and other formulas,” IEEE Journal of solid-state circ., vol. 25, pp.

584–594, 1990.

[75] Synopsys. Composite current source delay modeling. Accessed July 10, 2019. [Online].

Available: https://news.synopsys.com/index.php?s=20295&item=122723

[76] ANSYS-Apache. (2020) Redhawk. Accessed Jan 10, 2020. [Online]. Available:

https://www.ansys.com/products/semiconductors/ansys-redhawk

[77] E. Bogatin, Signal and Power Integrity - Simplified, 3rd ed. Prentice Hall, 2018.

[78] Synopsys. (2019) Primetime. Accessed July 10, 2019. [Online]. Available:

http://synopsys.com/implementation-and-signoff/signoff/primetime.html

[79] N. Perkins et al., “The inconsistency of optimal cutpoints obtained using two criteria

based on the receiver operating characteristic curve,” American journal of epidemiol-

ogy, vol. 163, no. 7, pp. 670–675, 2006.

[80] S. Chen et al., “Fully on-chip temperature, process, and voltage sensors,” in Proceedings

of 2010 IEEE Int. Symp. on Circuits and Systems, May 2010, pp. 897–900.

[81] M. Sasaki et al., “A temperature sensor with an inaccuracy of −1/+0.8 ◦ c using 90-nm

1-v cmos for online thermal monitoring of vlsi circuits,” IEEE Trans. on Semiconductor

Manufacturing, vol. 21, no. 2, pp. 201–208, May 2008.

[82] IWLS-org. (2005) Iwls 2005 benchmarks. Accessed July 10, 2019. [Online]. Available:

http://iwls.org/iwls2005/benchmarks.html

74

[83] Synopsys. (2020) Synopsys toolset. Accessed April 10, 2020. [Online]. Available:

http://synopsys.com

[84] Synopsys, “HSPICE User Guide: Basic Simulation and Analysis,” 2016.

75

Curriculum Vitae

Ashkan Vakil received his B.Sc. degree in Electrical Engineering from the University of
Mazandaran, Mazandaran, Iran. He received his M.Sc. degree in Electrical Engineering
from the University of Bridgeport, CT, USA in 2015. He has worked earlier on Nanoelec-
tronic, Carbon Nanotube conductivity, and energy harvesting via renewable resources.

76

	Dissertation_page1_signed
	Dissertation_PhD_w_diag

