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Abstract

SECURING THE HARDWARE SYSTEM STACK

Abhijitt Dhavlle, PhD
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Dissertation Director: Dr. Sai Manoj PD

Computing systems have come a long way concerning speed, performance, optimization,

and security. The state-of-the-art designs are deployed in the real world, targeting a va-

riety of applications. The hardware security domain has experienced various attacks that

proved a serious threat to computing systems. It is given that the underlying vulnerabilities

in the system cannot be eradicated given the cost and design constraints. Attacks could

differ based on the architectural component they target; Cache side-channel attacks, like,

Flush+Reload, Prime+Probe, RowHammer, etc.; Malware-based attacks with reinforced

evasion techniques; and Hardware Trojans that can camouflage and decipher sensitive in-

formation are all on the rise in the recent times. With the recent adaptation and pervasive-

ness of Machine Learning and Deep Learning techniques for improved performance and a

better user experience, Hardware attacks have been improvised, too. This thesis focuses on

development of hardware-assisted security defenses against malware, cache-targeted side-

channels, and hardware Trojans.

Software-based malware detection have certain limitations such as performance over-

head, requiring modification to software application, vulnerability to exploits, and so on;



to mitigate the limitations incurred by the traditional software-based malware detection

techniques, Hardware-assisted Malware Detection (HMD) using machine learning (ML)

classifiers has emerged as a panacea to detect malicious applications and secure the systems.

To classify benign and malicious applications, HMD primarily relies on the generated low-

level microarchitectural events captured through Hardware Performance Counters (HPCs).

The dissertation discusses about an adversarial attack on the HMD systems to tamper the

security by introducing the perturbations in the HPC traces with the aid of an adversarial

sample generator application. We first deploy an adversarial sample predictor to predict

the adversarial HPC pattern for a given application to be misclassified by the deployed

ML classifier in the HMD. Further, as the attacker has no direct access to manipulate the

HPCs generated during runtime, based on the output of the adversarial sample predictor,

we devise an adversarial sample generator wrapped around a normal application to produce

HPC patterns like the adversarial predictor HPC trace. With the proposed attack, malware

detection accuracy has been reduced to 18.04% from 82.76%. To render the HMD robust

against the attack, a hardening technique is proposed and evaluated. Hardening refers to

the retraining of the HMD on adversarial samples to offer robustness against performance

degradation; With hardening, the HMD performance is restored to 81%.

Many of the side-channel attacks target cache memories. To mitigate the attack, this

thesis presents a random yet cognitive side-channel mitigation technique that is indepen-

dent of the underlying architecture and/or operating system. In contrast to the existing

randomization-based side-channel defenses, we introduce a cognitive perturbation-based de-

fense, Covert-Enigma, where the introduced perturbations look legit but lead to an incorrect

observation when interpreted by the attacker. To achieve this, the perturbations are in-

jected at appropriate time instances to introduce additional operations, thereby misleading

the attacker making the extracted data futile. To further make the attack more intricate

for the attacker, the proposed Covert-Enigma offers two modes of operation, chosen by the

user, to determine the kind of induced cognitive perturbations - arbitrary and cyclic modes.

The cognitive perturbations are introduced in a wrapper application to the victim, thus



imposing no requirements on architectural level modifications nor soft updates/edits to

the operating system. We report an evaluation of the proposed Covert-Enigma protecting

RSA cryptosystem attacked by Flush+Reload crypto side-channel attack.

Offshore chip manufacturing adds a potential risk of hardware malware embedding.

Interconnection networks for multi/many-core processors or server systems are the system’s

backbone as they enable data communication among the processing cores, caches, memory,

and other peripherals. Given the criticality of the interconnects, the system can be severely

subverted if the interconnection is compromised. Even by deploying naive hardware Trojans

(HTs), an adversary can exploit the Network-on-Chip (NoC) backbone of the processor and

get access to communication patterns in the system. This information can reveal important

insights regarding the application suites running on the system, thereby compromising user

privacy, and paving the way for more severe attacks on the entire system. In the dissertation,

we demonstrate that one or more HTs embedded in the NoC of a multi/many-core processor

can leak sensitive information regarding traffic patterns to an external malicious attacker,

who, in turn, can analyze the HT payload data with machine learning techniques to infer

the applications running on the processor. Furthermore, to protect against such attacks,

we propose a Simulated Annealing-based randomized routing algorithm in the system. The

proposed defense can obfuscate the attacker’s data processing capabilities to infer the user

profiles successfully. Our experimental results demonstrate that the proposed randomized

routing algorithm could reduce the attacker’s accuracy of identifying user profiles from >

98% to < 15% in multi/many-core systems.



Chapter 1: Introduction

1.1 Motivation

Computing systems since their origin have evolved and become pervasive in different fields

of technology, extensively. The computing systems have evolved in regards to speed, per-

formance, optimization, and security. In a computer architecture, evolution like the cache

subsystem, branch prediction, faster memories have contributed to the speed and perfor-

mance aspect; various algorithms towards the optimization aspect; while the security aspect

was somewhat addressed in the software side of the system. Contributing researchers and

industry designers have invested laborious efforts to maintain the pace of such an evolution

given the avaricious demands of the state-of-the-art trends in technology. Yet, in recent

decade, the computing system discipline has witnessed a diverse range of attacks, targeting

both software and hardware, exploiting the underlying vulnerabilities in the systems [6–12].

Let us consider the stack as shown in Figure 1.1. The hardware stack comprises of all

the physical components of the computer architecture, like, the branch predictor, memories,

processor, cache, etc.; the software stack consists of the operating system or the kernel that

collaborates with the hardware to support the application layer, where user-level software

is executed. The software components, given certain vulnerabilities, has been susceptible to

various exploits. But, since a decade, adversaries have used exploits to jeopardize computing

systems by attacking the hardware [6–8, 13–20]. The vulnerabilities exist in the hardware

inherently, and not created intentionally [6–8]. These attacks severely put our systems,

and hence data, at increased risk of breach. It is, therefore, imperative that the hardware,

in combination with the software, needs to be protected against such attacks. Hence, the

hardware security domain has evolved as a panacea to protect against the attacks.

Research works, thus far, have focused on either protecting the software stack or the
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hardware stack. This has certain limitations. For example, a software mitigation in place

could be overcome by one or multiple types of hardware exploits. An aggressive hardware

mitigation, on the contrary, can lead to unreasonable overheads and performance drawbacks.

To resolve this issue, solutions providing a golden balance - a mix of both the strategies - is

mandated. The top threats that have proliferated in the recent decade are Malware, Side-

Channel Attacks, and Hardware Trojan. Therefore, this thesis presents a comprehensive

discussion on the three threats, their capability to disrupt the security barriers, and a

proposed solution for each of the threats.

• Malware Attack: According to some Cybersecurity threat reports [21,22], it can be

seen that the Malware threats have increased manifold over the years. Adversaries

created not only novel malwares but also embedded sophisticated evasion techniques

and enhanced disruption capabilities.

• Side-Channel Attack: Side-Channel attacks like Prime+Probe [23], Flush+Reload

[7], and Flush+Flush [8] exploit the inherent vulnerability in the computing systems

leading to data leaks. Prime+Probe is capable of deciphering the cache mapping of

the victim process, causing data leaks; Flush+Reload works on the LLC cache and

does not need to ‘prime’ the cache. It is capable of stealing the data by monitoring the

cache access time of the flushed location. Flush+Flush supersedes the previous two

by merely flushing the data, thus deciphering the location of the targeted information.

• Hardware Trojan: Offshore chip manufacturing led to the exposure of sensitive

design information to adversaries. Hardware Trojans, embedded inside the chip, are

capable of a multitude of attacks, like, denial-of-service, disrupting the functionality,

corruption of sensitive information, targeted attack, etc. [13–20]. Some of the reports

[24,25] of real-world hardware Trojan attacks have shown the disruptive nature of the

threat.

With the above discussed threats and their features, it becomes necessary to propose

mitigation strategies against such threats. Moreover, the performance overhead of such
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mitigation must be within limits. In this thesis, I will be presenting my research works

accomplished to address some of the exploits in software and hardware stack. I first present

my research on malware detection, followed by side-channel attacks, and hardware Trojans.

Ongoing research on topics like data augmentation for hardware Trojan, side-channel attack,

RGRA-based CNN on FPGA, and attack/defense for neuromorphic DNN network is pre-

sented in the future works section. A brief introduction to malware detection, side-channel

attacks, and hardware Trojan is presented next along with their contributions.

1.2 Contributions

Software-based Malware detection has been a popular conventional method. But, due to

certain limitations, Machine Learning based detection that use hardware attributes evolved.

The work proposes an adversarial attack on HMDs (Hardware-based Malware Detectors) in

which the adversarial samples are generated through a benign code that is wrapped around

a benign or malware application to produce a desired output class from the embedded

ML-based malware detector. One of the main challenges to address is that the attacker or

user has no direct access to modify the HPC and furthermore, manipulation of HPCs is

highly complex to perform despite employing techniques like code obfuscation for executing

malware [26,27].

Firstly, we assume the victim’s defense system to be a blackbox and perform reverse

engineering to mimic the behavior of the embedded HMD or other security system and

build a ML classifier. In order to determine the required number of HPCs to be generated

through the application to be misclassified, we employ an ‘adversarial sample predictor ’

which predicts the number of HPCs to be generated to misclassify an application by the

HMD. As aforementioned, the HPCs cannot be modified directly by the attacker, as such we

craft an ‘adversarial HPC generator ’ application (code) that generates the required number

of HPCs. The adversarial HPC generator application is wrapped around the application

that needs to be misclassified. The main focus of this work is to create false alarms (malware

classified as benign and benign classified as malware) in order to weaken the trust on the
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embedded defenses, which increases the scope for attacks.

The proposed work benefits from the following:

• No need to tamper or modify the source code of the application around which the

proposed adversarial sample generator code will be wrapped (i.e., executed in parallel).

• The crafted application has no malicious features embedded, thus not detectable by

ML malware detectors.

• Scalable and flexible i.e., the crafted application can generate events as required to

generate powerful adversary.

We previously discussed that the hardware stack is inherently vulnerable. Side-channel

attack is a pivotal issue that functions by exploiting the vulnerabilities in the stack. Hence,

this thesis presents a mitigation approach for cache-based side-channel attacks. In Covert-

Enigma the victim application is coupled with a shield application that induces cognitive

perturbations in the cache-access information. In Covert-Enigma, we induce cognitive per-

turbations in the victim’s cache operations by executing dummy instructions that leave the

victim’s functionality unaltered yet scrambling the sequence observed by the attacker. As

they are crafted to look legit when interpreted, we call them ‘cognitive perturbations’ in

this work. The perturbations that cause scrambling of the observed leakage cannot be a

simple random access or an arbitrary cache access operation as they would be trivial for the

adversary to filter out as they do not translate to meaningful information when decrypted.

Our proposed Covert-Enigma tenders user-tunable parameters to offer the user with

flexibility to fine-tune the level of complexity of the injected perturbations. Arbitrary and

Cyclic are two operational modes that a user can select for its victim application. The

arbitrary mode perturbs one or more bits cognitively in the sequence of operations chosen

at runtime, whereas the cyclic mode selects bit(s) and then keeps perturbing1 the same bits

for a few execution cycles as determined by the user, post which the bit position changes.

The cardinal contributions of this work are:
1Perturbation or cognitive calls refer to dummy cache accesses that leads to meaningful decryption, yet

incorrect
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• Contrary to the existing works, the proposed Covert-Enigma enforces security on

the covert channel by injecting cognitively crafted perturbations that imitate legit

operations yet mislead the attacker.

• Render the attack more laborious by providing two modes of operation, Arbitrary and

Cyclic, thus offering more flexibility in terms of the defense.

• Evaluate and compare the benefits of the proposed Covert-Enigma in terms of over-

head and performance based on the key size, mode of operation, user-tunable param-

eters, and the number of bits recovered post attack on the victim.

The last chapter in this thesis discusses machine learning-assisted hardware-based mal-

ware attack and its proposed countermeasure. The Trojan is embedded in the NoC (Network-

on-chip), a hardware component, responsible for carrying data traffic between various other

hardware blocks. Considering the critical role played by the NoCs, embedding a HT that ex-

ploits the interconnection backbone can reveal the communication patterns in the system.

This information when leaked to a malicious attacker can reveal important information

regarding the application suites running on the system, thereby compromising the user

profile. This information in turn, can enable further more severe attacks not just on the

multi/many-core processor infected with the HT, but on the systems on which they are

deployed. For instance, an adversary obtaining secure military information through a HT

deployed in a router can subvert the military backbone, thus leading to a compromise of

the national security [28].

In this regard, we first introduce a lightweight NoC-based HT, which, in its simplistic

form, is a simple counter, which, when inserted in one or a few switches of the NoC can

count the number of packets traversing the specific switches over a time window. The HT

can then periodically, packetizes this count and send it to an external attacker program for

payload analysis, severely compromising user profile confidentiality. This packetized count,

which is the HT payload, can be subsequently analyzed by the external attacker using

data processing techniques to infer the applications running on the system. To analyze the
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retrieved information, the attacker trains a sophisticated Machine Learning (ML) algorithm,

that can create training samples and maps packet traversal frequencies at specific switches

to the application suites. We are able to demonstrate that the application suites running in

the system can be detected with only 4 or 8 counter-based HTs with more than 98% accuracy

using ML techniques. This is possible because specific routing protocols are proposed for

these particular system configurations, which when adopted result in application-specific

traffic patterns. Therefore, observing the traffic patterns with the help of the HTs can

enable inferring the application(s) being executed in the system.

In order to defend against such a HT, we propose a novel Simulated Annealing (SA)-

based randomized routing algorithm for the NoC which can obfuscate the HT-based attack

discussed above. SA is a type of genetic algorithm that allows sub-optimal traversal of the

search space for optimization to avoid being stuck in local optima [29]. Random packet

routing over the interconnection can severely degrade performance of the system due to

packets not being routed over shortest paths. Therefore, instead of simply adopting random

routing, we propose a parameterized SA-based approach that can be tuned to achieve a

desired trade-off between the defense against the attack and loss in performance. Due to

SA-based random routing, the path for each packet is unpredictable and therefore, makes

the mapping of packet traversal frequency through specific switches and corresponding

applications unreliable. We demonstrate through cycle-accurate simulations that this SA-

based randomized routing can reduce the effectiveness of the attack. To the best of our work

knowledge, this work is a first of its kind where it is shown that by monitoring traffic patterns

in a NoC through HTs the user profile can be compromised; and defended the system against

such an attack with controlled random routing.

1.3 Flow of the Dissertation Proposal

The flow of the proposal is as follows: Chapter 2 discusses all the previous works related to

the contributions made in this proposal; Chapter 3 discusses the Hardware-based Malware

Detection, followed by Chapter 4 contributed to the proposed mitigation of Side-Channel
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Attacks; Chapter 5 presents an attack and defense for Network-on-chip (NOC) embedded

Hardware Trojan. Finally, the conclusion and future works are discussed in Chapter 6.
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Chapter 2: Related Works

The chapter is dedicated to discussing the state-of-the-art works related to the research

projects discussed in this proposal. First, I will discuss the related works for hardware-

based malware detection, followed by the related works for side-channel attack, and, finally,

the hardware Trojan attack and defense for NOCs, followed by the limitation of the previous

works. A detailed survey on Hardware Trojan is included at the end of this chapter.

2.1 Hardware-based Malware Detection

This section discusses past works that have exploited HPCs for detecting application anomaly

and differentiate malware against benign. Work in [27] was the first of its kind to use HPCs

with ML-models for malware detection, but it does not mention runtime detection of mal-

ware with a limited number of features for resource-constrained systems. In [30, 31], au-

thors have exploited information from HPCs to detect anomalies in the system attacked by

ROP (return-oriented programming) and buffer overflow attacks by employing unsupervised

learning which can be effective but requires complex hardware and software implementation

with their overheads also. Work in [32] implements a single ML-classifier and demonstrated

results to support their claim in detecting malware with high accuracy and performance,

but it required 8 and higher HPCs to achieve the results, which is not feasible on small sys-

tems with fewer resources. Our previous work in [33] also includes analysis with 8 HPCs but

only to show that higher HPCs may result in higher accuracy for some classes of malware,

but runtime detection becomes difficult with 8 or higher HPCs in systems with less than 8

HPCs. Hence, we have also included results with 4 HPCs only and boosted the accuracy

with ensemble learning.

Panorama [34] uses an emulated environment and monitors hardware resources utilized
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by the malware application by building a control flow graph. For detection to successfully

happen, the proposed technique has to monitor applications within the emulation envi-

ronment. The drawback of such a technique is that the attacker can craft malware that

modifies the control graph such that it simulates the behavior of a benign application. Also,

the malware can remain ’silent’ until one cycle of detection is in progress, which means that

the proposed method is not sufficiently resilient to the malware. In our work, irrespective

of whether the malware is silent or not, as long as it executes at least once, HMD-Hardener

will be able to detect it as our detection approach is based on capturing HPCs which no

application -malware or benign- can evade. Work in [35] is of interest to us as it proposes to

craft malware that does not alter any component of the operating system, thus thwarting

any signature, behavior, or integrity checking defense mechanism or anti-virus program.

Rather it relies on hardware state modifications to perform the attack. The paper vividly

mentions that a defense mechanism that supports hardware integrity checks can successfully

thwart the proposed attack. This drives us to the conclusion that using HPCs in HMDs

will surely dissuade even such kinds of malware as ’Cloaker’ [35].

Authors in [36] have proposed to use data obtained from HPCs to construct Singu-

lar Value Decomposition (SVD) matrix and then using different ML-classifiers to detect

malign/benign. The paper clearly mentions that using hardware events is beneficial than

software-based detection approaches as malware cannot compromise hardware events. But

the work lacks to test the resiliency of the proposed methodology under attack by malware

that can generate fake hardware events, thus derailing the entire foundation of the defense.

Our work addresses this issue where we (as previously described) assume the role of an

attacker, craft a next-generation malware and successfully profess that such malware can

degrade the performance of HMDs. To provide a panacea to such next-generation malware

attacks, we have also described in this work and included results for next-generation (aka

adversarial) malware hardened HMD.

Work in [37] has exploited HPC data with different machine learning classifiers to pro-

pose ML-based HMD. The work describes the steps involved in building the ML-based
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HMD and has included results of classification based on the number of HPCs used for

classification.

2.2 Side-Channel Attacks

In order to secure the hardware systems against cache-side channel attacks, various defense

techniques have been proposed that use different strategies. To address the challenges of

cache-targeted SCAs, techniques such as static cache partitioning [2, 38], partition locked

cache [1], non-monopolizable (nomo) cache architectures [39] and other defenses [2,38,40,41]

are proposed. These techniques can tremendously reduce the interference between the

attacker and victim’s memory access, thereby providing a better defense. However, adopting

such techniques require alterations in the cache design which may not be feasible [2]. To

overcome such limitations, techniques such as cache-partitioning, randomization of cache

architectures are introduced. Conventional fully associative cache is one of the preliminary

randomization based cache, where a memory line can be mapped to any of the existing

cache lines. Similarly, any of the cache lines can be evicted in random, thus, preventing the

leakage of cache-access information. Despite its security benefits, this technique incurs large

delays and is power hungry [2]. In a similar way, random permutation cache [1], newcache

[4, 42], random fill cache [3], and random eviction cache [2] strategies are implemented.

Compared to the cache-partitioning, the randomization based solutions have shown higher

robustness, yet the above mentioned methods require modifications to the hardware and/or

software and incurs performance penalties. We discuss the most relevant and prominent

ones in this section.

2.2.1 Cache Partitioning Based Defenses

These defenses are based on eliminating the cache interference between the running pro-

cesses. This way, running processes cannot snoop on each others’ cache activity. He et al., [2]

proposed to protect sensitive cache access (e.g., coming from sensitive data/operation) by

reserving dedicated cache sets for those sensitive accesses. Thus, the sensitive cache access
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will always index to the dedicated sets and all other cache access, including cache access from

other running processes or threads will index to the rest of the cache sets. As the mapping

from memory to a cache set involves the physical memory address, the proposed solution

utilizes the operating system to organize physical memory into non-overlapping cache set

groups, also called colors, and to enforce isolation policy on these groups. However, this ap-

proach leads to inefficient resource utilization and hardware overheads. Vladimir Kiriansky

proposed dynamically allocated way guard (DAWG) [43], a generic mechanism for secure

way partitioning of set associative structures including memory caches. DAWG endows a set

associative structure with a notion of protection domains to provide strong isolation. When

applied to a cache, unlike existing quality of service mechanisms such as Intel’s Cache Allo-

cation Technology (CAT), DAWG fully isolates hits, misses, and metadata updates across

protection domains. DAWG enforces isolation of exclusive protection domains among cache

tags and replacement metadata, as long as: 1) victim selection is restricted to the ways

allocated to the protection domain (an invariant maintained by system software), and 2)

metadata updates as a result of an access in one domain do not affect victim selection in

another domain (are requirement on DAWG’s cache replacement policy). DAWG protects

against attacks that rely on a cache state-based channel, which are commonly referred to as

cache-timing attacks, on speculative execution processors with reasonable overheads. The

same policies can be applied to any set associative structure, e.g., TLB or branch history

tables. DAWG requires additional techniques to block exfiltration channels different from

the cache channel. Nonetheless, cache partitioning based defenses lead to hardware as well

as performance overhead.

SGX Enclave Protection: Furthermore, Oleksenko et al. proposed Varys [44], a system

that protects unmodified programs running in SGX enclaves from cache timing and page

table SCAs. The Varys takes a pragmatic approach of strict reservation of physical cores

to security-sensitive threads, thereby preventing the attacker from accessing shared CPU

resources during enclave execution. This execution environment ensures that neither time-

sliced nor concurrent cache timing attacks can succeed. Due to the lack of appropriate
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hardware support in today’s SGX hardware, Varys remains vulnerable to timing attacks on

Last Level Cache (LLC). The paper also proposes a set of minor hardware extensions that

hold the potential to extend Varys’ security guarantees to L3 cache and further improve its

performance. But the downside is it requires the application to monitor the SSA (SGX State

Save Area) value, thus increasing the overhead and it introduces a window of vulnerability.

3D Integration: Chongxi Bao et al. in [45] show that 3D integration also offers inherent

security benefits and enables many new defense mechanisms that would not be practical in

2D. The work is compatible with the ongoing trend of transition from 2D to 3D and enables

designers to take security into account when designing future cache using 3D integration

technology. Experimental results show that using their cache design, the side-channel leak-

age is significantly reduced while still achieving performance gains over a conventional 2D

system.

Intel Cache Allocation Technology (CAT): Xiaowan Dong et al. present in [46] de-

fenses against page table and last-level cache (LLC) side-channel attacks launched by a

compromised OS kernel. They prototyped the solution in a system call Apparition, building

on an optimized version of Virtual Ghost. To thwart LLC side-channel attacks, it leverage

Intel’s CAT in concert with techniques that prevent physical memory sharing. Apparition’s

control over privileged hardware state can partition the LLC to defeat cache side-channel

attacks. Their defense combines Intel’s CAT feature (which cannot securely partition the

cache by itself) with existing memory protections from Virtual Ghost to prevent applications

from sharing cache lines with other applications or the OS kernel. Similarly, authors in the

paper [47] propose to utilize CAT (cache allocation technology) in Intel processors to pro-

vide a system-level protection to defend against SCAs on shared LLC. CAT is a way-based

h/w cache-partitioning mechanism for enforcing quality to LLC occupancy. ‘CATalyst’

uses CAT to partition the LLC securely into a hybrid hardware-software managed cache to

defend against SCAs.
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2.2.2 Randomization Based Defenses

To overcome limitations of hardware oriented approaches, randomizing the memory access

is introduced in [1], thus, making the attack much harder, even impossible. For instance,

[2] uses random memory-to-cache mappings. There is a permutation table for each process,

which enables a dynamic memory address to cache set mappings. This makes the attacker

hard to evict a specific memory line of the victim process. However, maintaining the

mapping and updating mapping tables penalizes performance. It can also use software

based compiler assisted approach to transform applications to randomize its memory access

patterns.

Control Flow Randomization: Stephen Crane et al. in [5] explore software diversity as

a defense against side-channel attacks by dynamically and systematically randomizing the

control flow of programs. Existing software diversity techniques transform each program

trace identically. This diversity based technique instead transforms programs to make each

program trace unique. This approach offers probabilistic protection against both online

and off-line side-channel attacks. It extends previous, mostly static software diversification

approaches by dynamically randomizing the control flow of the program while it is running.

Rather than statically executing a single variant each time a program unit is executed, they

created a program consisting of replicated code fragments with randomized control flow to

switch between alternative code replicas at runtime.

2.2.3 Detection Based Defenses

Computational Anomaly Detection: Work in [48] give an overview of the attacks on

hardware, including the SCAs, and describes the panacea to thwart such attacks and secure

the hardware. Sanket et al. in [49, 50] have proposed a unique methodology in detecting

even stealthy malwares with hardware performance counters and image processing along

with RNN-based ML to assist the detection process.

SCA Detection in the Cloud: Zhang et al. in [51] present an architecture where cores

(processors) equipped with specialized signature detection techniques are employed to detect
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SCAs based on the hardware performance counters (HPCs) these attacks generate in a

system. Taesoo Kim et al. present in [52] a system-level protection mechanism against

cache-based SCAs in the cloud named as ‘STEALTHMEM’. This mechanism protects cache

from unauthorized access by managing a set of locked cache lines per core that are never

evicted from the cache. Thus, any virtual machine (VM) can hide its sensitive information

from others. Work in [53] presents ‘StopWatch’ a system that defend against SCAs in cloud

environment by triplicating each cloud-resident VM and using the timing of the I/O events

at the replicas to determine the timings observed by each replica or the attacker. Shi et

al. in their work in [54] propose a technique, they name as dynamic cache coloring, which

notifies the VM when an application is executing secure-sensitive operations to swap the

associated data to a safe an isolated cache line to protect the same against SCA attack by

limiting its access. They presented the technique for multi-tenant based cloud environment.

2.3 Hardware Trojan Attack Related Works

Several researches have explored the design of HTs in NoC components like switches, links,

and network interfaces (NIs) that can snoop or tamper the data in a NoC to launch a Denial

of Service (DoS), data snooping, and performance degradation attacks. Although, such HTs

pose major security threats to modern multi/many processor System-on-Chips (MPSoCs);

post silicon detection of such HTs through physical inspection [55], functional testing[56],

and/or side channel analysis [57] are challenging due to the increasing complex design and

long manufacturing chains of the MPSoCs. Thus, most of the existing research focuses on

designing solutions for mitigating the effect of these HTs. In [58] authors proposed a bit

shuffling based encoding mechanism inside the NoC switches to counter HTs that mislead

packets away from the destination cores to manifest a performance degradation attack. As

a safegaurd against snooping attack to leak sensitive information by the HTs implanted

in the NIs, authors in [59] also proposed encoding modules using algebraic manipulation

detection (AMD) and cyclic redundancy check (CRC) codes. In [60], authors proposed the
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design of an HT implanted in the NIs that can duplicate packets and launch a DoS attack.

To detect and mitigate such attacks at runtime, authors proposed a multi-layer approach

utilizing an encoding based snooping invalidation module (SIM) for duplication packet de-

tection, a threshold voltage degradation based low power data snooping detection circuit

called THANOS, and malicious application blacklisting mechanism. However, these encod-

ing based solutions require additional hardware; which not only increases the communication

overhead due to the existence of these encoding-decoding modules in the flit datapath but

also complicates the design of NoC. Consequently, authors in [61] proposed a trojan detec-

tion mechanism and a trojan-aware routing algorithm to mitigate the effects of a misrouting

HT, capable of launching a DoS attack by tampering the header flits of a packet. Although,

these works focuses on the design of HTs capable of launching a DoS or performance degra-

dation attack, very few researches investigates the effect of HTs and malicious applications

working together to launch an attack on the MPSoCs. In [62] authors proposed an attacker

model compromising of a HT implanted in the NoC switches and an accomplice application

running on the MPSoC. Once the HT is triggered, the accomplice application can send

commands to the compromised NoC component to launch a plethora of attacks including

snooping, and DoS attacks. To encounter such attacks, a layered security architecture com-

prising of data scrambling layer, packet certification layer, and node obfuscation layer has

been proposed by the authors. However, by accumulating enough encrypted packets, the

one-time pad XOR cipher used by the data scrambler and packet certification layer can

be compromised. Furthermore, this work fails to capture the severity of a snooping based

HTs. In this work, for the first time, we demonstrate that by analyzing the payload from a

lightweight HT, which, in its simplistic form, is a counter, a remote attacker utilizing deep

learning based data augmentation and processing techniques, can determine the application

profile in a MPSoC with a very high accuracy. The primary reason for an attacker being

able to derive the application profile is due to the Dimension-ordered Routing mechanism

in NoC architectures which is highly deterministic in nature. Secure routing mechanism

like Region-based Routing (RBR) and Segment-based Routing (SBR), proposed in [63], are
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not sufficient to mitigate the effect of such HTs as these routing mechanisms partitions the

NoC into different security zones and minimizes the inter-zone traffic to ensure secure NoC

communication. Furthermore, these mechanisms are also deterministic in nature, making

them ineffective against our proposed attacker model. On the other hand, the NoC routing

algorithm proposed in [64], uses west-first and adaptive XY routing to improve NoC secu-

rity by offering more paths for routing and reducing interference with attacker. However,

being partially adaptive, such routing algorithms are vulnerable to an attacker exploiting

the routing paths. Priority-based routing mechanisms like Non-Interference Based adaptive

(NIBR), as proposed in [65], is based on DOR. Therefore, such routing mechanisms are

not impregnable by an attacker exploiting the packet count of the NoC switches. Hence,

to safegaurd a NoC against such attacker, a randomized routing mechanism is essential.

However, a complete randomized routing can result in severely degrading the performance

of a NoC as the packets are not routed over shortest paths. Therefore, instead of simply

adopting random routing, in this work, to encounter an attacker exploiting routing path

information, we propose a parameterized SA-based routing approach that can be tuned to

achieve a desired trade-off between the defense and performance degradation due to the

non-optimal path taken by a packet.

2.4 Survey on Hardware Trojans

The proliferation of the deployment of sophisticated third-party Intellectual Property (3PIP)

circuits in embedded, IoT, and cyber-physical systems (CPS) has exposed the devices to a

host of security vulnerabilities. With the intensifying costs of circuit fabrication (fab) plants

and the overheads involved, most IC designers prefer a fab-less setup. As a consequence,

the devices are manufactured off-shore, where security cannot be guaranteed or verified.

With such globalization of the manufacturing process, the community has seen an escala-

tion in implanted hardware Trojans (HTs) in the devices [66–70]. An HT is a malicious

modification made to an authentic design to cause malfunction, steal or leak sensitive data,
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cause Denial-of-Service (DoS) attacks, or impede the normal functioning of the devices, to

disrupting the device completely. The vulnerable computing devices are not limited to CPU

but also extend to ASICs, FPGAs, and others [13,14,16,17,20,71,72].

As shown in Fig. 2.1(a), IC manufacturing is a multi-entity supply chain process. We

have grouped some of the individual supply chain units into phases for simplification and

brevity. Research on HTs has revealed that the vulnerability can be present in almost

any IC manufacturing phase. Works in [73–80] discuss the design of HT for targeting the

design phase; [81,82] present research on HTs for the third-party IP (3PIP) and CAD tool

phase, while [17, 83–86] and [87, 88] present the vulnerabilities and HTs for the fabrication

and test phase respectively. The impact of HTs can be proven expensive when deployed in

defense applications and can lead to national security concerns [66]. A plethora of Trojan

design mechanisms exist; ring-oscillator [71,89], combination/sequential circuit [90,91], HDL

software [92], single transistor [93], layout-level modification [93] based Trojans, to name a

few.

There exist few works that survey the HT attacks and defenses [67–69,94]. In contrast

to the existing works, this work provides a novel categorization of the HTs based on the

application/target platform and also provides insights on the HT designs, which has not been

engulfed in the previous works. This survey aids the designers to understand the attacker’s

capabilities, the risk level at each phase of the supply chain, and the vulnerabilities exploited

to ensure those are factored-in during the IC design and test cycle.

2.4.1 Attack model and countermeasures

2.4.1.1 Trojan Insertion in the Supply Chain

An adversary can insert a hardware Trojan at any IC supply chain phase [94]. In-house

rogue designers are capable of inserting Trojan at the design phase. Attacker in a 3PIP

vendor can insert stealthy HTs into the IP at RTL and/or netlist level or other design

specification levels. Using the unauthenticated HT-inserted 3PIP in the original design

compromises design integrity [94]. A design faces maximum trust issue when it is sent to
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Figure 2.1: (a) Supply-chain and vulnerability; (b) Hardware Trojans categorized according
to applications and vulnerabilities exploited

a third-party facility for fabrication. In an untrusted foundry, the original design could be

exploited by inserting Trojan at the fabrication stage. In the testing stage, attacks can

manipulate the Trojan detection method or test data that leads to false-negative results.

Sometimes, the testing with traditional ‘Automatic Test Pattern Generation’ is ineffective

as they cannot trigger certain stealthy Trojans [20]. Even after the testing phase, the attack

surface is still open for the distribution phase attackers. An attacker can reverse engineer

the design and replicate the design with a Trojan-embedded version during the distribution

phase. The vulnerable phases in the IC supply chain are presented in Fig. 2.1(a)

2.4.1.2 Categorization of HT According to Platform

To the best of our knowledge, no previous work has been done for categorizing HT-attacks

based on their platform-specific deployment. In this work, we spotlight on platform-specific

HT design and their impacts on CPS systems. A HT can be designed for a range of

application platforms such as ML-accelerators [13, 14], IoT devices [15, 16], FPGAs [89, 90,

92], ASICs [19,20], Cryptography cores [17,18], and CPUs [95,96]. If a HT is intended to be

deployed on any of the aforementioned platforms, we classify that HT to be a threat against

the deployment platform. Fig. 2.1(b) shows the hardware platforms and the corresponding
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vulnerable phases in the supply chain. Categorizing Trojans gives a bird’s-eye-view of the

HTs that target the application platform, thus posing unintended security challenges on

the deployed platform and the system.

Table 2.1: Details of Hardware-Trojan works based on implemented platform

Work Target Evaluated Platform Risk Level Payload Trigger Detection
Benchmark Design 3PIP Fabrication Test Distribution Mechanism

[14] DNN Misclassification ImageNet dataset Memory Controller
IP realized on a
28nm technology

3 3 7 7 7 Circuit-based input data
poisoning in intermediate
layers of classifier

Geometric feature-based
mechanism

Avoid untrusted 3PIP
vendors; thorough func-
tional testing;

[13] Perturbation of target
operations in a NN

MNIST ReLu computation
block

3 3 7 7 7 Combinational circuit Training inputs from
dataset fed to combina-
tional circuit

Nearly impossible with
traditional detection
methods

[15] Compromise security
by leaking ROPUF
frequency to adversary

N/A IoT platform; ML-
assisted attack;

3 3 7 7 7 Sequential Trojan circuit
in ROPUF; 130 nm and
128-bit CMOS Trojan

Sequential + combina-
tional circuit

Monitor the distribution
of sensed data; Trojan-
infected ROPUF sensor
chips have non-Gaussian
distribution, in contrast to
Gaussian for Trojan-free
sensors

[97] Cause degradation of
NN performance

CIFAR10 and MNIST Convolutional NN
on NVIDIA Tesla
GPU

3 3 3 7 7 Multiplexer-based combi-
national circuit

Custom designed com-
binational circuit- based
trigger

Combination of adversar-
ial training and hardware
Trojan detection

[71,89] Bitstream modifica-
tion for device ageing
and failure

128-bit AES cipher FPGA 3 3 7 3 3 RO-based always-ON cir-
cuit

Training inputs from
dataset

Thorough functional test;
temperature test; optical
test

[90] Recover secret key dur-
ing cipher operation

PRESENT cipher Xilinx Spartan-6 3 3 3 3 3 Combination circuit for
fault injection

1-bit signal activating the
payload

-

[98] Recover secret key/
Weaken cyrptographic
algorithms

AES, DES and 3-DES FPGA 7 3 7 7 7 Malicious modifications to
LUT, S-Box and Embed-
ded Memory post bit-
stream generation

N/A Built-in self-test, forced
decomposition and white-
box cryptography all of
which have limited uses

[92] Compromise Design
and 3PIP/CAD soft-
wares to inject HTs in
multiple designs

N/A Yosys/Arachne-
pnr/Project IceS-
torm/FPGA

3 3 7 7 7 Malicious modifications to
synthesis and bitstream
generation software

Custom malicious trigger
cells

Exhaustive functional or
formal verification

[93] Compromise security
of the keys generated
with RNG, and reduce
the attack complexity

NIST test suite Intel Ivy bridge 7 7 3 7 7 Dopant level modifica-
tions at sub-transistor
level

N/A Unspecified

[17] Key recovery from ci-
phers

AES cipher FPGA 3 3 7 7 7 XOR gate Combinational circuit Compare layout images
with GDSII; Keep place-
and-route density > 80%

[20] Ring oscillator on
ASIC

ISCAS s9234 ASIC 3 7 7 7 7 N/A Internal N/A

[19] Ring oscillator on
ASIC

ISCAS’89 s9234 ASIC 3 7 7 7 7 Leak frequency informa-
tion

Random test patterns Timing-based detection

[99] Exploit DRAM RocketChip SoC Memory 7 3 7 7 7 Fault-injection, DoS at-
tack

Accessing pre-defined ad-
dress

N/A

[91] RRAM ASU RRAM Verilog-A Memory 3 7 3 7 7 Information leakage, Fault
injection or DoS attack

accessing pre-selected ad-
dress

N/A

[72] L1 d-cache GEM5 simulator Memory 3 7 3 7 7 Fault injection/DoS at-
tacks

Certain data pattern for a
certain number of times

Extensive delay/power
profiling

[100] USB flash drive XTS-AES-256 Memory 7 7 7 7 3 Create covert, Remote
channel

External Remains undetected

[96] CMOS gate Ivy Bridge processors, SBox CPU 7 7 3 7 7 Leak secret keys Unspecified N/A
[95] Secret processor infor-

mation
8051 microcontroller CPU 7 7 3 7 7 Leak software IP, Leak en-

cryption key, Cause sys-
tem malfunction

Specific sequence of data,
Specific instruction

N/A

[101] Secret processor infor-
mation

GEM5 simulator CPU 7 7 3 7 7 Data leakage from TLB L1 cache access, Certain
data pattern

Memory image analysis

[102] Processor register OR1200 processor CPU 7 7 3 7 7 Full control over the pro-
cessor

Sequence of unlikely
events

N/A

[103] Power constrained IoT
device

ISCAS85 IoT 3 3 3 3 7 Deviates from original
functionality for certain
input

Attacker chosen set of vec-
tors

Remains undetected

2.4.2 Hardware Trojan Design Classification

In this section, we categorize and explain the state-of-the-art HT attacks according to the

target hardware, such as Machine learning accelerators, Memory subsystem, FPGA, CPU,

ASIC, Cryptocores, and IoT devices as shown in Fig. 2.1(b).
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2.4.2.1 FPGA Platforms

FPGAs are increasingly deployed in many public and defense applications due its recon-

figurability, programmability, and reliability. However, FPGAs are no exception to HT

attacks. Authors in [89] demonstrate insertion of a ring-oscillator (RO)-based HT in an

unencrypted bitstream, synthesized for an FPGA platform used for 128-bit AES cipher

operation. The ROs are always-ON type HTs that increase the device’s temperature (by

dissipating power), thus causing aging and ultimately failing the FPGA much earlier than

its estimated life. A similar HT is presented in [71], with the difference that it inserts the

HT during the HDL design/3PIP phase. Work in [90] presents a multiple-fault injection

attack-based HT to flip four nibbles in the penultimate round of the PRESENT cipher to

steal the secret key using two faulty ciphertexts. The HT injects the fault to perform the

attack. Work in[98] proposed insertion of HTs in FPGA bitstream. The attack works by

detecting and modifying the S-box in the bitstream, thus affecting the AES and 3-DES

cipher algorithms. Work in [92] takes a two-step approach to insert HTs during the design

phase. To avoid detection, malicious functionality is injected during the HDL process that

incorporates camouflaging circuitry. Post bitstream generation, malicious logic is activated

by reconfiguring the circuitry that triggers the HT.

2.4.2.2 Machine-Learning Accelerators

Machine-learning accelerators (MLA) have emerged as a panacea to process emerging and

state-of-the-art ML applications with high throughput. Given a wide range of systems using

MLAs, security becomes a crucial aspect for the system. Authors in [14] propose a Deep

NN (DNN) architecture layer-level modification as an HT inserted during the design and

3PIP phase in the memory controller IP capable of snooping on the data bus connecting

the off-chip memory. The goal is to force the DNN (Deep Neural Network) accelerator

to output incorrect classification results after the Trojan trigger. The attack proposes to

leverage memory access patterns to identify the input data. Attack delivers high accuracy

even amidst preprocessing and system noise.
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Another work targeting a Neural Network (NN) accelerator is [13], where a combina-

tional circuit type HT payload is injected during the design phase in the computation block

(ReLu) to achieve perturbation on targeted operations. HT is triggered based on the train-

ing inputs from MNIST data. Without modifications to training data, the attack achieves

high accuracy in perturbing the output results and remains stealthy; thus, bypassing detec-

tion due to effective negligible area overhead.

Another proposed HT design, in combination with ML, is presented in [15]. Ring os-

cillator physical unclonable functions (ROPUFs) are employed in the wireless sensor as a

safeguard against invasive-attacks. The authors in [15] propose to insert an HT to leak the

oscillating frequency of the ROPUF to an adversary. With the knowledge of the frequency,

the input, and the output challenge, an accurate ROPUF can be modeled with the help

of the ML model to break the security barrier. With 200K leaked samples, [15] depicts

cracking a 128-bit ROPUF -based sensor. [97] presents similar work.

2.4.2.3 Cryptographic Cores/IPs

CPS systems extensively use cryptocores or IPs to enhance computation and communication

security. These hardware blocks are required to process crypto-operations such as AES,

DES, RSA for data security and privacy. An HT implanted in such CPS systems can target

to leak private keys, bypass crypto-blocks inside the hardware, perform a DoS attack, or

disrupt security measures enforced in the hardware to benefit the adversary [17,93,104]. In

this subsection, we discuss some of the works focused on HT implants in the hardware.

HT attack explained in [93] performs modifications to the transistor’s physical proper-

ties. The attack modifies the digital post-processing of the design at the sub-transistor level

to compromise the security of the keys generated by a random-number generator (RNG)

inside an Intel Ivy Bridge. The modified Trojan RNG design passes the built-in-self-test and

generates random numbers that pass the NIST test suite. Yet, the Trojan remains stealthy,

evading functional and optical tests. A differential fault analysis (DFA)-based AES HT

is discussed in [17]. A 128-bit AES is attacked with the help (payload) of a single XOR
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gate, which faults one bit of the crypto operation in its eighth round. Based on the fault

analysis, the complete key is recovered by the adversary. Similar cryptographic attacks are

presented in [75,85,104].

2.4.2.4 ASIC Platforms

Application-Specific Integrated Circuits (ASICs) used in a wide range of computing plat-

forms are often produced in large volumes that gives the adversary a good motivation to

insert a Trojan circuit in the original design, thus affecting a million devices or even more.

Work in [20] reports a Trojan design that has several heterogeneous Trojan circuits. The

smallest Trojan circuit is designed with three AND gates and one inverter, totaling 4 gates

with 26 transistors. The largest Trojan has 182 transistors in the design. Several Trojan

circuits become active depending on the trigger signal, and critical frequency information

is leaked from the ring oscillator circuit.

Similarly, authors in [105] present the hardware Trojan insertion into ASIC design during

the fabrication phase. The Trojan design consists of a serial interface of “kill-sequence”

observatory circuit by coupling D flip-flops back-to-back and gets input from the original

circuit. Once a pre-defined kill sequence is observed, the Trojan causes a functional failure

that leads to a denial-of-service (DoS) attack. The Trojan is embedded in the I/O location

of the design, providing gate-level abstraction access when triggered externally.

2.4.2.5 CPU

Central Processing Unit (CPU) is another platform of interest for inserting Trojans as all

the processing is performed under the hood of the CPU, and an erroneous command could

pose a serious security challenge to the system. Authors in [95] design a sequential Trojan

circuit where the Trojan circuit is modeled as a finite state machine (FSM). During field

operation, if a sequence of rare events happen, the corresponding Trojan stage is activated.

The attack leaks secret keys or sensitive data from the CPU.

In [101], authors present HarTBleed, a Trojan design embedded in a CPU that has a
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capacitor-based triggering circuit accompanied by a novel payload circuit. The Trojan is

triggered when a pre-defined address of the L1 cache is accessed 1800 times. Data leakage

occurs from the processor’s translation look-aside buffer (TLB). Similar capacitor-based

triggering is applied in [102] where the victim flip-flop is set to a certain value once the

triggering capacitor is fully charged. Work in [102] inserts an HT in an OR1200 chip. The

Trojan remains undetected with the state-of-the-art defense mechanism.

2.4.2.6 Memory/Storage Unit

As sensitive information leakage is one of the primary rationales behind HT attacks, design-

ers are leaning towards the memory/storage level Trojan insertion to decrypt critical data.

Authors in [106] inserted two versions of HTs into an SRAM array in the design phase.

The proposed stealthy design can successfully evade the testing phase. Type-1 Trojan is

designed by concatenating a series of nMOS pass transistor (PT) sequentially where gates

are connected to the trigger nodes. Another Trojan type, Type-2, involves one additional

pMOS PT in addition to Type-1 that breaks a pull-up path in the memory cell. The at-

tack uses multiple data patterns as a triggering method for the Trojan, post which the

SRAM cell becomes dysfunctional. Authors in [99] target a DRAM memory by inserting a

Trojan that exploits advanced properties of DRAM such as the underdrive (protects from

retention failure) and the overdrive (supports write operation) properties. Here, the HT

has a capacitor-based trigger circuit that activates a range of payloads such as Denial-of-

Service, information leakage, and fault-insertion. Similar work targeting RRAM memory

is presented in [91]. A recent study [107] shows Trojan insertion in an STT-MRAM based

memory cell by exploiting the inherent dynamic faults. Here, a poly-based resistor is inserted

as a Trojan in between nodes of a bit-cell. The Trojan is triggered under the circumstances

when n-number of the read operation is performed from a pre-selected memory address

showing a certain data-pattern. Unlike previous designs where HT insertion is done in the

supply chain ranging from the design phase to the testing phase, authors in [100] present

an attack during distribution phase. [100] discusses HT inserted into a FIPS-140 level-2
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certified USB flash drive that uses AES-256 encryption by means of reverse-engineering the

FPGA bitstream and an ARM CPU firmware. Altering the ARM CPU code eventually

manipulates the AES algorithm, leading to deciphering the user information in the flash

drive by applying a couple of plaintext-cipher pairs.

2.4.2.7 IoT Platforms

Inserting a tiny Trojan into lightweight IoT devices which lack built-in security mechanism

such as sensors or network ICs might lead to a range of attacks into the whole network such

as Denial-of-Service attack and remote attacks [108].

As FPGA, ASIC, CPU, System on Chip (SoC) can be used as an IoT device, a Trojan can

be inserted into any of the platforms mentioned above to gain desired adversarial impact.

An HT is proposed in [103] where the Trojan design has zero area and power overhead.

The attack uses an asynchronous counter-based design that modifies an input signal of a

Trojan-free circuit when triggered. The triggering circuit is a 3-bit counter with a very small

power overhead. State-of-the-art power analysis tools are unable to detect this Trojan. As

IoT devices are power constrained, these types of Trojans can easily be inserted on IoT

devices with zero area and power overhead and remain undetected. Work in [109] reports

similar low-power Trojan for IoT devices. A sequential Trojan is inserted in a ring oscillator

physical unclonable function (ROPUF) for IoT sensor network that leaks critical oscillating

frequency information [15].

Discussion: Below, we present a brief discussion on the HT design; additional details are

included in Table 3.4, where ‘target’ refers to the motive/intention of attack, ‘Risk Level‘

for potential insertion phases during the supply chain; ‘Payload’ refers to additional mali-

cious hardware serving as Trojan, while ‘Trigger’ is a mechanism that observes a physical

parameter inside the target device, and activates the payload.

So far, we have studied the feasibility of HT attacks on different platforms ranging from

FPGA to ASICs. Of the works surveyed for the HT attacks on FPGAs/ML-accelerators, it

is observed that the feasibility of HT insertion and impact is widely feasible at design and
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3PIP integration phases compared to fabrication, as inserting HTs during the fabrication

phase is a tedious and non-trivial job, though possible. For HT attacks [71, 89], they

are plausible on encrypted bitstream by combining with an encrypted bitstream recovery

attack as explained in [110]. Similarly, for the FPGA- and Cyrptocore- based HT attacks,

it is observed that the adversary can insert payloads at different phases of the supply-

chain; with sophisticated 3PIP/CAD vendor tools, the attack surface broadens to implant

a variety of modifications to internal blocks, such as the Sbox, AES/DES/RSA crypto

blocks, internal communication bus, layout, netlist and so on with negligible area and power

overheads, which makes detection with conventional mechanisms (during test phase) a non-

trivial job. An HT can be inserted at the distribution phase by reverse-engineering the

design and replace it with a Trojan-injected version. A similar attack is presented in [100]

on a consumer-level USB flash drive at the distribution phase to leak sensitive information.

HT attack paradigm is shifting towards the IoT devices because of the large attack surface

and payoffs. HT attacks on IoT sensor networks pose a security risk to the overall network.

Analyzing recent works on HT Trojan design, we gather HT design trend and risk challenges

in the supply chain. ASIC designs are more prone to Trojan insertion at the design and the

fabrication phases. For Memory/Storage platform, 3PIP phase is exploited, in addition to

the design and fabrication phases. For HT design targeting IoT devices, low area footprint,

and power-based Trojans are most dominant while 3PIP vendors in the supply chain are

most untrustworthy.
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Chapter 3: Hardware-Assisted Malware Detection

The ever-increasing complexity of modern computing systems has resulted in the growth of

security vulnerabilities, making such systems an appealing target for sophisticated attacks.

Computing systems today are employed to deliver high performance and efficiency while

protecting users’ data. Attackers take advantage of malware’s capabilities to harm the

system, steal users’ data, disrupt the system, or a combination of it. Malware, also known

as malicious software, is a program or application to infect the computing systems without

the user agreement for serving harmful purposes such as stealing sensitive information,

unauthorized data access, destroying files, running intrusive programs on devices to perform

Denial-of-Service attack, and disrupting essential services.

A plethora of works focus on detecting malware, but the downside of using software-

based approaches is the overhead, owing to computational complexity. Also, software-

based detection utilizes signature-based detection that matches the behavior signature of

the application to its database. This approach fails to recognize zero-day attacks, and

signatures that do not match its database, given an outdated database. We focus on

hardware-based detection approach.

To overcome shortcomings such as latency and computational complexity of tradi-

tional malware detection techniques, including signature and semantics-based software-

driven techniques [111, 112], Hardware-Assisted Malware detection (HMD) approaches are

proposed [27]. HMD refers to utilizing the low-level microarchitectural hardware events for

detecting and classifying the malware from benign applications. Browsers, utility applica-

tions, text editors, C-based programs were some of the benign applications that we profiled

as a part of the dataset. In contrast, applications embedded with Trojan, worm, virus,

and other malwares were profiled as part of the malign traces. The HMD delivers reduced

malware detection latency by orders of magnitude with smaller hardware cost [27].
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This work proposes an adversarial attack on HMDs in which the adversarial samples are

generated through a benign code that is wrapped around a benign or malware application to

produce a desired output class from the embedded ML-based malware detector. One of the

main challenges to address is that the attacker or user has no direct access to modify the

HPC and manipulation of HPCs is highly complex to perform despite employing techniques

like code obfuscation for executing malware [27]. First, we assume the victim’s defense

system is unknown and perform reverse engineering to mimic the embedded HMD’s behavior

and build a machine learning (ML) classifier. To determine the required number of HPCs

to be generated through the application to be misclassified, we employ an ‘adversarial

sample predictor ’ which predicts the number of HPC traces to be generated to misclassify

an application by the HMD. by the attacker. To perturb the HPCs, we craft an ‘adversarial

HPC generator ’ application (code) that generates the required number of HPCs. This

adversarial HPC generator application is wrapped around the application that needs to be

misclassified by perturbation.

This work discusses a novel way of crafting adversarial HPC traces through a benign

application and proposes a methodology on how to craft such an application to obtain

adversarial behavior. The main focus of this work is to generate false alarms (malware

classified as benign and benign classified as malware) to weaken the trust on the embedded

defenses, which increases the scope for attacks. The proposed work benefits from the fol-

lowing: a) no need to tamper or modify the source code of the application around which

the proposed adversarial sample generator code is wrapped; b) the crafted application has

no malicious features embedded, thus not detectable by malware detectors; c) scalable and

flexible, i.e., the crafted application can generate events required to create a powerful ad-

versary. With these adversarial attacks, the HMD delivers unacceptable performance. To

make the HMD robust and resilient to such adversarial attacks, we propose to perform

adversarial learning by training the HMD on adversarial samples. This method has proven

successful for different types of adversarial attacks and can boost the HMD performance

to classify malign applications from their benign counterparts reliably. We then present

28



hardware implementation of the ML classifiers used in the HMD for analysis purposes.

3.1 Hardware Assisted Malware Detection

Thus far, we have had a background of what adversaries are in context to the HMDs and

discussed if microarchitectural features like those obtained from the performance counters

can be used to classify malware from benign. In this section, we are going to take a look

at how microarchitectural features can be used to train HMDs, what features will serve as

the best means to classify a malign application from benign class and the overall view of

the HMD detection process. Refer to Figure 4.17 for an overview of the detection process.

The preliminary step in the training process requires to profile applications and generate

a dataset that can be later used for training machine learning models - the heart of the

HMD. The dataset comprises of captured features that describe the state of the hardware at

different time instances for applications executing on the system. A variety of applications

are executed in Linux containers to ensure safety and to prevent contamination of the OS,

other applications and to prevent other measurements from being affected. Linux containers,

unlike virtualization, allows sharing the operating system kernel and provide isolation to

the application from the other system [113]. Perf tool [114] in Linux is employed to profile

applications and collect all the available HPCs. This process is described in the Figure as

the “Feature Extraction” block. These HPCs are used to build the dataset comprising of all

the applications with the corresponding features (HPC values or traces). Not all features

are useful in training the ML-models as some are irrelevant to the current context; also high

dimensional dataset will lead to sluggish performance and difficult to establish in runtime.

Hence, feature reduction techniques are employed to reduce the number of features to the

most relevant ones as shown in the figure and will be discussed in the next subsection.

We train and deploy multiple ML-models in the HMD to observe the model that delivers

best performance in detecting malware. Adaboost and Ensemble techniques are utilized to

render high detection accuracy with less number of features so the HMD could be used in

runtime to classify applications and with high-performance gains. Next, we discuss feature
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reduction and training in more detail.
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Figure 3.1: Overview of the proposed hardware-based malware detection process

This section briefly discusses the overview of hardware-assisted malware detectors, re-

ferring to Figure 3.1. The preliminary step in the training process requires profiling appli-

cations and generate a dataset that can be later used for training machine learning models

- the heart of the HMD. The dataset comprises captured features that describe the hard-

ware’s microarchitectural state at different time instances for applications executing on the

system.

The process of profiling of applications is described in the figure as the “Feature Ex-

traction” block. These HPCs are used to build the dataset comprising all the applications

with the corresponding features (performance counters).

We train and deploy multiple ML-models in the HMD to observe the model that delivers

the best performance in detecting malware.

3.1.1 Feature Selection

As mentioned earlier, detecting malware using machine learning models requires represent-

ing programs at a low microarchitectural level. This process produces a very high dimension

dataset. Running ML algorithms with large dataset would be complex and slow. Besides,
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Table 3.1: Microarchitectural events important for runtime malware detection

Rank Event name Rank Event name
1 Branch Instructions 5 dTLB store misses
2 Branch Loads 6 LLC prefetch misses
3 iTLB load misses 7 L1 dache stores
4 dTLB load misses 8 cache misses

incorporating irrelevant features would result in lower accuracy for the classifier [24]. There-

fore, instead of accounting for all captured features, irrelevant data is identified and removed

using a feature reduction algorithm, and a subset of captured traces is selected that includes

the most important features for classification. The features are supplied to each learning

algorithm, and the learning algorithm attempts to find a correlation between the feature

values and the application behavior to predict the application type.

Table 3.2: Microarchitectural events of high priority for runtime malware detection

Rank Event name Rank Event name
1 Branch Instructions 5 dTLB store misses
2 Branch Loads 6 LLC prefetch misses
3 iTLB load misses 7 L1 dache stores
4 dTLB load misses 8 cache misses

As discussed, the key aspect of building an accurate detector is finding the right features

to characterize the input data. We collected 44 performance counters, as they were all

the hardware counters our experimental setup allowed. As shown in Figure 4.17, after

feature extraction, the feature reduction process reduces the number of features. We first
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use Correlation Attribute Evaluation on our training set under WEKA [115] to monitor

the most vital microarchitectural parameters to capture application characteristics. Next,

the features are scored based on their importance and relevance to the target variable

through the feature scoring process. By applying the feature reduction method, the eight

most related hardware performance counters are determined and numbered in order of

importance for malware detection. These HPCs are listed in Table 3.2. Most modern

processors allow recording 4 or 8 events simultaneously. Hence, to suit the detection process

given the hardware limitation on the number of events that can be collected, we constant

the feature size to eight. These features are included in our prediction model as input

parameters. The selected features include HPCs representing pipeline front-end, pipeline

back-end, cache subsystem, and main memory behaviors influential in the performance of

standard applications. It is to be noted that the eight HPCs selected are needed to determine

the feature vector for feeding to the classifier. Hence, the dimension of the feature vector is

8x1 for a data sample.

Original 
detector

ML
algorithm

Training dataset

Response

Training dataset

Original 
detector

Reverse
engineered

detector

Response

Response

Comparator Accuracy

(a) (b)

Figure 3.2: (a) Process of reverse engineering an HMD; (b) Testing Performance of Reverse-
Engineered Detector
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3.1.2 Training and Testing the Malware Detectors

Training involves profiling the incoming application with the Perf [114] tool under Linux

and extracting low-level feature values for each training program, reducing the extracted

features to the most vital performance counters, and developing a learning model from

the training data. It is important to note that the input variables in our classifiers are

the HPCs extracted every 10 ms interval from the running applications, and the output

variable is the class (malware vs. benign) of an application. The HPC event sampling rate

can be varied from a few milliseconds to few tens of microseconds. We sample the events

at 10 ms interval to reduce overhead on the system performance. The sampling rate is a

trade-off between performance and overhead. The chosen sampling rate satisfies the HPC

event capture for the applications (malware and benign) used. For each ML classifier, we

construct the general and ensemble models (AdaBoost and Bagging) to detect the malware.

In order to validate each of the utilized ML classifiers, a standard 70%-30% dataset split for

training and testing is followed. To ensure a non-biased splitting, 70% benign- 70% malware

application for training (known applications) and 30% benign-30% malware applications for

testing (unknown applications) are used. We perfom k-fold validation method, hence we

did not break the dataset into train, test and validate.

3.2 Adversarial Sample Prediction

In this section, we discuss the adversarial attack on HMD, our proposed adversarial sample

predictor, and the adversarial sample generator to degrade HMD performance.

3.2.1 Adversarial Attacks on Machine Learning Classifiers

In this work, the terms ‘adversarial malware’ and ‘adversarial attack’ are used interchange-

ably. Similarly, ‘adversarial defense’ and ‘hardening’ have been used interchangeably. Works

in [116,117] describe the process of different adversarial attacks on ML classifiers. The fun-

damental idea is to perturb the inputs such that the performance of the classifier is degraded.
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We propose to exploit the concept of input sample perturbation to attack the HMDs, as

will be discussed further.

3.2.2 Reverse Engineering a Hardware-based Malware Detector

Under the assumption where the victim malware detector is unknown, we perform reverse

engineering to mimic the functionality of the victim1 HMD detector. Thus, as a first step

to craft adversarial malware, we perform reverse engineering of the victim’s HMD similar

to that proposed in [118]. The performed reverse engineering is described in Figure 3.2.

We first create a training dataset that comprises benign and malware applications.

Nearly 10,000 benign and 10,000 malware applications are used in the reverse engineering

process. The victim’s HMD (Original HMD) is fed with all the applications, and the

responses are recorded. These responses are utilized for training different ML classifiers to

mimic the functionality of the victim’s HMD, as shown in Figure 3.2(a). Further, it is tested

by comparing the outputs from the victim’s HMD response and the reverse-engineered ML

classifier’s response, as shown in Figure 3.2(b). Reverse engineering is non-trivial as the

adversaries generated on a closely functional model will be highly effective compared to a

weakly developed adversary. To ensure reverse engineering is performed efficiently, we train

multiple ML classifiers and choose the classifier that yields high performance, i.e., mimics

the victim’s HMD with high accuracy.

3.2.3 Process of Crafting the Adversarial Malware

Once the reverse-engineered HMD is built, such as MLP (or any victim defense classifier),

the hyperparameters are determined. To launch and craft an adversarial malware, it is non-

trivial to determine the level of perturbations that need to be injected into performance

counter traces to get the applications misclassified. To determine the number of such HPC

events to be generated, we deploy (offline) an adversarial sample predictor. As the ML

classifiers are robust to random noises, perturbing the HPC patterns is sophisticated. To

1Victim HMD is the detection mechanism under the proposed adversarial attack
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perturb HPC patterns, we employ a low-complex gradient loss-based approach, similar to

Fast-Gradient Sign Method (FGSM) [119], which is widely employed in image processing.

To craft the adversarial perturbations, we consider the reverse engineered ML classifier

with θ as the hyperparameter, x being the input to the model (HPC trace), and y is the

output for a given input x, and L(θ, x, y) be the cost function used to train the reverse-

engineered classifier. The perturbation required to misclassify the HPC trace is determined

based on the cost function gradient of the chosen classifier. The adversarial perturbation

generated based on the gradient loss, similar to the FGSM [116] is given by

xadv = x+ εsign(∇xL(θ, x, y)) (3.1)

where ε is a scaling constant ranging between 0.0 to 1.0 is set to be very small such that

the variation in x (δx) is undetectable. In the case of FGSM, the input x is perturbed

along each dimension in the direction of the gradient by a perturbation magnitude of ε.

Considering a small ε leads to well-disguised adversarial samples that successfully trick the

machine learning model. In contrast to the images where the number of features are large,

the number of features, i.e., HPCs are limited. Thus the perturbations need to be crafted

carefully and also made sure that they can be generated during runtime by the applications.

In contrast to works that assume the application features to be binary, such as [120],

this work aims to predict and determine the adversaries for the microarchitectural event

patterns, i.e., HPCs, to generate during runtime with the aid of a benign code, which is

one of the primary distinctions from existing works. It needs to be noted that determining

the required perturbation for a given application is done offline. The process of crafting the

adversarial application to generate the perturbations in the HPC trace during runtime is

presented next.
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3.3 Adversarial Hardware Performance Counter

Trace Generation

To generate the required number of HPCs, we craft an application (benign) that wraps

the victim application and generates additional performance counter traces that make the

overall trace (of the victim application) similar to the predicted HPC trace. We discussed

the adversarial HPC predictor previously. We do not know any works in the past that have

employed the same approach as our work.

Algorithm 1 Pseudocode for generating adversarial HPCs

Require: Application ‘App()’
Ensure: Adversarial microarchitectural events
1: cache miss function() {Sample pseudo code that generates required number of adversarial LLC

misses}
2: #define array[n] % Size of array and loop define amount of variation
3: load i #0
4: Loop 1: cmp i #n {Compare i with n}
5: array[i]=i
6: jump Loop1

7: end
8: load i #0
9: Loop 2: cmp i #k {k <= n}

10: ld rax &array[i] # load array address in register rax

11: cflush (rax) {Instruction as a function of array size and loop size}
12: jump Loop2
13: end
14: branch misses function() {Code that generates required number of adversarial branch instructions

and branch misses}
15: #define int a, b, c, d
16: a<b<c<d<n
17: Loop 3: cmp i #a { · · · function · · · }
18: Loop 4: cmp i #b { · · · function · · · }
19: Loop 5: cmp i #c { · · · function · · · }
20: Loop 6: cmp i #d { · · · function · · · }
21: Loop 7: cmp i #n { · · · function · · · }
22: jump Loop 3; end ;
23: {Similar functions to generate other HPCs as predicted by adversarial sample predictor}
24: APP() {User/Attacker’s application to be executed}

In Algorithm 1, we show the pseudo-code to create adversarial LLC load misses and

branch misses. The LLC load misses, and branch misses are some of the pivotal microar-

chitectural events that malicious applications [112]

To generate LLC load misses, an array of size n is loaded from memory and flushed to
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generate LLC load misses. This is outlined in Line 2-12 of Algorithm 1. The experiments are

repeated multiple times with different array sizes (n) and the different number of elements

flushed (k) to determine the number of LLC load misses generated. Further, a linear model

is built to find the dependency of n and k on the number of LLC load misses. Once the

adversarial sample predictor predicts the number of LLC load misses generated to craft an

adversarial sample, the n and k are accordingly determined. We employ a linear model due

to its low complexity and high accuracy (<3% error) to determine the dependency between

n and k for our experiments.

Example: For instance, the crafted application similar to that depicted in Line 2-12 of

Algorithm 1 with n and k set to 100K leads to an LLC load miss of 73K, whereas when n

and k is set to 500K, around 287K LLC load misses are generated. The flushing of the data

has been verified by executing attack code with and without flushing the cache lines - the

execution time is around 1.5× when the data is flushed compared to the case when data is

not flushed.

In a similar manner, branch misses and branch instructions are generated as shown in

Line 15-22 of Algorithm 1. To increase the branch misses, a set of conditional statements,

i.e., comparison statements, are embedded into the application to create branch misses.

The branch instructions depend on the number of conditional statements evaluated. In the

presented pseudo code, we have five conditional statements for generating branch-misses

(Line 15-22). For the attack code on branch miss events, with a loop size of 20K and

integer values assigned to a, b, c, and d, branch misses’ value is around 255K. An increase

in branch misses is observed by inserting not taken (not executed) dummy loops.

The process flow of adversarial sample predictor is shown in Figure 3.3(a), where the

performance counters from the victim application are combined (offline) with the predicted

samples. These are fed to the ML model to gauge its performance. Suppose the ML model

classifies the malware and benign with high accuracy. In that case, the adversarial attack

parameters are modified; else the predicted samples are utilized for adversarial sample

generation during application execution, as shown in Figure 3.3(b). In Figure 3.3(b), the
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overall performance counters seen by the system are a result of the original application and

the adversarial code. The HMD profiles the applications in runtime. If the predicted HPC

values are smaller than those generated by original applications, we insert delay elements

to smoothen the HPC trace and reduce the HPC values. It needs to be noted that using

this process we generate adversaries to force the HMD to misclassify benign as malware and

malware as benign applications.

3.4 Hardening HMD Against Adversarial Malware

We have discussed how attacks are performed to trick the HMD and force misclassification.

The adversarial malware is crafted to perturb the HPC patterns and hence trick the victim

HMD. Although HMD-Hardener can be employed for different defense strategies to ensure

hardening for best performance under different adversarial attack types, we keep the discus-

sion limited to ‘FGSM’ type attack and ‘Adversarial Training’ (FGSM in this work) type

defense for conciseness. Adversarial training is one of the initial solutions introduced as a

way for ML classifiers and deep learning classifiers to battle against adversarial samples.

The method of adversarial training focuses on having adversarial samples used to train the

model/classifier. They obtain the adversarial information in the training stage itself and

stay robust against such attacks. We retrained the HMD using adversarial samples, and it

is observed to deliver robust performance under an adversarial attack. The assumption is

that we know the type of attack that can happen and the attack parameters.

3.5 Results and Evaluation

In this section, we present the accuracy of HMD in classifying malware and benign appli-

cations. Further, we give the impact of an adversarial malware attack on the HMD and

attack resiliency post hardening. Finally, we present hardware implementation results for

the ML classifiers.
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3.5.1 Experimental Setup and Data Collection

The applications (both malware and benign) are executed on an Intel Xeon X5550 machine

running Ubuntu 18.04. We execute more than 3000 benign and malware applications for

HPC data collection. Benign applications include MiBench benchmark suite [121], Linux

system programs, browsers, text editors, and word processor. For malware applications,

Linux malware is collected from virustotal.com [122] and virusshare.com [123]. Malware

applications include five classes of malware comprising of 607 Backdoor, 532 Rootkit, 2739

Virus, 1264 Worm and 7221 Trojan samples. All the applications (malign/benign) are

profiled in Linux Containers. The adversarial sample predictor is implemented in Python

using the Cleverhans library. The linear model is derived using the traditional statistical

curve fitting technique. The adversarial sample generator is implemented using C and

executed on a Linux terminal.

3.5.2 HMD Classification Performance

Figure 3.4 shows a comprehensive accuracy comparison of various ML classifiers used for

malware detection. We implemented six general ML classifiers. The accuracy of malware

detection with two feature sizes (4 and 2) are reported. As seen in Figure 3.4, MLP,

random forest (RF) and decision tree classifiers perform very well for both the 4HPC and

2HPC as feature sizes. High performance with fewer features enables the HMD-Hardener

to classify applications and detect malware in runtime with less overhead on the system,

making repeated calls to the Perf tool. For instance, as shown, MLP achieves close to

82% accuracy, 80% for random forest (RF), 79% for SVM, and so on with four HPCs.

However, we observe that reducing the number of vital performance counters to 2 results

in similar classifiers’ accuracy. We also observe that the HMD achieves detection accuracy

in the range of 84-90% with 16 and 8 features. The higher gain results in overhead; results

not shown for conciseness. For this work, we will consider the accuracy with 4HPCs with

which the classifiers such as MLP, RF, decision tree, and KNN perform well with around

82% detection accuracy on an average. Four HPCs are easily possible to be captured
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in runtime to allow malware detection. We also evaluated the aforementioned classifiers’

performance by observing the Precision, F1-Score, and Recall metrics. These metrics’ values

are approximately similar to the accuracy metric’s values shown in Figure 3.4.

Table 3.3: Impact of adversarial attack on HMD

Accuracy Precision F1-score Recall
Before attack 82% 78.1% 78.1% 82.1%
After attack 18.1% 45.0% 10.0% 18.0%

After hardening 81.2% 80.1% 80.1% 81.2%

Table 3.4: Post synthesis hardware results of different ML classifiers (@100MHz) when
deployed in HMD-Hardener

Classifier Power (mW ) Energy (mJ) Area (mm2)

MLP 90.45 5.12 4.5

RF 40.64 2.35 2.25

SVM 45.63 2.79 1.81

Decision Tree 36.54 2.29 1.55

SGD 54.46 3.21 1.46

KNN 44.81 3.37 1.27

3.5.3 Impact of Adversarial Attack on HMD Detector

We depict the impact of adversarial sample generator on the performance counters in Figure

3.5 that shows the LLC load misses for a benign application (ISCAS’85). The adversarial

pattern predicted by the adversarial sample predictor is shown in Figure 3.5(a). We observe

that there exist some spikes in the pattern as marked in the figure. Figure 3.5(b) shows the

HPC pattern generated when the application is integrated (wrapped) with the adversarial
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HPC generator. On average, there is an error of 2.2% between the trace predicted by the

adversarial sample predictor and the trace generated by the adversarial sample generator.

This indicates the adversarial generator can efficiently generate the required number of

perturbations in the HPC traces. The MLP classifier delivers 82% accuracy on average

in detecting malware. Post adversarial attack, the accuracy of the MLP drops to 18.1%,

indicating that the adversarial sample generator degrades the HMD performance. The

results of the MLP classifier’s accuracy, precision, F1, and recall metrics are presented in

Table 3.3. We observe similar results, shown in Figure 3.5, for branch miss type adversarial

perturbations.

3.5.4 Adversarial Learning - Hardening

For hardening the HMD, it needs to be trained on normal samples and adversarial samples

as well. For MLP classifier, the accuracy is restored close to the original accuracy before

the attack, as presented in Table 3.3. We observe similar results with other classifiers after

hardening, thus verifying that the HMD can become resilient against an adversarial at-

tack, provided it is trained on adversarial samples. The HMD is trained on a new dataset,

containing the original and adversarial samples combined. As the HMD is robust against

adversarial samples, it delivers high performance in detecting the malware and benign sam-

ples, as shown in Table 3.3. Hence, if the HMD deployed in a system is adversarially

trained on the perturbed HPC traces generated by using the process discussed thus far,

the HMD is hardened against adversarial malware samples. This ensures the HMD delivers

high performance against the normal and adversarial attack samples in runtime.

3.5.5 ASIC Implementation of Classifiers in HMD-Hardener

We conduct comprehensive hardware implementation of the classifiers embedded into HMD

on ASIC. All the experiments are implemented on a Broadcom BCM2711, quad-core Cortex-

A72 (ARM v8) 64-bit, 28 nm SoC running at 1.5 GHz. The power, area, and energy values

are reported at 100MHz. We used Design Compiler Graphical by Synopsys to obtain the

area for the models. Power consumption is obtained using Synopsys Primetime PX. The
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post-layout area, power, and energy are summarized in Table 3.4. Among all the classifiers,

MLP consumes highest power, energy and area on-chip ( Table 3.4 ). The post-layout

energy numbers were almost 2x higher than the post-synthesis results. This increase in

energy is mainly because of metal routing resulting in layout parasitics. As the tool uses

different routing optimizations, the power, area, and energy values keep changing with the

classifiers’ composition and architecture.
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Figure 3.3: (a) Determining adversarial code generator parameters with the aid of adver-
sarial HPC predictor; (b) Process of adversarial sample generation with adversarial code to
force HMD performance degradation through misclassification of benign/malware applica-
tions
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Figure 3.5: (a)LLC load miss trace of the application predicted by adversarial sample
predictor; (b) Generation of LLC load miss trace by adversarial sample generator
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Chapter 4: Side-Channel Attack and Defense

4.1 CR-Spectre: Side-Channel Attack on ML-assisted De-

tectors

eThe insurgence of the side-channel attacks, attacks that exploit the inherent vulnerability

in a system while trying to snoop on secure sensitive applications, at an alarming rate, is

considered one of the pivotal issues. Spectre [6] is one such recently introduced powerful

exploit that targets the vulnerability in modern branch predictors. Spectre ‘mistrains’ a

branch predictor to perform legitimate operations initially, and later, it forces an erroneous

speculative execution, which leaks sensitive data over a covert channel.

There exist detection mechanisms [124–128] to mitigate Spectre attacks by employing

machine learning (ML)-based detectors, also known as Hardware-assisted Intrusion Detec-

tion (HIDs). The seminal theme of these works [124–128] is to train the ML-based detectors

on the microarchitectural patterns1 of the executing applications. The performance coun-

ters can extract different microarchitectural information regarding the application, such as

cache-hits, cache-miss, total cycles, instruction count, etc. Spectre affects the branch pre-

dictor, cache, memory-related instructions’ patterns during its execution [124, 125]. The

existing defense techniques such as [124–127] utilize the affected performance counters’ pat-

terns to differentiate an attack and a benign application.

Traditionally, Spectre is launched as a standalone attack. However, in a system where

an adversary does not have the permissions to execute a malicious binary as a standalone

application, there is a need to evade the conventional launch process. Also, the HID detects

1Microarchitectural traces are obtained from the performance monitoring unit (PMU). These features
are also known as hardware performance counters.
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and protects the system by profiling the applications, thus guarding the system against

side-channel attacks, such as Spectre.

On the other hand, there exists a genre of attacks known as Code-reuse attacks [129,130],

which operate by subverting the control flow of the victim without directly manipulating

the victim application or memory. Return-oriented programming (ROP) [130, 131] is one

such example of a code-reuse attack. The methodology of the ROP attack is to target

fragments of code, generically known as gadgets in the victim that end with ret (return)

instruction. By chaining such gadgets together, an attacker can perform a Turing-complete

manipulation to execute malicious instructions. Hence, the attack is also known as an ROP-

chain attack. The attack redirects the program flow to the malicious code, thus, hijacking

the control flow of the victim application. With the instruction code already existing in

the memory, victim application can be forced by ROP attack to execute a malicious code,

hence the term ‘code-reuse.’

There exist techniques that can mitigate the ROP attack, such as Stack Canaries [132],

and Address Space Layout Randomization (ASLR) [133]. ASLR works by randomizing the

addresses in the memory. Although address randomization can deter an ROP-attack by

randomizing the address space, the ASLR defense can be circumvented [134–137]. Stack

Canaries [132] is memory protection that inserts a randomly chosen value in the stack

between the local variables and return address. When a function call returns, it checks the

value for any corruption. If the value is overwritten, the program exits without executing

further. Similar to ASLR, Stack Canaries technique can also be evaded to launch a ROP

attack.

e Yet another class of defenses for thwarting Spectre attack are InvisiSpec [138] and

Context-Sensitive Fencing [139]. The former technique works by making speculative exe-

cution invisible to the system and other applications. It uses a speculative buffer to save

data from load instruction until the load is deemed safe; later, the data is re-loaded to local

caches, which also affects the microarchitecture. The latter defense employs a microcode

customization mechanism allowing processors to insert fences into the dynamic instruction
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stream to mitigate undesirable side-effects of speculative execution [139]. Both the defenses

are employed at software-level, inducing overheads and require architecture level modifica-

tions [138, 139]. In contrast, this work targets system that demonstrate machine learning

assisted mechanisms in detecting and mitigating Spectre. And, for injecting the attack, this

work exploits buffer overflow vulnerability.

In this work, we exploit the ROP code-injection attack as a promising methodology to

launch a malicious application, such as Spectre, that intends to steal sensitive information.

The mechanism offers the benefit of attack injection without explicitly writing to victim’s

memory and using existing code in the memory. Mere integration of code-reuse attack with

Spectre can be still vulnerable to the existing defense techniques [124–128]. To alleviate

the detection, we pivot the proposed code-reuse Spectre (CR-Spectre) attack on the ROP

injection and dynamic adaptation to keep the malicious behavior undetected by existing

detection techniques. The dynamic adaptation in the CR-Spectre generates perturbations,

thus contaminating the HPC generated by the host with the injected malicious application.

These dynamic patterns intend to degrade HID performance, forcing misclassification of the

attack.

The advantage of the proposed CR-Spectre compared to other Spectre variants [6, 140,

141] is its distributed nature and the capability to be a moving target for the defender,

especially the ML-based solutions such as [124,125,127,128].

Our proposed attack is capable of extracting secret information from an application while

evading ML-based detection. This work evaluates the proposed attack on a Hardware-based

intrusion detection system (HID) utilizing machine-learning (ML) [124–126,142], that pro-

vides inference based on unique application traces, hardware performance counters (HPC),

rendered by hardware performance monitoring unit (PMU).

In summary, the essential contributions of this work are:

1. Propose CR-Spectre attack, capable of executing under the cloak of a benign (white-

listed) application as a launching mechanism.
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2. A dynamic attack capable of modifying microarchitectural state to render the attack

more robust against an HID is introduced.

3. A thorough evaluation of the performance of CR-Spectre under different scenarios are

presented. Another aspect is to evaluate the overhead of the proposed attack.

We present our results and evaluation of the proposed attack and demonstrate that

CR-Spectre can help degrade HID performance, thus misclassifying benign from an attack

application. Experiments are performed using Spectre [6], and MiBench benchmark suite

[143]. In our experiments, the HID performance degrades from 90% to 16%, indicating our

CR-Spectre attack evades detection successfully.

4.1.1 Proposed CR-Spectre Attack

4.1.1.1 Threat Model

There exists an adversary that intends to steal secret data from an application that processes

sensitive data. The adversary employs attack code to steal secret data from the target

application (target). The exploited victim (host application) is the application into which

the adversary injects the attack - the attack refers to CR-spectre - and the intention is to

steal data from the target application (target). For the demonstration of the attack, we

keep the secret as an array that is stored in the host application; the host never accesses the

secret. The CR-Spectre attempts to read the secret in the array. Similar to [6], we assume

that the adversary knows the address of the secret processed by target. The adversary has

no special or root privileges to execute the attack. CR-Spectre is tested on HIDs that are

inspired from the recent works presented in [124–126, 144], all of which utilize the HPC

information for training the machine learning classifiers. CR-Spectre attempts to inject

malicious code to steal secret information from the target while evading HID detection

using perturbations. For an ROP-chain attack to function, there needs to be a mechanism

to overflow the buffer and rewrite the stack contents. Hence, it is a prerequisite that the

host application makes a write operation to the buffer, controlled by the adversary.
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// Un-accessed secret stored here 
char target = "secret";

vulnerable_function() {
char buffer[100];
strcpy(buffer, string); }

// host application's main function
host_application() {
exploited_function(argv[1]); 
victim code .....;
...........;}

CR-Spectre_attack
main_function(){

speculative_attack();
flush_reload_attack();

perturb();  }

// speculative attack code
speculative_attack() {

if (x < array1_size) {
y = array2[array1[x]*256]; }

// flush+reload attack for secret recovery
flush_reload_Attack () {

......
.....
}

// dynamic perturbation code 
 void perturb() {

int a =11, b=6, c=2; 
for(i=0; i<10; i++){

if(i<a){
clflush(a);
mfence();

a = a+50;}}}

ROP 
Attack 

Injection

Assembly code showing
gadgets in memory

mov eax, edi; ret; 
mov eax, edx; pop rbx; ret
mov eax, ebp; pop rbp ; ret

CR-Spectre Application
(executable)

Disassembled executable

Host Application
(executable)

Figure 4.1: CR-Spectre program flow

4.1.1.2 Overview of the Proposed CR-Spectre

Here, we explain the overview of the attack injection, dynamic perturbations, and HID

for detection. Figure 4.1 shows the attack process flow depicting various aspects of the

attack. There are five aspects to CR-Spectre attack - host, vulnerable code fragment,

target, speculative attack code, and dynamic perturbations. The host is the application

to which the malicious code (Spectre) is injected. The adversary attempts to access the

secret stored in the target application. The vulnerable code is the host application’s code
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fragment that serves as a point-of-entry for the ROP attack. The speculative attack code

exploits the vulnerability in computing systems to access unauthorized memory locations.

At the same time, the dynamic perturbation is proposed to contaminate the victim’s (host)

and speculative attack’s HPCs to degrade HID performance. The secret (target) is stored

in the same application as the host, sharing the memory space, but it can be contained

as a standalone application. The proposed attack is initiated with the knowledge of the

vulnerability in the host. In our case, we utilize buffer overflow vulnerability to launch the

ROP attack.

The host expects a string of a certain length, and it is stored in a buffer. The ROP

attack is deployed by passing to a host a string that exceeds the buffer’s capacity/length.

This overwrites the contents in the stack space, which corrupts the return address of the

calling function - “victim application()” in Algorithm 2. The string passed to the host also

contains arguments that will be needed by the ‘execve’ as its argument, for example, the

address of the malicious binary. Addresses of the ROP gadgets are also provided as the

input string to the host. Hence, the host returns to a series of gadgets carefully chosen to

make an ‘execve’ system call and inject the malicious binary. After injecting the malicious

binary, speculative execution application, it will attempt to access the secret in the target.

The address of the secret in the target is known to the adversary. The computing system

is protected by HID, which samples the HPCs of applications executing on the system in

runtime.

The HID can detect the speculative attack explained above with high accuracy. Hence,

it becomes necessary to conceal the attack. We propose to conceal by introducing dynamic

perturbations. The dynamic perturbations are generated by calling functions containing

a couple of ‘if’ loops that execute based on the values of the attack parameters (variables

in the loop). The clflush and the mfence instructions ensure that the data is flushed each

time the function executes to cause variations in the HPC patterns. The perturbations can

be modified dynamically by varying the parameters; thus, each generated variant produc-

ing a different HPC pattern. The dynamic perturbation is discussed in detail in Section
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4.1.1.5 and Algorithm 4. With the CR-Spectre, the HPCs of both the host and attack are

contaminated, leading to performance degradation of the HID, thus evading the defense.

4.1.1.3 CR-Spectre: Attack Methodology and Gadget Generation

Referring to Section 4.2, and for conciseness, we present our proposed CR-Spectre by con-

sidering a simple application as shown in Algorithm 2 that stores the string provided as an

argument in the buffer. The victim application is the main function of the host application.

eFor our experiments, we utilize the MiBench suite as the host; any other application could

be used as a host, as the proposed technique is not bound to host application. We load

the compiled victim binary in the Linux Debugger (GDB) to search for all instructions that

end in a ret instruction. We then carefully chose instructions such that by chaining them

together, the ROP attack makes a system call, executing the malicious attack. Due to Data

Execution Prevention (DEP), system-level memory protection that marks stack and heap

as non-executable, we cannot write malicious code to the victim’s memory; an ROP-chain

attack utilizes existing code in the victim’s memory to evade a DEP protection.

As the existing code in memory is marked executable, the aim is to setup the stack mem-

ory such that the sequential execution (chain) of gadgets executes a system call, “execve”

in this case, which takes the path name of the CR-Spectre binary as an argument. The

ROP attack exploits a vulnerable function, exploited function, to serve as an entry point

for the attack. However, the proposed attack with ROP-chain [129, 131] can be extended

to any victim where a return address can be manipulated to execute a gadget.

In Algorithm 2, the buffer overflow manipulates the return address, replacing it with

an address of a gadget. Likewise, all the addresses of the necessary gadgets are provided

as arguments to the vulnerable function, thereby chaining them to execute the CR-Spectre

binary using the system call. A binary compiled using GCC has various other libraries linked

with it, thus providing more gadgets than available only with the host. With sufficient

gadgets, there exist innumerable possibilities of what could be executed within the victim

[131]. The content of the argument, as shown in Listing 4.2, is 108 bytes (0x6C) of random
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Algorithm 2 Pseudocode for code reuse attack on victim

1: vulnerable function(char* string) {
2: char buffer[100];

3: strcpy(buffer, string); // ROP attack injection with

buffer overflow exploit }
4: host application(int argc, char** argv) {
5: exploited function(argv[1]);
6: victim code line 2 ...
7: victim code line 3 ...
8: victim code line 4 ...
9: victim code line 5 ...

10: return 0; }

data (all ‘D’s along with four bytes of ‘FFFF’ used to fill the buffer), followed by the address

of execve function, followed by four bytes (ABCD), finally followed by the address of the

Spectre binary.

Listing 4.1: Attack payload passed as argument for ROP attack

. / v i c t im func t i on ”$ ( python −c ’ p r i n t ”D”∗0x6C

+ ”FFFF” + ” address o f system”

+ ”ABCD” + ” address o f at tack func t i on ” ’ )”

For conciseness, we omit to show all the addresses of the gadgets accessed before finally

making the system call. A working example of the code-reuse ROP attack is available on

our anonymous repository2. The argument essentially fills in all the space in the buffer,

shown in Algorithm 2, overwrites the return address to the address of the gadget in memory,

address of the second gadget in the chain, and so on. Finally, it is followed by the “execve”

gadget address and the address of the CR-Spectre binary executable, which is external to

the host application. Hence, the host can execute a malicious code without writing to its

memory, utilizing the gadgets already in the memory. The attack code is not contained in

the host’s code segment, instead it is injected in runtime; hence the HID cannot abort it by

analyzing offline.

2https://github.com/hartanonymous3512/CR-Spectre
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Algorithm 3 Pseudocode for generating dynamic perturbations for the CR-Spectre attack

1: void perturb() {
2: int a =11, b=6;
3: for(i=0;i<10;i++) {
4: if(i < a) {
5: cflush(address(a));

6: mfence();

7: a = a+50; }
8:
9: if(i < b) {

10: cflush(address(b));

11: mfence();
12: b = b+10;
13: cflush(address(b));

14: mfence();

15: b = b-10; }
16: ......More loops can be added here......
17: }
18: }

4.1.1.4 Attacking HID

Figure 4.2(a) shows how CR-Spectre attacks the HID. The CR-Spectre code is injected3 into

the host application. During execution, the application is profiled by the detector to record

performance counters in runtime [124,125,127]. The HID monitors the recorded traces, and

inference is provided - attack or benign. The decision is measured in terms of accuracy over

time. The HID performance is discussed in Section 4.2.5. For an HID, a higher accuracy

refers to distinguishing between benign and attack situations more accurately. The purpose

of the proposed CR-Spectre is to degrade the performance of the HID to evade detection.

Figure 4.2(b),(c) visually present the difference between traditional Spectre and CR-Spectre.

In (b), the adversary exploits attack code to steal secret data from the target application.

On the contrary, as shown in (c), CR-Spectre injects the malicious code in a host (benign)

application and executes it under the umbrella of the host.

4.1.1.5 Defense-aware Dynamic Perturbation Generation

With the previously explained attack methodology, there can exist scenarios where the at-

tack cannot evade the detection because the HID can learn, online learning or retraining, or

3Injection refers to the ROP attack that subverts the control of the host application forcing it to execute
a malicious code.
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Figure 4.2: (a) Code injection of Spectre attack to evaluate HID performance, (b) Tradi-
tional Spectre attack strategy, (c) CR-Spectre attack strategy

the application can be tagged as an attack by the human-in-the-loop. Online learning type

HIDs are retrained on the augmented dataset, the profiled HPC patterns of the applications

during the runtime for robust threat detection. To add better evasion despite having online

learning capable HIDs, we propose dynamicity in the CR-Spectre attack injected through

ROP discussed in Section 4.1.1.3. This affects the microarchitectural behavior of the appli-

cation such that the monitored information by the HID can be different from the traces on

which the HID is trained.

Figure 4.3 shows the process of the attack and generation of perturbed variations. CR-

Spectre generates a perturbed version of the speculative attack code and injects it into

the host. The applications, benign and the CR-Spectre attack, are profiled to record per-

formance counters (HPCs). The profiled traces are fed to the ML-based HID. The HID

provides the inference with a certain accuracy, indicating if the attack is detected or not.

For the attack to evade the HID detector, we consider accuracy of 55% or less. Suppose
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the HID inference result accuracy is less than 55%. In that case, the attack successfully

degrades the detector performance while the malicious attack steals secret data from the

target. If the HID detects the attack with high accuracy (>80%), we consider that the

attack was detected. The HID performs realtime profiling of the applications executing on

the system [124,125,127].

Upon detecting the CR-Spectre attack, we modify the perturbation code’s parameters

to generate a variant, the HPC traces of which differ from the previous variant. A variant is

generated by modifying the attack parameters like the loop count and operation variables,

‘a’ and ‘b’, as shown in Line 2 of Algorithm 4. The parameters are utilized in the algorithm

as shown in Lines 4, 7, 9, 12, 15, 17, 20, and 23. The parameters affect the clflush instruction;

hence it varies the HPC patterns as well. With different attack parameters, the generated

HPC patterns are modified. The attack process is repeated to steal secrets from the target.

The benign applications running on the system are also profiled and fed to the HID. This

is necessary because, in a real-world situation, the system executes multiple applications.

Hence, we profile applications like browsers, text editors, etc., and train the HID to emulate

a practical situation. The code shown in Algorithm 4 is called from within the malicious

code, Spectre.

The cflush on the arithmetic operation triggers a cache miss and affects other hardware

events such as those related to branch prediction, the number of instructions executed,

and the cache access cycles. The mfence instruction ensures that the previous operation,

clflush, completes before proceeding with the operation below. The data recovery process

is elaborated in [6]. For conciseness, we only discussed situations where the generated

perturbations (HPC) increase in magnitude. Nevertheless, we can use a delay loop to

disperse generated perturbations, thus distributing them in time. In this manner, the

generated HPC patterns can also reduce in magnitude.
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Figure 4.3: Process flow of the ROP attack and generation of perturbed code

4.1.2 Results and Evaluation

4.1.2.1 Experimental setup

MiBench [143], Spectre [6] are used as the host and malicious attack applications, respec-

tively. The CR-Spectre attack is not limited to the applications reported here, but it can

exploit other vulnerable applications, thus reading a specified unauthorized memory loca-

tion in the system. PAPI-based profiling tool [127] is utilized for recording the performance

monitoring unit’s output, hardware performance counters (HPCs). All experiments, appli-

cation profiling, ROP attacks are executed on Ubuntu 18.04 running on an Intel i5 with 16

GB RAM. We collect a total of 2000 samples for each class, CR-Spectre, and host; the scope
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of applications profiled also includes the host and other benign applications like browsers,

text editors, etc. The training and testing datasets are separated in a ratio of 70/30. e We

evaluate HID performance on MLP (Sklearn) [124], Neural Network (NN) from Tensorflow

[125, 126], Logistic Regression (LR) [124, 125], and a SVM [124, 125] classifier. The HIDs’

parameters are as follows: the neural networks have 6-layers using ‘Relu’ activation; SVM

classifier uses a linear kernel for classification; the MLP is 3-layer network-based classifier.

The parameters for the hidden layers are determined experimentally. We choose the param-

eters that deliver high accuracy in detecting CR-Spectre from other applications profiled.

Features used for the training are ‘total cache misses’, ‘total cache accesses’, ‘total branch

instructions’, ‘branch mispredictions’, ‘total number of instructions’, and ‘total cycles’. The

first five features are affected by Spectre attack as presented in works [124, 125]. The last

feature is utilized for the IPC metric for overhead analysis.

4.1.2.2 HID Performance on Spectre Detection

Figure 4.4 shows the performance (accuracy) of the HID in detecting/differentiating the

benign (host and other applications) and Spectre applications. The HID is inspired from

[124–126] and utilizes similar features for Spectre detection. The features fed to HID are the

recorded performance events (HPCs). We collect a total of 56 performance events available

on the system (offline). For real-time monitoring of the events, a limit is imposed on the

number of events counted simultaneously. Hence, we present the results with multiple

feature sizes (1, 2, 4, 8, and 16) to show the efficiency of the HID system deployed in this

work for Spectre detection. Figure 4.4 shows the performance of the HID in differentiating

MiBench and Spectre [6] applications. We experimented with different variants of the

Spectre attack, discussed in [140, 141]. The accuracy shown in the figure is the average of

the variants of Spectre. The legend Spectre_1 indicates the performance in classification

of Spectre - and other variants averaged - and MiBench application-1 (Math application

as listed in Table 4.1), similarly we can interpret other legends. Performance with a few

MiBench applications in Figure 4.4 are shown for conciseness. As seen, accuracy of more
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than 80% for feature sizes 16, 8, 4, and 2 in Spectre detection irrespective of the MiBench

application used. However, using only one feature for classification is inefficient due to its

inability to capture the HPC variations in a single feature. To alleviate the monitoring and

computational overheads, we consider utilizing 4 features in this work for Spectre detection

that lead to >90% accuracy on average. For the rest of the article, we consider a feature

size of 4 which can be recorded in runtime on modern processors [125].

4.1.2.3 Does CR-Spectre Evade HID?

Figures 4.5 and 4.6 present the HID performance under attack. The accuracy metric is

plotted against the number of CR-Spectre attack attempts over time. We study two sce-

narios for the attack, offline and online learning HID. The offline learning HID is a static

type that does not retrain itself (or retrained by the defender) during runtime, i.e., similar

to the [142]. On the contrary, we deploy an online learning version of the HIDs which are

retrained during runtime on newer traces to enhance attack detection capability on unseen

data.

Figure 4.5 presents the offline-type HID performance for original Spectre and CR-Spectre

with HID using different types of ML classifiers. In Figure 4.5(a), it is seen that the orig-

inal Spectre attack is detected with high accuracy by the HID detector implemented with

different ML classifiers. The accuracy variations are observed due to the variations in the

recorded HPC traces during each attack attempt. Whereas, in Figure 4.5(b), the perfor-

mance of HID degrades with perturbed instances of the attack. The accuracy shows a

degrading trend as the offline HID is employed. It is to be noted that we do not generate

dynamic perturbations for an offline-type HID. The reason being the offline-type does not

‘learn’ or retrain itself on newer traces. Hence, to save the overhead, CR-Spectre only gen-

erates one variation of perturbation but does not modify the attack parameters dynamically

every time it attacks the HID.

Similarly, from Figure 4.6(a), it is observed that the HID detects Spectre with high

accuracy. The patterns are leveled compared to Figure 4.5(a), as the online-type HID, by
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Figure 4.4: HID performance for four benign (host) applications and original Spectre attack
studied for different feature sizes

retraining itself on new traces, hence becomes more robust to HPC trace variations during

the recording phase. A degrading trend is again observed for the HID performance in Figure

4.6(b). The exception is that the HID attempts to boost the detection performance owing to

retraining. Yet, with the introduced dynamic perturbations, the CR-Spectre performs well

in degrading the HID detection accuracy to less than 55% to the lowest observed accuracy

of 16% in our experiments. Under the cloak of such degraded performance, the speculative

attack recovers the secret data from the target.
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Figure 4.5: Comparison of offline-type HID performance with Spectre and CR-Spectre
attack
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Figure 4.6: Comparison of online-type HID performance with Spectre and CR-Spectre
attack

4.1.2.4 Overhead analysis

We perform overhead analysis of CR-Spectre by evaluating different applications in the

MiBench suite. We select instructions per cycle (IPC) as an evaluation metric. Latency is

also a metric other works [124–126,142] have utilized. However, the latency metric could be
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counterproductive due to system noise. The noise is caused by other applications and the

operating system running in the background. Furthermore, IPC is also considered as a trait

of the application in determining the presence of abnormalities or stalls in the application.

We mitigate trace fluctuations by averaging the values by iterating the same application

100 times.

Table 4.1: Performance Overhead in Evaluated Benchmarks

Benchmark Original Application CR-Spectre with CR-Spectre with
(IPC) offline-type HID (IPC) online-type HID (IPC)

Math 1.9419 1.88 1.865
Bitcount 50M 3.041 3.05 3.031
Bitcount 100M 3.052 3.051 3.041

SHA 1 0.736 0.742 0.73
SHA 2 0.814 0.819 0.80

We report IPC values for the original application (without CR-Spectre), the offline

execution of CR-Spectre, and the online execution of CR-Spectre. The aim is to deliver

performance with negligible overhead. The overheads are reported in Table 4.1. For the

Math application (math small and math large applications averaged), the IPCs observed

are 1.94, 1.88, and 1.865 for the original, offline, and online execution. Similarly, for the

Bitcount with 50M operations, the IPCs are 3.041, 3.05, and 3.031, respectively. And for

the SHA cryptographic algorithm, it is 0.814, 0.819, and 0.818, respectively. Again, we

average the values to cover for variations. The overhead average for the offline-type and

online type is 0.6% and 1.1%, respectively, compared to the Spectre-only attack without

dynamic perturbations and ROP attack injection.

4.1.3 Countermeasures

It is crucial to discuss the countermeasures for the proposed CR-Spectre attack to help mit-

igate potential security threats. Disable clflush and mfence instructions for non-privileged
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processes, thus disabling dynamic perturbations; Accompanying automatic HID detection

with manual inspection of processes that might be vulnerable to ROP/Buffer-overflow ex-

ploits; Using a shadow memory -only accessible to the operating system - to compare and

correct when return address manipulation takes place. However, in-depth analysis and

verification are needed to evaluate the robustness against the proposed CR-Spectre.
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4.2 Covert-Enigma: Defense Against Side-Channel Attack

on Crypto-Systems

Modern computing systems require designers to embed novel features to satisfy the ever

exploding need for high performance and efficient systems. Regardless of evolved features,

such as speculative execution, three-level cache architecture, memory sharing/deduplication,

etc., the computing systems are vulnerable to security threats, also known as side-channel

attacks (SCAs). A plethora of past research works has focused on the vulnerabilities in

the systems. Some of the works on the vulnerabilities and their exploits are: malware

[49,145,146], reverse engineering of hardware [147,148]; attacks on machine learning-based

malware detectors [11, 50, 149, 150], cache-based side-channel attacks [48, 151, 152]. SCAs

exploit the architectural vulnerabilities, such as timing, power, frequency, etc., in the victim

application. By exploiting such vulnerabilities, the SCAs attempt to steal confidential data

from sensitive applications. There have been a rapid increase in the cache-targeted SCA

[21,22,153]. Computing systems require cache to achieve performance gains. Hence, almost

all the applications (sensitive or generic) utilize cache for storing recently accessed memory

locations. For instance, cache-targeted SCAs rely cache-access patterns - hit or miss -

to determine the recently accessed location(s) [7, 8, 154–156]. By studying such patterns

that serve as a covert channel leaking sensitive information, the attacker can determine the

recently accessed location, hence the secret information. To thwart such emerging threats,

our work focuses on defending against cache targeted SCAs.

The unsolved challenges and limitations of the existing defenses can be outlined as

follows: a) suggested hardware or software modifications might not be feasible to adapt;

and b) VM4 (virtual machine) migration -based mitigation are resource hungry strategies,

and contribute to a significant timing overheads.

To overcome the limitations of previous works [3–5] and thwart SCAs, we introduce

4In a multi-tenanted cloud environment, the operating system (along with the victim application) is
moved and executed on another physical hardware, disallowing the co-location of victim and the attacker
OS.
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Covert-Enigma, a defense for timing-based SCAs. In contrast to the previously mentioned

existing works that focus on architectural changes, the proposed Covert-Enigma primarily

focuses on maximizing the entropy5 of the side-channel information obtained by the attacker

without interfering with the original functionality of the victim application. In the Covert-

Enigma, the original application is coupled with a protective application (wrapper) that

induces cognitive perturbations in the cache-access information obtained by the attacker.

In contrast to the existing randomization techniques, proposed Covert-Enigma introduces

randomization under the constraint that the archived information by attacker looks legit

and similar to the normal information, yet leading to a wrong key. In Covert-Enigma,

we induce cognitive perturbations in the (security-sensitive) applications’ operations by

executing dummy instructions that leave the victim’s functionality unaltered yet scrambling

the sequence observed by the attacker. These induced cognitive perturbations mislead the

information retrieved by the attacker, thereby thwarting the attack. Our proposed Covert-

Enigma tenders user-tunable parameters such as the length of successive bits to modify and

the cycle frequency, where the number of cycles can be chosen after which the proposed

method cognitively selects the other set of bits to perturb. This offers the user to adjust the

level of complexity of the injected perturbations. Arbitrary and Cyclic are two operational

modes that a user can select, and the details are discussed in other sections. The arbitrary

mode offers one or more bits to be cognitively perturbed in the sequence of operations chosen

at runtime, whereas the Cyclic mode chooses bit(s) and then keeps perturbing6 same bits7

for few executions as determined by the user, post which the position changes. The Cyclic

mode is advantageous when the attacker suspects a defense mechanism is in place and tries

to repeatedly execute the user application to ascertain the static part of the sequence - as

seen by the attacker - which are added perturbation(s). We want to emphasize that, in this

work, ‘entropy-maximization’ refers to a reduction in the useful information obtained by an

5We define Entropy as the amount of randomness in the obtained data. The less entropy information
has, the easier it is to decrypt the data.

6Perturbation or cognitive calls refer to dummy cache accesses that leads to meaningful decryption, yet
incorrect

7Bit here refers to the bit in the secret information. Bit position refers to the bit in the stream of secret
information to be protected as observed by the adversary
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attacker by increasing cognitive randomness over side-channels to decrypt the secret key.

The proposed Covert-Enigma technique is thoroughly evaluated against active and passive

cache-targeted SCAs with victim applications utilizing different keys.

The cardinal contributions of this work are:

• Contrary to the existing works, the proposed Covert-Enigma enforces security on

the covert channel by injecting cognitively crafted perturbations that imitate legit

operations yet mislead the attacker.

• Render the attack more time-consuming (in terms of the iterations it takes to break

the defense) by providing two modes of operation, Arbitrary and Cyclic, thus offering

more flexibility in terms of the defense.

• Evaluate and compare the benefits of the proposed Covert-Enigma in terms of over-

head and performance based on the key size, mode of operation, user-tunable param-

eters, and the number of bits recovered post-attack on the victim.

The rest of the work is organized as follows. Section 4.2.1 provides the working principle

of the flush+reload and flush+flush type side-channel attacks followed by the vulnerability

in encryption application. Section 4.2.2 describes the proposed defense, threat model, gen-

eration of cognitive perturbations, and modes of operation of the proposed Covert-Enigma.

This is followed by Section 4.2.5 which includes the validation process, recovery of sen-

sitive data under SCA attacks (without the presence of Covert-Enigma), the behavior of

Covert-Enigma under attack, the performance of Covert-Enigma and the overhead analy-

sis. Section 4.2.6 describes the motivation supporting the proposed idea as a case study,

followed by the state-of-the-art in Section 2.2.

4.2.1 Side-Channel Attacks: Background

This section will briefly introduce the SCAs on which the evaluation of proposed Covert-

Enigma is performed along with some previous works.
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4.2.1.1 Side-Channel Attacks

Flush+Reload Attack Flush+Reload is a prominent cache targeted SCAs that utilizes

the cache-access timing information to retrieve the key. The process of Flush+Reload attack

is performed in three steps, as follows: Step 1: The attacker (spy) flushes a memory line in

the (shared) cache. Step 2: Spy waits for a certain amount of time (to let the victim access

the cache). Step 3: After the timeout, the spy reloads the data into the cache and observes

the access time to determine whether the cache line was accessed by the victim or not and

in Figure 4.7(a).

(a) (b)

Discard

Yes

Flush  Victim's data

Wait for an interval

Flush data again
Timeout!!

Time > 
Threshold

Capture
secret
data

No

Flush  Victim's data

Wait for victim to access data

Reload data
Timeout!!

Time > 
Threshold Discard

Yes

Capture Secret Data

No

Figure 4.7: (a) Flush+Reload attack: the spy (attacker) flushes the data and waits to
determine whether victim accessed the flushed line or not; (b) Flush+Flush attack: the spy
(attacker) flushes victim data, waits for a short interval and re-flushes the same location to
observe the time it takes to flush the data, thus, deciding if the data was accessed by the
victim

Thus, the Flush+Reload attack can be inferred as follows: if there was a cache hit for

the spy application indicates that the cache line (data) was accessed (and fetched) by the

victim application, else the victim does not utilize the data. For instance, the encryption

algorithms such as GnuPG’s RSA encryption use a sequence of the square, reduce and
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multiply operations to calculate the private key’s exponent. Utilizing the Flush+Reload

attack, depending on the cache hit/miss and the sequence of the Square, Modulo, and

Multiply operations, the spy deduces if the bit in key was a logical ’1’ or ’0’. By continuously

repeating the above process, the attacker can retrieve the entire private key [7].

Flush+Flush Attack Flush+Flush attack [8] is a relatively advanced cache targeted

attack that supersedes the above discussed Flush+Reload SCA both in terms of speed and

stealthiness. The Flush+Flush attack is shown in Figure 4.7(b). Unlike the Flush+Reload

attack, Flush+Flush is passive and works only by executing clflush instruction in an

infinite loop. Unlike Flush+Reload, Flush+Flush attack does not access any data, the

number of cache misses thus created are zero, and hence it becomes difficult to detect.

When the clflush instruction is issued, data that is cached takes more time to be flushed

out of the cache as it has to be evicted out across all cache levels completely as against

non-cached data, which takes less time. Based on the execution time of the clflush the

Flush+Flush attack concludes if the data was cached or not cached. The attack does not

load any memory line into the cache, and hence if clflush takes more time to execute

would imply that the victim accessed the data. Based on this strategy, the attack monitors

the victim’s activities by observing multiple cache lines or data of the victim.

4.2.1.2 GnuPG Encryption

In the previous subsection, we studied the SCAs, and here we describe briefly the victim

application that we utilize as a case study to analyze the impact of proposed Covert-Enigma.

GnuPG’s public-key encryption (PKE) is a popular way of encrypting the data to maintain

confidentiality and integrity. The PKE generates a pair of public and private keys, the

width of which is decided by the user. Any document that is encrypted with a public key

can only be decrypted with the corresponding private key. Let’s say user A wants to send

secret data to user B. In such a case, B will have its own public and private key, of which the

public key will be made available to user A. User A will use user B’s public key to encrypt

the secret data and send the encrypted data to user B. To reveal the secret data, user B will
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Figure 4.8: (a) Traditional side-channel attack on encryption algorithm where the data
leaked via covert channel is accessible to the attacker; (b) Victim wrapped with Covert-
Enigma that injects perturbation during run-time to perturb the sensitive information
leaked thereby making SCA time-consuming. *the output shown is only for visualization
purpose*

decrypt the file with its private key. The way the RSA algorithm is implemented, it is nearly

impossible to brute force an encrypted file if the width of the secret keys is large enough and

also due to the known fact that users (both legitimate and attackers) have no access to the

RSA algorithm directly while it is in the process of encryption and decryption. This might

have been true until a few years ago, but not anymore due to the state-of-the-art SCAs

that have successfully broken the keys’ secrecy, thereby rendering the PKEs vulnerable to

attackers. We have discussed the GnuPG’s implementation of the RSA and the DSA (with

Elgamal) type encryption methods in this work. A series of complex calculations compute

the private keys, and the exponent is what the attackers try to target. Once the exponent

is captured over the covert channel, the algorithm can be easily broken. Work in [7] vividly

describes how side-channel attack can be used to spy on victim’s (RSA) operations and thus

steal secret data.
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4.2.2 Design and Implementation of Covert-Enigma

In this section, we will first discuss the challenges that need to be addressed to deploy a

successful SCA defense. Further, we present the attack model used in many of the existing

works.

Some of the cardinal challenges designers face while incubating any defense in place

to protect the victim are: The defense mechanism should serve as a transparent shield

and does not alter the victim application’s functionality. Second, the attacker executes the

application for a large number of times to reduce noise in the channel while trying to capture

the desired secret information. In such a scenario, the defense mechanism must ensure that

the victim application is guarded against such attack methodology while reducing useful

information leaked to the attacker. Lastly, but crucial, the defense mechanism must not

significantly add overhead to the system while trying to protect the victim application.

Covert-Enigma draws inspiration from adversarial learning [157] where we introduce pixel-

level perturbation for forcing misclassifications on the attacker’s end. In Covert-Enigma we

perturb the cache-access sequence by using cognitive operations to mislead the attacker.

f unc t i on Square ( ) { . . . . . . .

Probe 1 // Address 0 x086f0

. . . . . . . . . . }

f unc t i on Mult ip ly ( ) { . . . . . . .

Probe 2 // Address 0x08628

. . . . . . . . . . }

f unc t i on Modulo/Reduce ( ) { . . . . . . .

Probe 3 // Address 0x08616

. . . . . . . . . . }

Listing 4.2: Spy inserts probes to monitor targeted vulnerable functions in the victim
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4.2.2.1 The Attack Model

We assume an adversary whose intention is to steal the confidential data that the victim

is processing. For the Flush+Reload and Flush+Flush attack to work, sharing the cache

space with the victim is a prerequisite. The spy does not need access to privileged execution

mode; instructions such as clflush are allowed for user-level processes. The Covert-Enigma

does not require superuser privileges as well. It is realistic to assume that the spy knows

the addresses to monitor the victim. The Covert-Enigma has similar knowledge of the same

addresses of interest to shield the victim against the attacker [7]. The spy can execute on any

core as the last-level cache (LLC) is shared across all the cores. Given the attack happens in

a real-world setting, we assume that the adversary does not have the right/control to execute

the victim at the same time as the adversary, but rather, the adversary can observe a part of

the victim’s execution during each run. Also, referring to [7], the adversary cannot capture

successive victim cache accesses that happen before the next probe (monitored addresses)

monitoring cycle.

4.2.2.2 Side-Channel Attack Without Covert-Enigma

Figure 4.17(a) shows the working methodology of traditional Flush+Reload attack to spy

on a victim (encryption) application to reveal the secret key. The spy inserts probes at

the function addresses of non-trivial functions such as square, modulo, and the multiply

operations as these are repetitive and their sequence determine the data flow and reveals

the secret key bits - this is how the existing cache-targeted SCAs [7,8] function. In the case of

Flush+Reload attack, the spy (attacker) constantly flushes the addresses at probed locations

and monitors if the victim accesses the flushed lines. The process of probing the square,

multiply, and modulo/reduce encryption functions by the attacker is shown in Listing 4.2.

Referring to Figure 4.17(a), the attacker is able to retrieve the secret information.
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Figure 4.9: (a) Sequence of operations in RSA implementation that leaks secret data; (b)
Random cache accesses [1–3]; (c) Cognitive perturbation injected in the observed side-
channel data to secure the information

4.2.2.3 Covert-Enigma: Injecting Cognitive Perturbations

Introducing random operations8 as in existing works to induce perturbations is not efficient

as the attacker can filter out portion that does not contribute to the construction of secret

data [1–3]. Figure 4.9 shows an example of cognitive perturbations injected during the

victim’s execution. Part (a) presents a sequence of operations that decodes to “10001”.

Part (b) shows random sequences injected, but these random calls do not make sense in the

context of the secret data revealed by the victim. For example, adding a Reduce-Square-

Multiply operation, as shown in 4.9(b), does make the secret data retrieval difficult, yet

it does not force the attacker to translate a ‘0’ bit to ‘1’ or vice-versa. In other words,

randomization does not lead to misinterpretation of the secret data and can be filtered out

by the attacker. Hence, it is crucial to introduce perturbations cognitively that seem legit.

In this work, we consider RSA implementation [158] as the victim. For RSA, to induce

8By random, we mean that random injection of any fake/dummy cache access does not help much to
mislead the attacker
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cognitive perturbations, the Covert-Enigma makes cognitive calls to the code within the

functions square, reduce and multiply, responsible for crypto-operation. For instance, a

sequence of Square-Reduce operations corresponds to bit ‘0’, whereas a sequence of Square-

Reduce-Multiply-Reduce will correspond to bit ‘1’ [7]. These operations are implemented

as function calls in the GnuPG’s encryption suite [158, 159]. Hence, by making a dummy

function call to the Multiply followed by the Reduce function, the defense can pose as if

the sequence corresponds to bit ‘1’ whereas the actual secret bit was ‘0’. We term this

phenomenon as the elevation of entropy. It is to be noted that the reverse operation holds

true as well, injecting perturbations such that sequences corresponding to bit ‘1’ are observed

as a ‘0’. After cognitive perturbation, the series contains additional ‘multiply’ and ’reduce’

operation, as shown in part (c). With these additional accesses, the sequence is deduced

as “11001”. The implementation of this technique does not modify the victim’s original

functionality. Referring to Figure 4.17(b), the attacker observes “11010” instead of the

original sequence of “10010”, given the cognitive perturbations.

The cognitive perturbations are dummy calls as they are not a part of the victim’s origi-

nal operations. Referring to Listing 4.3, the functions function 1 and function 2 are victim’s

original operations. In the function main, the result of either function 1 or function 2 is

fetched from the cache. We say the function call is a dummy call when the function’s ob-

tained result is discarded, meaning that the victim did not use the result. The cache access

is only made to perturb the sequence of operations or cache accesses. The dummy calls are

injected by Covert-Enigma as a part of the defense mechanism to trick the attacker into

observing the sequence of operations the victim performs, including the injected dummy

calls. The attacker depends on the cache access patterns, indicated by probe hit/miss, to

steal secret information. Hence, by injecting dummy operations, the attacker observes the

victim’s original operations perturbed by dummy operations. These injected perturbations

translate to misleading secret information different than the original information without

injected perturbations.
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4.2.2.4 Generation of Cognitive Perturbations

The generation of cognitive perturbation is intended to render the observance of sensitive

information (over the side-channel) during the attack a time-consuming task. With cognitive

perturbations, it becomes not only a time-consuming task for the attacker, but it also

becomes difficult on the attacker’s part to differentiate between the cache accesses caused

by the defense in place versus those caused by the victim application. The adversary

monitors the probed addresses. Therefore, the adversary is aware of the pattern of the

victim’s accesses when it executes the probed code lines. Our motivation in introducing

cognitive perturbation is that if we can carefully craft cache accesses such that they would

be considered legit by the adversary, it would be dummy operations that the victim makes

to increase the entropy in the side-channel. Because these operations, though dummy in

nature, make real cache accesses, they are considered by the adversary as an operation

made by the victim while processing sensitive data. These cognitive operations need not be

the replica of the functions found in a victim. Still, they could be simple lines of code that

reload the same addresses9 as are flushed by the adversary.

We build cognitive operations that execute (and access cache) similar to what the vic-

tim’s original functions would do by simply reloading addresses in the memory correspond-

ing to the lines of code in the victim’s original operations. These cognitive operations are

considered legit by the adversary application, as will be evident in Section 4.2.5, where we

present and analyze the experimental results.

Addition of the cognitive perturbations might present the notion of additional power

consumption, which may be used for other forms of side-channel attacks. However, the

dummy function calls are limited in number, and the workload of these functions is miniature

in nature. Thus, the amount of additional power or latency introduced by the Covert-

Enigma is small. In addition, to perform a power-based SCA, the basic assumption would

be that the attacker has power signatures for all the victim application(s) and can reliably

compare the same with the golden power traces. However, the power trace collection involves

9The vulnerability in the victim application is known to the adversary.
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uncertainties from different system components, which could be similar to additional power

consumption by the introduced dummy operation of Covert-Enigma. Furthermore, the

power SCAs are beyond the scope of this work

f un c t i on 1 {

a = ca ch e l o c a t i on ( 1 0 0 ) ;

r e turn a ; }

f un c t i on 2 {

b = ca ch e l o c a t i on ( 1 7 0 ) ;

r e turn b ; }

funct ion main {

dummy flag = 0 ;

i f ( b i t==0)

r e s u l t = func t i on 1 ;

e l s e i f ( b i t==1)

r e s u l t = func t i on 2 ;

dummy flag = 1 ;

i f ( b i t==0)

r e s u l t = func t i on 1 ;

d i s ca rd ( r e s u l t )

e l s e i f ( b i t==1)

r e s u l t = func t i on 2 ;

d i s ca rd ( r e s u l t )

}

Listing 4.3: Example of a dummy operation

4.2.3 Covert-Enigma Modes of Operation

To enhance the robustness of the Covert-Enigma , the Covert-Enigma is equipped with two

modes of operation - arbitrary and cyclic. Each mode can be set by the user to inject the

corresponding level of perturbations. The tuning of the parameters in the mode refers to

the reconfigurable aspect of Covert-Enigma. The reconfigurable parameters are “total bits
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Figure 4.10: (a) Part of secret seen by both adversary and victim without Covert-Enigma
(b) Sequence of bits seen by attacker when victim application is protected by Covert-Enigma
arbitrary mode, where positions of the perturbed bits change each run; (c) Sequence seen
by adversary with Covert-Enigma cyclic mode where position of group of perturbed bits
remains same until iteration ‘N ’; (d) Bit positions from previous run remain same; (e)Bit
positions have shifted randomly during new ‘cycle’ of same execution

perturbed” for the Arbitrary mode; and “total bits perturbed” and “Cycle Iterations (N)”

for the Cyclic mode.

4.2.3.1 Arbitrary Mode

As in Figure 4.10(b), the arbitrary mode cognitively perturbs a group of cache operations by

calling dummy operations to elevate the randomness. The arbitrary mode randomly selects

positions to call dummy operations. To avoid keeping the number of successive dummy
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operations static, arbitrary mode randomly groups cache operations (of the victim) and

inserts dummy cache accesses10 in between two successive victim cache access. The random

bit position selection is explained in Section 4.2.3.3.

4.2.3.2 Cyclic Mode

As illustrated in Figure 4.10(c),(d) and (e), our Covert-Enigma supports cyclic mode of

operation, where a group of bits is selected at random and cognitively perturbed, and the

group selected stays the same for a few cycles (execution runs, in other words) determined

by the user. Post the cycle count (details in the next subsection), a different set of bits is

selected to insert dummy operations. In summary, the perturbed bit positions change every

few cycles (denoted as ‘N ’) selected by the user, and for new executions, i.e., at ‘N + 1’

cycle, new bits are selected, the position of which remains the same for another ‘N ’ runs,

as shown in Figure 4.10(d). The duration of the cycle is denoted as ‘N ’ where N is an

integer. After ‘N ’ cycles, a new bit or set of bits are selected to perturb cognitively, and

the sequence seen by the attacker changes; this is shown in Figure 4.10(e). The positions

of these bits are random during every run and reduce the secret bits recovered during an

attack by elevating the randomness in the side-channel.

4.2.3.3 Generation of Random Bit Positions

We introduced the two modes of operation previously. Both arbitrary and cyclic modes

require random numbers to be generated to select bit position to inject cognitive pertur-

bation(s). In such a case, Intel’s RDRAND [160] and Linux’s ‘/dev/random’ [161] can be

utilized. The true random number generator (TRNG) generates ‘true’ random numbers

based on random, non-deterministic noise generated by the device drivers into an entropy

pool, which returns random numbers. The Covert-Enigma utilizes these random numbers

to generate cognitive noise.

10Cache is accessed but does not contribute to the functionality of the victim’s operations
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4.2.4 Summary of Covert-Enigma

Algorithm 4 outlines a high-level simplified view of the proposed Covert-Enigma along with

a snippet of the victim and the attack code. Covert-Enigma part is presented in Algorithm

4 from Lines 15 to 39. The user needs to feed in the value of the size of the key. The

position array, successive bits array stores the values of the bit positions to inject dummy

calls to and the successive bits to perturb, respectively. The values required for driving the

cyclic mode are saved to a tamper-proof location that stores the current cycle count, along

with the two arrays mentioned above. The Covert-Enigma and victim are synchronized

using function calls. The arbitrary mode is shown in Lines 20-25. The arbitrary mode injects

the perturbations until the bit count in the successive bits array. In our implementation,

the Covert-Enigma only injects a dummy multiply followed by a dummy reduce to give

the notion of a bit ‘1’ instead of a bit ‘0’ - as a Square-Reduce-Multiply-Reduce sequence

corresponds to bit ‘1’ being processed by the RSA. The cyclic mode is shown in Lines 26-39.

The cyclic mode operates similar to another mode. The major difference is that it does not

keep injecting dummy operations with every new cycle of the victim application. To enable

this, the Covert-Enigma accesses a tamper-proof location that stores the cycle count and

the other two arrays mentioned previously. This helps to keep injected perturbations in the

victim’s cache access patterns ‘static’ for a user-selected number of cycles, specified by the

value ‘N ’. If the victim has not completed the set number of cycles, the Covert-Enigma

ensures that the same positions are selected to inject the dummy operations by reloading

from the tamper-proof location. Otherwise, new random positions are generated. For the

purpose of brevity, we limit the details of the attack, but interested readers can refer to [7]

for details.

1 Attack {

2 Loop 1 : c l f l u s h ( Probe 1 ) ;

3 c l f l u s h ( Probe 2 ) ;

4 c l f l u s h ( Probe 3 ) ;

5 Reload Probe 1 , Probe 2 and Probe 3 ;

6 wait f o r time = t wa i t ;

7 t= Measure Reloading time ;
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8 jump Loop1 ;

9 cmp ( t , th r e sho ld time ( th ) ) ;

10 i f ( t > th ) => Cache miss ;

11 i f ( t < th ) => Cache h i t ; }

Listing 4.4: Attack code to capture data

The attack code has been shown in Listing 4.4. The attack code is launched with the

victim executing in parallel by the adversary to spy on the side-channel data. The probes

1,2, and 3 are inserted by the victim in the first few lines of code, which the attacker knows

are called iteratively by the victim. These probes from the attack’s point of view are simply

the addresses of the lines in the victim code. The attack code then flushes these probed

lines and waits for time t wait for the victim to execute. If the victim executed and accessed

the flushed cache line, the attacker, upon reloading the line, would see it as a cache hit -

since the data was available and fetched quickly. Else, the attacker sees a cache miss. The

cache hit/miss decisions are based on the threshold11 value (slightly varies from system to

system), which was ‘120’ cycles for our experimental setup.

Entropy Maximization By the conventional entropy equation, H = − log(Pi), where Pi

is the probability of bit i. As seen previously, Covert-Enigma increases randomization by

injecting perturbations in the signal; hence, the probability that the attacker observes the

correct/original key bit reduces dramatically. Hence, the lower the probability, the higher

the entropy, which means more randomness in the retrieved information. Since a group of

bits are selected to perturb the observed side-channel data, and the user can choose the

position of these bits and their quantity, the total permutation of such sequence is huge if

the attacker tries to observe the side-channel data after iterating the victim for thousands

or even more number of times. With a 4096-bit key, the attacker would have to iterate it for

4096P 2=16.77*106 for 2 bits perturbed and 4096P 6=4.7∗1021 for 6 bits perturbed. Hence, by

setting more number of bits to be cognitively perturbed or randomly choosing the number

of bits to be cognitively perturbed, the user can render more resilience to SCAs, despite the

11The threshold is the probe access time in cycles
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Algorithm 4 Pseudocode illustrating generation of perturbations with Covert-Enigma and
the modes of operation

Require: Private Key
Ensure: Decoded Incorrect Key
1: Victim Program (Mode = Arbitrary or Cyclic)

{// Performs secure-critical operations that leak data over covert channel}

2: func Square()

3: { Probe 1 inserted here
4: Do Square operation;
5: Wait for the Covert-Enigma; }

6: func Reduce()

7: { Probe 3 inserted here
8: Do Reduce operation;
9: Wait for the Covert-Enigma; }

10: func Multiply()

11: { Probe 2 inserted here
12: Do Multiply operation;
13: Wait for the Covert-Enigma; }

14: Covert-Enigma (){
15: position key size = 1024/2048/3076 or 4096;

16: position array = true random generator();

17: successive bits array = true random generator();

18: tamper proof location = {N, position array, successive bits array};
19: bit count=0;
20: if (mode = Arbitrary(total bits) ) then {
21: for i in range(0 : sizeof(position array)):

22: if (current position=position array[i]) {
23: do { Multiply(dummy);

24: Reduce(dummy);

25: } while(bit count!= successive bits array[i]) }

26: else if (mode = Cyclic(total bits, N)) then {
27: if (cycle count != N;) then {
28: reload tamper proof location = (N, position array,

29: successive bits array );
30: else
31: {refresh tamper proof location = (N, position array,

32: successive bits array );

33: int N, cycle count=0, bit count; #N is selected by user

34: for i in range(0 : sizeof(position array)):

35: if (current position=position array[i]) {
36: do { Multiply(dummy);

37: Reduce(dummy);

38: tamper proof location++; }
39: while(bit count!= successive bits array[i]) } }
40: end Victim Program;

attacker executing an attack a large number of times.
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4.2.5 Experimental Evaluation

4.2.5.1 Validating the Attack and Covert-Enigma

Experimental Setup: We tested the proposed Covert-Enigma12 on system with Intel-

i7 core running Ubuntu 18.04 LTS OS with 16 GB RAM and GnuPG’s [159] RSA [158]

implementation. Flush+Reload [7] attack code can be found at [162].

Validation of Attack: Here, we evaluate the efficacy of the proposed defense to mitigate

side-channel leakage to dissuade the adversary from stealing sensitive data. The cache size

(last level cache) on our experimental setup was 2MB, with 16-way cache associativity.

The cache map is a representation after one iteration of the victim. We present cache

access maps (part of a cache that is of interest to investigate) in Figure 4.11 for scenarios

where the victim is under attack and when our proposed Covert-Enigma shields the victim.

The nuances of the colors shown in the figure demonstrate the relative accesses made to a

particular location - darker shade signifies more frequent accesses. In comparison, a lighter

shade signifies relatively less frequent accesses. As seen in Figure 4.11(a) and (b), probed

functions for RSA victim are highlighted. These locations correspond to the cache locations

attacked by the adversary.

Figure 4.11(a) shows access to the cache made by the victim and the adversary. Figure

4.11(b) shows the cache accesses made by the defense, adversary, and the victim, as the

same cache is shared across. In 4.11(a) one can see tightly clustered dense regions of cache

access. However, in 4.11(b), one can observe the dense areas spread across the whole map.

Such a disaggregation leaves the attacker with more ambiguity. Further, some areas have

shown an increase in access rate due to additional dummy operations introduced by Covert-

Enigma. It is to be noted that the Figure 4.11 is a simplified illustration of cache accesses

obtained from experiments to demonstrate the effectiveness of proposed Covert-Enigma.
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Figure 4.11: (a) Cache access map for operations observed when the victim is under attack;
(b) Cache access map for operations observed when Covert-Enigma makes cognitive calls
to the probed cache lines
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Table 4.2: Group of key bits perturbed by Covert-Enigma

Group of key bits perturbed by Covert-Enigma - Arbitrary mode
Attack Victim Key Original Key Victim seen key Key seen by the adversary

Flush+Reload
RSA key 1 100100001110 100100001110 100111001110
RSA key 2 010110000111 010110000111 010110111111

Group of key bits perturbed by Covert-Enigma - Cyclic mode
Attack Victim Key Original Key Victim seen key Key seen by the adversary

Iteration 1 Iteration Nth Iteration (N+1)th

Flush+Reload
RSA key 1 100100001110 100100001110 111100111110 111100111110 100111001111
RSA key 2 010110000111 010110000111 110111100111 110111100111 011110011111

4.2.5.2 Recovering Sensitive Data

We also evaluate the effectiveness of the proposed defense in terms of key extraction. In

other words, we present the information regarding how many key-bits can be extracted by

executing the RSA application under the Flush+Reload SCA with traditional randomiza-

tion and proposed defense. We follow the procedure described in [7, 8] for key extraction.

We execute the attack on the victim and recover as many bits of the secret data as possible.

As described in our threat model, we place our experiments in a real-world setting where

the adversary does not have control over the victim and can only observe a part of the

victim’s execution. This is realistic as the victim only executes for encryption/decryption

operations only when required. Hence, it is imperative to mention that the adversary initi-

ates the attack during such instances and observes a portion of the victim’s execution. The

results of the key recovery are presented in Table 4.5 and 4.7. The colored text highlights

the cognitive perturbations that are injected. For Cyclic mode, the selected bit positions

remain the same until ‘N ’th round (N = 25 in our experiments), followed by new bit posi-

tions selected. A part of the observed key is shown for conciseness. We evaluate the defense

under different key sizes for crypto-operation.

Table 4.3 shows the key extraction for different key sizes with traditional randomization

defense. We implement a randomization strategy similar to that in [3–5]. We do not

12https://github.com/hartanonymous3512/Covert-Enigma.git
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claim an accurate replication of the defense in [3–5], yet consider a similar approach as a

baseline for comparing the proposed methodology versus a similar defense where the cache is

accessed randomly to mislead the attacker. The works in [3–5] are based on randomization

but require hardware or software stack changes. We have replicated them without software

stack or hardware architecture changes. Hence, to establish a baseline, we consider the

above-mentioned works as a randomization-based defense generically, and compared our

work with a similar version. Figure 4.12 presents the results for bit recovery with Covert-

Enigma for different key sizes and dummy cache accesses. The number of calls made are

for one complete execution of the victim. The results in Table 4.3 demonstrate that with a

defense strategy like that presented by the work in [3–5], the recovery of the secret key/data

ranges from 88% to 77%. We have presented the recovery rate with when the victim is

protected by Covert-Enigma in Figure 4.12. We have compared Table 4.3 with Figure 4.12

indicating that with our proposed defense, the recovery rate reduces to 72-59% for key size

of 1024, 68-52% for 2048, 62-48% for 3072, and 52-40% for a key size of 4096.

For the arbitrary mode, we obtain similar results as in Figure 4.12. The cyclic mode’s

advantage is in scenarios where the user happens to use a crypto operation that uses the

same key for de-obfuscating different encrypted files on the system and where the adversary

can obtain information from multiple executions of the victim. Another evaluation technique

we have used in this work is by comparing the observed traces. The spy program is made to

print the operations’ sequence while the probed locations - probed functions Square, Reduce,

and Multiply - are accessed by the victim. These sequences are compared against the

victim’s operations under Covert-Enigma. Table 4.4 presents the number of perturbations

(additional cache calls) injected for a 1024-bit key. The table reports the differences seen

in percentage. For instance, an 8% difference is observed while comparing the victim’s

operations without Covert-Enigma and with Covert-Enigma. Theoretically, 8% should have

been 10% for 100 additional calls in a 1024-wide key. But, as explained previously, the spy

cannot see successive cache operations, and hence, some operations are not observed, as the

probe scan time is less than the cache access time.
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Table 4.3: SCA on victim protected by traditional randomization and Covert-Enigma.
Attacker recovered secret data

Key Size 1024 2048 3072 4096

Bits Recovered (traditional randomization) (%) 88.2 85.1 81.7 77.0

Bits Recovered (Covert-Enigma) (%) 60-70 53-68 48-62 40-52

Table 4.4: Percentage difference comparison of victim operations with and without Covert-
Enigma

Amount of injected perturbations 100 300 500 600

Difference observed with perturbations(%) 8 26 48 55

4.2.5.3 Covert-Enigma with Flush+Reload Attack

We have chosen the Flush+Reload and Flush+Flush attack spying on RSA-RSA and DSA-

Elgamal encryption algorithms with a secret key of 4096-bits, as implemented in the GnuPG.

We will also present the outcome with different modes of operation - Arbitrary and Cyclic.

We verified our proposed Covert-Enigma by examining the perturbations injected both

on the victim and spy end. Figure 4.10 presents a pattern of the sequence of operations

plotted against time slots versus the probe time as seen by the attacker/victim. Figure

4.10(a) shows the secret information observed by the victim and the attacker without the

Covert-Enigma. Every Square-Modulo operation not followed by Multiply is translated as

bit ‘0,’ and every Square-Modulo-Multiply-Modulo operation as bit ‘1’, as in [7]. In this

case, the victim and the attacker both see the same information - the spy observes the

channel’s leaked information. Figure 4.10(b) shows the sequence of operations when the

victim is being protected by the Covert-Enigma in the arbitrary mode -the victim observes

the key as “10010000”, the original key, while the attacker sees it as “10011100” since some
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of the ‘0’ bits are flipped to bit ‘1’. These perturbations are induced irrespective of the key,

as shown in Table 4.5 with cognitively selected zeros converted to ones for the key 1 for the

RSA-RSA type encryption -victim sees the key as “100100001110”, the attacker observes

it as “100111001110”. One needs to note that in Figure 4.10 all the bits are not shown to

avoid congestion in the figure, and also, it was not possible to show all of the 4096-bits.

Also, for the Table 4.5 and 4.7, a part of the large key has been shown to demonstrate the

perturbation rather than the actual position in itself.

Similarly, for key 2, DSA-Elgamal type, some other random bits are perturbed, and the

attacker observes a different pattern. For the Cyclic mode, as shown in Figure 4.10 and

Table 4.7, the perturbed key remains the same for ‘N = 25’ iterations, post which other

random bits are perturbed in the sequence that begins with (N+1)th iteration, which stays

static until the end of the cycle which is (N + N)th iteration. As seen from Figure 4.10,

the attacker observes the sequence as “11110000” which remains the same until the end

of iteration ‘N ’, post which it changes to “10010110” and the results for the same can be

confirmed from Table 4.7.

Tables 4.6 and 4.8 demonstrate the results where randomly chosen (similar to the group

perturbations) single bits are flipped/perturbed. The successive bits array value can be

modified to choose single bit perturbation instead of grouped perturbation, where successive

bits are perturbed. From Table 4.6, the victim sees the value as “100100001110” while the

attacker observes it as ”10011000110” for RSA type. Similarly, it can be seen from Table

4.8 how the observation is affected using the Cyclic mode. The single-bit perturbations can

be chosen to perturb bits along the entire sequence of operations of cache accesses. The user

can choose a single bit versus a group of bits considering the security-overhead trade-off.

4.2.5.4 Covert-Enigma with Flush+Flush Attack

We have evaluated our Covert-Enigma against Flush+Flush, whose key extraction results

are presented in Table 4.5 and 4.7 for both the modes. Similar to the Flush+Reload,

the induced perturbations can deceive the spy in both arbitrary and the Cyclic modes.
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Table 4.5: Group of key bits perturbed by Covert-Enigma - Arbitrary mode

Attack Type Encryption Key Original Key Victim seen key Key seen by the attacker

Flush+Reload
RSA-RSA key 1 100100001110 100100001110 100111001110

DSA-Elgamal key 2 010110000111 010110000111 010110111111

Flush+Flush
RSA-RSA key 3 111000100110 111000100110 111011100110

DSA-Elgamal key 4 100000110011 100000110011 100111110011

Table 4.6: Single key bit perturbed by Covert-Enigma - Arbitrary mode

Attack Type Encryption Key Original Key Victim seen key Key seen by the attacker

Flush+Reload
RSA-RSA key 1 100100001110 100100001110 100110001110

DSA-Elgamal key 2 010110000111 010110000111 010110100111

Flush+Flush
RSA-RSA key 3 111000100110 111000100110 111001100110

DSA-Elgamal key 4 100000110011 100000110011 100001110011

Table 4.7: Group of key bits perturbed by Covert-Enigma- Cyclic mode

Attack Type Encryption Key Original Key Victim seen key Key seen by the attacker
Iteration 1 Iteration Nth Iteration (N+1)th

Flush+Reload
RSA-RSA key 1 100100001110 100100001110 111100111110 111100111110 100111001111

DSA-Elgamal key 2 010110000111 010110000111 110111100111 110111100111 011110011111

Flush+Flush
RSA-RSA key 3 111000100110 111000100110 111011111110 111011111110 111000111110

DSA-Elgamal key 4 100000110011 100000110011 100110111111 100110111111 111000110011

For instance, for the RSA type keys, in the arbitrary mode, the key gets translated from

“111000100110” to “111011100110” whereas for the Cyclic mode it is observed as “111011111110”

and “111000111110” during iteration-1 and iteration (N + 1)th respectively. For our pro-

posed defense to work even for Flush+Flush, it needs to ensure that the lines of code within

the square, modulo, or multiply functions are cached, and only then the attacker can flush
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Table 4.8: Single key bit perturbed by Covert-Enigma- Cyclic mode

Attack Type Encryption Key Original Key Victim seen key Key seen by the attacker
Iteration 1 Iteration Nth Iteration (N+1)th

Flush+Reload
RSA-RSA key 1 100100001110 100100001110 101100011110 101100011110 100101001111

DSA-Elgamal key 2 010110000111 010110000111 110110100111 110110100111 011110010111

Flush+Flush
RSA-RSA key 3 111000100110 111000100110 111010110110 111010110110 111000101110

DSA-Elgamal key 4 100000110011 100000110011 100100111011 100100111011 101000110011

a cache line within the code and consider that the encryption must have accessed the func-

tion/operation. Tables 4.6 and 4.8 present results for single bit perturbations for both the

modes for Flush+Flush.
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Figure 4.13: Overhead analysis for 4096-bit key with different amounts of randomization.
Overhead compared with a close replication of random cache policy similar to [3–5]

4.2.5.5 Summary of the Implemented Results

Tables 4.5, 4.6, 4.7, 4.8 are ideal cases because while executing them on our machine we

reduced the number of background activity. But, in actual scenarios, the OS and other
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application activity will generate noise in the cache, making the attack more difficult. The

attacker might not be able to see the key bits in consecutive order. Hence, as the keys

seen by the attacker will be different every time and with such randomness, explained in

detail in Subsection 4.2.4 it is very difficult for the attacker to retrieve the key knowing the

fact that executing SCAs successfully is non-trivial when it comes to retrieving secret keys

amid operating system noise and various cache operations. Our Covert-Enigma enhances

security, but there is no single/unified mechanism to evaluate all the corner cases. A single

solution does not address all the problems. Our proposed solution holds for the threat

model described previously.

4.2.5.6 Overhead Analysis

The overhead analysis graph is shown in Figure 4.13. The figure compares the execution

times of traditional randomization technique similar to [3–5] and Covert-Enigma. We con-

sider the arbitrary mode for presenting the results. The trend is shown for different amounts

of randomization added (along the X-axis) and the execution time in microseconds (along

Y-axis). The average execution times across different percent of randomization is shown

in Figure 4.13. The trend clearly explains that with our defense, the overhead is 50% less

than a randomization technique that tries to insert random calls for every bit of the secret

key. Our proposed defense inserts the calls cognitively, hence incurs less overhead - cache

is accessed less frequently than traditional randomization techniques. We see this trade-

off as a beam scale balance that weighs security and performance (in terms of execution

time/cycles) on each of its scale pans. The user can determine the amount of perturbations

by analyzing the overhead-security trade-off. Again, it is to be noted that the traditional

randomization we compare our proposed methodology is not an exact reproduction of the

work in [3–5], but it is similar in a manner that we allow injecting random perturbations in

the cache in software; no hardware modifications are required.

How the cognitive perturbations differ from traditional randomization is explained fur-

ther referring to Figure 4.13. If each bit of the key is perturbed, meaning the cache is
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accessed in a dummy fashion (randomly), the overhead is significantly higher. From our

experiments, if X is the base execution time for the victim, then 2.19X is the overhead with

traditional randomization, while it is 1.29X with Covert-Enigma’s arbitrary mode. All the

overheads are averaged for simplicity. A 4096-bit key is used for crypto operations, and by

varying the number of cognitive perturbations, higher security can be offered. This comes

at the expense of some overhead. With 10% injected perturbations, the overhead is 25% less

with Covert-Enigma compared to randomization only. With 25% injected perturbations, we

observe a 50% less overhead against the randomization only method as mentioned above.

Hence, perturbing each bit is not a solution owing to large infeasible overhead. With tra-

ditional randomization, the overhead can be feasible, but the attack can break the defense

much earlier than it can when Covert-Enigma wraps the victim. Moreover, the overhead of

Covert-Enigma is less than the other technique.

4.2.6 The attack phase and the Covert-Enigma: A case-study

In this section, we will briefly discuss the motivation supporting the proposed Covert-

Enigma which is presented as a case study.

Figure 4.14 shows different scenarios of the victim’s access to the cache memory and

the attacker’s access and how the attacker exploits this information deducing the secret

key. Figure 4.14(a) shows a scenario where the attacker tries to flush the victim’s data,

then waiting for a predefined time before reloading the same data. As can be seen, since

the victim did not access the data, the attacker experiences a cache-miss when it tries to

reload the data, which is discarded. Figure 4.14(b) visually describes the victim’s access

while the attacker was waiting for the victim to execute. Since the victim accessed the

data, the attacker experiences a cache-hit during the reloading phase, thus deducing the

data accessed by the victim. Figure 4.14(c) presents a scenario when the victim accesses

the cache multiple times within the same ‘wait’ window of the attacker. But the attacker

can spy on only the recent chunk of data accessed by the victim, and it will never know

what locations the victim accessed preceding the recent access. In summary, irrespective of
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Figure 4.14: Timing diagram depicting different scenarios where a victim and/or an attacker
may access the cache ;(a) Victim Does not Access; (b)Attack with Victim Access; (c) Victim
multi-Access

the scenario, the attacker can still spy on the location accessed by the victim.

In addition to this, referring to Figure 4.15, we can get an idea of how the attacker

spies on the crypto application while executing secure critical operations. As explained in

Section 4.2.1, the GnuPG uses different operations to encode/decode user data or secret

data where the sequence of these operations can leak the secret data shown in Figure 4.15.

Part (a) presents a sequence of operations that decodes to “10001” as discussed previously.

If only some noise could be added to these sequence traces, the SCAs could be thwarted

with little effort. Let’s consider a defense mechanism that adds noise to the traces observed

by the attacker. This might dissuade the attacker from decoding the secret data as due

to noise, deducing the key would seem difficult. Still, in case of a persistent attack on the

system, the attacker can break the defense wall by observing a large sample of the observed

data and filtering the noise. Hence, merely adding noise to the operations’ sequence will

not suffice and is not a robust solution. We introduced cognitive noise to the sequence of

operations that looks legit to the attacker yet leads to an incorrect deduction of the secret
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Figure 4.15: (a) Sequence of operations in a crypto system that potentially leaks secret data;
(b) Cognitive noise injected in the victim’s covert channel data to protect the information
while tricking the attacker

key. Figure 4.15(b) shows the same sequence of operations as part (a) but with intelligently

crafted noise injected in the sequence. This crafted noise concerning the sequences makes

sense to the attacker. As can be seen, the multiply and reduce operations are dummy called

succeeding the square and reduce operations (original operations called by the victim),

which, when observed by the attacker, will translate to bit-1 instead of bit-0 which tricks

the attacker. Since the injected operations are dummy, they do not harm the victim’s crypto

operations. This has been our motivation behind the proposed work. We have discussed

different modes of operation of the proposed method to render the defense more robust and

resilient to attacks.

Extending to other victims: It needs to be noted that our proposed Covert-Enigma

could be extended to any victim that repeatedly calls for lines of code, where the sequence

of accesses to the cache is important. For example, suppose the victim application is

Advances Encryption Standard (AES). In that case, the user can decide to randomize the

cache accesses AES makes for reading tables used for the crypto-operations. The adversary
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times the access to the locations of the tables to conclude which ones were accessed recently.

The user can employ Covert-Enigma to introduce cognitive perturbations, which seems legit

(cache access), but the sequence is scrambled to camouflage the sequence of cache operations.

Thus, it becomes possible to hide the real accesses made by AES, yet leading the attacker

to consider cache accesses made by Covert-Enigma.
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4.3 A Novel Adversarial Attack-assisted Hardware Vulnera-

bility Exploit on Deep Learning Networks

Modern computing systems are gaining superior performance than ever before owing to the

development of sophisticated machine learning services such as deep learning. The deep

learning networks (DNN) are becoming ubiquitous in almost all domains in the real-world

due to their unparalleled performance in tasks such as malware detection, autonomous

cars, image recognition, object detection, medical industry, security critical applications

and much more. Considering the crucial role deep learning systems play in such mission

critical applications, maintaining a secure environment is mandated. Nevertheless, the

performance of a deep learning network can be severely degraded when exposed to certain

vulnerabilities.

Recent studies [163–166] have demonstrated that DNNs are vulnerable to adversarial

attacks; these attacks are implemented by adding well-crafted perturbations to the input im-

ages. A carefully crafted perturbation can mislead the DNN thus misclassifying a legit input

image. Thus far, previous works have focused on offline poisoning of the legit input images.

Meaning, the adversarial perturbations are added to the images in an offline fashion. The

poisoned data is later consumed by a DNN model for inference. The crafted perturbations

result in loss of DNN performance. Here, the underlying assumption is that the adversary

has access to the input image(s). On the other hand, there are instances where internal

vulnerabilities in a DNN are exploited as well [167]. A DNN provides its classification or

inference based on the weights that are designated at training time. Work in [168] have

demonstrated that the a DNN is very sensitive to its weight parameters. Injected pertur-

bations or alterations in the model weight(s) can lead to degradation of DNN performance;

an intelligent perturbation of the weights can dramatically degrade DNN performance thus

leading to misclassification of the input data.

We observe that the works in the past have focused either on the software side of the

attack or hardware side of the attack. This work focuses on a novel attack methodology
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that targets the victim DNN from both the software and hardware aspects. This unique

approach makes it harder to defend. We intend to propose this approach to demonstrate

the resiliency of a DNN network to a novel attack. This will contribute to improvise DNN

design or environments which DNNs utilize for their operation.

In this work, we propose a novel attack, Adv-Exploit , that utilizes a two-prong ap-

proach in attacking a DNN. One aspect of the attack is by perturbing the pixels of the legit

input images using vulnerabilities in the underlying hardware - say, using a Rowhammer

attack [169]. Because, there may be scenarios where the adversary may not have complete

access to the image dataset to inject perturbations. Hence, a methodology that can poison

the images in-memory is required. This is novel to our paper in contrast to the previous

adversarial attacks [163] that poison the input images by adding perturbations to the im-

ages stored offline. Our proposed attack manipulates the bits representing the input image

pixel values using a bit flipping strategy. Another principal feature is that we utilize a

powerful adversarial attack-assisted data manipulation, Min-invasive . The perturbation

of the image pixels is carried out by our proposed adversarial attack that imposes group

sparsity on adversarial perturbations by extracting structures from the inputs. Our pro-

posed adversarial attack identifies minimally sufficient regions that make attacks successful,

but without incurring extra pixel-level perturbation power. Our bitflip hardware attack is

inspired from the work in [167]. We propose an enhanced version of the bitflip attack by

driving it using our adversarial attack.

The second aspect of the attack is to poison the DNN model weight parameters using a

gradient search algorithm. The weight parameters crucial to DNNs inference performance.

Incorrectly trained weights or perturbed weight parameters could lead to degradation of

the DNN inference. Also, random weight parameters cannot be manipulated as it may not

lead to significant loss. Hence, similar to an adversarial attack, the weight poisoning attack

also needs to be intelligently crafted. Hence, a small number but the most sensitive bits

must be flipped to affect the DNN performance. Compared to the popular C&W attack

[163], our proposed Adv-Exploit is far more efficient in terms of the pixels perturbed and
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naturally the total bit flips required to attack the DNN model. A real-world application of

our proposed attack could be, say, an autonomous vehicle. An autonomous vehicle utilizes

a sophisticated DNN model trained on input images derived from a continuous stream of

data (video). Our proposed attack installed as a third-party application on the system could

internally perturb the input images in memory and the model weight parameters to degrade

DNN performance, thus leading to misclassification scenarios - a stop sign misclassified as

a green signal. Such a vulnerability exploit could be very catastrophic, causing damage to

property up until loss of human life. Hence, we propose to evaluate DNN resiliency against

our Adv-Exploit attack in different testing scenarios.

We evaluate our attack on different architectures and corresponding popular datasets,

MNIST, ImageNet, and CIFAR-10. It is evident from the evaluation, as discussed in Section

4.2.5, that our proposed attack technique requires 16% and 24% less bit perturbations

compared to the Carlini attack [163] for MNIST and CIFAR-10 dataset, respectively. We

also demonstrate that the DNN accuracy under attack degrades to less than 30%, which

is worse than a random guess of 50% accuracy. Using different DNN architectures and

datasets, it is demonstrated that our proposed vulnerability exploit attack is both model

architecture and dataset agnostic. In other words, the proposed methodology should work

on other architectures and dataset as well.

In summary, the essential contributions of this work are:

• Construct a novel adversarially driven hardware vulnerability attack targeting a Deep

Neural Network (DNN). The intent is to evaluate the resiliency of the DNN against

such vulnerabilities. The proposed attack is a two-pronged approach that targets the

software and hardware aspects. The attack is architecture agnostic and is validated

for MNIST, CIFAR-10, and ImageNet datasets.

• For the software aspect of the attack proposing an adversarial attack that is less

expensive in regards to the bits needed to perturb an input as compared to the popular

C&W attack.
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• As for the hardware aspect, proposing an enhanced bit flipping that is driven based on

the perturbation matrix provided by adversarial attack. Also, enhanced bit flipping is

used to manipulate weight parameters of the DNN model to degrade model accuracy.

The rest of the paper is organized as: Related works are discussed in Section 4.3.1,

followed by the design methodology of the proposed attack in Section 4.2.2; Evaluation is

presented in Section 4.2.5. The adversarial attack, Min-Invasive, described in the proposed

attack section and its results in evaluation section is credited to the team at North Eastern

(NEU) University [170]; the adversarial work is done in collaboration with the team at

NEU university. The attack in [170] is adapted and enhanced for the proposed attack in

this section.

4.3.1 Related Works

Adversarial Attacks.

Many adversarial attacks are constrained by `p norms. For example, FGM [165] and

IFGSM [164] attacks try to maximize the classification error with a `1-norm constraint.

Moreover, L-BFGS [166] and C&W [163] attacks minimize the `2-norm distortion while

achieving mis-classifications. Besides, JSMA [171] and one-pixel [172] attacks try to perturb

the minimum number of pixels, i.e., minimizing the `0-norm of adversarial perturbations.

Auto-attack [173] forms a parameter-free, computationally affordable and user-independent

ensemble of attacks to test adversarial robustness

In the aforementioned adversarial attacks with norm-ball constraints, there are two

opposite principles: C&W attack (or `1 attacks) modifies all pixels with minimal pixel

perturbations; one-pixel attack only perturbs a few pixels with more significant pixel-level

distortions. Both attacking principles might lead to a high noise visibility due to perturbing

too many pixels or perturbing a few pixels too much. In this work, we explore a more

effective attack to achieve a tradeoff between the perturbation strength and the number of

perturbed pixels. We show that the proposed Min-invasive can identify sparse perturbed

regions (rather than perturbing every pixel) with negligible pixel-level perturbations to
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achieve successful attacks. Note that one-pixel attack usually has much lower attack success

rate on ImageNet than C&W attack and Min-invasive .

Defense against Adversarial Attacks. Many defense works against adversarial attacks

have been proposed such as defensive distillation [174] to distill the original DNN and

introduce temperature into the softmax layer, and robust adversarial training [175, 176] to

incorporate the min-max optimization. It is commonly known that the robust adversarial

training method ensures the strongest defense performance against adversarial attacks on

MNIST and CIFAR-10. Due to the large training efforts of adversarial training, a line of

works [177–179] try to implement adversarial training more efficiently with less computation

complexity. In this work, we evaluate the effectiveness of Min-invasive to three defense

methods: defensive distillation [174], adversarial training via data augmentation [180], and

robust adversarial training [175].

Visualization of Adversarial Examples. Despite the increasing popularity of adver-

sarial attack and defense in research, the visual explanation on adversarial perturbations is

less explored since the minimal perturbation is hard to recognize by human eyes. The work

[181] investigates how the internal representations of DNNs are affected by adversarial ex-

amples. However, it only considers an ensemble-based attack, which fails to explore different

`p-norm constrained adversarial attacks. Unlike [181], we employ adversarial saliency map

(ASM) [171] and class activation map (CAM) [182] as interpretability tools to demonstrate

the effectiveness of different attacks. CAM can localize class-specific image discriminative

regions [183] and ASM measures the sensitivity of pixel-level perturbation on label clas-

sification. We show that the sparse adversarial pattern obtained by Min-invasive offers a

great interpretability through ASM and CAM compared with other norm-ball constrained

attacks.

4.3.2 Proposed Attack

This section discusses the proposed Adv-Exploit , overview of the proposed attack flow, and

details about the adversarial attack and adversarial attack-assisted data manipulation. As
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discussed earlier, our proposed attack targets to 1) Predict the pixels or bits to perturb and

then manipulate the corresponding locations in-memory, and 2) Find the most sensitive

bits of the DNN weight parameters and flip them. To achieve this, we propose and utilize

our adversarial attack-assisted data manipulation (ADM) and a DNN weight sensitivity

mechanism. We further explain the two mentioned mechanisms.

4.3.2.1 Proposed Min-invasive Attack

In the section, the concept of Min-invasive is introduced [170]. It works by dividing an

image into sub-groups of pixels and then penalize the corresponding group-wise sparsity.

The resulting sparse groups introduce the least amount of adversarial perturbations on the

local structures of the original images.

Let ∆ ∈ RW×H×C be an adversarial perturbation added to an original image X0, where

W × H gives the spatial region, and C is the depth, e.g., C = 3 for RGB images. To

characterize the local structures of ∆, we introduce a sliding mask M with stride S and

size r × r × C. When S = 1, the mask moves one pixel at a time; When S = 2, the mask

jumps 2 pixels at a time while sliding [170].

By adjusting the stride S and the mask size r, different group splitting schemes can be

obtained. If S < r, the resulting groups will contain overlapping pixels. By contrast, groups

will become non-overlapped when S = r. A sliding mask M finally divides ∆ into a set of

groups {∆Gp,q} for p ∈ [P ] and q ∈ [Q], where P = (W − r)/S+ 1, Q = (H − r)/S+ 1, and

[n] denotes the integer set {1, 2, . . . , n}. Given the groups {∆Gp,q}, the group sparsity can

be characterized through the following sparsity-inducing function [184–186], motivated by

the problem of group Lasso [184]:

g(∆) =
∑P
p=1

∑Q
q=1 ‖∆Gp,q‖2, (4.1)

where ∆Gp,q denotes the set of pixels of ∆ indexed by Gp,q, and ‖ · ‖2 is the `2 norm.
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4.3.2.1.1 Min-invasive Attack with ADMM This section discussed a framework

where the attacker relies only on the loss function’s gradient given the input to the DNN

model, the input being the images.

The model takes both the proposed group-sparsity regularization and adversarial dis-

tortion metrics that encodes spacial structures in attacks. It is shown that the process of

generating structured adversarial examples leads to an optimization problem that is diffi-

cult to solve using the existing optimizers Adam (for C&W attack) and FISTA (for EAD

attack) [163,170,187]. To address this, we utilize alternating direction method of multipliers

(ADMM) for efficient optimization .

Given an original image x0 ∈ Rn, the motive is to design the optimal adversarial pertur-

bation δ ∈ Rn such that the adversarial example (x0+δ) misleads DNNs trained on natural

images. Throughout this paper, we use vector representations of the adversarial perturba-

tion ∆ and the original image X0 without loss of generality. A well designed perturbation

δ can be obtained by solving optimization problems of the following form,

minimize
δ

f(x0 + δ, t) + γD(δ) + τg(δ)

subject to (x0 + δ) ∈ [0, 1]n, ‖δ‖∞ ≤ ε,
(4.2)

where f(x, t) denotes the loss function for crafting adversarial example given a target

class t, D(δ) is a distortion function that controls the perceptual similarity between a

natural image and a perturbed image, g(δ) =
∑P

p=1

∑Q
q=1 ‖δGp,q‖2 is given by (4.1), and

‖ · ‖p signifies the `p norm. In Equation (4.2), the ‘hard’ constraints ensure the validness of

created adversarial examples with ε-tolerant perturbed pixel values. And the non-negative

regularization parameters γ and τ place our emphasis on the distortion of an adversarial

example (to an original image) and group sparsity of adversarial perturbation.

Equation (4.2) gives a general formulation for design of adversarial examples. If we

remove the group-sparsity regularizer g(δ) and the `∞ constraint, problem (4.2) becomes

the same as the C&W attack [163]. More specifically, if we further set the distortion function
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D(δ) to the form of `0, `2 or `∞ norm, then we obtain C&W `0, `2 or `∞ attack. If D(δ) is

specified by the elastic-net regularizer, then problem (4.2) becomes the formulation of EAD

attack [187].

In this paper, we specify the loss function of problem (4.2) as below, which yields the

best known performance of adversaries [163],

f(x0 + δ, t) = c ·max{max
j 6=t

Z(x0 + δ)j − Z(x0 + δ)t,−κ}, (4.3)

where Z(x)j is the jth element of logits Z(x), representing the output before the last

softmax layer in DNNs, and κ is a confidence parameter

that is usually set to zero if the attack transferability is not much cared.

We choose D(δ) = ‖δ‖22 for a fair comparison with the C&W `2 adversarial attack.

In this section, we assume that {Gp,q} are non-overlapping groups, i.e., Gp,q ∩ Gp′,q′ = ∅ for

q 6= q′ or p 6= p′. The overlapping case will be studied in the next section.

The presence of multiple non-smooth regularizers and ‘hard’ constraints make the exist-

ing optimizers Adam and FISTA [163, 187–189] inefficient for solving problem (4.2). First,

the subgradient of the objective function of problem (4.2) is difficult to obtain especially

when {Gp,q} are overlapping groups. Second, it is impossible to compute the proximal

operations required for FISTA with respect to all non-smooth regularizers and ‘hard’ con-

straints. Different from the existing work, we show that ADMM, a first-order operator

splitting method, helps us to split the original complex problem (4.2) into a sequence of

subproblems, each of which can be solved analytically.

We reformulate problem (4.2) in a way that lends itself to the application of ADMM,

minimize
δ,z,w,y

f(z + x0) + γD(δ) + τ
∑PQ
i=1 ‖yDi‖2 + h(w)

subject to z = δ, z = y, z = w,
(4.4)

where z, y and w are newly introduced variables, for ease of notation let D(q−1)P+p = Gp,q,
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and h(w) is an indicator function with respect to the constraints of problem (4.2),

h(w) =

 0 if (x0 + w) ∈ [0, 1]n, ‖w‖∞ ≤ ε,

∞ otherwise.
(4.5)

ADMM is performed by minimizing the augmented Lagrangian of problem (4.4),

L(z, δ,y,w,u,v, s) = f(z + x0) + γD(δ) + τ
∑PQ

i=1 ‖yDi‖2 + h(w) + uT (δ − z)

+vT (y − z) + sT (w − z) + ρ
2‖δ − z‖22 + ρ

2‖y − z‖22 + ρ
2‖w − z‖22

(4.6)

where u, v and s are Lagrangian multipliers, and ρ > 0 is a given penalty parameter.

ADMM splits all of optimization variables into two blocks and adopts the following iterative

scheme,

{δk+1,wk+1,yk+1} = arg min
δ,w,y

L(δ, zk,w,y,uk,vk, sk), (4.7)

zk+1 = arg min
z

L(δk+1, z,wk+1,yk+1,uk,vk, sk), (4.8)


uk+1 = uk + ρ(δk+1 − zk+1),

vk+1 = vk + ρ(yk+1 − zk+1),

sk+1 = sk + ρ(wk+1 − zk+1),

(4.9)

where k is the iteration index, steps (4.7)-(4.8) are used for updating primal variables, and

the last step (4.9) is known as the dual update step. We emphasize that the crucial property

of the proposed ADMM approach is that, as we demonstrate in Proposition 1, the solution

to problem (4.7) can be found in parallel and exactly.
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Proposition 1 When D(δ) = ‖δ‖22, the solution to problem (4.7) is given by

δk+1 = ρ
ρ+2γa, (4.10)

[wk+1]i =


min{1− [x0]i, ε} bi > min{1− [x0]i, ε}

max{−[x0]i,−ε} bi < max{−[x0]i,−ε}

bi otherwise,

for i ∈ [n], (4.11)

[yk+1]Di =
(

1− τ
ρ‖[c]Di‖2

)
+

[c]Di , i ∈ [PQ], (4.12)

where a

Definition 4.3.1 zk − uk/ρ, b

Definition 4.3.2 zk − sk/ρ, c

Definition 4.3.3 zk−vk/ρ, (x)+ = x if x ≥ 0 and 0 otherwise, [x]i denotes the ith element

of x, and [x]Di denotes the sub-vector of x indexed by Di.

It is clear from Proposition 1 that introducing auxiliary variables does not increase the

computational complexity of ADMM since (4.10)-(4.12) can be solved in parallel. Moreover,

if another distortion metric (different from D(δ) = ‖δ‖22) is used, then ADMM only changes

at the δ-step (4.10).

We next focus on the z-minimization step (4.8), which can be equivalently transformed

into

minimize
z

f(x0 + z) +
ρ

2
‖z− a′‖22 +

ρ

2
‖z− b′‖22 +

ρ

2
‖z− c′‖22, (4.13)

where a′

Definition 4.3.4 δk+1 + uk/ρ, b′

Definition 4.3.5 wk+1 + sk/ρ, and c′
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Definition 4.3.6 yk+1 + vk/ρ.

We recall that attacks studied in this paper belongs to ‘first-order’ adversaries [175],

which only have access to gradients of the loss function f . Spurred by that, we solve

problem (4.13) via a linearization technique that is commonly used in stochastic/online

ADMM Specifically, we replace the function f with its first-order Taylor expansion at the

point zk by adding a Bregman divergence term (ηk/2)‖z−zk‖22. As a result, problem (4.13)

becomes

minimize
z

(∇f(zk + x0))T (z− zk) +
ηk
2
‖z− zk‖22 +

ρ

2
‖z− a′‖22

+
ρ

2
‖z− b′‖22 +

ρ

2
‖z− c′‖22,

(4.14)

where 1/ηk > 0 is a given decaying parameter, e.g., ηk = α
√
k for some α > 0, and the

Bregman divergence term stabilizes the convergence of z-minimization step. It is clear that

problem (4.14) yields a quadratic program with the closed-form solution

zk+1 = (1/ (ηk + 3ρ))
(
ηkz

k + ρa + ρb + ρc−∇f(zk + x0)
)
. (4.15)

In summary, the proposed ADMM algorithm alternatively updates (4.7)-(4.9), which

yield closed-form solutions given by (4.10)-(4.12) and (4.15). The convergence of linearized

ADMM for nonconvex optimization was recently proved by [190], and thus provides theoret-

ical validity of our approach. Compared to the existing solver for generation of adversarial

examples [163,171], our algorithm offers two main benefits, efficiency and generality. That

is, the computations for every update step are efficiently carried out, and our approach can

be applicable to a wide class of attack formulations.

4.3.2.2 Enhanced Bit Flip

Earlier, a novel structural adversarial attack, Min-invasive , was discussed. This section

discusses our enhanced version of the bit perturbation attack.
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Figure 4.16: Flow of the enhanced bit flip algorithm

Figure 4.17: Overview of the proposed Adv-Exploit attack
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4.3.2.2.1 Rowhammer Attack Rowhammer is a fault injection attack that exploits

a DRAM by forcing bit flips. Previous work in [169] demonstrated that frequent accesses

to a DRAM row causes voltage toggling on its word line. Frequent access to a row causes

the earlier discharge of the capacitor, thus leading to state toggling in the neighboring row.

The target of the attack is to discharge the capacitor sufficiently before the next refresh

cycle causing the memory cell to lose its state resulting in a bit flip.

4.3.2.2.2 Enhanced Bit Flip Our proposed enhanced bit flip performs data pertur-

bation via bit flipping strategy. Data (bit) flipping in-memory is a non-trivial task. It is

not advisable nor feasible to randomly flip bits expecting to degrade the DNN performance,

as that could prove counterproductive to the goal of the attack. Hence, we propose to do a

two-rung strategy to successfully perturb the data. First, we utilize a loss-based bit ranking

that grades the most vulnerable bits of the weight parameters of the DNN. It is as crucial

to evaluate if the ranked vulnerable bits could actually be perturbed in the memory as it

is to find the vulnerable bits. Hence, our second step is to generate an array of vulnerable

bits that could be perturbed by modeling the system constraints.

Loss-based bit Grading: Figure 4.16 shows the flow of our enhanced bit flip attack. The

attack initiates with an objective threshold that is the percentage loss expected during the

attack. The attack will stop after the threshold is achieved. The attack then initiates a

sensitivity analysis where it takes a weight parameter and flips the vulnerable bits. The

vulnerable bits are those that result in DNN accuracy degradation when perturbed. After

the vulnerable bits are identified at a particular layer, the attack starts to flip the bits one

at a time and record the resulting loss during inferencing; all the vulnerable bit positions

are recorded along with the loss. The attack then ranks these loss values corresponding to

the vulnerable bits.

Flipping based on System Constraints It is interesting to note that not all bits in

the memory can be controlled by the attacker, or in other words, cannot be rowhammered.

Because some bits may not be perturbed and hence it is necessary to know the system

constraints before marking the bit as a vulnerable one. For the system constraints, the
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attack red flags bits that cannot be perturbed. Once the loss-based bit grading is complete,

the attack chooses the next most vulnerable bit in the list and flips it as per the system

constraints. If a bit flip cannot provide sufficient loss, multiple bits are flipped to achieve

the targeted loss threshold. DNN accuracy is again recorded for the total bits perturbed to

ensure the loss.

4.3.2.2.3 Adversarial Attack-assisted Input Data Perturbation Thus far, we dis-

cussed about our proposed adversarial attack, Min-invasive , and the enhanced bit pertur-

bation attack, enhanced bit flip . The Min-invasive capable of generating perturbations

to misclassify input inference data, which are the input images to DNN. The aim is to

force the DNN to misclassify an input. Similarly, with enhanced bit flip we can force bit

flipping of the weight data parameters such that DNN accuracy is degraded. We utilize

the Min-invasive generated perturbations to drive the bit flipping attack to perturb image

data in memory. This is in contrast to the previous perturbation works like [163] which

generate perturbation in the images offline - the attacker has access to the dataset. Our

proposed Adv-Exploit is capable of introducing perturbations in the input image data by

rowhammering the bits in memory. But, instead of the enhanced bit flip attack explained

above, it takes the generated perturbations to perform rowhammering to introduce faults.

After Min-invasive generates the perturbations, the attack takes a note of the pixel offsets in

the images. These offsets are then provided to the enhanced bit flip to flip bits of the input

data in memory. In this case, the loss-based bit grading is not utilized as the vulnerable

bit positions are already generated by the adversarial attack, Min-invasive . This renders

a more cognitive attack strategy where the perturbations in the inference data could be

prepared offline and the fault injection using enhanced bit flip can be performed online

during process execution.

4.3.2.3 Integrating all the Parts

The ultimate goal of the proposed Adv-Exploit is to challenge DNN resiliency by launching

two-pronged approach attack. One, by injecting perturbations in the input inference data
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in memory using enhanced bit flip driven by the Min-invasive adversarial attack; Second,

by utilizing enhanced bit flip with loss-based bit grading to inject faults in the weight

parameters of the DNN. Below if a process flow of the integrated Adv-Exploit ; also refer

to Figure 4.17:

• The Adv-Exploit generates perturbations on the input images using the Min-invasive at-

tack.

• The offsets of the pixel values with injected faults are recorded by the attack.

• The offsets are used by the enhanced bit flip to perform rowhammering to perturb

bits of the image(s).

• Similarly, the enhanced bit flip with loss-based bit grading is used to inject faults in

the weight parameters of the DNN model.

• Both the perturbed images and weight parameters will cause accuracy degradation of

the DNN model.

The novelty of the proposed Adv-Exploit is that with its two-pronged attack approach

the DNN performance is degraded to below a random guess, which is unacceptable given

the mission critical deployment of the such DNNs in modern world.

4.3.3 Results

4.3.3.1 Performance of the Proposed Min-invasive

We evaluate the performance of the proposed Min-invasive on three image classification

datasets, MNIST , CIFAR-10 and ImageNet. To make fair comparison with the C&W `2

attack [163], we use `2 norm as the distortion function D(δ) = ‖δ‖22. And we also compare

with FGM [165] and IFGSM `2 attacks [164] as a reference. We evaluate attack success rate

(ASR)13 as well as `p distortion metrics for p ∈ {0, 1, 2,∞}.
13The percentage of adversarial examples that successfully fool DNNs.
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Figure 4.18: C&W attack vs Min-invasive . Here each grid cell represents a 2×2, 2×2, and
13×13 small region in MNIST, CIFAR-10 and ImageNet, respectively. The group sparsity of
perturbation is represented by heatmap. The colors on heatmap represent average absolute
value of distortion scale to [0, 255]. The left two columns correspond to results of using
C&W attack. The right two columns show results of Min-invasive attack

For each attack method on MNIST or CIFAR-10, we choose 1000 original images from

the test dataset as source and each image has 9 target labels. So a total of 9000 adversarial

examples are generated for each attack method. On ImageNet, each attack method tries to

craft 900 adversarial examples with 100 random images from the test dataset and 9 random

target labels for each image.

Fig. 4.18 compares adversarial examples generated by Min-invasive and C&W attack

on each dataset. We observe that the perturbation of the C&W attack has poor group

sparsity, i.e., many non-zeros groups with small magnitudes. However, the attack success

rate (ASR) of the C&W attack is quite sensitive to these small perturbations. As applying

a threshold to have the same `0 norm as our attack, we find that only 6.7% of adversarial

examples generated from C&W attack remain valid. By contrast, Min-invasive is able to

highlight the most important group structures (local regions) of adversarial perturbations

without attacking other pixels. For example, Min-invasive misclassifies a natural image
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(4 in MNIST) as an incorrect label 3. That is because the pixels that appears in the

structure of 3 are more significantly perturbed by our attack; see the top right plots of

Fig. 4.18. Furthermore, the ‘goose-sorrel’ example shows that misclassification occurs when

we just perturb a small number of non-sparse group regions on goose’s head, which is more

consistent with human perception.

By qualitative analysis, we report `p norms and ASR in Table 4.9 for p ∈ {0, 1, 2,∞}. We

show that Min-invasive perturbs much fewer pixels (smaller `0 norm), but it is comparable

to or even better than other attacks in terms of `1, `2, and `∞ norms. Specifically, the

FGM attack yields the worst performance in both ASR and `p distortion. On MNIST

and CIFAR-10, Min-invasive outperforms other attacks in `0, `1 and `∞ distortion. On

ImageNet, Min-invasive outperforms C&W attack in `0 and `1 distortion. Since the C&W

attacking loss directly penalizes the `2 norm, it often causes smaller `2 distortion than Min-

invasive . We also observe that the overlapping case leads to the adversarial perturbation

of less sparsity (in terms of `0 norm) compared to the non-overlapping case. This is not

surprising, since the sparsity of the overlapping region is controlled by at least two groups.

However, compared to C&W attack, the use of overlapping groups in Min-invasive still yields

sparser perturbations. Unless specified otherwise, we focus on the case of non-overlapping

groups to generate the most sparse adversarial perturbations. We highlight that although a

so-called one-pixel attack [172] also yields very small `0 norm, it is at the cost of very large

`∞ distortion. Unlike one-pixel attack, Min-invasive achieves the sparsity without losing

the performance of `∞, `1 and `2 distortion.

minimize
δ

f(x0 + δ) + γD(δ)

subject to (x0 + δ) ∈ [0, 1]n, ‖δ‖∞ ≤ ε

δi = 0, if i ∈ Sσ,

(4.16)

Furthermore, we compare the performance of Min-invasive with the C&W `∞ attack and

IFGSM while attacking the robust model [175] on MNIST. We remark that all the considered
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Table 4.9: Adversarial attack success rate (ASR) and `p distortion values for various attacks

Data Set Attack Method
Best Case Average Case Worst Case

ASR `0 `1 `2 `∞ ASR `0 `1 `2 `∞ ASR `0 `1 `2 `∞

MNIST

FGM 99.3 456.5 28.2 2.32 0.57 35.8 466 39.4 3.17 0.717 0 N.A. N.A. N.A. N.A.
IFGSM 100 549.5 18.3 1.57 0.4 100 588 30.9 2.41 0.566 99.8 640.4 50.98 3.742 0.784
C&W 100 479.8 13.3 1.35 0.397 100 493.4 21.3 1.9 0.528 99.7 524.3 29.9 2.45 0.664

Min-invasive 100 73.2 10.9 1.51 0.384 100 119.4 18.05 2.16 0.47 100 182.0 26.9 2.81 0.5
+overlap 100 84.4 9.2 1.32 0.401 100 157.4 16.2 1.95 0.508 100 260.9 22.9 2.501 0.653

CIFAR-10

FGM 98.5 3049 12.9 0.389 0.046 44.1 3048 34.2 0.989 0.113 0.2 3071 61.3 1.76 0.194
IFGSM 100 3051 6.22 0.182 0.02 100 3051 13.7 0.391 0.0433 100 3060 22.9 0.655 0.075
C&W 100 2954 6.03 0.178 0.019 100 2956 12.1 0.347 0.0364 99.9 3070 16.8 0.481 0.0536

Min-invasive 100 264 3.33 0.204 0.031 100 487 7.13 0.353 0.050 100 772 12.5 0.563 0.075
+overlap 100 295 3.35 0.169 0.029 100 562 7.05 0.328 0.047 100 920 12.9 0.502 0.063

ImageNet

FGM 12 264917 152 0.477 0.0157 2 263585 51.3 0.18 0.00614 0 N.A. N.A. N.A. N.A.
IFGSM 100 267079 299.32 0.9086 0.02964 100 267293 723 2.2 0.0792 98 267581 1378 4.22 0.158
C&W 100 267916 127 0.471 0.016 100 263140 198 0.679 0.03 100 265212 268 0.852 0.041

Min-invasive 100 14462 55.2 0.719 0.058 100 52328 152 1.06 0.075 100 80722 197 1.35 0.122

attack methods are performed under the same `∞-norm based distortion constraint with

an upper bound ε ∈ {0.1, 0.2, 0.3, 0.4}. Here we obtain a (refined) Min-invasive subject to

‖δ‖∞ ≤ ε by solving problem (4.16) at γ = 0. In Table 4.10, we demonstrate the ASR

and the number of perturbed pixels for various attacks over 5000 (untargeted) adversarial

examples. The ASR define as the proportion of the final perturbation results less than

given ε ∈ {0.1, 0.2, 0.3, 0.4} bound over number of test images. Here an successful attack is

defined by an attack that can fool DNNs and meets the `∞ distortion constraint. As we can

see, Min-invasive can achieve the similar ASR compared to other attack methods, however,

it perturbs a much less number of pixels.

Table 4.10: Attack success rate (ASR) and `0 norm of adversarial perturbations for various
attacks against robust adversarial training based defense on MNIST.

ASR at ε = 0.1 ASR at ε = 0.2 ASR at ε = 0.3 ASR at ε = 0.4 `0
IFGSM 0.01 0.02 0.09 0.94 654

C&W `∞ attack 0.01 0.02 0.10 0.96 723
Min-invasive 0.01 0.02 0.10 0.99 279
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4.3.3.2 Performance of the Proposed Adv-Exploit
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Figure 4.19: Performance of the DNN under Adversarial Attack
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Figure 4.20: Overall performance of the proposed Adv-Exploit

In this section, we discuss the performance of the proposed Adv-Exploit as a whole. The

Adv-Exploit integrates a sophisticated adversarial attack, Min-invasive , which requires

least number of perturbation bits in the input image, our adversarial attack driven bit

perturbation attack, enhanced bit flip , and the bit perturbation attack for model weight
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parameters by fault injection using rowhammer. Figure 4.19 presents the DNN accuracy

results under the Min-invasive adversarial attack. The figure shows the DNN accuracy

of the baseline and increasing levels of perturbations. The baseline is the DNN accuracy

without any adversarial perturbations. The results are presented for MNIST, CIFAR-10,

and ImageNet datasets. It is observed that the DNN classification accuracy reduces as we

increase the amount of perturbed images fed to the DNN classifier. The adversary can

decide the amount of perturbations injected while processing to reduce the DNN accuracy.

Figure 4.20 presents the overall accuracy of the DNN model under both the Min-

invasive and enhanced bit flip attacks. In other words, the figure shows results when both

the images and model weight parameters are perturbed. It can be observed that the accu-

racy reduces as the amount of perturbed images and number of bit flips are increased. The

0,1,2, and 3 are the number of hardware bit flips done to the model weight parameters.
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Figure 4.21: Comparison of Carlini & Wagner (C&W) attack and Min-invasive attack for
CIFAR-10

4.3.3.3 Evaluation of the Bit Flip Cost Per Image

It is crucial to evaluate the cost of perturbing image data. As discussed earlier, we need the

adversarial attack to perturb as less bits as possible to reduce the bit perturbation cost per
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Figure 4.22: Comparison of Carlini & Wagner (C&W) attack and Min-invasive attack for
MNIST

image. Hence, in this section the evaluation is made to compare bit perturbations required

for the C%W attack and proposed Min-invasive adversarial attack. The C%W attack is

considered here as it the state-of-the-art adversarial attack requiring less amount of bits

to be perturbed per image. Figures 4.21 and 4.22 present the number of bits perturbed -

corresponding to image pixels - for a sample set of images. The X-axis is for the index of

images and not the number of images per tick. It can be observed that the C%W attack

requires significantly more bits compared to the Min-invasive attack for both the CIFAR-10

and MNIST datasets. A similar pattern is observed with the ImageNet dataset. On an

average, our proposed attack requires 16% less bits compared to the C%W for MNIST, and

24% less bits on the CIFAR-10 dataset.

4.3.3.4 Potential Mitigation

This section discusses the potential mitigation strategies that may be used to thwart the

proposed Adv-Exploit . These is a brief overview of the potential solutions and it needs

further investigation to evaluate their efficacy.

1. Disable “Rowhammer” effect: Allow only a certain number of accesses before the next
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refresh cycle. Or bring memory cell contents to a cache-like memory, that are resilient

against rowhammer attacks.

2. Adversarial training of the DNN model: Adversarial training may render the DNN

model robust against such attacks. The DNN model could be trained on adversarially

generated images. The downside of such a strategy is they may still be vulnerable to

zero day attacks.

3. Execute a DNN model in a secure space: Executing the model in a secure environment.

Secure environment should ensure that the memory of the DNN classification process

is not visible to other processes. The downside is that owing to large weight parameters

required for the modern DNN models it may not be feasible to reserve a large separate

memory. Such an overhead may not be acceptable. To address this, designers could

perform a sensitivity analysis and protect only those bits that contribute most to the

DNN inferencing. In other words, protecting the most sensitive bits.
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Chapter 5: Machine Learning-Assisted Hardware Trojan

Attack and Defense Against Network-on-Chips

5.1 Machine Learning-Assisted Hardware Trojan Attack with

a Sophisticated Attack Model Equipped with

Data Augmentation

The ever increasing need for computing power in the modern digital world requires powerful

platforms, such as, multi-core processors or blade servers, and embedded platforms with

multiple processing nodes. Interconnection networks such as a Network-on-Chip (NoC)

[191] that connects processing units to memory and peripherals impact the capabilities

of the current systems, as efficiency of the data movement plays a pivotal role. Due to

the crucial role of the NoC as a communication fabric, it forms one of the largest surface

areas for attack in the system. On the other hand, to alleviate the operating costs, many

chip vendors are becoming fabless. Modern System-on-chips (SoCs) use Third Party IPs

(3PIPs) to minimize the time-to-market and design costs; these 3PIPs may be procured

from untrusted organizations which is a potential security concern. An adversary either at

the foundry or at the 3PIP design house can introduce a malicious circuitry, to jeopardize an

SoC, which is known as a Hardware Trojan (HT) [192,193]. HTs can be utilized for various

malicious purposes, including information leakage, functionality subversion and battery

exhaustion [192,194,195].

Considering the critical role played by the NoCs, embedding a HT that exploits the

interconnection backbone can reveal the communication patterns in the system. Leakage of

such crucial information to a remote attacker can reveal important information pertaining to

the application suites running on the system, thus compromising the user profile. Further,
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such information leakage can enable more severe attacks on the systems on which compro-

mised NoCs are deployed. For instance, an adversary obtaining secure military information

through a HT deployed in a switch can subvert the military backbone, thus posing a severe

threat to national security [28].

In this work, we first introduce a lightweight NoC-based HT, which, in its simplistic

form, is a counter; the HT when inserted in one or a few switches of the NoC can count the

number of packets traversing the specific switches over a time window. The HT periodically

packetizes this count information and sends it to an external attacker program for payload

analysis. This packetized count, which is the HT payload, can be subsequently analyzed by

the external attacker using data processing techniques to infer information about application

suites from the retrieved HT payload data containing packet traversal frequencies through

specific switches.

The attacker maps the packet traversal frequencies at the switches to the application

suites by analyzing the retrieved information using sophisticated Machine Learning (ML)

algorithms. In this work, we demonstrate that the application suites running in the system

can be detected with only 4 or 8 counter-based HTs with more than 95% accuracy using

ML techniques. In this baseline attacker model, the packet count data is shared with a

remote attacker over a long observation window by the HT. Hence, the attacker has access

to a large volume of packet count data from the embedded HTs.

Our previous work in [196] discusses controlled random routing for an attacker that

has access to a large observation window. Such an attack model requires plethora of data

samples, which may not be feasible in all scenarios; the attacker may not have access

to a considerably sized observation window. Hence, this would render scarce data for

training the machine learning model, leading to less accuracy in detecting applications

running on the system. On the contrary, this work not only includes the work described

and demonstrated in [196] but also considers a sophisticated adversary which is equipped

with data augmentation for data paucity scenarios. This work also augments the work in

[196] by presenting the results with pseudo-adaptive west-first routing, comparison of the
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baseline and advanced attacker model, comparison of other machine learning models with

artificial neural network (ANN) model, and the efficacy of the proposed controlled random

routing on the baseline and advanced attacker models.

In this work, we discuss scenarios where an attacker may not have access to an uni-

formly long observation window to collect packet count data leaked by the embedded HT.

In such situations, the attacker model, deployed by utilizing ML methods, would not deliver

sufficient accuracy in regards to the deciphered user profile information. Hence, we utilize

data augmentation methodologies to strengthen the attacker model; we demonstrate that

such techniques could render the attack more robust thus compensating for the loss oc-

curring during the observation window. We also demonstrate that such advanced attacker

model is capable of detecting the application suites running on a multi/many processor

system with 98% accuracy. This is possible because specific routing protocols are proposed

for these particular system configurations, which, when adopted, result in an application-

specific traffic patterns. Therefore, analyzing the traffic patterns with the help of the HTs

and machine learning can enable inferring the application(s) being executed in the system,

thus compromising user confidentiality.

We propose a novel Simulated Annealing (SA)-based randomized routing algorithm

to defend the NoC against such a HT threat. Simulated Annealing is a type of genetic

algorithm that allows sub-optimal traversal of the search space for optimization to avoid

being stuck in local optima [29]. Random packet routing over the interconnection can

severely degrade performance of the system due to the fact that packets may not be routed

over the shortest paths. Therefore, to achieve a desired trade-off between the defense and

loss in performance, we propose a parameterized SA-based approach instead of simply

adopting random routing.

For the SA-based random routing, the path for each packet is unpredictable and there-

fore, makes the mapping of packet traversal frequency through specific switches and cor-

responding applications unreliable. We demonstrate using cycle-accurate simulations that

the proposed SA-based randomized routing can reduce the effectiveness of the attack for
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both the baseline and advanced attacker model.

To the best of our knowledge, this work is a first of its kind that demonstrates that

by monitoring traffic patterns in a Network-on-Chip through Hardware Trojan the user

profile can be compromised. We also propose to defend the system against such attack with

controlled random routing.
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Figure 5.1: Multi-core NoC with proposed threat model

119



5.1.1 Threat Model

We consider a multi-tenanted server or data center with multi-core processors connected

with a NoC. The NoC (3PIP) may be procured from a third-party organization that is

different from the system integration designer, one or more HTs could be inserted in the

switches of the NoC during the design and fabrication process. These deployed HTs could

be an uncomplicated counter that counts the number of packets traveling the switch over an

observation window and forwarding that information to an external adversary for off-chip

analysis. A sufficiently motivated attacker can then employ large-scale compute capabilities

and algorithms, such as Machine Learning (ML), to perform a traffic analysis attack on the

packet count from one or more switches. This kind of attack can reveal the applications

running on the system, because the traffic interaction in multi-core processors is always

application dependent, and thus, compromise user privacy by revealing the applications

that are being executed. This constitutes what we term as our baseline model. Further,

there may be scenarios where the attacker is unable to observe the packet count samples

to get a comprehensive view of the data. In such situations, the attacker needs to utilize

data augmentation strategies to compensate for the lost data during observation. The data

augmentation techniques can generate synthetic data samples similar to the actual observed

data. This renders a robust attacker model. We denote this as advanced attacker threat

model. Figure 5.14 shows both the baseline and advanced attack model discussed here. The

key difference between the baseline and the advanced attacker model is the presence of data

augmentation.

5.1.2 Hardware Trojan (HT) Design

In this section, we describe various aspects of the baseline and advanced attack model

described earlier. The Trojan is a counter capable of counting the number of packets routed

by the switch where the Trojan is inserted. We assume the HT is inserted inside the routing

block of the NoC or interconnection switch as shown in Figure 5.15. There may be one or

multiple HT embedded switches in the system. The functionality of the HT is that it will
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count up when a new packet accesses the switch to get routed to its next destination. After

counting for a pre-determined time window, the HT packetizes the count information by

appending a destination address and other header information; The HT then inserts the

packet into the NoC as the HT payload. Such processing systems are typically multi-user

platforms where different parts of the processor are virtualized and allocated to various

applications from a multitude of users. Because the attacker can impersonate as one of the

users of this shared processor that hosts multiple users simultaneously, the destination of

the payload will be a legitimate I/O port where the adversary is hosted. Therefore, the

packet is unlikely to be flagged by any security measure in the system, as it does not exhibit

any anomaly as compared to other packets in the system. The payload is then analyzed by

the external attacker.

The HT is a 16-bit counter that counts the number of packets being routed through the

switch. This count is packetized every five thousand cycles and forwarded to the external

adversary. Another 16-bit down counter functioning as a timer maintains the observation

window; after the timer expires the payload is launched by the HT. As the packets consist

of multiple flits [197], taking several clock cycles to be routed through a switch [197],

the maximum packet count will be less than the duration of the counting and hence the

16-bit counter is sufficient. This particular HT also does not alter the data path of the

legitimate packets getting routed in the NoC as it is not sequential to the routing logic and

the counting happens in parallel to the routing. Therefore, timing analysis can not detect

the embedded HT(s). Moreover, even with a few such HTs of moderate sizes they remain

undetectable in the large multi/many-core processors owing to its less area overhead and

power consumption. A single NoC switch with a size of ∼30-40K gates [197] is orders of

magnitude more complex compared to the HT.

5.1.2.1 Hardware Trojan Trigger Design

We consider a multi-user environment like cloud computing where different threads can

be co-scheduled to leverage the same underlying processing elements and interconnection
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Figure 5.2: NoC switch components with inserted HT.

architecture. In such multi-user platform, due to the huge variety of the user applications,

an attacker can easily launch an accomplice thread to trigger HT inserted inside NoC fabric.

To trigger the inserted HT , the accomplice thread transmits a multicast/broadcast

traffic pattern similar to any coherence and system-level control messages with specific

data sequence in its header flit. The Trojan inserted in the NoC switch works as a state

machine consisting of four states that are shown in the Figure 5.3. In the dormant state, the

HT snoops the header flit to identify the sequence. Once it finds the particular sequence,

it proceeds to the wake-up state. Once an HT wakes up, it sends an ACK signal with

another specific data sequence to the core hosting the accomplice thread to establish a

covert communication channel between them. The HT changes its state to count state

where it starts counting the number of packets traversed through the compromised (Trojan

embedded) switch for a particular time window. After this time interval, it is proceeds to

the payload state where it sends the packet count as payload to the accomplice thread and

wait for the next instruction. Based on the next instruction, the HT can either go back to

the count state to repeat the process or can return to the dormant state.
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Figure 5.3: Hardware Trojan state diagram.

5.1.2.2 Off-Chip Hardware Trojan Payload Analysis

We craft an HT payload analyzer using machine learning techniques to demonstrate the

extent of the threat such an HT based attack can pose. To deploy the payload analyzer,

we select an Artificial Neural Network (ANN) due to its ability to map complex patterns

efficiently as well as its resilience to variations. We initially construct a dataset consisting of

eighty features (payloads) obtained from simulating a system with 64 cores and 16 memory

controllers; the dataset has permutations of twelve different applications with not more than

three applications running simultaneously on the system . We consider a maximum of three

applications signifying up to three independent users hosted on the system executing three

applications simultaneously, although a larger number of users can be easily accommodated

only requiring creating a training dataset with that assumption. The data is created in

the same fashion as an actual attacker who may be able to create using an emulator or

a simulator of the real system. Specifically, we use a cycle-accurate simulator described

in Section 5.1.4 that monitors the movement of packets broken down into flits in a NoC.

Various permutations of the applications from a common parallel benchmark suites [198]

are executed on the simulator to create traffic traces that are visible to the HTs; the traffic

traces consisting of the number of packets traversing the HT embedded switches are used
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as the training dataset.

As the traffic patterns (packet count) depend on the executing applications, the on-chip

traffic, as well as the mapping of the applications to the cores, the observed patterns will

not be constant for a given set of applications. Furthermore, the insignificant number of

packets generated by the HTs to share the packet count data with an accomplice thread

will also contribute to the number of packets traversing a NoC switch.
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Figure 5.4: Attacker Model with Data Augmentation using GANs

To capture the variations due to network congestion, we add a random noise following

a negative binomial distribution with our simulation data as a part of data processing;

The ANN is made robust to such variations by training on the noise added dataset. For

generating the random noise, we consider a M/M/1 queuing model for the NoC switches and

a Poisson arrival process for the incoming packets in each cycle. For such queuing model,

the number of packets in the switch buffers at every simulation cycle follows a geometric

distribution and the total number of packets in the buffers over the simulation period can be

computed as the convolution of the geometric distributions resulting in a negative binomial

distribution [199], which is used for the random noise generation. We train our ANN with

all the features available. This yields high accuracy in predicting the application(s) running

on the system. However, the caveat here is that although the ANN could be trained on a
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large set of features, it is not feasible to expect HT to snoop on all switches simultaneously.

Doing so would contribute to a significant latency and overhead, eventually leading to HT

detection. Thus, to reflect a real-world scenario, the attacker intends to insert a HT which

focuses on the dominant features that still enable it to predict with high accuracy. We

translated this approach by using correlation-based feature selection i.e., determine the

switches in which the HTs need to be embedded (performed offline) that reduces latency

without compromising the performance.

We deploy a 5 layer ANN (N -800-500-200-64-12 neurons; N represents number of fea-

tures at input) with ReLU as activation function for hidden layers and softmax as the acti-

vation function for the output layer. There are twelve final outputs for the ANN, which are

the number of individual applications executed on the system. To represent simultaneous

execution of multiple applications, one-hot encoding is utilized. A 5-fold cross-validation is

utilized to analyze performance, determined based on grid-search. As the ANN is deployed

off-chip, the area and other overheads are not of concern, except the accuracy, precision,

recall and F1-score that represent the performance of the ANN attacker model. In this

work, the ANN model is consistent for both our baseline and advanced attacker model.

The advanced attacker model is discussed next.

For a neural network to deliver better performance in predicting the application suite

running on the system, a considerable number of samples (data) is needed. It may so

happen that the attacker does not have access to uniformly long observation window of

system under attack in all operating conditions - for all application combinations. Not

having enough training samples for applications (or a mix of them) results in degradation

of performance. Hence, in order to improve the attacker model’s accuracy, the attacker may

need a strategy for improving the performance. In scenarios where the attacker has access

to limited data only, data augmentation strategies are required. Generative Adversarial

Network (GANs) [200–203] is an unsupervised learning algorithm in machine learning that

involves automatically discovering and learning the regularities or patterns in input data

and generate new plausible samples. GANs comprise of a generator and a discriminator
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model. The generator model is trained on the dataset to learn the patterns or distribution.

Later, the generator model generates new samples. The discriminator model discriminates

between original samples (from the dataset) and the generated samples. The GANs are

extensively utilized in the image domain to generate new images or modify existing images.

To the best of our knowledge, this is the first work to have repurposed the GANs to augment

the packet count data to build a robust adversary.

Table 5.1: Architectural details of the discriminator, generator and artificial neural network
(ANN) model

Parameter Discriminator Generator Neural Network

Input image size 80x80x1

Hidden layer Convolution (two layers) Dense, Conv2DTranspose, Conv2DTranspose Five Dense Layers

Activation function LeakyReLu LeakyReLu Relu (four layers)

Dropout 0.4

Output layer Dense with sigmoid activation Conv2D with tanh activation Softmax (output layer)

Optimizer Adam with learning rate=0.0002 and beta 1=0.5 Adam

Loss function Binary crossentropy Categorical crossentropy

The entire process demonstrating the baseline and advanced attack model is presented in

Figure 5.4. Our dataset consists of packet count data recorded by executing different appli-

cation suites (SPLASH2 and PARSEC). The data is fed to the attacker model implemented

as a neural network for training the network. Post training, new unseen packet count data

samples are fed to the neural network for inference. For the baseline attack model, the

performance of the neural network with entire dataset, without missing data, is shown in

Figures 5.6 and 5.7. The accuracy with 16 features (number of HTs) is greater than 95%.

But, for the advanced attacker model, the size of the data is small as the data instances

are missing; we name this data as limited data. The attacker improves the robustness by

augmenting this limited data using a GAN model. A GAN model, in its conventional uti-

lization, is designed to function with images [200–206]. Hence, we converted the packet

data to images by aligning the rows (samples) and columns (features) as a matrix to build a

representation similar to images. The data points are scaled to represent grayscale images.
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‘Robust scaling’ is used to scale the data points before feeding to the GAN model. Standard

scaling is another option but outliers in data points can skew calculated mean and standard

deviation, thus making it unfit for our application. The robust scaling technique ignores the

outliers from calculation and then scale the variable post calculation. The resulting data

has zero mean and median and a standard deviation of 1. The outliers are still a part of the

data and depict same relative relationship to other data points. The generator is trained

on the images; post generator training, the discriminator functions to bifurcate generated

images from the original images.

The generator post training is utilized to generate new images (augmented data). The

numerical data from the generated images is appended to the original data - to add more

samples to the original data which compensates for the missing data samples as explained

earlier. All the cumulative dataset is utilized to train the neural network, which represents

the attacker, attempting to learn the application suites based on the input packet count

data. The size of each image is 80 × 80 - given the fact that there are 80 switches; the

data is organized such that the numerical data is represented as an image to be fed to

the GANs. The original data used as training set to the GANs contains 50K images.

We generate additional 50K images with augmentation, totaling to 100K images for ANN

model evaluation. The generated images where each pixel is represented by a number is

translated back to numerical data, which is later used for ANN performance evaluation. The

performance in presence of data augmentation using GANs is restored to an acceptable level.

Later in the results section, it is demonstrated that with data augmentation, the attacker

can render the attack model more robust against missing data. This also serves as our

motivation for deploying data augmentation using GANs for this work. The discriminator,

generator and the ANN model’s parameters are shown in Table 5.1.

5.1.3 Proposed Random Routing

In this section, we discuss the proposed live-lock and deadlock free routing methodology

that ensures in-order packet delivery. The proposed random routing not only increases the
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NoC resiliency against aforementioned and similar attacks, but also ensures lower latency

for latency-sensitive messages.

5.1.3.1 Routing Methodology

To defend a NoC against the HT-based traffic analysis attack, the proposed routing mecha-

nism introduces controlled randomness in selecting the routes a packet will take to reach the

destination to obfuscate the traffic analysis mechanism. This is because, in deterministic

routing, the application or the architectural parameters of the system can be used to deter-

mine the number of packets traversing through a particular NoC switch. Conversely, if the

routing is based on a random walk, the number of packets through any particular switch is

essentially random, losing predictable correlation with underlying system parameters. How-

ever, complete randomness in the route selection can negatively impact the overall system

performance as such random routing mechanisms are shown to increase the NoC packet

latency. Hence, as a trade-off between these opposing goals, in this work, we propose a

distributed random routing mechanism for NoC architectures based on SA heuristics. Such

SA heuristics uses an iterative approach to approximate the solutions of an optimization

problem. During the initial iterations, the probability of accepting a random non-optimal

solution is higher. This acceptance probability is a function of a temperature parameter

which decreases with each iterations of the algorithm. Thus, the acceptance probability

also decreases with the iteration, decreasing the chances of accepting random non-optimal

solutions. Similar to this approach, in our proposed random routing algorithm, initially the

probability of selecting a random output port for each new injected packet in the NoC fab-

ric is high. However, over the lifetime of the packet in the NoC this probability decreases.

Therefore, with progression of time, the routing decisions are constrained to be optimal

(shortest-path) with only occasional random sub-optimal decisions. The difference between

the shortest path (in green) and a SA-based random path (in orange) is shown in Figure

5.14 for a particular Source, (S)-Destination, (D) pair. Following the Metropolis criterion
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in SA, the probability of choosing a random output port for the next hop is defined as

Ri = eα(Tinj−Ti) (5.1)

Where Tinj is the packet injection time and Ti is the current time in clock cycles. This time

difference, ∆T is embedded in the packet header and incremented in each clock cycle. α

is a designer parameter that controls the degree of randomness in the routing and will be

described in later sections. Hence, the proposed random routing mechanism also provides

the designers with a choice for controlling the degree of the randomness.

To implement this random routing in the NoC switches, the NoC switches are equipped

with a Linear Feedback Shift Register, (D-LFSR) to generate the random numbers denoting

the probability of taking the shortest path. If this number is less than the probability stored

in the LUT, (R-LUT) based on equation 5.2 and the current ∆T value, then the proposed

routing chooses any of the ports of the switch that leads to non-optimal path with equal

probability. Another LFSR, (R-LFSR) is used to generate this non-optimal random port,

(R-Port). When the generated number is greater than the probability stored in an LUT,

the optimal port is chosen by the switch depending on the adopted shortest path algorithm.

The switch architecture implementing this random routing mechanism is shown in Figure

5.15.

According to equation 5.2, the probability of taking non-optimal, random paths de-

creases with the current time, Ti. Therefore, with elapsed time, each packet is more likely

to take the optimal routing decision determined by the adopted optimal routing algorithm

in the system. This guarantees that each packet will reach its destination as the time pro-

gresses. Hence, the proposed SA-based random routing is guaranteed to be live-lock free.

In this paper, the shortest paths for each source and destination pair is calculated using Di-

jkstra’s algorithm as such shortest path algorithm is applicable to multiple NoC topologies

such as trees, meshes and random topologies. Each switch is equipped with a forwarding

table containing the port number to reach the next switch in the shortest path for each
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destination. This forwarding table will be pre-populated at design time and hence reduces

the routing delays that incurs due to the route computation for every packet at a switch.

To ensure application performance, latency sensitive packets should experience less ran-

domness in routing compared to other messages. As mentioned earlier, the parameter α

in equation 5.2 can be used to control the degree of randomness in routing and a higher

α value is preferred for latency critical messages as it rapidly diminishes the probability

of taking non-minimal paths. Due to this, the latency critical messages then follow the

shortest path determined by adopted shortest path algorithm in the system. Alternatively,

for latency-tolerant messages, a smaller α value can be used to have more randomness in

their routing and ensure better threat resiliency. We consider α to be a tunable parameter

to be determined by considering the security-performance trade-off, applications, and run

environment.

5.1.3.2 Deadlock Avoidance and In-order Packet Delivery

In the proposed routing mechanism, initially, each newly injected packet will take a random

path. However, as the time elapses, the packets will eventually follows the shortest path

(as determined by the Dijkstra’s algorithm). As Dijkstra’s routing is inherently cyclic

dependency free, the proposed routing will be deadlock free when the packets follows the

shortest path. Hence, to ensure complete deadlock freedom for the proposed routing, we

should avoid deadlocks when random paths are chosen for a packet.

To avoid deadlock, we consider the Virtual Channel (VC) occupancy of the output ports

before routing an incoming packet. If the VC occupancy of an output port is less than a

pre-determined threshold, the packet is not routed immediately and waits in the input VCs

to be rerouted. This ensures that a heavily utilized port causing a deadlock is avoided.

Algorithm 5 describes this mechanism by using a pseudo-code for the proposed routing

algorithm. Additionally, due to the exponential decaying probability of taking random

paths, a packet is more likely to be routed toward the deadlock free port following the

Dijkstra path as elapsed time increases.

130



As each packet follows a different path, such random routing also need to ensure in-

order packet reception for each message in the system. We adopt the in-order packet

delivery mechanism described in [207], where a lookup table entry is compared with the

packet identifier of a message at the re-convergent switches. If the identifiers match, the

packet is granted arbitration and the look-up table identifier value is incremented and thus

in-order packet reception is ensured without significant re-order buffer overheads.

Algorithm 5 Pseudo code for the proposed random routing

Input: α, Tinj , freeVCThreshold
Variable: ∆ T , xyProb, randomProb, Ti, randRoute
Function: checkVCStatus(outPort)
Output: routingDecision
1: foreach packet in switch do:
2: ∆T = Tinj − Ti
3: xyProb = rand(0,1)

4: randomProb = eα∆T

5: if(xyProb < randomProb) then
6: routingDecision = random
7: if(checkVCStatus(outPort) ≥ freeVCThreshold) then
8: randRoute = True
9: else

10: randRoute = False
11: go to line 2
12: endif
13: else
14: routingDecision = xy
15: endif
16: endfor

5.1.4 Evaluation

In this section, we evaluate the average packet latency for the proposed SA-based random

routing mechanism with different α values as discussed in section 5.2.4.1. We also evaluate

the proposed attacker models by measuring its accuracy to infer the application suites and

the effectiveness of the proposed random routing against such attack models; in this work

we have sometimes used performance and accuracy interchangeably in regards to model

evaluation.
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Table 5.2: Component configuration for simulation

Component Configuration

System size 64 cores, Out-of-Order, 16cores/chip

Cache 32KB (private L1), 512KB (shared L2), MOESI

NoC switch 3 stage pipelined 5 ports,0.078pJ/bit

Total VC 4, each 8 flits deep, 64 bits/flit

Wired NoC links 64-bit flits, single cycle latency, 0.2pJ/bit/mm

Technology 65nm, 1V supply, 1GHz clock

5.1.4.1 Experimental Setup

We consider a 64 core system arranged in a 8x8 mesh NoC fabric with 4 in-package memory

modules. The core configurations shown in the Table 5.8 are used to extract the core-to-

memory and cache coherency traffic for PARSEC and SPLASH2 benchmark suites executed

until completion using SynFull [198]. To map these traffic patterns to the 64 core NoC en-

vironment, we have considered multiple threads of the same application kernel running on

the system where each processing core executes a single thread and the memory stacks are

shared among threads. We also vary the NoC configurations such as number of VCs, topol-

ogy, cache distribution/access using Uniform Memory Access, (UMA) and Non-Uniform

Memory Access, (NUMA) to analyze corresponding ML results. Table 5.9 lists the NoC

architectures considered in this paper. We use ASIC design flows with Synopsys Design

Compiler with 65nm CMP standard cell libraries (https://mycmp.fr/) to synthesize the

NoC switches. The delay and energy dissipation on the NoC links are obtained through

Cadence simulations considering the specific lengths of each link based on the NoC topology

assuming 20mm×20mm chips. The power and delay overheads of the NoC switches and

NoC links are considered during simulation. In order to train the ANN classifier, a cycle

accurate simulator based on NoXim [208] is modeled to implement the proposed SA-based

random routing and track the number of packets passing through each switch.
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Table 5.3: Architectures for evaluation

Architecture name Topology VCs Cache access
Mesh Mesh 4 UMA
V2Mesh Mesh 2 UMA
DMesh Mesh 4 NUMA
Torus Torus 4 UMA
FTorus Folded Torus 4 UMA

Figure 5.5: Latency variation for (a) α = 100 (Deterministic) (b) α = 0.01 and (c) α =
0.005.
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5.1.4.2 Average Packet Latency with α Variation

We consider the degree of randomness, α, to be a designer’s parameter; in this section, we

study the average packet latency (µ) variation for different values of α. We consider α to

be 100, 0.01 and 0.005 and study the corresponding effect on a 8x8 mesh NoC running Fast

Fourier Transform, (FFT) traffic traces obtained from SynFull [198]. Following Equation

(1), higher α values result in a lower probability of taking more random paths which di-

minishes rapidly with elapsed time. Therefore with a large value of α, say 100, the average

packet latency is same as the average packet latency achieved using deterministic routing as

it represents no randomness in the routing. On the contrary, smaller values of α increases

the probability of taking more random paths and hence increases average packet latency.

Figure 5.5 presents the probability distribution of packet latency with change in α. The

average packet latency for α = 100, α = 0.01, and α = 0.005 were found to be 37.13, 154.75,

226.15 cycles, respectively, for FFT traffic. This latency penalty could be considered as the

cost of improved security provided by the proposed random routing. Keeping this security-

performance trade off in mind, designers can choose α values that can provide improved

security as well as meet system performance and security requirements making such a NoC

routing secure-by-design. It is also interesting to note that with smaller α, the standard

deviation (σ) in latency also increases. The 99th percentile of the latency distribution is

at 76.77, 320.1 and 433.18 cycles for deterministic routing, α = 0.01 and α= 0.005 values

respectively providing designers upper bounds of latency for their design guidelines.

5.1.4.3 Evaluation of ML Models for an Efficient Attacker Design

Multiple ML classifiers such as ANN, support vector machine (SVM), K-nearest neighbor

(KNN), and DT (decision trees) were investigated to evaluate their accuracy for application

detection to determine an efficient computing model for the proposed attacker. A linear

kernel based SVM has been utilized for application detection. Similarly, experiment was

also done with k-nearest neighbors with k=12 and 78 in this work. As k=12 and k=78

provide similar performance, we enlisted only the performance for k=12 in both Table
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5.4 and Table 5.5 as it provides less delay and computation overhead. We considered 12

application-specific traffic obtained through SynFull [198] from PARSEC and SPLASH2

benchmark suites with maximum of 2 applications running simultaneously. For each of

the ML model, a 16 feature input was considered signifying a maximum of 16 HTs to be

inserted in the system. From the performance metrics listed in Table 5.4, it can be observed

that the ANN, KNN, and DT classifiers have similar performance in detecting application

suites running within a NoC using deterministic routing. Therefore, it can be argued that

any of these classifiers can be used to design an efficient attacker to launch proposed traffic

analysis attack.

However, apart from the 12 base classes (for 12 applications), considering a maximum of

2 simultaneous running applications, the KNN, SVM, and DT classifiers required additional

12C2 = 66 classes to be created during training to enable detection of 2 simultaneously run-

ning applications. Therefore, the complexity of training and computation overhead of those

ML classifiers increase as the attacker intends to detect larger number of simultaneously

running applications. For example, for a similar SoC, to detect a maximum of 4 simulta-

neously running applications, the attacker needs to create 12C4 = 495 additional classes

to train those classifiers. The number of required classes also increases as the number of

baseline applications which is 12 in our case, increases. Due to the increased training com-

plexity and the huge time required by the classifiers like KNN and DT, an attacker with

such ML classifiers does not represent an efficient attacker as it is not scalable in terms

of detecting multiple applications in a typical ever increasing multi-user environment. On

the other hand, due to the softmax activation at the output layer and one-hot encoding,

ANN can train on and detect multiple applications, along with their probability distribu-

tion, without any additional complexity and hence best suites the attacker purpose for the

proposed traffic analysis attack.

Moreover, from Table 5.5 it can also be observed that for a NoC employing SA-based

routing, the ANN classifier provides higher application detection accuracy compared to

other ML classifiers. As from attacker’s perspective it is desired that the ML classifier
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Table 5.4: Performance of the ML classifiers for deterministic routing

ML classifier Accuracy (%) Precision Recall F-score
ANN 98.18 0.98 0.98 0.98
SVM 74.3 0.72 0.72 0.74
KNN 97.8 0.97 0.97 0.97
DT 98 0.98 0.98 0.98

Table 5.5: Performance of the ML classifiers for SA-based routing

ML classifier Accuracy (%) Precision Recall F-score
ANN 17.42 0.10 0.17 0.11
SVM 6.41 0.01 0.01 0.06
KNN 6.41 0.03 0.02 0.06
DT 1.28 0.003 0.001 0.01
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should provide a better accuracy irrespective of the routing algorithm used in a NoC; from

Table 5.5 it can be concluded that an attacker equipped with ANN model can provide better

application detection accuracy compared to other ML classifiers even in presence of novel

routing algorithms like SA-based routing proposed in this work. We consider this ANN

based attacker model without any data augmentation capability to be the baseline attacker

model.

In summary, due to low complexity in detecting multiple simultaneous applications in a

large multi-user environment and better accuracy in presence of novel routing algorithms,

the ANN classifier best serves the purpose of an attacker targeting such traffic analysis attack

on a NoC-enabled SoC. Although it can also be argued that various other experiments can

be done and the existing classifiers can be optimized to come up with an ultimate ML

classifier that best suites the purpose of the attacker, however, it is necessary to understand

here that the objective of this work is to present the vision of a novel HT-enabled traffic

analysis attack and a probable solution, not optimization of attacker efficiency; it will be

explored in the future work.

5.1.4.4 ML Performance with Deterministic Routing

We evaluate the effectiveness of our baseline attack model for the architectures considered

in Table 5.9 using Dijkstra’s shortest path routing only. We use this routing as it can

be generalized to all topologies and in the case of mesh topologies it is identical to the

dimension-order routing yielding same latency performance. The inserted HT leaks the

packet count as payload to the ML-based attacker in a periodic interval of 5000 cycles.

Therefore, as attack efficiency metric we consider the accuracy, F1-score, recall and precision

of the ANN model placed on the attacker side. We also alter the number of observed features

(number of inserted HTs) in the system and measure the change in the performance metrics.

As shown in Fig. 5.6, for a 64 core system, the attack efficiency increases with the increase

in feature size. Even with a feature size of 4 (4 HTs embedded) the attack accuracy

varies between 85-98% for all the architectures considered in Table 5.9. Similarly, Figure

137



5.7 presents the ANN attack model performance for mix of three applications running

simultaneously. We observe similar trends for the other metrics such as F1, recall, and

precision with different feature sizes and are shown in Table 5.6 for mix of two applications.

Thus, it can be concluded that the proposed attacker can efficiently interpret the user

profile with less number of HTs inserted, thus resulting in small footprint/overhead within

the chip.
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Figure 5.6: Accuracy for deterministic routing with different features (number of HTs
observed).

5.1.4.5 ML Performance with Proposed SA-based Random Routing

We evaluate the performance of the baseline attack model with the proposed SA-based

random routing. As the degree of randomness for the proposed random routing can vary

depending on α, we consider α = 100 (deterministic), α = 0.01, and α = 0.005 and an-

alyze the accuracy of the attacker with different feature sizes. In this work, Alpha (α) is

interchangeability denoted as ‘R’ as well. Figure 5.18 shows the accuracy of the attacker

on folded torus architecture for deterministic and random routing. It can be observed from

Figure 5.18 that due to the higher routing obfuscation introduced by decreasing α values in

the proposed SA-based random routing, the accuracy of the attacker reduces significantly
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Figure 5.7: Attack accuracy for deterministic routing with 3 applications

Table 5.6: Attacker model performance results with deterministic routing

Deterministic routing with two applications

Architecture Features Accuracy F1 Recall Precision Architecture Features Accuracy F1 Recall Precision

Mesh-4VC

16 98.18 98.18 98.19 98.18

Mesh-2VC

16 95.83 95.84 95.83 96.03
8 91.17 91.23 91.17 91.16 8 97.88 97.86 97.87 98.08
4 98.44 98.43 98.43 98.50 4 95.45 95.48 95.44 95.64
2 74.52 74.46 74.54 75.37 2 71.38 71.24 71.39 72.18
1 13.13 13.13 13.12 13.13 1 13.27 3.76 13.17 2.19

FoldedTorus-

4VC

16 99.99 99.99 99.89 99.97

Torus-4VC

16 99.98 99.95 99.96 99.95
8 92.65 92.62 92.64 92.83 8 98.96 98.96 98.96 98.98
4 85.86 86.28 85.86 85.86 4 96.86 96.85 96.85 96.86
2 66.23 65.50 66.24 66.19 2 61.14 60.26 61.14 62.63
1 12.50 3.6 12.5 2.14 1 10.42 2.92 10.48 1.7

Dcache-

Mesh-4VC

16 99.99 99.99 99.99 99.99

Mesh-6VC

16 97.05 97.04 97.05 97.16
8 99.98 99.98 99.98 99.98 8 93.86 93.88 93.86 94.21
4 95.19 95.19 95.44 95.44 4 91.79 91.75 91.80 91.89
2 59.29 57.59 59.30 58.42 2 76.07 75.98 76.12 76.68
1 11.14 3.19 11.11 1.86 1 15.26 4.3 15.26 2.55

(<15%) compared to deterministic routing for smaller α values with higher feature sizes.

Also, from Figure 5.18, it can be discerned that for smaller α values increasing feature

size does not increase the accuracy significantly and thus represents the robustness of the

proposed random routing. If we combine Figure 5.18 and Figure 5.5, it is interesting to

note that the attacker accuracy is similar for both α = 0.01 and α = 0.005, however, using
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Table 5.7: Attacker model performance results with proposed random routing

Random routing with two applications

Architecture Features Alpha Accuracy F1 Recall Precision Architecture Features Alpha Accuracy F1 Recall Precision

Mesh-4VC

16
0.01 14.39 10.94 14.39 9.1

Mesh-2VC

16
0.01 10.60 7.93 10.60 7.47

0.005 17.42 11.96 17.42 10.36 0.005 17.42 10.31 17.42 8.52

8
0.01 13.63 5.34 13.63 6.57

8
0.01 18.18 12.68 18.18 11.38

0.005 13.63 6.08 13.63 11.25 0.005 13.63 7.10 13.63 5.37

4
0.01 17.42 10.68 17.42 14.74

4
0.01 6.06 6.94 6.06 13.73

0.005 13.63 0.07 13.63 20.05 0.005 9.09 5.72 9.09 4.50

2
0.01 14.39 9.12 14.39 10.9

2
0.01 12.87 12.21 12.87 11.78

0.005 15.90 8.77 15.90 7.14 0.005 9.84 8.98 9.84 9.72

1
0.01 13.63 3.89 13.63 2.27

1
0.01 12.63 3.89 13.63 2.27

0.005 13.63 3.89 13.63 2.27 0.005 13.64 3.89 13.63 2.27

FoldedTorus-

4VC

16
0.01 10.6 3.74 10.60 2.42

Torus-4VC

16
0.01 11.36 6.53 11.36 7.33

0.005 9.0 3.49 9.0 2.32 0.005 10.60 5.75 10.60 7.88

8
0.01 12.12 6.77 12.12 6.06

8
0.01 12.87 4.83 12.87 3.32

0.005 12.12 6.61 12.12 5.69 0.005 12.87 4.83 12.87 2.21

4
0.01 15.90 6.32 15.9 4.05

4
0.01 9.84 3.68 9.84 2.31

0.005 14.39 5.86 14.39 4.04 0.005 12.12 4.7 12.12 3.05

2
0.01 11.36 5.35 11.36 5.0

2
0.01 12.87 8.75 12.87 8.63

0.005 10.6 4.62 10.6 3.7 0.005 13.63 10.39 13.63 9.95

1
0.01 12.87 3.6 12.8 2.14

1
0.01 10.60 3.03 10.60 1.76

0.005 12.87 3.6 12.87 2.14 0.005 10.60 3.03 10.60 1.76

Dcache-

Mesh-4VC

16
0.01 20.46 16.68 20.46 16.92

Mesh-6VC

16
0.01 15.15 7.89 15.15 5.72

0.005 18.93 11.47 18.93 8.37 0.005 12.87 6.47 12.87 4.83

8
0.01 13.63 8.06 13.63 12.92

8
0.01 15.15 6.46 15.15 4.73

0.005 13.63 8.8 13.63 7.03 0.005 13.63 4.68 13.63 3.13

4
0.01 12.12 6.6 12.12 6.16

4
0.01 9.09 3.67 9.09 2.49

0.005 11.6 7.48 12.8 5.8 0.005 9.84 4.4 9.8 3.07

2
0.01 12.87 3.6 12.87 2.14

2
0.01 13.63 6.0 13.63 4.58

0.005 12.87 3.67 12.87 2.14 0.005 17.42 11.28 17.42 19.08

1
0.01 11.36 3.24 11.36 1.8

1
0.01 15.90 4.54 15.90 2.65

0.005 11.36 3.2 11.36 1.89 0.005 15.90 4.54 15.90 2.65

α = 0.005 increases average system latency by 46.13% compared to α = 0.01. Similarly,

Figure 5.8b presents the results for the proposed SA-based routing for three applications

running simultaneously; detailed results for other performance metrics are shown in Table

5.7. Therefore, it can be concluded that, reducing α further to zero will realize a com-

pletely random routing, but the increase in obfuscation will be marginal while resulting in

significant increase in average packet latency, which is not desirable.

5.1.4.6 ML Performance with Pseudo-adaptive Routing

So far, we have considered that the baseline SoC uses a deterministic routing and the

attacker trains its ANN accordingly to detect the applications running in such systems.

However, the use of pseudo-adaptive routing algorithms to avoid congestion while ensuring

deadlock freedom is very common in modern day SoCs. Similarly, the attacker could be

intelligent enough to train its ANN with such pseudo-adaptive routing to intercept the traffic

running in the system. As representative of such pseudo-adaptive routing algorithms, in
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this section, we choose west-first routing and evaluate the attacker’s efficiency in predicting

various application specific traffic as shown in Figure 5.9. We vary the number of features

and evaluate the attacker’s accuracy in predicting application suites using west-first routing

(WFR) and SA-based routing with two different α values. The limited randomness offered

by the WFR or any other turn model routing depends on the relative positions of the source

and destination nodes. Depending on the location of the destination nodes the routing can

be still very deterministic and therefore, from Figure 5.9, it can be observed that the even

for SoCs using WFR, the underlying applications can be detected with more than 95%

accuracy. On the other hand, the proposed SA-based routing being a controlled random

routing scheme reduces the attacker detection accuracy below 15% for both α values even

when the attacker is trained with pseudo-adaptive WFR.

5.1.4.7 Proposed Defense Performance with

Advanced Attacker Model

The data augmentation technique generates synthetic data samples thereby compensating

for the missing data. Also, as mentioned earlier, GANs have been used to generate synthetic

images given a real image dataset. In this work, the data available to the attacker is

the packet count data leaked by the hardware Trojan. In such a scenario, evaluating the

authenticity of the generated synthetic samples is crucial to the correct implementation of

the advanced attacker model. As such, we base the credibility of the GAN-based attacker

model by analyzing the loss plots of the GAN. Figure 5.10 shows the loss plots of the

discriminator, working on real and fake data, and the generator. It can be seen that

the D-real and D-fake plots are close to each other, which is an expected behavior; while

the generator loss plot spikes initially and later settles close to the discriminator plots.

In summary, the loss between the generator and discriminator is close which proves the

credibility of the generated synthetic data samples. In a real-world situation, an attacker

would also need to analyze the loss plots while training the GAN to ensure the GAN was

able to learn the data distribution and reliably generate synthetic data. The generated
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synthetic data is then utilized to augment the packet count dataset which is later fed to the

attacker neural network model for inference.

We discussed earlier in Section 5.2.2 that It may so happen that the attacker does not

have access to uniformly long observation window of system under attack in all operating

conditions. The performance degradation owing to lack of observed samples is shown in

Figure 5.11. The left bars (ANN) show the ANN attacker model performance for different

scenarios. In each scenario, the attacker is unable to observe a mentioned amount of data,

meaning, missing instances of application classes; missing data refers to the lack of training

data available to the attacker. Hence, the accuracy of the ANN attacker reduces owing to the

missing data compared to the baseline accuracy as shown. In Figure 5.11, the performance

of the ANN model corresponding to missing instances (data) of one application (ANN-1D)

is 89.2%, while for missing two application data (ANN-2D) is 82.6%, and finally for missing

four application data (ANN-4D) it is 73.2%; all of the plots show a decreasing trend as

more and more data becomes unobservant to the attacker. From Figure 5.11, it is seen

that the accuracy of the model is dramatically enhanced; attacker model performance with

data augmentation for one missing application instances (GAN-1D), two missing application

instances (GAN-2D), and four missing application instances (GAN-4D) are restored to 96%,

95.5% and 93.2%, respectively. This proves that with data augmentation the attacker can

render the attack model more robust against missing data.

Figure 5.12 presents the accuracy of the advanced attacker model with and without

data augmentation for a varying number of feature sizes. The feature size is the number of

HTs considered for the attack. Referring to Figure 5.6 we see that the accuracy for varying

feature sizes decreased owing to the missing data not observed by the attacker. On the

contrary, in Figure 5.12, with data augmentation, we observe that the accuracy increases,

relative to accuracy without data augmentation, with an increase in the number of HTs

observed. This is due to the fact that data augmentation compensates for missing data

samples by generating synthetic samples. More the available samples for training the ML

model, better its capability in detecting the applications running on the system.
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We compare the performance of the attacker model with and without the presence of

the GAN-based data augmentation technique for our proposed SA-based random routing

in Figure 5.13; Presence of GANs is denoted by a suffixed ‘G’. In this scenario, the attacker

is unable to observe the entire execution window and hence the performance without GANs

for deterministic data (original leaked HT data) suffers degradation. Figure shows the

comparison between deterministic data and random routing data samples with two α factors

of 0.01 and 0.005 for five different architectures. With data augmentation, the accuracy of

the attacker model is improved significantly. For instance, for a Mesh architecture, the

accuracy is 90% for deterministic data without augmentation, which increased to 98% with

augmentation; we see a similar pattern for accuracy comparison between the random routing

with and without augmentation for two α factors. It is to be noted that the number of HTs

observed for the figure is 16; with less number of features the accuracy for deterministic

data follows a similar pattern as shown in Figure 5.12, and the accuracy of the model for

random routing data degrades even further.

In summary, for our baseline attacker model, Figures 5.6 and 5.7 demonstrated the

success percentage in terms of accuracy in revealing the applications executing in the sys-

tem. Later, Figures 5.18 and 5.8b presented that the attacker accuracy degrades with our

proposed SA-based random routing methodology, thus thwarting the attack. Figure 5.9

presents results with a different routing strategy (west-first) considered to evaluate ANN

performance on the proposed random routing when attacker model is trained using west-

first routing. Further, we consider the advanced attacker model that is equipped with data

augmentation using GANs for scenarios where limited data is available for launching an

attack. Figure 5.10 shows the credibility of the GANs model in augmenting original leaked

HT data by generating synthetic samples. Figures 5.11, 5.12, and 5.13 demonstrated the ef-

ficacy of using data augmentation; Figure 5.12 presented the accuracy of the attacker model

for different architectures with varying number of HTs observed for both cases - with and

without data augmentation; and, Figure 5.13 shows our obfuscation with SA-based random

routing holds true for the advanced attacker model with data augmentation technique.
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5.1.4.8 Routing and HT Overheads

The increased security offered by the proposed SA-based random routing comes with addi-

tional overheads in routing logic as shown in the inset of Fig 5.15. We consider the D-LFSR

to be 8 bit wide whereas the R-LUT had 300 entries with each having 8 bits for each of the

α values. Considering a system having three α values, the routing logic consumes additional

7685.07um2 of area, 1.82uW of power and 0.93ns of delay in 65nm technology node. More-

over, each HT takes 1551.6um2 area, 125.88nW power and 0.2ns delay for its hardware

realization in same technology node.
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5.2 Parameterizable α-Based Defense Against Hardware

Trojan Data Leakage Attack on Network-on-Chips

Many chip vendors are becoming fabless to alleviate costs. Further, to minimize the time-

to-market and design costs, modern System-on-chips (SoCs) use Third Party Intellectual

Properties (3PIPs), which maybe procured from untrusted organizations. An adversary

either at the foundry or at the 3PIP design house can introduce a malicious circuitry to

jeopardize an SoC, which is known as a Hardware Trojan (HT) [192]. HTs can be used

for various malicious purposes, including information leakage, functionality subversion, and

battery exhaustion [192,194,195].

Interconnection networks in multi/many-core processors such as a Network-on-Chip

(NoC) [191] that connects processing units to memory and peripherals play a pivotal role

in these systems as efficiency of data movement is often the main bottleneck. Due to this

important role played by the NoC, they form one of the largest surface areas for attack in the

system both physically and functionally. Considering the critical role played by the NoCs,

embedding an HT that exploits the interconnection backbone can reveal the communication

patterns in the system. This information when leaked to a malicious external attacker

can reveal important information regarding the application suites running on the system,

thereby compromising the user profile. This information in turn, can enable further more

severe attacks not just on the multi/many-core processor infected with the HT, but on the

systems on which they are deployed. For instance, an adversary obtaining secure military

information through a HT deployed in a router can subvert the military backbone, thus

leading to a compromise of the national security [28].

In this paper, we define such an HT that is instrumental in carrying out an attack in

conjunction with an external agent as a Remote Access Hardware Trojan (RAHT). We first

discuss one possible incarnation of a lightweight NoC-based RAHT, which, in its simplistic

form, is a simple counter, which, when inserted in one or a few switches of the NoC can

count the number of packets traversing the specific switches over a time window. The HT
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can then periodically packetize this count and send it to an external attacker for payload

analysis, severely compromising user profile confidentiality.

This packetized count, which is the HT payload, can be analyzed by the external attacker

using machine learning (ML) techniques to infer the applications running on the system or

reverse engineering architectural IP of the system. To analyze the retrieved information,

the attacker trains an ML algorithm, that can map packet traversal frequencies at specific

switches to the application suites or reveal confidential information about the architecture.

Training samples for such a data analysis tool can be built using a system emulator or

simulator such as [198] and [208].

Using a RAHT and an external data-analysis attacker, we demonstrate that the appli-

cation suites running in the system can be detected with high accuracy. This is possible

because specific routing protocols are proposed for these particular system configurations,

which, when adopted, result in application-specific traffic patterns. We also show that it

is possible to use the same technique to infer architectural information of the system such

as the NoC topology to aid in architectural reverse engineering of the system enabling

industrial espionage. In the end, we discuss our vision of an adaptive controlled routing

mechanism that can be tuned based on external threat perception to implement a defensive

routing measure that achieves a user-defined trade-off between security and performance of

the NoC.

5.2.1 Threat Model

While many different types of HTs are possible to envision each with a different payload and

trigger mechanism, in this paper, we focus on a RAHT that has extremely low footprint and

can actually cause an attack by granting remote access to an external attacker. In our threat

model, we envision a multi-user or multi-tenant server or data center where the processing

engines are multi-core processors connected with a NoC. Since the NoC may be procured

from an organization different from the system integration designer, one or more HTs can

be inserted in the routers of the NoC during the design and fabrication process. These HTs
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can be simple in functionality such as counting the number of packets traversing the switch

over an observation window and sending that information to an external attacker. In this

way the actual RAHT can maintain a negligible area, power and timing footprint in order

to thwart detection using traditional HT detection methods. The attacker can then employ

large-scale compute capabilities and algorithms to perform a traffic analysis attack on the

packet count from one or more routers. This kind of attack can reveal the applications

running on the system, since the traffic interaction in multi/many-core processors is always

application dependent, and thus, compromise user privacy by revealing the applications

that is being executed.

Additionally, it can reveal information regarding the micro-architecture of the processor

platform, such as cache organization, NoC topologies or router buffer sizes. As these micro-

architectural decisions determine various performance metrics of the platforms, these are

proprietary and constitute IP of the designers. Therefore, if such information is revealed,

it can lead to reverse-engineering of the processing platform. Figure 5.14 shows the attack

model.

5.2.2 RAHT Based Attacker Design

In this section, we describe various aspects of the particular attack model that we have

studied. The RAHT in particular is a counter that is capable of counting the number of

packets getting routed by the switch where it is inserted. We assume that the RAHT is

inserted inside the routing block of the NoC or interconnection switch as shown in Fig. 5.15.

There maybe one or more such infected switches in the system. The functionality of this

counter is that it will count up whenever a new packet accesses the router of the switch to get

routed to its next destination. After counting for a pre-determined duration, it packetizes

this count if it is non-zero, by appending a destination address and other header information

and inserts this packet into the NoC as the HT payload. Such processing systems are

typically multi-user platforms where different parts of the processor are virtualized and

allocated to various applications from myriad of users. As the attacker can be disguised

as one of the multiple users of this shared virtualized multi/many-core processor hosting
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multiple users simultaneously, the destination of the payload will be a legitimate I/O port

where the malicious program is hosted. Therefore, the packet is unlikely to be flagged by

any other security measure in the system, as it does nothing anomalous compared to other

packets in the system. By sending only non-zero counts the RAHT also avoids detection in

quiescent operation or sleep mode. The payload then gets analyzed by the external attacker.

We consider a 16-bit counter as the RAHT for our evaluations here.

We envision that the proposed HT does not lie in the data-path of the packet transfer

mechanism over the NoC. It recognizes the flit-type and in case of a header, it increments a

counter. This happens in parallel with the function of the routing block. Due to no impact

on delay, the HT is difficult to detect based on timing analysis methods alone. Moreover,

due to the nature of the payload as described below, the area and power footprint of the HT

is negligible compared to the NoC or the entire processor. Therefore, the HTs can remain

in always-on state without the need for a sophisticated trigger.

5.2.3 Off-Chip RAHT Payload Analysis

We craft a RAHT payload analyzer using ML techniques to utilize the information leaked by

the RAHT. We chose artificial neural network (ANN) in this work due to its ability to map

complex patterns efficiently as well as its resilience to variations. We initially built a dataset

consisting of eighty different features (payloads) obtained from simulating a system with 64

cores and 16 memory controllers, with permutations of twelve different applications with no

more than three running on the system simultaneously signifying up to three independent

users hosted on the system executing three applications running simultaneously. We create

this data in the same manner as an actual attacker who may be able to create using an

emulator or a simulator of the real system.

We consider a 64 core system arranged in a regular 8x8 mesh NoC fabric with 4 in-

package memory modules. The core configurations in Table 5.8 have been used to extract

the core-to-memory and cache coherency traffic for PARSEC and SPLASH2 benchmark

suites when they were executed until completion using SynFull [198]. In order to map these
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traffic patterns to the 64 core NoC environment, we consider multiple threads of the same

application kernel running on the system where each processing core executes a single thread

and the memory stacks are shared among threads. We also vary the NoC configurations

such as number of VCs, topology, cache distribution/access using Uniform Memory Access,

(UMA) and Non-Uniform Memory Access, (NUMA) to analyze corresponding ML results.

Table 5.9 lists the NoC architectures considered in this paper for inference on NoC topology

IP reverse-engineering.

We deploy a 5 layer ANN (N -800-500-200-64-12 neurons for application detection and

N -800-500-300-100-50-5 for topology detection; N represents number of features at input)

with ReLU as activation functions for hidden layers and softmax as the activation function

for the output layer. The architecture is proposed for the ANN that supports application

detection for both two and three concurrent applications. There are twelve final outputs for

the ANN, which are the number of individual applications used to build the dataset and five

different architectures are experimented. To represent simultaneous execution of multiple

applications, one-hot encoding is utilized. A 5-fold cross-validation is utilized to analyze

performance, determined based on grid-search. As the ANN is deployed off-chip, the area

and other overheads are not of concern, thus we evaluate only the detection accuracy.

As shown in Fig. 5.16a and 5.16b, the attack efficiency increases with the increase in

feature size. Even with a feature size of 4 i.e., with 4 RAHTs, the classification accuracy

varies between 80-98% and 60-85% for the application detection, simultaneously 2 and 3

applications running in the 64-core processor connected with a Mesh NoC. Thus, it can

be concluded that the proposed attacker can efficiently interpret the user profile with very

small footprint/overhead within the chip. The result of NoC topology inference is presented

in conjunction with the protective routing in Section VIC.

5.2.4 Protection from the RAHT

In this section we discuss a possible method to protect against the RAHT. We investigate a

controlled random routing which can confuse the external payload analyzer and also provides
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a design knob that can be adjusted to react to perceived threat levels in environment. This

will enable achieving a dynamically varying trade-off between security and performance in

the system. The external threat perception will be determined by a data-mining engine

operating either at a separate system in the user environment or by the design house of the

NoC-based processor.

5.2.4.1 Protective Routing Methodology

The defense mechanism against the HT-based traffic analysis attack, is based on obfus-

cating the traffic analysis mechanism by introducing controlled randomness in the routing.

The underlying principle is that with deterministic routing, the number of packets through

a particular router is highly correlated to the application or the architecture of the sys-

tem while, with random routing decisions, that correlation will be reduced. A Simulated

Annealing (SA) based random routing methodology enable designers to have a degree of

controllability over the randomness of the routing decisions. According to SA heuristic,

at the beginning of the annealing schedule, the probability of taking random non-optimal

decisions are higher. However, the probability of accepting random non-optimal solution

decreases as temperature is reduced according to the annealing schedule. Similar to the

Metropolis criterion in SA, the probability of taking a random output port for the next hop

is defined as

Ri = eα(Tinj−Ti) (5.2)

In our case, Tinj is the packet injection time and Ti is the current time in clock cycles.

This time difference, ∆T is embedded in the packet header and incremented in each clock

cycle. α is the control parameter that controls the degree of randomness in the routing

and will be described in later sections. As shown in Fig. 5.15, any switch in the routing

path of the packet generates a random number using a Linear Feedback Shift Register,

(D-LFSR) which represents the probability of taking the shortest path. If this number is

less than the probability stored in a Lookup Table, (R-LUT) based on equation 5.2 and

current ∆T value, then the proposed routing chooses any of the ports of the switch that

leads to non-optimal path with equal probability. The non-optimal random port, (R-Port)
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is generated by another LFSR, (R-LFSR). Otherwise, the optimal port is chosen by the

router depending on the adopted shortest path algorithm.

5.2.4.2 Data-mining to Inform the Routing Mechanism

We envision the routing mechanism to be informed by a data-mining based approached

[209] that creates a consciousness in the user and/or the design house to choose the value of

the parameter α in the routing algorithm based on the threat perception. This is because

increasing randomness by choosing lower values of α causes worsening of NoC latency due

to sub-optimal paths repeatedly chosen by packets [210]. We anticipate a data corpus

of hardware Trojan documents (conference and journal publications as well as documents

from NIST database) that describes multiple Trojans and its impacts on the system. These

documents will be mined to extract the design features of the HTs and their impacts to

automatically extract the features and analyze the level of threat. For instance, an HT that

is active and leading to data leakage along with power consumption and timing violations

will be considered as high-threat compared to mere timing violating delays. Depending on

the threat-level, the value of α will be fine-tuned. This design is shown in Fig. 5.15. More

detailed analysis of data-mining approach will be performed in our future works.

5.2.4.3 Effectiveness of Protective Routing Method

We evaluate the effectiveness of the proposed SA-based random routing in protecting against

the RAHT attack. As the degree of randomness for the proposed random routing can vary

depending on α, we consider D (deterministic routing), α = 0.01, α = 0.005, and analyze

the accuracy of the attacker with different feature sizes. Figure 5.17a and 5.17b show the

accuracy of the attacker on folded torus architecture for deterministic and random routing

with 2 and 3 applications respectively. It can be observed that due to the higher routing

obfuscation introduced by decreasing α values in the proposed SA-based random routing,

the accuracy of the attacker falls down significantly (<15%) compared to deterministic

routing for smaller α values with higher feature sizes. In the case of 3 applications, the
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accuracy drops even more drastically due to a higher confusion created by the routing.

Moreover, reducing α decreases the attack accuracy even more while causing even more

randomness, indicating the need for the threat perception consciousness enabled by the

data-mining approach to not cause unnecessary degradation in latency.

The same 64 core processor was considered to be connected using the NoC topologies

listed in Table 5.9. In Fig. 5.18 it is shown that with deterministic routing strategies, the

RAHT along with the external attacker can infer the topology of the NoC in the system

with over 80% accuracy with 4 or more RAHTs. Moreover, with the SA-based random

routing the attacker accuracy drops to less than 20% in most cases demonstrating that the

SA-based routing can protect against attacks on NoC topology reverse-engineering.
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(a) Attack accuracy for random routing for α = 0.01, 0.005 and Deterministic
routing (D)

(b) Attack accuracy for random routing with three applications for α =
0.01, 0.005 and Deterministic routing (D)

Figure 5.8: Baseline attacker model accuracy for detecting applications with deterministic
routing and SA-based random routing with mix of two and three applications

 

Figure 5.9: Attack accuracy for pseudo-adaptive west-first routing
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Figure 5.10: Evaluation of GAN using the loss plot
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Figure 5.11: Comparison of ANN performance with baseline and advanced attacker model
for different missing data scenarios

 

Figure 5.12: Comparison of ANN performance with the baseline attack model and advanced
attack model shown for different feature sizes (number of HTs observed)

 

Figure 5.13: Comparison of the ANN performance with the baseline attack model and
advanced attack model on the proposed random routing technique
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Figure 5.14: Multi-core NoC with proposed threat model

Table 5.8: Component configuration for simulation

Component Configuration

System size 64 cores, Out-of-Order, 16cores/chip

Cache 32KB (private L1), 512KB (shared L2), MOESI

NoC router 3 stage pipelined 5 ports,0.078pJ/bit

Total VC 4, each 8 flits deep, 64 bits/flit

Wired NoC links 64-bit flits, single cycle latency, 0.2pJ/bit/mm

Technology 65nm, 1V supply, 1GHz clock
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Figure 5.15: NoC switch components with inserted HT

Table 5.9: Architectures for evaluation

Architecture name Topology VCs Cache access
Mesh Mesh 4 UMA
V2Mesh Mesh 2 UMA
DMesh Mesh 4 NUMA
Torus Torus 4 UMA
FTorus Folded Torus 4 UMA
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Figure 5.16: ANN accuracy for detecting applications with deterministic routing
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(a) 2 concurrent applications (b) 3 concurrent applications

Figure 5.17: Attack accuracy with the proposed routing for application detection
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Figure 5.18: Attack accuracy with proposed routing for topology detection
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Chapter 6: Conclusion and Future Works

6.1 Conclusion

In the discussion thus far we discussed that Computing systems since their origin have

evolved and become pervasive in different fields of technology, extensively. The computing

systems have evolved in regards to speed, performance, optimization, and security. Yet, in

recent decade, the computing system discipline has witnessed a diverse range of attacks, tar-

geting both software and hardware, exploiting the underlying vulnerabilities in the systems.

The dissertation discussed the threats caused by malware, cache-based side-channel attacks,

and hardware-based Trojan. The research presented to mitigate these threats incurred less

overhead, required low/no modifications to the hardware architecture and can be extended

to a variety of victim applications. The research presented is my approach to mitigate the

threats. But, as the computing systems are evolving to accommodate the ever increasing

demands of the technology, the scope of the attacks is increasing manifold. Hence, the field

of defenses against hardware security threats will be ever evolving to protect us and our

systems from adversaries.

6.2 Completed Works

This section presents in brief the projects that are completed1.

1. Malware detection *: Malware detection, as discussed earlier, is a non-trivial task

and Chapter 3 already presented how hardware attributes, also known as hardware

performance counters, can be utilized with ML/DNN techniques to categorize benign

and malware application. To render further resiliency to the hardware-based malware

1An * marks completed project
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detector (HMD), we will be integrating the hardware attributes with packet count

information captured when each profiled application accesses the internet. This en-

ables us to capture even more data for providing resiliency to the detection process.

The concept will be tested with a wide range of ML/DNN techniques to evaluate the

performance gains.

2. Network-on-chip Hardware Trojan *: Chapter 5 presented how a simple Hard-

ware Trojan (HT) can leak out confidential data and violate security boundaries. It

also discussed a defense technique to mitigate the threat. The dataset utilized in this

work is captured on a real-world NOC simulator system. It is non-trivial to generate

a large dataset on the existing environment, nor it is feasible to cover all the corner

cases of actual packet counts observed while executing the applications on the sim-

ulator. The future work in this domain would be to augment the data using neural

networks. The augmented dataset can be utilized to evaluate the DNN performance

and present analysis supporting the same.

3. Side-Channel Domain *: Machine learning techniques are deployed in a wide range

of domains. The ML/DNN techniques offer superior performance. Hence, by degrad-

ing these implementations, the adversary can degrade the system behavior. Currently,

there is a long list of research papers that discuss how certain exploits could be uti-

lized to attack ML/DNN techniques. Chapter 4 presented a mitigation strategy for

a cache-based SCA attack. My future work in this domain would be to present a

mitigation strategy to protect the deep learning applications from side-channel attack

threat.
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