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Making decisions over multivariate time series is an important topic which has 

gained significant interest in the past decade. A time series is a sequence of data points 

which are measured and ordered over uniform time intervals. A multivariate time series is 

a set of multiple, related time series in a particular domain in which domain experts 

utilize multivariate time series to make a vital decision. Through studying multivariate 

time series, specialists are able to understand problems of events from different 

perspectives within particular domains. Identification and detection of those significant 

events over multivariate time series can lead to a better decision-making and actionable 

recommendations. 

Existing approaches to identifying and detecting significant events and delivering 

recommendations can be roughly divided into two categories: domain-knowledge-based 

and formal-learning-based. The former relies on solely domain experts’ knowledge. 
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Based on their knowledge and experience, domain experts can determine the conditions 

and the designed parameters to detect the events of interest and then deliver appropriate 

actions. However, those parameters are not always accurate. In addition, the parameters 

are static, but the problem that we deal with is often dynamic in nature. Thus the domain-

knowledge-based approach lacks a formal mathematical foundation to dynamically learn 

parameters to meet the need of the changing environment. The latter approach, formal-

learning-based, is to utilize formal learning methods such as non-linear logistic regression 

models. The logistic regression models are used to predict the occurrence of an event by 

learning parametric coefficients of the logistic distribution function of the explanatory 

variables. The challenge using formal learning methods to support decision-making is 

that they do not always produce satisfactory results, as they are not incorporated with 

domain experts’ knowledge into their learning processes. Clearly, both approaches, 

domain-knowledge-based and formal-learning-based, do not take advantage of each other 

to learn optimal decision parameters, which are used to detect the events and then make 

better actionable recommendations. 

To support such an event-based decision-making and recommendation, I proposed 

a Web-Mashup Application Service Framework for Multivariate Time Series Analytics 

(MTSA). It is an integrated framework to support the MTSA service development and 

implementation, including parametric model definitions, query formulation, parameter 

learning, data monitoring, decision recommendations, and model evaluations. Domain 

experts can use the framework to develop and implement their web-based decision-

making applications on the Internet. More specifically, the technical contributions of my 
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dissertation include (1) the MTSA data model and query language to support the 

development and implementation of those MTSA services; (2) the hybrid-based 

mathematical models and computational algorithms that combine the strengths of both 

domain-knowledge-based and formal-learning-based approaches to learn decision 

parameters over multivariate time series; and (3) the experimental case studies to solve 

the real-world problems in two different domains, i.e., the stock markets and the electric 

power microgrids, to evaluate the models and algorithms, which are designed for the 

learning, monitoring, and recommendation services. 
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CHAPTER 1. INTRODUCTION 

1.1 Motivation and Background 
A time series is a sequence of data points which are measured and ordered over 

uniform time intervals. Some examples of time series include wind speed, employment 

figures, body temperatures, etc. A multivariate time series is a set of multiple, related 

time series data [1, 2], e.g., heartbeats and pulses, in a particular domain in which domain 

experts utilize multivariate time series to make a vital decision. Thus making decisions 

over multivariate time series is an important topic which has gained significant interest in 

the past decade. For instance, financial analysts and researchers monitor daily stock 

prices, weekly interest rates, and monthly price indexes to analyze the state of stock 

markets and make trading decisions. Energy planners use the supply and demand of 

electricity, heating, and cooling to determine the load shedding of electric power and to 

procure the best energy investment option. Physicians and medical scientists measure 

diastolic and systolic blood pressure over time and electrocardiogram tracings to evaluate 

cardiovascular patients. Sociologists and demographers study annual birth rates, mortality 

rates, accident rates, and crime rates to discover hidden social problems within a 

community. The purpose of these studies over multivariate time series is to assist 

specialists in understanding problems of events from different perspectives within 

particular domains. Identification and detection of those significant events over 
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multivariate time series can lead to a better decision-making and actionable 

recommendations. 

Consider an example of a timely event detection of certain conditions in a stock 

market, i.e., a bear market bottom, which can provide investors a valuable insight into the 

best investment opportunity. Such identification and detection of the event over a range 

of financial indexes and economic indicators can aid in the task of decision-making and 

the determination of action plans. For instance, financial analysts suggest that a bear 

market bottom [3] has occurred if some changes of the financial indexes, such as the S&P 

500 falls at least 20% and the Consumer Confidence Index declines at least 30 points, are 

detected. Note that those decision parameters, e.g., 20% and 30 points, may be given by 

the domain experts or learned from the formal mathematical computations. This financial 

decision-making detection can be developed by using web services [4], which enable 

domain experts to convert such a utility program into a web-based application. The 

decision-making function provided by this web-based application can be published and 

available to be used worldwide. To support such decision-making and determination over 

multivariate time series around the globe, it is desirable to offer a range of common web 

services on the Internet. For example, financial analysts can use the developed web 

services with the given monitoring conditions and decision parameters, e.g., the S&P 500 

falls at least 20% and the Consumer Confidence Index declines at least 30 points, to 

monitor the bear market bottom and to recommend an appropriate action when the 

bottom is detected. 
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More specifically, the six web services for decision-making over multivariate 

time series are expected and shown in Figure 1. The Model Definition Service allows 

domain experts to define different types of parametric model templates, which determine 

the occurrence of an event, identified by domain experts. In the financial example that 

predicts the event, i.e., the bear market bottom, the model template may consist of the 

indexes such as S&P 500 percentage decline (SPD) and Consumer Confidence Index 

drop (CCD), where the values of the parameters may be specified. Given such a 

parametric model template in a given domain and of specific parametric values, the 

Monitoring and Recommendation Service continuously screens the incoming data stream 

of the indexes for detecting the event. When the event of interest, e.g., the bear market 

bottom, has occurred, the service recommends an action, e.g., buying stock. If the 

parameters are not known a priori, the Parameter Learning Service parameterizes the 

template and supports learning of the parameters from historical and projected time 

series. The accuracy of the decision parameters are ensured through the Model Accuracy 

and Quality Evaluation Service, which validates the prediction, i.e., the bear market 

bottom, with the observed real data, and updates the model if necessary. The Querying 

Service allows domain experts to express and implement the complex information 

services, mentioned above in a high-level abstraction, over multivariate time series. The 

Web Portal Service enables domain experts to develop a point-of-access service as a 

main entrance (1) to integrate all their implemented MTSA services together, (2) to 

provide a consistent style and format among all those services, and (3) to centralize users’ 

access control and procedures on those services.  
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Figure 1: Web Services for Multivariate Time Series Analytics (MTSA) on the Internet 

 

1.2 Research Challenges 
For expressing and implementing the services shown in Figure 1, Structured 

Query Language (SQL) [5] is a language tool for those web services as it is an easy-to-

learn and easy-to-use language. SQL has been utilized in many querying services, such as 

creating database tables and retrieving data from databases. However, the SQL has 

significant limitations. The SQL itself is not designed for the continuous monitoring and 

recommendation services over multivariate time series as it is a one-time, passive query. 
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It means that the queries are initiated by users, and the DBMS [6, 7] executes the queries 

for them. Thus the same SQL statement cannot be run repeatedly and automatically to 

monitor a specific event and then recommend an action. 

To monitor events of interest, an extension of SQL, called SQL triggers [8], has 

been proposed. By defining the Event-Condition-Action rule, the SQL trigger 

automatically executes a particular action, e.g., creating a new table, when a pre-defined 

event, e.g., inserting tuples into a current table, has taken place and the specific condition, 

i.e., a true or false statement, has been satisfied. However, the SQL triggers are not 

designed for handling the events on data which are time sequences, i.e., temporal, and are 

time-sensitive-oriented [9, 10], e.g., the percentage changes of a financial indicator at an 

instant of time. To address the problems, several approaches have been suggested. One 

approach is to use a pure procedural language, Aurora Query [11, 12].  Using the 

provided GUI, the users can connect the system- and user-defined operators written in the 

procedural language, and the arrows together to form a continuous, graphical query that 

processes the streams in the real time for monitoring and recommendation. The second 

approach is to extend the conventional SQL as the relational-based language, AQuery 

[13].  One of the major extensions of this query is that a new clause, ASSUMING 

ORDER, sorts the sequence of the relations based on the timestamp, after the FROM 

clause is computed, for continuous monitoring and recommendation. In this dissertation, I 

have applied some of these proposed temporal extensions of SQL for the services of 

monitoring and recommendation in the proposed framework. 
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The two approaches, Aurora and AQuery, assume that the queries for monitoring 

conditions and recommending actions are given by users. However, an important 

question is how to automatically create those monitoring conditions and recommended 

actions to achieve optimal outcomes. Currently, existing approaches to support 

monitoring of interesting events and delivering recommendations can be roughly divided 

into two categories: domain-knowledge-based and formal-learning-based. The former 

relies on solely domain experts’ knowledge. Based on their knowledge and experience, 

domain experts can determine the conditions to detect the events of interest and then 

deliver appropriate actions. In the financial example, I assume that the domain experts 

have identified a set of financial indexes that can be used to determine the bear market 

bottom or the “best buy” opportunity. The indexes include the S&P 500 percentage 

decline (SPD), Coppock Guide (CG), Consumer Confidence Index drop (CCD), ISM 

Manufacturing Survey (ISM), and Negative Leadership Composite “Distribution” 

(NLCD) [3]. If these indexes satisfy the pre-defined, parameterized conditions, e.g., SPD 

< -20%, CG < 0, etc., it signals that the best period for the investors to buy the stocks is 

approaching. Often these parameters may reflect some realities since they are set by the 

domain experts based on their past experiences, observations, intuition, and domain 

knowledge. However, they are not always accurate. In addition, the parameters are static, 

but the problem that we deal with is often dynamic in nature. The market is constantly 

impacted by many unknown and uncontrollable factors. Thus the domain-knowledge-

based approach lacks a formal mathematical foundation to dynamically learn parameters 

to meet the need of the changing environment. 
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The latter approach, formal-learning-based, is to utilize formal learning methods 

such as non-linear logistic regression models [14, 15, 16, 17, 18].  The logistic regression 

models are used to predict the occurrence of an event (0 or 1) by learning parametric 

coefficients of the logistic distribution function of the explanatory variables. This is done 

based upon the historical data by applying nonlinear regression models and the Maximum 

Likelihood Estimation (MLE) [19]. The main challenge concerning using the formal 

learning methods to support decision-making is that they do not always produce 

satisfactory results, as they do not consider incorporating domain knowledge into their 

formal learning approaches.  

Because of this reason, some existing mathematical models, e.g., the Durland and 

McCurdy duration-dependent Markov-switching (DDMS) models, such as DDMS-

ARCH and DDMS-DD [20], integrated domain knowledge, i.e., duration dependence, 

into their forecasting criteria. Both models, DDMS-ARCH and DDMS-DD, are extended 

from the Markov-switching model [21] that is incorporated with the duration dependence 

to affect a transition probability that is parameterized using the logistic distribution 

function. The transition probability is the probability of being in a particular state at a 

specific point in time. The value and the trend of this probability over time demonstrate 

the current state of the stock market. For instance, when the economy is in the bull 

market, the probability of staying in the bull market increases with the duration and is 

always greater than 0.5 over time. The probability of staying in the bear market also 

increases with the duration, but the probability of staying in the bear market is less than 

0.5 until after some consecutive occurrences of this state occur. The effect of the duration 
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to the transition probability of being in a state also influences the conditional mean and 

the conditional variance of the stock returns. In the bull market, the conditional mean of 

the return is high, but the variance of the return volatility is low. In the bear market, the 

conditional mean of the return is low, but the variance of the return volatility is high. Due 

to the different properties of the conditional mean and the variance of the stock returns in 

a particular state, the trend and the volatility of the return in a state over time is also 

different. For example, the conditional return in the bull market declines with the 

duration, but the return volatility in the bear market increases over time. Having observed 

the behaviors of the probability and the return of the stock market over time, the market 

state can be determined. However, all of these models only consider a single element, i.e., 

duration, to integrate into the model to determine a market state. Thus this approach is 

not flexible and not complete as there are many other external, unknown factors that may 

affect the state of the stock market in the current environment.  

Moreover, those DDMS models also involve parameters that need to be learned 

by formal mathematical methods. Without wide-ranging domain experts’ knowledge, 

those formal learning methods become computationally intensive and time consuming. 

The whole model building is an iterative and interactive process, including model 

formulations, parameter estimations, and model evaluations. Despite enormous 

improvements in computer software in recent years, fitting such a nonlinear quantitative 

decision model [22] is not a trivial task, especially when the parameter learning process 

involves multiple explanatory variables, i.e., high dimensionality. Working with high-

dimensional data creates difficult challenges, a phenomenon known as the “curse of 
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dimensionality” [23, 24]. Specifically, the amount of observations required in order to 

obtain good estimates increases exponentially with the increase of dimensionality. In 

addition, many learning algorithms do not scale well on high dimensional data due to the 

high computational cost. The parameter computations by formal-learning-based 

approaches, e.g., the logistic regression model, are complicated and costly, and they lack 

the consideration of integrating sufficient domain experts’ knowledge into the learning 

process – a step that can potentially reduce the dimensionality. Clearly, both approaches, 

domain-knowledge-based and formal-learning-based, do not take advantage of each other 

to learn optimal decision parameters, which are used to monitor the events and then 

deliver better actionable recommendations.  

Since it is convenient to express parametric model templates, which are given by 

domain experts, using a SQL-like language, and the parameter learning can be reduced to 

a decision optimization problem, i.e., finding decision parameters that optimizes an 

objective function over historical and projected data, the Decision Guidance Query 

Language (DGQL) [25, 26, 27, 28, 29, 30, 31, 32] has been proposed and developed. The 

DGQL is a query language that combines the strengths of both approaches, domain-

knowledge-based and formal-learning-based, to solve decision optimization problems. 

Using the DGQL, users can learn optimal decision parameters to maximize an objective 

function, e.g., the earning in the financial example, within given constraints. And then 

users can use the learned parameters to monitor the events and then deliver the better 

actionable recommendations. Currently, the DGQL uses the mixed integer linear 

programming (MILP) solver [33, 34, 35], i.e., the IBM ILOG CPLEX optimizer [36], 
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from which the learning over multivariate time series is reduced to the DGQL construct 

and then to a MILP formulation.  

To be formulated a MILP problem, its objective function and the related 

constraints are required to be linear expressions of decision variables, which the data 

types can be real, integer, or binary. The MILP problem is then sent to the CPLEX solver 

to optimally instantiate the decision variables that satisfy all the given constraints and 

then maximize the objective function. However, to solve a MILP problem that involves 

multiple decision parameters for detecting the occurrence of events over multivariate 

time series requires the solver to generate a large number of binary variables. Each binary 

variable, which corresponds to a time point of input parametric time series data, stores 0 

or 1 to indicate whether or not a particular event occurs at a particular point in time. More 

precisely, the total number of binary variables being generated is determined from the 

size of input parametric time series. This large number of binary variables being 

generated significantly increases the searching space that adversely overloads the 

computational performance of the CPLEX solver to learn the optimal decision parameters 

to detect the events. Because the time complexity that the CPLEX optimizer requires to 

solve such problems is incredibly high, i.e.,       , where k is the number of input 

parametric time series of an event, and N is the size of the training data set of time series 

data, it takes a much longer time to solve the problem. Thus this approach is not scalable 

for parameter learning even though the number of the time series involved in the problem 

is very limited. Another problem is that the DGQL is NOT a continuous, active query to 

support the monitoring and recommendation services.  
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1.3 Problem Statement 
This dissertation addresses the approaches to close the research gaps identified in 

Section 1.2. More specifically, I address the following research questions: 

(1) How to create an event-based service framework from which domain 

experts can use to develop and implement their web-based decision-making applications 

on the Internet. 

(2) How to extend database models and SQL to enable service providers to 

express and deliver complex information services, including querying, learning, 

monitoring, and recommendation, over multivariate time series in an intuitive, high-level 

abstraction. 

(3) How to develop “time-component-based” mathematical models and 

learning algorithms that combine the strengths of both domain-knowledge-based and 

formal-learning-based approaches to learn optimal decision parameters over multivariate 

time series in an efficient manner. 

(4) How to design and implement experimental case studies that unify 

decision optimization models, computational algorithms, database models, and query 

language to verify and evaluate the above services.  

1.4 Thesis Statement and Summary of Research Contributions 
In this dissertation, I focus on a framework, models, algorithms, and experimental 

case studies to bridge the gaps to solve the above problems.  

Thesis Statement: It is possible to develop a Multivariate Time Series Analytics 

(MTSA) framework that provides database models and query language to support the 

services, including (1) Model Template Definition, (2) Querying, (3) Data Monitoring 
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and Decision Recommendation, (4) Parameter Learning, and (5) Model Evaluation. 

Furthermore, it is possible to develop formal mathematical foundations and efficient 

algorithms for parameter learning problems over multivariate time series in the MTSA 

service framework that can be implemented in a practical system. 

More specifically, the technical contributions of this dissertation are as follows: 

(1) Web-Mashup Application Service Framework, Data Models, and Query 

Language for Multivariate Time Series Analytics (MTSA). 

I propose a web-mashup application service framework for MTSA [37]. This 

framework is an integrated development framework that provides a medium to domain 

experts and supports their quick implementations of web services shown in Figure 1. 

Using the Web-Mashup function offered by the Web 2.0 technology [38] on the 

framework, domain experts can collect and unify global information and data from 

different channels and media, such as web sites, data sources, and organization 

information, to generate a concentric view of collected time series data from which the 

parameter learning service determines optimal decision parameters. Using optimal 

decision parameters, domain experts can employ the monitoring service to detect events 

and the recommendation service to suggest actions. All these services can be integrated 

into the web portal service. 

To support the development of those MTSA services, I develop an extension of 

the relational database model and SQL called MTSA Data Model and Query Language 

[37, 39, 40]. With the high-level MTSA constructs, the MTSA data model and query 

language can support those service implementations on the framework to provide the 
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services shown in Figure 1. Using the MTSA database model and query language, users 

are able to construct a multivariate-time-series, binary-event, and decision-parameter 

database, manipulate the corresponding data, and implement the services as well. For 

example, the MTSA monitoring and recommendation service enables users to form a 

query. The query continuously monitors the data streams that satisfy the parameterized 

conditions, in which the parameters have been instantiated by the MTSA parameter 

learning service. The main reason behind why the query language, i.e., SQL, was chosen 

to be extended is because the query language SQL is much closer to the natural language, 

English. Users who even have little or no programming skills can still use the MTSA 

query language to write simple decision optimization problems.  

(2) Models and Algorithms for Classes of MTSA Problems. 

2a. Expert Query Parametric Estimation (EQPE) Model and Checkpoint 

Algorithm.  

To formulate decision optimization problems initiated by the MTSA query 

language, I develop a mathematical hybrid-based model of learning over multivariate 

time series, named Expert Query Parametric Estimation (EQPE) Model [39, 40, 41], used 

for the MTSA parameter learning service. The EQPE model is a well-defined model 

which captures domain experts’ knowledge in expression of multivariate time series, 

decision parameters, parametric constraints, time utility, and objective functions. The 

objective functions are dependent on the time points from which the parameters are 

learned. More specifically, the MTSA model template definition service takes the template 

of conditions identified by domain experts. Such template consists of inequalities of 
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values in the time sequences. Then the learning service “parameterizes” the template, 

e.g., SPD < p1 and CCD < p2, where SPD is the S&P 500 percentage decline and CCD is 

the Consumer Confidence Index drop, and supports learning of the parameters, p1 and p2, 

from the historical time series. In this model, conjunctions of inequality constraints are 

considered, and the objective function is maximized when the parameters, which are 

determined from the optimal time points of the time utility function, are optimized.  

To determine the optimal time points from which the optimal decision parameters 

are learned, I develop a computational algorithm, called Checkpoint [39, 40, 41]. The 

algorithm also combines the strengths of both domain experts’ knowledge in terms of 

parametric constraints and formal learning methodology by using the regression 

approach. The goal of the learning algorithm is to efficiently learn the decision 

parameters that maximize the objective function, e.g., earnings in the financial example, 

over multivariate time series data with a considerably low time complexity. This new 

algorithm guarantees a true optimal time point and has the complexity of O(kNlogN), 

where N is the size of the learning data set, and k is the number of input parametric time 

series. To demonstrate the effectiveness and the efficiency of the algorithm, I compare 

my method with the domain-knowledge-based approach and the formal logistic 

regression model in the financial case study. 

2b. Multi-Event Expert Query Parametric Estimation (ME-EQPE) Model 

and Multidimensional M-Checkpoint Algorithm.  

However, the proposed EQPE model and the Checkpoint algorithm are only able 

to learn one set of decision parameters for one particular event at a single time point, 
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whereas there are many real-world scenarios that the parameter learning is at multiple 

time points in sequence. For instance, consider the above financial example again, in 

which the investors would like to decide on both when the S&P 500 fund is purchased at 

tpurchased and when the fund is sold at tsold rather than either tpurchased or tsold only. Using the 

EQPE model and the Checkpoint algorithm, the investors would not be able to obtain the 

optimal decision parameters simultaneously at the two interrelated decision time points 

and then to gain the maximal earning of the S&P 500 index fund. To address the 

shortcomings of the one-dimensional-time-point model and algorithm, I develop an 

extended model, Multi-Event Expert Query Parametric Estimation (ME-EQPE), and an 

algorithm, Multidimensional M-Checkpoint [42, 43], to solve the problems. The new 

extended model and algorithm not only maintain the advantages of one-dimensional-

time-point model, EQPE, and algorithm, Checkpoint, but also learn decision parameters 

at multiple, inter-related time points optimally for multi-events. More specifically, the M-

Checkpoint algorithm is able to: 

 Combine the strengths of both domain-knowledge-based and formal-learning-

based approaches to solve the decision optimization problems that involve 

multiple decision time points to maximize the utility. 

 Maintain an optimality of the learned multiple sets of decision parameters in their 

respective events during the computations. 

 Guarantee a satisfactory forecasting result by using the learned multiple sets of 

decision parameters. 
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2c. Relaxed R-Checkpoint Algorithm.  

Although the proposed M-Checkpoint algorithm is able to learn multiple sets of 

decision parameters optimally and guarantee a satisfactory forecasting result, the 

computational complexity of this algorithm is considerably high, i.e., O(N
m
), where N is 

the size of the learning data set and m is the number of the events. To solve the issue of 

the high complexity, I develop a relaxed algorithm, R-Checkpoint [44, 45]. This 

algorithm is able to learn multiple sets of decision parameters that are fairly close to the 

optimal parameters learned from the M-Checkpoint algorithm, produce reasonably 

forecasting results, and maintain a satisfactorily low time complexity, i.e., O(QkNlogN), 

as compared with O(N
m
) of the M-Checkpoint algorithm, where Q is the total number of 

m-event, time-point combinations which yields the top-Q time utility, and k is the 

number of input parametric time series for each event.  To demonstrate the performance 

of the new algorithm, I conduct the experiment in the financial case study. Specifically, I 

compare the forecasting results that are detected by the decision parameters learned from 

the R-Checkpoint with the results that are determined by the optimal parameters obtained 

from the M-Checkpoint, as well as the parametric coefficients of the logistic regression 

model. I show that the forecasting results by the R-Checkpoint are slightly lower than 

those of the optimal M-Checkpoint algorithm and are considerably higher than those of 

the logistic regression methodology.        

 

 



17 

 

2d. Hybrid-Based Multivariate Time Series Analytics - Parameter 

Estimation (MTSA-PE) Model.  

However, the discussed hybrid-based models, EQPE and ME-EQPE, and 

algorithms, Checkpoint, M-Checkpoint, and R-Checkpoint, are only able to solve a 

specific class of problems that (1) their decision parameters of an objective function are 

learned from optimal time points of a time utility function, (2) the monitoring template 

has to be in the considered form, i.e., conjunctions of inequality constraints, and (3) the 

constraints being used are solely for monitoring purposes. To address the above 

weaknesses, I develop a general, hybrid-based model, Multivariate Time Series Analytics 

– Parameter Estimation (MTSA-PE) [37]. This model maintains a combination of both 

domain-knowledge-based and formal-learning-based approaches with possibly 

incorporating any global constraints that are applied to an entire problem, and monitoring 

constraints, which are used to detect the occurrence of events. Both types of inequality 

constraints, global and monitoring, are allowed in any possible combinations and forms. 

Using the MTSA-PE model associated with an external solver, e.g., the IBM ILOG 

CPLEX optimizer, domain experts can learn decision parameters that satisfy all the given 

constraints and then optimize the objective function, which is independent of a particular 

time point. 

(3) Experimental Case Studies.  

In order to demonstrate the capability of the service framework, I design and 

implement the experimental case studies to solve the real-world problems in two different 

domains, i.e., the stock markets and the electric power microgrids, to verify and evaluate 
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the models, algorithms, and query language, which are designed for the learning, 

querying, monitoring, and recommendation services stated above. I conduct the 

experiments in the financial domain, i.e., the stock market in which when it is the best 

time for financial analysts to buy and or sell the S&P 500 index funds for their clients, to 

demonstrate the performance of EQPE and ME-EQPE models, as well as the Checkpoint, 

M-Checkpoint, and R-Checkpoint algorithms. Using the electric power microgrids on the 

campuses at George Mason University as an example, I illustrate how the MTSA-PE 

model with the external solver to solve the energy problems, such as determinations of 

optimal peak demand bounds and decisions of the best energy investment option. 

The rest of this dissertation is organized as follows. In Chapter 2, I briefly discuss 

related materials on data models, query language, and existing approaches of parameter 

learning. In Chapter 3, I describe the proposed web-mashup application service 

framework and the developed data models and query language for the MTSA services, 

which are mainly designed for learning, monitoring, and recommendation. In Chapter 4, I 

explain the single-time-point EQPE model and Checkpoint algorithm to learn decision 

parameters for an event and demonstrate the effectiveness of the model and algorithm in 

the financial case study, i.e., the detection of the bear market bottom. In Chapter 5, I 

present the multiple-time-point ME-EQPE model and M-Checkpoint algorithm to learn 

decision parameters for multi-events, as well as utilize the detection of the bear market 

bottom and the bull market top in sequence as an example to show the efficiency of the 

model and algorithm. In Chapter 6, I detail the R-Checkpoint algorithm for multi-events 

and conduct the same financial case study as in Chapter 5 to illustrate the performance 
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among the logistic regression model, the M-Checkpoint algorithm, and the R-Checkpoint 

algorithm. In Chapter 7, I explain the MTSA-PE model to learn parameters with possibly 

incorporating any types of different constraints regardless of particular time points. In 

Chapter 8, I conduct two real case studies, i.e., the Decision-Guided Load Shedding 

(DGLS) system for optimal load shedding in electric power microgrids and the Decision-

Guided Energy Investment (DGEI) framework for optimal power, heating, and cooling 

capacity investment, to demonstrate the efficiency and expressiveness of the MTSA-PE 

model. In Chapter 9, I conclude the dissertation and discuss the future work.  
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CHAPTER 2. RELATED WORK 

In this chapter, I briefly discuss related materials on data models and query 

language, i.e., SQL Triggers, Aurora Query, AQuery, and DGQL, as well as the existing 

approaches of parameter learning, i.e., Logistic Regression Model and Mixed Integer 

Linear Programming.  

2.1 Logistic Regression Model 
In business and finance, economic researchers develop mathematical models and 

apply statistical methods to analyze economic data and their relationships to help users 

make a better decision. This study is called econometrics, which focuses on modeling the 

data relationship between explanatory (independent) and response (dependent) variables. 

In the real world, not all the response variables are numeric and continuous. In many 

cases, the responses may only take one of two possible answers, e.g., yes or no, success 

or failure, buy or sell, live or die, etc. Each outcome of the responses is assigned to a 

value 1 if the probability of the event happening is above 0.5 and 0 or otherwise. I 

assume that the dependent variable Yi only takes the binary response in the i
th

 

observation. A statistical model explains the binary variable Yi with Prob[Yi = 1] = pi and 

Prob[Yi = 0] = 1 – Prob[Yi = 1] = 1 – pi, where 0 ≤ pi ≤ 1. This mathematical model is 

called Binary Response Model (BRM) described by Dougherty, Heij, and others [14, 15, 

16, 17, 18]. 
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In this section, I focus on reviewing the logistic regression model, which forces its 

predicted probability bound between 0 and 1 because of its logistic curve. This model is 

non-linear, and its parameters can be computed by the Maximum Likelihood Estimation 

(MLE) [19]. Assume that there are N observations in the random sample of the binary 

response Yi. If the probability of an event happening, pi, is the same for all the 

observations, the probability distribution of the i
th

 observation in the sample can be 

written as   
         

    , where N is the total number of observations. 

For example, if Yi = 1, the probability pi can be expressed as pi
1
 · (1 – pi)

0
. This 

formula is also valid for the observation if Yi = 0. Suppose that the observations are 

mutually independent. The corresponding likelihood function (LF) of the model is 

∏   
         

     
   . 

In the logistic regression model, the probability pi is 
   

     
, where    

∑      
 
   ,    is a parametric coefficient of its    ,     = 1, 1 ≤ i ≤ N, 0 ≤ j ≤ k, and k is 

the total number of independent variables. 

The likelihood function LF(β)   

= ∏   
         

     
   , where β is a vector of the parametric coefficient βj. 
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   . 

By taking the natural logarithm of LF(β), the log-likelihood is given by ln(LF(β))  

= ∑ (   ∑      
 
   )  ∑       ∑      

 
     

   
 
   . 

The goal of the logistic regression model is to find the optimal β such that the 

ln(LF(β)) can be maximized. If the ln(LF(β)) can be maximized, the LF(β) can be 
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maximized as well. This can be achieved by the MLE in two steps. First, by taking the 

first-order partial derivative of each parametric coefficient βj on ln(LF(β)) and setting 

each first derivative equal to 0, I have the k + 1 nonlinear equations that I can solve to 

find out the values of the k + 1 unknown βj. However, solving the k + 1 nonlinear 

equations is not trivial at all. The values of unknown βj have to be computed by an 

iterative approach. One of the most popular methods used is the Newton-Raphson 

method [46] that I do not discuss here. After solving the k + 1 equations, I can get a set of 

possible solutions that may be the critical points which either maximize or minimize 

LF(β). And then, I take the second-order partial derivative and evaluate the Hessian 

matrix [47] of it. If each value on the matrix diagonal is negative, I can conclude that the 

optimal β is found to maximize LF(β). After that, I can apply the model with the learned 

β on the test dataset to predict whether an event happens or not for decision-making. 

Unfortunately, the whole learning process takes the quadratic time complexity, O(k
2
N), to 

complete the computation to determine the optimal β and also lacks the consideration of 

integrating domain experts’ knowledge into the learning process.  

2.2 Mixed Integer Linear Programming 
Proposed by Nemhauser and Wolsey [48], a Mixed Integer Linear Programming 

(MILP) model contains a set of decision variables, an objective function, and a set of 

constraints. Each nonnegative decision variable is an unknown quantity that is 

instantiated to optimize the objective function, that is, either maximized or minimized, 

and to satisfy all the given constraints at the same time. Some of the variables are 

integers, and some of them are real values. The objective function and each constraint are 
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required to be a linear function of those decision variables. Suppose            are a set 

of decision variables. The form of a MILP model is shown as follows: 

Minimize or maximize                    

Subject to                              

                             

… 

                             

                

The values   , where         , are referred to as objective coefficients. Each 

constraint is either equal to, not less than, or not more than, a scalar value, i.e.,   , where 

        . The values            are the right-hand-side values of the constraints, 

and often represent amounts of available resources (especially for ≤ constraints) or 

requirements (especially for ≥ constraints). The    -values denote how much of 

resource/requirement   is consumed/satisfied by decision  . Unfortunately, because the 

time complexity that the CPLEX optimizer requires to solve a MILP problem is 

incredibly high, i.e.,        , where n is the number of decision variables, and N is the 

size of the training data set, it takes a much longer time to solve the problem. Thus this 

approach is not scalable.  

2.3 Procedural- and Relational- Based Extension: SQL Triggers 
Proposed by Cochrane, Pirahesh, and Mattos [8], an SQL trigger is a small piece 

of codes which is composed of both procedural and relational statements. Each SQL-

trigger creation statement has the three main components: the Event, the Condition, and 
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the Action. I call this an ECA-rule. The event may be one of insert, delete, or update 

statements on a table. The optional condition specifies the trigger context which contains 

an SQL condition that must be satisfied before the trigger action can be executed. The 

trigger action is a specified PL/SQL [49] block that is fired automatically when the event 

has taken place and the optional condition is met. For example, in the financial scenario, 

the event is an insertion of tuples. Each newly inserted tuple is a set of index parameters, 

such as the percentage drop of the S&P 500 and the point decline of the Consumer 

Confidence Index, at a particular instant of time. The condition is the parametric 

constraint, for example, the percentage drop of the S&P 500 more than 20% (SPD) and 

the point decline of the Consumer Confidence Index more than 30 points (CCD), which 

the index parameters have to be satisfied. The outputs of the trigger action may be 

“Market Bottom Is Detected”, and “Buy Stock Is Recommended.” when the event has 

taken place and the condition has been satisfied. However, the semantics of the events of 

such a query responds to the events, such as insertions, deletions, and updates of tuples 

on tables, rather than the events on data which are time sequences, i.e., temporal, and are 

time-sensitive-oriented, e.g., the percentage changes of a financial indicator at an instant 

of time. For instance, the definition of the CREATE TRIGGER statement for the 

financial example is given in the Box 1. 
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Box 1. 

CREATE TRIGGER marketBottomTrigger  

 AFTER INSERT ON markeBottom 

 REFERENCING NEW AS newRow 

 FOR EACH ROW 

WHEN (newRow.SPD < -20 AND newRow.CCD < -30 AND newRow.CG < 0 AND 

newRow.ISM < 45 AND newRow.NCLD > 180) 

 BEGIN  

DBMS_OUTPUT.PUT_LINE (‘Market Bottom Is Detected. Buy Stock Is 

Recommended.’); 

END; 

 

In addition to that, SQL triggers are not designed for supporting the parameter 

learning and cannot be formed without the assistance of the domain-knowledge-based 

and formal-learning-based approaches.  

2.4 Procedural-Based Extension: Aurora Query 
Proposed by Carney, Cetintemel, and others [11, 12], Aurora is a data-flow 

system that basically processes incoming streams. Its query model uses boxes to 

represent primitive operators and arrows to represent tuple-flows. There are some system-

defined operators, including Filter, Drop, Map, Join, etc., for expressing the stream 

processing. Aurora also enables users to write their procedural programs to define their 

own functions. As the Aurora query is temporal-based, each incoming tuple is also 

timestamped. Using the provided GUI, users can connect the system- and user-defined 

boxes and the arrows together to form a continuous, monitoring query, which is a graph 

of a workflow diagram, to process the streams in the real time. The outputs of the 

graphical query are then sent to the external application, which provides recommended 

actions according to the outputs of the monitoring query. Although Aurora query can 

resolve the temporal incapability of SQL triggers for monitoring and recommendation, 

forming the query is still difficult without the assistance of the domain-knowledge-based 
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and formal-learning-based approaches. Like the SQL triggers, Aurora query is not 

designed for the parameter learning as well.  

2.5 Relational-Based Extension: AQuery 
AQuery was proposed by Lerner and Shasha [13]. The data on which the query 

manipulates is arrables rather than tables. Each column of a conventional table is treated 

as an array, and the size of the arrays are the same. The table is called an arrable, standing 

for array-tables, which consists of a collection of named arrays. AQuery is an SQL-based 

language. One major extension of the query is a new clause called ASSUMING ORDER 

which defines the order of the arrables identified in the FROM clause. The clause 

ASSUMING ORDER is translated to a sort after the FROM clause is computed. Suppose 

that an arrable “marketBottom” has six arrays, including timestamp, SPD, CCD, CG, 

ISM, and NLCD. The below AQuery is continuously processing the incoming tuples of 

the “marketBottom” arrable and is monitoring the conditions suggested by the financial 

expert. And then the query informs the investors that the bear market bottom is detected 

and recommends the proper action if the conditions are satisfied. For example shown in 

the Box 2, 

Box 2. 

SELECT CASE  

WHEN SPD < -20 AND CCD < -30 AND CG < 0 AND ISM < 45 AND NLCD > 180  

THEN ‘Market Bottom Is Detected. Buy Stock Is Recommended.’ 

 END 

FROM marketBottom  

ASSUMING ORDER timestamp; 

 

Like the SQL trigger and Aurora query, AQuery cannot be formed without the 

assistance of the domain-knowledge-based and formal-learning-based approaches and 

also cannot support the parameter learning.  
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2.6 Decision-Guidance Query Language 
Decision-Guidance Query Language (DGQL), developed by Brodsky and others 

[25, 26, 27, 28, 29, 30, 31, 32], combines the decision optimization capability of MILP in 

Operation Research (OR) and the data manipulation capability of traditional Structured 

Query Languages (SQL) in DBMS. It is a development and implementation tool that 

enables users to access and define all the different views, e.g., prediction views, decision 

optimization views, etc. It also provides a means for a system to derive learned 

knowledge and for users to issue queries, i.e., DGQL that incorporates the domain 

experts’ knowledge and learned knowledge in its queries. The core syntax of a DGQL for 

expressing a decision-guidance problem is shown in the below steps: 

STEP 1: Adds columns to a relation with decision variables by using the AUGMENT 

statement shown in the Box 3. 

Box 3.  

CREATE VIEW <View_Name1> AS 

 AUGMENT SELECT <Attribute_Lists> 

   FROM <Table_Lists> 

   WHERE <Conditions> 

 WITH {REAL|INTEGER} <Augmented_Attribute> ≥ 0 

 SUCH THAT Constraints  

 FROM <Table_Lists>  

 WHERE <Conditions>; 

 

STEP 2: Define objective functions over the augmented table by using regular query 

language constructs shown in the Box 4. 

Box 4. 

CREATE VIEW <View_Name2> AS 

 SELECT <Attribute_Lists>  

 FROM <View_Name1>, <Other_Table_Lists> 

 WHERE <Conditions>; 
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STEP 3: Use an INSTANTIATE statement to instantiate the variables inserted by the 

AUGMENT statements with the objective value optimized and with the specific 

constraints satisfied shown in the Box 5. 

Box 5. 

INSTANTIATE <View_Name1>  

TO {MINIMIZE|MAXIMIZE} <Objective_Value>  

FROM <View_Name2>; 

 

Although DGQL has the capability of learning, prediction, and optimization, the 

scalability of solving optimization problems over multivariate time series by DGQL is 

not desirable. Unlike Aurora, AQuery, and SQL triggers, DGQL cannot be used for 

monitoring and recommendation as well. 

2.7 Chapter Summary 
SQL is a query language, which is designed for managing data on DBMS. 

However, SQL is a one-time, passive query that is not capable for continuously 

monitoring the events and recommending the actions. Even if some researchers have 

proposed several extensions, such as SQL triggers, Aurora Query, and AQuery to achieve 

this purpose, these extended query languages cannot be constructed without the 

assistance of domain-knowledge-based and formal-learning-based approaches, e.g., 

logistic regression models and mixed integer linear programming. Although these two 

approaches, domain-knowledge-based and formal-learning-based, can help users form the 

monitoring and recommendation query, they do not take advantage of each other to learn 

optimal decision parameters; thus the monitoring results and recommendation actions are 

always not desirable. Even though the proposed DGQL combines the strengths of both 

learning approaches to solve decision optimization problems, solving the problems over 
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multivariate time series are not efficient and scalable at all because of a large number of 

binary variables being generated. In addition, DGQL is not designed for monitoring and 

recommendations, and SQL triggers, Aurora Query, and AQuery are not developed for 

parameter learning. Therefore, the web-mashup application service framework is 

proposed. The framework provides the mathematical models and learning algorithms, 

which unify both approaches, domain-knowledge-based and formal-learning-based, to 

learn decision parameters, and database models and query language, which support the 

quick implementations of the learning, monitoring, and recommendation services.  
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CHAPTER 3. WEB-MASHUP APPLICATION SERVICE FRAMEWORK, DATA 

MODEL, AND QUERY LANGUAGE FOR MULTIVARIATE TIME SERIES 

ANALYTICS 

In this chapter, I describe the proposed web-mashup application service 

framework and its components, as well as the developed data models and query language 

for the MTSA services, i.e., querying, learning, monitoring, and recommendation. 

3.1 Web-Mashup Application Service Framework 
The proposed web-mashup application service framework is illustrated in Figure 

2. It consists of six major components: Data Source Collector (DSC), Data Mashup 

Integrator (DMI), MTSA Data Model Definition and Query Language Interface (DMD-

QLI), MTSA Compiler, MTSA Built-in Algorithms, and Web Application Designer 

(WAD).  

Integrated with the mashup technology of Web 2.0 [50, 51], the DSC allows 

domain experts to directly interact with external data services and collect multivariate 

time series data from heterogeneous sources, including web data, XML documents, 

enterprise databases, excel/CSV files, WSDL-based web services information, and RSS 

feeds, around the globe. After multivariate time series are collected by the DSC, domain 

experts can operate the DMI that is a data integration processing unit to provide a 

concentric view and maintain a consistency of the collected data, which are then archived 

in the local databases of multivariate time series.  
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The DMD-QLI enables domain experts to use the extended relational database 

models with the time series and binary events, and SQL with the high-level MTSA 

constructs. These constructs include MTSA parametric model templates, querying, 

decision parameter learning, data monitoring and decision recommendations, as well as 

model evaluations. Using the DMD-QLI, domain experts first utilize the MTSA query 

language to create the extended relational database models for multivariate time series 

data, which are used in parametric model templates. Second, the experts can create and 

initiate learning events to the framework. If the events are a specific class (SC) of 

problems (read Chapter 3, 4, 5, and 6), the events are then sent to the MTSA built-in 

algorithms, such as Checkpoint, M-Checkpoint, and R-Checkpoint, from which the 

optimal decision parameters on the parametric model templates are learned over 

multivariate time series. Whereas, if the events are a general class (GC) of problems (read 

Chapter 7 and 8), those learning events are transformed into the IBM Optimization 

Programming Language (OPL) constructs [52, 53] by the MTSA compiler. The compiler 

then sends the OPL constructs to the external IBM optimization solver, i.e., the IBM 

ILOG CPLEX optimizer, to learn optimal decision parameters. Third, the experts develop 

and implement the data monitoring and decision recommendation services by using the 

traditional SQLs with the MONITOR keyword and the learned decision parameters to 

monitor the events. Finally, the experts develop a MTSA construct to evaluate model 

accuracy and quality. Note that those extended relational database models, learned 

decision parameters, and parametric model templates all are stored in the local database 

repositories for future use. 
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The WAD provides a user-friendly designer that offers domain experts a Java IDE 

environment and a JSF/JSP work space in which they can develop and implement a web 

portal and its associated web pages, which directly interact with all the MTSA services 

developed from the DMD-QLI. Domain experts can also use the web portal to centralize, 

administrate, and access all the developed MTSA services.  

 

 

Figure 2. A Web-Mashup Application Service Framework for Multivariate Time Series Analytics 
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3.2 Data Models 
Before those MTSA services are developed from the DMD-QLI, a time-series 

data models for those services are needed to be created. The time-series (TS) data models 

are SQL-based extensions of the relational database model with specialized schemas.  

 A time-series (TS) schema is of the form TSname(Tname:Ttype, Vname:Vtype). 

Ttype and Vtype are data types, where Ttype can be any system date/time format 

or integer-based time interval to show the time sequence of data, and Vtype is 

either Real or Integer. TSname is a schema name. Tname and Vname are the 

attribute names. All the names are chosen by users. 

 A time-event (TE) schema is of the form TEname(Tname:Ttype, Ename:Binary), 

where Binary is the binary type corresponding to the domain {0,1}. TEname is a 

schema name, and Ename are attribute names, which are chosen by users as well. 

 A decision-parameter (DP) schema is of the form DParameter(Tname: Ttype, 

Pname: Ptype, Vname:Vtype), where Pname is an optional attribute, and Ptype 

can be any system date/time format or integer-based period interval that is 

corresponding to a set of time intervals, Tname. DParameter is a schema name. 

Same as TS and TE schemas, a DP schema is named by users. 

 A time series database schema is a set of relational schemas which may include 

TS, TE, and DP schemas. 

A TS tuple over a schema TSname(Tname:Ttype, Vname:Vtype) is a relational 

tuple over that schema, i.e., a mapping m: {Tname, Vname} → Dom(Ttype) x 

Dom(Vtype), such that m(Tname) ∈ Dom(Ttype) and m(Vname) ∈ Dom(Vtype). 
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A TE tuple over a schema TEname(Tname:Ttype, Ename:Binary) is a mapping 

m: {Tname, Ename} → Dom(Ttype) x Dom(Binary), such that m(Tname) ∈ Dom(Ttype) 

and m(Ename) ∈ Dom(Binary). 

A DP tuple over a schema DParameter(Tname: Ttype, Pname: Ptype, 

Vname:Vtype) is a mapping m: {Tname, Pname, Vname} → Dom(Ttype) x Dom(Ptype) 

x Dom(Vtype), such that m(Tname) ∈ Dom(Ttype), m(Pname) ∈ Dom(Ptype), and 

m(Vname) ∈ Dom(Vtype). 

Let us consider the financial example as an illustration. In the bear-market-bottom 

scenario, the service provider can use the querying service to create the base, derived, and 

related time-series tables as inputs and store them in the database. The base time-series 

tables are SP(T, Index), CG(T, Index), CC(T, Index), ISM(T, Index), and NLC(T, Index), 

where SP is the S&P 500 Index, CG is the Coppock Guide, CC is the Consumer 

Confidence Index, ISM is the ISM Manufacturing Survey, and NLC is the Negative 

Leadership Composite. 

3.3 Querying Service 
Using the base time series tables, the service provider can generate derived time 

series tables (if any) by using the traditional SQLs. In the financial case study, some 

derived time series tables, such as SPD(t) (Box 6) and CCD(t) (Box 7), where SPD is the 

S&P 500 percentage decline and CCD is the Consumer Confidence Index drop, are: 
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Box 6. 

CREATE VIEW SPD AS ( 

 SELECT After.T, After.Average / Before.Average – 1 AS Value  

 FROM (SELECT SP1.T, AVG(SP2.Index) AS Average 

  FROM SP SP1, SP SP2 

  WHERE SP2.T <= SP1.T AND SP2.T >= SP1.T – 6 AND SP1.T – 6 >= 0 

  GROUP BY SP1.T) After, 

   

  (SELECT SP1.T, AVG(SP2.Index) AS Average 

  FROM SP SP1, SP SP2 

  WHERE SP2.T <= SP1.T – 150 AND SP2.T >= SP1.T – 156  

AND SP1.T – 156 >= 0 

  GROUP BY SP1.T) Before 

 WHERE After.T = Before.T); 

 

Box 7. 

 
CREATE VIEW CCD AS ( 

 SELECT After.T, (After.Average - Before.Average) AS Value 

 FROM (SELECT CC1.T, AVG(CC2.Index) AS Average 

  FROM CC CC1, CC CC2 

  WHERE CC2.T <= CC1.T AND CC2.T >= CC1.T – 6 AND CC1.T – 6 >= 0 

  GROUP BY CC1.T) After, 

   

  (SELECT CC1.T, AVG(CC2.Index) AS Average 

  FROM CC CC1, CC CC2 

  WHERE CC2.T <= CC1.T – 150 AND CC2.T >= CC1.T – 156  

AND CC1.T – 156 >= 0 

  GROUP BY CC1.T) Before 

 WHERE After.T = Before.T); 

3.4 Monitoring and Recommendation Service 
Using the monitoring and recommendation service over the new incoming data, 

the financial analyst can recommend the investors whether or not they should buy the 

stock. In the financial case study, the input parametric time series tables for monitoring 

are SPD(T, Value), CG(T, Index), CCD(T, Value), ISM(T, Index), and NLCD(T, Value), 

where NLCD is the Negative Leadership Composite “Distribution”. The monitoring and 

recommendation service can be expressed by a monitoring view and executed by the 

MONITOR command (Box 8). 
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Box 8. 

CREATE VIEW MarketBottomTable AS 

 (SELECT SPD.T, (CASE 

WHEN SPD.Value < PR1.p AND  

CG.Index <  PR2.p AND  

CCD.Value <  PR3.p AND  

ISM.Index <  PR4.p AND  

NLCD.Value >  PR5.p 

THEN  ‘1’ ELSE ‘0’  

END) AS MB 

FROM SPD, CG, CCD, ISM, NLCD, Para1 PR1, Para2 PR2, Para3 PR3, Para4 

PR4, Para5 PR5 

WHERE SPD.T = CG.T AND CG.T = CCD.T AND CCD.T = ISM.T AND ISM.T = NLCD.T 

AND NLCD.T = PR1.T AND PR1.T = PR2.T AND PR2.T = PR3.T AND PR3.T = PR4.T 

AND PR4.T = PR5.T); 

 

CREATE VIEW MB_Monitoring_Recommendation AS 

 (SELECT MBT.T, (CASE  

WHEN MBT.MB = ‘1’  

THEN ‘Market Bottom Is Detected. Buy Stock Is 

Recommended.’ 

END) AS Action 

 FROM MarketBottomTable MBT); 

 

MONITOR MB_Monitoring_Recommendation; 

 

, where Para1, Para2, Para3, Para4, and Para5 are a set of tables to store the decision 

parameters, e.g., -20, 0, -30, 45, and 180, respectively over a time horizon. If the 

parametric monitoring constraint in the “CASE WHEN” clauses is satisfied at the current 

time point t, the value of the attribute “MB” dedicates “1”. The service then recommends 

the financial analysts to buy the index fund for the investors since the bear market bottom 

is detected. 

3.5 Parameter Learning Service 
As I discussed before, the expert’s suggested parameters (-20. 0, -30, 45, 180) are 

not accurate enough to monitor the dynamic financial market at all time; thus, the 

parameter learning service should be adopted by expressing as follows: 

STEP 1: Store base TS tables, e.g., SP, CG, CC, ISM, and NLC, in the database. 
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STEP 2: Define SQL views for derived TS tables, e.g, SPD, CCD, etc., shown in Section 

3.3. 

STEP 3: Create parameter tables (Box 9), which store optimal decision parameters over a 

time horizon.  

Box 9. 

CREATE TABLE Para1 (T INTEGER, p REAL); 

CREATE TABLE Para2 (T INTEGER, p REAL); 

CREATE TABLE Para3 (T INTEGER, p REAL); 

CREATE TABLE Para4 (T INTEGER, p REAL); 

CREATE TABLE Para5 (T INTEGER, p REAL); 

 

STEP 4: Create a TS view for the time utility (Box 10). 

 

Box 10. 

 
CREATE VIEW Earning AS ( 

 SELECT SP1.T, ((Last.Index/SP1.Index – 1) * 100) AS Percent 

 FROM SP SP1, (SELECT SP2.Index  

   FROM SP SP2 

   WHERE SP2.T >= ALL (SELECT SP3.T FROM SP500 SP3)) Last); 

 

STEP 5: Create a learning event and then execute the event construct to learn the 

parameters (Box 11). 

 

Box 11. 

 
CREATE EVENT LearnMarketBottomParameter ( 

 SC_LEARN PR1, PR2, PR3, PR4, PR5 

 FOR MAXIMIZE E.Percent 

WITH SPD.Value < PR1.p AND CG.Index < PR2.p AND CCD.Value < PR3.p AND 

ISM.Index < PR4.p AND NLCD.Value > PR5.p  

 FROM SPD, CG, CCD, ISM, NLCD, Earning E, Para1 PR1, Para2 PR2,  

Para3 PR3, Para4 PR4, Para5 PR5 

 WHERE SPD.T = CG.T AND CG.T = CCD.T AND CCD.T = ISM.T AND  

ISM.T = NLCD.T AND NLCD.T = E.T AND E.T = PR1.T AND PR1.T = PR2.T AND 

PR2.T = PR3.T AND PR3.T = PR4.T AND PR4.T = PR5.T;) 

 

EXECUTE LearnMarketBottomParameter; 

 

When the event “LearnMarketBottomParameter” is executed, the command 

SC_LEARN will call for the Checkpoint algorithm to solve the corresponding EQPE 
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problem and will put its solution in the tables, i.e., Para1, Para2, Para3, Para4, and Para5, 

where all parameters are instantiated with optimal values. 

3.6 Chapter Summary 
The web-mashup application service framework for MTSA provides model 

definition, querying, parameter learning, model evaluation, data monitoring, decision 

recommendation, and web portal on events over multivariate time series. This framework 

is an integrated framework that includes the six components, i.e., DSC, DMI, DMD-QLI, 

MTSA complier, MTSA built-in algorithms, and WAD, to enable domain experts to 

develop those MTSA services on the Internet. More specifically, I develop the MTSA 

database model and query language for the services of learning, monitoring, and 

recommendation. Domain experts can use the proposed database models, such as time-

series and time-event schemas, to store historical and projected time series and binary 

events from which optimal decision parameters are learned. Using the parameter learning 

service, domain experts can formulate a learning event and initial the event to the 

database, in which the built-in algorithms, such as the Checkpoint algorithm, are invoked 

to solve the corresponding EQPE problem and learn the optimal decision parameters, 

which are then stored in decision-parameter tables. Both the EQPE model and the 

Checkpoint algorithm are discussed in Chapter 4. After the parameters are learned and 

stored, domain experts can utilize the monitoring and recommendation service to monitor 

the incoming data streams and recommend actions when those streams satisfy the 

monitoring template. 
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CHAPTER 4. EXPERT QUERY PARAMETRIC ESTIMATION MODEL AND 

CHECKPOINT ALGORITHM 

In this chapter, I discuss in detail the EQPE model and Checkpoint algorithm to 

learn decision parameters for a single event over multivariate time series and demonstrate 

the effectiveness of the model and algorithm in the financial case study, i.e., the detection 

of the bear market bottom.  

4.1 Expert Query Parametric Estimation (EQPE) Model 
In this section, I explain the methodologies used in the Parameter Learning 

Service in the MTSA service framework. More specifically, I review the mathematical 

formulations of the Expert Query Parametric Estimation (EQPE) problem and solution. I 

also use the financial example to explain them in detail. 

The goal of an EQPE problem is to find optimal values of decision parameters 

that maximize an objective function over multivariate time series. For an EQPE problem 

being constructed, I need to define a set of mathematical notations and a model for it. I 

assume that the time domain T is represented by a set of natural numbers: T = N, and that 

I am also given a vector of n real-valued parameter variables (p1, p2, …, pn). 

Definition 1. Time Series: A time series S is a function S: T → R, where T is the time 

domain, and R is the set of real numbers.  

Definition 2. Parametric Monitoring Constraint: A parametric monitoring constraint 

C(S1(t), S2(t), …, Sk(t), p1, p2, …, pn) is a symbolic expression in terms of S1(t), S2(t), …, 
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Sk(t), p1, p2, …, pn, where S1(t), S2(t), …, Sk(t) are time series, t ∈ T is a time point, and 

(p1, p2, …, pn) is a vector of parameters. 

I assume a constraint C written in a language that has the truth-value 

interpretation I: R
k
 x R

n
 → {True, False}, i.e., I(C(S1(t), S2(t), …, Sk(t), p1, p2, …, pn)) = 

True if and only if the constraint C is satisfied at the time point t ∈ T and with the 

parameters (p1, p2, …, pn) ∈ R
n
. In this model, I focus on conjunctions of inequality 

constraints: C(S1(t), S2(t), …, Sk(t), p1, p2, …, pn) = ∧i (Si(t) op pj), where op ∈ {<, ≤, =, ≥, 

>}.  

Definition 3. Time Utility Function: A time utility function U is a function U: T → R.  

Definition 4. Objective Function: Given a time utility function U: T → R and a 

parametric constraint C, an objective function O is a function O: R
n
 → R, which maps a 

vector of n parameters on R
n
 to a real value R, defined as follows. For (p1, p2, …, pn) ∈ 

R
n
, O(p1, p2, …, pn) ≝ U(t), where U is the utility function, and t ∈ T is the earliest time 

point that satisfies C, i.e.,  

(1) S1(t) op1 p1 ∧ S2(t) op2 p2 ∧ … ∧ Sn(t) opn pn is satisfied, and  

(2) There does not exist 0 ≤ t' < t, such that S1(t') op1 p1 ∧ S2(t') op2 p2 ∧ … ∧ Sn(t') 

opn pn is satisfied. 

Definition 5. Expert Query Parametric Estimation (EQPE) Problem: An EQPE problem 

is a tuple < ̇,  ̇, C, U>, where  ̇ = {S1, S2, …, Sk} is a set of k time series,  ̇ = {p1, p2, …, 

pn} is a set of n real-value parameter variables, C is a parametric constraint in  ̇ and  ̇, 

and U is a time utility function.  
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Intuitively, a solution to an EQPE problem is an instantiation of values into the 

vector  ̇ of n real-value parameters that maximizes the objective O. 

Definition 6. Expert Query Parametric Estimation (EQPE) Solution: A solution to the 

EQPE problem < ̇,  ̇, C, U> is argmax O(p1, p2, …, pn), i.e., the optimal values of 

parameters, p1, p2, …, pn, that maximize O, where O is the objective function 

corresponding to U.  

The base time series in my financial example, i.e., detecting the bear market 

bottom, are shown in Table 1. I suppose that the first starting date in any time-series data 

set is t = 0. 

 

Table 1. Base Time-Series Data 

Base Time Series S Abbreviation 

S&P 500 SP(t)  

Coppock Guide CG(t) 

Consumer Confidence CC(t) 

ISM Manufacturing Survey ISM(t) 

Negative Leadership Composite NLC(t) 

 

Note that some base time series are the direct inputs, whereas some are used to 

derive another set of time series. For instance, the derived time series in my case study 

are shown in Table 2. 
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Table 2. Derived Time-Series Data 

Derived Time Series S Abbreviation 

Percentage decline in SP(t) at the time point t  SPD(t) 

Points drop in CC(t) at the time point t CCD(t) 

Number of consecutive days in Bear Market “DISTRIBUTIOIN” of NLC(t) at and before the time 

point t 
NLCD(t) 

Time Utility Earning at the time point t, i.e., the index fund is bought at t and sold at ts, where ts is 

the last day of the learning data set 
Earning(t) 

 

The decision parameters used in the case study are defined in Table 3. 

 

Table 3. Decision Parameters 

Parameter Interpretation 

p1 Test if SPD(t) is less than p1 at t. 

p2 Test if CG(t) is less than p2 at t. 

p3 Test if CCD(t) is less than p3 at t. 

p4 Test if ISM(t) is less than p4 at t. 

p5 Test if NLCD(t) is greater than p5 at t. 

 

Let us consider the following constraint C as an illustration: 

C(SPD(t), CG(t), CCD(t), ISM(t), NLCD(t), p1, p2, p3, p4, p5)  

= SPD(t) < p1 ∧ CG(t) < p2 ∧ CCD(t) < p3 ∧ ISM(t) < p4 ∧ NLCD(t) > p5 

It means that the parametric monitoring constraint C is satisfied, i.e., its 

interpretation is True, if the above inequalities with the decision parameters are satisfied 

at the time point t. The interpretation also indicates that the monitoring event occurs. 

I assume that the investor buys the S&P 500 index fund at the decision variable 

time t and sell it at the given tS, which is the last day of the given training data set. The 

earning function SP(tS)/ SP(t) – 1 ∈ R is the utility, which is maximized by choosing the 

optimal value t ∈ T, where SP(tS) and SP(t) are the sell and buy value of the S&P 500 

index fund at the time tS and t respectively. 
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The EQPE problem and solution for the financial example can be constructed by 

putting the considered time series, parameters, constraints, and functions to the 

definitions shown in Table 4. 

 

Table 4. EQPE Problem and Solution Formulation for the S&P 500 Index Fund 

Problem and Solution 

Problem: 

< ̇,  ̇, C, U>, where 

 ̇ = {SPD, CG, CCD, ISM, NLCD} 

 ̇ = {p1, p2, p3, p4, p5} 

C = SPD(t) < p1 ∧ CG(t) < p2 ∧ CCD(t) < p3 ∧ ISM(t) < p4 ∧ NLCD(t) > p5 

U = SP(ts)/SP(t) - 1 

 

Solution:  

argmax O(p1, p2, p3, p4, p5) ≝ U(t) 

 

The values of the optimal decision parameters can be determined by using the 

learning algorithm, Checkpoint. Before explaining the Checkpoint algorithm in detail, I 

first review the concept of Dominance. 

Definition 7. Dominance ≻: Given an EQPE problem < ̇,  ̇, C, U> and any two time 

points t, t' ∈ T, I say that t' dominates t, denoted by t' ≻ t, if the following conditions are 

satisfied:  

(1) 0 ≤ t' < t, and  

(2)  (p1, p2, …, pn) ∈ R
n
, C(S1(t), S2(t), …, Sk(t), p1, p2, …, pn) → C(S1(t'), S2(t'), …, 

Sk(t'), p1, p2, …, pn). 

Intuitively, t' dominates t if for any selection of parametric values, the query 

constraint satisfaction at t implies the satisfaction at t'. Clearly, the dominated time points 
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should be discarded when the optimal time point is being determined. I formally claim 

that: 

Claim 1 - Given the conjunctions of inequality constraints, S1(t) op1 p1 ∧ S2(t) op2 p2 ∧ … 

∧ Sk(t) opk pk and the two time points t', t such that 0 ≤ t' < t, t' ≻ t if and only if S1(t') op1 

S1(t) ∧ S2(t') op2 S2(t) ∧ … ∧ Sk(t') opk Sk(t). 

For example, suppose there are three time series S1, S2, S3 and three decision 

parameters p1, p2, p3. And the constraints are C(S1(t), S2(t), S3(t), p1,  p2, p3) = S1(t) ≥ p1 ∧ 

S2(t) ≥ p2 ∧ S3(t) ≤ p3. Also assume the values for S1, S2, and S3 at the time point t1, t2, and 

t3 respectively in Table 5. 

 

Table 5. Values of S1, S2, S3, and U at the Time Point t1, t2, and t3 

Time S1 S2 S3 U 

t1 13 27 3 10 

t2 25 15 2 200 

t3 10 20 5 150 

t4 20 10 15 250 

 

In this case, the time point t3 is dominated because there is a time point t1 that 

make the inequality, S1(t1) ≥ S1(t3) ∧ S2(t1) ≥ S2(t3) ∧ S3(t1) ≤ S3(t3), equal to true.  

On the contrary, for all t' < t, if S1(t') ¬op1 S1(t) ∨ S2(t') ¬op2 S2(t) ∨…∨ Sn(t') 

¬opn Sn(t) is satisfied, t is not dominated by t' denoted by t' ⊁ t. Let us consider the same 

example above. Because S1(t1) < S1(t2) ∨ S3(t1) > S3(t2), t2 is not dominated. 

4.2 Checkpoint Algorithm 
Conceptually, I can search a particular set of parameters {p1, p2, …, pn} which is 

at the earliest time point t that is not dominated by any t' such that the value of the 
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objective function O is maximal among all the instantiations of values into parameters. 

However, the problem of this approach is that for every single parameter set at t in a 

learning data set, the parameter set at t has to be examined with all the previous sets of 

parameters at t' for checking the non-dominance before the optimal solution can be 

found. In fact, due to the quadratic nature, the conceptual approach is time consuming 

and expensive particularly if the size of the learning data set is significantly large. 

Instead, the Checkpoint algorithm uses the KD-tree data structure and searching 

algorithm [54, 55, 56] to evaluate whether a time point t is dominated based on the Claim 

1 for checking the non-dominance. The pseudo code of the algorithm is shown in the Box 

12. 

Box 12.  

Input: < ̇,  ̇, C, U> 
 

Output: p[1…k] is an array of the optimal parameters that maximize the 

objective. 

 

Data Structures:  

1. N is the size of the learning data set. 
2. Tkd is a KD tree that stores the parameter vectors that are not dominated so 

far. 

3. MaxT is the time point that gives the maximal U so far, denoted by MaxU. 
 

Processing: 

STEP 1: Tkd := <S1(0), S2(0), …, Sk(0)>; MaxT := 0; MaxU := U(0); 

 

STEP 2: FOR t := 1 TO N - 1 DO { 

Non-Dominance Test: Query the Tkd to find if there exists a point 

(𝓅1, 𝓅2, …, 𝓅k) in the Tkd, which is in the range [S1(t), ) x 

[S2(t), ) x … x [Sk(t), ). 
IF (NOT AND t is not dominated) THEN  

Add <S1(t), S2(t), …, Sk(t)> to Tkd;  

IF (U(t) > MaxU) THEN 

MaxT := t;  

MaxU := U(t); 

ENDIF 

ENDIF 

} 

 

STEP 3: FOR i := 1 TO k DO { 

p[i] := Si(MaxT); 
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} 

 

STEP 4: RETURN p[1…k]; 

 

Clearly, the first time point is not dominated because there is no time point 

preceding it. Therefore, <S1(0), S2(0), …, Sk(0)> can be added to Tkd. 0 and U(0) can be 

assigned to MaxT and MaxU respectively. 

Using the Checkpoint algorithm step by step for the problem shown in Table 5, I 

can search through a particular set of parameters {p1, p2, p3} which is at the earliest time 

point t that is not dominated by any t' such that the value of the utility function U is 

maximal. In the STEP 1, the <S1(t1), S2(t1), S3(t1)> is added to the Tkd since it is the first 

time point. Then t1 and U(t1) are assigned to MaxT and MaxU respectively. In the STEP 

2, t2 is not dominated because S1(t1) < S1(t2) ∧ S2(t1) > S2(t2) ∧ S3(t1) > S3(t2) does not 

satisfy the Claim 1. However, t3 is dominated because S1(t1) > S1(t3) ∧ S2(t1) > S2(t3) ∧ 

S3(t1) < S3(t3) does satisfy the Claim 1. <S1(t2), S2(t2), S3(t2)> is added to the Tkd because 

t2 is not dominated and U(t2) > U(t1). Thus t2 and U(t2) are assigned to MaxT and MaxU 

respectively. In the STEP 3, p[1] := S1(MaxT), p[2] := S2(MaxT), and p[3] := S3(MaxT) in 

the for-loop statement. In the STEP 4, the algorithm returns 25, 15, and 2. 

Theorem 1: For N parameter vectors in the data set, the Checkpoint algorithm correctly 

computes an EQPE solution, i.e., argmax O(p1, p2,…, pn), where O is the objective 

function of the EQPE problem, with the complexity O(kNlogN). 

4.3 Experimental Case Study 
Using the Checkpoint algorithm, I can obtain the optimal decision parameters and 

the maximal earning from the training data set for the financial problem shown in Table 

6. The time complexity of the MLE for the logistic regression model is O(k
2
N), where k is 
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the number of input parametric time series, and N is the size of the learning data set. For 

the Checkpoint algorithm, the complexity is O(kNlogN). Using the decision parameters 

from the financial expert (i.e., -20%, 0, -30, 45, 180 days), the logistic regression model, 

and the Checkpoint algorithm, the “Best Buy” opportunities in stock and their earnings 

are shown in Table 7. Note that the Checkpoint algorithm considerably outperforms both 

the financial expert’s criteria and the logistic regression model.  

 

Table 6. Optimal Decision Parameters and Maximum Earning (%) from the Learning Data Set1 

p1 p2 p3 p4 p5 O(p1,p2,p3,p4,p5) 

-29.02 -20.01 -26.61 49 70 53.37 

 

Table 7. Investors’ Earning of the S&P 500 Index Fund from the Test Data Set2 

Decision Approach Best Buy S&P 500 Index Earning% 

Financial Expert’s Criteria 10/09/08 909.92 1.03 

Logistic Regression Model 11/26/08 887.68 3.56 

Checkpoint Algorithm with Financial Expert’s Template 03/10/09 719.6 27.8 

 

4.4 Chapter Summary 
The parameter learning services combine the strengths of both domain-

knowledge-based and formal-learning-based approaches for maximizing utility on events 

over multivariate time series. This service includes a mathematical model, i.e., EQPE, 

and a learning algorithm, Checkpoint, to solve Expert Query Parametric Estimation 

problems. The EQPE model is a well-defined model that captures domain experts’ 

knowledge in expression of multivariate time series, decision parameters, a set of 

                                                 
1 The learning data set is from 06/01/1997 to 06/30/2005. 
2 The test data set is from 07/01/2005 to 06/30/2009 that is the sell date of the fund with the value of 919.32. 



48 

 

parametric constraints, a time utility, and an objective function. Each multivariate time 

series is an input parametric time series for an event, e.g., the bear market bottom or the 

bull market top. Each decision parameter is instantiated from its input parametric time 

series to learn the optimal value that satisfies the given parametric constraint and 

maximizes its time utility collectively. The time utility is a function of the decision time 

point that the objective function is dependent upon from which the parameters are 

learned.  

The Checkpoint algorithm also combines the strengths of both domain experts’ 

knowledge in terms of a parametric constraint and formal-learning-based methodology by 

using the regression approach. The goal of the Checkpoint algorithm is to learn the 

decision parameters that maximize the objective function, e.g., the earning of the 

financial example, over multivariate time series. This algorithm guarantees an optimality 

of the learned decision parameters in their event, i.e., a true optimal decision time point, 

e.g., tpurchased, of the S&P 500 Index Fund, during the computations. To demonstrate the 

effectiveness of the algorithm, I compare my method with the formal-learning-based 

approach, i.e., the logistic regression methodology, and the domain-knowledge-based 

approach, e.g., the financial experts’ criteria, in the financial domain. Using the learned 

decision parameters, I show that the Checkpoint algorithm is more effective and 

guarantees the satisfactory forecasting results that are superior to those from the logistic 

regression methodology and the financial experts’ criteria.  
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CHAPTER 5. MULTI-EVENT EXPERT QUERY PARAMETRIC ESTIMATION 

MODEL AND MULTIDIMENSIONAL M-CHECKPOINT ALGORITHM 

In this chapter, I present the ME-EQPE model and the M-Checkpoint algorithm to 

learn multiple sets of optimal decision parameters over multivariate time series for multi-

events, as well as utilize the detection of the bear market bottom and the bull market top 

in sequence as an example to show the effectiveness of the model and algorithm.  

5.1 Multi-Event Expert Query Parametric Estimation (ME-EQPE) 
Model 

As discussed in Chapter 1, the proposed EQPE model and the Checkpoint 

algorithm are only able to learn one set of optimal decision parameters for one particular 

event at a single time point, whereas there are many real-world scenarios that the 

parameter learning is at multiple time points in sequence. To address this problem, I 

develop an extended model, Multi-Event Expert Query Parametric Estimation (ME-

EQPE), and an algorithm, Multidimensional M-Checkpoint, which are discussed in this 

chapter. 

Consider a sequence of 𝓂 events that I would like to detect. Each event i has a 

vector of real parameters  ⃗    that will be learned from the training data set of its 

multivariate-parametric-time-series vector       . After the learning process, the vector of 

the learned parameters  ⃗    is used to detect the occurrence of the event i.  
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Before explaining the new learning algorithm, I first extend a set of mathematical 

notations and a model for the ME-EQPE problem. I still assume that the time domain T is 

represented by the set of natural numbers: T = N. I am also given a set of time sequences 

(                  𝓂   ), and the learning algorithm generates a set of 𝓂 vectors of real 

parameters ( ⃗    ⃗      ⃗ 𝓂) where                          
    ∈     and  ⃗   

            
 ∈     for 1 ≤ i ≤ 𝓂, ki , ni ∈ Z

+
, ki is the number of input parametric time 

series in        for the event i, ni is the number of parameters in  ⃗   for the event i, and 𝓂 

is the number of time points that are corresponding to their events being monitored.  

Definition 8. Parametric Monitoring Constraint: A parametric monitoring constraint 

  (         ⃗  ) is a symbolic expression in terms of        and  ⃗  , where        is the i
th

 time 

sequence vector at the time t, and  ⃗   is the i
th

 decision parameter vector for 1≤ i ≤ 𝓂.  

I assume a constraint Ci written in a language that has the truth-value 

interpretation                        , i.e.,               ⃗          if and only if 

the constraint Ci is satisfied at the time point t ∈ T with the vectors, time sequence 

                         
    ∈     and parameter  ⃗               

 ∈    . Again 

I focus on a combinational conjunction of inequality constraints:   ( ⃗       ⃗⃗  )  

          ∧           ∧  ∧    
         

, where op ∈ {<, ≤, =, ≥, >}.  

Definition 9. Time Utility Function: A time utility function U is a function U: T𝓂 → R, 

where 𝓂 is the number of time points. 

Definition 10. Objective Function: Given a time utility function U: T𝓂 → R and 𝓂 

parametric constraints (C1, C2, …, C𝓂), an objective function O is a function 
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              𝓂   , which maps a set of vectors of parameters on 

            𝓂  to a real value R, defined as follows: For a set of ( ⃗    ⃗      ⃗ 𝓂), 

O( ⃗    ⃗      ⃗ 𝓂) ≝ U(t1, t2, …, t𝓂), where U is the utility function, and (t1, t2, …, t𝓂) are 

the earliest time points that satisfies their corresponding parametric constraints, i.e.,  

(1) 0 ≤ t1 < t2 < … < t𝓂 

(2)              ⃗                ⃗       𝓂   𝓂  𝓂   ⃗ 𝓂  are satisfied, and  

(3)  There does not exist (    
    

     𝓂
 ) such that 

(a)   
       

         
      

(b) for some i = 1, 2, …, 𝓂,   
    , and 

(c)          
    ⃗             

    ⃗       𝓂   𝓂  𝓂
    ⃗ 𝓂  are satisfied. 

Definition 11. Multi-Event Expert Query Parametric Estimation (ME-EQPE) Problem: 

A ME-EQPE problem is a tuple < ̇,  ̇, C, U>, where  ̇ = {                  𝓂   } is a set 

of 𝓂 vectors of time sequences,  ̇    ⃗    ⃗      ⃗ 𝓂  is a set of 𝓂 decision parameter 

vectors, C = (C1, C2, …, C𝓂) is a set of 𝓂 parametric constraints in  ̇ and  ̇, and U is a 

time utility function.  

Intuitively, a solution to a ME-EQPE problem is an instantiation of values into all 

the parameter vectors,  ⃗    ⃗      ⃗ 𝓂, that maximize the objective. 

Definition 12. Multi-Event Expert Query Parametric Estimation (ME-EQPE) Solution: A 

solution to the ME-EQPE problem < ̇,  ̇, C, U> is argmax O( ⃗    ⃗      ⃗ 𝓂), i.e., the 

estimated values of all the parameter vectors,  ⃗    ⃗      ⃗ 𝓂, that maximize O, where O is 

the objective function corresponding to U.  
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Definition 13. Time Length (TL): TL is the length of the time duration in terms of the 

number of business days that the events among them may occur.   

In the financial example, i.e., the “Best Buy” and “Best Sell” opportunities in the 

investment, the base time series, the derived time series, and the decision parameters are 

shown in Table 8, Table 9, and Table 10 respectively. 

 

Table 8. Base Time-Series Data 

Base Time Series S Abbreviation 

S&P 500 SP(t) 

Coppock Guide CG(t) 

Consumer Confidence CC(t) 

ISM Manufacturing Survey ISM(t) 

Negative Leadership Composite “Distribution” NLC(t) 

Negative Leadership Composite “Selling Vacuum” NLCSV(t) 

 

Table 9. Derived Time-Series Data 

Derived Time Series S Abbreviation 

Percentage decline in SP(t) at the time point t SPD(t) 

Percentage increase in SP(t) at the time point t SPI(t) 

Points drop in CC(t) at the time point t CCD(t) 

Points increase in CC(t) at the time point t CCI(t) 

Number of consecutive days in Bear Market “DISTRIBUTIOIN” of NLC(t) 

at and before the time point t 
NLCD(t) 

Time Utility Earning at the time points t1 and t2, i.e., the index fund is bought 

at t1 and sold at t2 of the learning data set 
Earning(t1, t2) 

 

Table 10. Decision Parameters 

Parameter Interpretation 

p1 Test if SPD(t) is less than p1 at t1. 

p2 Test if CG(t) is less than p2 at t1. 

p3 Test if CCD(t) is less than p3 at t1. 

p4 Test if ISM(t) is less than p4 at t1. 

p5 Test if NLCD(t) is greater than p5 at t1. 

q1 Test if SPI(t) is greater than or equal to q1 at t2. 

q2 Test if CG(t) is greater than or equal q2 at t2. 

q3 Test if CCI(t) is greater than or equal q3 at t2. 

q4 Test if ISM(t) is greater than or equal q4 at t2. 

q5 Test if NLCSV(t) is greater than q5 at t2. 
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The constraints C1 and C2 are illustrated as follows: 

C1(SPD(t1), CG(t1), CCD(t1), ISM(t1), NLCD(t1), p1, p2, p3, p4, p5)  

= SPD(t1) < p1 ∧ CG(t1) < p2 ∧ CCD(t1) < p3 ∧ ISM(t1) < p4 ∧ NLCD(t1) > p5 

C2(SPI(t2), CG(t2), CCI(t2), ISM(t2), NLCSV(t2), q1, q2, q3, q4, q5)  

= SPI(t2) ≥ q1 ∧ CG(t2) ≥ q2 ∧ CCI(t2) ≥ q3 ∧ ISM(t2) ≥ q4 ∧ NLCSV(t2) > q5 

The earning function U(t1, t2) = SP(t2)/ SP(t1) – 1 ∈ R is the utility, which is 

maximized by choosing the optimal value t1 and t2 ∈ T, where SP(t2) and SP(t1) are the 

sell and buy value of the S&P 500 index fund at the time t2 and t1 respectively. The ME-

EQPE problem and solution for the financial example can be constructed by putting the 

considered time sequence vectors, parameter vectors, constraints, and functions to the 

definitions shown in Table 11. 

 

Table 11. ME-EQPE Problem and Solution Formulation for the S&P 500 Index Fund 

Problem and Solution 

Problem: 

< ̇,  ̇, C, U>, where 

 ̇ = {       ,        },  

where         = (SPD(t1), CG(t1), CCD(t1), ISM(t1), NLCD(t1))  

and         = (SPI(t2), CG(t2), CCI(t2), ISM(t2), NLCSV(t2)) 

 

 ̇ = { ⃗  ,   ⃗  },  

where   ⃗   = (p1, p2, p3, p4, p5) and  ⃗   = (q1, q2, q3, q4, q5) 

 

C = {C1, C2},  

where C1 = SPD(t1) < p1 ∧ CG(t1) < p2 ∧ CCD(t1) < p3 ∧ ISM(t1) < p4 ∧ NLCD(t1) > p5 and C2 = 

SPI(t2) ≥ q1 ∧ CG(t2) ≥ q2 ∧ CCI(t2) ≥ q3 ∧ ISM(t2) ≥ q4 ∧ NLCSV(t2) > q5 

 

U = SP(t2)/SP(t1) - 1 

 

Solution:  

argmax O(  ⃗  ,   ⃗  ) ≝ U(t1, t2) 
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The values of the optimal decision parameters can be determined by using the 

learning algorithm, M-Checkpoint.  

5.2 Multidimensional M-Checkpoint Algorithm 
The extended version, M-Checkpoint algorithm, keeps using the KD-tree data 

structure and searching techniques to evaluate whether or not the time point t1 of the first 

event is dominated. The pseudo code of the M-Checkpoint algorithm is shown in the Box 

13. 

Box 13. 

Input: < ̇,  ̇, C, U> 
 

Output: p[i][j] is a two-dimensional array of the decision parameter vectors 

that maximize the objective, where 1 ≤ i ≤ 𝓂, 1 ≤ j ≤ ni, and 𝓂, ni ∈ Z+. 
 

Data Structures:  

1. N is the size of the learning data set. 
2. Tkd is a KD tree that stores the parameter vectors that are not dominated so 

far for the 1
st
 event. 

3. isDominated[t1] is a boolean array to signal that a time point t1 of the 1
st
 

event is dominated, i.e., isDominated[t1] := true, by at least one previous 

time point, or else isDominated[t1] := false. 

4. MaxT[i] is the array of time points that gives the maximal U so far, 

denoted by MaxU, where 1 ≤ i ≤ 𝓂 and MaxT[1] < MaxT[2] < …< MaxT[𝓂]. 

 

Initialization: FOR i := 1 TO 𝓂 DO { 

ti := MaxT[i] := 0; 

} 

 

MaxU := U(0, 0, …, 0) := 0; 

TL := 365; // Assume that the event occurrences among them are 

within 365 business days. 

 

Processing: 

STEP 1: Tkd :=       ; isDominated[0] = false; 
 

STEP 2: FOR t1 := 1 TO N - 1 DO { 

Non-Dominance Test: Query the Tkd to find if there exists a point 

(𝓅1, 𝓅2, …, 𝓅  
) in the Tkd, which is in the range ∏            

  
   . 

 

IF (NOT AND t1 is not dominated) THEN  

Add         to Tkd;  
isDominated[t1] = false; 

ELSE 

isDominated[t1] = true; 

ENDIF 

} 
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STEP 3: FOR (t := N – 1; t𝓂 ≥ 0; t𝓂 := t𝓂 – 1) DO { 

FOR (t𝓂-1 := t𝓂 – 1; t𝓂-1 ≥ 0 AND t𝓂-1 ≥ t𝓂 - TL AND t𝓂-1 ⊁ t𝓂; t𝓂-

1 := t𝓂-1 – 1) DO { 

FOR (t𝓂-2 := t𝓂-1 – 1; t𝓂-2 ≥ 0 AND t𝓂-2 ≥ t𝓂-1 - TL AND  

t𝓂-2 ⊁ t𝓂-1; t𝓂-2 := t𝓂-2 – 1) DO { 

   : 

   : 

FOR (t1 := t2 – 1; t1 ≥ 0 AND t1 ≥ t2 - TL AND  

t1 ⊁ t2; t1 := t1 – 1) DO { 
 

IF ((NOT isDominated[t1]) AND  

U(t1, t2, …, t𝓂) > MaxU) THEN 

MaxU := U(t1, t2, …, t𝓂);  

MaxT[1] := t1, MaxT[2] := t2, …, MaxT[𝓂] := t𝓂; 

ENDIF 

} 

   : 

   : 

}  

} 

} 

 

STEP 4: FOR i := 1 TO 𝓂 DO { 

FOR j := 1 TO ni DO { 

p[i][j] :=    
       ] ; 

} 

} 

 

STEP 5: RETURN p[i][j], where 1 ≤ i ≤ 𝓂 and 1 ≤ j ≤ ni; 

 

For example, suppose there are two inter-related events, E1 and E2, that occur in 

the time sequence, i.e., 0 ≤ t1 < t2, respectively to maximize the utility U. The time series 

vector        , the parameter vector  ⃗  , and the parametric monitoring constraint 

  (         ⃗  ) of each event Ei, where i = 1 and 2, are shown in Table 12. Also assume 

that the values of        ,        , and their corresponding U are shown in Table 13, Table 

14, and Table 15 respectively, and the value of TL is 2. 
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Table 12. Time Series Vectors, Parameter Vectors, and Parametric Monitoring Constraints for E1 and E2 

Event Time Series Vector  Parameter Vector Parametric Monitoring Constraint 

E1        
                           

 ⃗                   (         ⃗  )             ∧        

    ∧              
E2         

                   

 ⃗               (         ⃗  )             ∧             

 

Table 13. Values of  ⃗⃗       for E1 

t1                         

0 13 27 3 

1 12 10 7 

2 13 13 5 

3 25 15 2 

4 12 9 15 

5 10 20 5 

 

Table 14. Values of  ⃗⃗       for E2 

t2                 

0 19 24 

1 12 29 

2 14 21 

3 17 20 

4 15 25 

5 18 27 

 

Table 15. Utility U(t1, t2) 

t1\t2 0 1 2 3 4 5 

0  170 250 180 240 190 

1   160 170 100 90 

2    180 160 240 

3     210 200 

4      190 

5       

 

Using the M-Checkpoint algorithm step by step for the problem, I can search 

through a particular set of parameter vectors { ⃗    ⃗  }, which is at the earliest time point 

pairs t1 and t2 that are not dominated by any   
  and   

  respectively, where     
     

  
    , such that the value of the utility function U is maximal. In the STEP 1 for E1, the 



57 

 

       is added to the Tkd and isDominated[0] is set to false since t1 = 0 is the first time 

point that is not dominated by any previous time point. After running the for-loop 

statement, the STEP 2 only adds the        to the Tkd and sets isDominated[3] to false 

because t1 = 3 is not dominated by any previous time point, i.e., t1 = 0, 1, and 2. In the 

STEP 3, as started, t2 is 5 in the outer loop. In the inner loop, t1 = 4 ≥ (t2 – TL) and t1 ⊁ t2 

for E2 because S12(4) ≥ S12(5) ∧ S22(4) ≤ S22(5) does not satisfy the Claim 1. However, 

referred back to the STEP 1, isDominated[4] has been set to true that means t1 = 4 for E1 

is dominated, so the boolean condition in the if-statement inside the inner loop is false. 

Thus the MaxU, MaxT[1], and MaxT[2] are still equal to 0. When t1 = 3 and t2 =5, t1 ≥ (t2 

– TL) and t1 ⊁ t2 for E2 because S12(3) ≥ S12(5) ∧ S22(3) ≤ S22(5) does not satisfy the 

Claim 1. Since (NOT isDominated[3]) = true and U(3, 5) > MaxU, MaxU := 200, 

MaxT[1] := 3, and MaxT[2] := 5. This nested loop then keeps running without further 

assigning any new value to MaxU, MaxT[1], and MaxT[2] respectively until t1 = 0 and t2 

= 2. Since t1 ⊁ t2 for E2 when t1 = 0 and 1, (NOT isDominated[0]) = true, and U(0, 2) > 

MaxU, MaxU := 250, MaxT[1] := 0, and MaxT[2] := 2. In the STEP 4, p[1][1] := 

S11(MaxT[1]), p[1][2] := S21(MaxT[1]), p[1][3] := S31(MaxT[1]), p[2][1] := 

S12(MaxT[2]), and p[2][2] := S22(MaxT[2]) in the nested loops. In the STEP 5, the 

algorithm returns (13, 27, 3) and (14, 21).   

Theorem 2: For 𝓂 sets of N parameter vectors in the data set, the M-Checkpoint 

algorithm correctly computes a ME-EQPE solution, i.e., argmax O( ⃗    ⃗      ⃗ 𝓂), where 

O is the objective function of the ME-EQPE problem, with the complexity O(N𝓂). 
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5.3 Experimental Case Study 
The time complexity of the MLE for the logistic regression model is O(𝓂k

2
N), 

where 𝓂 is the number of time points (events), k is the number of input parametric time 

series, and N is the size of the learning data set. For the M-Checkpoint algorithm, the 

complexity is O(N𝓂). Although the time complexity of the MLE is more efficient than 

that of the M-Checkpoint algorithm, the M-Checkpoint algorithm generates the vectors of 

optimal learned parameters that maximize the earning from the training data set for this 

financial problem shown in Table 16. Using the M-Checkpoint algorithm, I can use the 

optimal decision parameters for detecting both investment events, i.e., the “Best Buy” 

and “Best Sell” opportunities on the S&P 500 Index Fund. More specifically, given the 

domain expert’s parametric model templates, C = {C1, C2}, the M-Checkpoint algorithm 

parameterizes the template of each investment event, i.e., the “Best Buy” and “Best Sell” 

opportunities, and generates the optimal decision parameter vectors, P = { ⃗    ⃗  }, which 

are the best decision parametric values of the template of each event that guarantee the 

optimality, i.e., O( ⃗    ⃗  ) ≝ U(t1, t2). 

Using the logistic regression model and the M-Checkpoint algorithm, the “Best 

Buy” and “Best Sell” opportunities in this investment and their earnings are shown in 

Table 17. The results show that the earning obtained from the logistic regression 

methodology is 0.52%, but the profit gained from my M-Checkpoint algorithm is 12.71% 

that is almost 25 times higher than the earning obtained from the logistic regression 

approach. Thus I can see that the M-Checkpoint algorithm considerably outperforms the 

logistic regression model. 
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Table 16. Optimal Parameters and Maximum Earning (%) from the Learning Data Set3 

p1 p2 p3 p4 p5 q1 q2 q3 q4 q5 O(  ⃗⃗  ,   ⃗⃗  )  

-15.34 19.70 -16.89 48.70 79 0.09 16.24 -4.60 54.9 0 55.70% 

 

Table 17. Investors’ Earning of the S&P 500 Index Fund from the Test Data Set4 

Decision Approach Best Buy S&P 500 Index Best Sell S&P 500 Index Earning% 

Logistic Regression Model 10/14/08 998.01 09/03/09 1003.24 0.52% 

M-Checkpoint Algorithm with 

Financial Expert’s Template 
10/31/08 968.75 09/07/10 1091.84 12.71% 

* Note that the financial experts do not provide the decision parameters that can be used to determine the “Best Buy” 

and “Best Sell” opportunity in the sequence of occurrence. 

 

5.4 Chapter Summary 
The Multi-Event Expert Query Parametric Estimation (ME-EQPE) model is a 

well-defined model that captures domain experts’ knowledge in expression of 

multivariate time series vectors, decision parameter vectors, a set of parametric 

constraints, a time utility, and an objective function. Each multivariate time series vector 

is a set of input parametric time series for each event, e.g., the bear market bottom or the 

bull market top. Each vector of decision parameters is instantiated from its input 

parametric time series vector to learn the optimal values that satisfy the given parametric 

constraints and maximize their time utility collectively. The time utility is a function of 

the multiple decision time points that the objective function is dependent upon from 

which the parameter vectors are learned.  

                                                 
3 The learning data set is from 06/01/1997 to 01/31/2004. 
4 The test data set is from 02/01/2004 to 03/31/2011. 
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The Multidimensional M-Checkpoint algorithm also combines the strenghts of 

both domain experts’ knowledge in terms of a set of parametric constraints and formal-

learning-based methodology by the regression appoarch. The goal of the M-Checkpoint 

algorithm is to learn the multiple decision parameter vectors that maximize the objective 

function, e.g., the earning of the financial example, over multivariate time series vectors. 

This new algorithm guarantees an optimality of the learned multiple sets of decision 

parameters in their respective events, i.e., multiple, true optimal decision time points, 

e.g., tpurchased and tsold of the S&P 500 Index Fund, during the computations. To 

demonstrate the effectiveness of the algorithm, I compare it with the formal-learning-

based approach, i.e., logistic regression methodology in the financial domain. Using the 

learned multiple sets of decision parameters, I show that the M-Checkpoint algorithm is 

more effective and guarantees the satisfactory forecasting results that are superior to 

those from the logistic regression methodology.  
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CHAPTER 6. RELAXED R-CHECKPOINT ALGORITHM FOR MULTI-EVENT 

DECISION MAKING 

In this chapter, I detail the R-Checkpoint algorithm for multi-events and conduct 

the same financial case study as in Chapter 5 to illustrate the performance among the 

logistic regression model, the M-Checkpoint algorithm, and the R-Checkpoint algorithm.  

6.1 Relaxed R-Checkpoint Algorithm 
As discussed in Chapter 1, although the proposed M-Checkpoint algorithm is able 

to learn multiple sets of optimal decision parameters and guarantee a satisfactory 

forecasting result, the computational complexity of this algorithm is considerably high, 

i.e., O(N
m
), where N is the size of the learning data set and m is the number of the events. 

To solve the issue of the high complexity, I develop a relaxed algorithm, R-Checkpoint, 

which is discussed in this chapter. 

Let us reconsider the financial example again, which is formulated by the ME-

EQPE model, shown in Table 18. The problem can be solved by the M-Checkpoint 

algorithm, which learns the optimal time points to maximize the earning function U(t1, t2) 

= 
      

      
 – 1, which can be expressed as U*(      ,       ) ∈ R. This earning function is 

the time utility, which is maximized by choosing the optimal value t1 and t2 ∈ T, where 

       = SP(t2) and        = 
 

      
, for  SP(t2) is the sell value and SP(t1) is the buy value 
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of the S&P 500 index fund. Since the selected t1 and t2 maximize        and       , the 

U(t1, t2) is also maximized. 

However, the problem of the M-Checkpoint algorithm is that for every single 

parameter vector  ⃗   in a learning data set, the parameter set at    has to be examined with 

a range of previous sets of parameters at   
  <    for checking the dominance by using the 

KD-tree data structure and searching algorithm before the optimal solution can be found. 

More specifically, the M-Checkpoint algorithm is brute-force that STRICTLY checks all 

the non-dominated time points of each single event i, where 1 ≤ i ≤ 𝓂, and then 

determines which 𝓂-event, non-dominated time-point combination yields the highest 

earning. In this approach, the M-Checkpoint algorithm can guarantee the optimality but 

with a higher time complexity, O(N𝓂). Due to the polynomial time complexity, i.e., 

O( 𝓂), the M-Checkpoint algorithm is very time consuming and expensive particularly 

if the size of the learning data set is significantly large. 
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Table 18. ME-EQPE Problem and Solution Formulation for the S&P 500 Index Fund 

Problem and Solution 

Problem: 

< ̇,  ̇, C, U>, where 

 ̇ = {       ,        },  

where         = (SPD(t1), CG(t1), CCD(t1), ISM(t1), NLCD(t1))  

and         = (SPI(t2), CG(t2), CCI(t2), ISM(t2), NLCSV(t2)) 

 

 ̇ = { ⃗  ,   ⃗  },  

where   ⃗   = (p1, p2, p3, p4, p5) and  ⃗   = (q1, q2, q3, q4, q5) 

 

C = {C1, C2},  

where C1 = SPD(t1) < p1 ∧ CG(t1) < p2 ∧ CCD(t1) < p3 ∧ ISM(t1) < p4 ∧ NLCD(t1) > p5 and C2 = 

SPI(t2) ≥ q1 ∧ CG(t2) ≥ q2 ∧ CCI(t2) ≥ q3 ∧ ISM(t2) ≥ q4 ∧ NLCSV(t2) > q5 

 

U =        *        - 1, where        = SP(t2) and        = 
 

      
 

 

Solution:  

argmax O(  ⃗  ,   ⃗  ) ≝ U(t1, t2) 

 

Instead of finding all the non-dominated time points of each event i initially, I 

develop the R-Checkpoint algorithm. This algorithm first locates the 𝓂-event, time-point 

combinations, where each        function of an event is a local maximum at the time 

point    if        ≥           , where 1 ≤ i ≤ 𝓂, λ is a pre-defined parameter, i.e., 6, and 

   = 30 days, which is explained in [57]. The values of the 𝓂 local maxima        

combinations yield the top-Q time utility U, in which their time points (  ,   , …,  𝓂) 

with the time utility U(  ,   , …,  𝓂) are stored in the sorted set 𝓢 in the descending 

order according to the values of their utility. Afterward, the algorithm ONLY evaluates 

the dominance of those time points by using the KD-tree data structure and searching 

technique. In this methodology, the R-Checkpoint algorithm is more efficient to learn the 

parameters than the M-checkpoint algorithm and has a lower time complexity. The 

pseudo code of the algorithm is shown in Table 19. 
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Table 19. R-Checkpoint Algorithm 

Input: <S, P, C, U> 

Output: p[i][j] is a two-dimensional array of the parameter vectors that stores the decision parameters for each event 

i, where 1 ≤ i ≤ 𝓂, 1 ≤ j ≤   , and 𝓂,    ∈ Z+. 

Data Structures:  

1. N is the size of the learning data set. 

2. MaxT[i] is an integer array of time points that gives the maximal U, denoted by MaxU, where 1 ≤ i ≤ 𝓂, and 

MaxT[1] < MaxT[2] < …< MaxT[𝓂]. 

3.    is an integer variable to store the total number of local maxima of       . 

4.      ] is a double array to store the value        when        is a local maximum at   . 
5.      ] is an integer array to store the time point    when        is a local maximum at   . 
6. 𝓢 is a set of tuples that are sorted in the descending order according to the value U(     ], …,  𝓂  𝓂]) of each 

tuple. Each tuple has 𝓂 + 1 attributes, i.e., {     ], …,  𝓂  𝓂], U(     ], …,  𝓂  𝓂])}, and each      ] is the time 

point of its local maximum        of the event i. 

7. Q is the total number of 𝓂-event, time-point combinations which yields the top-Q time utility U in the set 𝓢. 

8.      ] is a KD-tree array that stores the parameter vectors that are not dominated so far for the event i. 

9. isDominated[i][  ] is a boolean array to indicate whether or not a time point    of an event i is dominated, i.e., 

isDominated[i][  ] := true, by at least one previous time point of the event i, or else isDominated[i][  ] := false. 

10.   is a delta time window frame that defines a range of neighbours of      ]. 

Initialization: Initialize MaxT[i] to 0 and assign an empty set to 𝓢, where 1 ≤ i ≤ 𝓂.  

Processing: 

STEP 1: Search all the 𝓂 local maxima       s and their respective local optimal time points   s that correspond to 

the sequence of the 𝓂 events, where t1 < t2 < …< t𝓂. 

FOR i := 1 TO 𝓂 DO { 

Test        to find if there exists a time point, which is the range of            >       . 

IF (NOT AND        ≤ N AND        ≥ 0) THEN 

     ] :=   ; 
     ] :=       ; 

ENDIF 

} 

 

STEP 2: Compute the value of the objective function for each time-point sequence, i.e., O(t1, t2, …, t𝓂) ≝ U(t1, t2, …, 

t𝓂), where each optimal time point    is located in the STEP 1, and then find the 𝓂-event, time-point combinations, 

which yields the top-Q time utility U and are stored in the set 𝓢. 

FOR ( 𝓂 := 1;  𝓂 ≤  𝓂;  𝓂 :=  𝓂 + 1) DO { 

FOR ( 𝓂   := 1;  𝓂   ≤  𝓂   AND  𝓂  𝓂] >  𝓂    𝓂  ];  𝓂   :=  𝓂   + 1) DO { 

 : 

 : 

FOR (   := 1;    ≤    AND      ] >      ];    :=    + 1) DO { 

IF (|𝓢| < Q) THEN 

𝓢 := 𝓢 ∪ {     ], …,  𝓂  𝓂], U(     ], …,  𝓂  𝓂])}; 

ELSE IF (Min{U(  , …,  𝓂)} < U(     ], …,  𝓂  𝓂]) AND    ≠      ] AND … AND  𝓂 ≠ 

 𝓂  𝓂]) THEN 

𝓢 := 𝓢 – {  , …,  𝓂, U(  , …,  𝓂)}; 

𝓢 := 𝓢 ∪ {     ], …,  𝓂  𝓂], U(     ], …,  𝓂  𝓂])}; 

ENDIF 

ENDIF 

} 

: 

: 

} 

} 
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STEP 3: Sort the time-point sequences in the set 𝓢 in the descending order according to the values of their objective 

functions, and then use the KD-tree data structure and searching techniques to evaluate whether or not the first time-

point sequence (t1, t2, …, t𝓂) in the sorted set 𝓢 is dominated. If all the time points are not dominated, those time 

points are the solutions. However, if there are some time points, (t1, t2, …, t𝓂), in the first sequence that are 

dominated, the algorithm searches the closest neighbors (  
 ) of those time points, where   

  <    for i = 1, 2, …, m, to 

evaluate whether or not they are dominated. If the closest neighbors are not dominated, the solution is obained. 

However, if all the neighbors are dominated, the algorithm applies the same procedure to the subsequent time-point 

sequences one after the other according to the order in the sorted set 𝓢. This process keeps repeating until all of the 

chosen time points are not domainted in a sequence. Then the solution is found.  

SET i := 1, q := 1,    := 1,      ] :=   
⃗⃗⃗     , isDominated[i][0] := false, upperBound :=     ] +  , lowerBound := 

    ] -  ; 

DO  

DO 

SET found := false; 

FOR   
  :=    TO upperBound DO { 

Non-Dominance Test: Query      ] to find if there exists a point (𝓅 , 𝓅 , …, 𝓅  
) in the      ], 

which is in the range ∏     
   

     
  
   . 

IF (NOT AND   
  is not dominated) THEN 

Add       
   to      ]; 

isDominated[i][  
 ] := false; 

ELSE 

isDominated[i][  
 ] := true; 

ENDIF} 

IF (NOT isDominated[i][     ]]) THEN 

MaxT[i] :=     ]; 
found := true; 

ELSE 

Search the closest, non-dominated neighbor  ̅  of      ], where lowerBound ≤  ̅  ≤ upperBound, 

and  ̅  ≠      ]. If there are two non-dominated neighors, which are the same distance from the 

     ], select the  ̅ , which has a higher value of      ̅ . 

ENDIF 

IF (found AND i + 1 ≤ 𝓂) THEN 

     :=     ] + 1, i := i + 1,      ] :=        ; 

isDominated[i][  ] := false,    :=    + 1; 

upperBound :=     ] +  , lowerBound :=     ] -  ; 

ELSE IF (NOT found AND q + 1 ≤ Q) THEN 

FOR i := 1 TO 𝓂 DO { 

Clear      ]; 
} 

i := 1, q := q + 1,    := 1; 

     ] :=       , isDominated[i][0] := false; 

upperBound :=     ] +  , lowerBound :=     ] -  ; 

ENDIF 

ENDIF 

LOOP WHILE (i ≤ 𝓂 AND found) 

LOOP WHILE (NOT found AND q ≤ Q AND i < 𝓂) 

 

STEP 4: Assign the parametric values    
       ]  to p[i][j] for each event i, where 1 ≤ i ≤ 𝓂, and 1 ≤ j ≤   , after 

the 𝓂-event, non-dominated, time-point combinations have been found in the STEP 3. 

FOR i := 1 TO 𝓂 DO { 

FOR j := 1 TO ni DO { 

p[i][j] :=    
       ] ; 

} 

} 
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STEP 5: Return the vector of decision parameters p[i][j], i.e.,  ⃗  , for each event i, where 1 ≤ i ≤ 𝓂, and 1 ≤ j ≤   , 

according to the time-point sequence obtained in the STPE 4. 

RETURN p[i][j], where 1 ≤ i ≤ 𝓂, and 1 ≤ j ≤ ni; 

 

For example, suppose there are two inter-related events, E1 and E2, that occur in 

the time sequence, i.e., 0 ≤ t1 < t2, respectively to maximize the utility U. The time series 

vector        , the parameter vector  ⃗  , and the parametric monitoring constraint 

  (         ⃗  ) of each event Ei, where i = 1 and 2, are shown in Table 20. I also assume 

that the values of        and        are shown in Table 21, Q is 2, and ∆ is 1. 

 

Table 20. Time Series Vectors, Parameter Vectors, and Parametric Monitoring Constraints for E1 and E2 

Event Time Series Vector  Parameter Vector Parametric Monitoring Constraint 

E1        
                           

 ⃗  
               

  (         ⃗  )             ∧        

    ∧              
E2                            ⃗               (         ⃗  )             ∧             

 

Table 21. Values of        and        for E1 and E2 

                 

180 80 70 

181 90 50 

182 70 80 

183 50 20 

184 100 (Non-Dominated) 10 

185 40 40 

186 10 60 

187 5 30 

188 10 15 

189 15 80 (Non-Dominated) 

190 50 90 (Dominated) 

191 20 85 (Non-Dominated) 

 

Using the R-Checkpoint algorithm for the problem, I can find the highest-ranked 

tuple {  ,   , U(  ,   )} in the set 𝓢, in which the two time points,    and   , are not 
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dominated by any previous   
  and   

 , where 0 ≤   
  <    ≤   

  <   , such that the value of 

the utility function U is maximal. In the STEP 1, I assume that the values         and 

        of E1 and         and         of E2 are the local maxima. After the 

assignments in this step, {  [1] = 181,   [1] = 90}, {  [2] = 184,   [2] = 100}, and k1 = 2 

for E1. For E2, {  [1] = 182,   [1] = 80}, {  [2] = 190,   [2] = 90}, and k2 = 2. Inside the 

for-loop statements in the STEP 2, the tuples, {181, 182, 7200} and {181, 190, 8100}, 

are first inserted into the set 𝓢 because the size |𝓢| is less than Q initially. After that, the 

tuple {181, 182, 7200} is removed from the set 𝓢, and the tuple {184, 190, 9000} is 

added to the set 𝓢 because Min{7200, 8100} is 7200 that is less than 9000. Thus the 

resultant tuples stored in the set 𝓢 are {{184, 190, 9000}, {181, 190, 8100}}. In the 

STEP 3 (see Figure 3), the        is first added to the      ], and isDominated[1][0] is 

set to false since the time point 0 is not dominated by any previous time point. Using the 

KD data structure      ], the algorithm continues querying the subsequent time points up 

to the upperbound, i.e., 185, and adds those non-dominated time points to      ]. As the 

time point     ] = 184 is not dominated, the     ] = 184 is assigned to MaxT[1], and the 

boolean variable found is set to true. After the non-dominated time point of    has been 

found, the first time point of    would be equal to     ] plus 1, i.e., 185. Because the 

time point 185 is the first time point of E2, the          is added to      ], and 

isDominated[2][185] is set to false. Using the KD tree data structure      ], the 

algorithm starts querying the subsequent time points up to the upper bound, i.e., 191, and 

adds those non-dominated time points to      ]. Unfortunately, the time point 190 is 

dominated, so the algorithm checks whether or not both neighboring time points 189 and 
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191 are dominated. Because both time points are not dominated, the algorithm evaulates 

which values,         and        , are higher. According to Table 21, the         is 

higher, so MaxT[2] := 191. As both MaxT[1] and MaxT[2] have been found, the 

algorithm does not repeat the same procedures for the next tuple in the set 𝓢. In the STEP 

4, p[1][1] := S11(MaxT[1]), p[1][2] := S21(MaxT[1]), p[1][3] := S31(MaxT[1]), p[2][1] := 

S12(MaxT[2]), and p[2][2] := S22(MaxT[2]) in the nested loops. In the STEP 5, the 

algorithm returns (p[1][1],  p[1][2], p[1][3]) and (p[2][1], p[2][2]). 

 

 

 
 

Figure 3. Timeline for E1 and E2 

 

 

6.2 Experimental Case Study 
Consider the financial example again, which determines the occurrence of the 

events, i.e., the bear market bottom and the bull market top, as an illustration. Instead of 

finding the non-dominated time points in the first place, the algorithm first locates all the 

pairs of local minimal (tmin), i.e., “Best Buy”, and local maximal (tmax), i.e., “Best Sell”, 

time points that correspond to the sequence of the events and then evaluates the values of 

their objective function, i.e., O(tmin, tmax) ≝ U(tmin, tmax) = SP(tmax)/ SP(tmin) – 1. Based on 

their values of the objective function, the algorithm sorts those time-point pairs in the 

184 190

0

185183 189 191

Timeline

t1[1] t2[1]t1[1] + Δt1[1] - Δ t2[1] - Δ t2[1] + Δ
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descending order and then uses the KD-tree data structure and searching techniques to 

learn the non-dominated time point of each event for the first time-point pair in the sorted 

list. If both time points, i.e., tmin and tmax,, in the first pair are not dominated, the solution 

is found. However, if tmin and/or tmax, of the first time-point pair are dominated, the 

algorithm evaluates their nearby time points,     
  < tmin and/or     

  < tmax,, whether or 

not they are dominated. If their nearby time points are not dominated, I conclude that the 

solution is obtained or otherwise. Intuitively, those non-dominated time points 

correspond to their vectors of parameters ( ⃗⃗    ⃗⃗  ) that can reasonably maximize the 

objective function and guarantee a satisfactory forecasting result. However, if the local 

minimal, the local maximal, and their nearby time points in the first time-point pair are 

all dominated, the algorithm continues to search the non-dominated time points in the 

second pair, and so on and so forth until the solution is found. To the end, the algorithm 

returns two parameter vectors, one for the best buy, i.e.,  ⃗   = (SPD(tbuy), CG(tbuy), 

CCD(tbuy), ISM(tbuy), NLCD(tbuy)) and one for the best sell, i.e.,  ⃗   = (SPI(tsell), CG(tsell), 

CCI(tsell), ISM(tsell), NLCSV(tsell)), where tbuy ≤ tmin and tsell ≤ tmax, which the investors can 

use to detect the market bottom and the market top. 

The time complexity of the MLE for the logistic regression model is O(𝓂   ), 

where 𝓂 is the number of events, k is the number of parametric coefficients, and N is the 

size of the learning data set. For the R-Checkpoint algorithm, the complexity is 

O(QkNlogN). Although the algorithm [58] used for the MLE is more efficient than that of 

the R-Checkpoint algorihtm, the R-Checkpoint algorithm can generate the vectors of 

learned decision parameters that yield a better earning from the training data set for this 



70 

 

financial problem shown in Table 22. Using the logistic regression model and the R-

Checkpoint algorithm, the “Best Buy” and “Best Sell” opportunities in this investment 

and their earnings are shown in Table 23. The results show that the earning obtained from 

the logistic regression methodology is 0.52% and from the R-Checkpoint is 8.68% that is 

almost 17 times higher than the earning obtained from the logistic regression approach. 

On the contrary, even if the M-Checkpoint algorithm can guarantee the optimality and 

yield a better earning, i.e., 12.71%, from the testing data set, but the efficiency of the R-

Checkpoint algorithm, i.e., O(QkNlogN), is much better than that of the M-Checkpoint 

algorithm, i.e., O( 𝓂). 

 

Table 22. Decision Parameters and Earning (%) Generated by the M- and R-Checkpoint Algorithm from the 

Learning Data Set5 

Alg p1 p2 p3 p4 p5 q1 q2 q3 q4 q5 O(  ⃗⃗  ,   ⃗⃗  )  

M- -15.34 19.70 -16.89 48.70 79 0.09 16.24 -4.60 54.9 0 55.70% 

R- -0.68 20.01 -2.01 49 0 0.21 17.6 0 45.8 0 48.74% 

  

Table 23. Investors’ Earning of the S&P 500 Index Fund from the Test Data Set6 

Decision Approach Best Buy S&P 500 Index Best Sell S&P 500 Index Earning% 

Logistic Regression Model 10/14/08 998.01 09/03/09 1003.24 0.52% 

M-Checkpoint Algorithm with 

Financial Expert’s Template 
10/31/08 968.75 09/07/10 1091.84 12.71% 

R-Checkpoint Algorithm with 

Financial Expert’s Template 
10/06/08 1056.89 09/24/10 1148.67 8.68% 

* The financial experts do not provide the decision parameters that can be used to determine the “Best Buy” and “Best 

Sell” opportunity in the sequence of occurrence. 

 

                                                 
5 The learning data set is from 06/01/1997 to 01/31/2004. 
6 The test data set is from 02/01/2004 to 03/31/2011. 
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6.3 Chapter Summary 
The ME-EQPE is an original model for the multi-event, decision-making 

problems that can be solved by the M-Checkpoint algorithm. Due to the high complexity 

O( 𝓂) of the M-Checkpoint algorithm, I develop the R-Checkpoint to solve the ME-

EQPE problems over multivariate time series. This algorithm combines the strengths of 

both domain-knowledge-based and formal-learning-based approaches to learn multiple 

sets of decision parameters that are fairly close to the optimal parameters learned from 

the M-Checkpoint algorithm, produce reasonably forecasting results, and maintain a 

satisfactorily low time complexity, i.e., O(QkNlogN), as compared with O( 𝓂) of the M-

Checkpoint algorithm, where Q is the total number of 𝓂-event, time-point combinations 

which yields the top-Q time utility, and k is the number of input parametric time series 

for each event. To demonstrate the performance of the new algorithm, I conduct an 

experiment in the financial domain. Specifically, I compare the forecasting results that 

are detected by the decision parameters learned from the R-Checkpoint with the results 

that are determined by the optimal parameters obtained from the M-Checkpoint 

algorithm, as well as the parametric coefficients of the logistic regression model. The 

experimental study shows that the forecasting results by the heuristic R-Checkpoint 

algorithm are slightly lower than those of the optimal M-Checkpoint algorithm and are 

considerably higher than those of the logistic regression methodology.  
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CHAPTER 7. HYBRID-BASED MULTIVARIATE TIME SERIES ANALYTICS - 

PARAMETER ESTIMATION (MTSA-PE) MODEL 

In this chapter, I explain the MTSA-PE model, which incorporates any types of 

different constraints, to learn decision parameters over multivariate time series regardless 

of particular time points.  

7.1 Introduction 
The hybrid-based models, EQPE and ME-EQPE, and algorithms, Checkpoint, M-

Checkpoint, and R-Checkpoint, are only able to solve a specific class of problems that (1) 

their decision parameters of an objective function are learned from optimal time points of 

a time utility function, (2) the parametric template has to be in the considered form, i.e., 

conjunctions of inequality constraints, and (3) the constraints being used are solely for 

monitoring purposes. To address the above weaknesses, in this chapter, I develop a 

general, hybrid-based model, Multivariate Time Series Analytics – Parameter Estimation 

(MTSA-PE). This model maintains a combination of both domain-knowledge-based and 

formal-learning-based approaches with possibly incorporating any global constraints that 

are applied to an entire problem, and monitoring constraints, which are used to detect the 

occurrence of events. Both types of inequality constraints, global and monitoring, are 

allowed in any possible combinations and forms. Using the MTSA-PE model associated 

with an external solver, e.g., the IBM ILOG CPLEX optimizer, domain experts can learn 

decision parameters that satisfy all the given constraints and that optimize the objective 
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function, which is independent of a particular time point. To demonstrate the MTSA-PE 

model, I conduct a real case study on the electric power microgrid at the GMU campuses. 

I utilize the MTSA-PE model to illustrate the GMU problem and the extended MTSA-

query constructs (read Chapter 3) to express the model and related MTSA services, such 

as querying, parameter learning, data monitoring, and decision recommendation, to solve 

the problem.  

7.2 Problem Description of a Real Case Study 
Let us consider the real case study at the George Mason University (GMU) 

campuses, where there are more than 33,000 students, and the total size of all the 

campuses is more than 800 acres. The electric power demand across those expanding 

campuses is expected to increase. The increase in electric power consumption results in a 

higher electricity cost, which is composed of the two main components: (1) a total 

kilowatt-hour (kWh) charge, i.e., the charge for the total electricity consumption, and (2) 

an Electricity Supply (ES) service charge, i.e., the charge for the peak demand usage in 

any 30-minute interval over the past 12 months. The first total kWh charge is priced 

particularly high during the business office hours between 09:00 a.m. and 06:00 p.m. 

from Monday to Friday. The second ES service charge (monthlyEServiceCharge) is a 

proxy for the cost of capital investment for power generation capacity, since the power 

company, such as Virginia Electric and Power Company, needs to build generation, 

transmission, and distribution facilities that are capable of supporting the peak demand 

usage, even though the average power demand could be considerably lower. This ES 

service charge, i.e., the peak demand charge, amounts to approximately 30% of the 
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electric bill in each monthly pay period (payPeriod) and is determined based upon the 

electricity supply demand (payPeriodSupplyDemand). This electricity supply demand is 

decided on the highest of either (C1) or (C2) according to the electric utility contract: 

C1: The highest average kilowatt measured in any 30-minute interval of the current 

billing month during the on-peak hours of either: 

 Between 10 a.m. and 10 p.m. from Monday to Friday for the billing months of 

June through September, or 

 Between 7 a.m. and 10 p.m. from Monday to Friday for all other billing months. 

C2: 90% of the highest kilowatt of demand at the same location as determined under (C1) 

above during the billing months of June through September of the preceding eleven 

billing months. 

Thus it is possible that a high peak demand usage just for one minute of electricity 

consumption over the past year would result in a very significant increase in the total 

charge of the electric bill of the next monthly pay period. Therefore, controlling the peak 

demand usage is crucial for decreasing the electricity cost. To mitigate the peak demand 

problem, my key idea is to learn an optimal peak demand bound over historical and 

projected electric power demands for each future pay period. This optimal peak demand 

bound is then used to monitor the prospective demand usage in any time interval of that 

future pay period. Once the demand usage exceeds the bound, some electricity loads are 

shed to shut down some electric account units so that the peak demand charge can be 

controlled. However, to determine an optimal peak demand bound is challenging, as if 

the bound is set too high, although power services are not interrupted, customers will be 
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charged a significant electricity expense. If the bound is set too low, a low electricity 

charge is billed, but more power interruptions to customers occur. In order to make an 

optimal balance of this trade-off, the web-mashup application service framework for 

multivariate time series analytics has been proposed in Chapter 3. This framework is 

designed for domain experts to solve this class of dilemmatic situations as well. 

7.3 MTSA Querying, Monitoring, Recommendation, and Learning 
Service 

Let us consider the GMU case study again. Using the extended MTSA data model 

in Chapter 3, the energy planners can create the time-series tables as the inputs and stores 

them with the data in the database. For example,                                 

(Box 14) is the input time-series table, and                                    

(Box 15) is the decision-parameter table. Both tables are created as follows by using the 

Querying Service. 

Querying Service 

Box 14. 

CREATE TABLE ElectricPowerDemand ( 

 time HOURLY_INTERVAL,  

 value REAL); 

 

Box 15. 

 
CREATE TABLE PeakDemandBound ( 

 time HOURLY_INTERVAL,  

 period MONTHLY_INTERVAL,  

 value REAL, 

 UNIQUE_MAP(time, period)); 

 

HOURLY_INTERVAL, DAILY_INTERVAL, MONTHLY_INTERVAL, 

QUARTERLY_INTERVAL, and YEARLY_INTERVAL are the new integer-based data 
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types to show the sequence of the data.  UNIQUE_MAP() is the new function that 

ensures each hourly interval is mapped to one monthly interval, for example. Note that I 

use the negative and zero integers, e.g., time ≤ 0, period ≤ 0, etc., indicate the historical 

time series, and the positive integers, e.g., time ≥ 1, period ≥ 1, etc., denote the projected 

time series. 

Monitoring and Recommendation Service 

Using the monitoring and recommendation service, the energy planners can 

determine when they should execute the electric load shedding. In the GMU case study, 

one of the input time series tables is                                 (Box 14), 

which is created to store the new incoming electric power demand for monitoring. The 

monitoring and recommendation service can be expressed by a monitoring-event view 

and executed by the MONITOR command (Box 16 and Box 17). 

Box 16. 

CREATE VIEW ElectricLoadShedding AS ( 

 SELECT EPD.time, (CASE WHEN EPD.value > PDB.value  

THEN ‘1’ ELSE ‘0’  

END) AS Indicator 

 FROM ElectricPowerDemand EPD, PeakDemandBound PDB 

 WHERE EPD.time = PDB.time); 

 

Box 17. 

 
CREATE VIEW ELS_Monitoring_Recommendation AS ( 

 SELECT ELS.time, (CASE WHEN ELS.Indicator = ‘1’  

THEN ‘The Electric Power Demand Greater Than The 

Peak Demand Bound. The Electric Load Shedding Is 

Recommended.’  

END) AS Action 

 FROM ElectricLoadShedding ELS); 

 

MONITOR ELS_Monitoring_Recommendation; 
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PeakDemandBound stores the given decision parameter, e.g., 17200 kWh for 

all the hourly time intervals within the same monthly pay period, e.g., July 2012. If the 

monitoring constraint in the “CASE WHEN” clause of the ElectricLoadShedding 

view (Box 16) is satisfied at the current time interval, the value of the attribute 

“Indicator” indicates “1”. The service then recommends the energy planners to 

execute the electric load shedding since the electric power demand is greater than the 

peak demand bound (Box 17). 

Parameter Learning Service 

As I discussed in Chapter 3, domain experts’ suggested parameters are not 

accurate enough to monitor the dynamics of the rapidly changing conditions, such as 

electric power consumptions at different periods of time, e.g., hourly, daily, monthly, 

quarterly, and yearly; thus, the parameter learning service should be adopted to learn the 

optimal decision parameters, e.g., PeakDemandBound, and this service can be 

expressed as follows: 

STEP 1: Store the input time series tables, e.g., ElectricPowerDemand(time, 

value), PayPeriod(time, period), WeekDay(time, d), Hour(time, 

h), Month(time, m), etc., in the database.  

STEP 2: Create the parameter tables, e.g., PeakDemandBound(time, period, 

value), PayPeriodSupplyDemand(time, period, value), KW(time, 

period, value), etc., to store the optimal decision parameters over a time and 

period horizon, where KW is a table to store the electric power demand for each hourly 

time interval. 
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STEP 3: Create a time series view for the monthly ES service charge for each pay period 

(Box 18). I assume that the future pay periods are two years, i.e., 24 pay periods as there 

are 24 months. 

Box 18. 

CREATE VIEW MonthlyEServiceCharge AS ( 

 SELECT PPSD.time, PPSD.period, 8.124 * PPSD.value AS Charge 

 FROM PayPeriodSupplyDemand PPSD);  

 

,where $8.124 is the peak demand charge per kilowatt according to the contract of the 

GMU electric bill. 

STEP 4: Create the global constraints, e.g., the condition C1 of the contractual terms of 

the GMU electric bill (Box 19), which I described in Section 7.2. 

Box 19. 

CREATE VIEW CurrentBillingMonth AS ( 

 SELECT PayPeriod.time, PayPeriod.period, 

  PayPeriodSupplyDemand.value AS payPeriodSupplyDemand, 

  KW.value AS kw, 

  (CASE WHEN (WeekDay.d >= 1 AND WeekDay.d <= 5)  

   AND ((Hour.h >= 10 AND Hour.h <= 22  

   AND Month.m >= 6 AND Month.m <= 9) 

   OR ((Hour.h >= 7 AND Hour.h <= 22) 

   AND (Month.m <= 5 OR Month.m >= 10))) 

   AND PayPeriod.time = WeekDay.time 

   AND WeekDay.time = Hour.time 

   AND Hour.time = Month.time 

   AND Month.time = PayPeriodSupplyDemand.time 

   AND PayPeriodSupplyDemand.time = KW.time 

  THEN ‘1’ ELSE ‘0’ END) AS Indicator 

 FROM PayPeriod, WeekDay, Hour, Month, PayPeriodSupplyDemand, KW); 

 

STEP 5: Create the monitoring constraints (Box 20), e.g., electricPowerDemand > 

peakDemandBound. 

 

 

 



79 

 

Box 20. 

CREATE VIEW ElectricPowerPeakDemandBound AS ( 

 SELECT PayPeriod.time, PayPeriod.period,  

  PeakDemandBound.value AS peakDemandBound, KW.value AS kw, 

  (CASE WHEN ElectricPowerDemand.value > PeakDemandBound.value 

   AND PayPeriod.time >= 1 

   AND PayPeriod.time = ElectricPowerDemand.time 

   AND ElectricPowerDemand.time = PeakDemandBound.time 

   AND PeakDemandBound.time = KW.time 

  THEN ‘1’ ELSE ‘0’ END) AS Indicator 

 FROM PayPeriod, ElectricPowerDemand, PeakDemandBound, KW); 

 

STEP 6: Create the parameter learning event and then execute the event construct to 

learn the parameters (Box 21), which are stored in their tables respectively. 

Box 21. 

CREATE EVENT LearnPeakDemandBoundParameter ( 

 GC_LEARN PeakDemandBound, PayPeriodSupplyDemand, KW 

 FOR MINIMIZE SUM(MESC.Charge) AS TotalCharge 

 WITH CBM.Indicator = ‘1’ THEN CBM.payPeriodSupplyDemand >= CBM.kw 

 AND PBM.Indicator = ‘1’ THEN PBM.payPeriodSupplyDemand >= 0.9 * PBM.kw 

 AND PDB.value <= PPSD.value 

 AND PDB.value >= 0 

 AND EPGPDB.Indicator = ‘1’ THEN EPGPDB.kw = EPGPDB.peakDemandBound 

 AND EPLEPDB.Indicator = ‘1’ THEN  EPLEPDB.kw = 

EPLEPDB.electricPowerDemand 

 FROM CurrentBillingMonth CBM, PrecedingBillingMonth PBM, PeakDemandBound 

PDB, PayPeriodSupplyDemand PPSD, KW, ElectricPowerGreaterPeakDemandBound 

EPGPDB, ElectricPowerLessEqualPeakDemandBound EPLEPDB, 

MonthlyEServiceCharge MESC 

 WHERE CBM.time = PBM.time 

 AND PBM.time = PDB.time 

 AND PDB.time = PPSD.time 

 AND PPSD.time = KW.time 

 AND KW.time = EPGPDB.time 

 AND EPGPDB.time = EPLEPDB.time 

 AND EPLEPDB.time = MESC.time); 

 

EXECUTE LearnPeakDemandBoundParameter; 

 

This learning query (Box 21) is to learn PeakDemandBound, 

PayPeriodSupplyDemand, and KW that minimize the TotalCharge of the 24 

future pay periods and satisfy all the six constraints in the WITH…THEN clause. For 

example, the first two constraints denote the C1 and C2 of the contractual terms of the 
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GMU electric bill. The last two constraints express the monitoring templates. When the 

event LearnPeakDemandBoundParameter is executed, the command GC_LEARN 

sends the SQL-learning event to the MTSA compiler, where GC stands for “General 

Class”. The compiler transforms this event to the IBM OPL construct, which is then sent 

to the IBM ILOG CPLEX optimizer to learn the parameters, e.g., peakDemandBound. 

The learned parameters are stored in their corresponding tables, e.g., 

PeakDemandBound. Note that all the parameters are instantiated with the optimal 

values. 

7.4 MTSA Query Semantics: Parameter Estimation Model 
In this section, I formalize the Multivariate Time Series Analytics - Parameter 

Estimation (MTSA-PE) problem and solution that I propose for the Parameter Learning 

Service. The goal of a MTSA-PE problem is to learn optimal decision parameters that 

maximize or minimize an objective function over historical and projected multivariate 

time series data.  

I assume that time is split into base time intervals of a fixed duration, e.g., hourly, 

for simplicity, and each time interval is indexed by an integer, and that I am also given a 

m-sets of decision parameters {  ,   , …,   }. The mathematical components of the 

MTSA-PE problem and solution and its formulations are shown as follows: 

 Time Horizon: A time horizon    is defined as        ∈  ∧     , where   

is a set of integers,   is a time interval in   , and  ∈  .  

More specifically, I use negative or zero integers     represented for the past 

and positive integers     represented for the future time intervals. For example,     is 
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the set of all integers that are greater than or equal to -5. It means that the time horizon 

starts from the past hourly time interval -5 to the future infinite time interval. 

 Past Time Horizon: A past time horizon is defined as            ∈   ∧   

  . 

 Future Time Horizon: A future time horizon is defined as              ∈

  ∧     . 

 Period Horizon: A period horizon    is defined as        ∈  ∧     , 

where   is a set of integers,   is a period in   , and  ∈  . 

I also assume that a sequence of time intervals    in    is grouped into periods, 

e.g., daily, weekly, or monthly periods. Each period   contains consecutive time intervals 

and is also indexed by an integer, where a positive integer     corresponds to the 

future period, and a negative or zero integer     corresponds to the past period. 

 Past Period Horizon: A past period horizon is defined as            ∈   ∧

    . 

 Future Period Horizon: A future period horizon is defined as          

    ∈   ∧     . 

The mapping between a time interval in    and a period in    is a 

function                         ∈                                  . 

Now suppose I have a sequence of time intervals in    and of their corresponding 

periods in    that are shown in Figure 4.  For instance, both the hourly time intervals, 2 

and 3, are mapped to the same period, i.e.,           =           = 1, as 2 is less than 
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3 so that 2 and 3 are grouped into the same period 1.  Some other examples are 

          = 0,           = 3, and            = -2. 

 

 
Figure 4. Time Intervals in TH and Corresponding Periods in PH 

 

 Time Series: A time series S is a function S: TH → D, where D is a numerical 

domain, e.g., D = R or D = Z. 

 Parametric Estimation Constraint: A parametric estimation constraint C(S1(t), 

S2(t), …, Sk(t), p1, p2, …, pn) is a symbolic expression in terms of S1(t), S2(t), …, 

Sk(t), p1, p2, …, pn, where S1(t), S2(t), …, Sk(t) are the k input time series, and (p1, 

p2, …, pn) is a vector of n parameters that have been given by domain experts or 

are instantiated at a particular time interval over    or a period over   . 

I suppose that a parametric estimation constraint is written in a language that has 

the truth-value interpretation I:       → {TRUE, FALSE}, i.e., I(C(S1(t), S2(t), …, 

Sk(t), p1, p2, …, pn)) = TRUE if and only if the constraint C is satisfied at t with the 

parameters (p1, p2, …, pn) ∈   . In this model, I focus on any possible combinations of 

inequality constraints of the general form: (S1(t) eop p1) op (S2(t) eop p2) op … op (Sk(t) 
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eop pn) op (p1 eop p2) op (p1 eop p3) op … op (pi eop pj), where eop ∈ {<, ≤, ==, ≥, >}, op 

∈ {∧, ∨}, and i ≠ j. 

 Parametric Implication Constraint: A parametric implication constraint (C𝓁 → 

C𝒿) is a logical constraint, i.e., “C𝓁 implies C𝒿” or “if C𝓁 then C𝒿” is TRUE if both 

C𝓁 and C𝒿 are TRUE, where C𝓁 and C𝒿 are a parametric estimation constraint C. 

Some of the Cs and (C𝓁 → C𝒿)s are parametric global constraints CP that are the 

general constraints, e.g., the contractual terms of the GMU electric bill, such as C1, to be 

applied to an entire problem. Some of them are parametric monitoring constraints CM that 

are used to detect the occurrence of an event of a problem, e.g., electricPowerDemand > 

peakDemandBound. 

 Objective Function: An objective function O is a function O: 

               , where   is the total number of sets of parameters,    is 

the total number of parameters in a set i, and   is the set of real numbers, for i = 

1, 2, …, m. 

MTSA Parametric Estimation (MTSA-PE) Problem: A MTSA-PE problem is a 

tuple <S, P, CP, CM, O>, where S = {S1, S2, …, Sk} is a set of the k input time series, P = 

{  ,   , …,   } is a m-sets of parameters, CP is a set of parametric global constraints in 

S and P, CM is a set of parametric monitoring constraints in S and P, and O is an 

objective function. 

MTSA Parametric Estimation (MTSA-PE) Solution: A solution to the MTSA-PE 

problem <S, P, CP, CM, O> is argmin O(P), i.e., the optimal values of a m-sets of 

parameters that minimize O. 
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Let us reconsider the GMU case study as an explanation for the above 

mathematical formulations. First, Table 24 shows the input multivariate time series S, 

and the time interval   is an integer hourly time interval. All the input time series are 

stored in the tables that I discussed in the STEP 1 of the parameter learning service in 

Section 7.3. 

 

Table 24. Multivariate Time Series Data S 

Time Series S Abbreviation Table 

Electric Power Demand                         ElectricPowerDemand 

Monthly Pay Period               PayPeriod 

Annual Year          Year 

Month of a Year           Month 

Day of a Month         Day 

Day of a Week             WeekDay 

Hour of a Day          Hour 

 

The decision parameter sets P used in the case study are defined and explained in 

Table 25, and   is a monthly pay period. All the tables of the parameter sets are created 

in the STEP 2 of the parameter learning service in Section 7.3. 
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Table 25. Decision Parameter Sets 

Parameter Set Usage Intrepretation Table 

                 ] is an array to 

store the peak demand bound for each 

future monthly pay period. 

 Test if the                        

exceeds the                  ] when 

               ∧     for   ∈
         and  ∈         . 

 Test if the                        less 

than or equal to                  ] 
when                 or     for 

  ∈    and  ∈   . 

PeakDemandBound 

    ] is an array to store the electric 

power demand for each hourly time 

interval. 

 Instantiate the values into   over the 

historical and projected electric power 

demand for   ∈     ∈   , i.e.,     ] 
stores the electric power demand when the 

electric power demand is less than or equal to 

the peak demand bound, or     ] stores the 

peak demand bound when the electric power 

demand is greater than the peak demand 

bound. 

KW 

                       ] is an 

array to store the electricity supply 

demand for each future monthly pay 

period. 

 Instantiate the values into 

                      over    

depended on which contractual condition C1 

or C2 is satisfied such that 

                      minimizes the 

objective function O for   ∈     ∈
        . 

PayPeriodSupplyDe

mand 

 

CP and CM are illustrated as follows. Both types of the constraints are created in 

the STEP 4 and STEP 5 of the parameter learning service in Section 7.3. 

 Parametric global constraint CP 

C𝓁:                                                               = 

                ∧              ∧              ∧             ∧

          ∧           ∧            ∨            ∧            ∧

           ∨                 

C𝒿:                          ]     ]  =                         ]  

    ]  

C1:    ∈     ∈            C𝓁 → C𝒿 denotes the contractual condition C1 in Section 

7.2. This condition C1 is also constructed by the CBM.Indicator = ‘1’ THEN 
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CBM.payPeriodSupplyDemand >= CBM.kw that is evaluated by the parameter 

learning event, i.e., LearnPeakDemandBoundParameter, in the STEP 6 of Section 7.3. 

C𝓁:                                                                  = 

                   ∧                ∧             

 ∧              ∧            ∧            ∧            ∧

             

C𝒿:                          ]     ]      =                         ]  

        ]  

C2:    ∈     ∈            C𝓁 → C𝒿 represents the contractual condition C2 in 

Section 7.2, which is constructed by the PBM.Indicator = ‘1’ THEN 

PBM.payPeriodSupplyDemand >= 0.9 * PBM.kw in the STEP 6 of Section 

7.3. 

C3:    ∈                             ]                         ]  

restricts the peak demand bound not greater than the electricity supply demand. This 

constraint is constructed by the PDB.value <= PPSD.value in the STEP 6 of 

Section 7.3. 

C4: (  ∈         ): (                 ]     ensures that the peak demand 

bound must be non-negative values. This constraint is constructed by the PDB.value 

>= 0 in the STEP 6 of Section 7.3. 
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 Parametric Monitoring Constraint CM 

C𝓁:                                                        ]        = 

    ∧                ∧                        

                 ]  

C𝒿:       ]                  ]  = (    ]                    ]  

C5: (  ∈           ∈            C𝓁 → C𝒿 monitors whether the electric power 

demand exceeds the peak demand bound when the hourly time interval   is positive. If 

this monitoring constraint, C𝓁, is triggered, the peak demand bound is stored in the   . 

This monitoring constraint is constructed by the EPGPDB.Indicator = ‘1’ THEN 

EPGPDB.kw = EPGPDB.peakDemandBound that is evaluated by the parameter 

learning event, i.e., LearnPeakDemandBoundParameter, in the STEP 6 of Section 7.3. 

C𝓁:                                                        ]        = 

                                          ] ∧                 ∨

     ) 

C𝒿:       ]                  ]  = (    ]                         ) 

C6: (  ∈     ∈      C𝓁 → C𝒿 monitors whether the electric power demand is less 

than or equal to the peak demand bound or the hourly time interval   is non-positive. If 

this monitoring constraint, C𝓁, is triggered, the electric power demand is stored in the 

  . This constraint is constructed by the EPLEPDB.Indicator = ‘1’ THEN 

EPLEPDB.kw = EPLEPDB.electricPowerDemand in the STEP 6 of Section 

7.3. 
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Regarding the objective function O, I assume that the GMU energy planners 

evaluate the total peak demand charge of the ES service for the projected 24 pay periods 

in the future two years, i.e., ∑                               ]   
   , where 

                             ] is the monthly ES service charge, which is 

created in the STEP 3 of the parameter learning service in Section 7.3. This total peak 

demand charge is the objective function O, which is minimized by optimally determining 

the                        ] that satisfies all the given constraints, where $8.124 

is the peak demand charge per kilowatt according to the contractual terms of the GMU 

electric bill, and       . 

Shown in Table 26, the MTSA-PE problem and solution of the case study can be 

constructed by putting all the considered time series S, the parameter sets P, the 

constraints CP and CM, and the objective function O to the formulations of the MTSA-PE 

problem and solution. More specifically, a MTSA-PE problem and solution is: 

      
 

      

                ∧        
 

This MTSA-PE problem and solution is constructed by the learning event 

LearnPeakDemandBoundParameter, which learns the parameter sets, 

               ,                      , and   . 
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Table 26. Formulation of the MTSA-PE Problem and Solution for the GMU Peak Electric Power demand 

Problem and Solution 

Problem: 

<S, P, CP, CM, O> 

 

S = {                                                          ,  

 

where                                                                           
                                                            

 

P = {                                          , 

 

where                  ]                           ]        ]                      
     

 

CP = {C1, C2, C3, C4}, where  

 

C1 =    ∈     ∈                            ∧              ∧              ∧           
  ∧           ∧           ∧            ∨            ∧            ∧            ∨
                                        ]      ]  , 

 

C2 =    ∈     ∈                               ∧                ∧              ∧
             ∧            ∧            ∧            ∧              
                        ]          ]  , 

 

C3 =    ∈                             ]                         ] , 

 

C4 = (  ∈         ): (                 ]     

 

CM = {C5, C6}, where 

 

C5 = (  ∈           ∈                ∧                ∧                        
                 ]  → (    ]                    ])) 
 

C6 = (  ∈     ∈                                                ] ∧                 ∨    
  ) → (    ]                         )), 

 

O = ∑                               ]   
    

 

Solution:  
      

 
      

                ∧         

 

This MTSA-PE problem is then expressed by the MTSA SQL according to the 

STEP 6 of the parameter learning service in Section 7.3. Once this MTSA-SQL construct 

of this problem is initiated, the optimal values of the decision parameter sets   are 

determined by sending this MTSA-SQL construct to the MTSA compiler. This MTSA 
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compiler transforms the MTSA-SQL construct to the OPL format that is then sent to the 

external optimization solver, i.e., IBM ILOG CPLEX optimizer, to learn the parameter 

sets  . After the optimal decision parameters, e.g.,                  ] of the 

monthly pay period 1, is learned from the optimizer, I can apply the parametric 

monitoring constraints, e.g.,                                         ], to 

the new incoming electricity consumption of the monthly pay period 1 from the GMU 

campuses and perform the event monitoring in an hourly basis, where        , for 

the entire monthly pay period 1. Once the monitoring constraints, e.g., C5, are triggered, 

the recommended action, e.g., the electric load shedding, is delivered to the service 

providers, that is, the GMU energy planners, to execute the electric load shedding to shut 

down some electric account units according to the prioritization scheme from the energy 

manager. 

7.5 Implementation of a High-level Architecture for Parameter 
Learning Process 

Figure 5 illustrates the parameter learning process for the optimal decision 

parameters. As this figure shows, domain experts use the parameter learning service to 

construct the query for the MTSA learning event, e.g., 

LearnPeakDemandBoundParameter. Once this learning event is initiated, the 

MTSA compiler calls the query translator to transform the learning event into the IBM 

OPL construct, which is shown in Figure 6. Note that this OPL construct is manually 

created as the compiler is still being developed. This IBM OPL construct is then sent to 

the external optimization solver, i.e., the IBM ILOG CPLEX optimizer, to learn optimal 

decision parameters, e.g.,                . These decision parameters are then 
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processed by the output formatter associated with the query translator to return the 

answer back to the parameter learning service, which presents the results to the experts. 

 

 
 

Figure 5. Parameter Learning Architecture for Optimal Decision Parameters 

 

Figure 6 shows the OPL model transformed from the MTSA-SQL construct. First, 

the value 24, i.e., the total 24 months from 2012 to 2013, is assigned to the variable 

nbPayPeriods in the line number 7. The value 0 is assigned to the variable annualBound, 

that is, the annual maximal power interruption allowed in the line number 8. From the 

line number 11 to 19, I declare a tuple of a power interval that has the attributes, 

including pInterval, payPeriod, year, month, day, hour, and weekDay. The line number 

21 declares the PowerIntervals that include both the past and the future power intervals. 

The line number 22 declares the electricPowerDemand[PowerIntervals] array. The line 

number 24, 25, and 26 declares the parameter sets, including the 

peakDemandBound[PayPeriods], kW[PowerIntervals], and 
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MTSA Data and Query 

Construct, i.e., Parameter 

Learning Event
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e.g., Peak Demand Bound
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payPeriodSupplyDemand[PayPeriods]. The monthly ES service charge, i.e., the peak 

demand charge, is declared on the line number 29, and the total peak demand charge, 

which is declared on the line number 30, is minimized on the line number 32. All the 

constraints, C1 – C6, are declared from the line number 35 to 54. 

 

 

 
 

Figure 6. The OPL Constructs for the MTSA-SQL Parameter Learning Service 
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7.6 Experimental Case Study 
Using the historical electric power consumption in the past years, e.g., 2011, the 

projected electricity demand over a future time horizon, e.g., 2012 and 2013, the maximal 

annual power interruption allowed, e.g., 0, and the parametric model templates, i.e., 

global and monitoring constraints, which are identified by the GMU energy planners and 

are required by the utility contracts that are supplied from the Model Definition Service, I 

input all of these data, constraints, and requirements to the Parameter Learning Service.  

Using the Parameter Learning Service, I formulate the MTSA query construct, 

i.e., the parameter learning event, which has been demonstrated in Section 7.3. Based on 

the parameter learning event, I manually formulate the corresponding OPL construct, 

shown in Figure 6, and run the construct on the IBM ILOG CPLEX Optimization Studio 

to obtain the learned optimal peak demand bounds for all the future pay periods shown in 

Table 27. 

 

Table 27. The GMU Peak Electric Power Demands over Pay Periods 

Pay Period Peak Demand Bound kW Pay Period Peak Demand Bound kW 

January 2012 12189 January 2013 12953 

February 2012 12654 February 2013 13447 

March 2012 12268 March 2013 13037 

April 2012 15410 April 2013 16376 

May 2012 14729 May 2013 15653 

June 2012 14921 June 2013 15856 

July 2012 17211 July 2013 18291 

August 2012 14575 August 2013 15490 

September 2012 15998 September 2013 17001 

October 2012 15020 October 2013 15962 

November 2012 12856 November 2013 13662 

December 2012 12654 December 2013 13447 
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The energy planners use the above optimal peak demand bounds to perform the 

optimal event monitoring over the actual incoming electricity demand in each monthly 

pay period through the Monitoring and Recommendation Service described in Section 

7.3.  

Using the results from the Monitoring and Recommendation Service, i.e., when to 

perform the load shedding, the actual QoS, i.e., the power interruption, the actual cost 

saving, i.e., the monthly electricity charge, and the corresponding optimal parameters and 

values as inputs, I evaluate the parametric model templates through the Model Accuracy 

and Quality Evaluation Service. Based upon the differences in terms of the load 

shedding, the QoS, and the electricity charge, this evaluation module generates a MTSA 

query construct to update the model templates accordingly. After that, the energy 

planners can use the updated templates with the input time series, QoS, and requirements 

to repeat the same process to learn a new set of optimal peak demand bounds for 

monitoring in the future pay period. 

More details and considerations about this case study are presented in Chapter 8. 

7.7 Chapter Summary 
Using the experimental case study on the campus microgrids at George Mason 

University, I demonstrate the MTSA query language to express and deliver the services, 

including querying, monitoring, recommendation, and learning, to domain users. I also 

identify a hybrid-based model, Multivariate Time Series Analytics – Parameter 

Estimation, to solve a general class of problems in which the objective function is 

maximized or minimized from the optimal decision parameters regardless of particular 
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time points. This model allows domain experts to include multiple types of constraints, 

e.g., global constraints and monitoring constraints. At the end, I develop a parameter 

learning architecture from which the parameter learning event is transformed into the 

IBM OPL construct by the MTSA compiler. This OPL construct is then sent to the 

CPLEX solver to learn the optimal decision parameters that are returned to the learning 

event. To further prove the capability of the MTSA-PE model, I conduct two real case 

students at GMU, which are described in Chapter 8. Using the electric power microgrids 

at GMU as examples, I illustrate how the MTSA-PE model with the external solver to 

solve the energy problems, including the determination of optimal peak demand bounds 

and the decision on the best energy investment options. 
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CHAPTER 8. CASE STUDIES: DECISION-GUIDED LOAD SHEDDING (DGLS) 

SYSTEM AND ENERGY INVESTMENT (DGEI) FRAMEWORK 

In this chapter, I conduct two real case studies, i.e., the Decision-Guided Load 

Shedding (DGLS) system for optimal load shedding in electric power microgrids and the 

Decision-Guided Energy Investment (DGEI) framework for optimal power, heating, and 

cooling capacity investment, to demonstrate the efficiency and expressiveness of the 

MTSA-PE model.  

8.1 DGLS System for Optimal Load Shedding in Electric Power 
Microgrids 

8.1.1 Introduction 
Increasing electricity demand has been widely recognized as a global trend in 

every business and industry. Population growth and economic development are among 

the key factors that lead to a higher total electricity consumption and a peak demand 

usage which, in turn, result in a rising energy cost to consumers. In this case study, I 

focus on the management of peak power demand within microgrids of commercial and 

industrial customers in order to minimize energy costs and maximize customers’ savings 

while preserving the desired quality of service (QoS) in terms of power interruption. 

Typically, it is considerably more expensive to generate electric power for the 

peak demand. In addition to a higher electricity cost, the peak demand of electric power 

also results in unpredictable, demand-side power fluctuations, as well as the possible 
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misbalance between the power supply and the customers’ demand, which cause power 

system outages. Existing approaches to solve the power system outage by electric power 

companies can be roughly divided into two categories: diverse power-load shedding 

schemes [59, 60, 61, 62, 63] and various time-differentiated pricing models [64, 65, 66, 

67, 68, 69, 70, 71, 72]. The former approach uses the frequency magnitude, the frequency 

decline rate, or both of them of the power system to determine when the power load 

should be shed so that a complete balance between the system supply and the customers’ 

demand can be made. Specifically, if the frequency magnitude drops below a certain 

threshold, the frequency decline rate reaches a certain limit, or a combination of both, a 

certain amount of power load is shed in order to rebalance the supply and demand.  

The latter approach is to use various time-differentiated pricing models rather 

than a common average-pricing scheme. The average-pricing scheme charges the 

customers the average price over a certain period of time of power consumption. 

However, this pricing scheme does not incentivize the customers to shift power usage to 

lower demand periods, and thus reduce the total peak demand. To address this issue, 

various time-differentiated pricing models, such as real-time pricing (RTP), day-ahead 

pricing (DAP), and time-of-use pricing (TOUP) have been proposed. All of these pricing 

models reflect the fluctuating prices to the end customers so that they pay what the 

electricity is worth at different periods of a day. Specifically, these time-differentiated 

pricing models encourage the customers to shift operations and appliances to the off-peak 

hours so that their electricity costs can be reduced and the occurrence of the power 

system outage can be prevented.  
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However, an important question is how the commercial and industrial customers - 

for example, at the George Mason University (GMU) campuses, an unusually high peak 

demand usage of just a few minutes may significantly increases the cost of the electric 

bill for the following year - should respond to those time-differentiated pricing 

approaches. Answering this question is exactly the focus of this study. To mitigate the 

peak demand problem, the key idea is to learn an optimal peak demand bound over 

historical and projected electric power demands for each future pay period. This optimal 

peak demand bound is then used to monitor the prospective demand usage in any time 

interval of that future pay period. Once the demand usage exceeds the bound, some 

electricity loads are shed by shutting down some electric account units so that the peak 

demand charge can be controlled. 

To address this problem, in this study, I propose and develop a decision guidance 

system, called DGLS, for load shedding of electric power in microgrids in order to 

minimize energy costs and maximize customers’ savings while preserving the desired 

quality of service (QoS) in terms of power interruption. More specifically, the DGLS 

system is designed to support energy managers to forecast electric power demand over a 

time horizon, use the predicted peak demand usage to optimize the peak demand bound 

for every monthly pay period, continuously monitor the hourly electricity demand, and 

shed load when the demand exceeds the optimal peak demand bound using a service 

prioritization scheme. More specifically, the technical contributions of this chapter 

include (1) the design of the DGLS system, (2) the development of a Multivariate Time 

Series Analytics – Parameter Estimation (MTSA-PE) model for the peak demand 
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optimization, which is both accurate and efficient, and its implementation using the IBM 

Optimization Programming Language (OPL), and (3) an experimental case study for the 

GMU university campus microgrid, which utilizes the MTSA-PE model and a proposed 

graphical methodology for making a trade-off between cost savings and power 

interruptions. 

The rest of the study is organized as follows. In Section 8.1.2, I provide a 

descriptive overview on the DGLS system. Using the GMU energy cost problem as an 

example, I describe and demonstrate the MTSA-PE model and its OPL implementation in 

Section 8.1.3 and 8.1.4 respectively. In Section 8.1.5, I show the trade-off graph between 

the annual power saving and the annual power interruption, as well as explain the graph 

in detail on the GMU energy cost problem. In Section 8.1.6, I conclude this case study. 

8.1.2 Decision-Guided Load-Shedding (DGLS) System 
To better understand the load shedding problem, I consider the real case study at 

the George Mason University (GMU) campuses, where there are more than 33,000 

students, and the total size of all the campuses is more than 800 acres, in which the 

electric power demand across those expanding campuses is expected to increase. The 

increase in electric power consumption results in a higher electricity cost, which is 

composed of the two main components: (1) a total kilowatt-hour (kWh) charge, i.e., the 

charge for the total electricity consumption, and (2) an Electricity Supply (ES) service 

charge, i.e., the charge for the peak demand usage in any 30-minute interval over the past 

12 months. The first total kWh charge is priced particularly high during the business 

office hours between 09:00 a.m. and 06:00 p.m. from Monday to Friday. The second ES 
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service charge is a proxy for the cost of capital investment for power generation capacity, 

since the power company, such as Virginia Electric and Power Company, needs to build 

generation, transmission, and distribution facilities that are capable of supporting the 

peak demand usage, even though the average power demand could be considerably 

lower. This ES service charge, i.e., the peak demand charge, amounts to approximately 

30% of the electric bill in each monthly pay period and is determined based upon the 

electricity supply demand. This electricity supply demand is decided on the highest of 

either (C1) or (C2) according to the electric utility contract: 

C1: The highest average kilowatt measured in any 30-minute interval of the current 

billing month during the on-peak hours of either: 

 Between 10 a.m. and 10 p.m. from Monday to Friday for the billing months of 

June through September, or 

 Between 7 a.m. and 10 p.m. from Monday to Friday for all other billing months. 

C2: 90% of the highest kilowatt of demand at the same location as determined under (C1) 

above during the billing months of June through September of the preceding eleven 

billing months. 

Thus it is possible that a high peak demand usage just for one minute of electricity 

consumption over the past year would result in a very significant increase in the total 

charge of the electric bill of the next monthly pay period. Therefore, controlling the peak 

demand usage is crucial for decreasing the electricity cost. 

To address this peak demand problem, I propose the Decision-Guided Load-

Shedding (DGLS) System, shown in Figure 7. This system has four main components: 
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Energy Management System (EMS), Load Shedding Priority Controller (LSPC), DGLS 

Optimizer, and Demand Prediction Learner (DPL). The EMS is a system of computer-

aided tools to monitor, control, and optimize the performance of the microgrid. One 

operation of the EMS is to monitor and receive the meter/sensor data from the electric 

power microgrid and then sends those historical power-demand data to the DPL, which 

uses the received data and the Energy Manager’s Facility Expansion Plan, e.g., the 

planned size of the future area increased at the GMU Fairfax campus in the next 

academic year, to generate the predicted electric power demand over a time horizon, e.g., 

two years. Another operation of the EMS is to issue the control command to the 

microgrid to shut down some electric account units to prevent the electricity demand 

from exceeding the peak demand bound. That control command generated and initiated 

by the EMS to the microgrid is based on the load-shedding command inputted from the 

LSPC, which receives the input data and information, i.e., the load shedding prioritization 

scheme from the Energy Manager and the optimal peak demand bound from the DGLS 

optimizer, to generate the control command. The DGLS optimizer utilizes the input 

information, including the QoS requirements, e.g., the annual maximal power 

interruption in kWh, and the electric utility contractual terms, e.g., the ES service charge 

deterination (C1 and C2), from the Energy Manager, as well as the predicted electricity 

demand over a time horizon, e.g., two years from 2012 to 2013, from the DPL, to 

generate a decision optimization model described in Section 8.1.3. This model is used to 

learn the optimal peak demand bound, which is described in Section 8.1.4, as an input to 

the LSPC. Note that the DGLS optimizer learns the peak demand bound monthly in 
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advance for the next monthly pay period, and the EMS monitors the real-time demand on 

an hourly basis for preventing the demand from exceeding the learned, optimal peak 

demand bound.  

 

 
 

Figure 7. Decision-Guided Load-Shedding (DGLS) System 
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8.1.3 The MTSA-PE Optimization Model 
To formulate a MTSA-PE optimization model to learn an optimal peak demand 

bound for every monthly pay period requires three input data sets: the historical and 

predicted electricity demand over a time horizon, the electric utility contractual terms of 

each pay period payment, and the maximal power interruptions allowed per year. Using 

the GMU energy cost problem as an example, I explain the terminology and the 

optimization problem formulation used in this case study, which are shown in Table 28, 

Table 29, and Table 30 respectively. In addition to those, Table 31 includes the 

descriptions for all the constant values, from the electric utility contract, used in the 

model for the GMU energy cost problem. 

 

Table 28. Input Data Set from the Demand Prediction Learner 

Input Data Item Description 

Electric Power Demand 

Pay Period 

Year 

Month 

Day 

Hour  

WeekDay 

demandKw(t) ≥ 0, where  -8759 ≤ t ≤ 17520. 

-11 ≤ payPeriod(t) ≤ 24. 

2011 ≤ year(t)  ≤ 2013. 

1 ≤ month(t)  ≤ 12. 

1 ≤ day(t)  ≤ 31. 

0 ≤ hour(t)  ≤ 23. 

0 ≤ weekDay(t)  ≤ 6. 

 

t is a hourly time interval denoted by an integer value, which indicates a historical 

data if t is less than or equal to zero, e.g., -8759 ≤ t ≤ 0 for the year 2011, and a future 

forecasted data if t is greater than zero, e.g., 1 ≤ t ≤ 17520 for the year 2012 and 2013. 

payPeriod is a monthly pay period denoted by an integer value, which indicates a 

historical data if payPeriod is less than or equal to zero, e.g., -11 ≤ payPeriod ≤ 0 for the 

year 2011, and a future forecasted data if payPeriod is greater than zero, e.g., 1 ≤ 
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payPeriod ≤ 24 for the year 2012 and 2013. Each payPeriod corresponds to a range of ts; 

for example, the payPeriod = 1 consists of ts from 1 to 730. 

 

 

Table 29. Input Data Set from the Energy Manager 

Input Data Item Description 

Annual Maximal Power Demand 

Interruption 

 

annualBound ∈ Z* is the annual maximal power demand interruption. 

 

Actual Power Consumption Per 

Time Interval 

kW[t] is the actual power consumption for each time interval that satisfies the 

below constraints: 

 

if (t ≤ 0 ∨ demandKw(t) ≤ peakDemandBound[payPeriod(t)]) 

kW[t] = demandKw(t); 

 

else if (demandKw(t) > peakDemandBound[payPeriod(t)])  

kW[t] = peakDemandBound[payPeriod(t)];,  

 

where -8759 ≤ t ≤ 17520, demandKw(t) ≥ 0, -11 ≤ payPeriod(t) ≤ 24, and 

peakDemandBound[payPeriod(t)] is the decision parameter for every pay 

period. 

 

It means that if the time interval is historical or the actual demand 

demandKw(t) is less than or equal to the peak demand bound, the actual 

power consumption kW[t] has to be bound by demandKw(t). However, if the 

time interval is positive and the actual demand demandKw(t) is greater than 

the peak demand bound, kW[t] has to be bound by the peak demand bound 

instead. 

 

Peak Demand Usage Per Pay Period payPeriodSupplyDemand[p] is the peak demand usage per pay period, which 

is defined in the below constraints according to the electric utility contract, 

i.e., C1 and C2: 

 

if (payPeriod(t) == p ∧ weekday(t) ≥ 1 ∧ weekday(t) ≤ 5 ∧ ((month(t) ≥ 6 ∧ 

month(t) ≤ 9 ∧ hour(t) ≥ 10 ∧ hour(t) ≤ 22) ∨ (month(t) ≤ 5 ∧ month(t) ≥ 10 ∧ 

hour(t) ≥ 7 ∧ hour(t) ≤ 22)))  

payPeriodSupplyDemand[p] ≥ kW[t]; 

 

else if (month(t) ≥ 6 ∧ month(t) ≤ 9 ∧ payPeriod(t) ≥ p – 11 ∧ payPeriod(t) < 

p ∧ weekday(t) ≥ 1 ∧ weekday(t) ≤ 5 ∧ hour(t) ≥ 10 ∧ hour(t) ≤ 22)  

payPeriodSupplyDemand[p]) ≥ 0.9 * kW[t];, 

 

where -8759 ≤ t ≤ 17520, -11 ≤ p ≤ 24, 1 ≤ payPeriod(t) ≤ 24, 0 ≤ weekDay(t)  

≤ 6, 1 ≤ month(t)  ≤ 12, and 0 ≤ hour(t)  ≤ 23. 

 

Generation Demand Charge generationDemandCharge[p] = 8.124 * payPeriodSupplyDemand[p] is the ES 

service charge, i.e., the peak demand charge, where 1 ≤ p ≤ 24. 
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Aggregated Annual Maximal Power 

Interruption over the future time 

intervals from 2012 to 2013 

 

∑(demandKw(t) – kW[t]) ≤ 2 * annualBound is the aggregated annual 

maximal power interruptions for two years, where 1 ≤ t ≤ 17520. 

 

Peak Demand Bound peakDemandBound[p] cannot exceed payPeriodSupplyDemand[p], i.e., 

peakDemandBound[p] ≤ payPeriodSupplyDemand[p], where 1   p   24. 

 

Total Power Consumption Per Pay 

Period 

payPeriodKwh[p] is the total power consumption in each pay period, i.e., 

payPeriodKwh[p] = ∑kW[t] * timeIntervalSize, where -8759 ≤ t ≤ 17520, 1 

  p   24, payPeriod(t) = p,  and timeIntervalSize = 1. 

 

Total kWh Charge Per Pay Period payPeriodKwhCharge[p] is total kWh charge per pay period, i.e., 

payPeriodKwhCharge[p] ≥ 0, which satisfies the below constraints according 

to the electric utility contract: 

 

if (payPeriodKwh[p] ≤ 24000)  

payPeriodKwhCharge[p] = 0.01174 * payPeriodKwh[p] 

 

else if (payPeriodKwh[p] ≤ 210000 + extraKwhBound[p])  

payPeriodKwhCharge[p] = 0.01174 * 24000 + 0.00606 * 

(payPeriodKwh[p] – 24000) 

 

else  

payPeriodKwhCharge[p] = 0.01174 * 24000 + 0.00606 * (186000 + 

extraKwhBound[p]) + 0.00244 * (payPeriodKwh[p] – (210000 + 

extraKwhBound[p])), 

 

where extraKwhBound[p] = 210 * (payPeriodSupplyDemand[p] – 1000) and 

1 ≤ p ≤ 24. 

 

Total Cost Per Pay Period 

 

 

 

Total Cost of all the PayPeriods 

 

The total cost per pay period is the sum of payPeriodKwhCharge[p] and 

generationDemandCharge[p], i.e., (payPeriodKwhCharge[p] + 

generationDemandCharge[p]), where 1 ≤ p ≤ 24. 

 

The total cost of all the PayPeriods is the aggregations of all the total costs for 

each pay period, i.e., totalCost = ∑(payPeriodKwhCharge[p] + 

generationDemandCharge[p]), where 1 ≤ p ≤ 24. 

 

 

Table 30. The MTSA-PE Optimization Model for the GMU Energy Cost Problem 

Problem and Solution 

Problem: 

<S, P, CP, CM, O> 

 

S = {                                               ,  

 

where                                                                       
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P = {                                                                          
                                     , 
 

where                  ]                           ]        ]                        ]  
                ]                            ]                   ]             
              

 

CP = {C1, C2, C3, C4, C5, C6, C7, C8, C9}, where  

 

C1 =    ∈     ∈                          ]   ∑     ]               , 

 

C2 = (  ∈         ): (                        ]                                ] , 

 

C3 = (  ∈         ): (               ]                               ]        , 

 

C4 =    ∈     ∈                            ∧              ∧              ∧           
  ∧           ∧           ∧            ∨            ∧            ∧            ∨
                                        ]      ]  , 

 

C5 =    ∈     ∈                               ∧                ∧              ∧
             ∧            ∧            ∧            ∧              
                        ]          ]  , 

 

C6 =    ∈                             ]                         ] , 

 

C7 = (  ∈         ): (                 ]     

 

C8 = (  ∈         ): ((              ]                            ]           
              ] ∧                ]       ∧               ]                        ]  
                    ]   
                                     ]         ∧                ]  
                      ]                      ]                                 
               ]                         ]                               ]   ) 

 

C9 = (  ∈   ): (∑                  ]     
                    

 

CM = {C10, C11}, where 

 

C10 = (  ∈     ∈          ∧                ∧                              ]  → 

(    ]                    ])) 
 

C11 = (  ∈     ∈                                     ] ∧                 ∨      ) → 

(    ]              ), 

 

O = ∑                      ]                          ]   
    

 

Solution:  
      

 
      

                ∧         
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From the MTSA-PE model shown  in Table 30, I can see that demandKw(t) is 

assigned to kW[t] when the time interval t is in the past or demandKw(t) is less than or 

equal to peakDemandBound[p], where payPeriod(t) = p. However, when the time 

interval t is in the future and demandKw(t) is greater than peakDemandBound[p], 

peakDemandBound[p] is assigned to kW[t]. peakDemandBound[p] is also bound by 

payPeriodSupplyDemand[p], which is restricted by the electric contractual constraints, 

i.e., C1 and C2. payPeriodKwhCharge[p] is determined based upon the electric utility 

contract of the electric bill, which is described in Table 29. The total allowed power 

interruption over the future power intervals cannot be more than the twice of 

annualBound, where annualBound is the annual maximal power demand interruption 

over the future time intervals from 2012 and 2013. Lastly, all the decision control 

variables, including peakDemandBound[p], payPeriodSupplyDemand[p], 

payPeriodKwh[p], extraKwhBound[p], payPeriodKwhCharge[p], and kW[t] must be 

restricted in sign, i.e., non-negative real values, where 1 ≤ p ≤ 24 and -8759 ≤ t ≤ 17520. 

 

Table 31. Descriptions for the Constant Values in the MTSA-PE Optimization Model for the GMU Energy Cost 

Problem 

Constant Description 

0.9 

 

Percentage of the highest kW of demand during the billing months of June through September of 

the preceding 11 billing months. 

8.124 

24000 

0.01174 

186000 

0.00606 

210000 

0.00244 

1000 

210 

Amount ($) of Electricity Supply (ES) demand charged per kW. 

First ES kWh 

Amount ($) of the first 24000 ES kWh charged per kWh 

Next ES kWh 

Amount ($) of the next 186000 ES kWh charged per kWh 

Sum of the first ES kWh and the next ES kWh 

Amount ($) of the additional ES kWh charged per kWh 

kW of ES demand 

kWh for each ES kW of demand over 1000 kW 
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8.1.4 The OPL Implementation for the MTSA-PE Optimization Model 
The MTSA-PE optimization model has been implemented by using the IBM OPL 

language. Using the GMU historical data of power usage in the past years, e.g., 2011, and 

its predicted electricity demand over a future time horizon, e.g., 2012 and 2013, I use the 

OPL language to implement and demonstrate the MTSA-PE optimization model for the 

GMU energy cost problem, which is shown in Figure 8, as an example. First, the value 

24, i.e., the total 24 months from 2012 to 2013, is assigned to the variable nbPayPeriods 

in the line number 7. The value starting from 0 to 1500000000 kWh is assigned to the 

variable annualBound, that is, the maximal annual power interruption allowed in the line 

number 8, one by one to demonstrate the tradeoff in Section 8.1.5. From the line number 

11 to 19, I declare a tuple of a power interval that has the attributes, including pInterval, 

payPeriod, year, month, day, hour, and weekDay. The line number 21 declares the 

PowerIntervals that include both the past and the future power intervals. The line number 

22 declares the demandKw[PowerIntervals] array. The line number 24, 25, 26, and 27 

declare the decision parameter sets, including the peakDemandBound[PayPeriods], 

kW[PowerIntervals], payPeriodSupplyDemand[PayPeriods], and 

payPeriodKwhCharge[PayPeriods]. The line number 31, 32, 33, and 34 declare decision 

parameter expressions, i.e., payPeriodKwh[PayPeriods], 

generationDemandChange[PayPeriods], and extraKwhBound[PayPeriods]. The total 

cost, which is declared on the line number 34, is minimized on the line number 36. All 

the constraints, C1 – C9, are declared from the line number 31, 32, 33, and 43 to 66. The 

constraints C10 and C11 are declared from the line number 29, 39, and 41.  
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Figure 8. The OPL Implementation for the GMU Energy Cost Problem 

 

8.1.5 Trade-off Graph for the Annual Power Interruption (kWh) vs. the 
Projected Annual Saving (USD) for the GMU Energy Cost Problem 

Using the OPL language to formulate and solve the GMU energy cost problem as 

an example, I plot the trade-off graph between the annual power interruption (kWh) and 

the projected annual saving (USD) that is shown in Figure 9. From the graph, I see that 
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there are three clear regions. Between 0 and 10000 kWh, the curve of the graph is 

increasing very slowly. It means that an annual power interruption in this region does not 

bring a significant amount of annual saving to the university although the power supply 

service to the university is kind of minimal. When the power interruption starts after the 

10000 kWh, the curve of the graph starts getting steep and keeps increasing that leads to 

a higher amount of annual saving for the university, but the power interruption begins 

bringing a significant impact on the GMU campus. In the last portion of the graph, I find 

that even though the power interruption reaches 95000000 kWh or more, the annual 

saving still remains the same, i.e., $1551246.81. It means that increasing the power 

interruption infinitely does not result in an increasing annual saving limitlessly. Such 

infinite power interruption only worsens the power supply service to the entire Fairfax 

campus at GMU. Using this given trade-off graph, the GMU Energy Manager can 

determine which level of desired quality of service (QoS) in terms of power interruption 

on the campus can be preserved while earning a desirable annual saving.  
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Figure 9. Trade-off Graph between the Annual Power Interruption and the Projected Annual Saving at George 

Mason University 

 

8.1.6. Case Summary 
In this case study, I propose and report on the development of DGLS, a Decision-

Guidance System for Load Shedding of electric power in microgrids in order to minimize 

energy costs and maximize customers’ savings while preserving the desired quality of 

service (QoS) in terms of power interruption. The DGLS system is designed to support 

energy managers to forecast electric power demand over a time horizon, use the predicted 

peak demand usage to optimize the peak demand bound for every monthly pay period, 

continuously monitor the hourly electricity demand, and shed load when the demand 

exceeds the optimal peak demand bound using a service prioritization scheme. The core 

technical challenge is the development of the MTSA-PE model for the peak demand 

optimization that is very accurate in terms of the electric contractual terms and 

engineering constraints, and yet efficient and scalable, which is done by the careful 

modeling of mainly continuous decision variables and using constructs that avoid 
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introduction of combinatorics, e.g., explicit or implicit binary variables, into the model. 

The model has also been implemented and demonstrated by the IBM OPL language for 

the GMU energy cost problem.  

8.2 DGEI Framework for Optimal Power, Heating, and Cooling 
Capacity Investment 

8.2.1 Introduction 
Sustainable enterprise development has been considered a significant and 

competitive strategy of corporate growth in manufacturing and service organizations. A 

significant part of sustainable development involves new technologies for local 

electricity, heating, and cooling generation. Making optimal decisions on planning and 

investment of these technologies to support commercial and industrial facilities is an 

involved problem because of complex operational dependencies of these technologies.  

This is exactly the focus of this study.  

Currently, the existing approaches to support the optimization of energy plants 

can be divided into two categories: (1) optimal operation of an energy system and (2) a 

better plant-process design [73]. The former category is related to the optimized 

scheduling of an electric power plant. Some researchers, such as Bojic and Stojanovic 

[74], proposed an optimization procedure based on a MILP solver [75] to provide an 

operation diagram which allows users to find an optimum composition of energy 

consumption that minimizes the operating expenses of an energy system. The latter 

approach includes the analysis of simulations carried out to determine the most suitable 

matching between a plant and its loads that could increase the plant power output. Some 

researchers, e.g., Savola et al., [76] did extensive research to propose an off-design 
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simulation and mathematical modelling of the operation at part loads and a Mixed-Integer 

Non-Linear Programming (MINLP) optimization model for increasing power production 

[77, 78].  

However, neither of the above approaches considers optimizing the complex 

interactions between the existing components and the newly added energy equipment that 

would result in a higher operating cost, such as the charges on electricity and gas 

consumptions, as well as significant environmental impacts, i.e., greenhouse gas (GHG) 

emissions, e.g., carbon dioxide (CO2) and mono-nitrogen oxide (NOx). Without 

considering such interactions for every time interval over an investment time horizon, it 

would be impossible to make optimal recommendations on energy planning and 

investment.  

Thus this study focuses on addressing the above shortcomings. More specifically, 

the contributions of this study are as follows. First, I propose a Decision-Guided Energy 

Investment (DGEI) Framework shown in Figure 10. Given electricity, heating, and 

cooling generation processes, utility contracts, historical and projected demand, facility 

expansions, and Quality of Service (QoS) requirements, the DGEI framework is designed 

to recommend optimal settings of decision control variables. These decision control 

variables include the amount of electricity, heating, and cooling that is generated by the 

supply of water and gas, which is inputted to each deployed component in every time 

interval. The goal of the DGEI framework is to learn optimal values of those decision 

control variables in order to minimize the total operating cost within the required quality 

of service and within the bound for GHG emissions, as well as to take into account all 
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components’ interactions. Second, to support the DGEI framework, I develop a 

Multivariate Time Series Analytics – Parameter Estimation (MTSA-PE) model to solve 

the adjusted cost minimization problem. Furthermore, I implement the MTSA-PE model 

by using the IBM Optimization Programming Language (OPL). Third, I propose an 

analytical and graphical methodology to determine the best available investment option 

based upon the evaluation parameters shown in Figure 10. The parameters include 

investment costs, maintenance expenditures, replacement charges, operating expenses, 

cost savings, return on investment (ROI), and GHG emissions. Finally, I use the 

methodology and the DGEI framework to conduct an experimental case study on the 

microgrid at the Fairfax campus of George Mason University (GMU). This study has 

been conducted and used by the GMU Facilities Management Department (FMD) to 

make actual investment decisions.  

 
 

Figure 10. Decision-Guided Energy Investment (DGEI) Framework 
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The rest of the study is organized as follows. Using the GMU Fairfax campus 

microgrid as an example, I describe its energy investment problem in Section 8.2.2. I 

explain my DGEI framework and optimization model in Section 8.2.3 and demonstrate 

the OPL implementation in Section 8.2.4. In Section 8.2.5, I present the analytical and 

graphical methodology to determine an optimal investment option. In Section 8.2.6, I 

conduct the experimental analysis on the GMU energy investment case and illustrate the 

relationships among the investment costs, ROI, and GHG emissions of the various 

options in tabular and graphical formats. I also explain and draw the conclusion for the 

investment options from the graphs and tables in detail on the GMU energy investment 

problem. In Section 8.2.7, I conclude the study. 

8.2.2 Problem Description of Real Case Study 
Consider the real case study at GMU, in which the GMU Facilities Management 

Department (FMD) is planning to extend and or expand the existing energy equipment in 

order to meet the current and future demand of electricity, heating, and cooling across the 

expanding Fairfax campus in Virginia. Presently, the GMU existing energy facilities at 

the Fairfax campus operate a centralized heating and cooling plant (CHCP) system and 

utilize the electricity purchased from the Dominion Virginia Power Company (DVPC) to 

satisfy all the energy demand. Over the past 10 years, the campus has experienced a 

significant growth on a square-foot basis in terms of land use. Since the campus 

continues its expansion at a rapid rate, the existing CHCP system and the electricity 

consumption have reached a saturated point where the current capacity and facilities will 

not be able to satisfy the future energy demand, i.e., electricity, heating, and cooling. For 
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these reasons, a study has been conducted to determine the best available investment 

option, e.g., a new cogeneration (CoGen) plant, with regards to a possible methodology 

to meet the current and future electricity, heating, and cooling demand, while also 

addressing the optimal operations of the newly added facility with the existing energy 

equipment. 

The diagram in Figure 11 depicts the GMU energy generation process which 

supplies heating, cooling, and electricity to the entire Fairfax campus. The GMU energy 

facilities have a CHCP system to supply the hot and cold water (see the red and blue 

resources) which are distributed across the facilities to the campus buildings to meet the 

heating and cooling demand (see the upper two sub-processes on the right), i.e., heating 

and air-conditioning to the buildings. To supply the heating and cooling to the campus 

buildings, the CHCP system needs the inputs, i.e., natural gas (see the yellow resource on 

the left), water (see the light blue resource on the left), and electric power (see the green 

resource on the left). These resources come from the gas supply, i.e., Washington Gas 

Light Company (WGLC), the water supply, i.e., Fairfax County Water Authority 

(FCWA), and the electricity supply, i.e., Dominion Virginia Power Company (DVPC), 

correspondingly. In addition, the facilities also need to satisfy the electricity demand 

across the entire campus, where the electricity demand is beyond the demand from the 

CHCP consumption. Any excessive electric power supply can also be resold to the DVPC 

(see the electricity resell on the right). Furthermore, the facilities also commit a 

curtailment demand (see the curtailment demand on the right) to the energy curtailment 

program through EnergyConnect (EC), Inc. Both the electricity resell and the curtailment 
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commitment can bring certain revenues and savings to offset the overall operational costs 

on a monthly basis and the capital expenditures in the long run. The facilities also 

generate greenhouse gas (GHG) emissions, such as carbon dioxide (CO2) (see the black 

resource at the bottom right). 

Given the expansion of the GMU Fairfax campus, in addition to the increasing 

electricity demand, the heating and cooling demand is also expected to increase. The 

CHCP system will not have enough capacity to meet the future need. The GMU plan is to 

employ a procurement strategy, i.e., the deployment of the best available investment 

option, which will satisfy projected demand and minimize investment costs, maintenance 

expenditures, replacement charges, operating expenses, and GHG emissions, as well as 

maximize cost savings and return on investment (ROI) at the same time. The FMD 

managers are now considering some viable options. One of the considerable options is to 

integrate a new cogeneration (CoGen) plant (see the lower sub-process in the middle), 

i.e., the Combined Heating and Power (CHP) Plant [73, 79] into the existing facilities 

shown in Figure 11. The new CoGen plant has turbines to generate electricity to 

complement the electricity demand, uses the generated heat as a by-product to 

complement the heating demand, and collaborates with the ammonia process technology 

[80] to supply the cooling demand. Now, the challenging question is how to analytically 

determine the best investment option that satisfies all the energy demand, i.e., electricity, 

heating, and cooling, at the lowest operating costs.  
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8.2.3 Decision-Guided Energy Investment Framework and MTSA-PE Model 
To answer the above question, I propose the DGEI framework depicted in Figure 

10. This framework is composed of six energy-investment libraries, i.e., Energy 

Generation Process (EGP), Energy Contractual Utility (ECU), Energy Historical Demand 

(EHD), Energy Future Demand (EFD), Energy Facility Expansion (EFE), Quality of 

Service (QoS) requirements, and a DGEI optimizer. The EGP is an extensible library that 

enables domain experts to construct an energy generation process to supply electricity, 

heating, and cooling. The ECU is a library that contains energy contractual terms for 

calculating bill utilities, e.g., an electricity bill, a water bill, and a gas bill. The EHD and 

EFD are the libraries that store historical and projected energy demand respectively. The 

EFE library archives the facility expansion of an organization in terms of square-footage 

increase. The QoS library stores the QoS requirements that the energy facilities of an 

Figure 11. Prospective Heating, Cooling, and Electric Power 

Facilities at the GMU Fairfax Campus 
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organization need to meet, e.g., the maximal power interruptions allowed per monthly 

pay period in an organization. The DGEI optimizer supports energy managers to utilize 

all the libraries, i.e., EGP, ECU, EHD, EFD, EFE, and QoS, as inputs to the decision 

optimization process, which minimizes operating expenses and maximize cost savings. 

This decision optimization process not only optimizes the interactions between the 

existing and the considerable energy facility options but also minimizes the 

environmental impacts on the surroundings, i.e., minimizing the GHG emissions. In 

addition to the GHG emissions, energy managers also utilize (1) return on investment 

(ROI), i.e., the gain return efficiency among different investments, (2) the investment 

costs, i.e., an amount spent to acquire a long-term asset, and (3) equipment expenses, i.e., 

maintenance expenditures plus replacement charges, to evaluate all the available 

investments and then to determine the best option. 

To solve an energy investment optimization problem in terms of minimizing the 

operating cost and the GHG emissions is to formulate a MTSA-PE model. This model 

optimally learns decision control variables, which require several input data sets, i.e., the 

historical and projected electricity, heating, and cooling demand over a time horizon, the 

electric and gas contractual utility, the operational parameters and capacity constraints of 

the existing and the new electric power plants, as well as the energy aggregation of the 

supply and demand, e.g., electricity, gas, heating, and cooling, to minimize the entire 

operating expenses. Using the GMU energy investment optimization problem over the 

10-year time horizon as an example, I explain the above terminologies used in this case 

study in the following subsections.  
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8.2.3.1 Electricity, Heating, and Cooling Demand over a Time Horizon 
The electricity, heating, and cooling demand over a time horizon is the input, 

including the usage of the historical and projected quantities, which are provided from the 

GMU Facilities Management Department, to the MTSA-PE model that requires the 

domain users to define all (i.e., past plus future), past, and future power intervals over the 

10-year time horizon. 

 AllPowerIntervals is a set of all powerIntervals, where each powerInterval is a 

tuple which includes several attributes, i.e., pInterval, payPeriod, year, month, 

day, hour, and weekDay. I use negative and zero integers to represent the past 

time horizon and positive integers to denote the future time horizon. For example, 

pInterval is an hourly time interval of the energy demand, where -8759 ≤ 

pInterval ≤ 78840. payPeriod is a monthly pay period of the energy demand, 

where -11 ≤ payPeriod ≤ 108. Other attributes’ intervals include 2011 ≤ year ≤ 

2020, 1 ≤ month ≤ 12, 1 ≤ day ≤ 31, 0 ≤ hour ≤ 23, and 0 ≤ weekDay ≤ 6. 

 PastPowerIntervals is a set of past powerIntervals of tuples, where -8759 ≤ 

pInterval ≤ 0, -11 ≤ payPeriod ≤ 0, year = 2011, 1 ≤ month ≤ 12, 1 ≤ day ≤ 31, 0 ≤ 

hour ≤ 23, and 0 ≤ weekDay ≤ 6. 

 FuturePowerIntervals is a set of future powerIntervals of tuples, where 1 ≤ 

pInterval ≤ 78840, 1 ≤ payPeriod ≤ 108, 2012 ≤ year ≤ 2020, 1 ≤ month ≤ 12, 1 ≤ 

day ≤ 31, 0 ≤ hour ≤ 23, and 0 ≤ weekDay ≤ 6.  

After declaring the power intervals, the quantities of electricity, heating, and 

cooling demand can be stored in their arrays over their power intervals. These three 

quantities of demand are provided by the GMU Facilities Management Department. 
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 demandKw[AllPowerIntervals] ≥ 0 is an array of electricity demand over the 

AllPowerIntervals. This array stores both the historical and the projected demand 

over the PastPowerIntervals and the FuturePowerIntervals respectively. 

 demandHeat[FuturePowerIntervals] ≥ 0 is an array of projected heating demand 

over the FuturePowerIntervals.  

 demandCool[FuturePowerIntervals] ≥ 0 is an array of projected cooling demand 

over the FuturePowerIntervals. 

8.2.3.2 Electric and Gas Contractual Utility 
To determine the total operating cost, I need to compute the consumption 

expenses of electricity and gas supply according to their utility contracts. 

The consumption expenses of electricity include both the peak demand charge 

and the total power consumption charge that are explained in detail as follows.  

Peak Demand Charge 

For the electricity supply, utilityKw[AllPowerIntervals] ≥ 0 is an array of 

electricity supplied from the DVPC over the AllPowerIntervals. 

historicUtilityKw[i] is an array of past electricity demand from the GMU, i.e., 

historicUtilityKw[i] = demandKw[i], which satisfies the constraint, i.e., 

utilityKw[i] == historicUtilityKw[i], where i ∈ PastPowerIntervals. 

This constraint is to assure that the electricity consumed by the GMU in the past year, 

i.e., 2011, is equivalent to the supply from the DVPC.  
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payPeriodSupplyDemand[p] is the peak demand usage per future pay period (p). 

This peak demand usage meets the below contractual constraints (C1 and C2) and is 

determined based upon the highest of either (C1) or (C2): 

C1: The highest average kilowatt measured in any hourly time interval of the current 

billing month during the on-peak hours of either between 10 a.m. and 10 p.m. from 

Monday to Friday for the billing months of June through September or between 7 a.m. 

and 10 p.m. from Monday to Friday for all other billing months. 

C2: 90% of the highest kilowatt of demand at the same location as determined under (C1) 

above during the billing months of June through September of the preceding eleven 

billing months.  

The logic constraints of both C1 and C2 can be expressed as follows: 

if (i.payPeriod == p ∧ i.weekDay ≥ 1 ∧ i.weekDay ≤ 5 ∧ 

((i.month ≥ 6 ∧ i.month ≤ 9 ∧ i.hour ≥ 10 ∧ i.hour ≤ 22) ∨ 

(i.month ≤ 5 ∧ i.month ≥ 10 ∧ i.hour ≥ 7 ∧ i.hour ≤ 22)))  

payPeriodSupplyDemand[p] ≥ utilitykW[i] 

else if (i.month ≥ 6 ∧ i.month ≤ 9 ∧ i.payPeriod ≥ p – 11 ∧ 

i.payPeriod ≤ p ∧ i.weekPay ≥ 1∧ i.weekDay ≤ 5 ∧ i.hour ≥ 10 

∧ i.hour ≤ 22)  

payPeriodSupplyDemand[p] ≥ 0.9 * utilitykW[i];, where i ∈  

AllPowerIntervals, p ∈ FuturePayPeriods, and 1 ≤ FuturePayPeriods ≤ 108. Using 

these logic constraints, I can determine the optimal peak demand usage per future pay 
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period, which consumes more than the expected electricity supply per powerInterval from 

the DVPC. 

generationDemandCharge[p], i.e., generationDemandCharge[p] = 

8.124 * payPeriodSupplyDemand[p];, is the Electricity Supply (ES) service 

charge, i.e., the peak demand charge, where p ∈ FuturePayPeriods, and 8.124 is the dollar 

charge per kW. 

Total Power Consumption Charge 

payPeriodKwh[p] is the total power consumption per future pay period, i.e., 

payPeriodKwh[p] = ∑utilitykW[i];, where i ∈ AllPowerIntervals, p ∈ 

FuturePayPeriods, and i.payPeriod = p. 

payPeriodKwhCharge[p] is the total kWh charge per future pay period, i.e., 

payPeriodKwhCharge[p] ≥ 0, which satisfies the below contractual constraints: 

if (payPeriodKwh[p] ≤ 24000) 

payPeriodKwhCharge[p] = 0.01174 * payPeriodKwh[p] 

else if (payPeriodKwh[p] ≤ 210000) 

payPeriodKwhCharge[p] = 0.01174 * 24000 + 0.00606 * 

(payPeriodKwh[p] – 24000) 

else  

payPeriodKwhCharge[p] = 0.01174 * 24000 + 0.00606 * 

186000 + 0.00244 * (payPeriodKwh[p] – 210000);, where p ∈ 

FuturePayPeriods,  
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0.01174 is the dollar charge of the first 24000 kWh consumed, 0.00606 is the dollar 

charge of the next 186000 kWh consumed, and 0.00244 is the dollar charge of the 

additional kWh consumed. Note that if payPeriodSupplyDemand[p] is 1000 kW or more, 

210 kWh for each peak demand usage over 1000 kW is added to the total power 

consumption to calculate payPeriodKwhCharge[p]. 

Total Electricity Cost 

The total electricity cost per future pay period is the sum of 

payPeriodKwhCharge[p] and generationDemandCharge[p], i.e., 

electricCostPerFuturePayPeriod = (payPeriodKwhCharge[p] + 

generationDemandCharge[p]);, where p ∈ FuturePayPeriods.  

The total electricity cost of all the FuturePayPeriods is the aggregations of all the 

total electricity costs per future pay period, i.e., electricCost = 

∑(payPeriodKwhCharge[p] + generationDemandCharge[p]);, where p 

∈ FuturePayPeriods. 

Table 32 summarizes the descriptions of all the constant values from the electric 

utility contract used in the MTSA-PE model for the GMU energy investment problem. 
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Table 32. Descriptions for the Constant Values in the MTSA-PE Optimization Model of the GMU Energy 

Investment Problem 

Constant Description 

0.9 Percentage of the highest kW of demand during the billing months of June through September of the 

preceding 11 billing months 

8.124 Amount ($) of Electricity Supply (ES) demand charged per kW 

24000 First ES kWh 

0.01174 Amount ($) of the first 24000 ES kWh charged per kWh 

186000 Next ES kWh 

0.00606 Amount ($) of the next 186000 ES kWh charged per kWh 

210000 Sum of the first ES kWh and the next ES kWh 

0.00244 Amount ($) of the additional ES kWh charged per kWh 

210 kWh for each ES kW of demand over 1000 kW 

 

Total Gas Consumption Charge 

Regarding the gas supply, utilityGas[FuturePowerIntervals] ≥ 0 is an array of gas 

supplied from the WGLC over the FuturePowerIntervals. The total gas cost of all the 

FuturePowerIntervals is the aggregations of all the total gas utility per future power 

interval, i.e., gasCost = (∑(utilityGas[i]/btuPerDth)) * 

gasPricePerDth;, where i ∈ FuturePowerIntervals, btuPerDth = 1000000 BTU, 

which is the amount of energy per decatherm, and gasPricePerDth = $6.5, which is the 

gas charge per decatherm. 

 

Total Operating Cost 

The total operating cost is the sum of the total electricity cost of all the future pay 

periods and the total gas cost of all the future power intervals, i.e., totalCost = 

electricCost + gasCost;. 
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8.2.3.3 Operational Parameters and Capacity Constraints of the CHCP 
and the CoGen Plant 

In addition to the supply and demand of gas and electricity, the operational 

parameters and the capacity constraints of the CHCP and the CoGen plant are also 

considered. 

The CHCP Plant 

For the CHCP plant, gasIntoCHCP[FuturePowerIntervals] ≥ 0 is an array of 

natural gas input to the CHCP over the FuturePowerIntervals to generate the heat supply. 

kwIntoCHCP[FuturePowerIntervals] ≥ 0 is an array of power input to the CHCP over the 

FuturePowerIntervals to generate the cool supply. heatOutCHCP[FuturePowerIntervals] 

≥ 0 is an array of heat output from the CHCP over the FuturePowerIntervals to satisfy the 

partial heating demand. coolOutCHCP[FuturePowerIntervals] ≥ 0 is an array of cool 

output from the CHCP over the FuturePowerIntervals to satisfy the partial cooling 

demand. The CHCP constraints include: 

 heatOutCHCP[i] * gasPerHeatUnit ≤ gasIntoCHCP[i];, i.e., the 

amount of gas consumed to generate the heat cannot be more than that of the gas 

input; 

 coolOutCHCP[i] * kwhPerCoolUnit ≤ kwIntoCHCP[i];, i.e., the 

amount of electric power consumed to generate the cool cannot be more than that 

of the power input; 

 heatOutCHCP[i] ≤ chcpMaxHeatPerHr;, i.e., the amount of heat 

generated cannot be more than the maximal heat output of the CHCP; and 
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 coolOutCHCP[i] ≤ chcpMaxCoolPerHr;, i.e., the amount of cool 

generated cannot be more than the maximal cool output of the CHCP, where i ∈ 

FuturePowerIntervals, gasPerHeatUnit = (1 / 0.78), and kwhPerCoolUnit = (1 / 

0.94). 

The CoGen Plant 

For the CoGen plant, gasIntoCogen[FuturePowerIntervals] ≥ 0 is an array of gas 

input to the CoGen plant over the FuturePowerIntervals to generate the power supply. 

kwOutCogen[FuturePowerIntervals] ≥ 0 is an array of power output from the CoGen 

plant over the FuturePowerIntervals to satisfy the partial electricity demand. 

heatOutCogen[FuturePowerIntervals] ≥ 0 is an array of heat output from the CoGen plant 

over the FuturePowerIntervals to satisfy the partial heating demand. 

coolOutCogen[FuturePowerIntervals] ≥ 0 is an array of cool output from the CoGen plant 

over the FuturePowerIntervals to satisfy the partial cooling demand. The constraints of 

the CoGen plant include:  

 kwOutCogen[i] * cogenGasPerKwh ≤ gasIntoCogen[i];, i.e., the 

amount of gas consumed to generate the power cannot be more than that of the 

gas input; 

 kwOutCogen[i] ≤ cogenMaxKw;, i.e., the amount of power generated 

cannot be more than the maximal electricity output of the CoGen plant; 

 heatOutCogen[i] ≤ cogenHeatPerKwh * kwOutCogen[i];, i.e., 

the amount of heat generated cannot be more than the maximal heat supply that is 

restricted by the power output of the CoGen plant; 
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 heatOutCogen[i] ≤ cogenMaxHeatPerHr * 

(kwOutCogen[i]/cogenMaxKw);, i.e., the amount of heat generated cannot 

be more than the maximal heat output of the CoGen plant; 

 coolOutCogen[i] ≤ (cogenMaxHeatPerHr * 

(kwOutCogen[i]/cogenMaxKw) - heatOutCogen[i]) * 

cogenHeatToCoolRatio;, i.e., the amount of cool generated cannot be more 

than the maximal cool supply that is restricted by the power and heat output of the 

CoGen plant; and 

 coolOutCogen[i] ≤ cogenMaxCoolPerHr;, i.e., the amount of cool 

generated cannot be more than the maximal cool output of the CoGen plant, 

where i ∈ FuturePowerIntervals, cogenMaxKw = 7200 kW is the maximal power 

output, cogenHeatPerKwh = 10300 kWh is the amount of heat generated per 

kWh, cogenHeatToCoolRatio = cogenMaxCoolPerHr/cogenMaxHeatPerHr is the 

ratio of converting heat to cool supply, cogenMaxHeatPerHr = 40000000 BTU is 

the maximal heat supply of the CoGen plant per hour, cogenMaxCoolPerHr = 

2400 Tons is the maximal cool supply of the CoGen plant per hour, 

cogenGasPerKwh = 

gasBTUPerGallon/kWhPerGallon/cogenGasToKwhEfficiency is the amount of 

natural gas consumed per kWh, for gasBTUPerGallon = 114000 BTU is the 

amount of energy generated per gallon of gas, kwhPerGallon = 33.41 is the 

amount of kWh generated per gallon of gas, and cogenGasToKwhEfficiency = 

0.33 is the efficiency of the CoGen plant to generate power from natural gas. 
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8.2.3.4 Energy Aggregations of Supply and Demand 
The aggregations of energy supply and demand within the entire energy system 

include:  

 kwIntoCHCP[i] + demandKw[i] ≤ utilityKw[i] + 

kwOutCogen[i];, i.e., the amount of power input to the CHCP and the power 

demand from the GMU cannot exceed the amount of power supply provided from 

the DVPC and the power output generated from the CoGen plant, where i ∈ 

FuturePowerIntervals.  

 demandReduction[i] ≤ (utilityKw[i] + kwOutCogen[i]) - 

(kwIntoCHCP[i] + demandKw[i]);, i.e., the power supply reduction 

cannot exceed the difference between the total power supply (utilityKw[i] + 

kwOutCogen[i]) and the total power demand (kwIntoCHCP[i] + demandKw[i]), 

where demandReduction[FuturePowerIntervals] ≥ 0 is an array of extra power 

supply that can be cut from the power inputs over the FuturePowerIntervals, and i 

∈ FuturePowerIntervals. 

 ∑demandReduction[i] ≤ maxKwReductionPerPayPeriod;, i.e., the 

total power reductions over the future power intervals cannot exceed the 

allowable maximal power interruptions per future pay period, where i ∈ 

FuturePowerIntervals, p ∈ FuturePayPeriods, and i.payPeriod = p. 

 utilityGas[i] ≥ gasIntoCogen[i] + gasIntoCHCP[i];, i.e., the 

gas input to the CoGen plant and to the CHCP cannot exceed the gas supply 

provided from the WGLC, where i ∈ FuturePowerIntervals. 
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 heatOutCogen[i] + heatOutCHCP[i] ≥ demandHeat[i];, i.e., the 

heat demand from GMU cannot exceed the heat supply generated from the CoGen 

plant and the CHCP, where i ∈ FuturePowerIntervals. 

 coolOutCogen[i] + coolOutCHCP[i] ≥ demandCool[i];, i.e., the 

cool demand from GMU cannot exceed the cool supply generated from the 

CoGen plant and the CHCP, where i ∈ FuturePowerIntervals. 

After declaring all the input data sets and the above constraints, which the input 

data sets need to satisfy, the MTSA-PE model for the GMU energy investment problem 

can be formulated as follows in Table 33. 

 

Table 33. The MTSA-PE Model for the GMU Energy Investment Problem 

Problem and Solution 

Problem: 

<S, P, CP, CM, O> 

 

S = {                                                                     ,  
 

where                                                                   
                                                                           
               

 

P = {                                                                                 
                                                                                           

                                                              , 
 

where 

           ]                           ]                     ]                        ]  
                ]                            ]                ]                           
               ]                ]                 ]                 ]                  ]  
                ]                  ]                ]                           

 

CP = {C1, C2, C3, C4, C5, C6 ,C7, C8, C9, C10, C11, C12 ,C13, C14, C15, C16, C17}, where  

 

C1 = (  ∈       ): (                                  , 

 

C2 = (  ∈     ∈         ): (              ]    ∑            ]               , 

 

C3 =                                                           , 
 

C4 = (  ∈         ): (                    ]                        ] , 
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C5 = (  ∈         ): (                        ]                                ] , 

 

C6 = (  ∈         ): (              ∑                     ]                          ]  , 

 

C7 = (  ∈                      ∑            ]                           , 

 

C8 =    ∈                          ]                              ] ∧               ]  
                           ] ∧               ]                   ∧               ]  
                  , 

 

C9 =    ∈                         ]                               ] ∧              ]  
           ∧                ]                              ] ∧                ]  
                               ]             ∧                ]                     
             ]                           ]                        ∧                ]  
                   , 

 

C10 =    ∈                     ]                      ] , 

 

C11 = (  ∈           ∈   ): (               ∧             ∧          ∧             ∧
          ∧           ∧            ∨            ∧            ∧          ∧         
                             ]             ], 
 

C12 = (  ∈           ∈   ):           ∧           ∧                  ∧              
 ∧             ∧             ∧           ∧                                    ]  
               ], 
 

C13 = (  ∈         ): 

(             ]            ]             ]              ] ∧                   ]  
            ]              ]               ]            ]   , 

 

C14 = 

(  ∈           ∈                           ∧                  ]  
                          ) 

 

C15 = (  ∈                        ]                ]               ]), 
 

C16 = (  ∈                          ]               ]              ]), 
 

C17 = (  ∈                          ]               ]              ]), 
 

CM = {} 

 

O =                      

Solution:  
      

 
      

                ∧         

 

Table 34 summarizes the descriptions of all the constant values from the electric 

utility contract used in the MTSA-PE model for the GMU energy investment problem. 
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Table 34. Descriptions for the Constant Values in the MTSA-PE Optimization Model for the GMU Energy 

Investment Problem 

Constant Description 

0.9 Percentage of the highest kW of demand during the billing months 

of June through September of the preceding 11 billing months 

8.124 Amount ($) of Electricity Supply (ES) demand charged per kW 

24000 First ES kWh 

0.01174 Amount ($) of the first 24000 ES kWh charged per kWh 

186000 Next ES kWh 

0.00606 Amount ($) of the next 186000 ES kWh charged per kWh 

210000 Sum of the first ES kWh and the next ES kWh 

0.00244 Amount ($) of the additional ES kWh charged per kWh 

210 

6.5 

1000000 

(1/0.78) 

(1/0.94) 

108000000 

11880 

40000000 

2400 

7200 

0.33 

114000 

33.41 

gasBTUPerGallon/kWhPerGallon/cogenGasTo

KwhEfficiency 

10300 

cogenMaxCoolPerHr/cogenMaxHeatPerHr 

kWh for each ES kW of demand over 1000 kW 

gasPricePerDth 

btuPerDth 

gasPerHeatUnit 

kwhPerCoolUnit 

chcpMaxHeatPerHr 

chcpMaxCoolPerHr 

cogenMaxHeatPerHr 

cogenMaxCoolPerHr 

cogenMaxKw 

cogenGasToKwhEfficiency 

gasBTUPerGallon 

kWhPerGallon 

cogenGasPerKwh 

 

cogenHeatPerKwh 

cogenHeatToCoolRatio 

 

8.2.4 OPL Implementation for the MTSA-PE Model 
The MTSA-PE model has been implemented by using the OPL language. Using 

the GMU historical data of power usage in the past year, i.e., 2011, and its projected 

electricity, cooling, and heating demand over a future time horizon from 2012 to 2020, I 

use the OPL language to implement and demonstrate the MTSA-PE model to solve the 

GMU energy investment problem and minimize the operating cost, which is shown from 

Figure 12.1 to Figure 12.9 as an illustration.  

In Figure 12.1, from the line number 9 to 12, the value 12, i.e., the total 12 months 

of 2011, is assigned to the variable nbPastPayPeriods, the value 108, i.e., the total 108 

months from 2012 to 2020, is assigned to the variable nbPayPeriods, and the value 0 is 
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assigned to the maximal power interruptions, i.e., maxKwReductionPerPeriod. The 

FuturePayPeriods is ranged from 1 to 108. From the line number 15 to 23, I declare a 

tuple of a power interval that has the attributes, including pInterval, payPeriod, year, 

month, day, hour, and weekDay. The line number 25 to 27 declares and initializes 

AllPowerIntervals that include both PastPowerIntervals and FuturePowerIntervals. The 

line number 30 to 32 declares and initializes the demandKw[AllPowerIntervals], the 

demandHeat[FuturePowerIntervals], and the demandCool[FuturePowerIntervals] 

arrays. 

 

 
Figure 12. Cogeneration Plant Analysis 

Figure 12.1. General and Demand Input Data 
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Figure 12.2 declares the decision control variables, i.e., 

utilityKw[AllPowerIntervals], the payPeriodSupplyDemand[FuturePayPeriods], and the 

payPeriodKwh[FuturePayPeriods], to compute the 

payPeriodKwhCharge[FuturePayPeriods] and 

generationDemandCharge[FuturePayPeriods] that are summed together to determine 

the total electricity cost over all the future pay periods while satisfying the electric 

contractual constraints. 

 

 
Figure 12.2. Total Electricity Cost 

 

Figure 12.3 declares the constants, i.e., gasPricePerDth and btuPerDth, and the 

utilityGas[FuturePowerIntervals] to calculate the total gas cost over all the future power 

intervals. 
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Figure 12.3. Total Gas Cost 

 

Figure 12.4 declares the objective function to minimize the total operating cost, 

i.e., the total electricity cost plus the total gas cost. 

 

 
 

Figure 12.4. Total Operating Cost 

 

Figure 12.5 declares the constants, i.e., gasPerHeatUnit, kwhPerCoolUnit, 

chcpMaxHeatPerHr, and chcpMaxCoolPerHr, and the arrays, i.e., 

gasIntoCHCP[FuturePowerIntervals], kwIntoCHCP[FuturePowerIntervals], 

heatOutCHCP[FuturePowerIntervals], and coolOutCHCP[FuturePowerIntervals], used 

in the CHCP capacity constraints. 
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Figure 12.5. Operational Parameters and Data Structures of the CHCP 

 

Figure 12.6 declares the constants from the line number 71 to 79, and the arrays, 

i.e., gasIntoCogen[FuturePowerIntervals], heatOutCogen[FuturePowerIntervals], 

coolOutCHCP[FuturePowerIntervals], and kwOutCHCP[FuturePowerIntervals], which 

are used in the capacity constraints of the CoGen plant. 

 

 
 

Figure 12.6. Operational Parameters and Data Structures of the CoGen Plant 

 

Figure 12.7 defines all the capacity constraints for the CHCP and the CoGen 

plant. 
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Figure 12.7. Capacity Constraints of the CHCP and the CoGen Plant 

 

Figure 12.8 defines the contractual constraints for the electricity bill. 

 

 
 

Figure 12.8. Contractual Electricity Utility Constraints 

 

Figure 12.9 defines the constraints for the energy aggregations of electric power, 

gas, heat, and cool. 
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8.3.5 Analytical Methodology on Evaluation among Energy Investment 
Options 

For domain experts being able to formulate and implement the above MTSA-PE 

model to determine the best investment option, I propose an analytical methodology that 

guides the domain experts to achieve this goal. The methodology includes six steps. 

STEP 1: Collect historical energy demand, such as electricity, heating, and cooling, from 

each building unit, and forecast those demands in terms of growth on a square-foot basis 

over the future time horizon.  

STEP 2: Identify all the possible energy investment options, such as the expansion of 

current facilities and the procurement of cogeneration plants. 

STEP 3: Formulate, implement, and execute the MTSA-PE model that integrates 

historical and projected energy demand, electric and gas contractual utility, operational 

parameters and capacity constraints of energy equipment, as well as energy aggregations 

of supply and demand in each considered option under the assumption of optimal 

interactions among available resources.  

Figure 12.9. Energy Aggregations of Supply and Demand 
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STEP 4: Compute the annualized evaluation parameters for each option based upon the 

results from the optimization process in the STEP 3. 

The parameters include the investment cost (Ii), equipment cost (Ei), i.e., 

maintenance expenditure (Mi) plus replacement charge (Ri), operating expense (Ci), i.e., 

the charges on electricity and gas consumptions, cost saving (Si), i.e., C0 – Ci, where i ≥ 0 

denotes an investment option and C0 is the operating cost of a base investment option that 

the other available options compare with, and return on investment (ROIi), i.e., Si / (Ii – 

I0), as well as the GHG emissions (MTCDEi),  i.e., Gi * 0.053 MTCDE/Million-Btu + Pi 

* 0.513 MTCDE/Million-Wh, shown in Table 35, against the various investment options, 

where 0.053 and 0.513 are the factors, which are calculated from the historical data. 

Note that the base investment option is the option that the current capacity of the 

existing facilities is expanded without procuring any new energy equipment.  

Using the ROI and GHG emissions, domain users and experts can plot the 

analytical graphs to illustrate the relationships among the ROI, GHG emissions, and 

investment expenses, which enable the domain experts to determine the best investment 

option among all of the options being considered. 

 

Table 35. Evaluation Parameters of ROI and GHG Emissions for Determining the Best Investment Option 

Parameter Symbol 

Investment Cost Ii 

Maintenance Expenditure Mi 

Replacement Charge Ri 

Equipment Cost Ei 

Operating Expense Ci 

Cost Saving Si 

Return on Investment ROIi 

Average Annual Gas Consumption MBTU Gi 

Average Annual Electric Power Consumption MWh Pi 

GHG Emission MTCDEi 
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STEP 5: Remove any option that is dominated by the other options in terms of the 

evaluation parameters. 

STEP 6: Construct a trade-off graph to evaluate the options that are not dominated 

among others and then make a final decision. 

Note that although the STEP 1, 2, 4, 5, and 6 are typical processes of evaluations, 

the STEP 3 is not typical at all as the problem that I solve is a non-trivial optimization 

problem. 

8.2.6 Analytical Methodology on Experimental Case Study 
After the process from the STEP 1 to STEP 3 in the experimental case study at 

GMU, the four investment options, including ① the expansion of the existing CHCP 

only, ② the addition of a CoGen plant to the existing CHCP, ③ the half capacity of the 

Option ① with the half planned capacity of the CoGen plant, and ④ the full capacity of 

the Option ① with the full planned capacity of the CoGen plant, have been chosen to be 

evaluated to meet the electricity, heating, and cooling demand of the Fairfax campus over 

the next 9 years from 2012 to 2020. 

In the STEP 4, using the evaluation parameters, i.e., ROI and GHG emissions, 

discussed in Section 8.2.5 and the OPL to solve the GMU energy investment problem in 

Section 8.2.4, I obtained Table 36, Table 37, and Figure 13 that can be used to determine 

the best investment option. 
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Table 36. Evaluation Parameters of ROI for Determining the GMU Energy Investment Options 
Investment 

Option 

Investment 

Cost ($M) 

Annual 

Maintenance 

Cost ($) 

Annualized 

Replacement 

Cost ($M) 

Annualized 

Equipment 

Cost ($M) 

Annualized 

Average 

Operational 

Cost ($M) 

Annualized 

Saving over 

the Expanded 

CHCP ($M) 

ROI (%) 

1 Expanded 

CHCP 

$34.293 $343,200 $3.429 $3.772 $6.244 $0.000 0.000% 

1 CoGen 

Plant + 1 

Current 

CHCP 

$65.328 $655,600 $3.850 $4.506 $5.494 $0.016 0.052% 

½ CoGen 

Plant + ½ 

Expanded 

CHCP 

$46.995 $499,400 $4.699 $5.199 $5.557 -$0.740 -5.827% 

1 CoGen 

Plant + 1 

Expanded 

CHCP 

$99.621 $998,800 $7.279 $8.278 $5.492 -$3.754 -5.747% 

 

Table 37. Evaluation Parameters of GHG Emissions for Determining the GMU Energy Investment Options 

Investment 

Option 

Investment 

Cost ($M) 

Average Annual Gas 

Consumption (MBTU) 

Average Annual Electric 

Power Consumption (MWh) 

GHG Emission 

(MTCDE) 

1 Expanded CHCP $34.293 510,500.00 141,433.33 99611.799 

1 CoGen Plant + 1 

Current CHCP 

$65.328 523,622.22 141,333.33 

 

100255.977 

½ CoGen Plant + 

½ Expanded CHCP 

$46.995 520,888.89 

 

141,344.44 

 

100116.811 

1 CoGen Plant + 1 

Expanded CHCP 

$99.621 523,600.00 141,333.33 100254.799 

 

In the STEP 5, the Option ③ and ④ are the dominated cases that can be 

removed from the consideration list because of the negative ROI. 

In the STEP 6, according to Table 35, Table 36, and Figure 13, I can conclude 

that the Option ① should be chosen because of the three observations. First, the GHG 
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emissions and the equipment cost of the Option ① are the lowest. Second, even though 

the ROI of the Option ②, i.e., 0.052%, is marginally better than that of the Option ①, 

the GHG emissions of the Option ② is the highest among all the options being 

considered. Third, it is not economical at all for GMU to invest $31 million dollars, i.e., 

the Option ② investment cost minus the Option ① investment cost, more to earn only 

0.052% ROI in the next 9-year timeframe. Thus, the Option 1 is the best long-term option 

for GMU. 

 

 
Figure 13. ROI (%) and GHG Emissions (MTCDE) vs. Investment Cost ($M) across the Four Investment 

Options 

 

8.2.7 Case Summary 
In this study, I propose a Decision-Guided Energy Investment (DGEI) Framework 

to optimize power, heating, and cooling capacity. The DGEI framework is designed to 
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support energy managers to (1) use the analytical and graphical methodology to 

determine the best investment option that satisfies the designed evaluation parameters, 

such as ROI and GHG emissions; (2) develop a MTSA-PE model to solve energy 

investment problems that the operating expenses are minimal in each considered 

investment option; (3) implement the MTSA-PE model using the IBM OPL language 

with historical and projected energy demand data, i.e., electricity, heating, and cooling, to 

solve energy investment optimization problems; and (4) conduct an experimental case 

study on the Fairfax campus microgrid at George Mason University (GMU) and utilize 

the MTSA-PE model and its OPL implementations, as well as the graphical and 

analytical methodology to make the investment decision and trade-offs among the cost 

savings, investment costs, maintenance expenditures, replacement charges, operating 

expenses, GHG emissions, and return on investment (ROI) for all the considered options.  
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CHAPTER 9. CONCLUSIONS AND FUTURE WORK 

9.1 Conclusions 
This research introduces the web-mashup application service framework for 

Multivariate Time Series Analytics (MTSA), which provides model definition, querying, 

parameter learning, model evaluation, data monitoring, decision recommendation, and 

web portal on events over multivariate time series. This integrated framework enables 

domain experts to develop the MTSA services on the Internet. More specifically, I 

develop the MTSA database model and query language for the services of learning, 

monitoring, and recommendation. Domain experts can use the proposed database models, 

such as time-series and time-event schemas, to store historical and projected time series, 

as well as binary events from which optimal decision parameters are learned. Using the 

parameter learning service, domain experts can formulate a learning event and initial the 

event to the database, in which the built-in algorithms, such as the Checkpoint algorithm, 

or the external solvers, e.g., the IBM ILOG CPLEX optimizer, are invoked to solve the 

corresponding classes of the MTSA problems and then learn the optimal decision 

parameters. The classes of the MTSA problems, which I solve, include the learning of 

decision parameters of an objective function (1) specifically dependent on their optimal 

time points of a time utility and (2) generally independent of a particular time point. After 

the parameters are learned and stored, domain experts can utilize the monitoring and 
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recommendation service to monitor the incoming data streams and recommend actions 

when those streams satisfy the monitoring template. 

To learn decision parameters of an objective function that is dependent on their 

optimal time points of a time utility, I develop a mathematical model, i.e., EQPE, and a 

learning algorithm, Checkpoint, to solve Expert Query Parametric Estimation problems. 

These model and algorithm combine the strengths of both domain-knowledge-based and 

formal-learning-based approaches to maximize utility on events over multivariate time 

series. The EQPE model is a well-defined model that captures domain-expert knowledge 

in expression of multivariate time series, decision parameters, a set of parametric 

constraints, a time utility, and an objective function. Each multivariate time series is an 

input parametric time series for an event. Each decision parameter is instantiated from its 

input parametric time series to learn the optimal value that satisfies the given parametric 

constraint and maximizes its time utility collectively. The time utility is a function of the 

decision time point that the objective function is dependent upon from which the 

parameters are learned.  

The Checkpoint algorithm also combines the strengths of both domain experts’ 

knowledge in terms of a parametric constraint and formal-learning-based methodology by 

using the regression approach. The goal of the Checkpoint algorithm is to learn the 

decision parameters that maximize the objective function over multivariate time series. 

This algorithm guarantees an optimality of the learned decision parameters in their event, 

i.e., a true optimal decision time point, during the computations. To demonstrate the 

effectiveness of the algorithm, I compare my method with the formal-learning-based 
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approach, i.e., logistic regression methodology, and domain-knowledge-based approach 

in the financial domain. Using the learned decision parameters, I show that the 

Checkpoint algorithm is more effective and guarantees the satisfactory forecasting results 

that are superior to those from the logistic regression methodology and the financial 

experts’ criteria. 

However, the proposed EQPE and the Checkpoint algorithm are only able to learn 

one set of decision parameters for one particular event at a single time point, whereas 

there are many real-world problems that the parameter learning is at multiple time points 

in sequence. To address this shortcoming, I develop the Multi-Event Expert Query 

Parametric Estimation (ME-EQPE) model. This model is a well-defined model that 

captures domain-expert knowledge in expression of multivariate time series vectors, 

decision parameter vectors, a set of parametric constraints, a time utility, and an objective 

function. Each multivariate time series vector is a set of input parametric time series for 

each event. Each vector of decision parameters is instantiated from its input parametric 

time series vector to learn the optimal values that satisfy the given parametric constraints 

and maximize their time utility collectively. The time utility is a function of the multiple 

decision time points that the objective function is dependent upon from which the 

parameter vectors are learned.  

The Multidimensional M-Checkpoint algorithm also combines the strenghts of 

both domain experts’ knowledge in terms of a set of parametric constraints and formal-

learning-based methodology by using the regression appoarch. The goal of the M-

Checkpoint algorithm is to learn the multiple decision parameter vectors that maximize 
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the objective function over multivariate time series vectors. This new algorithm 

guarantees an optimality of the learned multiple sets of decision parameters in their 

respective events, i.e., multiple, true optimal decision time points during the 

computations. To demonstrate the effectiveness of the algorithm, I compare it with the 

formal-learning-based approach, i.e., logistic regression methodology in the financial 

domain. Using the learned multiple sets of decision parameters, I show that the M-

Checkpoint algorithm is more effective and guarantees the satisfactory forecasting results 

that are superior to those from the logistic regression methodology. 

Due to the high complexity O( 𝓂) of the M-Checkpoint algorithm, I develop a 

R-Checkpoint to solve the ME-EQPE problems over multivariate time series. This 

algorithm combines the strengths of both domain-knowledge-based and formal-learning-

based approaches to learn multiple sets of decision parameters that are fairly close to the 

optimal parameters learned from the M-Checkpoint algorithm, produce reasonably 

forecasting results, and maintain a satisfactorily low time complexity, i.e., O(QkNlogN), 

as compared with O( 𝓂) of the M-Checkpoint algorithm, where Q is the total number of 

𝓂-event, time-point combinations which yields the top-Q time utility, and k is the 

number of input parametric time series for each event. To demonstrate the performance 

of the new algorithm, I conduct an experiment in the financial domain. Specifically, I 

compare the forecasting results that are detected by the decision parameters learned from 

the R-Checkpoint with the results that are determined by the optimal parameters obtained 

from the M-Checkpoint algorithm, as well as the parametric coefficients of the logistic 

regression model. The experimental study shows that the forecasting results by the 
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heuristic R-Checkpoint algorithm are slightly lower than those of the optimal M-

Checkpoint algorithm and are considerably higher than those of the logistic regression 

methodology. 

However, the discussed models, EQPE and ME-EQPE, and algorithms, 

Checkpoint, M-Checkpoint, and R-Checkpoint, are only able to solve a specific class of 

problems that (1) their decision parameters of an objective function are learned from 

optimal time points of a time utility function, (2) the monitoring template has to be in the 

considered form, i.e., conjunctions of inequality constraints, and (3) the constraints being 

used are solely for monitoring purposes. To address the weaknesses, I develop a hybrid-

based model, Multivariate Time Series Analytics – Parameter Estimation, to solve a 

general class of problems in which the objective function is maximized or minimized 

from the optimal decision parameters regardless of particular time points. This model 

allows domain experts to include multiple types of constraints, e.g., global constraints 

and monitoring constraints. At the end, I develop a parameter learning architecture from 

which the parameter learning event is transformed into the IBM OPL construct by the 

MTSA compiler. This OPL construct is then sent to the IBM ILOG CPLEX optimizer to 

learn the optimal decision parameters that are returned to the learning event. To further 

prove the capability of the MTSA-PE model, I conduct two real case students at GMU. 

Using the electric power microgrids at GMU as examples, I illustrate how the MTSA-PE 

model with the external solver to solve the energy problems, including (1) the 

determination of optimal peak demand bounds and (2) the decision on the best energy 

investment options. 
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In the first case study, I propose and report on the development of DGLS, a 

Decision-Guidance System for Load Shedding of electric power in microgrids in order to 

minimize energy costs and maximize customers’ savings while preserving the desired 

quality of service (QoS) in terms of power interruption. The DGLS system is designed to 

support energy managers to forecast electric power demand over a time horizon, use the 

predicted peak demand usage to optimize the peak demand bound for every monthly pay 

period, continuously monitor the hourly electricity demand, and shed load when the 

demand exceeds the optimal peak demand bound using a service prioritization scheme. 

The core technical challenge is the development of the MTSA-PE model for the peak 

demand optimization that is very accurate in terms of the electric contractual terms and 

engineering constraints, and yet efficient and scalable, which is done by the careful 

modeling of mainly continuous decision variables and using constructs that avoid 

introduction of combinatorics, e.g., explicit or implicit binary variables, into the model. 

The model has also been implemented and demonstrated by the IBM OPL language for 

the GMU energy cost problem. 

In the second case study, I propose a Decision-Guided Energy Investment (DGEI) 

Framework to optimize power, heating, and cooling capacity. The DGEI framework is 

designed to support energy managers to (1) use the analytical and graphical methodology 

to determine the best investment option that satisfies the designed evaluation parameters, 

such as ROI and GHG emissions; (2) develop a MTSA-PE model to solve energy 

investment problems that the operating expenses are minimal in each considered 

investment option; (3) implement the MTSA-PE model using the IBM OPL language 
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with historical and projected energy demand data, i.e., electricity, heating, and cooling, to 

solve energy investment optimization problems; and (4) conduct an experimental case 

study on the Fairfax campus microgrid at George Mason University (GMU) and utilize 

the MTSA-PE model and its OPL implementations, as well as the graphical and 

analytical methodology to make the investment decision and trade-offs among the cost 

savings, investment costs, maintenance expenditures, replacement charges, operating 

expenses, GHG emissions, and return on investment (ROI) for all the considered options. 

9.2 Future Work 
In addition to the contributions made by this research, there are still numerous 

interesting topics for further exploration. They mainly include the issues regarding a 

more efficient algorithm for the ME-EQPE problems, the multi-event MTSA-PE model, 

the effective algorithms for parameter learning on one- and multi-event MTSA-PE 

problems, the query language for parameter learning on multi-sequential events, and the 

development of the Model Accuracy and Quality Evaluation module. 

First, to solve the ME-EQPE problems, I develop the M-Checkpoint algorithm to 

learn multiple sets of optimal decision parameters for multi-events. However, the time 

complexity of this algorithm to solve the ME-EQPE problems is polynomial, i.e., O(N
m
). 

To mitigate this computational cost, I develop the relaxed R-Checkpoint algorithm to 

solve the ME-EQPE problems. The core contribution of this algorithm is to learn multiple 

sets of decision parameters that are close to the optimal ones but at a lower time 

complexity, i.e., O(QkNlogN). Nevertheless, the R-Checkpoint algorithm does not 

guarantee optimality. In addition, if Q and k are sufficiently large, they lead the time 
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complexity to become polynomial again. Thus the future research will be how to further 

develop a new algorithm that combines the optimality of M-Checkpoint and the low time 

complexity of R-Checkpoint algorithm to learn parameter sets of multi-events. 

Second, the MTSA-PE model is designed to solve a class of problems that involve 

a single event, e.g., the electric load shedding is executed when the electricity demand 

exceeds the optimal peak demand bound. However, there are many real-world cases that 

multiple related events occur in sequence. For instance, consider the above load-shedding 

example again, in which the energy managers would like to determine when the electric 

account units should be turned off and when those accounts should be turned on in order. 

Using the MTSA-PE model, the energy managers would not be able to properly decide 

on when to shed or unshed the load at the two interrelated events and then to gain the 

maximal cost savings and achieve the minimal power interruptions. To address the 

shortcomings of this issue, the future research will focus on developing a multi-event 

MTSA-PE model. This new model will maintain the advantages of the single-event 

MTSA-PE model and also support the parameter learning on multiple events in sequence. 

Third, the IBM ILOG CPLEX optimizer that I use to solve the class of MTSA-PE 

problems is the branch-and-bound-based algorithm, which the time complexity is 

exponential, i.e.,        if the problem is a single event, and          if the problem is 

a sequence of multiple events. Thus the furture research will focus on developing a new 

algorithm that will be able to solve the class of single- and multi-event MTSA-PE 

problems at a lower computational cost. 
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Fourth, the proposed MTSA query language is only able to formulate the single-

event parameter learning on both EQPE and MTSA-PE problems. The future research 

will be how to extend the proposed MTSA query language to support the formulation of 

the ME-EQPE and the multi-event MTSA-PE problems. 

Finally, in order to improve the accuracy of the parametric model templates and 

the quality of the monitoring and recommendation service in the future, I will develop an 

evaluation model and algorithm to identify the performance gaps in terms of QoS, event 

utility, decision-making actions, etc. I will also develop a MTSA query construct to 

update the model template based on those performance gaps. 
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APPENDIX: LIST OF PUBLICATIONS RELATED TO THE DISSERTATION 

Journal Articles 
 

J1. Ngan, C.K. & Brodsky, A. (2013). Optimal Event Monitoring through Internet 

Mash-up of Multivariate Time Series. Special Issue on Collaborative Networking 

Environments and the Internet Technology. International Journal of Decision 

Support Systems Technology. 

 

J2. 

 

Ngan, C.K., Brodsky, A., & Lin, J. (2012). R-Checkpoint Algorithm for Multi-Event 

Decision Making over Multivariate Time Series. Fusing Decision Support Systems 

into the Fabric of the Context. IOS Press. 

 

J3. Ngan, C.K., Brodsky, A., & Lin, J. (2013). Multi-Event Decision Making over 

Multivariate Time Series. Special Issue on Collaborative Decision Support Systems. 

International Journal of Information and Decision Sciences. 

 

J4 Ngan, C.K., Brodsky, A., & Lin, J. (2012). An Event-Based Service Framework for 

Querying, Monitoring, and Learning Multivariate Time Series. Lecture Notes in 

Business Information Processing, Enterprise Information Systems. Springer-Verlag. 

 

Conference Papers 
 

C1. Ngan, C.K., Brodsky, A., Egge, N., & Backus, E. (2013). A Decision-Guided Energy 

Framework for Optimal Power, Heating, and Cooling Capacity Investment. The 15th 

International Conference on Enterprise Information Systems. Angers, France. 

 

C2. Ngan, C.K. & Brodsky, A. (2013). DGLS System: Decision Guidance for Optimal Load 

Shedding in Electric Power Microgrids. The 2013 International Conference on Artificial 

Intelligence. Las Vegas, USA. 

 

C3. Ngan, C.K., Brodsky, A., & Lin, J. (2012). R-Checkpoint Algorithm for Multi-Event 

Decision Making over Multivariate Time Series. The 16th IFIP WG8.3 

International Conference on Decision Support Systems. Anávissos, Greece. 

(Proceedings Version of J2) 

 

C4. Ngan, C.K., Brodsky, A., & Lin, J. (2011). Multi-Event Decision Making over 

Multivariate Time Series. Abstract Proceedings of the EWG-DSS London-2011 
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Workshop on Decision Systems. London, United Kingdom. (Proceedings Version 

of J3) 

 

C5. Ngan, C.K., Brodsky, A., & Lin, J. (2011). A Service Framework for Querying, 

Monitoring, and Learning Multivariate Time Series. The 13th International 

Conference on Enterprise Information Systems. Beijing, China. (Proceedings 

Version of J4) 

 

C6. Ngan, C.K., Brodsky, A., & Lin, J. (2010). Decisions on Multivariate Time Series: 

Combining Domain Knowledge with Utility Maximization. The 15th IFIP WG8.3 

International Conference on Decision Support Systems. Lisbon, Portugal. 
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