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Abstract

LEAST SQUARE ESTIMATION OF MISSING SENSOR DATA FOR OVERSAMPLED ARRAYS

Thuykhanh Le

George Mason University, 2016

Thesis Director: Dr. Kathleen E. Wage

The problem of recovering samples lost from time series or sensor data is important in signal

processing. When the underlying signal is known to be bandlimited, and the sample rate is higher

than the Nyquist rate, the samples are dependent. In this case a missing sample or samples can

be recovered from the remaining samples. In the absence of noise, the accuracy of the sample

estimates depends on the degree of oversampling and the total number of good samples available.

In previous work, researchers often assumed that large numbers of high quality (high signal-to-noise

ratio) samples were available. This assumption may not be valid in practice. In practice the number

of samples is finite and the signal is corrupted by noise. The truncation and the noise will result

in errors in the sample estimates. This thesis investigates a least squares solution to the problem,

and uses the data from SwellEx-96 experiment to evaluate several approaches, including the least

squares approach.



Chapter 1: Introduction

1.1 Motivation

In array processing, it is common to lose data from one or more sensors. Deleting elements affects

the performance of a linear array in several ways. The most significant effect is an increase in the

sidelobe level of the array beampattern, which may mask important low level signals. The width

of the mainlobe may also be increased if the array aperture is reduced by the loss of the sensors.

This thesis focuses on the simplest problem of recovering a single missing sample from the remaining

samples. Figure 1.1 shows the beampattern of linear array with 22 equally spaced elements and the

beampattern of the same array with the 15th element missing. The beampattern of the array with

the missing element array has significantly higher sidelobes at same angles compared to the sidelobe

level of the filled array. In this case, the missing element should be recovered in order to improve

performance.

SWellEx-96 is an example of an ocean experiment affected by sensor failure. This experiment

included two arrays: the Vertical Linear Array (VLA) and the Tilted Linear Array (TLA). Both of

these arrays had 22 equally spaced sensors spanning a 120 m aperture. The data was recorded from

all the sensors of the TLA whereas the data recorded from the 15th sensor of the VLA was corrupted.

Since the TLA data contains all 22 sensors, it provides a useful data set for testing algorithms for

recovery of missing samples. In this experiment, the scenario for studying the performance of

estimate of a lost sample can be set up as follows: the data from the desired location of the TLA

is set to zero and the algorithm is applied to recover the deleted sample. The performance of

the estimator will be analyzed by comparing the mean square error (MSE) and the conventional

beamformer scanned response between using the zero-value at the desired location and using the

estimated result.
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Figure 1.1: The dashed red line is the beam pattern for a uniform linear 22-element array with half
wavelength spacing. The solid blue line is the beam pattern for uniform linear 22-element array

with half wavelength spacing with the 15th sensor removed. A rectangular window is used for both
arrays.
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1.2 Ideal oversampled bandlimited signal and practical issues

A signal is called bandlimited if its Fourier transform is equal to zero above a specified frequency

fmax. According to Papoulis [1], the samples are mathematically independent when the signal

is sampled at its Nyquist rate which is twice the highest frequency fmax present in the signal. In

contrast, when the sampling rate is higher than the Nyquist rate, the samples become mathematically

dependent. In that case, a finite number of missing samples can be recovered from the remaining

ones. It is well known that a finite number of missing samples can be recovered when the bandlimited

signal is oversampled [2–9]. The ideal bandlimited signal requires an infinite number of samples to

have Fourier transform (or power spectral density in the case of stochastic signal) equal to zero

above a specified frequency. In practice, the number of samples or the number of sensors recorded

the data are definitely finite, and the signal is always corrupted by noise. The truncation and the

additive noise will result in error in estimating of the missing samples. The recovery of lost samples

from an oversampled bandlimited signal has been approached in many ways. The paragraphs below

describe three techniques for recovering lost samples.

The first approach is the Frequency approach. In [7] Marks restored a lost sample at the origin

using the Fourier transform of the remaining samples at the specified frequency ψ = π. This method

is used if only one sample is lost and the location of lost sample is known.

The second approach is an iterative approach. Marks [7] presented this approach to recover a

finite number of lost samples rather than just a single missing sample. The first iteration of this

approach consists of four steps: the first step is to compare the Fourier transform of the observed

signal in which the defective samples are zeroed; the second step is apply lowpass filter with cut-off

frequency ψc = ψmax wherein ψmax is the maximum radian frequency of the bandlimited signal;

the third step is to take inverse Fourier transform; and the last step is to replace the values at

missing locations by values from the inverse transform. Each following iteration of the approach

is the same as the first iteration except the first step. The first step of each following iteration

is Fourier transform of observed signal in which the values at detective locations come from the

previous iteration. Several authors have used this method to reconstruct the bandlimited signal

with a finite number of missing samples [2–8].
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The third approach is denoted Fourier Interpolation of eXcitions( FIX). Stockhausen and Far-

rell [9] developed this method to reduce the performance degradation of a conventional beamformer

due to missing elements in a uniform linear array. This approach is similar to the iterative approach

described in the previous paragraph. In the iterative approach, a lowpass filter is used to eliminate

any beam having frequency higher than ψmax. In the FIX approach, the average power is used as

a threshold to eliminate any beam having power lower than the average power. Stockhausen and

Farrell note that the process can be repeated to reduce the variance of the beam power estimate.

1.3 Goal

In the frequency approach, Marks used only one value of the Fourier transform on the interval

ψmax < |ψ| < π to recover the missing sample at origin. That approach assumes that the Fourier

transform of the original band limited signal at the designated frequency is equal to zero. In practice,

the Fourier transform of the original bandlimited signal is not equal to zero at each ψ on the interval

ψmax < |ψ| < π for two main reasons. First, the signal is truncated due to the finite measurement

aperture. A truncated bandlimited signal is no longer perfectly bandlimited. Second, most practical

scenarios include additive measurement noise that is not bandlimited. Since the signal is not perfectly

bandlimited, the frequency approach has higher errors. To reduce these errors, this thesis considers

a least squares approach that uses multiple measurements outside the band of the signal to reduce

the error variance. Let L be the number of multiple measurements available outside the the band of

signal. The missing sample can be recovered by solving an overdetermined system of linear equations

using least squares. This approach reduces the variance of the error by a factor of L compared to

variance of error for the frequency approach.

The goal of the thesis is to investigate the least squares approach for estimating narrowband data

for a missing sensor and comparing its performance to other standard approaches using simulated

and experimental data.
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1.4 Organization

The thesis is organized as follows. Chapter 2 presents the previous work on estimating data for a lost

sensor. Chapter 3 presents the least squares approach and analyzes its performance using synthetic

data. These results are compared to the three other approaches discussed above: the frequency

approach, the iterative approach, and the FIX approach. Chapter 4 analyzes the performance of

the least squares approach by comparing its performance with the performance of other three ap-

proaches using the real data in SwellEx-96. Chapter 5 concludes the thesis.
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Chapter 2: Background and Previous Work

This chapter defines the problem of recovering a missing sample from a truncated bandlimited signal

in a noisy environment and reviews the previous work on the topic. Section 2.1 states the problem

and Section 2.2 describes the previous approaches mentioned in Chapter 1. [10]

2.1 Problem Statement

Let x(t) be a bandlimited signal having a maximum frequency fmax. x[n] is samples of x(t) with

the sampling rate fs, which is greater than the Nyquist rate fNY = 2fmax. The sampling rate

parameter r is defined by

r ≡ fNY

fs
. (2.1)

The Fourier transform of the signal x[n] is X(ejψ), where ψ is radian frequency. For an ideal

bandlimited signal that is oversampled

X(ejψ) = 0; ψmax < |ψ| ≤ π (2.2)

The discrete-time radian frequency ψmax, and sampling rate parameter r are related by

ψmax =
Ψmax

fs
=

2πfmax
fs

= rπ (2.3)

The equation 2.3 shows that the maximum discrete-time radian frequency ψmax depends on the

degree of oversampling r. As stated in Chapter 1, the finite missing samples can be recovered from

the remaining samples in the oversampling case. To see how a single missing sample can be recovered

from an ideal bandlimited signal, consider the following simple example. The sequence x[n] has one

6



sample at n = no, that is equal to A, i.e.,

x[no] = Aδ[n− no]. (2.4)

Let x̂[n] denote the signal with the missing sample at no, i.e.,

x̂[n] = x[n]−Aδ[n− no]. (2.5)

Taking the Fourier transform of both sides of Eq. 2.5 yields

X̂(ejψ) = X(ejψ)−Ae−jψno . (2.6)

Thus,

A = X(ejψ)ejψno − X̂(ejψ)ejψno (2.7)

where X(ejψ) is Fourier transform of the original signal and X̂(ejψ) is Fourier transform of the

original signal with the missing sample at no. Since X(ejψ) is 0 on the interval ψmax < |ψ| ≤ π, we

can determine A from

A = −X̂(ejψ)ejψno ψmax < |ψ| ≤ π. (2.8)

Therefore, the lost sample A at no can be completely recovered from the remaining samples using

Equ. 2.8 with the assumption that X(ejψ) is 0 on the interval ψmax < |ψ| ≤ π. This approach

requires the original signal is an ideal bandlimited signal, which requires an infinite number of noise-

free samples. These assumptions are rarely satisfied in practice. Any practical array has a finite

number of sensors and noise is always present. The truncation and additive noise will result in error

in estimating the missing samples.

Figure 2.1 shows the Fourier transform of the truncated signal imposed by additive white noise.

The solid red line represents the ideal bandlimited signal, the dashed blue line represents the trun-

cated bandlimited signal in which the signal is recorded by a finite number of sensors, and the

dashdot black line represents the truncated bandlimited signal corrupted by additive noise. From
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Figure 2.1: The solid red line is the Fourier transform of a ideal bandlimited signal with maximum
frequency ψmax = 0.5π. The dashed blue line is the Fourier transform of a bandlimited signal with
maximum frequency ψmax = 0.5π recorded by 22 sensors. The dashdot black line is the Fourier
transform of a bandlimited signal with maximum frequency ψmax = 0.5π recorded by 22 sensors
and corrupted by additive noise.
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the figure, one can see that the Fourier transform of the signal is no longer equal to zero outside the

band of the signal. It leads to error in estimating the lost sample for the bandlimited signal. The

main question is how the truncation and the noise affect the accuracy of the estimation. The follow-

ing section presents previous approaches to missing sample estimation and analyzes the influence of

truncation and noise on the accuracy of the estimate for each approach.

2.2 Previous work

The technique of recovering missing data from one or more sensors has been implemented by several

of groups [2–9]. This section presents a brief overview of work that is relevant to this thesis.

2.2.1 Frequency Approach

The first method proposed for recovering one lost sample is based on the characteristic of the

oversampled bandlimited signal in a frequency domain. Marks described this approach in detail [7].

Recall that the missing value A at the location n = no of the bandlimited signal x[n] can be

completely recovered by implementing Eq. 2.8 at any value of ψ on the interval ψmax < |ψ| ≤ π,

where X̂(ejψ) is Fourier transform of the remaining known samples, i.e.,

X̂(ejψ) =

∞∑
n=−∞
n 6=no

x[n]e−jψn. (2.9)

Marks [7] utilized this approach to recover the one lost sample at origin no = 0 by claiming that an

appropriate point ψ in the interval ψmax < |ψ| ≤ π is ψ = π. Hence,

x[0] = −X̂(ejψ)ejψno |ψ=π,no=0, (2.10)

= −
∞∑

n=−∞
n 6=0

x[n]e−jπn, (2.11)

= −
∞∑

n=−∞.
n 6=0

x[n](−1)n (2.12)

9



This approach is useful when only one sample of the bandlimited signal x[n] is missing.

2.2.2 Iterative Approach

The second method proposed is a iterative approach that can be used to recover a finite number of

lost samples rather than just a single missing sample. This section describes steps required for this

method.

Shannon [11] stated in Sampling Theorem that “if a function x(t) contains no frequencies higher

than fmax, it is completely determined by giving it ordinates at a series of points spaced 1
2fmax

apart.”

x(t) =

∞∑
n=−∞

x[n]sinc(2fmaxt− n), (2.13)

where sinc(x) = sin(πx)
πx .

Using Eq. 2.13, Marks constructed the iterative approach as follows.

Define M as the finite set of integers corresponding to the locations of the m lost samples, and

xM (t) is the result of the M th iteration.

xM (t) =

∞∑
n=−∞

xM [n]sinc(2fmaxt− n)

• The Fourier transform of xM (t) is defined by

XM (jΨ) =
1

2πΨs

∞∑
n=−∞

xM [n]e−jψnΠ

(
Ψ

2Ψs

)

where

Π(ξ) =


1 if |ξ| < 1

2 ,

0 if |ξ| > 1
2 ,

1
2 if |ξ| = 1

2 .

10



Since xM (t) has bandwidth fmax, the lowpass filter with cut-off frequency fc = fmax is used.

This leads to step 2.

• Form the function

HM (jΨ) = XM (jΨ)Π

(
Ψ

2Ψmax

)

• The inverse Fourier transform of HM (jΨ) is determined by

hM (t) =
1

2π

∫ ∞
−∞

HM (jΨ)e−jΨt dt.

The signal hM (t) is sampled at a rate of fs.

• The lost samples at M locations are replaced by hM [n]|n∈M.

xM+1 =

 hM [n]; n ∈M

xM [n]; n /∈M

Marks stated that in the limit

lim
M→∞

xM [n] = x[n] (2.14)

and the missing samples are regained. He proved that the final values of estimate by using the

iterative approach is defined by

x = [I− S]−1k, (2.15)

where x is an m × 1 column vector of unknown samples, I and S denote the identity matrix and

Toeplitz matrix respectively determined by locations of lost samples and the sampling rate parameter

r. The pqth component of S is defined as

Spq = rsinc[r(p− q)]|(p,q)∈(M×M), (2.16)

11



where sinc(x) = sin(πx)/(πx), and k is an m× 1 column vector with elements given by

ki = r
∑
n/∈M

x[n]sinc[r(i− n)]|i∈M, (2.17)

where i is the location of the lost samples.

Ferreira [8] also proved Eq. 2.15 by implementing the generalized interpolation function

x(t) = r

∞∑
n=−∞

x[n]sinc(2fmaxt− rn) (2.18)

at known and unknown samples.

Implementing Eq. 2.15 for one lost sample at origin,

x[0] =
r

1− r

∞∑
n=−∞
n 6=0

x[n]sinc(rn) (2.19)

Marks asserted in [7] that convergence in Eq. 2.19 is better than in Eq. 2.12 due to the 1/n factor

from the sinc term. The FIX approach, on the other hand, does not require knowledge of r.

Implementing Eq. 2.15 for one lost sample at arbitrary location,

x[no] =
r

1− r

∞∑
n=−∞
n 6=0

x[n]sinc[r(no − n)] (2.20)

One can use Eq. 2.20 to recover one lost sample at no. Marks [7] considered the truncation effects

in estimation by calculating the mean squares error for the signal having N samples from each side,

the lost sample is at origin, the signal is corrupted by real additive zero mean wide sense stationary

noise ζ[n], and the sampled noise ζ[n] is uncorrelated with the sampled signal x[n]. Then the single

lost sample x[0] is recovered by

12



xest[0] =
r

1− r

N∑
n=−N
n 6=0

(x[n] + ζ[n])sinc(rn) (2.21)

The mean-square error of this estimate normalized by the noise variance is

ε = Rx(0)− 4r

1− r

N∑
n=1

Rx(n)sinc(rn)

+2(
r

1− r
)2

[
N∑
n=1

sinc2(rn)

+

N∑
n=1

N∑
m=1

[
Rx(n−m) +Rx(n+m)

]
sinc(rn)sinc(rm)

]
(2.22)

Marks also proved that

lim
N→∞

ε =
r

1− r
(2.23)

Eq. 2.23 shows that as N →∞ the normalized error depends on the sampling rate parameter r only.

2.2.3 FIX Approach

Stockhausen and Farrell developed the FIX (Fourier Interpolation of eXcitions) approach to recover

the missing samples for a bandlimited signal. The FIX technique uses all information from the

remaining samples. The authors used this approach to recover 5 missing elements at the 7th, 8th,

15th, 16th, and 25th sensors of a 30-element array. The field consisted of 4 components: one strong

planewave signal near endfire, one small planewave signal 15o aft of broadside, three-dimensionally

isotropic noise, and white noise. The small planewave signal and other two noises are 30dB, 20dB,

and 50dB weaker than strong signal respectively. In the FIX approach, the defective elements are

set to zero in the first iteration process, and the signal x[n] is windowed by a half cosine window

xw[n] = x[n] · w[n]. (2.24)
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A fast Fourier transform is applied for windowed signal. The normalization which follows the

transform process has two factors. The first one is 1
Nfft which is required by the Fourier transform

process. The second factor is defined by

√√√√ ∑N
i=1 w

2
i∑N

i=1 εiw
2
i

(2.25)

where εi is 1 if sensor is present and 0 if it is missing, and wi is the weight from half cosine window

applied to data. This second factor is designed to keep the power of obtained data unchanged. In

the next step, each value of signal in frequency domain is converted to power and averaged. Any

beam having power less than or equal to the averaged power is set to zero. The inverse transform

is used for all remaining transform value, and inverse of the half cosine window is applied as well.

The values at the missing locations is substituted by corresponding estimated values. The authors

have stated that the entire process may be repeated for better estimation. The Frequency approach

and the Iterative approach are utilized for oversampled signals. However, the FIX approach does

not require an oversampled signal.

2.3 Summary

Previous results show that it is possible to recover a finite number of missing samples deleted from

an oversampled bandlimited signal. The frequency approach uses the value of Fourier transform of

the remaining samples at ψ = π to recover a single missing sample. The iterative approach uses all

values of the Fourier transform of the remaining samples combined with a lowpass filter to recover a

finite number of missing samples. The FIX approach is similar to the iterative approach, except the

FIX approach uses an adaptive filter instead of a lowpass filter. For practical applications there are

errors due to truncation and noise. When the noise is low enough, the truncation error dominates.

At higher noise, the noise error dominates. The main question is how to further reduce the estimate

error for oversampled arrays. Chapter 3 presents an alternative approach.
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Chapter 3: The Least Squares Method and Simulation

Results

The main goals of this chapter are to present the least squares approach for recovering a missing

sample and to compare the performance of the least squares approach with the previous approaches.

The first section presents the mathematical method of the least squares approach. The second

section uses synthetic data to illustrate its performance. The third section summarizes the chapter.

3.1 Least squares approach

Recall that the Fourier transform of the original ideal bandlimited signal X(ejψ) = 0 on the interval

ψmax < |ψ| ≤ π, so the lost sample x[no] will be recovered by Eq. 2.8. Suppose that Eq. 2.8 is

implemented for L values of ψ between ψmax and π, i.e.,

X̂(ejψ)|ψ=ψ1 = −Ae−jψ1no

X̂(ejψ)|ψ=ψ2
= −Ae−jψ2no

...

X̂(ejψ)|ψ=ψL
= −Ae−jψLno

These equations can be written more concisely in matrix form as

y = hA (3.1)
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where y is an L× 1 column vector:

y =



X̂(ejψ1)

X̂(ejψ2)

...

X̂(ejψL)


.

h is also an L× 1 column vector:

h =



−e−jψ1no

−e−jψ2no

...

−e−jψLno


=



e−j(ψ1no+π)

e−j(ψ2no+π)

...

e−j(ψLno+π)


.

The goal is to estimate A by solving the overdetermined system of linear equations in (3.1). Let Â

denote the estimated value of A and consider a value of Â that minimizes the squared differences

min‖y − hA‖2. (3.2)

This minimization problem has a unique solution

Â = inv(hHh)hHy =
1

L
hHy (3.3)

where hH denotes the Hermitian transpose of h. In this least squares approach, we use L equations

to search for one solution, each equation utilized one value Fourier transform of the original signal on

the interval ψmax < |ψ| ≤ π. The variance of error should be reduced by a factor of L compared to

the solution of Eq. 2.8 assuming these L equations are linearly independent. Jenkins et al. [12] stated

that Discrete Fourier Transform (DFT) of N-samples signal at ψk = 2πk
Nfft becomes uncorrelated if

Nfft ≤ N where Nfft is a number of FFT. In this thesis, Nfft is equal to the size of array. Truncation
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of a bandlimited signal is considered as multiplying the bandlimited signal with a window. This

leads to a transition band in the frequency domain. This transition band is considered in taking

appropriate Fourier transform values to solve Eq. LSestimation. Width of transition band relates

to the width of the mainlobe of the window, and this mainlobe width is determined by length of

window.

3.2 The simulation results

This section describes how the simulation data is generated for the examples in this thesis.

3.2.1 Simulation Parameters

This section uses simulations to compare the performance of the three algorithms from previous work

with the performance of the least squares estimator. The synthetic bandlimited signal is generated

as follows: white noise is run through a lowpass filter with a cutoff frequency ψc. The output is a

bandlimited signal with the maximum radian frequency which is equal to the cutoff frequency of the

lowpass filter ψmax = ψc. The cutoff frequency in the lowpass filter governs the maximum radian

frequency in the bandlimited signal. The length of the input is 100101, and the length of the filter

is 101. Thus, the output is a bandlimited signal with the length is 100201. The bandlimited signal

used to investigate the performance of estimation of the Frequency, Iterative, FIX, least squares

approach is selected from center of synthesized bandlimited signal. The reason to select the samples

at the center is to avoid transient samples in the synthesized bandlimited signal. The SNR is defined

by

SNR = 10 log10

(
Psig
Pnoise

)
(3.4)

where Psig is power of the signal, and Pnoise is power of noise.

3.2.2 Normalized Mean Square Error versus Signal Noise Ratio

This section analyzes how the estimation error of the least squares approach depends on Signal

Noise ratio (SNR) at different sampling rate parameter r, and compares the performance of the

least squares approach with other approaches. In this thesis, Mean Square Error (MSE) is defined
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as

MSE =

m∑
i=1

∣∣∣x(i)[n]− x(i)
est[n]

∣∣∣2. (3.5)

where x(i)[n] is value of the signal at selected sensor, and x
(i)
est[n] is estimation of x(i)[n] of the ith

trial. This MSE is normalized by the average signal power, i.e.,

m∑
i=1

∣∣∣x(i)[n]
∣∣∣2. (3.6)

This leads to a definition for the normalized MSE

MSENormalized =

m∑
i=1

∣∣∣x(i)[n]− x(i)
est[n]

∣∣∣2
m∑
i=1

∣∣∣x(i)[n]
∣∣∣2 . (3.7)

In the results that follow an average value of 1000 Monte Carlo trials. The simulation parameters

used in this section are number of sensors N = 22 sensors and the location of the missing sensor is

15, which is the scenario of the TLA in SwellEx-96.
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The following are the resulting of Normalized MSE of the estimation of 15th element in the 22

sensors array for different sampling rate parameters r.

Figure 3.1: MSE vs. SNR comparison between Least squares approach and other approaches with
N = 22, and r = 0.6.
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Figure 3.2: MSE vs. SNR comparison between Least squares approach and other approaches with
N = 22, and r = 0.5.
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Figure 3.3: Normalized MSE vs. SNR comparison between Least squares approach and other
approaches with N = 22, and r = 0.4.
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Figure 3.4: Normalized MSE vs. SNR comparison between Least squares approach and other
approaches with N = 22, and r = 0.3.

In Fig. 3.1, the horizontal lines shows the results of the Normalized MSE of the estimation in all

the approaches in the case signal having no noise. Fig. 3.1 shows that with no noise, Normalized

MSE of estimation using the Frequency, Iterative, FIX, and least squares approach are −14.34 dB,

−15.92 dB, −5.09 dB, and −45.25 dB respectively. The least squares approach has better estimation

comparing with other approaches at SNR of 25 dB or higher. Fig. 3.1 also shows that the Least

squares solution approaches the optimal result at SNR of around 60 dB.

Fig. 3.2 shows that Normalized MSE of the Frequency, Iterative, FIX, and Least squares ap-

proaches are −15.3 dB, −15.03 dB, −17.73 dB, −7.03 dB, and −53.16 dB respectively in the case

the signal has no noise. At SNR of 20 dB or higher, the Least squares approach has better estimation

that other approaches. Fig. 3.2 also shows that the Least squares solution approaches the optimal

result at SNR of around 60 dB.

The horizontal lines in Fig. 3.3 present the Normalized MSE of the approaches in the case signal
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Table 3.1: Normalized Mean Square Error of approaches for no-noise case

r = 0.3 r = 0.4 r = 0.5 r = 0.6
Frequency appr.
Iterative appr.

FIX appr.
Least squares appr.

−16.68 dB
−19.92 dB
−13.09 dB
−59.59 dB

−16.10 dB
−18.75 dB
−10.02 dB
−57.20 dB

−15.03 dB
−17.73 dB
−07.19 dB
−53.16 dB

−14.34 dB
−15.92 dB
−05.09 dB
−45.25 dB

has no noise. They are −16.19 dB, −18.75 dB, −10.02 dB, −57.20 dB for the Frequency, Iterative,

FIX, and Least squares approaches respectively. The error in the Least squares approach is much

lower than other approaches if signal has no noise. Fig. 3.3 shows that the Least squares approaches

has better performance that other ones at SNR of 20 dB and the Least squares solution approaches

the optimal result at SNR of around 60 dB.

The horizontal lines in Fig. 3.4 present the Normalized MSE of the approaches in the case signal

has no noise. They are −16.68 dB, −19.92 dB, −13.03 dB, and −59.59 dB for the Frequency,

Iterative, FIX, and Least squares approaches respectively. The error in the Least squares approach

is much lower than other approaches if signal has no noise. Fig. 3.4 shows that the Least squares

approaches has better performance that other ones at SNR of 15 dB and the Least squares solution

approaches the optimal result at SNR of around 60 dB.

Overall, at a fixed number of sensor, the Least squares approach has much better estimation than

others in the case signal has no noise. In the case signal has no noise, the number of sensors in the

array controls the performance of the Least squares approach. In the case, the signal is embedded

by noise, the Least squares has better estimation than others as the SNR reaches a threshold. For

a 22-sensor array, the threshold levels are 15 dB, 20 dB, 20 dB, and 25 dB for the sampling rate

r = 0.3, r = 0.4, r = 0.5, and r = 0.6 respectively. These threshold depends on the sampling rate r.

They decreases as the sampling rate decreases.

Eq. 3.3 indicates that the estimation Â is obtained by using L values of Fourier transform of the

missing element signal in the interval between ψmax and π. Eq. 2.3 in chapter 2 defined relationship

of the radian frequency ψmax and the sampling rate parameter r as

ψmax = rπ (3.8)
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It is clear that when the sampling rate parameter r is smaller, there are more values available

to implement Eq. 3.3. This leads to better performance for the least square estimator. For the

fixed number of sensors and the signal without noise embedded, the Normalized MSE of each of

the approaches depends on sampling rate parameter r. Performance of the Iterative approach is a

little better than the Frequency approach, Normalized MSE in the Iterative approach is less than

Normalized MSE in the Frequency approach about from 2 dB to 3 dB for sampling rate parameter

from r = 0.3 to r = 0.6. This result is as Mark mentioned when comparing the performance between

the Frequency approach and Iterative approach in [7]. Normalized MSE in the FIX approach is

highest whereas Normalized MSE in the Least squares approach is lowest.

3.2.3 Normalized Mean Square Error versus Number of sensors

This section investigates how the performance of the least squares approach depends on the number

of sensors in the array for the no-noise case. The scenario in this section as follows: the missing

sensor is at the origin and there are N sensors on either side of the origin.
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Figure 3.5: MSE vs. Number of Sensors on each side of a lost element.

Fig. 3.5 shows the Normalized MSE of estimation at different sampling rate parameters r, i.e.,

r = 0.3, r = 0.4, r = 0.5, and r = 0.6. Fig. 3.5 shows that at a fixed sampling rate parameter,

the Normalized MSE depends on the length of the array. The least squares approach has better

performance with longer array. With longer array, there are more values available for implementing

equation in the least squares approach. The performance of the Least squares approach also depends

on the sampling rate. The sampling rate is smaller, the band outside of the signal is larger. As

result, there are more values available for implementing equation in the least squares approach. This

leads to the Least squares has better estimation.

3.3 Summary

In the case signal has no noise, the Normalized MSE in the Least squares approach depends on

the length of array and the sampling rate r. The performance of the Least squares approach is
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better with longer array and smaller sampling rate parameter r. In the case signal has no noise at

a fixed sampling rate parameter r, the length of array controls performance of the Least squares

approach. For a fixed number of sensors, the Normalized MSE of each of the approaches depends

on SNR and sampling rate parameter r. The performance of each approach is better when the

SNR is higher and the sampling rate parameter r is smaller. The least squares approach has better

estimation comparing with other approaches once the SNR exceeds a threshold. For the sampling

rate parameter from r = 0.3 to r = 0.6, the threshold SNR is about 20 dB.
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Chapter 4: The experimental Results Using the SWellEx-96

Data Set

The previous chapter analyzed the performance of the Frequency approach, the Iterative approach,

the FIX approach, and the Least squares approach for simulated data. This chapter discusses the

results of estimating the missing data for the SWellEx-96 experiment. A brief overview of the

SWellEx-96 experiment is given in Section 4.1. Section 4.2 presents the spatial spectra of signal in

the experiment. Section 4.3 presents and analyzes the performance of the four approaches for the

experiment data. Section 4.3 summarizes the chapter.

4.1 The SWellEx-96 experiment overview

The SWellEx-96 was deployed off the California coast from May 10, 1996 to May 18, 1996. The

SWellEx-96 test site has been studied extensively. A conductivity, temperature, depth (CTD) sur-

vey was conducted during the experiment to provide water column sound speed data. The CTD

data from the SWellEx-96 Experiment consisted of 51 CTD casts. Each CTD data file provides

temperature, salinity, and sound speed as a function of depth. Figure 4.1 shows the sound speed

profile recorded at station 12, which is closest to the position of the TLA.

There were two events of interest in the experiment: S5 event and S59 event. This chapter

presents the result of processing data from the S5 event in which there were no loud interferers

present. In this event, two sources were simultaneously towed by the R/V Sproul: a deep source

at about 54 m depth and a shallow source at about 9 m depth. The shallow source transmitted

9 frequencies between 109 Hz and 385 Hz as shown in Table 4.1. The deep source transmitted 65

frequencies between 49 Hz and 400 Hz. These frequencies are divided into 5 sets and each set has

13 frequencies. The first set is projected at maximum level of 158 Hz, and the next four sets are

transmitted at level of 132 dB, 128 dB, 124 dB, 120 dB, as shown in Table 4.2.
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Figure 4.1: Sound Speed Profile.

Table 4.1: Shallow Source Tonal Set
Frequency (Hz)

109 127 145 163 198 232 280 335 385

Table 4.2: Deep Source Tonal Set

Level Frequency (Hz)
158 dB
132 dB
128 dB
124 dB
120 dB

49
52
55
58
61

64
67
70
73
76

79
82
85
88
91

94
97
100
103
106

112
115
118
121
124

130
133
136
139
142

148
151
154
157
160

166
169
172
175
178

201
204
207
210
213

235
238
241
244
247

283
286
289
292
295

338
341
344
347
350

388
391
394
397
400

As described in Chapter 1, acoustic sensors deployed in the experiment included the VLA and

the TLA. Both of these arrays consisted of 22 equally-spaced sensors. The data was recorded from

all the sensors of the TLA whereas the time series recorded from the 15th sensor of the VLA was

removed due to bad data. For this project, the data recorded on TLA is of particular interest because

it offers an opportunity to investigate methods of estimating the missing data in bandlimited signal.
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Figure 4.2: SWellEx-96 Event S5 Range to Sproul from TLA and VLA.

Figure 4.2 shows ranges from the towed source to VLA and TLA for each minute in the event

S5. The closest point of approach is about 1 km and the furthest is almost 9 km. Figure 4.3 shows

the locations of sensors in TLA. The TLA had a tilt of about 45 − 47 degrees. The first sensor of

the TLA has a depth of 153 m, and the last sensor has a depth of 67.315 m.

The test of the missing sensor data estimation algorithms is set up as follows. First, the data

from the 15th sensor of the TLA is set to zero and the algorithms as described in the previous

chapters are applied to recover the deleted sample. Second, the performance of estimates from all of

algorithms will be analyzed by comparing the spatial Fourier transform between using the zero-value

at the 15th sensor of the TLA and using the estimated results.
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Figure 4.3: Locations of sensors in Vertical Linear Array and Tilted Linear Array.
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4.2 Spatial Spectra of signal in the SWellEx-96 experiment

In this thesis, the k − Ω beamforming technique is used to compute the frequency-wavenumber

spectrum for the set of data recorded by the TLA. Ω is the temporal radian frequency and kz is the

wavenumber. Two minute segments of data are used in this analysis. The first step of calculating the

average k −Ω spectrum is to split the data into set of overlapping time blocks. Each block consists

of 4096 samples and an overlap of 50% is used between blocks. The second step is take the temporal

Fourier transform of each of those windowed time blocks. The third step is take the spatial Fourier

transform of the windowed narrowband array data. A Hanning window is used in both temporal

and spatial Fourier transform [13]. Finally, the fourth step is to square the magnitude of the output

and average over blocks to get power spectrum. Figure 4.5 shows the k − Ω output for the TLA.

This plot is derived from the two minutes data block starting at minute 58 of the recording, which

is for the time segment where the source is closest to the array. Based on position of sensors in the

TLA, the spacing d between two sensors in the TLA is about 5.625 m.

In a linear array, wavenumber kz and arriving angle θ is related by

kz =
Ω

c
cosθ

with limits on θ

0 ≤ θ ≤ π

This leads to

−Ω

c
≤ kz ≤

Ω

c

−2π

λ
≤ kz ≤

2π

λ

The radian frequency ψ has value

−2πd

λ
≤ ψ ≤ 2πd

λ
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Consider normalizing the radian frequency ψ by π,i.e.,

−2d

λ
≤ ψ

π
≤ 2d

λ
(4.1)

Eq. 4.1 defines visible region of the narrow band signal. Figure 4.4 illustrate the visible region of the

narrow band signal. Figure 4.4 shows that the spatial maximum radian frequency ψmax is defined

by

ψmax =
2d

λ

This leads to

ψmax =
2df

c
(4.2)

Eq. 4.2 indicates that the spatial maximum radian frequency ψmax depends on the temporal f

frequency. It means that the temporal frequency controls the spatial maximum radian frequency.

With smaller spatial maximum radian frequency, the Least squares approach has more available

values to estimate the missing element.

For a linear array, a spatial Nyquist rate to avoid aliasing is defined by

d <
λ

2
,

where

λ =
c

f
.

Solving for f leads to

f <
c

2d
.

For a velocity c = 1488 m/s and spacing d = 5.625 m (values for the SWellEx-96 experiment),

f much be less than 132 Hz to avoid aliasing. It means that any narrowband signal having the

temporal frequency less than 132 Hz has invisible region. Given this criteria, the thesis focuses on

the SWellEx-96 narrowband signals with frequencies of 64 Hz, 67 Hz, 70 Hz, 73 Hz, and 76 Hz to
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analyze the performance of the least squares estimator.

Figure 4.4: The Ideal Bandlimited Signal with a spatial cutoff radian frequency.
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Figure 4.5: k−Ω beamformer of data record in TLA. The two minutes length of data starting at 58th

minute is used, a 4096 point Hanning window is applied to calculate the temporal Fourier transform
for each of time block, Hanning window is also used to calculate the spatial Fourier transform. A
overlap 50% is used between frames of data. The white lines are boundaries between the visible
region and the invisible region.
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4.3 Comparing the performance between algorithms

As stated in the previous section, any narrowband signals in TLA having the temporal frequency

less than 132 Hz are spatially bandlimited and have samples in the invisible region that can be used

by the least squares estimator. It implies that a missing sample in these signals can be recovered

from the remaining samples to reduce the effects of missing element. For purpose of comparison,

the spatial Fourier transform of the selected narrowed band signals is calculated for filled array,

missing element array, and recovered element array using Frequency approach, Iterative approach,

FIX approach, and Least squares approach. The Normalized MSE of estimation in each approach

also calculated for comparison.

The following section presents results for some selected narrow band signals from TLA.

4.3.1 Comparison spatial Fourier transform between approaches

Figures 4.6-4.10 show that the sidelobe of the spatial Fourier transform of the missing element array

is higher than the sidelobe level of the spatial Fourier transform of the filled array as the data at

15th sensor of the TLA substituted by zero. In this section, the performance of all approaches

are compared by observing the sidelobe level of the spatial Fourier transform of the signal in all

approaches and the corresponding Normalized MSE. Figures 4.6 shows that the missing data at

15th sensor causes the sidelobe level of the Fourier transform of the narrow band signal f = 64 Hz

increase 12 dB from −45 dB to −33 dB. The Frequency approach, Iterative approach, FIX approach,

and Least squares approach are applied to recover the missing element at 15th sensor. The second

observation from Figure 4.6 is that the recovered missing element using all the approaches help

lowering the sidelobe level of the spatial Fourier transform of the missing element array. The sidelobe

level of the spatial Fourier transform of the signal with recovered missing element using the Frequency

approach, Iterative approach, FIX approach, and Least square approach are about −42 dB, −47

dB, −42 dB, and −49 dB respectively. The results in Table 4.3 shows the corresponding Normalized

MSE. The FIX approach has highest Normalized MSE, the Least square has lowest Normalized

MSE. The Iterative approach has Normalized MSE smaller than the Frequency approach, this is

consistent with depiction of Marks in [7].

Similarly, Figures 4.7 shows that the sidelobe level of the Fourier transform of the narrow band
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signal f = 67 Hz is increased from −52 dB to −45 dB because of affection of the missing element.

Figures 4.7 shows that the spatial Fourier transform of the signal using the defined approaches has

the similar characteristic in Figures 4.6, it means that the recovered missing element in all approaches

help lower the sidelobe level of the missing element array. The Frequency, Iterative, FIX, and Least

squares approach help lowering the sidelobe level of the missing element array from −44 dB to −48

dB, −51 dB, −47 dB, and −52 dB respectively. The Normalized MSE in this case has order from

lowest value to highest value as in the narrow band signal f = 64 Hz.

The similar results are obtained from Figs. 4.8-4.10 for the narrow band signals f = 70 Hz,

f = 73 Hz, and f = 76 Hz.

Figure 4.6: Comparing the spatial Fourier transform of the narrow band signal f = 64 Hz recorded
by the Filled array with the missing element array, and recovered element array using the Frequency
approach, the Iterative approach, the FIX approach, and the Least squares approach.
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Figure 4.7: Comparing the spatial Fourier transform of the narrow band signal f = 67 Hz recorded
by the Filled array with the missing element array, and recovered element array using the Frequency
approach, the Iterative approach, the FIX approach, and the Least squares approach.
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Fig. 4.8 shows that the sidelobe level of Fourier transform of the original signal f = 70 Hz is −52

dB. This sidelobe level increases to −42 dB as data at 15th sensor removed. The estimated data

using the Frequency, Iterative, FIX, and Least squares approaches lower the sidelobe level from −42

dB to −47 dB, −51 dB, −45 dB, and −52 dB respectively. The corresponding Normalized MSE

are 0.3008, 0.2242, 0.5569, and 0.0380 as show in Table 4.3. In this case, the Fourier transform of

the signal using estimated data of the Least squares approach is almost coincidence to the Fourier

transform of the original signal.

Figure 4.8: Comparing the spatial Fourier transform of the narrow band signal f = 70 Hz recorded
by the Filled array with the missing element array, and recovered element array using the Frequency
approach, the Iterative approach, the FIX approach, and the Least squares approach.
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Fig. 4.9 shows that the sidelobe level of Fourier transform of the original signal f = 73 Hz is −52

dB. This sidelobe level increases to −43 dB as data at 15th sensor removed. The estimated data

using the Frequency, Iterative, FIX, and Least squares approaches lower the sidelobe level from −43

dB to −49 dB, −51 dB, −47 dB, and −52 dB respectively. The corresponding Normalized MSE are

1.9454, 2.0544, 7.1098, and 0.9349, as show in Table 4.3. In this case, the Fourier transform of the

signal using estimated data of the Least squares approach is very close to the Fourier transform of

the original signal.

Figure 4.9: Comparing the spatial Fourier transform of the narrow band signal f = 73 Hz recorded
by the Filled array with the missing element array, and recovered element array using the Frequency
approach, the Iterative approach, the FIX approach, and the Least squares approach.
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Figure 4.10: Comparing the spatial Fourier transform of the narrow band signal f = 76 Hz recorded
by the Filled array with the missing element array, and recovered element array using the Frequency
approach, the Iterative approach, the FIX approach, and the Least squares approach.

Fig. 4.10 shows that the sidelobe level of Fourier transform of the original signal f = 76 Hz is

−52 dB. This sidelobe level increases to −43 dB as data at 15th sensor removed. The estimated data

using the Frequency, Iterative, FIX, and Least squares approaches lower the sidelobe level from −43

dB to −49 dB, −51 dB, −47 dB, and −52 dB respectively. The corresponding Normalized MSE are

0.5950, 0.1996, 0.5600, and 0.0747, as show in Table 4.3. In this case, the Fourier transform of the

signal using estimated data of the Least squares approach is very close to the Fourier transform of

the original signal.

Overall, the estimated data using the defined approaches reduced effect of the limited number of

sensors in the array, and the embedded noise. For the narrow band signals f = 64 Hz, f = 67 Hz,

f = 70 Hz, f = 73 Hz, and f = 76 Hz in SWellEx-96 experiment, the Least squares approach have

better performance than other approaches based on the comparison the Fourier transform and the

corresponding Normalized MSE.
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Table 4.3: Normalized Mean Square Error

Frequency appr. Iterative appr. FIX appr. Least Squares appr.
64Hz
67Hz
70Hz
73Hz
76Hz

0.1925
0.3019
0.3008
1.9454
0.5950

0.1079
0.2422
0.2242
2.0544
0.1996

0.2937
0.4795
0.5569
7.1098
0.5600

0.0523
0.0558
0.0380
0.9349
0.0747

4.3.2 Normalized MSE for some narrow band signals along 75 minutes

recording

In this section, the performance of the approaches are analyzed by comparing Normalized MSE

along 75 minutes recording for all approaches. Normalized MSE is calculated for each segment of

every two minutes recording, and overlap 50% is used between each segment.

Fig. 4.11 shows that the Normalized MSE of the estimation using Least squares approach is

smallest comparing with the Normalized MSE of other approaches along 75 minutes recording.

Along 75 minutes recording, all Normalized MSE is below 0.5 except Normalized MSE at segment

24th. The Normalized MSE for this segment is 0.845, which is smaller than Normalized MSE of

other approaches. The Normalized MSE for the Frequency, Iterative, and FIX approaches are 1.202,

3.341, and 3.912 respectively.

The first observation from Fig. 4.12 is the Normalized MSE of the Least squares approach has

the highest value at the 10th segment, which is 0.1804 at along 75 minutes recording. The second

observation is the Normalized MSE of the Least squares approach at each segment is smaller than

Normalized MSE of other approaches.

Fig. 4.13 shows that Normalized MSE of the Least squares approach has the highest value at

the 52th segment comparing with other segments along 75 minutes recordings. At this segment,

the Normalized MSE of the Frequency, Iterative, FIX, and Least squares approach are 4.500, 3.312,

2.108, and 1.571 respectively.

Fig. 4.14 shows that Normalized MSE of the Least squares approach is below 0.2 at each segment

except Normalized MSE at 58th segment. At this segment, the Normalized MSE of the Frequency,

Iterative, FIX, and Least squared approaches are 1.9454, 2.0544, 3.100, and 1.202 respectively.

Fig. 4.14 shows that Normalized MSE of the Least squares approach is below 0.18 at each segment
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except Normalized MSE at 68th and 70th segments.

Overall, the Least squares approach achieves lower than other approaches. For the signals f = 64

Hz, f = 67 Hz, f = 70 Hz, f = 73 Hz, and f = 76, the Normalized MSE of the Least squares

approach is below 0.5 at almost segments along the recording.

Figure 4.11: Normalized MSE for f=64(Hz) along 75 minutes recording.
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Figure 4.12: Normalized MSE for f=67(Hz) along 75 minutes recording.
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Figure 4.13: Normalized MSE for f=70(Hz) along 75 minutes recording.
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Figure 4.14: Normalized MSE for f = 73 Hz along 75 minutes recording.
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Figure 4.15: Normalized MSE for f = 76 Hz along 75 minutes recording.

4.4 Summary

This chapter presented the performance of the Frequency, Iterative, FIX, and Least squares ap-

proaches using data in the SWellEx-96 experiment. By comparing the spatial Fourier transform and

the corresponding Normalized MSE, the results show that the Least squares approach has better

performance than other approaches.
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Chapter 5: Conclusion

This thesis investigated the least squares solution to the problem of estimating data for a missing

sensor, assuming a oversampled bandlimited signal. Several practical issues were considered, includ-

ing the effect of noise and a finite aperture. First chapter 3 of the thesis analyzed the performance of

the least squares approach by comparing the mean square estimation error for the least squares ap-

proach with the mean square error of estimation used the Frequency, Iterative, and FIX approaches.

The comparison assumed a fixed number of sensors and different SNR levels. The thesis shows that

the least squares approach perform better than the other approaches if SNR of the signal exceeds

a threshold. For a fixed number of sensors, this threshold SNR depends on the sampling rate pa-

rameter. A higher sampling rate parameter requires higher SNR level. Second chapter 3 analyzed

the performance of the least squares approach as a function of array size for different sampling rate

parameters. The thesis shows that all approaches perform better with longer array. The number of

sensors in the array controls the number of values available to solve the equation in the least squares

approach. As the number of sensors increases, the number of values available increases. The thesis

also shows that the number of available values depends on the sampling rate parameter r. The

least squares approach has better estimation with smaller sampling rate parameter. Chapter 4 used

the data from SWellEx-96 experiment to evaluate least squares and other approaches. The thesis

shows that the least squares approach is useful in estimating a missing value for some narrow band

frequency signals in which those narrow band signals have a number of values and level of noise

reaching requirement for this approach.

This thesis suggests several avenues for future work. First, it would be interesting to derive an

analytical prediction of MSE as a function of number of sensors at a specific level of SNR. Second, the

effects of the location of missing element also needs to be considered in analyzing the performance

of the least squares approach.
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