INDUCTIVE LEARNING AS
RULE-GUIDED GENERALIZATION OF
SYMBOLIC DESCRIPTIONS: A
THEORY AND IMPLEMENTATION

by

Ryszard §. Michalsk:

Chapter 24 in Automatic Program Construction Techniques, MacMillan Publish-
ing Company, Alan W. Biermann, Gerard Guiho, Yves Kodratoff, (Editors}, New
York, 1954,

Mo

e

INDUCTIVE LEARNING 517

CHAPTER 24

Inductive Learning as Rule-Guided
Generalization of Symbolic Descriptions:
A Theory and Implementation

Ryszard S. Michalski
Department of Computer Science
University of Illinois
Urbana, Illinois 61801

Abstract

The theory presented here treats inductive learning as a process of generalizing symbolic descriptions,
under the guidance of generalization rules and background knowledge rules. This approach unifies various types
of inductive learning, such as learning from examples and learning from observation.

Two inductive learning programs are presented: INDUCE 1.1 — for learning structural descriptions from
examples, and CLUSTER/PAF — for learning taxonomic descriptions (conceptual clustering). The latter pro-
gram partitions a given collection of entities {objects, computational processes, observations, etc.) into clusters,
such that each cluster is described by a single conjunctive statement and the obtained assembly of clusters

satisfies an assumed criterion of preference.

-
-

Y

518 MICHALSKI

The presented methodology can be useful for an automated determination of complete and correct pro-
gram specification for computer-aided decision making, for knowledge acquisition in expert systems, and the
conceptual analysis of complex data.

A. Introduction

Our understanding of inductive inference processes remains very limited despite considerable progress in
recent years, Making progress in this area is particularly difficult, not only because of the intrinsic complexity
of these problems, but also because of their open-endedness. This open-endedness implies that when one
makes inductive assertions about some piece of reality, there is no natural limit to the level of detail and to the
scope of concepts and operators used in the expression of these assertions, or to the richness of their forms.
Consequently, in order to achieve non-trivial general solutions, one has to circumscribe carefully the nature and
goals of the research. This includes defining the language in which descriptions may be written and the modes
of inference which will be used. Careful definitions will aveid the main difficulty of most current research;
attacking problems which are too general with techniques which are too limited.

Recently there has been a growing need for practical solutions in the area of computer induction. For
example, the development of knowledge-based expert systems requires efficient methoeds for acquiring and
refining knowledge. Currently, the only method of knowledge acquisition is the handerafting of an expert’s
knowledge in some formal systems, e.g.. in the form of production rules (Shortliffe [1974), Davis [1976]) or as
a semantic net (Brachman [1978]). Progress in the theory of induction and the development of efficient induc-
tive programs can provide valuable assistance and an aliernative method in this area. For example, inductive
programs could be useful for filling in paps, and testing the consistency and completeness of expert-derived
decision rules, for removing redundancies, or for incremental improvement of the rules through the analysis of
their performance. They could also provide a means for detecting regularities in data bases and knowledge
bases. For appropriately selected problems, the programs could determine the decision rules directly from
examples of expert decisions, which would greatly facilitate the transfer of knowledge from experts into
machines. Experiments on the acquisition of rules for the diagnosis of soybean diseases (Michalski et al.
[19801), have indicated that rule-learning from examples is not only feasible, but in certain aspects is prefer-
able.

Another potential applicaton of computer induction is in various areas of science, e.g., biology, microbiol-
ogy. and genetics. Here it could assist a scientist in revealing structure or detecting interesting conceptual pat-
terns in collections of observations or results of experiments. The traditional mathematical techniques of
regression analysis, numerical taxonomy, factor analysis, and distance-based clustering technigues are not
sufficiently adequate for this task. Methods of conceptual data analysis are needed, whose results are not
mathematical formulas but conceptual descriptions of data, involving both qualitative and quantitative relation-
ships.

An important sub-area of computer inductive inference is automatic programming (e.g., Shaw et al.
(19751, Jouannaud er al. [1979). Burstall er al. [1977], Biermann [1978], Smith [1980], and Pettorossi [1980]).
Here, the objective is to synthesize a program from 1/0 pairs or computational traces, or to improve its compu-
tational efficiency by application of correctness-preserving transformation rules. The final result of learning is
thus a program. in a given programming language, with its inheremt sequential structure, destined for machine
rather than human “‘consumption” {or, in other words, a description in “‘computer terms’ rather than in
“human terms™). In this case, the poswlare of human comprehensibility, mentioned below, is of lesser impor-
tance. Quite similar to research on automatic programming is research on grammatical inference (e.g., Bier-
mann and Feldman [1972], Yau and Fu [1978]) where the objective of learning is a formal grammar.

This paper is concerned with computer inductive inference, which could be called a **conceptual’ induc-
tion. The final result of learning is a symbolic description of a class or classes of entities typically not computa-
tional processes in a form of a logical-type expression (e.g., a specification of the program or a classification
rule). Such an expression is expected to be relatively “‘close™ to a natural language description of the same
classies) of entities. Specifically. it should satisfy the following comprehensibility postulare:

INDUCTIVE LEARNING 519

The results of computer inductive learning should be conceptual descriptions of data, similar to the descriptions a
human expert might produce observing the same data. They should be comprehensible by humans as single
‘chunks' of information, directly interpretable in natural language, and use both quantitative and qualitative
information in an integrated fashion.

This postulate implies that a single description should avoid more than one level of bracketing, more than
one implication or exception symbol, aveid recursion, avoid including more than 3—4 conditions in a conjunc-
tion and more than 2—3 conjunctions in a disjunction, not include more than two guantifiers, ete. (the exact
numbers can be disputed, but the principle is clear). This postulate can be used to decide when to assign a
name to a specific formula and use that name inside of another formula. This postulate stems from the motiva-
tion of this research to provide new methods for knowledge acquisition and techniques for conceptual data
analysis. It is also well confirmed by the new role for research in artificial intelligence, as envisaged by Michie
[1977], which is to develop techniques for conceptual interface and knowledge refinement.

In this chapter we will consider two basic types of inductive inference: learning from examples and learn-
ing from ohservation (specifically, the so called *“‘conceptual clustering™').

B. Computer Induction as Generalization and Simplification of Symbolic Descriptions

B.1 Inductive Paradigm

The process of induction can be characterized as the search for an economical and correct expression of a
function which is only partially known. In other words, its goal is to generate and validate plausible general
descriptions (inductive assertions or hypotheses) that explain a given body of data, and are able to predict new
data. Between the two aspects of induction—the generation of plausible inductive assertions and their
validation—only the first is the subject of our study. We feel that the subject of hypothesis generation, in par-
ticular the problems of generalization and simplification of symbolic descriptions by a computer, is a quite
unexplored and very important direction of research. The problems of hypothesis confirmation, in the Carna-
pian (Carnap [1962]) or similar sense, are considered to be beyond the scope of this work. In our approach,
inductive assertions are judged by a human expert interacting with the computer, and/or tested by standard sta-
tistical techniques. The research is concentrated on the following inductive paradigm:

Given is

(a) a set of observational assertions (data rules), which consist of darta descriprions, {C;l, specifying initial
knowledge about some entities (objects, situations, processes, eic.), and the generalization class, K;, associ-
ated with each Cj (this association is denoted by the symbol ::>)

Chua>Kn Cpu> K. Ciuu> Ky
Cpu=Ky CupuzKrn Cupi> Ky

Cot 22 K Coz 2> Koy oo Conm 52> K

Descriptions C;; can be symbolic specifications of conditions satisfied by given situations, production rules,
sequences of attribute-value pairs representing observations or results of experiments, etc. The descrip-
tions are assumed to be expressions in a certain logical calculus, e.g., propositional calculus, predicate cal-
culus. or a calculus specially developed for inductive inference, such as variable-valued logic systems VL,
(Michalski [1973]) or VL, (Michalski [1978]).

520 MICHALSKI

(b) a set of background knowledge rules defining information relevant to the problem under _r:unsideraliqn.
This includes definitions of value sets of all descriptors used in the input rules, the properties of descrip-
tors and their interrelationships and any “‘world knowledge™ relevant to the problem. The backg.mu_nd
knowledge also includes a preference (or optimaiity) criterion, which for any two sets of symbplic dcscr!p-
tions of the same generalization class specifies which one is preferable, or that they are equivalent with
regard to this criterion.

The problem is to determine a set of inductive assertions (hypotheses):

Cyu>Ky, Cpu>Ky, - Oy n> Ky
Crn n> K, C‘zz > Kl. S C’J'z - K]
Coi>Km Cr2u> K -0 O 1> Ky

where T < Uy,

which is the most preferred among all sets of rules in the assumed format, that do not contradict the background
knowledge rules, and are, with regard to the data rules, consistent and complete.

A set of inductive assertions is consistent with regard to data rules, if any situation that satisfies a data rule
of some generalization class either satisfies an inductive assertion of the same class, or does not satisfy any
inductive assertion. A set of inductive assertions is complere with regard to data rules, if any situation that
satisfies some data rules also satisfies some inductive assertion.

It is easy to see that if a set of inductive assertions is consistent and complete with regard to the data
rules, then it is semantically equivalent to or more general than the set of data rules (i.e., there may exist situa-
tions which satisfy an inductive assertion but do not satisfy any data rule).

From a given set of data rules it is usually possible to derive many different sets of hypotheses which are
consistent and complete, and which satisfy the background knowledge rules. The role of the preference cri-
terion is to select one {or a few alternatives) which is {are) most desirable in the given application. The prefer-
ence criterion may refer to the simplicity of hypotheses (defined in some way), their generality, the cost of
measuring the information needed for their evaluation, their degree of approximation to the given facts, etc.
{Michalski [1978]).

B.2 Types of Inductive Learning
We distinguish two major types of inductive learning:

I. Learning from examples
Within this tvpe, three subclasses of problems were given the most attention:
a. concept acquisition, or learning a characteristic description of a class of entities,
b. classification learning, or learning discriminant descriptions of classes of objects,
¢. sequence prediction, or discovery of a rule that generates a given sequence of entities.

* Descriptors are variables, relations and functions that are used in symbolic descriptions of objects or situations.

INDUCTIVE LEARNING 521

1L Learning from observation

Under this type we distinguish:

a. conceptual clustering, i.e., discovery of conceptual structure underlying a collection of entities,
b. pattern discovery,

¢. theory formation.

Most of the research on computer inductive learning has dealt with a special subproblem of type Ia,
namely learning a conjunctive concept {(description) characterizing a given class of entities. Here the data rules
involve only one generalization class (which represents a certain concept), or two generalization classes; the
second class being the set of “‘negative examples” (e.g., Winston [1970], Vere [1975], Hayes-Roth [1976]).
Where there is only one generalization class (the so-called uniclass generalization) there is no natural limit for
generalizing the given set of descriptions. In such case the limit can be imposed by the form of inductive asser-
tion (e.g., that it should be a most specific conjunctive generalization within the given notational framework, as
in (Hayes-Roth [1976]) and (Vere [1975]), or by the assumed degree of generality (Stepp [1978]). When there
are negative examples the concept of near miss (Winston [1970]) can be used to effectively determine the limit
of generalization.

A general problem of type la is to learn a characteristic description (e.g., a disjunctive description, grammar,
or an algorithm) which characterizes all entities of a given class, and does not characterize any entity which is
not in this class.

Problems of type Ib are typical pattern classification problems. Data rules involve many generalization
classes; each generalization class represents a single pattern. In this case, the individual descriptions C; are gen-
eralized so long as it leads to their simplification and preserves the condition of consistency (e.g., Michalski
[1980]). Obtained inductive assertions are discriminant descriptions, which permit one to distinguish one recog-
nition class from all other assumed classes. A discriminant description of a class is a special case of characteris-
tic description, where any object which is not in the class is in one of the finite (usually quite limited) number
of other classes. Of special interest are discriminant descriptions which have minimal cost (e.g., the minimal
computational complexity, or minimal number of descriptors involved).

Problems of type Ic are concerned with discovering a rule governing generation of an ordered sequence of
entities. The rule may be deterministic (as in letter sequence prediction considered in Simon and Lea [19731),
or nondeterministic, as in the card game EULESIS (Dietterich [1980]). Data rules involve here only one gen-
eralization class, or two generalization classes, where the second class represents “‘negative examples.”

Problems of type II {learning from observation) are concerned with determining a characterization of a
collection of entities. In particular, such characterization can be a partition of the collection into clusters
representing certain concepts (**conceptual clustering,” Michalski [1980]. Michalski and Stepp [19831). In this
case, data descriptions in (1) represent individual entities, and they all belong to the same generalization class
{i.c., data descriptions consist of a single row in (1)),

Methods of induction can be characterized by the type of language used for expressing initial descriptions
C;; and final inductive assertions C'y. Many authors use a restricted form (usually a quantifier-free) of predicate
calculus, or some equivalent notation (e.g., Morgan [1975], Fikes er af. [1972], Banerji [1977], Cohen [1977],
Hayes-Roth et al. [1978], Vere [1975]).

In our earlier work we used a special propositional calculus with multiple-valued variables, called
variable-valued logic system VL;. Later on we have developed an extension of the first order predicate cal-
culus, called VLj; (Michalski [1978]). It is a much richer language than VL, including several novel operators
not present in predicate calculus, le.g., the internal conjunction, inteérnal disiunction, the exception, the selector).
We found these operators very useful for describing and implementing generalization processes; they also
directly correspond to linguistic constructions used in human descriptions. VL, also provides a unifying formal
framework for adequately handling descriptors of different types (measured on different scales). The handling
of descriptors each according to its type in the process of generalization is one of the significant aspects of our
approach to induction.

522 MICHALSKI

B.3 Relevance of Descriptors in Data Descriptions

A fundamental question underlying any machine induction problem is that of what information the
machine is given as input data, and what information the machine is supposed to produce. Two specific ques-
tions here are how relevant the variables in the input data must be to the problem, and how the variables in
inductive assertions relate to these input variables.

We will distinguish three cases:

1. The input data consist of descriptions of objects in terms of variables which are relevant to the problem,
and the machine is supposed to determine a logical or mathematical formula of an assumed form involv-
ing the given variables {e.g., a disjunctive normal expression, a regression polynomial, etc.).

2. The input data consist of descriptions of objects as in case 1, but the descriptions may involve a relatively
large number of irrelevant variables in addition to relevant variables. The machine is to determine a solu-
ton description involving enly relevant variables.

3. This case is like case 2, except that the initial descriptions may not include the relevant variables at all.
Among irrelevant variables, they must include, however, also variables whose certain transformations
(e.g., represented by mathematical expressions or intermediate logical formulas) are relevant derived vari-
ables. The final formula is then formulated in terms of the derived variables.

The above cases represent problem statements which put progressively less demand on the content of the
input data (i.e., on the human defining the problem) and more demand on the machine.

The early work on concept formation and the traditional methods of data analysis represent case 1. Most
of the recent research deals with case 2. In this case, the method of induction has to include efficient mechan-
isms for selecting relevant variables (thus, this case represents selecrive induction. The formal logic provides
such mechanisms. and this fact is one of the advantages of logic-based solutions. Case 3 represents the suhject
of what we call constructive induction.

Our research on induction using system VL, and initial work using VL;, has dealt basically with case 2.
Later we realized how to approach constructive induction, and formulated the first constructive generalization
rules. We have incorporated them in our inductive program INDUCE 1 (Larson er al. [1977], Larson [1977])
and in the newer improved version INDUCE-1.1 (Dietterich [1978]).

The need for introducing the concept of constructive induction may not be obvious. The concept has
basically a pragmatic value. To explain this, assume first that the output assertions involve derived descriptors,
which stand for certain expressions in the same formal language. Suppose that these expressions involve, in
turn, descriptors which stand for some other expressions. and so on, until the final expressions involve only
initial descriptors. In this case the constructive induction simply means that the inductive assertions are multi-
level or recursive descriptions.

But this is not the only interesting case. Derived descriptors in the inductive assertions may be any arbi-
trary. fixed (i.e., not learned) transformations of the input descriptors, specified by a mathematical formula, a
computer program, or, implemented in hardware (e.g., the hardware implementation of fast Fourier transform).
Their specification may require a language quite different from the accepted formal descriptive language. To
determine these descriptors by learning, in the same fashion as the inductive assertions, may be a formidable
task. They can be determined, e.g., through suggestions of possibly useful transformations provided by an
gxpert, or as a result of some generate-and-test search procedure. In our approach, the derived descriptors are
determined by constructive induction rules, which represent segments of problem-oriented knowledge of experts.

INDUCTIVE LEARNING 523

B.4 The Background Knowledge and the Form of Inductive Assertions

The induction process starts with the problem specification and ends with a set of alternative inductive
assertions. The problem specification consists of a) data rules, and b) specification of the problem background
knowledge (which includes a preference criterion). We will briefly discuss each of these topics.

B.4.1. Form of data rules and inductive assertions

In program INDUCE 1.1, the data descriptions. Cj, and inductive assertions, C’y, are c-formulas (or VLy,
complexes), defined as logical products of VL, selectors, with zero or more quantifiers in front (the logical pro-
duct is represented by concatenation). For example, a C';; can be:

3 P1,P2 [color(P1} = redVblue][weight(P1) > weight(P2)]
[length(P2) = 3.8][ontop(P1.P2)]1& [shape(P1) & shape(P2) = box]

(see Appendix | for explanation)

Since selectors can include internal disjunction (see Appendix 1) and involve concepts of different levels of
generality (as defined by the generalization tree. see next section), the c-formulas are more general concepts
than conjunctive statements of predicates.

Other desirable forms of Cj; are:

® Assertions with the exception operator

(C1VC2v.)\,C (3

where C, Cl, C2, ... are c-formulas, and \; is the exception operator (see Appendix 1),

The motivation for this form comes from the observation that a description can be simpler in some cases,
if it states an overgeneralized rule and specifies the exceptions. Recently Vere [1978] proposed an algorithm
for handling such assertions in the framework of conventional conjunctive statements,

. Implicative assertions
ClC,—Cy) (4)

which consist of a context condition C and an implication Cy = C;3, which states that properties in C,
hold only if C; is true.

Production rules used in knowledge-based inference systems are a special case of (4), when C is omitted
and there is no internal disjunction. Among interesting inductive problems regarding this case are:

I. developing algorithms for exposing contradictions in a set of implicative assertions
2. deriving simpler assertions from a set of assertions
3. generalizing assertions so that they may represent a wider class of specific assertions,

Various aspects of the last problem within a less general framework were studied, e.g., by Hedrick [1974],

524 MICHALSKI

e (Case assertions

(If =R] —CP.([f =Ryl —=Cy).. -~ ”

where Ry,R; - - - are pairwise disjoint sets.

This form occurs when a description is split into individual cases characterized by different values of a cer-
tain descriptor.

B.4.2 Specification of the background knowledge ;

The background knowledge is defined by the specifying the types of the descriptors and their value sets,
the interrelationships between descriptors, rules for generating new descriptors, the preference criterion and any
other information relevant to the problem.

e Types of descriptors

The process of generalizing a description depends on the type of descriptors used in the description. The
type of a descriptor depends on the structure of the value set of the descriptor. We distinguish among three
different structures of a value set

1. Unardered

Elements of the domain are considered to be independent entities, no structure is assumed to relate them.
A variable or function symbol with this domain is called nominal (e.g., blood-type).

2. Linearly Ordered

The domain is a linearly (totally) ordered set. A wvariable or function symbol with this domain is called
linear (e.g., military rank, temperature, weight). Variables measured on ordinal, interval, ratio and abso-
lute scales are special cases of a linear descriptor.

3. Tree Ordered

Elements of the domain are ordered into a tree structure, called a generalization tree. A predecessor node
in the tree represents a concept which is more general than the concepts represented by the dependent
nodes (e.g., the predecessor of nodes ‘triangle, rectangle, pentagon, etc.,” may be a ‘polygon’). A variable
or function symbol with such a domain is called strucrured.

Each descripter {(a variable or function symbol) is assigned its type in the specification of the problem. In
the case of structured descriptors, the structure of the value set is defined by inference rules (e.g., see egs. (8),
(91, (10},

L] Relationships among descriplors

In addition to assigning a domain to each variable and function symbol, one defines properties of variables
and atomic functions characteristic for the given problem. They are represented in the form of inference rules.
Here are a few examples of such properties.

INDUCTIVE LEARNING 525

I. Restrictions on Variables

Suppose that we want to represent a restriction on the event space saying that if a value of variable x, is 0
{e.g. 'a person does not smoke'), then the variable x5 is 'not applicable® (x; — the brand of cigarettes the
person smokes). This is represented by a rule:

[J{| =0] — [:'EJ - N."ﬁ]

NA = not applicable

2. Relationships Between Atomic Functions

For example, suppose that for any situation in a given problem, the atomic function (x,,x;) is always
greater than the atomic function g{x,,x;). We represent this:

TRUE — ¥ I|,Kg[f(¥|‘lz] > E(H]..K]}j

3. Properties of Predicate Functions

For example, suppose that a predicate function ‘left’ is transitive. We represent this:
Wy x 2, x5([left (xq,x o0 [left(xg, x50] —{left(x,.x3)])

Other types of relationships characteristic for the problem environment can be represented similarly.

The rationale behind the inclusion of the problem background knowfedge reflects our position that the gui-
dance of the process of induction by the knowledge pertinent to the problem is necessary for nontrivial induc-
tive problems.

B.4.3 The preference criterion

The preference criterion defines what is the desired solution to the problem, i.e., what kind of hypotheses
are being sought. There are many dimensions, independent and interdependent, on which the hypotheses can
be evaluated. The weight given to each dimension depends on the ultimate use of the hypotheses. The dimen-
sions may be, e.g., the number of operators in the set of inductive assertions, the quantity of information
required to encode the hypothesis using operators from an a priori defined set (Coulon and Kayser [1978]), the
scope of the hypothesis relating the evenis predicted by the hypothesis to the events actually observed (some
form of measure of degree of generalization), the cost of measuring the descriptors in the hypothesis, etc.
Therefore, instead of defining a specific criterion, we specify only a general form of the criterion. The form.
called a "lexicograpic functional® consists of an ordered list of criteria measuring hvpothesis quality and a list of
“tolerances’ for these criteria (Michalski [1973]).

An important and somewhat surprising property of such an approach is that by properly defining the
preference criterion, the same computer program can produce either the characteristic or discriminant descrip-
tions of object classes (by maximizing or minimizing the number of selectors in the inductive assertions,
respectively).

326 MICHALSKI

C. .Generalization Rules

The transformation from data rules (1) to inductive assertions (2) can be viewed (at least conceptually) as
an application of certain generalization rules.

A generalization rule is defined as a rule which transforms one or more symbolic descriptions in the same
generalization class into a new description of the same class which is equivalent or more general than the initial
set of descriptions.

A description
VoK (6)
is equivalentto a set
Vo> K)i=12 --- (7)

if any evenr (a description of an object or situation) which satisfies at least one of the V;, i =1,2, - - -, satisfies
also V, and conversely. If the converse is not required, the rule (6) is said to be more general than (7).

The generalization rules are applied to data rules under the condition of preserving consistency and com-
pleteness, and achieving optimality according to the preference criterion. A basic property of a generalization
transformation is that the resulting rule has UNKNOWN truth-status: being a hypothesis, its truth-status must
be tested on new data, Generalization rules do not guarantee that the generated inductive assertions are useful
or plausible, '

We have formalized several generalization rules, both for selective and constructive induction. Selective
induction differs from constructive induction in that selective does not generate any new descriptors in the gen-
eralization process. (The notation D, |< D, specifies that D, is more general than Dy

Selective generalization:
(i) The extending reference rule
VIL=R > K |< VIL=Rj:>K
where L is an atomic function

R; 3 Ry, and Ry,R; are subsets of the domain,
Dom(L} of descriptor L.
V - a context description (concatenation means conjunction)

This is a generally applicable rule; the type of descriptor L does not matter. For example, the description;
"objects that are blue or red’ is more general than ‘objects that are red’.

{ii) The dropping selector (or dropping condition) rule

VIL=R] :>K |l< Vi3> K

(iii)

liv)

- v}

INDUCTIVE LEARNING 527

This rule is also generally applicable. It is one of the most commonly used rules for generalizing informa-
tion. It can be derived from rule (i), by assuming that R, in (i) is equal the value set D(L). In this case
the selector [L = R;] always has truth-status TRUE and therefore can be removed,

The c.fas:‘ng' interval rule

VIL =a] => K
VIL =b] :>k |< VIL=a.bl:>K

This rule is applicable only when L is a linear descriptor.

To illustrate rule (iii}. consider as objects two states of a machine, and as a generalization class, a charac-
terization of the states as mormal. The rule says that if two normal states differ only in that the machine
has two different temperatures, say, a and b, then the hypothesis is made that all states in which the
temperature is in the interval [a,b] are also normal.

The climbing generalization tree rule

V[L=a]:>K
V[L=bl:> K

one or :

more rules < IL=l—K
V[LMi]:: > K

where L is a structured descriptor

s - represents the node at the next level of generality than nodes a.b, ... and i, in the tree domain of L
(i.e, is the most specific common generalization of nodes a b, ... i).

The rule is applicable only to selectors involving structured descriptors. This rule has been used, e.g., in
(Winston [1970], Hedrick [1974], Lenat [1976]).

Example:

Vishape(p) =triangle] :: > K

Vlshape(p) =pentagon] ::> K | Vlshape (p) =polygon] :: > K

The extension against rule

Vi[L=R] > K

V}[L""R:] = K < EL#RII =K

where Ry R; =0

528 MICHALSKI

V, and V, - arbitrary descriptions.

This rule is generally applicable. It is used to take into consideration “negative examples’, or, in general,
to maintain consistency. [t is a basic rule for determining discriminant class descriptions.

(vi) The turning constanis into variables rule

V[pla,Y)] 1 >K
one or 'v"[p{b.'!:}] s>K

more rules < IxViplx,Y)] 2> K

VIp(i,Y)] :: >K

where Y stands for one or more arguments of atomic function p.

x is a variable whose value set includes a,b,....i.

It can be proven that this rule is a special case of the extending reference rule (i). This is a rule of gen-
cral applicability. It is the basic rule used in inductive learning methods employing predicate calculus,

Constructive Generalization Rules:

Constructive generalization rules generate generalized descriptions of events in terms of new descriptors
which are functions of the original descriptors. They can be viewed as knowledge-based rules for generating
new descriptors. Here are a few examples.

(i) The counting rule

V[attribute.!’ﬂh-h]...[attribute;fPt]=A][altributelfP“;)#A]
- - - [attribute; (Pgsubr) #A] > K< V[#P—attribute, —A=k] > K
where P|.Py,....Py.... P, - are constants denoting, e.g., parts of an object.
attribute,(P;) - stands for an attribute of P, e.g., color, size, texture, etc.

P#—attribute;—A - denotes a new descriptor interpreted as the 'number of Pi's (e.z.,
parts) with attribute; of value A,

INDUCTIVE LEARNING 529

Example:

Vl[color(P1) = RED][color(P2) = RED][color(P3) = BLUEl > K

|< [#P - color - red = 2] => K

This is a generalization rule, because a set of objects with any two red parts is a superset of a set of
objects with two parts which are red and one part which is blue.

The rule can be extended to a more general form, in which in addition to the arbitrary context formula V
there is a predicate CONDITION(P,,...,P,}, which specifies some conditions imposed on variables
Ph---nPk-

(viii) The generating chain propertiesrule {(a chain metarule).

(ix)

If the arguments of different occurrences of a transitive relation (e.g.. relation “above’, ‘left of”, 'larger
than’, etc.) form a chain, ie., are linearly ordered by the relation, the rule generates descriptars relating
1o specific objects in the chain. For example:

LST-object - the "least object’, i.e., the object at the beginning of the chain (e.g., the bottom obiject in the
case of relation 'above’)

MST-object - the object at the end of the chain (e.g., the 1op object)

position{object) - the position of the object in the chain,

The variable association detection rule.

Suppose that in the darta rules, in the context of condition C, an ascending order of values of a linear
descriptor x; corresponds to an ascending (or descending) order of values of another linear descriptor x;
with the same quantified arguments. For example, whenever descriptor weight(P) takes on increasing
values, then the descriptor length(P) also takes on the increasing values. In such situations a two-
argument predicate descriptor is generated:

I (xix) - if x; grows with x;
or
} (x;.%) - if x; decreases with x;

If the number of different occurrences of x; and X; is statistically significant, then the “‘monotonic®
descriptors] (X% and | (x;x;) can be generalized to:

5330 MICHALSKI

rue, if rlx;xp) 27
17 (xix) = False, otherwise

{positive correlation)

True, if rix;x) <—r
H (xixy) = False, otherwise

(negative correlation)

where r(x;x;) denotes the coefficient of statistical correlation, and r is a certain threshold, 0 < 7 < 1.

The concept of generalization rules is very useful for understanding and classifying different methods of
induction (Dietterich and Michalski [1979]).

D. Learning From Examples

We will illustrate some aspects of learning from examples by a simple problem involving geometrical con-
structions. Suppose that two sets of trains, Eastbound and Westbound. are given, as shown in Figure 1. The
problem is to determine a concise, logically sufficient description of each set of trains, which distinguishes one
set from the other (i.e., a discriminant description) . Such a description should contain only necessary conditions
for distinguishing between the two sets. Using this example we will first briefly describe the learning methodol-
ogy implemented in computer program INDUCE-1.1 (Larson et @l. [1977], Larson [1977], Dietterich [1978])
which successfully solved this problem, and then we will discuss some problems for future research.

At the first step, the initial space of descriptors was determined. They were all descriptors which seem to
be relevant for the posed discrimination problem.

INDUCTIVE LEARNING 531

1. EasTROUND TRAINS

d00 .
—
O

LOH 2 HEHHDo

AAAAAAAAAAN
\AAEHES oI

Figure 1. Find a rule distinguishing between these two classes of trains.

532 MICHALSKI

Among the eleven descriptors selected in total were:

position(car;) - the position of car;, with engine being at position 1
: _ fa linear descriptor)
infront{car;,car;) - car; is in front of car;
{a nominal descriptor)
lengthicar;) - the length of car;
{a linear descriptor)
car-shape(car;) - the shape of car;
(a structured descriptor with 12 nodes in the generalization tree; see egs. (8) and (9))
conmins(cart.loadj] - car; contains load,
{a nominal descriptor)
load-shape(load;) - the shape of load;

(a structured descriptor)
The domain structure is hierarchical:
plane figures may be circles or palygons;
polygons may be hexagons, triangles, rectangles or squares.

nrpts-load{car;) - the number of parts in the load of car;
(a linear descriptor)
nr-wheels{car;) - the number of wheels on car;

{a linear descripror)

At the next step, data rules were formulated, which characterized trains in terms of the selected descrip-
tors, and specified the train set to which each train belongs. For example. the data rule for the second east-
bound train was:

3 cary,cary,cary.carg,load,,load,....
[infront{cary,cary) i linfront(cary,cary)] . [lengthicar)) = long]d&
[car—shape(car;) =engine] [car—shape(car;) =V —shaped] &
[cont—load{car;, load,) 1 &

[load —shape(load,) =triangie]... [nrwheelscary) =2]..:: >[class=Eastbound]

Background knowledge rules were used to define the structures of structured descriptors {arguments of
descriptors are omitted as irrelevant here):

[car — shape=open retngl V open trapezoid, U — shaped VW dbl open retngl] = >

[car—shape=open top] (8)

[car — shape=ellipse \/ closed rctngl V jagged top V sloping top] = >

[car—shape=closed topl {9)

[load —shape=hexagon Y triangle rectangle] =>[load —shape =polvgon] (10}

and that the relation "infront’ is transitive.

INDUCTIVE LEARNING 533

The criterion of preference was to minimize the number of rules used in describing each class, and, with
secondary priority, 1o minimize the number of selectors (expressions in brackets) in each rule.

The INDUCE program produced the following inductive assertions

Eastbound trains:

Sear,[length(cary) = short] [car—shape(car;} = closed top] ::> [class=Eastbound] (an

It can be interpreted:
[fa train contains a car which is short and has a closed tap then it is an eastbound train.

Alternatively,

Scar,,cary, load,, load,linfront(car,.car,)] [contains(car, load,) | &
[contains(cary, load,}] [load —shape (load;) =triangle] &
[load—shape(load,) =polygon]:: >[class= Eastbound]

It can be interpreted:

If a train contains a car whose load is a triangle, and the load

of the car behind is a polygon, then the train is eastbound. (12)

Westbound trains:
[nr—cars=3] V car[car — shape(car)) Sagged—top] :: > [class=Westhound]

Either a train has three cars or there is a car with jagged top {13)

Scar[nr—cars—length—long =2| [position{car) =31 [shape(car) =open—top V jagged—top]
= > lclass-Westbound)|

There are two long cars and the third car has open-top or fagged top,

* It may be a useful exercise for the reader to try at this point 1o determine his/ her own solutions, before reading the compuler solutions.

534 MICHALSKI

It is interesting to note that the example was constructed with rules (12) and (13) in mind. The rule (11}
which was found by the program as an alternative was rather surprising because it seems to be conceptually
simpler than rule (12). This observation confirms the thesis of this research that the combinatorial part of an
induction process can be successfully handled by a computer program, and, therefore, programs like the above
have a potential to serve as a useful aid to induction processes in various practical problems.

The descriptors underlined by the dotted lines (*nr-cars-length-long’) are new descriptors, generated as a
result of constructive induction. How were they generated? The constructive generalization rules are imple-
mented as modules which scan the data rules and search for certain properties, For example, the counting rule
of constructive generalization checks for each unary descriptor (e.g., length(car)) how many times a given
value of the descriptor repeats in the data rules.

In our example, it was found that the selector [length(car) =long] occurs for two quantified variables in
every Westbound train, and therefore a new descriptor called ’nr-cars-length-long’ was generated, and a new
selector [nr cars-length-long =2] was formed. This selector, after passing a 'relevance test’, was included in the
set of potentially useful selectors. The relevance test requires that a selector is satisfied by a sufficiently large
number of positive examples and a sufficiently small number of negative examples (see the details later). Dur-
ing the generation of alternative assertions, this selector was used as one of the conditions in the assertion (14).
The descriptor "position{car)” was found by the application of the chain rule.

Now, how does the whole program work? Various versions of the program were described in (Larson
[1977], Michalski [1978], Dietterich [1978]). Appendix 2, provides a description of the top level algorithm.
Here we will give a summary of the main ideas, their limitations, and describe some problems for future
research.

The work of the program can be viewed essentially as the process of applying generalization rules, infer-
ence rules (describing the problem environment} and constructive generalization (generating new descriptors)
to the data rules, in order to determine inductive assertions which are consistent and complete. The preference
criterion is used to select the most preferable assertions which constitute the solution.

The process of generating inductive assertions is inherently combinatorially explosive, so the major gues-
tion is how to guide this process in order to detect quickly the most preferable assertions.

As described in Appendix 2, the first part of the program generates (by putting together the 'most
relevant’ selectors step-by-step) a set of consistent c-formulas. A simple relevance test for a selector is to have
a large difference between the number of data rules covered by the selector in the given generalization class and
the number of rules covered in other generalization classes.

C-formulas are represented as labelled graphs. Testing them for consistency (i.e., for null intersection of
descriptions of different generalization classes) or for the degree of coverage of the given class is done by deter-
mining the subgraph isomorphism. By taking advantage of the labels on nodes and arcs, this operation was
greatly simplified. Nevertheless, it consumes much time and space.

In the second part, the program transforms the consistent c-formulas into VL, events (i.e., sequences of
values of certain many-valued variables (Michalski [1973]), and further generalization is done using AQVAL
generalization procedure (Michalski and Larson [1978]). During this process. the extension against, closing the
interval and climbing generalization tree generalization rules are applied. The VL, events are represented as
binary string, and most of the operations done during this process are simple logical operations on binary
strings. Consequently, this part of the algorithm is very fast and efficient. Thus. the high efficiency of the pro-
gram is due to the transformation of the data structures representing the rules into more efficient form in the
second part of the algorithm {after determining consistent generalizations}.

INDUCTIVE LEARNING 535

A disadvantage of this algorithm is that the extension of references of selectors (achieved by the applica-
tion of the extension against, the closing interval and climbing generalization rules) is done after a supposedly
relevant set of selectors have been determined. It is possible that a selector from the initial data rules or one
generated by constructive generalization rules that did not pass the ‘relevance test’, could still turn out to be
very relevant, if its reference were appropriately generalized. Applying the above generalization rules to each
selector represented as a graph structure (i.e., before the AQVAL procedure takes over) is, however, computa-
tionally very costly, and we decided against it in the INDUCE program. This problem will be aggravated when
the number of constructive generalization rules generating derived descriptors is increased. We plan to seek
solutions to this problem by designing a better descripror relevance test, determining more adequate data struc-
tures for representing selectors and testing intersections of descriptions, and by applying problem background
knowledge.

Another interesting problem 1s how to provide an inductive program with the ability to discover relevant
derived descriptors, which are arithmetic expressions involving the input variables and to integrate them as
parts of inductive assertions. For example, suppose that the Eastbound trains in figure 1 are characterized as:

When the train has 3 cars, the load of the first two cars is twice the total load of Westbound cars, and
when the train is longer, the load of the first two cars is equal the total load of Westbound cars!

How would one design an efficient algorithm which could discover such an assertion?

Let us now consider a problem of describing. say, the Eastbound trains not in the context of Westbound
trains, but in the context of every possible train which is not Eastbound. This is a problem of determining a
characieristic description of Eastbound trains (type la).

A trivial solution to this problem is a “zero degree generalization” description, which is the disjunction of
descriptions of individual trains. A more interesting solution (although still of *zero degree generalization’)
would be some equivalence preserving transformation of such a disjunction, which would produce a computa-
tionally simpler description. Allowing a ‘non-zero degree generalization’ leads us to a great variety of possibili-
ties, called the version space (Mitchell [1978]). As we mentioned before (Sec. A.1), the most studied solution
is to determine the most specific conjunctive generalization (i.e., the longest list of common properties).
Another solution is to determine the description of minimal cost whose degree of generality is under certain
threshold (Stepp [1978]). INDUCE 1.1 gives a solution of the first type, namely, it produces a set of the most
specific (longest) c-formulas (quantified logical products of VL, selectors). Here are examples of such formu-
las:

536 MICHALSKI

For Eastbound trains (some of these formulas may also cover
Westbound trains):

Sear(length(car) =short] [car—shape (car) =closed top] [nr —wheels=2]
(In every train there is a short car with closed top and two wheels)
Scar[position{car) =1] [car —shape (car) =engine]

(The first car in each train is engine)

Sear(position (car) =2] [car—shape(car) =open —top]

(The second car in each train has an open-top)

Scar[position(car) =2 V 3][load—shape (load) =triangle] [contains(car.load)]
(The second or third car in each train contains triangle)

[nr—cars=4 V §] |

(number of cars is 4 or 5)

Year[nr—wheels=2 v 3]

(number of wheels in each car in every train is 2 ar 1)

The logical product of these formulas is a characteristic description of Fastbound trains.

To keep this paper within reasonable limits, we will skip the discussion of problems of type Ic (i.e.. the
sequence prediction), referring the reader to paper by Diettrich [1980].

E. Learning From Observation

The major difference between problems of learning a characteristic description from examples (type 1A),
and problems of conceptual clustering in learning from observation {type I1) is that in the latter problem the
input is usually an arbitrary collection of entities, rather than a collection of examples representing a single
predetermined conceptual class; and that the goal is to determine a partition of the collection into categories (in
general, to determine a structure within the collection). such that each calegory represents a certain concept,

INDUCTIVE LEARNING 537

Problems of this type have been intensively studied in the area of cluster analysis and pattern recognition
(as "learning without teacher’, or unsupervised learning). The methods which have been developed in these
areas partition the entities into clusters, such that the entities within each cluster have a high 'degree of similar-
ity’, and entities of different clusters have a low "degree of similarity’. The degree of similarity between two
entities is typically a function (usually a reciprocal of a distance function), which takes into consideration only
properties of these entities and not their relation te other entities, or to some predefined concepts. Conse-
quently, clusters obtained this way rarely have any simple conceptual interpretation.

In this section we will briefly describe an approach to clustering which we call conceprual clustering. In this
approach, entities are assembled into a single cluster, if together they represent some concept from a pre-
defined set of concepts. For example, consider the set of points shown in Figure 2.

Figure 2.

A typical description of this set by a human is something like "a circle on a straight line'. Thus. the points
A and B, although closer to each other than to any other points, will be put into different clusters, because they
are parts of different concepts.

Since the points in Figure 2 do not constitute a complete circle and straight line, the obtained conceptual
clusters represent generalizations of these data points. Consequently, conceptual clustering can be viewed as a
form of generalization of symbolic descriptions, similarly as problems of learning from examples. The input
rules are symbolic descriptions of the entities in the collection. To interpret this problem as a special case of
the paradigm in Sec. A.l, the collection is considered as a single generalization class.

If the concepts into which the collection is to be partitioned are defined as C-formulas, then the generali-
zation rules discussed before would apply. The restriction imposed by the problem is that the C-formulas logi-
cally intersect, as each cluster should be disjoint from other clusters,

338

MICHALSKI

We will describe here briefly an algorithm for determining such a clustering, assuming that the concepis

are simpler constructs than C-formulas, namely. non-guantified C-formulas with unary selectors, i.e., logical pro-
ducts of such selectors. Unary selectors are relational statements:

[x; # R

where:

X; is one of n predefined variables (i=1.2,....n)
15 one of the relational operators = =
R; is a subset of the value set of x;.

A selector [x; = R;l([x; =R]} is satisfied by a value of x;, if this value is in relation = (=) with some (all)

values from R;. Such restricted c-formulas are called VL, complexes or, briefly, complexes {Michalski [1980]).

Individual entities are assumed to be described by events, which are sequences of values of variables X

{ﬂhﬂz.,... ﬂn}

where a; € Dom(x;), and Domix;) is the value set of x,i=1,2,.... n. Anevent e is said to satisfy a complex, if
values of x; in e satisfy all selectors. Suppose E is a set of observed events, each of which satisfies a com-
plex C. If there exist events satisfying C which are not in E, then they are called wnobserved events. The
number of unobserved events in a complex is called the absolute sparseness of the complex. We will consider
the following problern. Given is an event set E and an integer k. Determine k pairwise disjoint complexes
such that:

they represent a partition of E into k subsets (a k-partition)
the total sparseness of the complexes is minimum,.

The theoretical basis and an algorithm for a solution of this problem (in somewhat more general formula-
tion, where the clustering criterion is not limited to sparseness) is described in Michalski [1980]. The
algorithm is interactive, and its general structure is based on dynamic clustering method (Diday and
Simon [1976]). Each step starts with k specially selected data events, called seeds. The seeds are treated
as representatives of k classes, and this way the problem is reduced to essentially a classification problem
(type Ib). The step ends with a determination of a set of k complexes defining a partition of E. From
such complex a new seed is selected, and the obtained set of k sesds is the input to the next iteration.
The algorithm terminates with a k partition of E. defined by k complexes, which have the minimum
or sub-minimum total sparseness (or, generally, the assumed cost criterion).

Figure 3 (on the next page} presents an example illustrating this process. The space of all events is

defined by variables x,%,%; and x4, with sizes of their value sets 2, 5, 4 and 2, respectively. The space is
represented as a diagram. where each cell represents an event. For example, cell marked e represents
event(0,0,2,0).

INDUCTIVE LEARNING

Xi Xz Xi Xz fu{
0 0
= o Vi
i+ [T T TR R0 =C D—®
21 I | Lyl 2 | 1NN
0: a3k ‘
4 .
0] 0 | a
I 1 I pail P
LR N lanm D1 a
RRunnnnnr Ia||+||||le
3 ¥ /X \ ﬂ) 3 L
4 F 4|
olrjolrfolr ol x, olirfolr JoliJolT X
0'1'2'3 x 0 [227 3%
ITERATION 1 A
qa. b.. ITERATION 2
Sparseness =18 Sparseness = 20
Imbalance= 1.6 Imbalance = 3.6
Dimensionality= 3 Dimensionality = 3
o]
2
X, / X, Xz
0 / g s
- 2
0 2 (i L+ ° 02 N RN
3 3 2
4 4/
0 a3 0] f .l
L+ |)] jar | I
| 2 N LN N RRAN INK HEannnenon»,
3L 1] |y SO DE 2
4 4
olrjolijolifo'r x, ocrjolifolifol x,
0O I 2 3 X3 0 | 2 3 1
C. ITERATION 3 d. [ITERATION4

(Optimal solution)
Sparseness = 12

Imbalance=

Dimensionality=

7.3
4

Sparseness = |6
Imbalance= 3
Dimensionality= 3

6

Figure 3. [terative generation of a conjunctive clustering.

539

540 MICHALSKI

Celle marked by a vertical bar represent data events, while remaining cells represent unobserved events. Figure
3a also shows complexes obtained in the first iteration. Cells representing seed events in each iteration are
marked by +. So in the first iteration, assuming k=23, three seeds were chosen: (0,1,0,0), (1,1,0,0) and
{1.1,0,1). The complexes determined in this iteration are o,o;,a; (Figure 3a), with the total sparseness 18 (the
total number of unmarked cells in these complexes). Figures 3b, ¢, and d show the results of the three con-
secutive iterations. The solution with the minimum sparseness is shown in Figure 3c. It consists of complexes:

af =[xy =0][x; = 1][x4 =0]
a':u=‘[.'(| ”ﬂ][lz '2][}{5 -]3]

of = [x; = 1][x; =1..3]

This result was obtained by program CLUSTER/PAF* implementing the algorithm in PASCAL language
on Cyber 175 {Michalski and Stepp [1982]).

Another experiment with the program involved clustering 47 cases of sovbean diseases. These cases
represented four different diseases, as determined by plant pathologists {the program was not, of course, given
this information). Each case was represented by an event of 35 many-valued variables. With k=4, the pro-
gram partitioned all cases into four categories. These four categories turned oul to be precisely the categories
corresponding to individual diseases. The complexes defining the categories contained known characteristic
symptoms of the corresponding diseases.

Program CLUSTER/PAF is very general and could be useful for a variety of tasks that require a determi-
nation of intrinsically disjunctive descriptions, For example. such tasks are splitting a goal into subgoals, dis-
covering useful subcases in a collection of computational processes, partitioning specific facts into conceptual
categories, formulating cases in program specification.

F. Summary

We have presented a view of inductive inference as a process of generalization of symbolic descriptions.
The process is conducted by applying generalization rules and the background knowledge rules (representing prob-
lem specific knowledge) to the initial and intermediate descriptions. It is shown that both learning from exam-
ples and learning from observation can be viewed this way,

A form of learning from observation, called 'conceptual clustering” was described, which partitions a col-
lection of entities into clusters, such that each cluster represents a certain concept. Presented methods for
learning from examples (INDUCE) and automated conceptual clustering (CLUSTER/PAF) generate logic-style
descriptions that are easy to comprehend and interpret by humans. Such descriptions can be viewed as formal
specifications of programs solving tasks in the area of computer-based decision making and analysis of complex
data,

G. Acknowledgement

A partial support of this research was provided by the National Science Foundation under grants
MCS79—06614 and MCS82—05116. The author is grateful to Robert Stepp for useful discussions and for

proofreading the paper.

* PAF stands for **Polish-American-French™.

INDUCTIVE LEARNING 541

APPENDIX 1

Definition of variable-valued logic calculus Vy,

Data rules, hypotheses, problem environment descriptions, and generalization rules are all expressed
using the same formalism, that of variable-valued logic calculus VL3;.
VL is an extension of predicate calculus designed to facilitate a compact and uniform expression of descrip-
tions of different degrees and different types of generalization. The formalism also provides a simple linguistic
interpretation of descriptions without losing the precision of the conventional predicate calculus.

There are three major differences between VL3, and the first order predicate calculus (FOPC):

1. In place of predicates, it uses selectors (or relarional statements) as basic operands. A selector, in the most

general form, specifies a relationship between one or more atomic functions and other atomic functions or
constants. A common form of a selector is a test to ascertain whether the value of an atomic function is a
specific constant or is a member of a set of constants.
The selectors represent compactly certain types of logical relationships which can not be directly
represented in FOPC but which are common in human descriptions. They are particularly useful for
representing changes in the degree of generality of descriptions and for syntactically uniform treatment of
descriptors of different types.

2. Each atomic function (a variable. a predicate. a function) is assigned a value set (domain). from which it
draws values, together with a characterization of the structure of the value ser.

This feature facilitates a representation of the semantics of the problem and the application of generaliza-
tion rules appropriate to the type of descriptors,
3. An expression in VL, can have a truth status: TRUE, FALSE or ? (UNKNOWN),
The truth-status *?" provides an interpretation of a VL, description in the situation, when e.g., outcomes of
SOme measurements are not known.

An atomic function is a variable, or a function symbol followed by a pair of parentheses which enclose a
sequence of atomic functions and/or constants, Atomic functions which have a defined interpretation in the
problem under consideration are called descriptors.

A constant differs from a variable or a function symbol in that its value set is empty. If confusion is possi-
ble, a constant is typed in quates.

* WLy is a subset of a more complete system VL3, which is a many valued-logic extension of predicate calculus.

542 MICHALSKI

Examples

Constants 2 * red
Atomic forms: x; color(box) on—top(pl,p2) ((x;,g(x3})
Exemplary value sets:

Dix;} = {0.1,..., 10}
Dfcolor) = {red, blue, - - - }
D{on—top) = ftrue, false)
D{f) = {0,1,..., 20}

A selecroris a form
[L # R]

where

L - called referee, is an atomic function, or a sequence of atomic functions separated by "." . (The
operator "." is called the internal comjunction.)

- is one of the following relational operators:

- 2 <2<

R - called reference, is a constant or atomic function. or a sequence of constants or atomic functions
separated by operator "' or ".." . (The operators V" and ".." are called the internal disfunction, and
the range operator, respectively.)

A selector in which the referee L is a simple atomic function and the reference R isa single constant is
called an elementary selector. The selector has truth-status TRUE [or FALSE} with regard to a situation if the
situation satisfies {does not satisfy) the selector, i.e.. if the referee L is fis not) related by relatonal operator #
to the reference R. The selector has the truth-status UNKNOWN (and is interpreted as being a question), if
there is not sufficient information about the values of descriptors in L for the given situation. To simplify the
exposition, instead of giving a definition of what it means that 'L is related by relational operator # to R’, we
will simply explain this by examples.

INDUCTIVE LEARNING 543

Linguistic interpretation

(i) Icoloriboxl) = white] color of box1 is white
(i) [length(boxl) = 2] length of box1 is greater than or equal to 2
(iii) [weight({boxl) = 2..5] weight of box] is between 2 and §,
(iv) [blood-type(P1) =0V AV B] blood-type of P1 is 0 or A or B
(v} [on-top({boxl,box2) = T] box1 is on top of box2
or simply

[on-top(box1,box2)]
(vi) [above(boxl,box2) = 3] boxl is 3" above box2
(vii} [weight{boxl) > weight{box3)] the weight of box1 is greater than the weight of box3
(viii} [length(box1} ® length(box2} = 3]* the length of box] and box2 is 3
(ix) [type(P;) ® type(P;) = AV B] the type of Py and the type of P; is either A or B.

Note the direct correspondence of the selectors to linguistic interpretations. Mote also that some selectors can
not be expressed in FOPC in a (pragmatically) equivalent form (e.g., (iv), (ix}).

A VL, expression (or, here, simply VL expression) is defined by the foilowing rules:

(i) A constant TRUE, FALSE, or 'UNKNOWN" is a VL expression
{ii) A selector is a VL expression

(iii) IfV, Vyand Vy;are VL expressions then so are:

(V) formula in parentheses

v inverse

V&V, oor V|V, conjunction

ViV Vv, disjunction

\IRTAL exception exclusive disjunction
vV, —V, metaimplication

where = € [—=, =, >, => |<, |=,[>]
(implication, equivalence, decision assignment, inference, generalization, semantical
equivalence, specialization)
T Xz Kk (V) existentially quantified expression
Yxpxz... kg (V) universally quantified expression
A VL formula can have truth-status TRUE(T), FALSE(F)} or UNKNOWN(?). The interpretation given
to connectives - ("not’), &,(and’}.V('or'),—, is defined in Fig. Al. (This interpretation is consistent with
Kleen-Korner 3-valued logic.) An expression with the operator = >, < or |= is assumed to always have the
truth-status TRUE and with operator :: >, TRUE or 7. Operators Y, and — are interpreted:

Vi\,V, isequivalentto V, & V,V V, &V,

V= Vs is equivalent to (V— V) (Vy— V)

* This expression is equivalent to [length(box1)=3][lengthibox2) =3].

544 MICHALSKI

The truth-status of

TRUE{FALSE} if, there exist
{does not exist} a value of x which makes
the truth—status of V equal TRUE
? if it is not known whether there exist - - -

FIx(V) is

F
T |F

VI* F T
© [7 T
Fl? F T
T |IE T %
—n-')FT
TlT 7 T
FIT T T
T|® R T

DEFINITION OF CONNECTIVES
", & V., AND —
IN VL,

Figure Al.

INDUCTIVE LEARNING 545

TRUE [FALSE] if for every value of x
Yx(V) is the truth—status of V is fis not) TRUE
? i it is not known whether for every - - -

A VL expression in the form
QFLQF;, - -+ (CV GV, ..., VC)

where QF; is a quantifier form 3 xy.X3,..., or ¥ x.x3, - - - and C; is a conjunction of selectors {called a com-
plex)is called a disfunctive simple VL. expression (a DVL expression).
To make possible a name substitution operation, the following notation is adopted:

If FORMULA is an arbitrary VL;, expression then V: FORMULA assigns name V to the FORMULA.
If FORMULA is a VL3 expression containing quantified variables P).Py,.... P, and V is the name of the
expression, then

P -V

denotes the quantified variable P; in the FORMULA.
The latter construct enables one to refer in one expression to quantified variables inside of other expres-

sions.

546 MICHALSKI

APFENDIX 2

COutline of the Top Level Algorithm of INDUCE 1.1.

1. At the first step, the data rules whose condition parts are in the disjunctive simple forms are transformed
to a new set of rules, whose condition parts are in the form of c-expressions. A4 c-expression (@ comjunctive
expression} is a product of selectors accompanied by zero or more quantifier forms, i.e., forms QFx;.x3.....
where QF denotes a quantifier. (Note, that due to the use of the internal disjunction and quantifiers, a c-
expression represents a more general concept than a conjunction of predicates.)

2. A generalization class is selected, say K;, and all c-expressions associated with this class are put into a set
F1, and all remaining c-expressions are put into a set FO (the set Fl represents events to be covered, and
set FO represents constraints, i.e., events not to be covered),

3. By application of inference rules representing background knowledge and constructive generalization rules,
new selectors are generated. The most promising selectors (according to the preference criterion} are
added 1o the c-expressions in F1 and FO.

4. A c-expression is selected from F1, and a set of consistent generalizations (a restricted star) of this expres-
sion is generated (Michalski and Stepp [1982]). This is done by starting with single selectors (called
'seeds’), selected from this c-expression as the most promising ones (according to the preference cri-
terion). In each subsequent next step, a new selector is added to the c-expression obtained in the previ-
ous step (initially the seeds). until a specified number (parameter NCONSIST) of consistent generaliza-
tions is determined. Consistency is achieved when a c-expression has NULL intersection with the set
FO. This "rule growing” process is illustrated in Fig. A2.

5. The obtained c-expressions, and c-expressions in FO, are transformed to two sets E1 and EO, respectively,
of VL, events {i.e., sequences of values of certain discrete variables),

A procedure for generalizing VL, descriptions is then applied to obtain the ‘best cover’ (according to a
user defined criterion) of set El against EQ (the procedure is a version of AQVAL/1 program Michalski
and Larson [1978]).

During this process, the exrension against, the closing the interval and the climbing generalization tree rules
are applied.

The result is transformed to a new set of c-expressions (a restricted star) in which selectors have now
appropriately generalized references.

6. The "best’ c-expression is selected from the restricted star.

7. If the c-expression completely covers F1, then the process repeats for another decision class, Otherwise,
the set FI is reduced to contain only the uncovered c-expressions, and steps 4 to 7 are repeated for the
same generalization class.

The implementation of the inductive process in INDUCE-1.1 consists of a large collection of specialized
algorithms, each accomplishing certain tasks. Among the most important tasks are:

INDUCTIVE LEARNING 547

1. “Growing™ rules.

2. Testing whether one c-expression is a generalization of (‘covers’) another c-expression. (This is done by
testing for subgraph isomorphism}.

3. Generalizating a c-expression by extending the selector references and forming irredundant c-expressions
{(includes application of AQVAL/] procedure).

4. Generating new descriptors and new selectors.

Program INDUCE 1.1 has been implemented in PASCAL (for Cyber 175) its description is given in (Lar-
son [1977] and Dietterich [1978]).

548

MICHALSKI

/ .- o
'\o\o

o

0= a disgarded c-rule

® - an active c-rule
B - a terminal node denoting a consistent e-rule

Each arc represents an operation of adding a new selector to a c-rule,

The branching factor is determined by parameter ALTER. The number of active
rules (which are maintained for the next step of the rule growing process) is specified by
parameter MANSTAR. The number of terminal nodes (consistent generalizations) which
program attempts to generate is specified by parameter NCONSIST.

lHustration of the rule growing process
(an application of the dropping selector rule in the reverse order}

Figure A2

INDUCTIVE LEARNING 549

References

Banerji [1977]
R.B. Banerji, **Learning in structural description languages,” Temple University Report to NSF Grant MCS
76—0-—200 (1977).

Biermann [1978]
A.W. Biermann, “'The inference of regular LISP programs from examples,”” IEEE Trans. on Systems, Man, and
Cybernetics, Vol. SMC—8(8) (Aug. 1978) pp. 585—600.

Biermann and Feldman [1972]
A.W. Biermann and J. Feldman, **Survey of Results in Grammatical Inference.” in Frontiers of Pattern Recogni-
tion, Academic Press, Inc., New York (1972), pp. 31354,

Brachman [1978]
R.T. Brachman, "'On the epistomological status of semantic networks,” Report No. 3807, Bolt, Beranek and
Newman (April 1978).

Burstall and Darlington [1977]
R.M. Burstall and J. Darlington, **A transformation system for developing recursive programs,” J4CM. Vol

24, No. 1(1977) pp. 44—67.

Carnap [1962]
R. Carnap, “*The aim of inductive logic.” in Logic, Methodology and Fhilosophy of Science, E. Nagel, P. Suppes,
and A. Tarski, eds., Stanford, California: Stanford University Press (1962) pp. 303 —318.

Cohen [1977]
B.L. Cohen, “*A powerful and efficient structural pattern recognition system,” Artificial Intelligence, Vol. 9,

No. 3 (December 1977).

Coulon and Kayser [1978]
D. Coulon and D. Kayser, *“*Learning criterion and inductive behavior.” Pattern Recognition, Vol. 10, No. 1, pp.

19—-25 (1978).

Davis [1976] .
R. Davis, "*Applications of Meta-level knowledge to the construction, maintenance, and use of large knowledge
bases,"’ Report No. 552, Computer Science Department, Stanford University (July 1976).

Diday and Simon [1976]
-E. Diday and J.C. Simon, **Clustering Analysis,”” in Communication and Cybernetics 10, Ed. K.S, Fu, Springer-

Verlag, Berlin, Heidelberg, New York (1976).

Dietterich [1980]
T.G. Dieuerich, **A methodology of knolege layers for inducing descriptions of sequentially ordered events,”™

Report No. 80— 1024, Department of Computer Science, University of lllinois {(May 1980).

Dieuerich [1978]
T. Dietterich, **Description of Inductive program INDUCE 1.1,”" Internal Report, Department of Computer
Science, University of [llinois at Urbana-Champaign (October 1978).

350 MICHALSKI

Dietterich and Michalski [1979]

T. Dietterich and R.5. Michalski, *‘Learning and generalization of characteristic descriptions: Evaluation criteria
and comparative review of selected methods,” Proceedings of the Sixth International Joint Conference on
Artificial Intelligence, pp. 223231, Tokyo (August 20—23, 1979).

Fikes, Hart and Nilsson [1972]
R.E. Fikes, R.E. Hart, and N.J. Nilsson, “*Learning and executing generalized robot plans,” Artificial Intelli-
gence 3, (1972).

Hayes-Roth [1976]
F. Hayes-Roth, **Patterns of induction and associated knowledge acguisition algorithms,”™ Pattern Recognition
and Artificial Intelligence, ed. C. Chen, Academic Press, New York (1976).

Hayes-Roth and McDermott [1978]
F. Hayes-Roth and J. McDermott, **An interference matching technique for inducing abstractions,’” Communi-
cations of the ACM, No. 5, Vol. 21, pp. 401—411 (May 1978).

Hedrick [1974]
C.L. Hedrick, "*A computer program to learn production systems using a semantic net,”” Ph.D. Thesis, Depart-
ment of Computer Science. Carnegie-Mellon University, Pittsburg (July 1974).

Jouannaud and Kodratoff [1979]

J.P. Jouannaud and Y. Kodratoff, **Characterization of a class of functions svnthesized from examples by a
Summers-like method using a B.M.W. matching technique,” Sixth International Joint Conference on Artificial
Frtelligence Tokvo (1979) pp. 440—447.

Larson [1977]

J. Larson. “INDUCE-1: An interactive inference program in VLj Jogic system.” Report No.
UIUCDCS~R—77—876, Department of Computer Science, University of Illinois, Urbana, Hiinois (May
1977).

Larson and Michalski [1977]

J. Larson and R.S. Michalski, “Inductive inference of VL decision rules.”" Proceedings of the Workshop on
Pattern-Directed Inference Systems, Honolulu, Hawaii, (May 23—27, 1977) SIGART Newsletter. No. 63 (June
1977).

Lenat [1976] 4
D. Lenat. "AM: An artificial intelligence approach to discovery in mathematics as heuristic search,"” Computer
Science Department, Report STAN=CS~76—570, Stanford University (July 1976}.

Michalski [1980]

R.5 Michalski, “‘Knowledge acquisition through conceptual clustering: A theoretical framework and an algo-
rithm for partitioning data into conjunctive concepts, special issue on knowledge acquisition and induction,™
Inter. Journal on Policy Analysis and Information Systems, No. 3, 1980. (Also, Report No. 80— 1026, Depart-
ment of Computer Science, University of [llinois, May 1980.)

Michalski [1980]
R.5. Michalski, “"Pattern recognition as rule-guided inductive inference,” 1EEE Trans. on Pattern Analysis and
Machine Intelligence (July 1980).

INDUCTIVE LEARNING 551

Michalski [1978]
R.S. Michalski, “‘Pattern recognition as knowledge-guided computer induction.™ Report No. T8—927, Depart-
ment of Computer Science, University of lllinois, Urbana, Illinois (June 1978).

Michalski [1973]

R.5. Michalski, "' AQVAL/1—Computer implementation of a variable-valued logic system and the application to
pattern recognition,” Proceedings of the First International Joint Conference on Pattern Recognition, Washington,
D.C., {October 30— November 1, 1973).

Michalski and Chilausky [1980]
R.5. Michalski and R.L. Chilausky, “‘Learning by being told and learning from examples,” Policy Analysis and
Informatrion Systems, Special Issue on Knowledge Acquisition and Induction, No.2 (1980)

Michalski and Larson [1978]

R.5. Michalski and J. Larson, “‘Selection of most representative training examples and incremental generation
of VL, hypotheses: the underlying methodology and the description of programs ESEL and AQ11,"” Report No.
UIUCDCS—R—78—867, Department of Computer Science, University of Illinois, Urbana. Illinois {May
1978).

Michalski and Stepp [1982]
R.S. Michalski and R. Stepp, “‘Revealing conceptual structure in data by inductive inference.”” In: Machine
Intelligence 10, D. Michie, J.E. Hayes, Y.H. Pao (Eds.). Ellis Horwood, Ltd., New York, 1982, pp. 173 —196.

Michie [1977]
D. Michie, **New face of artificial intelligence." Informarion 3 (1977) pp. 5—11.

Mitchell [1978]
T.M. Mitchell, **Vernion spaces: An approach to concept learning.,”” Doctor of Philosophy Thesis, Stanford

University (1978).

Morgan [1975]
C.G. Morgan, "*Automated hypothesis generation using extended inductive resolution,” Advance Papers of the

4th International Joint Conference on Artificial Intelligence, Vol. I, Thilisi, Georgia (September 1975) pp.
351—356. '

Pettorossi [1980]
A. Pertorossi, “*An algorithm for reducing memory requirements in recursive programs using annotations,”

IBID.

Shaw, Swartout, and Green [1975]
D.E. Shaw, W.R. Swartout, and C.C. Green, “‘Inferring Lisp programs from examples,”” Proceedings of the 4th
International Conference on Artificial Intelligence, Vol 1, pp. 351 — 356, Thilisi (Sept. 1975).

Shoruliffe [1974]
E.G. Shortliffe, "*A rule based computer program for advising physicians antimicrobial therapy selection,”
Ph.D. Thesis, Computer Science Department, Stanford University (Oct. 1974).

Smith [1980]
D.R. Smith. "*A survey of the synthesis of LISP programs from examples,” International Workshop on Pro-

gram Construction, Bonas {(Sept. 1980).

552 MICHALSKI

Simon and Lea [1973]
H.A. Simon and G. Lea, “‘Problem solving and rule induction: A unified way,” Carnegie-Mellon Complex
Information Processing Working Paper No. 277, Revised June 14, 1973,

Stepp [1978]
R. Stepp, “The investigation of the UNICLASS inductive program AQTUNI and user’s guide,” Report No.
949, Department of Computer Science, University of Illinois, Urbana, Illinois (November 1978).

Vere [1975]
5.A. Vere, “Induction of concepts in the predicate calculus,”™ Advance Papers of the 4th International Joint
Conference on Artificial Intelligence, Val. I, pp. 351356, Thilisi, Georgia (September 1975).

Winston [1970]
P.H. Winston, *‘Learning structural descriptions from examples,” Technical Report Al TR—231, MIT Al Lab,
Cambridge, Massachusetts (1970).

Yau and Fu [1978]
K.C. Yau and K.S. Fu, “‘Syntactic shape of recognition using attributed grammars,” Proceedings of the Sth
Annual EIA Symposium on Automatic Imagery Pattern Recognition (1978).

il

th

W

