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ABSTRACT

THERMAL CONDUCTIVITY OF NANOMATERIALS: A MOLECULAR
DYNAMICS STUDY

John W. Lyver, IV, C.S.P., PhD
George Mason University, 2010

Dissertation Director: Dr. Estela Blaisten-Barojas, Ph.D.

With the growing use of nanotechnology and nanodevices in many fields of engineering
and science, a need for understanding the thermal properties of such devices has
increased. The ability for nanomaterials to conduct heat is highly dependent on the purity
of the material, internal boundaries due to material changes and the structure of the
material itself. Experimentally measuring the heat transport at the nanoscale is

extremely difficult and can only be done as a macro output from the device.

Computational methods such as various Monte Carlo (MC) and molecular dynamics
(MD) techniques for studying the contribution of atomic vibrations associated with heat
transport properties are very useful. The Green—Kubo method in conjunction with
Fourier’s law for calculating the thermal conductivity, K, has been used in this study and
has shown promise as one approach well adapted for understanding nanosystems.

Investigations were made of the thermal conductivity using noble gases, modeled with



Lennard-Jones (LJ) interactions, in solid face-centered cubic (FCC) structures. MC and
MD simulations were done to study homogeneous monatomic and binary materials as
well as slabs of these materials possessing internal boundaries. Additionally, MD
simulations were done on silicon carbide nanowires, nanotubes, and nanofilaments using
a potential containing two-body and three-body terms. The results of the MC and MD
simulations were matched against available experimental and other simulations and
showed that both methods can accurately simulate real materials in a fraction of the time

and effort.

The results of the study show that in compositionally disordered materials the selection of

atomic components by their mass, hard-core atomic diameter, well depth, and relative

concentration can change the K by as much as an order of magnitude. It was found that a
60% increase in mass produces a 25% decrease in K. A 50% increase in interatomic

strength produces a 25% increase in K, while as little as a 10% change in the hard core

radius can almost totally suppress a materials ability to conduct heat. Additionally, for
two LJ materials sharing an interface, the atomic vibrations altering the heat energy
depend on the type of internal boundary in the material. Mass increases across the
interfacial boundary enhance excitation of the very low frequency (ballistic) vibrational
modes, while the opposite effect is seen as increases in hard core radius and interatomic
strength enhance excitation of higher frequency vibrational modes. Additionally, it was
found that this effect was diminished for higher temperatures around half the Debye

temperatures. In nanodevices and nanomachines, there is an additional factor that



degrades heat transport at the boundary. In fact, the interface induces a temperature jump
consistent with a thermal resistance created by the boundary. It was found that the
temperature jump, which is due to a boundary resistance, was significant in boundaries
involving small mass changes, lesser in changes in hard core radii changes and even

lesser for interatomic strength changes. The study of SiC nanowires and nanotubes
showed that the structural changes produced vastly different K. The K in closely packed
structures like nanowires and nanofilaments approximated that of the bulk SiC, yet were
less sensitive to temperature than the 1/T relationship traditionally found in bulk systems.
The more open nanostructures, like nanotubes, had vastly lower K values and are almost

totally insensitive to temperature variation.

The results of this study can be used in the design of nano-machines where heat
generation and transport is a concern. Additionally, the design of nano-machines which
transport heat like nano-refrigerators or nano-heaters may be possible due to a better
selection of materials with the understanding of how the materials affect their

nanothermal properties at the nano scale.



CHAPTER 1 INTRODUCTION

It is known that heat is transported better through solid materials that are pure and
crystalline. Any type of impurity, defect, doping, void, or internal boundary within the
material increases the resistance to heat transport, and thus, reduces the ability to
transport thermal energy. With the growing interest in nanotechnology, the study of
thermal conduction properties of systems with reduced dimensions, thin films, nanotubes,
nanowires, and super lattices has increased. In nanomaterials and nanostructures,
phenomena are highly dependent on the length scale where vibrations between nearest-
neighbor atoms occur. The use of molecular dynamics (MD) and the Green—Kubo (GK)

methods for calculating the thermal conductivity, K, have shown promise as atomistic

approaches for understanding nanosystems at the nanometer scale. For example, there
are several recent calculations on pure noble gases with Lennard-Jones (LJ) interactions
in which MD was the method of choice [1-5]. For binary crystals, the literature is not so
abundant. There are over 6000 bi-atomic combinations of elements of which only a few
hundred have been tested for their thermal conductivity. For some phenomena, such as
thermoelectricity, to decrease the lattice thermal conductivity may increase the

performance efficiency of the device by a factor of two or three.

In a crystal, and in nanostructures, the thermal conductivity is composed of two additive

contributions: lattice, kpp,, and electronic, k.. The lattice contribution captures



phenomena associated with lattice vibrations and phonon scattering and is dominated by
the structural characteristics of the crystal or the nanostructure. The electronic
contribution is proportional to the electric conductivity through the Wiedemann—Franz
law [6-7]. The composition of a crystal affects the lattice symmetry characteristics and,
consequently, the lattice vibrations. Therefore, the lattice contribution to the thermal
conductivity in a crystal should reflect changes according to its composition. In contrast,
K, 1s a function of the conduction properties and these are expected to remain almost
constant for families of solids with similar compositional components. A phenomenon
that reduces i, produces an overall reduction of the thermal conductivity if the electric
conductivity is not affected. In dielectrics, and the noble gases specifically, changes in

Kpn do not simultaneously affect the electronic conductivity.

The computational approach taken in this research is through atomic-level computer
simulations using several simple models of binary LJ solids employing a variety of
methodologies, including different types of MD and different types of Monte Carlo (MC)
techniques. The simulations were expanded to MD investigation of silicon-carbide (SiC)
nanostructures with a classical potential proposed by Vashishta [8]. The approach
underlying this calculation, from an atomistic perspective, is linear response theory of
many body systems. Under this approach, the lattice thermal conductivity is the
“response” of a material to a time dependent perturbation, which is the thermal gradient

established through it.



In this dissertation, research is presented which identifies various lattice changes and
their effects on the thermal conductivity in binary LJ crystals. The study in this
dissertation spans from changes in the lattice thermal conductivity due to atomic
vibrations for binary crystals with compositional disorder, to size effects in SiC
nanowires and nanotubes. This research work identified ranges of combinations of
binary materials, disorder conditions, and nanodevice shapes and sizes which reduce the
thermal conductivity of the simulated materials and may warrant further experimental

work. This dissertation is organized as follows:

Chapter 2 presents an overview of the theory and methods. The chapter begins with an
overview of the modeling techniques employed with the MC and MD simulations.
Several of the statistical mechanics ensembles proposed by Gibbs are presented as to
their applicability to the simulations addressed in this research. A discussion of the two
model potentials of interaction employed in the study is included in this chapter. The
work presented in chapters 3 and 4 uses the LJ potential (two-body forces), and the work
in chapter 5 uses a model potential proposed by Vastisha [8] containing Coulomb two-
body interactions and three-body terms. The next section of this chapter discusses the
methods used to analyze the atomic configurations for parameters, including:
computational box size in simulations, shape of the computational box, structural and
thermodynamic quantities, pressure, order parameters, velocity distribution, mean square
displacement, radial distribution functions, and the dynamical properties studied (heat

flux, frequency, density of states, and thermal conductivity). The chapter continues with



a discussion of how a thermal gradient was produced across the computational box and

finally presents a few conclusions on the methods used.

Chapter 3 presents the results of thermal conductivity as a function of temperature of
homogeneous compositionally disordered binary crystals with atoms interacting through
LJ potentials. The two species in the crystal differ in mass, hard-core atomic diameter,
well depth and relative concentration. The isobaric MC was used to find the equilibration
density of the samples at near-zero pressure and various temperatures. The isoenergy
MD simulations combined with the Green—Kubo approach were taken to calculate the
heat current time-dependent autocorrelation function and determine the lattice thermal
conductivity of the sample. The chapter provides a step-by-step discussion of the process
used in this phase of the research: (1) how the equilibrium crystal density was obtained
for a near zero pressure simulation, (2) how the thermal conductivity was obtained, (3)
how compositional disorder was modeled, and (4) how the models and methods were
validated against experimental and other computational results. Next the chapter presents
discussions of how each physical parameter effects the thermal conductivity
(computational box size, changes in mass, hard core radius, and interatomic strengths,
temperature, and density). The chapter concludes with a set of observations. This

chapter is a synopsis of the work which was published in reference [9].

Chapter 4 contains results on the effects of internal boundaries on the thermal
conductivity. The implementation of non-equilibrium molecular dynamics (NEMD)
simulations is discussed in the context of determining the thermal conductivity effects of

various monatomic and binary materials with internal boundaries. With this



computational strategy, a thermal bath was simulated on each side of the computational
box and the Fourier law is used to determine K. A thorough analysis of the heat

contribution on the vibrations of atoms is discussed. Effects on the density of vibrational
states due to the interface created between two types of solid LJ systems was investigated
as a function of the atomic masses and model potential parameters. The chapter opens
with a discussion of the setup and model validation, then proceeds with discussions of the
effects of the interface between two LJ solids on the lattice vibrations due to material
property changes (similar to those discussed in Chapter 3), as well as mutual orientation
of the solid lattices. Further discussions present analyses of the thermal resistance as a
function of temperature. The chapter concludes with a summary of conclusions obtained

from the research. The results presented in Chapter 4 have been published in [10].

Chapter 5 contains a study of the thermal conductivity in SiC nanostructures. Within the
past few years, extensive work has begun on the use of nanodevices in science. The
nanodevices can consist of wires, pipes, storage tanks, motors, and pumps, just to name a
few. Most of the initial work has been on the use of pure carbon nanowires and
nanotubes. Recently, SiC highly ordered structures have begun to be synthesized. The
research presented in this chapter is an expansion of the work presented in chapters 3 and
4, now specifically tailored to study SiC in various sizes of nanowires and nanotubes in
both their armchair and zigzag chiral configurations. The thermal conductivity of these
SiC nanostructures has not been experimentally tested as of today. Therefore, this work
makes predictions for SiC nanostructures that will aid the laboratory researchers in their

future measurements. This chapter discusses the processes used to determine the thermal



conductivity and determine if the nanostructure configuration was stable. The chapter
concludes with a presentation of the results and conclusions. The results of this work are

currently under review for publishing in [11].

Chapter 6 presents discussion of three computational challenges which include: (1) the
counteracting of the effects of finite computational box sizes with the use of periodic
boundary conditions (PBC), (2) software error handling used in the research, and (3) a
discussion of the use of an energy balance test using the statistical deviations of the
average atomic energies. The chapter also includes a brief overview of the software used

in the computational and data analysis portions of the research.

Chapter 7 presents a summary of the results and conclusions from the methods, processes
and results in this dissertation. Additionally, a discussion of how this research has
contributed to the general body of knowledge within the study of thermodynamic

properties within materials and nanodevices is presented.

The dissertation is supplemented by Appendix A, containing a copy of the published
papers and Appendix B, containing sample original code developed along with the work.

An extensive bibliography is presented after Appendix B.



CHAPTER 2 THEORY AND METHODS

2.1 MODELING

2.1.1 Background on Statistical Mechanics Simulations

Two simulation approaches are used in this research: Metropolis Monte Carlo (MC) and
Molecular Dynamics (MD). The MC methods simulate how atoms will act/react as they
seek thermal equilibrium using stochastically selected discrete changes of atomic
positions for each atom in the computational box. MC methods in statistical physics
model equilibrium and nonequilibrium thermodynamic systems by stochastic computer
simulations. Starting from a description of the desired physical system in terms of
modeling how atoms interact among themselves, pseudo-random numbers are used to
construct the appropriate probability with which the various generated states of the
system have to be weighted. For equilibrium systems, the probability is defined
according to either the microcanonical, canonical, iso-pressure-iso-temperature, or grand

canonical ensembles.

The purpose of MC simulations is to obtain numerically the ensemble averages of desired
system properties. In practice, the implementation is simple and can be seen as a
sequence of simulation steps that build a Markov chain. At each MC step, a single atom

is selected and then relocated to a new position. The new position is determined by



randomly selecting a direction and moving the atom a predetermined distance in that
direction. After moving the atom, the potential energy of the system is recalculated. The
next step in the process is to determine if the movement should be accepted, or the atom
returned to its previous position. The acceptance criterion depends on the statistical
mechanics ensemble that is being simulated. The process is repeated until the desired

equilibrium is reached.

MD simulations are similar to real experiments. In a laboratory experiment, a sample of
the system to be studied is first prepared. Next the researcher “connects” the sample to a
measuring instrument. Finally, the property is measured. In a MD simulation, one
follows the same approach. First, a sample is prepared by selecting a model of how the
atoms will interact between themselves. Next, the sample is placed in the instrument,
which in MD means that the classical equations of motion of the atoms (ordinary
differential equations (ODE)) need to be solved numerically. Once the coupled ODEs are
solved, the process is repeated until the system no longer changes with time
(equilibrium); then the actual measurements are taken. In MD, the measured quantities
are expressed as time averages of the modeled quantities, once the system has reached

thermal equilibrium.

In both simulation approaches, MC or MD, a computer experiment is performed, with the
purpose of calculating the average value of desired properties. Average values are to be
compared with measured properties in the laboratory. Average values with MC

stochastic-based averages in MD are based on the knowledge of the probability of how



the atoms evolve in time. If the system under study is ergodic, both types of averages

should be equal.
(Amp = Auc (1)
A system is ergodic when averages do not depend on the initial conditions.

The use of statistical mechanics allows the study of many body systems by computer
simulations. Through experimentation, the parameters within the system (T, P, V, and N)
can be measured as averages over the atoms in the system. Unfortunately, unless the
experiment is carefully controlled, the measurement itself can disturb the system as a
whole. For example, measuring the heat generated within a solid system can only be
measured from the outside of the solid. Thus, what is actually happening internal to the
solid becomes a postulate. Likewise, experimentation cannot measure instantaneous
quantities for many properties like the velocity of a given atom at a given instant.
Therefore, statistical mechanics simulations can be used to study properties at the atomic

scale that experimentation cannot.

2.1.2 Gibbs Ensembles of Statistical Mechanics

To analyze a system by simulation, a set of thermodynamic parameters must be fixed.
The more popular parameters used during the research to define ensembles include:
number of particles (N), pressure (P), temperature (T), energy (E), volume (V), or density
(p), and chemical potential (n) [12-14]. Depending upon which of these fundamental
parameters are kept constant, different types of probabilistic functions are associated to

the thermodynamic states of the system. The four basic statistical mechanics ensembles



are microcanonical, canonical, isobaric-isothermal, and grand canonical. A brief
description of how these ensembles are implemented in simulation is given in the

following paragraphs.

For this dissertation, a combination of MC and MD methods were used. The MC was
used for determining pressures and establishing base static parameters. The MD was

used for dynamical properties in both equilibrium and NEMD methods.

2.1.2.1 NVE Ensemble

The NVE ensemble (a.k.a. micro-canonical ensemble) is defined by having a constant
number of particles in a constant volume at a constant energy. This represents an isolated
system and these systems are conservative [12-13]. This is the most commonly used
ensemble in MD. Within an MD simulation, the motion is governed by the Hamilton
equations of motion:

0H o 0H N

ar, = Pi i 55 = T )
where H is the Hamiltonian of the system, which has the general form

1 [ -
H = Zé\’:l (Eplz) + U(rler' ---;rN) (3)

Here N is the number of atoms in the system, m; are the atomic masses, v; are the atomic
velocities, and U is the potential energy function which depends on the positions 7;. The

first term is the kinetic energy that depends on the linear momenta, p; = m;v;.
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The set of 6 N ODE’s, Eqn (2), are coupled through U. There are many numerical
methods used in the literature for their solution. In this research, the Verlet algorithm in
its velocity form is adopted [15]. Thus, the ODEs are transformed into finite difference
equations, such that for each coordinate, the two finite differences are:

1 Fxl(t)

x;(t + dt) = x;(t) + v;(t)At +2 At2 4)

Fy.(t)+F,. (t+dt)
;] At

Ve, (t+dt) = v, (6) + (5)

mg

where At is the time step adopted and ﬁi = —ViU. Equations (4) and (5) are iterated,
starting with time t = 0, until the quantities that depend on both ¥;(t) and ¥;(t) do not

change much with time.

A time averaged quantity A is obtained from

(A) = limttotal—)oo ﬁfotwtal/l(?(t);ﬁ(t)) dt (6)

In practice t;y4; 1s finite. The numeric implementation of this integral is
_ 1 M
(A) = mzkzlAkAt (7)
where At is the numeric time step and M is the number of time steps.

2.1.2.2 NVT Ensemble

In the NVT ensemble (a.k.a. canonical ensemble) the number of particles (N), volume

(V), and temperature (T) are constant thermodynamic parameters. This ensemble is the

11



most commonly used in MC simulations. In practice, for MC simulations, the criterion

for accepting a move is the following:

v' If the potential energy of the system, U,,,,,, after a move decreases (becomes
more negative) with respect to the potential energy prior to the move, U,;4, the

move is accepted.

v' If the potential energy of the system after the move (U,,,,) increases (becomes
less negative) than the potential energy prior to moving (U,;4), then the following

test is performed to determine if the move is accepted:

probability (old = new) = exp (_ Uolc:{‘?new) ®)
B

where kj is the Boltzmann constant and T is the temperature. If this probability is
greater than a random number picked from a uniformly distributed set O to 1, then
the move is accepted. Otherwise, the move is rejected, and the atom is returned to
its previous position, and the previous energy U, is kept for the system. It is

very important that the random number generator used gives rise to a true uniform

distribution of random numbers.

The MD simulations at constant temperature allowed the particles to move freely and
interact and then the velocities are corrected via different methods referred to as
thermostats to maintain temperature constant. Two algorithms are commonly used, the
Anderson thermostat and the Nosé-Hoover thermostat [14]. However, there is the

Hoover thermostat that is less computer processing intensive. In this research, the latter

12



was used. One starts from the definition of the temperature as an average value over
time:

T = %(ﬂvﬂmivz) 9)

where the sum is twice the total kinetic energy of the system of N atoms. This thermostat

is set in such a way that the velocities are multiplied by a factor, f, in order to reach the

desired temperature, Tyegir0q- The factor is easily defined as f = T‘ie;ﬂ. Once the

factor is defined, the velocities are multiplied by that factor. The f changes dynamically

as the MD proceeds in time. After some time, the f sets to be very close to one.

2.1.2.3 NPT Ensemble

The NPT ensemble (a.k.a.; isobaric-isothermal ensemble) is defined as having a constant
number of particles (N), constant pressure (P), and constant temperature (T). In MC
simulations, the volume of the computational cell is changed at random with some
frequency. The criterion for accepting or rejecting a particle move in the MC considers a
different probability than in equation (8) because the volume of the computational cell is
modified to maintain P constant. This is physically represented as a piston inside of a
very large volume. The piston allows exchange of energy from and out of the
computational box but does not permit atoms to escape. The piston moves in or out at a

preset frequency.

The NPT ensemble implementation with MC includes the extra change in volume (from

V14 to View ) after each of the particles is moved in the same manner as they were moved

13



in the NVT ensemble. The potential energy of the resulting computational box is
calculated and compared to the potential energy from immediately before the change. If
the potential energy, Uy, o, (View ), decreases (become more negative), the change is
accepted. If the potential energy is greater (less negative than the old potential energy

Uy1a (Vo1a)), then the following test is made:

probability(old —» new) =

1 N Vinew
exp (’QTT (Unew(Vnew) - Uold(Vold)) + P(Vnew = Vowa) = leTln (_)> (19

Vold

where P is the set pressure, N is the number of atoms, V;,,,, and V,,;; are the volumes of
the computational box before and after the move, respectively. If the resulting value of
equation (10) is greater than a random number uniformly distributed between 0 and 1,

then the move is accepted. Otherwise, the move is rejected and the volume and atomic

positions are reset back to the values in the old step.

In MD simulations, the NPT is simulated by allowing the outer boundaries of the

computational box to expand or contract based on the internal forces of the box.

2.1.2.4 uVT Ensemble

In this ensemble, (a.k.a. grand canonical ensemble) the chemical potential (pt), volume
and temperature are fixed while particles are added or removed to maintain fixed
chemical potential. This ensemble is mostly used in MC simulations and was not

implemented in this research but is included in this listing for completeness. Physically,
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this ensemble is good to simulate osmosis phenomena where particles can pass through a

membrane wall.

2.2 INTERATOMIC POTENTIALS

During the research, two model potentials were adopted. The first was the LJ potential
which modeled prototype rare gas systems where the interatomic forces contain a
repulsive and a dispersive attractive component. The LJ potential is well suited for atoms
without bonds such as the noble gasses. This model potential was used in the work
presented in Chapters 3 and 4. A second potential used in the research was a potential for
SiC introduced in refs [8, 16-18], containing terms including Coulomb interactions and

three-body terms modeling covalent bonding between Si and C atoms.

2.2.1 Lennard-Jones Potential

A prerequisite of the atomic simulations is to have reasonable interatomic potentials to
model the interactions between the atoms. A well known potential model: the LJ
potential (equation 11) was used during the first two phases of the research for solid
materials. The LJ describes dispersive classical interatomic forces at long range, and is

strongly repulsive at short range. Figure 1 depicts the LJ model potential.

The LJ potential has two parameters: o (hard core radius), which is the distance between

the atom centers when the potential equals zero, and ¢ (interatomic strength), which is the
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Figure 1: LJ Potential Model

depth of the attractive well (the lowest point of the potential in Figure 1). The LJ model

1s defined as:

u) =4¢[(5)" - ()] an

where 1 is the distance between two atoms, ¢ and € are parameters depending on the

material. In the simulations, a computational box containing N atoms at a given density

1s defined.

For a system of N atoms, the total potential energy when atoms interact through LJ is:

U=3M Y u(n;) (12)
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where u(rj) is the energy per atomic pair (equation 11), and rj is the distance between

atoms i and j.

For monatomic solids, equation 12 gives the crystal potential energy. For binary solids
(i.e. atoms of type A and atoms of type B), a combination rule for the parameters is
considered. Now atoms of type A interact with atoms of type A with LJ that have
parameters 0, and €,. Likewise, atoms of type B interact with LJ potentials that have
parameters og, and €5. The interactions between pairs AB are modeled by LJ potentials

with parameters:

(o4+0p)
Oy = AZ = €aB = VEx&B (13)

Even though each pair interaction is represented very simply, there are three different
pairs of interactions to be taken into consideration. Each pair carries different
parameters. A solid system of binary nature (e.g. a binary alloy) is then composed of

sums of three non-equivalent pair interactions for AA, BB, and AB.

2.2.2 Silicon Carbide Model Potential

This model potential includes both a two-body Coulomb interaction as well as a three-
body interaction describing the covalent bonding between Si and C atoms. This was
suggested by published work on Si grain boundaries (see section 4.1). The total potential

energy of the system is given by

2 3
V=3V () + BV (i i) (14)
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where I/}Ek) is the three-body potential, and V( ) is the two- body potential which is

determined as

Vi(Z) (rl]) Hu ZiZj e Tiji/A — zDij e Ti/§ — Wij (15)

77[] 7'1]

where H;; is the strength of the steric repulsion of 23.67291 eVA7 for Si-Si, 447.09026
eVA? for Si-C, and 471.74538 eVA” for C-C pairs, Z; is the effective charge of +1.201
electron charges for Si and -1.201 for C, D;; is the strength of the charge-dipole attraction
of 2.1636 e2A3 for Si-Si, 1.0818 e2A3 for Si-C, and zero for C-C pairs, W;; is the van der
Waals strength of zero for Si-Si and C-C, and 61.4694 eVA® for Si-C pairs, 1; j is the
exponent of the steric repulsion term of 7 for Si-Si and C-C, and 9 for Si-C interactions, 4
and & are screening lengths of 5.0 A and 3.04, and 1;; is the distance between the atoms i
and j. A cutoff radius, 7,,;, of 7.35A is used as the longest distance up to which atoms

interact for two-body interactions. The three-body potential V]E k) is determined as

Vj(ii) = R®(ryj, 1) PP (O)ux) (16)

where P®) is the bond-bending contribution and R is the bond-stretching contribution

of

R®(ry;, 1) = Bjyxexp < ) 8(r) (17)

Tij=To T]k—To

with Bj;;, being the strength of the interaction of 9.003 €V, y is a unit conversion of 1A, 1,

is 2.90 A and 8() is a step function limiting the maximum distance for three-body
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interactions at 7, between the i-j or j-k atoms. The bond bending potential as

(cos(Gﬁk)—cos(@))z

—_\2
1+Cjik(COS(®jik)—COS(@))

PO (0;4) = (18)

where ©j; is the bond angle between j-i-k atoms, 0 is 109.47°, and Cjix 1s a constant of

5.0. Even though the interior angle in a hexagon is 120°, 109.47° is the relaxed bond
angle for a Si-C-Si or C-Si-C bond [8, 18]. The alternation of Si and C atoms was such
that bonds of around 1.9 A are the dominant majority, based on the model potential [8,

19-21].

2.3 UNITS

During the research described in Chapters 3 and 4, the work was done to derive
relationships between model potential parameters and both dynamical and
thermodynamic properties. By using dimensionless units (called “reduced units”),
systems that can be modeled with the same model potential are addressed in a universal
fashion, thus permitting an intrinsic saving of time and effort. Table 1 presents a
summary of the reduced units used for systems modeled by LJ potentials. For example,
for simulating the properties of a noble gas (neon, argon, krypton, xenon), all of these
atoms are well modeled by the same LJ potential. As a result, it is not needed to repeat
calculations for all of these elements. One simulation in appropriate reduced units will
give universal results, which are valid for all noble gasses. Reduced units are obtained in

terms of the parameters of the model potential. Table 1 gives the reduced units of
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quantities used in Chapters 3 and 4. Quantities in reduced units are normally referred to
by an asterisk super index. For deriving the reduced units of binary LJ systems, the
actual units of one type of atom were selected as the reference atom and then the reduced
units of the second/third atoms were determined in terms of the reference atom. Under
these assumptions, the reduced units of the reference atom were nominally 1. The work

described in Chapter 5 was done in real/physical units.

Table 1: Summary of reduced units for the LJ potential. Here kg is the Boltzmann
constant.

Quantity Reduced Units

Energy (E)

Force (F)

Length (x)

Mass (m)

Time (t)

Velocity (V)

Particle Density (p)

Temperature (T)

Thermal Conductivity (k)
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2.4 SIMULATION DETAILS

2.4.1 Boundary Conditions

The best calculations are done with very large systems that, in effect, are nearly infinite
systems from a microscopic viewpoint. This is obviously not practical for computational
resources because a lot of computer time is required for just one calculation point.
Therefore, finite sized computational boxes were needed to be defined in Chapters 3 and
4 that would simulate actual infinite systems. To simulate infinite size samples with
finite computational sized boxes in 1, 2, or 3 dimensions, periodic boundary conditions
(PBC) were used. PBCs assume that a computational box is repeated periodically in each
of the working space dimensions out to infinity. PBC replicate the entire box by a
translation operator in each direction. For example a finite wire can be simulated as
being infinitely long with PBC along its length direction. A finite cubic box can simulate
an infinite 3D system by using PBC along the three coordinate axes. An effective
numerical method to implement PBCs is the “minimum image convention.” The
algorithm allows inclusion of the actual computational box and its first shell of periodic
images surrounding it. Furthermore, the implemented simulation will only calculate the
forces for the minimum distance between the given atom and the real or image of the
second atom. Therefore calculations will be limited to atoms (real or replicated) that are
apart by less than half of the width of the computational box as the cutoff radius. For this

research, 49% of the width of the computational box was used. Effectively, this is
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achieved by introducing a cutoff distance in the forces. Thus, any two atoms separated

by distances larger than the cutoff, do not interact.

When using PBCs, the simulation must be carefully set up such that the computational
box is small enough to permit reasonable calculational times, yet large enough to not
experience the edge effects of the computational box. For example, an edge effect would
manifest itself in the study of a collective vibration with wave length longer than the size
of the computational box. For the LJ simulations, it was determined that the
computational box needed to be a minimum of 4 or 5 times the pattern of atoms in the
unit cell of the FCC crystal. The effects were minimized by choosing a size of 5 times
the FCC unit cell (Chapters 3 and 4) and 15 atomic planes in the case of the SiC

nanostructures.

2.4.2 Cubic Computational Box

A homogeneous block of material was modeled with PBCs in all 3 directions. These
blocks were used in both MC and MD methods. Simulations with these PBCs were used

for the homogeneous mono- and binary materials described in Chapter 3.

2.4.3 Slab Computational Box

For simulations described in Chapter 4, a simulated 3-D infinite slab of material was
modeled, which had a hot thermal bath on one side and a cold bath on the other. Figure 2
shows a schematic view of the infinite slab model. The computational box has periodic

boundary conditions in the two dimensions perpendicular to the flow of energy (green
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arrows on Figure 2). The third direction is connected to two simulated thermal baths
creating a cold side and a hot side of the sample as shown in Figure 2. There are no
PBC’s in this direction. The region in between the thermal baths is divided into several
sub-regions along the x-direction (which are referred to as “slices” in the remainder of
this dissertation), as shown in Figure 3. This geometrical setup, plus the two thermal
baths, produced a temperature gradient across the short direction within the analyzed
material. Figure 3 shows an expanded view of the computational cell being modeled for
the non-equilibrium MD (NEMD) studies. Because a constant gradient of temperature

was maintained, there was a flux of energy flowing from the hot to the cold end.

e |

T Blah F
Infinite & f,fﬂ oo -5
Slab & Infinite
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Infinite /

Slab

Iinfinite
Slabk

Figure 2: Schematic view of the computational box used in the NEMD studies of
Chapter 4
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Figure 3: Expanded view of simulated system of slices for NEMD work with slabs

The thermal baths were modeled using an isothermal MD approach. Within each bath,
the temperature was calculated for the bath atoms, then corrected, as described in 2.2.1

PBC’s were not used in the direction of the thermal baths.

2.4.4 Nanostructures Computational Box

The simulation setup for the nanodevices was similar to the slab NEMD, except that a
finite nanowire or nanotube was placed between the thermal baths. The PBC’s were not
used. The conventions used were the same as those for the slab computational box as
shown in Figure 4, except PBC’s were not used in any direction. Additionally, for the
SiC nanostructures, a hard wall was used on each axial end of the nanostructure. This
hard wall was simulated by not allowing motion to the atoms in the last plane in the axial
direction at each end. The hard wall prevented the nanotubes from necking down as the

nanotube slowly grew in length.
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Figure 4: Expanded view of simulated system of slices for NEMD work with
nanostructures described in Chapter 5

For these nanostructures, it was of paramount importance to first determine the length of
the system. Systems that were too short failed to yield reliable data. On the average, the
length of the central portion needed to be about 3.5nm or longer for the SiC nanowires

and nanotubes.

2.5 STRUCTURAL AND THERMODYNAMIC QUANTITIES

Simulations must reach a state of thermal equilibrium. In equilibrium, the system has
relaxed, and is away from the initial arbitrary configuration. In this dissertation, systems
that are isolated (Chapter 3) or subjected to thermal gradients (Chapters 4 and 5) were
considered. No other external forces were present. In all cases, the systems were first
allowed to reach thermal equilibrium. For the slab and nanostructures, the thermal baths
were set, once the system had reached equilibrium. Then, in these NEMD simulations,

the infinite slab and nanostructures were further allowed to reach a steady state condition,
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such that the heat flux was constant over time. Only then, could the data collection

begin.

Several parameters were monitored to reach both thermal equilibrium and steady state
heat flow as described in the following sections. The first 4 parameters described were
found to be effective but were very computationally intensive as compared to monitoring

the temperature stabilization.

2.5.1 Pressure

There are several different (but equivalent) ways to measure the pressure of a classical N-
body system [12]. The most common among these is based on the virial equation for the

pressure. The virial equation is:
1
P = pkpT + (=3I f(ryj) - 1ij) (19)

where P is the average system pressure, p is the system density, T is the average
temperature, V is the volume, d is the dimensionality of the system, f is the force
between atoms i and j at a distance 7;; and the brackets <> indicate either an ensemble
average or a time average. The virial sum gave an indication of equilibrium in the MC

simulations when it stabilized on a given pressure with small fluctuations.

2.5.2 Positional Order Parameter

Positional order parameter, A, is a measure of the shift from the initial ‘perfectly placed’

locations in a crystalline configuration. A was determined by comparing the current
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atoms position to atoms placed in a perfect FCC lattice. When the values of A stabilized,
then the system was approaching equilibrium. For atoms in the FCC lattice, A gives a
measure of how close or far from the FCC the system is. The A is calculated as:

g = XV cos T4 (20)

where o is X, y, or z and a is the lattice constant.

2.5.3 Boltzmann’s H-function

At thermal equilibrium, the velocity distribution of the atoms in the computational box
should be Maxwellian [14]. Thus the atomic momenta p; are distributed according to the

following function:

N@) = [ NG pdr =Fewp (- 3E=) or f(v) = Fexp (- 55) @

2mkgT 2kgT

where C is a constant that ensures normalization. The Boltzmann H-function is defined

as:
Hy @) = [* fw)n(f(vy)) dvy (22)

where v, is the x component of the velocity. The H-function requires an update of the
function f (v, ) given in equation (21) as the MD simulation progresses. Because for an
isolated system equilibrium is the most probable state, and because the Maxwell
distribution of velocities f(vy) is positive and normalized, then In(f (vx)) is negative,

and as a function of time, the H-function should decrease and have a negative value.
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2.5.4 Mean Square Displacement (MSD)

The mean square displacement (MSD) is defined as the time average of the square of the
distance between the initial position 7, and the current position of each atom. When the
time averaged MSD becomes stable, then the atoms (on average) are vibrating around a
constant position and, therefore, equilibrium is reached [14]. On the other hand, the

MDS grows linearly with time, according to Einstein’s relation of diffusion.

(Ir = 7,|2) = MSD « % (23)

where D is the coefficient of self diffusion and d the dimensionality of the system. In
simulation, one deals with a finite size computational box; therefore, a particle can only
diffuse as much as the size of the box. Figure 5 is an example of a LJ system in the liquid

state. At short time intervals, the linear dependence is clear. However, after about 0.08

120 ¢

0 } }
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Time

Figure 5: MSD as a function of time for a LJ fluid

28



time units, the particles have reached the size of the box cannot go further away, and the

MSD reaches its maximum possible value.

2.5.5 Temperature Stabilization

The temperature stabilization was perhaps the best determination that thermal equilibrium
was reached. The temperature profile would either be a constant for equilibrium runs or

would develop a slope as a function of position for the non-equilibrium runs.

During the equilibrium runs, the atom velocities were scaled by a factor to reset the
temperature to the desired temperature (or profile) at periodic intervals. This trick was
implemented to be dynamic. The frequency of scaling was initially set to be a nearly
every time step. As the scaling factor changed to near 1, the frequency of the scaling was
decreased. The process of scaling was terminated when the scaling factor would be 107
away from 1. This process gave a speedup to calculations, saving well over half of the

CPU time required to reach an equilibrium or steady state condition.

2.5.6 Pair Distribution Function

The pair distribution function, g(r), is a signature of the structure in an N-body system.
The g(r) represents the probability of finding atoms at distances r away from any given

atom in the system. The following equation was used:

M Ng(rar)
Ga = M(%N)pV(r,Ar) (24)
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where N}, is the number of distances between r and r + Ar at time kAr, M is the total

number of time steps used, p is the system number density, and V (r, Ar) is the volume
between two spheres, one of radius r and the other of radius r+Ar. Here a is an atom pair
type (A-A, A-B, B-B), N(r,)is the number of atom pairs at distance r apart, Ar is the
binning width. Figure 6 is a sample plot for a liquid binary mixture at a low temperature
(T=36K) at equilibrium. The g(r) for type A to type A atoms is shown by the solid line,
A-B atoms is the short dash line, and B-B atoms is represented by the long dash line.
g(r) gave an indication of equilibrium being reached when the function stabilized with

the predicted plotted peak values.

2.5

Distance

Figure 6: Pair correlation function as a function of distance for a binary LJ system at
T=36K, p=0.382. Solid line is for A-A atoms, short dashed line is for B-B
atoms and long dashed line is for A-B atoms.
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2.6 DYNAMICAL PROPERTIES

Several dynamical functions were employed in the research as described in this section.

2.6.1 Time Dependent Correlation Function and Green-Kubo Formalism

A dynamical approach to calculate the thermal conductivity, K, is based on the Green-
Kubo (GK) formula [22-23]. The GK expression relates the two-times autocorrelation

function, C(7), of the heat current, J(7), to the thermal conductivity, K [13, 24-26]:

_ (ernio)
= =5on (25)

where the angular brackets <.> indicate an average at thermal equilibrium, f (t) is the heat

current at a given time, and f (t + 7) is the heat current at T time later. The correlation
function describes the memory decay of a system property as a function of time. For this

work, the desired thermal property was the thermal conductivity:

k= ——["C(D)dt (26)

3VkgT?

where V is the volume of the sample, kp is Boltzmann’s constant, and T is the

temperature.

The GK approach works well for both amorphous and crystalline models, as long as the
system is homogeneous. GK takes full account of anharmonic properties, but is classical

in nature.

31



Ladd, et al. [24] were the first to use the GK formalism to calculate thermal conductivity

for solids with interactions following an inverse-twelfth power law potential. Later,

Gillan extended this method for the study of j in palladium doped with hydrogen [27].
More recently, Chen et al. used this same approach to study the thermal conductivity of

pure Ar doped with Xe [28].

The proportionality between a transport coefficient, such as K, and the associated time

correlation function of a quantity coupled to the external force producing the transport
process, is a general result of linear response theory. It was first demonstrated to be
applicable to the transport of heat when Mori [29] introduced the concept of “local
thermal equilibrium.” Indeed, when a heat current is flowing through a material, the
solid is not in thermal equilibrium. However, the system is locally close to being in
thermal equilibrium. Small regions within the material may be thought to be in thermal
equilibrium, thus having the same T. It is only under that assumption that equation (26)

1s valid.

A generalization for an isotropic system is to consider the tensor K, where o and 3 are

the coordinates x, y, z.

2.6.2 Heat Flux

The heat flux (a.k.a. Ji) across the computational box was monitored as the sample
approached the steady state condition. The conduction of heat occurs through flow of

energy and can be expressed as a vector in terms of the dynamical variables 7, p of each
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atom. The heat current operator assumes the following microscopic expression [13, 24,

30-32]:

Jo(r,p) = Iiv=1 [ ]ilu(rl])] (pm) 12]¢1 [( il) Fij] Tija (27)

where o = x,y,z, the p; are the momenta of atoms with mass m;, u(ri j) are the

interatomic potential energies, and F;; are the forces between atoms i and j. Equation

(27) can be simplified to [30]:

-

J= Z?:l Ei v + Zl 1Z]¢l(vi : Fij) Fi]' (28)
where E; is the total energy of each atom, and v; is its velocity.

In the NEMD, one is interested in the flow of thermal energy along the direction that has

the applied thermostats (Figures 2, 3, and 4). Although the heat flux perpendicular to this
axis (J, and J,) is not relevant to the calculation of K, checking that the transversal

components were small ensured that the NEMD simulation was reliable. Small values

for the J;, and J, were due to the round-off errors and truncated variables in the

simulation. Therefore, when the cross term heat currents calculated were on the order of

0.1% to 5% of the longitudinal heat current, the runs were considered to be good.

2.6.3 Vibrational Spectrum from a Classical Approach

Phonons are quanta of lattice vibrations. In MD simulations, phonons are not explicitly
calculated, yet their properties can be simulated from the movements of the atoms in the

system [5]. The vibrational spectrum of the monatomic case (all atoms are of type A)
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was determined from the time dependent autocorrelation function of velocities of each
atom and then taking a Fourier transform (FT). The resulting FT is proportional to the

absorption spectrum of the system [33].

The velocity autocorrelation function, C,.;(7), and Fourier transform are:
Coer(T) = TL (B (t + 1) - 1 () (29)

Cvel(w) = %f_oooo et et (T)dT (30)

Atomic velocities in each direction were used from a time period of about 2'* steps. The
data was divided into 16 discrete sections and the C,,;(7) taken for each, in each of the
three directions. The C,,;(7) values were calculated then padded with zeros as the input
to the Fourier transform. The Fourier transform was taken on the resulting values and
then averaged and normalized over the entire range. The resulting histogram showed the

density of states of vibrational modes.

Figure 7a shows a typical result of C,,;(w) for the entire frequency range and with an
expansion of the scales in Figure 7b showing the peaks more clearly. This density of
states (DOS) changes with temperature. To study the thermal effect, runs were made at
three temperatures, 7.5K, 17.5K, and 27.5K. Table 2 shows the frequency at peak values

of DOS of vibrational states for the three temperatures, for the case of Ar, ¢ = 120K and

o = 3.4A. Values of ® were obtained by realizing that for a At=0.05%2.15 10'* sec and

21
256*At

256 points in the FFT, the Aw = was approximately 20 THz. Similar results are

reported in [5] of the phonon spectrum for solid Ar in the near infrared region.
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Figure 7: Typical DOS of vibrational states for a 50:50 solid mixture of LJ atoms at
T=0.167

Table 2: Frequency of the peaks in the vibrational spectrum for argon

Temperature | Frequency of the | Frequency of the
highest peak secondary peak

27.5K 3.3510" Hz 2.50 10" Hz

17.5K 3.3 10" Hz 2.39 10" Hz

7.5K 3.26 10" Hz 2.39 10" Hz

The results match those experimentally determined for argon in [34].

2.7 NON-EQULIBRIUM MD SIMULATIONS

In 1958, Mori [29] proposed a crucial concept for the development of the statistical

mechanics of non-equilibrium systems, systems where the temperature of the system is
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not the same in all points of space. If the macroscopic quantities vary very slowly over a
mean free path between collisions, then these same collisions quickly drive the system to
a state that is as close as possible to the thermal equilibrium state. Mori defined the
concept of a “local equilibrium.” The local equilibrium concept is simple to understand
if one thinks that the one-particle velocity distribution probability is of Maxwell type, but
the five fundamental parameters of thermodynamics -- density, p(x), local linear
momentum, p(x), and the energy depend slowly on space (x) and time. An
instantaneous state of the system deviates only slightly from local equilibrium. What
Mori did was to extend the local equilibrium concept from the one-particle distribution to
the complete N-body distribution. The reader should remember that the atomic
description of the heat current operator, equations (27) and (28), are valid for non-

equilibrium systems.

The heat flux, f , may be thought as the net amount of energy transported across unit area
in unit time when the system is under a thermal gradient, e.g., in contact with two
reservoirs at temperatures Ty, and T,,;4 (see Figures 2 and 3). Then the local
equilibrium average of f becomes proportional to the local gradient of temperature T,

following the Fourier law:

7 (_)) oca =~
J= Yhtocal _K(VT>local (31)

Viocal

The lattice thermal conductivity, k, of a solid, is then defined as the coefficient of
proportionality between the steady-state flow of heat and the temperature gradient within

the material. Fourier’s law implies that the thermal energy transfer within the material is
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a random process and thus behaves as a diffusive quantity undergoing many collisions
along its travel through the material. The underlying partial differential equation

representing this behavior is the heat conduction equation, which is a diffusion equation:

pC, %/ 1\ = KV2e(r,t) (32)

where €(r, t) is the energy above the average energy, p is the mass density of the
material, and C,, is the specific heat at constant volume. This is the continuum
representation of the process of heat conduction. In the literature, instead of (1, t), one
finds the temperature, T, but the two quantities are proportional, because, from a
microscopic approach, the solid is given an atomistic description, such that the total

energy of N atoms is,
E(r,t) = XL,[g; — (:)]18(r — 1) (33)

here 1; is the instantaneous position of every atom and 6 is the Dirac delta function. This
means that the thermal energy being conducted is now scattered by an array of vibrating

atoms.
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CHAPTER 3 THERMAL CONDUCTIVITY STUDY OF BINARY

LENNARD-JONES SYSTEMS

3.1 INTRODUCTION

The focus of this portion of the research work was to investigate the lattice thermal
conductivity of binary crystals with compositional disorder. It is known that heat is
transported better through solid materials that are pure and crystalline. Any type of
impurity, defect, doping, or internal boundary within the material increases the resistance
to heat transport, and thus, reduces the ability to conduct thermal energy. With the
growing interest in nanotechnology, the study of thermal conduction properties of
systems with reduced dimensions and super lattices has increased. In nanomaterials and
nanostructures, phenomena are highly dependent on the length scale where vibrations
between nearest neighbor atoms occur. The use of MD with Green-Kubo (GK)) approach
has shown promise as an atomistic approach to understand the thermal conductivity of
nanoscale systems. For example, there are several recent calculations on pure noble
gasses with LJ interactions in which MD simulations were the method of choice [1-5].
The present work focused on identifying ranges of disorder conditions which reduce the

lattice thermal conductivity, K, of the simulated binary solids and may warrant further

experimental work.
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The effect of disorder on thermal conductivity was investigated using several simple
models of binary LJ solids. Disorder was investigated due to differences in the LJ
parameters of hard core radius (o), interatomic bond strength (¢ ), and mass (m) of the
atoms in the system. Several relative concentrations of simulated binary mixtures were
studied as a function of selected potential parameters and analyzed across various
temperatures. The computational approach taken was to perform atomic-level computer
simulations employing a combination of isoenergy MD and NPT MC to calculate the x
within the GK approach of many body systems (see section 2.6.1). To validate the work,
results were compared to other reported results and experimentation available for

monatomic crystals of noble gases.

3.1.1 Setup

A crystalline binary mixture of 500 atoms was simulated in a cubic computational box
with periodic boundary conditions (PBC) in each direction. The LJ potential was used as
a prototype interaction between atoms. In the calculations, the cutoff radius, 7., was
taken as 49% of the width of the computational box. The compositional disorder
introduced in the reference lattice due to the guest atoms is modeled parametrically by
changes of o, €, and mass. The system is homogeneous since the A and B atoms are
distributed at random within the sample as shown in Figure 8. The composition of the
binary crystal uses atoms of type ‘“A’’ as the reference and atoms of type ‘‘B’’ as the
guest. There are three types of LJ parameters: (1) atoms of type A have LJ parameters o,

and &4; (2) atoms of type B interact through LJ potentials with parameters o and €g; (3)
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interactions between A and B atoms are modeled with LJ parameters 0,45 and g45 (see
section 2.2.1). All parameters were compared relative to the reference A atoms.
Quantities are expressed in reduced units with respect to the reference atoms’ L]
parameters (g4, €4 and my,) (See section 2.3). Densities considered correspond to solid

mixtures.

mp' @Eor @Banx “'l‘.
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Figure 8: Schematic view of a compositionally disordered binary LJ solid with a 50:50
mixture of green and red atoms

Four compositional mixture cases were considered with the following characteristics:
100% of pure A atoms, 75% of A atoms and 25%B atoms, 50% of each type, and 25% of
A atoms and 75% of B atoms. Simulations started at a reduced temperature of 0.5 from a
configuration with atoms placed in a perfect FCC lattice. Next, an initial atom type
assignment was constructed such that atoms were randomly assigned as type A or B

consistent with the desired relative concentration of the two types of atoms. Throughout
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this study, to indicate the ratio of parameters, the symbols R, R, and R,, are used for

o 3 m .
B/JA, B/gA, and B/mA, respectively.

The system was equilibrated by NPT MC, which allowed for moves of the atoms in
random directions and changes of the entire computational box volume (V). The
acceptance criterion between old (V,;4) and new (V,,,,,) configurations is given by [12]
(see equation 10 in section 2.1.2.3 . The equilibrium density of the binary system was

then obtained for several temperatures.

The NPT MC simulations were run between 1 and 3 million steps, with each step being a
single atom movement of each atom and one volume adjustment. The density and other
calculated quantities were determined as averages over the final quarter of the NPT MC

run. Therefore, the final position of the atoms within the box is consistent with this

average density. The average density is defined as N / V) irrespective of the types of

atoms. Because the computational box is finite, the value of the pressure was adjusted by
subtracting the pressure that would be exerted by a structureless infinite-sized sample

outside of the computational box [12].

For the monatomic system, the equilibrium structure was FCC for all temperatures
considered. At low temperatures, no stable amorphous phase was found. The result is
consistent with those previously reported in Ref [3]. Because the NPT MC calculation
does not include the mass in the simulation, the equilibrium p for binary samples with A
and B atoms having equal ¢ and only different ¢ is the same as the density of the

monatomic system. Therefore, the NPT MC calculations were carried out to determine p
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at different temperatures when R, # 1. Figure 9 shows the temperature behavior of the
average p for equilibrated systems at zero pressure for samples with a 50:50 relative
concentration. The curves correspond to different R,. The value of p of pure Ar reported
in Ref. [3] compares well with the results. As expected, when R, increases, the volume
must also increase, decreasing p. The standard deviation (SD) of the average density is
very low, of the order of the symbol size used in Figure 9. These small fluctuations
certainly ensure that the decrease of p with temperature illustrated in Figure 9 is indeed

realistic.
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Figure 9: Density as a function of temperature for the binary LJ system with 50:50
relative concentration. Quantities are in reduced units.
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3.1.2 Determining Thermal Conductivity

The next step was to initiate the isoenergy MD study using the output of the NPT-MC
runs. Each MD trial was run 350,000 time steps of At = 0.005 to allow the system first
to equilibrate at the desired temperature, then run for another half a million time steps to
calculate the desired heat current operator values. Next was to calculate the time
dependent autocorrelation function, C(7) , of the heat current operator (see sections 2.6.1
and 2.6.2). Each autocorrelation function run typically used 2' time steps. It was found
that for R, R, and R, near a value of one, required longer times to compute the

autocorrelation function than when disorder sets in.

The K was obtained by integrating C(7) over the range of [0, tira j], according to equation

(25) where t;rq; 1s the total time for which the autocorrelation function was calculated.

Optimally, it would be best to calculate C(t) out to an infinitely long trajectory instead of
just the finite trajectory length, but this is not possible numerically. It was observed that

C (1) could be approximated as shown in Figure 10 by an exponentially decaying cosine

function, e 't cos((t) , and fit the parameters ¢ and ¢’ to the numerical MD results.
Then the integration in equation (26) was done from the actual simulation data for

0 < 7 < ty;; and used the decaying cosine function for tf;; < 7 < oo. The value tg;; of
was set to be 1.25 times the period of the fitted cosine function. The timel / ' defines the

correlation relaxation time. In Figure 10, t¢;; was about 5.5 time units.
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Figure 10: Calculated time dependent autocorrelation function of the heat current
operator as a function of time lag

3.1.3 Computational Disorder

The NPT MC samples prepared in the manner described in previous paragraphs represent
different types of compositional disorder. For all values of R, and R,,, simulated, but
keeping R, = 1, the structure of the equilibrated sample is the FCC lattice. Thus the
system disorder is based on a random mixture of atoms A and B which are positioned on
a perfect lattice. In contrast, when size disorder was introduced with R; > 1.1, the FCC
lattice collapses. This is shown in Figure 11 (top) which depicts the pair correlation
function g(r) of a 50:50 mixture sample at T = 0.0167 with R, = 1 and R,;, = 1 and
three different R, values (1.0, 1.1 and 1.25 — solid, dashed, dotted lines, respectively)

(See section 2.5.6) in which the gaa(r), gas(r) and ggp(r) values have been depicted
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together. Note that the subscripts in g(r) indicate which type of atoms the distance was
measured for. Figure 11(bottom) shows the same case as the top with a scaling of p1/3
applied to the distance dependence. It is very clear that for R, = 1.25 (dotted line), the
compositional disorder of the 50:50 sample affects the structure very significantly and the
FCC crystal collapses into a homogeneous amorphous solid. The structure of this
amorphous solid mixture is very different from the structure found in atomic clusters

[35], where the atoms with smaller ¢ segregated and formed a subcluster surrounded by

the large ¢ atoms.

2.5 3 3.5

Figure 11: Pair distribution function of a 50:50 mixture at T=0.167: (top) g(r) vs.
interatomic distance, (bottom) same results as in (a) as function of scaled

distances by pl/ 3. Solid lines are gaa, dashed lines are ggp, and dotted lines
arc gap
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3.2 DETERMINATION OF THE LATTICE THERMAL CONDUCTIVITY

3.2.1 Calibration of Results

A sample with 500 atoms (N = 4n3 where n is the number of FCC cells on each
direction) with only one type of atom was prepared, and k was obtained for several
temperatures using the steps described in section 3.1.2. These results allowed a
validation of the method by comparison with several calculations done in [3, 24, 27, 35]
as well as with experimental results [36]. Figure 12 shows this comparison, indicating
that the results ( x) are in full agreement with previous calculations and with the
experimental results presented in Ref. [3] (0), Ref. [28] (0), Ref. [25] (A), Ref. [36] (+),
Ref. [37] (D), and follows the expected inverse power relationship as a function of

temperature.

In the GK approach, there is an implicit dependence of k on the volume of the sample.
Sample size effects were studied in Ref. [25] where the authors considered computational
box sizes containing between 108 and 4000 atoms. Those authors concluded that for Ar
in the temperature domain of 20—70 K, the size effects are irrelevant for all practical
purposes when calculating « for a pure Ar system. This is consistent with the findings for
computational cells containing 108—-2048 atoms. It was found that computational boxes
smaller than 108 atoms were too small for meaningful results. Figure 13 illustrates the
dependence of the equilibrium system density, k, and potential energy averages as a

function of the number of FCC cells (n) that build the computational box edge. The
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Figure 12: Thermal conductivity as a function of temperature ( %) compared to other
theoretical and experimental works for pure Ar at zero pressure. Inset is
expansion of region near (0,0) {Ref. [3] (0), Ref. [28] (0), Ref. [25] (A), Ref.
[36] (+), Ref. [37] (D)}

number of atoms is N = 4n3. The study further ensures that results of k with systems

containing roughly 500 atoms are reliable.

3.2.2 Thermal conductivity of binary mixtures as a function of the compositional disorder

Based on the continued good agreement with both the previously discussed comparisons,
a system size of 500 atoms was selected for all results reported in this work. The
following compositional mixtures were considered: R, of 1.0, 1.1, 1.25, 1.5 and 2.0; R,
of 1.0, 1.25 and 1.5; and R,,, of 1.0, 1.6, 2.1 and 3.3; at the following different relative
concentrations of A and B atoms ranging 100% A atoms, 75% A with 25% B, 50% A

with 50% B, and 25% A with 75% B.
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Figure 13: Finite size effects due to computational box size for Ar systems at T=0.167

For samples with relative concentrations of 50:50, at a temperature of T = 0.167, Figure
14 illustrates the lattice k as a function of one parameter ratio (R, R,, or R,,), while the
other two parameter ratios are kept constant. Figure 14 (a) and (b) show a dramatic
decrease of k with increasing R,;. In fact, Figure 14(a) shows that k decreases by a factor
of over 6 between R, = 1 and R, = 1.1 for a constant mass ratio and various values of
R,. Likewise, Figure 14(b) shows a dramatic decrease in k between R, = 1 and R, =
1.1 for different mass ratios. In this case again, k decreases by factors up to 6 depending

upon R,,,. While Figure 14(b) shows a substantial decrease in K between R, = 1 and

R, = 1.1, the two atom types would have to be the same to have R, = 1 and R,, = 1,
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which is an unrealistic case. On the contrary, Figure 14(c) shows that, for R, = 1 and

R,, = 1, K increases slightly as a function of R, and decreases as R, increases. This

increase lies within the SDs of the « results and might not be a real effect.

The conclusion of the parameter analysis is that at T=0.167, both radius disorder and

mass disorder impose a strong depletion of K. Even a slight difference in atomic radius

of only 10% has a major effect on decreasing k, while the mass ratio has a more gradual

depleting effect on k. The mass disorder leaves the crystalline symmetry intact. In

comparison, the radius disorder allows the solid to acquire incipient amorphous
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Figure 14: Thermal conductivity as a function of parameter ratios for a sample at
T=0.167 and p=1.035; (a) R,, = 1, R, = 1.0(a), 1.25(°), 1.5 (O), (b)
R, =1,R,, =1.0(0),1.6(0),2.1(A),3.3(c);and (¢) R,, = 1, R, =

1.0 (), 1.1(0), 1.25(a), 2.0(°)
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characteristics as evidenced by the pair correlation function signature illustrated in Figure
11. In fact, for the large difference in atomic radii of 25%, Figure 11 indicates that the

FCC symmetry is already lost and the solid is no longer a crystal.

3.2.3 Temperature Effects on the Thermal Conductivity

For monatomic crystalline materials, the expected theoretical dependence of the thermal
conductivity with temperature follows an inverse power law [6-7]. While previous MD
simulations [28] reported k exhibiting this expected behavior, the results show a
departure for any of the proposed samples with disorder. Figure 15 shows the k behavior
for various values of R, of 1.0, 1.25 and 1.5 and R,,, = 1 for a 50:50 concentration. In
Figure 15 the inverse temperature dependence is plotted with a dotted line to guide the
eye. Figure 15(a) depicts the temperature dependence for R, = 1 with the square, circle
and triangle symbols identifying the three values of R, (1.0 (0), 1.25 (©), and 1.5 (A)),
respectively. SDs are shown for the R, = 1.25 case and are representative of the other
cases. Figure 15(b) gives results for systems with R, = 1.1 as solid lines corresponding
to R, = 1.0, 1.25, and 1.5 (top, middle and bottom) and dashed lines for R, = 1.25. SDs
are about 1-2 units of « for all results. It is apparent from these plots that the ordered
crystal with no core radius disorder follows the 1/T relationship very closely (Figure
15(a)), while any of the compositionally disordered systems (Figure 15(b)) present a

nearly constant K as a function of temperature. This degrading of the thermal conduction

is similar to that predicted for covalent binary crystals with defects [38] where k was

found to be essentially temperature independent. In the study, it should be remembered
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that compositional disorder in which the atomic radii differ by only 10% produces a
dramatic reduction of k to a minimum value, which keeps fairly constant for the
temperatures investigated. In summary, it should be emphasized that the radii disorder
has an extremely strong effect to reduce «, bringing its value to be a minimum for all
calculations with widely varying material parameters.
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Figure 15: Thermal conductivity as a function of temperature for parameter ratios: (a)
R, =1.0,R, = 1.0 (O),1.25(°),1.5(A) , and (b) R, = 1.1 (solid) R, =
1.25 for R, = 1.0 (top), 1.25(middle), 1.5(bottom)
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3.2.4 Concentration Effects

The last part of this study pertains to changes in the relative concentrations of the A and
B atoms. Relative concentrations of A:B atoms of 25:75 and 75:25 were analyzed in
addition to the 100% type A and the 50:50 mixture cases discussed above. As the
concentration changes, when the disorder is on the radii, there is a significant effect on

the equilibrium density, p, as shown in Figure 16 for the case of a 50:50 mixture.

1.0

o 041 02 03 04 05
Temperature

Figure 16: Density as a function of temperature for 50:50 relative concentrations in the
mixture. Filled symbols for R, = 1.1 and open symbols for R, = 1.25. The
circle, triangle and square are for R, = 1.0, 1.25 and 1.5, respectively. R,= R,
= R,, =1 is shown as crosses.

In analyzing mixtures with the 25:75, 50:50 and 75:25 relative concentrations over the
range of T, R, R, and R,,, the behavior of k was very similar to that of the 50:50 case.

Table 3 summarizes all results of «k for the various disorder cases at five temperatures.
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Once again, for these relative concentrations studied, the maximum decrease in K is

through R,;.

Table 3: Lattice thermal conductivity for mixtures with various relative concentrations at
temperatures 0.042, 0.083, 0.167, 0.333, and 0.5 in reduced units

Relative
Concentration

100% A
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Additionally, as is shown in Figure 14(c) for the 50:50 relative concentrations, the effect

of increasing R, while R, and R,, remain constant, produced an apparent slight increase
in K. This effect is also present for the other relative concentrations as reported in Table

4 at T=0.042, 0.083, 0.167, 0.333 and 0.500 (top to bottom in each table entry). For any

parameter ratio # 1, the other two parameter ratios = 1. Values are in reduced units.

3.2.5 Compositional Disorder Effect on the Heat Current Autocorrelation Function Time

To compute the lattice thermal conductivity, the autocorrelation function of the heat
current operator C (t) was approximated by an exponentially decaying cosine function
(see section 2.6.1). In Figure 17, the vertical axis on both plots depicts the system
relaxation time and is plotted as a function of R,; in Figure 17(a) and R,,, in Figure 17(b).
This figure clearly illustrated that the relaxation time is directly related to the core radius
and mass disorder present in the sample. The change in relaxation time due to the R,

disorder is small as evidenced by the three curves in Figure 17(a) and (b).

3.3 SUMMARY AND CONCLUSIONS

Throughout this phase of the research work, it has been shown that studying the effects of
compositional disorder and temperature on the thermal conductivity of binary mixtures
can be demonstrated in computer-simulated experiments. The work was performed on a
personal computer with a single Pentium 4 processor (3.2 GHz) and each NPT MC and
MD run consumed about 9 and 4 hr of processing time, respectively, per data point,

making the work reasonable to accomplish.
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Figure 17: Relaxation time as a function of parameter ratios for the 50:50 sample for
T=0.167, p=1.035, (a) R, = 1.0 (O), 1.25(°), 1.5(A), (b) on each plot.

The results of this work show that compositional disorder at the nanoscale in crystalline
and amorphous binary mixtures decrease the lattice thermal conductivity in a dramatic
fashion. Findings in this work are important for tailoring the synthesis of new materials
with low heat conduction characteristics. The relative properties of LJ solid mixtures are

summarized below in order of importance for degrading the lattice thermal conductivity:

(1) Core radius. Atoms should have different core radius. Even a 10% difference brings
the lattice thermal conductivity to a minimum constant value and suppresses the inverse

power law dependence with temperature. The reason for the dramatic degradation of the
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heat conduction is the additional phonon scattering imposed at the nanoscale by atoms

that are displaced from the crystal structure yielding an amorphous solid.

(2) Mass. Atoms should have different masses. Differences of 60% in mass decrease the

thermal conductivity by about half at any temperature below the melting point.

(3) Interatomic interaction strength. Atoms should have almost equal values. With a

50% difference in strength, thermal conductivity can be increased up to 25%, which is

not a desired outcome.

(4) Temperature. Temperature is a key factor for any application searching to deplete
heat conduction due to atomic vibrations. This work was done for reduced temperatures
of up to 0.5, which are below the melting points of the pure LJ crystals studied. In this
temperature range, when core radius disorder exists, the lattice thermal conductivity is
essentially temperature independent and markedly degraded due to the enhanced phonon

scattering induced by atoms with different radii randomly located on an FCC crystal.

(5) Composition relative concentration. Relative concentration of the two components in

the crystal appears to have only a minor effect on the thermal conductivity.
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CHAPTER 4 DETERMINATION OF INTERFACE EFFECTS ON

THERMAL CONDUCTIVITY

4.1 BACKGROUND

Large scale integrated circuitry, components, and sensors rely on internal solid-solid
interfaces for controlling the operation of the device and on efficient thermal energy
management for dissipating heat generated inside the device. Since the discovery of a
thermal boundary resistance at cryogenic solid-liquid interfaces by Kapitza in 1938 [39],
researchers have investigated the cause of the thermal resistance and quantify its
magnitude as a function of material properties, temperature, and pressure. The thermal

boundary resistance internal to a system is referred to as the Kapitza resistance ({1 ).

In solids, the thermal boundary resistance plays an important role in determining heat
flow, both in cryogenic and room-temperature applications. Two approaches have been
used successfully in the past to model thermal transport at a solid-solid interface at low
temperatures: the acoustic mismatch model (AMM) and the diffuse mismatch model
(DMM) [40,41]. The AMM is more applicable at extremely low temperatures, while the
DMM works better at slightly higher temperatures. However, at intermediate cryogenic

temperatures and above, the experimental Q is larger than that predicted by AMM and
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DMM. At an interface, phonon scattering has a large effect on the heat transport across

the interface, unfortunately the AMM and DMM do not take this into account.

Several researchers have studied with computational-theory approaches the boundary
resistance at flat interfaces [42], diffuse scattering of the vibrational states at each side of
the interface [41,43], structural ordering on each side of an interface [41-42,44-47], and
effect of mass changes on each side of the interface on the eventual overlapping of
vibrational states and energy transport [48,49]. NEMD techniques with LJ interactions
has been applied to study thermal properties in non-homogeneous systems such as grain
boundaries [1, 50-53] and for simulating the directional heat flow perpendicular to
infinite thin films in one-, two-, or three-dimensional LJ systems [1,32,42-44,48-55].
Additionally, researchers have used NEMD to determine the Kapitza resistance at grain
boundaries [42,43,53,54,56]. Other studies [43,53,54,57,58] have proposed that the
Kapitza effect is due to reflection of the harmonic phonons at the interface or grain
boundary, or to inelastic effects and anharmonicities. Additionally, a few researchers
have investigated a silicon grain boundary simulated with the Stillinger-Weber potential

[43,53], and a combination of two FCC lattices, one LJ and one Morse potential [54].

Reference [57] is a study of the thermal boundary resistance of a LJ system with
geometry similar to the one presented in this paper; however, the acoustic mismatch
model is used instead of exploiting directly the NEMD computer experiment results. The
NEMD was used in [58] to study the temperature jump at a liquid-solid boundary. Based

on these few studies, it is apparent that there is no general understanding of the Kapitza
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resistance as a function of the atomic parameters entering in the modeling of the

materials.

The research presented in this chapter addresses the effects of an interface on the atomic
vibrations in LJ solids, without or with a heat current flowing through the solid sample.
Selection of the type of materials could limit, encourage, or restrict the flow of thermal
energy through a solid-solid interface. The study expands the work in [9] by focusing on
the thermal boundary resistance occurring at the interface between two LJ solids as a

function of the ratio of atomic parameters of these solids.

4.2 MODELING

4.2.1 Setup

MD simulations were performed using a square-prism computational box elongated along
the X axis with periodic boundary conditions in the two perpendicular directions (Y and
Z) (see 2.4.1 and Figure 2). The system contained 2000 atoms placed in an FCC lattice
of size 5x5x20 unit cells in a [100] orientation with a density of p=1.07 at T =0.12, and
p=1.04 at T =0.33. The system was divided in half with reference atoms (type A) on
the ‘hot’ (or positive X) side and atoms of either A or B type on the ‘cold’ side. Atoms
were allowed to interact using the LJ potential with the parameters discussed in the

previous chapter. Figure 18 is a schematic representation of the simulated interface.

When the core radius for type B atoms was different than the core radius of the type A

atoms, the FCC lattice contained a different number of XY-planes and XZ-planes on each
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Figure 18: Schematic representation of the system used to simulate the interface between
two LJ solids

side of the interface. This was done to permit the use of the PBC. The time step (in
reduced time) in the MD runs was At = 0.005. A radial cutoff of 3.8 g, was adopted.
The following values of the parameters ratios are considered: 1) for parameter €, R,

1.0, 1.25, 1.5, and 2.0; ii) for parameter 6, R, = 1.0, 1.1, and 1.2; iii) for mass, R,,, = 1.0,

1.6, 2.1, and 3.3.

To simulate a thermal current flowing from the hot to the cold ends, a non-equilibrium
MD (NEMD) was used. At each end of the system, a thermal bath containing about 200
atoms was simulated as described in section 2.4.3. Atoms in each thermal bath move
according to a constant temperature MD, with their velocities scaled at every time step to
ensure the temperature desired for that bath. Atoms in between these two thermal bath
regions move with iso-energy MD and data is collected only on these central atoms
(typically 1600 atoms) (See Figure 3). When the NEMD runs were initiated, the system
had to be run for enough time steps to reach a steady state condition. The steady state
condition was known when the thermal energy current was constant along the length of

the computational box in the direction of the energy flow. This NEMD arrangement has
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been used by other authors in calculations of the lattice thermal conductivity [1,32,49-

54,57,58].

Steady state data of all studied properties are averaged over each slice of approximately
100 atoms in equal sized regions perpendicular to the computational box length (see
Figure 3). As aresult of the different MD methods between the atoms in the thermostat
and the atoms in the active central region where data are taken, a few planes of atoms
adjacent to the thermal baths were not considered for reporting of results. A similar

consideration was adopted by other researchers [1,32,51,53].

4.2.2 Model Validation

In the NEMD, a temperature gradient VT sets in due to the flow of energy across the
computational box. With this geometrical setup, the heat current components
perpendicular to the energy flow should be negligible. Indeed, that is the case in the
calculations. The temperature difference between the two thermal baths was chosen to be
large with respect to the temperature fluctuations, but small enough to reproduce
attainable laboratory situations. In these runs, the cold bath temperature was about 60%
of the hot bath temperature. This choice is similar to the 65% - 70% employed in other

works [1,51,55].

Figure 19 shows the thermal conductivity as a function of temperature for one-component
systems with different values of the parameters €, ¢ and mass. Six different masses and

LJ parameters were considered: Figure 19a: R,= 0.7 (@), 0.8 (A), 0.9 (m), 1.25 (D), 1.5
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(A), 2.0 (o). Stars and standard deviations are from [9]. Solid diamonds pertain to the
reference LJ system and dotted line (in a,b,c) is the best fit to these values. Crosses and
standard deviation are from [9].); Figure 19b: R,= 0.7 (e), 0.8 (A), 0.9 (m), 1.1 (D), 1.2
(A), 1.25 (0); Figure 19c: R,,= 0.3 (9),0.5(A), 0.7 (m), 1.6 (D), 2.1 (A), 3.3 (0). Inall
cases, the dotted line corresponds to the reference system R.= R,= R,,, =1. Standard
deviations are shown on the figure; however, their values of about 3% to 7% of the

average value are within the size of the symbols.
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Temperature

Figure 19: Thermal conductivity as a function of temperature. (a) R.=0.7 (®), 0.8 (A),
0.9 (m), 1.25 (O), 1.5 (A), 2.0 (©), Stars and standard deviations are from [9].
Solid diamonds pertain to the reference LJ system and dotted line (in a,b,c) is
the best fit to these values. Crosses and standard deviation are from [9].); (b):
R;=0.7(e),0.8(A),0.9 (m), 1.1 (0), 1.2 (A), 1.25 (0); (c) R;y= 0.3 (@), 0.5
(A),0.7 (m), 1.6 (D), 2.1 (A), 3.3 (0).
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The parameter dependence of k compares well with the previous work within the GK
approach described in Chapter 3 and in [9]. The expected inverse temperature
relationship for crystalline systems is clearly shown by the log-log plot of Figure 19 and
can be used to interpolate between different LJ systems, as suggested by other authors for

other potentials [42,43,53,54,57,58]. Based on the results, such interpolation yields a

power law relationship for each varied parameter (o, €, and mass): R;?, RS/ 2, and
-1/2
R, .

4.2.3 Effect of the elongated computational box on the lattice vibrations

The velocity autocorrelation function for N atoms defined in equation (29) (section 2.6.3)

is calculated better after normalization, such that:

YN (7 (©)+5;(0))
YN L (7(0)+7;(0))

Coel (t) = (34)

where v, are the atom velocities and t is a time lag. Typically 500,000 At time steps
were required to reach equilibrium followed by 20,000At for data collection. The data
was subdivided into short sequential time segments and then an autocorrelation function
was performed on each segment. The final C,,z;(t) is then an average over several
functions. A Fourier transform was made of the result according to equation (30) and the
density of vibrational states (DOS) was obtained for prismatic computational boxes. The
resulting DOS compared very well with published results in which the computational box
was cubic [59,60]. Therefore, it was concluded that an elongated shape of the

computational box does not affect significantly the distribution of vibrational frequencies.
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4.3 EFFECTS ON THERMAL CONDUCTIVITY

4.3.1 Vibrational Modes of Monatomic Systems

A sample was established using the computational box shown in Figure 18 for LJ atoms
withR, = R, = R,, = 1.0,p=1.07at T=0.12, and also at p = 1.04, T = 0.33. This was
referred to as the reference system. MD runs were made allowing the system to reach
thermal equilibrium first, then the vibrational mode DOS was determined. In subsequent
runs, all atoms in the system were changed to have a different LJ parameter and the DOS
was determined for each monatomic system. Each of the DOS obtained was normalized
over the entire frequency spectrum and are shown in Figure 20. Figure 20 shows the
DOS for each LJ parameter for each of the two temperatures. Figure 20 a-c are for

T =0.12 and Figures 20 d-f are for T = 0.33. In each plot, the solid line is the reference
system. Figure 20 a and d show the DOS for R, = 1.25 (e), 1.5 (D), and 2.0 (A) with

R, =R,,= 1. Figure 20 b and e show the DOS for R, = 1.1 (®) and 1.2 (o) with and

R, =R,, = 1. Figure 20 c and f show the DOS for R,,, = 1.6 (®), 2.1 (0), and 3.3 (A) with

R.=R,=1.

It can be seen that there is a strong difference between the DOS for the reference system
and the DOS for monatomic systems with different atomic parameters. It is to be noted
that the DOS is shifted towards smaller frequencies as the mass is increased. On the
other hand, increases in €, and to a lesser extent o, with respect to the reference system,

tend to add high frequency vibrational modes to the DOS.
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Figure 20: Normalized density of states (DOS) of one-component systems in thermal
equilibrium for various LJ parameters. (a-c) are for T =0.12 and (d-f) are for
T =0.33. The solid line is for R, = R, = R,,, = 1 in all plots. In (a) and (d)
the DOS for R, = 1.25 (e), 1.5 (0), and 2.0 (A) with R, = R,,= 1. In (b) and
(e) the DOS for R, =1.1 (e)and 1.2 (o) with and R, =R,,, = 1. In(c) and
(f) show the DOS for R,,, = 1.6 (@), 2.1 (0), and 3.3 (A) with R, = R, = 1.

4.3.2 Vibrational Modes of Binary Systems across the Interface of Two LJ Systems in

Equilibrium

It is known that any disorder or change in a material property will affect the ability of a
material to transport heat, especially that of an interface. It was unknown as to how the
vibrational modes of a system would change with the presence of an interface. To study
this, a sample was established with reference (type A) atoms on the ‘hot’ end and atoms
with one of the three studied LJ parameters changed (type B) on the ‘cold’ end. NEMD

runs were made using the method described in the previous section to determine the
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vibrational mode DOS for p = 1.07 at T = 0.12, and also with p=1.04 at T = 0.33.
Subsequent runs were made varying the type B through the range of values previously
studied. Figure 21 shows the difference between the reference system of R, = R, =
R,, = 1 which is shown as the solid line on Figure 20 and the DOS obtained for each

two-component system at each of the two temperatures.
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Figure 21: Normalized density of states (DOS) of binary systems in thermal equilibrium
relative to the DOS of the one-component reference system for various LJ
parameters. (a-c) are for T =0.12 and (d-f) are for T =0.33. In (a) and (d)
the DOS for R, = 1.25 (e), 1.5 (0), and 2.0 (A) with R, = R,,= 1. In (b) and
(e) the DOS for R, = 1.1 (e)and 1.2 (o) with and R, =R,,, = 1. In(c) and
(f) show the DOS for R,,, = 1.6 (®), 2.1 (0), and 3.3 (A) with R, =R, = 1.

For interfaces due to changes in &g, Figure 21 a and d show an increase in the DOS of

vibrational modes at high frequencies (60-80) and a decrease at lower frequencies around
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20-40, both of which persist at T = 0.33. The effect is about the same for all R, values.
Interfaces due to different gz shown in Figure 21 b and e display DOS changes similar to
the changes in €5, but now in different frequency regions. On the other hand, as shown
in Figure 21 c and f, the effect of mass changes produce a depletion of modes in the DOS
in the range 30 < w < 50 and an increase of mode density in the lower frequency region
10 < w < 30. The mass effect is more acute the larger R,,, becomes, in agreement with
previous findings [49]. In all cases, the effect of the interface is identified by DOS

changes above and below a characteristic frequency of w, = 30.

4.3.3 Vibrational Mode Changes between Equilibrium and non-Equilibrium Systems with

a Boundary Interface

It was investigated as to whether the presence of a heat current affects the vibrational
mode DOS. To study this, the reference system was again composed of only reference
atoms with R, = R, = R,,, = 1.0, with p=1.07 at T=0.12, and also with p=1.04 at T =
0.33. For each temperature, one run of the system with an interface was done in
equilibrium and its DOS was collected. A second run of the same system was done with
NEMD, such that an imposed thermal gradient is established across the system. After the
systems were allowed to reach either equilibrium or a steady state, data was collected,
and the normalized vibrational mode DOS was calculated. The two results are shown on

Figure 22.
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Figure 22 clearly shows that at the higher temperature, the DOS displays marginal
changes when the system is in NE. However, at the lower temperature, the DOS of the

NE system is slightly enhanced around w = 30.
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Figure 22: Normalized vibrational modes DOS for non-equilibrium (dashed line) and
equilibrium (solid line) monatomic system at (a) p=1.07, T=0.12, and (b) p
=1.04, T=0.33. Error bars identify the average SD of the correlation
functions.

The work was continued to investigate how the normalized vibrational mode DOS
changes for the two-component system with a boundary in Figure 18, and when a thermal
current is imposed with thermal baths. Figure 23 shows the differences between the
normalized NE DOS and the equilibrium DOS. Figure 23 a-c are for T = 0.12 and Figure

23s d-fare for T = 0.33. Figure 23s a and d show the DOS for R, = 1.25 (e), 1.5 (0), and
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2.0 (A) with R; = R,,= 1. Figure 23 b and e show the DOS for R, = 1.1 (e) and 1.2 (0)

with R, = R,,, = 1. Figure 23 c and f show the DOS for R,,, = 1.6 (®), 2.1 (O), and 3.3 (A)

with R, =R, = 1.
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Figure 23: Non-equilibrium DOS of binary systems relative to their DOS in thermal
equilibrium for various LJ parameters. (a-c) are for T = 0.12 and (d-f) are for
T =0.33. In (a) and (d) the DOS for R, = 1.25 (®), 1.5 (0), and 2.0 (A) with
R,;=R,=1. In (b) and (e) the DOS for R, =1.1 (®) and 1.2 (o) with R, =
R,, = 1. In (c) and (f) show the DOS for R,,, = 1.6 (®), 2.1 (0), and 3.3 (A)
with R, =R, = 1.

In systems with € and mass changes and at T = 0.12, there is a modest increase of the
DOS at frequencies around 30 and a small decrease around 50-60 due to the heat flow.
At T =0.33, the DOS is enhanced in a broader range at the low frequencies and depleted

at higher frequencies for all binary systems involving atoms with two values of the
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parameter € or the mass. However, two-component systems with different ¢ (Figure 23b)
display an enhancement of the NE DOS at higher frequencies and depletion at low

frequencies. This effect tends to disappear at higher temperatures.

Summarizing, at T = 0.12, the overall effect of a 2-atom type interface in equilibrium is
to modestly enhance the DOS at frequencies above w,, and deplete it below this
characteristic frequency for R, R, > 1, whereas, the opposite behavior is demonstrated
for R,, > 1. When these two-component systems are not in thermal equilibrium, at

T =0.12, the trend is an enhancement of the DOS below the w, region for systems with
different € or mass. This is indicative that the heat flow enhances scattering of the
transverse frequency phonons. These trends are smeared out at a higher temperature. On
the other hand, interfaces built with atoms that have different ¢ values display a reverse
behavior where the DOS is depleted of modes at frequencies below w, and enhanced

above it.

4.4 INTERFACE EFFECTS ON THERMAL CONDUCTIVITY

4.4.1 Thermal Boundary Resistance

It is well known that solid-solid and liquid-solid interfaces act as a resistance to the heat
flow perpendicular to them and give rise to the Kapitza resistance ({g). This effect is
measurable because of the discontinuity in the temperature profile occurring at the
interface. Such temperature discontinuity is quite distinct across an interface built with

two types of atoms and is detectable even for 1-D systems where atoms are linked
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harmonically [42]. The calculation focuses on () of binary LJ solid-solid interfaces as a
function of &,  and atomic mass. Figure 24 shows a typical temperature profile at
T=0.3 (R, =3.3, R, = R, = 1 with p =1.04) where the temperature discontinuity at the
interface ATipterfqce 18 Clearly seen. The Kapitza length (discussed in the following

section) is shown on Figure 24 as well.

Temperature

X Position

Figure 24: Temperature profile of the LJ system across the interface at T = 0.3 with R,,
=3.3, R, =R, =1and p=1.04. Horizontal lines show the Kapitza length
calculated for hot side, interface, and cold side (top, middle, bottom),
respectively). Temperature standard deviation is shown as vertical error bars.

The thermal resistance, (g, is calculated as [53]:

1 vT
Qg Tinterface

(35)
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where K is the bulk thermal conductivity. However, since it is known the k at each side
of the solid-solid interface, the atomistic approach for calculating Q) is to use the actual
Kk and VT values for the LJ crystal at each side of the interface. In fact, a thermal current
sees the interface as two resistances in series because the heat current must be the same at

both sides of the interface if no additional energy sources or sinks exist. It follows that:

1 1
Qg = ATinterfotce (— + ) (36)

KaAVT 4 kgVTp

where k, p and VT, p are the thermal conductivity and temperature gradient of the LJ
systems A and B that meet at the interface. Figure 25 shows the dependence of the
temperature jump ATjpterfqce at the interface as a ratio to the average temperature at the
interface and the resulting Qx of the two-component systems for various temperatures

and parameter ratios.

It is observed that as the parameter ratio moves away from the 1:1 ratio (no interface) the
temperature discontinuity and the (1 become more pronounced. Runs were made to
compare the thermal resistance for each of the three parameter ratios. Temperate drops
are plotted relative to the temperature difference between the hot and cold thermal baths.
Additionally, as the average temperature in the system is increased, the interface
temperature discontinuity and the Kapitza resistance are less pronounced. It can also be
seen that the (1 increases at about the same rate with changes of R, R;,and R,,. In
general, the building up of this thermal resistance is assigned to an increased reflectance

of phonons by the interface [41,57].
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Figure 25: Temperature drop ratio at the interface (left scale) and Kapitza resistance
(right scale) as a function system parameters at various temperatures of : 0.10
(4),0.125 (m), 0.165 (A), 0.33 (O), 0.425 (0), and 0.5 (0).

As discussed above, the equilibrium MD simulation shows that the interface increases the
DOS of vibrational states in the region of high frequencies for two-component systems
with different € or o, but for systems with different masses the increase occurs at lower
frequencies. Based on these results, it immediately follows that two-component systems
with different € or ¢ should display larger Q than the case with different masses at the
same temperature. Illustrated in Figure 25 is a confirmation of this result. However, in
the non-equilibrium situation, when the system reaches the steady state, the DOS of
vibrational states is significantly populated in the region of w.. For systems with
different € and mass, as shown in Figure 25, is based on this result. It is then expected

that the ATjpterfqce TOr two-component systems with different ¢ and mass would be larger
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than for systems with different ¢ as is shown in Figure 25. Increasing the temperature
should reduce the Kapitza resistance and the temperature jump at the interface should be

decreased. The results confirm both effects.

4.4.2 Interface Width

An additional characteristic quantity of interfaces is the Kapitza length

L= Ky (37)

associated to the effective thickness of material involved in the interface [39,58]. It has
been theorized [58] that when k is large, [, will be large and the effect may be observed,
but no data were provided for supporting the analysis. In the example of Figure 24,
values of k and Q are 32 and 0.3, respectively, yielding a [, of about 9. This example
was studied for several lengths of the computational prism to determine their eventual
effect on [,,. The Qg calculated for prism-shape computational boxes with lengths of
42.3,73.7, 105, and 136.4, were all within the standard deviation of 11.4%, indicating
that this property is basically insensitive to the length of the computational prism and the

temperature jump at the interface is observed in all cases. From the results summarized

in Figure 23 and Figure 25, it is predicted that [,. varies as 1/T2'

4.4.3 Crystal Orientation at the Interface

The effect on k and (), due to changes in the orientation of the crystals on each side of

the interface, was also studied. First, it was determined that one-component systems did
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not give rise to a discontinuity in the temperature at the interface when the interface was
created by rotating atoms in the ‘cold’ half of the box to Miller Indices [110], [111],
[120], [121], [122], while keeping atoms in the reference (or ‘hot’) half of the box at
[100]. Second, the k for these rotated systems is within the standard deviation of values
reported in Figure 23. Third, in the case of two-component systems in which the A
system is in the [100] orientation and the B system is rotated and its parameters change,
the results for the temperature jump and the (1 are within 3% to 9% of values reported in
Figure 25. Based on these calculations, it is concluded that the relative orientation of the

crystal planes meeting at the interface do not affect the thermal properties.

4.5 INTERFACE BOUNDARY EFFECTS ON THERMAL CONDUCTIVITY

CONCLUSIONS

In this work it has been quantitatively demonstrated that the influence of the interface
between two LJ solid systems on the density of vibrational states as a function of the
atomic mass and LJ parameters. A characteristic frequency of w, = 30 (in reduced
units) is predicted below which the DOS is depleted and enhanced above it for R, and
R, > 1, while the opposite behavior is demonstrated for R,,,> 1. However, when a
thermal energy flow is established, the DOS is enhanced below, w. and depleted above it
for the cases R,, and R,,, > 1. This is indicative that the heat flow enhances scattering of
the transverse frequency phonons only in these two cases. At higher temperatures, these

effects are less visible.
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The NEMD computer experiment of two-component LJ systems sharing an interface
leads to very clear observations that allow for identification of the thermal boundary
resistance and its dependence on the LJ parameters and atomic mass. Both the Kapitza
resistance and the temperature discontinuity at the interface increase as the parameter
ratio between properties of the targeted material to the reference material moves away
from the value of one. Additionally, both the Kapitza resistance and the interface

temperature discontinuity increase with decreasing temperature. It is predicted that the
Kapitza length increases as 1 /T » as temperature is decreased and is independent of the

size of the computational box. The relationships contained in this dissertation and
reference [ 10] may serve as reference for scientists and engineers in search of novel

combination of materials in problems related to thermal management at the nanoscale.

The interface is responsible for a depletion of modes at low frequency and an
enhancement at higher frequencies when the potential parameters are increased relative to
the reference solid. Opposite trends are observed when the atomic mass increases. When
a heat current is established across the interface, the density of vibrational states at low
frequency is increased and the temperature profile across the binary sample displays a
discontinuity at the interface, which is more pronounced as the material parameters
become more dissimilar. The thermal boundary resistance (Kapitza resistance) increases
as the difference between the two material properties increase and decrease with
increasing temperature. Plots of the thermal conductivity as a function of temperature for
solids with various parameters are provided, all of them showing the expected T 1

behavior. All of the calculations of x,;, will be done at near room temperature (300 K).
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CHAPTER S DETERMINATION OF THERMAL
CONDUCTIVITY IN NANOWIRES, NANOTUBES, AND

NANOFILAMENTS

5.1 BACKGROUND

Nanostructures began to emerge in the mid-1980s as building blocks useful to assemble
larger materials and design special macromolecular constructs with novel mechanical and
thermal characteristics. Today, nanodevices are fundamental for achieving improved
mechanical, thermal, and electronic controls. Among other properties, the thermal
conductivity of the device may be critical to control functioning and the stability of the
macro-system to perform efficiently [61]. One postulated application of nanodevices is
to act as heat conduits/sinks or refrigeration units for computer circuitry [62]. An
important question is to whether these nanodevices are good or bad heat conductors and
at the same time they remain stable at operational temperatures. Silicon carbide (SiC) is
a broadly used material in nanoelectronics and has proven to sustain a variety of stable
nanostructures. SiC nanotubes and nanowires have been fabricated experimentally, and a
multitude of hollow fullerine-like clusters have been predicted which could be useful in

building nanodevices [20,63].
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Carbon and silicon are both group IVA elements on the periodic table and as a result can
exhibit either sp” or sp’ bonds [19]. These bonds cause bulk SiC to be among the hardest
materials and is very well suited for electronic devices being operated in extreme
environments [21]. In fact, bulk SiC has a wide band gap, high thermal conductivity, and
is even resistant to various forms of radiation. It has been postulated that the use of SiC
in nanostructures and nanodevices should exhibit these same properties. Although
experimental advances are seen every day, it is still difficult to perform measurements of
thermal properties at the nanoscale. Therefore, the uses of computational simulations of
thermal properties are useful for adding understanding of the mechanisms in
nanosystems. A number of non-equilibrium molecular dynamics (NEMD) studies for the
determination of thermal properties in non-homogeneous systems have been published
[1,10,50-52]. For example, NEMD was used for obtaining the lattice thermal
conductivity by simulating the directional heat flow perpendicular to infinite thin films in
one-, two-, or three-dimensional Lennard-Jones (LJ) systems [1,10,33,42-44,48-53,55].
However, little has been investigated for SiC nanostructures other than tensile strain
simulations using a Brenner-Tersoff potential [47,64-66] and tight binding approaches

concerning their energetic stability [19,20].
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5.2 MODELING

5.2.1 Setup

Simulations were performed on SiC tubes, elongated filaments, and wires laid along the
X-axis. The initial configurations of nanowires were obtained from cuts of the 3C and
2H crystalline polytypes. For nanotubes, initial configurations with either armchair or
zigzag chirality were considered. The alternation of Si and C atoms was such that bonds
of around 1.9 A [8,19-21] are the dominant majority. Please note that real units were

used in this phase of the research.

The simulations for nanostructures used the silicon carbide model potential described in
Section 2.2.2. No periodic boundary conditions were used. A simulated thermostat was
attached at each end of the nanostructure as a continuation of that structure. Each
thermostat contained 100-150 atoms that were kept at a constant temperature. The
thermostats were sized such that their width along the X-axis would be greater than 7.3A,
which is the cutoff distance of the 2-body part of the model potential. On the outside
ends of the bath three-to-four planes of atoms were kept fixed in position to prevent
deformations of the cross sections of the nanostructures. Atoms in-between the two
thermal bath regions move with iso-energy MD and data are collected only on these

central atoms (typically 320-384 atoms). Figure 26 depicts this setup.

When a temperature drop exists between the two thermal baths, a thermal energy flow is

established along the elongated tube or wire and the system is neither in thermal
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equilibrium nor in a steady state. However, after about 200 ps the system reaches the

steady state and the thermal energy current is roughly constant along the length of the
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Figure 26: Nanotube computational setup

nanostructure. This NEMD arrangement is similar to that used in calculations of the
lattice thermal conductivity [1,10,32,48-52,54,57,58,65,67]. The temperature difference
between the two thermal baths was chosen to be large with respect to the temperature
fluctuations but small enough to reproduce attainable laboratory situations. In the
simulations, the cold bath temperature was about 40% of the hot bath temperature, which
is less than the 60% cold:hot temperature ratio used in Chapter 4. This choice is similar

to that employed in other works [1,10,50,55].

For the non-equilibrium analysis, the data section of each nanostructure, was subdivided
in eight slices along its length as shown in Figure 4. Each slice contains typically 40- to
48-atoms. The purpose of this set up is to be able to average properties locally in each

slice. Simulations were started for the equilibrated configuration of all systems. Once
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the steady state of thermal energy conduction is reached, then the thermal current is the
same in all slices, and the temperature profile is remarkably constant. Figure 27 shows
both temperature profile and thermal current across a 3C nanowire. Nanotube and

nanofilaments thermal profiles were similar.
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Figure 27: Temperature and heat current profile across a nanowire in the steady state at
300K: (a) temperature profile (¢) with SD for temperature and position, (b)
heat current profile (o)

Points in Figure 27 correspond to averages for each slice over 6 psec after the steady state
is reached. As a result of the different dynamics between the atoms in the thermostat and
the atoms in the active central region where data are taken, a few planes of atoms

adjacent to the thermal baths were not considered for reporting of results in the sections
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to follow. A similar consideration has been adopted in the literature by several authors

[1,10,32,50,52].

5.2.2 Model Validation

With this geometrical setup, the heat current components perpendicular to the energy
flow should be negligible. Indeed, that is the case where the perpendicular flow was
around 1% of the axial flow. As expected, the longer the time over which the data were

averaged, the lower the perpendicular flow became.

Both f and T were calculated in the NEMD setup described above and then the lattice
thermal conductivity K is obtained from Fourier’s law (Equation 31). The K was

determined for five temperatures: 150K, 300K, 500K, 750K, and 1000K. Results
obtained here are close to results in Ref. [68] using a potential proposed by Halicioglu
[69]. The results closely match the experimental values for bulk SiC in Ref. [70], the K
values and temperature relationship for armchair nanotubes in Ref. [71] and for
nanowires in [62,68]. The work presented in this dissertation has investigated more
temperature variations and more types of nanowire configurations and has included the

previously unstudied zigzag nanowires.
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5.3 THERMAL CONDUCTIVITY IN NANOSTRUCTURES

5.3.1 Nanowires

Nanowire configurations carved from the 3C and 2H crystalline polytypes of SiC in the
[-100], [-111] and [001], [110] directions, respectively, (Figure 28) have been previously
demonstrated to be stable under a tight binding model [20]. The nanowires simulated
kept their structure up to temperatures of 1000K under the model potential used in this
work. The MD averaged energies per SiC pair extrapolated to zero temperature were -
11.75 eV and -11.46 eV for 3C [100], [-111] and -11.98 eV and -11.43 eV for the 2H
[100], [110], nanowires, respectively. These results matched qualitatively the tight
binding energies per SiC pair of -11.7 eV and -11.0 eV for 3C [-100], 3C [-111], and -

11.6 eV and -10.3 eV for 2H [001], [110] nanowires calculated in Ref. [20].

Figure 28: SiC Nanowire cross sections
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The MD equilibrated configurations of these four nanowires were taken as initial

configurations for the NEMD simulation. The results are shown in Figure 29, where the

filled symbols (¢, A) correspond to the 3C wires and empty symbols (o, 0) correspond

to the 2H wires.
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Figure 29: Thermal conductivity as a function of temperature for nanowires:

3C [100] (#),3C [111] (A), 2H [001] (©), and 2H [110] (O)

The 2H [110] and the 3C [100] nanowires follow an inverse power law for temperature

as is expected in bulk systems and described in Chapters 3 and 4. The inverse power law
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. a . . .
is K= where a is a constant. However, the other two wires in the temperature range

studied, display an almost constant thermal conductivity suggesting that these wires are

less sensitive to temperature variations.

5.3.2 Armchair Nanotubes

Four armchair nanotube sizes were simulated: (2,2), (3,3), (4,4), and (5,5), as suggested
by [68]. In reaching an equilibration for the four nanotubes, the (2,2) and (5,5) armchair
nanotubes were stable and remained as nanotubes in the range 150 K — 1000 K, while the
(3,3) and (4,4) armchair nanotubes collapsed into a flatten structure which are referred to
as nanofilaments. Once the nanotube collapsed to the nanofilaments for the (3,3) and
(4,4) armchair nanotubes, the resulting structures remained stable and equilibrated well.

Figure 30 shows these resulting configurations.

The dependence of K with temperature for these armchair tubes and filaments is shown in

Figure 31, where ¢ and A correspond to the armchair nanotubes (2,2) and (5,5) and 0, o

correspond to nanofilaments generated from the (3,3), (4,4) nanotubes, respectively.

The (2,2) nanotube follows the inverse power law for temperature. However, the others
follow a power law to a power of -0.65 for the two nanofilaments and -0.4 for the (5,5)
nanotube. These results suggest that the (5,5) nanotube is too open a structure to carry
heat efficiently and therefore insensitive to temperature variations with regards to its

thermal conductivity.
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Figure 30: Armchair nanotubes and nanofilament configurations

The average energy per SiC pair extrapolated to zero temperature was -11.4 eV for both
the (2,2) and (5,5) nanotubes and -11.5 eV, -11.63 eV for the (3,3), (4,4) tubes that
collapsed to nanofilaments. Energies of both the (2,2) and (5,5) nanotubes are in
qualitative agreement with the tight binding results of 10.0 eV, 10.5 eV [20] and are close

to those calculated with MD by [62].

5.3.3 Zigzag Nanotubes

The zigzag nanotube (4,0) remained stable and equilibrated well in a configuration
similar to the initial structure while zigzag nanotubes (6,0), (8,0), and (10,0) collapsed
into a nanofilaments. The structure of these filaments was different from filaments

obtained from the armchair nanotubes. The resulting zigzag filaments have structure

86



K (W/m/K)
w
¥ {..-.

N
P

Temperature (K)

Figure 31: Thermal conductivity as a function of temperature for armchair nanotubes and
nanofilaments: (2,2) (¢), (5,5) (A) nanotubes, and (3,3) (0), (4,4) (©)
nanofilaments

with a (4,0) nanotube paired with either hexagonal rings on the side or a (2,0) nanotube
paired with a series of (4,0) nanotubes. Figure 32 shows these resulting zigzag nanotube

and nanofilament configurations.
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Figure 32: Zigzag nanotubes and nanofilament configurations

Figure 33 shows the dependence of k with temperature, where ¢ corresponds to the
nanotube (4,0), and A, o, and O correspond to the nanofilaments collapsed from the (6,0),
(8,0), (10,0) nanotubes, respectively. A structural change from hexagonal rings of Si-C
atoms into rings of 5 or 7 atoms has been observed by other researchers for both types of

nanotubes under thermal and mechanical stresses [21,61,65,66,71].
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Figure 33: Thermal conductivity as a function of temperature for zigzag nanotubes and
nanofilaments: nanotube (4,0) (#), and nanofilaments (6,0) (A), (8,0) (o) and
(10,0) (o)

None of the zigzag nanotube and resulting nanofilaments follow the inverse power law
for temperature. The power of -0.77 (4,0), and -0.6 for the nanofilaments was observed,
suggesting that the zigzag nanotube and nanofilaments are not very sensitive to

temperature variations with regards to thermal conductivity.
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The average energy per SiC pair at a zero temperature was -11.4 eV for the (4,0)
nanotube and -11.6, -11.7, and -11.7 eV for the nanotubes (6,0), (8,0, (10,0) collapsed to
nanofilaments. The (4,0) nanotube energy compares well with the tight binding energy

of -10.5 eV [20].

5.4 NANOSTRUCTURE THERMAL CONDUCTIVITY CONCLUSIONS

The results in this work have gone farther than published works to determine the thermal

conductivity of SiC nanostructures in the temperature band of 150K-1000K. The results
show that NEMD techniques can be used to further investigate the K and thermal

response for entire nanodevices. The NEMD potential used is stable and may also be
useful in determining the structural stability of nanodevices under a thermal current as

well.

While the K has been shown experimentally for bulk SiC, it was found that when

nanostructures are fabricated from SiC, their K decreases based strictly on the structure

used for nanotubes and the orientation of the lattice inside of nanowires. Likewise, the
SiC nanostructures investigated also showed a wide variation in how they respond under
various temperature conditions from following an inverse power law as found in bulk
materials to being almost insensitive to changes in temperature. This temperature
sensitivity may be critical to the design and operations of nanodevices and their intended
uses in electrical, and mechanical applications and definitely warrants further

investigation by other researchers.
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CHAPTER 6 COMPUTATIONAL CHALLENGES

6.1 COMPUTATIONAL EFFECTS

During the computational analyses a few special items of concern are reviewed below.

6.1.1 Counteracting PBC effects

Molecular simulations are based on averages over large numbers of atoms for large
periods of time. The computing time increased by a factor of n to n®, where n is the ratio
of the number of atoms. However, this is not practical, even with today’s computing
capabilities, so smaller simulation configurations are commonly used. A concern with a
smaller system, the edges of the system can have a dramatic and negative effect on the
accuracy of the simulated data, so PBC are used. Commonly, PBC are used with
symmetric sized simulations use a repeating computational box, known as a PBC primary

cell, which is a square or a cube [14].

The simulations presented in Chapter 3 used a cubic computational box which became
the PBC primary cell with PBC imposed equally in all three dimensions. The concern
with these simulations was to have the system being as small as possible yet not have the

results effected by the use of PBC. Various sizes of systems were tested (as shown in
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Figure 13, section 3.2.1) as a macro test to see how the parameters of p, k, or energy were

affected by the system size. As a result, the 5 FCC size was chosen for that research.

The simulations presented in Chapter 4 used a square prism computational box
representing a cross section of thin film system across the total width of the film. The
PBC primary cell was the entire square prism and PBC imposed in two dimensions to
simulate the film was infinite in size with the finite width. The work began with a size of
5 FCC in each dimension as well, however with this research, the wavelength of the
simulated thermal phonons was being investigated. With the study of dynamical

properties, PBC effects can be more pronounced than with mechanical properties.

As aresult, the concern was if the size of the directions using PBC was large enough to
not experience the effects of the PBC in the tails of the autocorrelation functions
[14,73,74]. This occurs when the time lag used in the autocorrelation function, T,¢;4y,
exceeds the time that it takes for a wave traveling at the sonic velocity of the material to

cross the system, 7, p..
L
Tpbe = U_s (33)

where L is the width of the system and vy is the sonic velocity. From the low frequency
region of the velocity autocorrelation Fourier transform, an estimate of about 3 is
obtained for the sonic velocity. To make certain that the system was not subject to these
effects, both of these times were closely monitored. The 7,4, used was calculated as
the decay time of the autocorrelation function as an average over ten time dependent

velocity autocorrelation functions with different initial times [72]. For the monatomic
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reference system at T = 0.12 and 0.33 using 512At, calculation of these two times was
repeated for various computational box cross sections showing that 5x5 FCC unit cell
cross sections (100 atoms) yield a 7, = 2.6 t4, which is longer than T,q, = 0.2 ty,
where t, is the reduced time unit for the system. Other material simulations were also
tested and did not violate this condition either. Thus, effects of the boundary conditions

are negligible and the use of PBC did not degrade the results.

6.1.2 Software Error Handling

During the initial steps in establishing a new trial or a new configuration, the software
had to have several error handling and error prevention routines installed to prevent the
configuration from expanding rapidly and essentially ejecting atoms. With a new trial,
the positions of each atom were set into a perfect lattice or structure configuration for the
postulated density for the trial temperature. Unfortunately, the velocities for each atom
could not be set in an exact manner where they would be near an equilibrium or steady
state condition on the first few steps, instead, the velocities were chosen from a random
normal distribution around the trial temperature. As a result, the possibility existed that
two velocities would cause atoms to become too close and produce large forces which, in
the next step, would produce a large velocity and eject the atom from the computational
box. The error handling installed would temper the forces so that their velocities would
not be relatively large. This was done by establishing a minimum distance at which the

forces would be calculated. Additionally, a new configuration was initially allowed to
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equilibrate at an extremely low temperature (less than 1K) before being warmed to the

trial’s temperature.

An additional error handling was to periodically do minor corrections of the positions and
velocities to ensure that there was no motion of the center of mass of the computational
box. Slight movements were observed due to round off errors and the time step being
chosen at the upper bounds. This was done by simply summing the positions or
velocities then finding the average value and correcting by the opposite value. A system
with no movement in the center of mass should have zeros as the summed values. For
simulations after equilibration, the sums were on the order of a factor of 10™°. This is

expected for runs in double precision.

6.1.3 Energy Conservation Test

A computational box was allowed to reach equilibrium and stored. Then the stored
equilibrium configuration is allowed to react for a given time period. The square root of
the standard deviation of the energy was plotted for various time step sizes. The result
should be a straight line passing through zero for a step size of zero. Figure 34 shows a
sample result. From this result, the maximum time step that could be used is where the
result remains on the straight line. For simulations, the step size was chosen to be about

%, of this value.
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Figure 34: Square root of the standard deviation as a function of time step size

6.2 SOFTWARE USED

6.2.1 Computational Software Environments

All of the computational software routines used in the research study were written from
scratch by the author using Fortran 90 and Fortran 95 with the exception of the Fourier

Transformation routine provided in Ref. [75].

The majority of the computational software was run on a variety of personal computers
using the Intel Pentium 4 ® family of processors. Additionally, some of the code was run
on a variety of UNIX based machines located in the GMU Computational Sciences and

Informatics Department laboratories. Both the PC and UNIX based machines used a
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Fortran compiler and run-time environment developed by the Portland Group Compiler
Technology, of Portland Group, Inc (PGI®), a company within STMicroelectronics, Inc,

of Wilsonville, Oregon [76].

A multiprocessor parallel computer facility at the GMU Computational Sciences and
Informatics Department called “Bach” was also used for some of the runs [77]. Bach
uses 64 Intel Itanium 2® processors in a SUSE Linux® operating system. The Bach uses

the Intel® Fortran Compiler “ifort” version 9.0.

6.2.2 Fortran Code

The Fortran code developed for the research was limited by the versions of Fortran
supported on the compiler versions of the various machines used. Each of the Fortran
compilers supported OpenMP [78] which was used to assist in optimizing performance of
the code and utilizing the multi-processor capabilities on each of the machines used. The
OpenMP support group defines OpenMP as: “a portable, scalable model that gives
shared-memory parallel programmers a simple and flexible interface for developing
parallel applications for platforms ranging from the desktop to the supercomputer.”
Appendix B provides several examples of the software developed. Each of these

examples was embedded in an OpenMP routine.

The use of multi-processors reduced the time needed to run the computational software.
The PC used during the final stages of the research uses an Intel ® Core 2™ Quad CPU
Q9300 running Windows Vista® which automatically used all available processors.

Runs on the older PCs with Pentium 4 ® processors showed about a 35% decrease in
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time required to run the simulations. Previously it was stated that using the fewest
number of atoms in a simulation would reduce the time needed to run simulations.

Figure 35 shows the processing time required for various system sizes.

Run Time Ratio

1 a a a } a a a } a a a }
1 3 5 7

Number of Atoms Ratio

Figure 35: Processing time required for various system sizes

For a computation that compares each atom against every other atom, the number of
calculations increases at roughly at n?, where n is the ratio of atoms. However, in the
system used in this research, there is a limit on the range that forces were calculated so
the number of calculations would increase by n? until the force range was reached, then it
would increase somewhat closer to n where the increase is due to the overhead of the

number of atoms calculated. It can be seen that for the low atom ratios, the time required
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increases rapidly, then as the ratio increases, the rate of time increase is more linear.

Runs were made using the 3C[100] configuration.

6.2.2.1 Monte Carlo Programmatic Flow

The software programs used the flow diagram for MC programs as shown in Figure 36.
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12 13
Calculate System (——Jpl Closeout and
Properties Printout

Figure 36: MC programmatic flow diagram
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The steps in Figure 36 are as follows:
Step 1: Program call

Step 2: Initiate program parameters. In this step the variables, vectors, and arrays are
defined, and pressure and temperature constants and other given properties are

established.

Step 3: Load trial data and place atoms. The input file is read which gives parameters
needed to determine the run length and other variable parameters. The atoms in the

configuration are placed into their initial positions.

Step 4: Store and move atoms. The positions of the atoms are first saved then moved

one random position step. The energy of the system is determined.

Step 5: Movement accepted? The selection criteria is established to see if the movement
results in a lower energy or a higher energy which is permitted by the acceptance criteria

defined in section 2.1.2.2, equation (8), and section 3.1.1.

Step 6: Undo atom movement. If the movement is not accepted, the atom positions are

reset to their previous positions.

Step 7: Step to change vol? One MC volume change is done every 3™ atomic movement

step. It is determined if this is the third step.

Step 8: Change volume. The volume of the system is increased or decreased by one

random size step. The energy of the system is determined.
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Step 9: Volume change accepted? The selection criteria is established to see if the
volume change results in a lower energy or a higher energy which is permitted by the

acceptance criteria defined in section 2.1.2.3, equation (10), and section 3.1.1.

Step 10: Undo volume change. If the volume change is not accepted, the atom positions

and volume are reset to their previous positions and size.

Step 11: More steps? If there are ,more MC steps to be performed, the program returns

to step 4.

Step 12: Calculate system properties. Properties are calculated from the atomic

positions.

Step 13: Closeout and printout. The Data is written to files, then the open data files are

closed. Printouts are provided to the screen giving final results and runtimes.

Step 14: Exit.

6.2.2.2 Molecular Dynamics Programmatic Flow

The software programs used the flow diagram for MC programs as shown in Figure 37.

The steps in Figure 37 are as follows:

Step 1: Program call

Step 2: Initiate program parameters. In this step the variables, vectors, and arrays are

defined, and constant properties are given.
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Figure 37: MD programmatic flow diagram

Step 3: Calculate U and dU/ dr atte. For the force shift, the energy and force are

calculated at re.

Step 4: Load trial data. The input file is read which gives parameters needed to

determine the run length, time step size, and other variable parameters. The atoms
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locations are read in and placed into their initial positions. The velocities of all of the

atoms scaled to satisfy the selected temperature profile.

Step 5: Adjust bath temperatures. The atom velocities in each thermal bath are adjusted

to the bath set temperature.

Step 6: Calculate 2-body forces. The two-body forces are determined for each atomic
pair in the system. If atoms are beyond the maximum two-body force cutoff distance, the
atomic pair is skipped. The potential for each atom and the forces on each atom are

summed.

Step 7: Calculate 3-body forces. The three-body forces are determined for each atomic
triple in the system. If any pair of atoms in the triplet are beyond the maximum three-
body force distance, the atomic triplet is skipped. The potential for each atom and the

forces on each atom are summed.

Step 8: A data step? If the step that is being calculated is during the equilibration or
relaxation phases, (aka prior to collecting data), the program skips to step 13, otherwise

continues to step 9.

Step 9: Calculate system properties. The heat current is calculated from the atomic

positions, atomic potentials, and forces on each pair of atoms.

Step 10: Update property averages. The heat current and temperatures are averaged and

variances are calculated.
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Step 11: Collecting velocity data? If the current step being calculated is a part of the last
steps determined for the collection of vibrational data, then the program moves to step 12.

Otherwise the program skips to step 13.

Step 12: Collect velocity data. The velocity is stored for each atom in each direction.

Step 13: Update positions and velocities. The velocities and positions of each atom are

updated.

Step 14: More steps? If there are remaining step to calculate, the program returns to step

4. Otherwise, the program continues to step 15.

Step 15: Calculate final properties. The calculated parameters of heat current, and

temperature are calculated.

Step 16: Calculate autocorrelation and FFT. From the stored velocity data, the
autocorrelation is calculated in each direction in 10 time increments, the FFT of the

resulting autocorrelations is calculated and then averaged to find the DOS.

Step 17: Closeout and printout. Data is written to files, then the open data files are

closed. Printouts are provided to the screen giving final results and runtimes.

Step 18: Exit.

6.2.2.3 Comparison of MD and NEMD Flow

Figure 38 illustrates the basic flow of the MD and NEMD methodologies. The difference

in code development is that the MD code must continue until the parameters are
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producing a constant average value for all parameters across the computational box then
data can be collected from this equilibrium state. While the NEMD code must first
achieve an equilibrium state like in the MD, then a set of parameters, like the temperature
bath in this study, and the system allowed to stabilize. The system will have reached the
stable steady state condition when the parameters change in a relatively smooth manner
from the value at one end to another. Then data can be sampled at various points along

the axis of the non-equilibrium condition to achieve a gradient of values.

NEMD

MD Initialization

Initialization l

l Equilibration

Equilibration l

l Steady State

Production l

Production

Figure 38: Comparison of MD and NEMD Flow
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6.2.3 Graphics Software

Graphics and data reduction was done using a variety of tools which included
MATLAB® and Excel®. The MathWorks, Inc, product MATLAB® Student version 6.0
was used. The MATLAB Editor® was used for developing MATLAB code. The
MATLAB was used to produce some of the post-processing graphics. Additionally,
Microsoft’s Excel® (versions in 2000, 2003, and 2007) was used for data reduction,
analysis and plotting. For producing representations of atomic configurations, RasMol
[79] was used. RasMol was developed in the early 1990’s to graphically represent
complex atomic structures and proteins. In the past few years, RasMol was updated to
run on several operating systems and was renames to become RasWin which was also

used in this research.

6.2.4 Supporting Software

Other products used include: Microsoft’s Word® and Notepad® were used to develop

Fortran code, and Microsoft’s PhotoEditor® and Paint® were used for graphics ‘clean-

b

up.
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CHAPTER 7 CONCLUSIONS

In conclusion, this study has presented a detailed analysis of the thermal conductivity of
changes in material properties and the effects of internal boundaries using MD and MC
computational simulation methods. This study has also presented a detailed analysis of
the thermal conductivity and possible stability of several configurations of SiC nanowires
and nanotubes. This work has been successfully validated against theoretical and

experimental work.

Several highlights are as follows for the work done with bulk binary homogeneous LJ

systems. Selection of materials by their mass, hard-core atomic diameter, well depth, and

relative concentration can change the K by as much as an order of magnitude. When the
hard core radius increased by only 10%, the K decreased by 90% due to increased phonon
scattering. While a 60% increase in mass only decreased the K by 25% and a 50%
decrease in interatomic strength decreased the K by 25% due to the amount of energy

needed to vibrate the system and conduct heat. The effect on K followed an inverse
temperature relationship for mass and interatomic strength variations, yet when the hard

core radius increases, the K becomes relatively insensitive to temperature.
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Several highlights are as follows for the work done with thin films. The study showed
that for films that are made of a single pure material with no internal boundaries, the
frequencies of the phonons carrying heat energy change due to the material as the
parameters changed. Increases in hard core radii enhanced the higher frequency
(transverse) phonons while increases in interatomic bond strength increased all phonons
roughly equally while increases in mass increased the lower frequency (ballistic)
phonons. For materials with internal boundaries, mass increases across a boundary
enhanced the lower frequency phonons, where changes across a boundary produce the
opposite effect as increases in hard core radius and interatomic strength enhanced the
higher frequency phonons. Additionally, it was found that these effects were diminished

for higher temperatures around half of the Debye temperatures.

Several highlights are as follows for the work done with SiC nanowires and single walled

nanotubes. The study showed that the structural changes produced vastly different K. In

nanowires, the orientation of the internal lattice determined whether (1) the K
approximated that of the bulk SiC and followed a inverse temperature relationship or (2)

the K was decreased by more than 50% from the bulk SiC and appearing to have a
constant K of SiC near its melting point. For the nanotubes, the smaller nanotubes
approximated the K of bulk SiC while as the structure increased in size, the K decreased
dramatically. When the nanotubes collapsed into a stable nanofilaments, the K was

slightly enhanced over the expected K if it had remained a nanotube.
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To support this study, all computational software was developed by the author. The use
of basic computing methods shows that MD and MC work can be performed on the range
of modern PC processors in reasonable amounts of time using the inherent parallel
capabilities in those processors. The use of massively parallel computing machines did
enhance the processing speed, however, the time improvement for software which uses

relatively short parallel steps was not dramatic.

With the growing use of nanotechnology and nanodevices in many fields of engineering
and science, a need for understanding the thermal properties of such devices has
increased. The results of this study can be used in the design of nano-machines where
heat generation and transport is a concern. Follow-on studies could be initiated to
investigate specific designs of discrete and very long nano-devices. Further work could
be initiated on macro systems where the selection of materials could produce nano-
machines which transport heat away from other nano-devices to lengthen their operating
life or allow them to operate more efficiently. A further out goal of this work could be to
produce macro devices that could be integrated with computer chips to carry away heat to
eliminate the need for fans in computers or active cooling systems aboard spacecraft.
These devices, coupled with similar work with electrical conductivity of nano-materials
could produce these cooling devices which recycle the waste heat into electricity

allowing for longer battery life and more ‘green’ devices.
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Abstract

The thermal conductivity of compositionally disordered binary crystals with atoms interacting through Lennard-Jones potentials has
been studied as a function of temperature. The two species in the crystal differ in mass, hard-core atomic diameter, well depth and relative
concentration. The isobaric Monte Carlo was used to equilibrate the samples at near-zero pressure. The isoenergy molecular dynamics
combined with the Green—Kubo approach was taken to calculate the heat current time-dependent autocorrelation function and deter-
mine the lattice thermal conductivity of the sample. The inverse temperature dependence of the lattice thermal conductivity was shown to
fail at low temperatures when the atomic diameters of the two species differ. Instead, the thermal conductivity was nearly a constant
across temperatures for species with different atomic diameters. Overall, it is shown that there is a dramatic decrease of the lattice thermal
conductivity with increasing atomic radii ratio between species and a moderate decrease due to mass disorder.
© 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Keywords: Binary solids; Compositional disorder; Monte Carlo; Thermal conductivity; Molecular dynamics

1. Introduction

It is known that heat is transported better through solid
materials that are pure and crystalline. Any type of impu-
rity, defect, doping or internal boundary within the mate-
rial nominally increases the resistance to heat transport,
and thus reduces the ability to conduct thermal energy.
With the growing interest in nanotechnology, the study
of thermal conduction properties of systems with reduced
dimensions, thin films, nanotubes and superlattices has
increased. In nanomaterials and nanostructures, phenom-
ena are highly dependent on the length scale where vibra-
tions between nearest-neighbor atoms occur. The use of
molecular dynamics (MD) and the Green-Kubo (GK)
methods for calculating the thermal conductivity have
shown promise as atomistic approaches for understanding
nanosystems at the nanometer scale. For example, there

" Corresponding author. Tel.: +1 703 993 1988,
E-mail address: blaisten@gmu.edu (E. Blaisten-Barojas).

are several recent calculations on pure noble gases with
Lennard-Jones interactions and face-centered cubic (fcc)
structures in which MD was the method of choice [1-5].
For binary crystals the literature is not so abundant; worth
noting is the MD calculation for crystalline B-SiC with
point defects [6].

In a crystal the thermal conductivity is composed of two
additive contributions: lattice and electronic. The lattice
contribution rxpp, captures phenomena associated with lat-
tice vibrations and phonon scattering and is dominated by
the structural characteristics of the crystal. The electronic
contribution x, is proportional to the electric conductivity
a. through the Wiedemann—Franz law [7.8]. The composi-
tion of a crystal affects the lattice symmetry characteristics
and consequently the lattice vibrations. Therefore, Kph, the
lattice contribution to the thermal conductivity in a crystal,
should reflect changes according to its composition. In con-
trast, since k. is a function of g, the conduction properties
are expected to remain almost constant for families of solids
with similar compositional components. A phenomenon

1359-6454/830.00 © 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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that reduces xp, produces an overall reduction of the ther-
mal conductivity if the electric conductivity is not affected.
In diclectrics, and the noble gases specifically, changes in
Kpn do not simultaneously affect the electronic conductivity.

This work focuses on simulating the lattice thermal con-
ductivity due to atomic vibrations for binary crystals with
compositional disorder. The goal of this work is to identify
ranges of combinations of materials and disorder condi-
tions which reduce the lattice thermal conductivity of the
simulated binary solid mixtures and may warrant further
experimental work. Throughout the remainder of this
paper, x is used to identify the lattice contribution to the
overall thermal conductivity.

The effect of compositional disorder on thermal conduc-
tivity was investigated using several simple models of bin-
ary Lennard-Tones (L-J) solids. Compositional disorder
was investigated due to differences in the van der Waal
radii (#), interatomic bond strength (&) and mass (m) of
the two types of atoms. Several relative concentrations of
simulated crystalline binary mixtures were studied as a
function of selected potential parameters and analyzed
across various temperatures. The computational approach
taken was to perform atomic-level computer simulations
employing a combination of isoenergy MD and NPT
Monte Carlo (MC) with a constant number of atoms
(N), pressure { P) and temperature (7)) to calculate the
within linear response theory of many-body systems. To
validate the work, results were compared to other reported
results and experimental data available for monatomic
crystals.

This paper is organized as follows. Section 2 describes
the methodology used to prepare the binary sample, deter-
mine its equilibrium density and allow the sample to reach
mechanical equilibrium. Section 3 describes the lattice ther-
mal conductivity results obtained as a function of the
parameters used, the lattice disorder models and the vari-
ous concentrations of the two atomic species. Section 4
concludes the work with a summary.

2. Methodology

A crystalline binary mixture of 500 atoms was simulated
in a cubic computational box with periodic boundary con-
ditions in each direction. In the calculations, r, is the cutoff
radius taken as 49% of the width of the computational box.
The composition of the binary crystal uses atoms of type
“A’ as the host and atoms of type B’ as the guest. All
parameters were compared relative to the host A atoms.
The L-J potential with parameters o and & was used as a
prototype interaction between atoms. The compositional
disorder introduced in the host lattice due to the guest
atoms is modeled parameterically by changes of o, ¢ and
mass. Quantities are expressed in reduced units with respect
to the host atoms’ L-T parameters o4, &4 and ms. For
example, the mass of Ar is 39.95 au. and that of Xe is
131.30 a.u. In reduced units, using Ar as the host atom,
the mass of Ar would be 1.0, whereas the mass of Xe would
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be 3.3. Reduced units of length, energy, temperature, time
and thermal conductivity are e, ¢, &/kg, t, = \/e*m/c and
kg/t,t, respectively, where kg is Boltzmann’s constant.
Four compositional mixture cases in the computational
box were considered with the following characteristics:
100% of pure A atoms, 75% of A atoms and 25% B atoms,
50% of each type, and 25% ol A atoms and 75% of B
atoms. The L-J parameters for the binary interactions
(A-B) are obtained from the combination rules:
GA + Gy

TAB - tap = éalp. (1)

Simulations started at a reduced temperature of 0.5 from a
configuration with atoms placed in a perfect fee lattice.
Next, an initial configuration was constructed such that
atoms were randomly assigned as type A or B consistent
with the relative concentration of the two types of atoms.
Throughout this study, to indicate the ratio of parameters,
the symbols R,, R.. R, are used for og/os, epleca and
mp/my, respectively, The system was equilibrated by
NPT-MC, which allowed for moves of the N atoms in
random directions and changes of the entire computational
box volume (). The acceptance criterion between old ()
and new (™) configurations is given by [9]

acclo — n) = min{1,exp{—U", V") = U, 1)
+ PR =V°) = (N + 1)~ In(72/7°)]}).
2)

Here, ff is 1/T. ¥ is the vector of the coordinates of all
atoms and the potential energy is

. 1L & Ty
U, v) =5 SN e lloy/r)? - (oy/ry)), (3)

i =i

where a;; is the core radius, & is the bond strength and r;; is
the interatomic distance of an atomic pair using Eq. (1).
The NPT-MC simulations were run between 1 and 3
million steps with a step being N single atom movements
and one volume adjustment. The average density and other
calculated quantitics were determined as an average over
the final one-fourth of the NPT-MC trajectory. Therefore,
the position of the atoms within the box is consistent with
this average density. The density is defined as N/ ¥ irrespec-
tive of the two types of atoms, which could have different
masses, o, or & values. Because the computational box is
finite, the value of the pressure was adjusted by subtracting
the pressure that would be exerted by a structureless
infinite-sized sample outside of the computational box [9].
For the monatomic system, the equilibrium structure
was an [ce structure for all temperatures. At low tempera-
tures, no stable amorphous phase was found as obtained in
Ref. [3]. Because the NPT-MC calculation does not include
the mass in the simulation, the equilibrium p for binary
samples with A and B atoms having only different ¢ is
the same as the density of the monatomic system. There-
fore, the NPT-MC calculations were carried out to deter-
mine p at different temperatures when R, # 1. Fig. 1
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shows the temperature behavior of the average p for equil-
ibrated systems at zero pressure for samples with a 50:50
relative concentration. The curves correspond to different
R,. The value of p of pure Ar reported in Rel. [3] compares
well with our results. As expected, when R, increases, the
volume must also increase, decreasing p. The standard
deviation (SD) of the average density is very low, of the
order of the symbol size used in Fig. 1. These small fluctu-
ations certainly ensure that the smooth decrease of p with
temperature illustrated in Fig. 1 is indeed realistic.

The next step was to initiate the iscenergy MD study
using the output of the NPT-MC runs. Each MD trial
was run 350,000 time steps of Ar = 0.005 to allow the sys-
tem first to equilibrate at the desired temperature. Next the
MD trial continued to run for half a million time steps to
calculate the desired heat current operator values from [10]

N N N

.7:2E,-1u+1f22 X(:J‘--F‘,-j)r‘-j, 4)
i=1 =1 &

where E; is the total energy of each atom, 7; is the velocity

of each atom and F, ;7 and Fy; are the force and interatomic

vectors for each atomic pair.

The next step was to calculate the autocorrelation func-
tion Cf7) of the heat current operator, which is defined as
Clx) = (T(x + 0JT()) (3)
where { } is the time average, J is the heat current operator
and 1 is the time lag from an origin ¢ chosen from the time
trajectory. Each autocorrelation run typically used between
2'% and 2'* time lags. It was found that for R,, R,, and R,,
near a value of one required longer times to compute the
autocorrelation function than when disorder sets in.

The lattice thermal conductivity ¥ was obtained by inte-
grating C(t) over the range [0, firy], Where £ is the total
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Fig. 1. Density as a function of temperature for radii ratios R, of 1.0, 1.1

and 1.25 for the 50:50 mixture of atoms. Crosses are p for pure Ar at zero
pressure and circles represent results from Ref. [3].

time for which the autocorrelation function was calculated.
This is the GK approach [11,12]:

1 e y
= C{t)dz. 6
Wk l? ﬂ \T) T ( ]

The GK approach works well for both amorphous and
crystalline models as long as the system is homogeneous.
GK takes full account of anharmonic properties but is clas-
sical in nature. Ladd et al. [13] were the first to use the GK
formalism to calculate thermal conductivity for solids with
interactions following an inverse-twelfth power law poten-
tial. Later, Gillan extended this method for the study of »
in palladium doped with hydrogen [14]. More recently,
Chen et al. used this same approach to study the thermal
conductivity of pure Ar doped with Xe [15].

Optimally, it would be best to calculate C(t) out to infin-
ity instead of just the finite trajectory length, but this is not
possible numerically. We observed that {z) could be
approximated by an exponentially decaying cosine func-
tion e *cos(wr) as shown in Fig. 2 and fit the parameters
to the numerical MD results. Then the integration in Eq.
(6) was done from the actual simulation data for 0 < ¢ < 5,
and used the decaying cosine function for fy < © < co. The
value of t5, was set to be 1.25 times the period of the fitted
cosine function. This time fg, defines the system relaxation
time.

The NPT-MC samples prepared in the manner
described in previous paragraphs represent different tvpes
of compositional disorder. For all values of R, or R,, sim-
ulated, the structure of the equilibrated sample is the fece
lattice. Thus the system disorder is based on a random mix-
ture of atoms A and B, which are positioned on a perfect
lattice. In contrast, when size disorder was introduced with
R, beyond 1.1, the fcc lattice collapses. This is shown in
Fig. 3 which depicts the pair correlation function g(#) in
which the gaa(r), gan(r) and gpp(r) values have been

C(r)

=05

Time Lag

Fig. 2. MD-calculated C{t) as a function of time. The dotted lines show
the envelope of the exponentially decaying cosine function obtained from
the fit of the MD data.
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Fig. 3. Radial distribution function g(r): (a) for different R, values: 1.0
(solid), 1.1 {dashed) and 1.25 (dotted); (b} same as in (a) plotted as
function of scaled distances.

summed together. Fig. 3 shows the case of a 50:50 mixture
sample at 7'=0.167 with R, =1, R,, = 1 and three different
R, values (1.0, 1.1 and 1.25). To compare directly between
these functions, a scaling of pl'ﬂ was applied to the radial
dependence. 1t is very clear that for R, = 1.25, the compo-
sitional disorder of the 50:50 sample affects the structure
very significantly and the crystal collapses into a homoge-
neous amorphous solid. The structure of this solid amor-
phous mixture is very different from the structure found
in atomic clusters [16], where the atoms with smaller ¢ seg-
regated and formed a subcluster surrounded by the large
atoms.

3. Determination of the lattice thermal conductivity

A sample with N = 500 at P = 0 with only one type of
atom was prepared, and x was obtained for several temper-
atures using the steps described in Section 2. These results
allowed a validation of our method by comparison with
several calculations done recently [3,15,17,18] as well as
with experimental results [19]. Fig. 4 shows this compari-
son, indicating that our results (black stars) are m full
agreement with previous calculations and with the experi-
mental results.

In the GK approach, Eq. (6), there is an explicit depen-
dence of x on the volume of the sample. Sample size effects
were studied in Ref. [17] where the authors considered
computational box sizes containing between 108 and
4000 atoms. Those authors concluded that in the tempera-
ture domain of 20-70 K, the size effects are irrelevant for
all practical purposes when calculating x for a pure Ar sys-
tem. This is consistent with our findings for computational
cells containing 108-2048 atoms. It was found that compu-
tational boxes smaller than 108 atoms were too small for
meaningful results. Fig. 5(a) and (b} illustrates the depen-
dence of the equilibrium density and potential energy aver-
ages as a function of the number of fecc cells (1) on each
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Fig. 4. Thermal conductivity x as a function of temperature for pure Ar at
zero pressure, The results of this work (black stars) are compared to those
of other works: Ref. [3] (diamonds), Ref. [15] (circles), Ref. [17] (triangles),
Ref. [18] {crosses), Refl. [19] (squares).

LI
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Number of FCC Unit Cells

Fig. 5. Effect of computational box sizes. The horizontal axis shows the
number of fee unit cells along each side of the cubic computational box.
(a) Density, (b) x and (¢) energy per atom for the ordered monatomic
crystal.

computational box edge (N = 4n°). Fig. 5(¢) shows x and
its SD as a function of computational box size.

Based on the continued good agreement with both the
previously discussed comparisons offset against run times,
a system size of N = 500 at P = 0 was selected for all results
reported in this work. The following compositional mix-
tures were considered: R, of 1.0, 1.1, 1.25, 1.5 and 2.0; R,
of 1.0, 1.25 and 1.5; and R, of 1.0, 1.6, 2.1 and 3.3. Addi-
tionally, we studied different relative concentrations of A
and B atoms ranging from 100% A atoms, 75% A with
25% B, 50% A with 50% B, and 25% A with 75% B.

For samples with relative concentrations of 50:50, at a
temperature of T'=0.167, Fig. 6 illustrates the lattice «
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Fig. 6. Thermal conductivity as a function of the parameter ratios:
(a} dependence on R, for R, = 1, 1.25, 1.5, and R, = 1; (b) dependence on
R.for R, =1, 1.6, 2.1, 3.3, and R, = 1; (¢) dependence on R, for R, =1,
1.1, 1.25, and R,,= 1.

as a function of one parameter ratio (R,, R, or R,,) while
the other two parameter ratios are kept constant.
Fig. 6{a) and (b) shows a dramatic decrease of x with
increasing R, In fact, Fig. 6(a) shows that x decreases by
a factor of over 6 between R,=1 and R, = 1.1 for a con-
stant mass ratio and various values of R, Likewise,
Fig. 6(b) shows a dramatic decrease in x between R, =1
and R, = 1.1 using different mass ratios. In this case again,
# decreases by factors up to 6 depending upon R,,. While
Fig. 6(b) shows a substantial decrease in x between
R,=1 and R, = 1.1, the two atom types would have to
be the same to have R, =1 and R, = 1, which is a very
unrealistic case. On the contrary, Fig. 6(c) shows that, for
R.=1 and R,,=1, x increases slightly as a function of
R, and increasing R,. This increase lies within the SDs of
the x results and might not be a real effect.

The conclusion of the parameter analysis is that at
T = 0.167, both radii disorder and mass disorder impose
a strong depletion of x. Even a slight difference in atomic
radii of only 10% has a major effect on decreasing x while
the mass ratio has a more gradual depleting effect on k. The
mass disorder leaves the crystalline symmetry intact. In
comparison, the radii disorder allows the solid to acquire
incipient amorphous characteristics as evidenced by the
pair correlation function signature illustrated in Fig. 3. In
fact for the large difference in atomic radii of 25%, Fig. 3
indicates that the fcc symmetry is already lost and the solid
is no longer a crystal.

For monatomic crystalline materials, the expected theo-
retical dependence of the thermal conductivity with tem-
perature follows an inverse temperature law [7.8]. While
previous MD simulations [15] reported x exhibiting this
expected behavior, our results show a departure for any
of the proposed samples with disorder. Fig. 7 shows the
x behavior for various values of R, of 1.0, 1.25 and 1.5

114

800 5
700
600
500/
400 .
300
200

100

GO 0.1 02 03 04 05 00 01 02 03 04 05

Temperature

Fig. 7. Thermal conductivity as a function of temperature: (a) structurally
ortlered case R, = 1, and R, = 1 with R, = 1 (squares), R, = 1.25 (circles),
R, = 1.5 (triangles); (b} structurally disordered cases R, = 1.1 (solid lines)
and R, = 1.25 (dashed lines). The top, middle and bottom curves are for
R, = 1.0, 1.25 and 1.5, respectively.

and R,, = 1 for a 50:50 concentration. In Fig. 7 the inverse
temperature dependence is plotted with a dotted line to
guide the eye. Fig. 7(a) depicts the temperature dependence
for R, =1 with the square, circle and triangle symbols
identifying the three values of R, (1.0, 1.25 and 1.5), respec-
tively. SDs are shown for the R, = 1.25 case and are repre-
sentative of the other cases. Fig. 7(b) gives results for
systems with R, = 1.1 as solid lines corresponding to
R,=1.0, 1.25, and 1.5 (top, middle and bottom) and
dashed lines for R, = 1.25. SDs are about 1-2 units of &
for all results. It is apparent from these plots that the
ordered crystal with no core radius disorder follows
the 1/T relationship very closely (Fig. 7(a)) while any of
the compositionally disordered systems (Fig. 7(b)) present
a nearly constant x as a function of temperature. This
degrading of the thermal conduction is similar to that
predicted for covalent binary crystals with defects [6] where
x was found to be essentially temperature independent. In
our study it should be remembered that compositional dis-
order in which the atomic radii differ by only 10% produces
a dramatic reduction of x to a minimum value, which keeps
fairly constant for the temperatures investigated, In sum-
mary, we emphasize that the radii disorder has an extre-
mely strong effect to reduce x, bringing its value to be a
minimum for all calculations with widely varying material
parameters.

The last part of this study pertains to changes in the rel-
ative concentrations of the A and B atoms. Relative con-
centrations of A:B atoms of 25:75 and 75:25 were
analyzed in addition to the 100% type A and the 50:50 mix-
ture cases discussed above. As the concentration changes,
the number of smaller atoms increases relative to the larger
atoms having a significant effect on p as shown in Fig. &.

In analyzing mixtures with the 25:75, 50:30 and 75:25
relative concentrations over the range of 7, R,, R, and
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Fig. 8 Density as a function of temperature for different relative
concentrations in the mixture. Filled symbols are for R, = 1.1 and open
symbols are for R, = 1.25. The circle, triangle and square are for R, = 1.0,
1.25 and 1.5, respectively. The case of R, = R, = R, =1 is shown as
CrOSses,

R,,, the behavior of k was very similar to that of the 50:50
case. Table | summarizes all results of x for the various dis-
order cases at five temperatures. Once again, for these rel-
ative concentrations studied, the maximum decrease in x is
through R,.

Additionally, as is shown in Fig. 6(c) for the 50:50 rela-
tive concentrations, the effect of increasing R, while R, and
R, remain constant, produced an apparent slight increase
in x. This effect is also present for the other relative concen-
trations as reported in Table 1.

125

10.0

5.0

Relaxation Time

25

Fig. 9. Relaxation time as a function of parameter ratios for the 50:50
sample: (a) dependence on K, with R,=1 and R, =1 {squares), 1.25
(circles), 2.5 (triangles); (b) dependence om R, with R, =1 and three R,
values as in ja).

To compute the lattice thermal conductivity from Eq.
(6), the autocorrelation function ((z) was approximated
by an exponentially decaying cosine function. In Fig. 9,
the vertical axis on both plots depicts the system relaxation
time and 1s plotted as a function of R, in Fig. 9(a) and R,,
in Fig. 9(b). The relaxation time appears to be directly
related to the amount of core radii and mass disorder pres-
ent in the sample. The change in relaxation time due to the
& disorder is small as evidenced by the three curves in
Fig. 9(a) and (b).

Table 1
Lattice thermal conduetivity for solid mixtures with various relative concentrations and at T = 0,042, 0.083, 0.167, 0.333 and 0.500 (top to bottom in each
table entry)
Relative concentration R,=1,R,=1, R, =1 R, R, R,
11 1.25 1.25 1.5 16 2.1 33
100% A 476.6
2001
79.5
319
14.5
T5% A, 25% B 88 58 3315 184.2
0.5 Tl 2011 138.8
10.4 [iX4) 98.9 754 229 124 7.2
10.6 6.0 374 358
6.8 F2 16.8 18.1
50% A, 50% B 8.3 9.1 3294 230.1
8.5 6.3 193.2 164.7
84 6.0 984 1131 189 94 48
10.0 6.1 41.8 49.9
7.6 55 3.5 26.2
25% A, T5% B 7.5 94 231.2 2751
9.0 6.2 3318 199.6
16.9 6.3 107.9 141.3 228 14.7 3.6
112 58 553 79.1
8.5 54 24.6 0.8

For any parameter ratio # 1, the other two parameter ratios = 1. Values are in reduced units,
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4. Summary and conclusions

Throughout this work, it has been shown that studying
the effects of radi, mass, interatomic interaction disorder
and temperature can be demonstrated in a computer-simu-
lated environment. Our work was performed on a PC with
a single Pentium 4 processor (3.2 GHz) and each NPT-MC
and MD run consumed about 9 and 4 h of processing time,
respectively, per data point, making the work reasonable to
accomplish.

The results of this work show that compositional disor-
der at the nanoscale in crystalline binarv mixtures decrease
the lattice thermal conductivity in a dramatic fashion.
Findings in this work are important for tailoring the syn-
thesis of new materials with poor heat conduction charac-
teristics. The relative properties of L-J solid mixtures are
summarized below in order of importance for degrading
the lattice thermal conductivity:

(1) van der Waal radii. Atoms should have different radii.
Even a 10% difference brings the lattice thermal con-
ductivity to a minimum constant value and sup-
presses the inverse temperature depletion. The
reason for the dramatic degradation of the heat con-
duction is the additional phonon scattering imposed
at the nanoscale by atoms that are at the threshold
of collapsing the crystal structure of the solid.

(2} Muass. Atoms should have different masses. Differ-
ences of 60% in mass decrease the thermal conductiv-
ity by about half at any temperature below the
melting point.

(3) Interatomic interaction strength, Atoms should have
almost equal values. With a 50% difference in
strength, thermal conductivity can be increased by
about 25%, which 1s not a desired outcome.

(4) Temperature. Temperature is a key factor for any
application searching to deplete heat conduction
due to atomic vibrations. This work was done for

reduced temperatures of up to 0.5, which are below
the meting points of the L-J compositionally disor-
dered crystals studied. In this temperature range,
when radi disorder exists, the lattice thermal conduc-
tivity is essentially temperature independent and
markedly degraded due to the enhanced phonon scat-
tering induced by atoms with different radii placed
randomly on an fcc crystal.

Composition relative concentration. Relative concen-
tration of the two components in the crystal appears
to have only a minor effect on the thermal
conductivity.

—
N
—

References

[1]Lukes JR, Dy L,
2000;122:536 43,

(2] Feng X-L, Li Z-X, Guo £-Y. Chin Phys Lett 2000;18:416 9.

[3] McGaughey AJH, Kaviany M. Int J [Heat Mass Transf
2004;47:1783 98.

[4] Chen ¥, Li DD, Yang J, Wu Y, Lukes JR. Physica B 2004;349:270.

[5] Heino P. Phys Rev B 2005;71:144302.

[6] Li 1, Porter L, Yip S. J Nucl Mater 1998;255:139 52.

[7] Berman R. Thermal conduction in solids. Oxford: Clarendon Press;
1976,

[8] Jonson M, Mahan GD. Phys Rev B 1980;21:4223 9.

[9] Frenkel D, Smit B. Understanding molecular simulation. New York
(NY): Academic Press; 1998,

[10] Balescu R. Equilibrium and non-equilibrium  statistical mechan-
ics. New York (NY): Wiley; 1979 [Chapter 21]

[11] Green MS. J Chem Phys 1952;20:1281 95;
Green MS. T Chem Phys 1954;22:398.

[12] Kubo R. J Phys Soc Jpn 1957:12:570 86.

[13] Ladd AJC, Moran B, Hoover WG, Phys Rev B 1986;34:5058 64,

[14] Gillan MJ. J Phys C Condens Matter 1987;20:521 38,

[15] Chen Y, Lukes JR, Yang J, Wu Y. J Chem Phys 2004;120:3841 6.

[16] Garzon IL, Long XP, Kawai R, Weare JH. Chem Phys Lett
1989;158:525 30.

[17] Tretiakov KV, Scandolo 8. T Chem Phys 2004;120:3765 9.

[18] Kaburaki H, Li I, Yip S. Matter Res Soc Symp Proc 1998;538:503 &,

[19] Christen DK, Pollack GL. Phys Rev B 1975;12:3380 91.

Liang X-G, Tien C-L. Trans ASME

116



A2

Published Paper: J. Phys: Condens. Matter vol21, pp345402-3454009,
5 August 2009 [10]

IOP PupLisamG

JournaL oF Pavsics: ConDENSED MATTER

1. Phys.: Condens. Matter 21 (2009) 343402 (3pp)

doi:10.1088/0933-8084/2 1/34/345402

Effects of the interface between two
Lennard-Jones crystals on the lattice
vibrations: a molecular dynamics study

John W Lyver IV and Estela Blaisten-Barojas'

! Computational Materials Science Center and Departiment of Computational and Data

Sciences, George Mason University. Fairfax, VA 22030, USA

2 Office of Safety and Mission Assurance. National Aeronautics and Space Administration,

Washington, DC 20546, USA
E-mail: blaisten @ gmu.edu

Received 10 June 2009, in final form 19 July 2009
Published 5 August 2009
Online at stacks.iop.org/IPhysCM/21/345402

Abstract

Effects on the density of vibrational states due to the interface created hetween two types of
solid Lennard-Jones systems is investigated as a function of the atomic masses and model
potential parameters. The interface is responsible for a depletion of modes at low frequency and
an enhancement at higher frequencies when the potential parameters are increased relative to
the reference solid. Opposite trends are ohserved when the atomic mass increases. When a heat
current is established across the interface the density of vibrational states at low frequency is
increased and the temperature profile across the binary sample displays a discontinuity at the
interface, which is more pronounced as the material parameters become more dissimilar. The
thermal boundary resistance ( Kapilza resistance) increases as the difference belween the two
material properties increases and decreases with inereasing temperature. It is predicted that, as
lemperature decreases, the Kapitza length increases as T2 al the nanoscale. Plots of the
thermal conductivity as a function of temperature for solids with various parameters are

provided, all of them showing the expected 7'~ behavior,

1. Introduction

Large-scale integraled circuilry, components and sensors rely
on internal selid-solid interfaces for controlling the operation
of the device and on efficient thermal energy management
for dissipating heat generated inside the device. It is then
unportant to examine the ability ol a device Lo transport heat
when two solids meet at an interface. An appropriate selection
of materials could enhance or restrict the flow of thermal
energy. Since the discovery of a thermal boundary resistance
at cryogenic solid-liquid interfaces by Kapitza [1], researchers
have invested efforts in understanding the cause of the thermal

resistance and to quantify its magnitude as a function of

both material properties and parameters such as temperature
and pressure. Solid-solid thermal boundary resistance has
often been referred to as the Kapilza resistance (§ig). In
solids, this boundary resistance plays an important role in
determining heat flow, both in cryogenic and room-temperature
applications. The acoustic mismatch model (AMM) and the

0953-8984/09/345402+08530.00

diffuse mismatch model (DMM) [2, 3] are gquite accurate
for describing thermal transport at a solid-solid interface at
low temperatures. It is also accepted that the AMM is
more applicable at a few degrees kelvin, while the DMM
works better at higher temperatures. However, at intermediate
cryogenic temperatures and above, the experimental £2g is
larger than that predicted by AMM and DMM. These models
lack an appropriate description of the phonon scatlering caused
by various sources located in the immediate proximity of the
interface. More recently, several works have used molecular
dynamics atomistic simulations to examine properties such
as the boundary resistance at flat interfaces £lg [4], diffuse
scattering of the vibrational states at each side of the
interface [3, 5], structural ordering on each side of an
interface [3, 4, 6-9] and the effect of mass changes on each
side of the interface on the eventual overlapping of vibrational
states and energy transport [10, 11].

In parallel to the above-mentioned atomistic work,
a number of authors have addressed a variely of non-

@ 2009 [OP Publishing Ltd  Printed in the UK
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equilibrium molecular dynamics (NEMD) techniques and
established these methods as the best for the delermination
of thermal properties in non-homogeneous syslems such as
grain boundaries [12-16]. For example, NEMD was used
for obtaining the lattice thermal conductivity by simulating
the directional heat flow perpendicular to infinite thin
films in one-, two-or three-dimensional Lennard-Jones (LI
systems [4-6, 10-19].

NEMD has been used to determine the Kapitza
resistance mostly at grain boundaries or one-dimensional
systems [4, 5, 16, 18, 20]. Other studies [5, 16, 18, 21, 22]
have proposed that the Kapitza effect is due to reflection of the
harmoenic phonons at the interface or grain boundary, inelastic
effects and anharmonicities. References [5, 16] are studies
of a silicon grain boundary simulated with the Stillinger—
Weber potential. The authors in [18] simulate the interface
of two fee lattices where one solid is composed of L] atoms
and the other of Morse-potential atoms. Reference [21] is a
study of the thermal boundary resistance of an LJ system with
geomelry similar to the one presenled in this paper; however,
the acoustic mismatch model is used instead of exploiting
directly the NEMD computer experiment results. The NEMD
was used in [22] to study the temperature jump at a liquid
solid boundary. Based on these few studies, it is apparent that
there is no general understanding of the Kapitza resistance as a
function of the atomic parameters entering in the modeling of
the materials.

This paper addresses lhe effects of an interface on the
atomic vibrations in Lennard-Jones (LJ) solids, without or with
a heat current flowing through the solid sample. Selection
of the type of materials could limit, encourage or restrict the
flow of thermal energy through a solid-solid interface. For
example, the effect of compositional disorder on the lattice
thermal conductivity (x) of binary LJ solids was analyzed
recently [23]. The present study expands that work by focusing
on the thermal boundary resistance occurring at the interface
between two LJ solids as a function of the ratio of atomic
parameters of these solids (L] parameters ¢, o and mass).
This paper is organized as follows: section 2 describes the
equilibrium (MD) and non-equilibrium molecular dynamics
(NEMD) methodology used and the geometry of the binary
LI system. Section 3 addresses the effects of the solid-solid
interfaces on the density of states of lattice vibrations. Results
of the lattice thermal conductivity and the thermal boundary
resistance as a function of the LJ parameters and mass are
presented in section 4. The summary in section 5 concludes
this paper.

2. Molecular dynamics approach: equilibrium and
non-equilibrium

For all MD simulations a square-prism computational box
elongated along the X axis is used with periodic boundary
conditions in the two perpendicular directions ¥ and Z. Aloms
within this computational box are initially located in face
centered cubic (fee) lattice sites and the number density is
p=107atT =012and p = 1.04 at T = 0.33, Next,
the computational box is divided in two equal-size elongated

JW Lyver IV and E Blaisten-Barajas

prisms. The dividing plane is located at X = 0 and each half-
box is filled with atoms of either A or B type. An interface
develops between these two systems. The interactions between
atoms are of LI type. Atoms on the posilive X axis belong
to the reference system and have LJ paramelers €, (polential
well), o4 (hard core radius) and atomic mass ma. Aloms
on the negative X axis belong to a system that has either
one L] parameter (eg, op) or mass (myg) different from the
corresponding parameter of the reference system. Parameters
for the LI interactions between atoms located on each side
of the interface follow the combination rules: exp = ,/€xén
and oxp = (o4 + op)/2. Typically the computational box
contains 2000 atoms of both types located within a prism of
size 5 % 5 x 20 fce unit cells (4 atoms/unit cell).

The orientation of the one-component crystal is set as
[100] along the X direction in the computational box. For
the two-component system, the [100] orientation is adopted
for both components. For B atoms which have a o parameter
different from the A atoms the number of XY planes and
XZ planes in the B region is chosen such that the cross
section of the computational box conlaining B atoms is
commensurate with the cross section of the prism containing
A atoms. Quantities are expressed in reduced units with
respect (o paramelers of the reference A atoms. Thus, units of
mass, length, energy, lime, lemperature, [requency and thermal
conductivity are ma, o4, €4, fa =y maoy/ca, alk, IA' and
k/(oala), respectively (k is the Boltzmann constant). The time
step in the molecular dynamic runs is Ar = 0.005. A radial
cutoff of 3.80, is adopted. When two different LI systems
are in contact, the following values of the parameter ratios are
considered: (i) for the parameter €, R, = ep/ea = 1.0, 1.25,
1.5 and 2.0; (ii) for the parameter o, R, = og/os = 1.0, 1.1
and 1.2 and (iii) for mass, R, = mp/ms = 1.0, 1.6, 2.1 and
3.3.

Because the cross-section edges of the computational box
are smaller than its length, effects of periodicity could be
significant on dynamical properties. To make certain that
our results do not contain unrealistic correlations such as
correlation relaxation times Ty, exceeding the time . for
spatial translations to become periodic, both of these times
were closely monitored. For the monoatomic reference system
atl T = 0.12 and 0.33, calculation of these two limes was
repeated for various computational box cross sections showing
that 5 > 5 fec unit cell cross sections (100 atoms) yield a pp,
2.6ts, which is longer than T =~ 0.2fs. The T, value
is an average over ten different initial times of the velocity
autocorrelation function. Thus, effects of the boundary
conditions are negligible. All correlation functions used in
this work were followed for S12Af to avoid uncertainties that
begin to increase rapidly for longer times [24, 25]. From the
low frequency region of the velocity autocorrelation Fourier
transform, an estimate of about 3 is obtained for the sonic
velocity.

The non-equilibrium molecular dynamics set-up consists
of a simulated thermostat attached at each end of the elongated
computational box such that a temperature gradient would
develop across the sample. Each thermal bath contains 200
atoms in fee positions (5 x 5 x 2 unit cells) continuing
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the computational box. Atoms in each thermal bath move
according to a constant lemperature MD in which their
atomic velocities are scaled al every time step to ensure the
temperature desired for that bath. Atoms in-between these
two thermal bath regions move with iso-energy MD and data
are collected only on these central atoms (typically 1400
atoms) located in the prism-shaped computational box. When
a temperature drop exists between the two thermal baths, a
thermal energy current is eslablished along the prism and
the system is neither in thermal equilibrium nor in a steady
state. However, after a certain time the system reaches
the steady state and the thermal energy current is constant
along the length of the computational box in the direction
of the energy flow. This NEMD arrangement has been
used by other authors in calculations of the lattice thermal
conductivity [11-14, 17, 15, 16, 18, 21, 22].

Steady state data of all studied properties are averaged
over 100-atom subsets. Atoms in each subset are located in
equal-sized regions sliced perpendicular to the computational
box length. For the two-component systems (interface at X =
0, the type A atoms (reference) are located on the half-portion
of the computational box adjacent to the hot thermal bath that
contains A-type atoms only. The other half of the prism-shaped
box contains atoms of type B, which are adjacent to the colder
thermal bath built of B-type atoms only. As a resull of the
different dynamnics between the atoms in the thermostat and
the atoms in the active central region where data are taken,
a few planes of atoms adjacent to the thermal baths were not
considered in the reporting of results. A similar consideration
was adopted by other authers [13, 14, 17, 16].

3. Effect of the interface on the lattice vibrations

The velocity autocorrelation function for N atoms is defined as

N N
C) = ) _(5:(1) - 5.0)) / 2wl
=1

=1

(1)

where v, are the atom velocities. This C(f) is calculated at
different temperatures with iso-energy MD for the monoatomic
syslems and for the lwo-compoenent syslems conlaining an
interface separating B atoms from the reference A aloms.
Typical MD runs are 500000A¢ long to reach equilibrium
followed by 20000Af used for building 30 C(f) from
sequential time segments. Each €(f) has a length of 512Af.
Two temperatures are investigated: T 0.12 and 0.33.
The density of vibrational states (DOS) is obtained from the
Fourier transform of C(1) [26]. The normalized DOS of the
reference system containing A atoms is shown in figure 1
(solid line). When the L] parameters are given the values
in [27], the DOS in this work compares very well with the
published results [26]. Therefore, the elongated shape of the
computational box does not affect significantly the distribution
of vibrational frequencies.

When the three variable parameters €, o, m have values
different from the A-type atoms, the atomic vibrational
frequencies change with respect to the reference system.
Figure 1 shows lhe nommalized DOS of syslems enlirely

0.08

0.04

0.00
0.12 -

(b)

DOS(eq)

DOSieq)

Frequency

Figure 1. Normalized density of states (DOS) of one-component
systems in thermal equilibrium for various 1.J parameters. Solid line
in all plots pertains to the reference system of A atoms.

(a) R, = 1.2(®),1.5(0),2.0(A) () R, = 1.1 (@}, 1.2 (A),

(c) Ry = 1.6 (@), 2.1 (0), 3.3 (A)

composed of B atoms with different values of the three variable
parameters compared to the DOS of the reference system
plotted as a solid line at T = (.12 (figures 1(a)(c)) and
T = 0.33 (figures 1(d)}~D)). Figures 1(a) and (d) show the
[DOS for three values of ep with the ratio R, = 1.25 (circles),
1.5 (squares) and 2.0 (triangles) while the other two parameters
o and mass are equal to the reference system (R, = R, = 1).
In the same manner, figures 1(b) and (e) show the DOS of a
system in which R, = 1.1 (circles) and 1.2 (squares) and
R. = R, = 1. Comparison of the reference system DOS
with the DOS of a system in which R, = 1.6 (circles), 2.1
(squares) and 3.3 (lriangles) and R, = R, = 1 is displayed
in figures 1(c) and (f). Tt is evident from these results that
there is a strong overlap between the DOS of the reference
system (continuous line) and the DOS of systems with different
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Figure 2. Normalized density of states (DOS) of binary systems in
thermal equilibrium relative to the DOS of the one-component
reference system for various LT parameters. (a) R, = 1.2 (®),
1.5(0), 20 (A)x(B) R, = 1.1 (@), 1.2(A) (c) Ry = 1.6(®), 2.1
(O), 3.3 (A)

parameters. It is to be noted that the DOS is shifted towards
smaller frequencies as the mass is increased, which is expected.
On the other hand, increases in € and, to a lesser extent, o
with respect to the reference system tend to add high frequency
vibrational modes to the DOS.

The presence of an interface affects the DOS. To study this
effect, an interface is constructed in the middle of the elongated
computational box, perpendicular to its length, by placing A
atoms on one-half of the box and B atoms on the other half.
Subsequently, this two-component system is equilibrated at
two temperatures 7' = 0.12 and 0.33 and the DOS calculated at
each of these two temperatures. Figure 2 shows the difference
between the normalized DOS of the two-component system
caleulated for different types of B atoms and the normalized
DOS of the reference system containing only A atoms. For
interfaces due to changes in ep, figures 2(a) and (d) show an
increase in the DOS of vibration modes at high frequencies

0.12 1
0.08

0.04 -

DOs

0.00
0.12

0.08 | s )

0.04

Frequency

Figure 3. Non-equilibrium DOS of the monoatomic reference
system of A atoms (O0) compared to the DOS in equilibrium (®) at
(@) Ty = 0.12; (b) Ty, = 0.33.

(60-80) and a decrease at lower frequencies around 2040,
both of which persist at 7 = 0.33. The effect is about the
same for all R, values. Interfaces due to the different oy
shown in figures 2(b) and (e) display DOS changes similar to
the changes in e but now in different frequency regions. On
the other hand, as shown in figures 2(c) and (f), the effect of
mass changes produces a depletion of modes in the DOS in
the range 30 < @ = 50 and an increase of mode density in
the lower frequency region 10 < @ < 30. The mass effect is
more acute the larger R, becomes, in agreement with previous
findings [11]. In all cases the effect of the interface is identified
by DOS changes above and below a characteristic frequency of
e == 30,

The DOS is also affected when the system is not in
thermal equilibrium. To study this effect the reference system
composed of only A atoms is connected to the hot and cold
thermal baths such that the NEMD set-up allows for the system
to reach a steady state after 500000Af. The subsequent
11 000A¢ are used for production. In the steady state of heat
transfer, a temperature gradient develops along the length of
the computational box. The temperature at the center of the box
is the system average temperature. For this non-equilibrium
(NE) system, 16 C(t) of length 512At were sequentially
constructed from the production results and the DOS obtained
from their Fourier transforms. Figure 3 shows the reference
system normalized DOS in thermal equilibrium (filled circles)
compared with the non-equilibrium {empty squares) situation
at two average temperatures I = 0.12 and 0.33. FError bars
identify the standard deviation of the sample of 16 correlation
functions. It is clearly seen that at the higher temperature the
DOS displays marginal changes when the system is in NE.
However, at the lower temperature the DOS of the NE system
is slightly enhanced around @ = 30. For the binary systems
with an interface, figure 4 shows the differences between their
NE DOS and the equilibrium DOS. In systems with ¢ and
mass changes and at the lower temperature (T = 0.12) there
is a modest increase of the DOS at frequencies around 30
and a small decrease around 50-60 due to the heat flow. At
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Figure 4. Nop-equilibrium DOS of binary systems relative to their
DOS in thermal equilibrinm for various LI parameters.
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T = (.33, the DOS is enhanced in a broader range at the lower
frequencies and depleted at higher frequencies for all binary
systems involving atoms with two values of the parameter € or
the mass. However, two-component systems with different o
(figure 4(b)) display an enhancement of the NE DOS at higher
frequencies and a depletion at low frequencies. This effect
tends to disappear at higher temperatures.

Summarizing, at T = (.12 the overall effect of a two-atom
type interface in equilibrium is to modestly enhance the DOS
at frequencies above . and deplete it below this characteristic
frequency for K., R, = 1 whereas the opposite behavior
is demonstrated for R, = 1. When these two-component
systems are not in thermal equilibrivm, at T = 0.12 the
trend is an enhancement of the DOS below the e, region for
systems with different e or mass. This is indicative that the heat
flow enhances scattering of the transverse frequency phonons.
These trends are smeared out at a higher temperature. On the

" :\\ (b)
E‘ agg.“u. ::\a S
100 AR

P BT 1

20 . t
0.1 0.5 04

0.5 0.1

Temperature

Figure 5. Thermal conductivily as a function of lemperature. Solid
dismonds pertain o the reference LJ system and dotted line (in
(a)-(c)) is the best fit to these values. Crosses and standard deviation
are from [23]). (a) R, =0.7(®),0.8 (&), 0.0 (M), 1.25(0), 1.5(A)
and 2.0 (©Q). Stars and standard deviations are from [23]:

(BY R, =0.7(®), 0.8 (4),0.9(m), 1.1(0),1.2(A)and 1.25(0);
(C) Ry = 0.3(9),0.5(A),07(m),1.6(0) 2.1 (L) and 3.3(0),

other hand, interfaces built with atoms that have different o
values display a reverse behavior where the DOS is depleted of
mades at frequencies below a, and enhanced above it.

4. Lattice thermal conductivity and thermal
boundary resistance

In the NE situation, a temperature gradient VT sets in due
to the flow of energy across the computational box. Once
the system reaches a steady state, the Fourier law of heat
conduction is valid such that

J=—eVT (2)
where J is the heal current and x is the latlice thermal
conductivity [15, 16].  An atomistic inspection is obtained
when J is obtained from atomic quantities [28]:

W R (L
J—V%E‘u_;+w%%mi.ﬁj;m (3)

where E; is the total energy of each atom, #; is the velocity of
each atom, Fj; and 7i ; are the forces and interatomic distance
vectors between each pair of atoms and V is the volume. Both
J and VT can be caleulated in the NEMD set-up described
in section 2 and the lattice thermal conductivity & is then
obtained from equation (2). With this geometrical set-up,
the heat current components perpendicular to the energy flow
should be negligible. Indeed, that is the case in our calculation.
The temperature difference between the two thermal baths was
chosen to be large with respect to the temperature fluctuations
but small enough to reproduce attainable laboratory situations.
In our simulations the cold bath temperature is typically about
60% of the hot bath temperature. This choice is similar to
the 63%—70% employed in other works [13, 14, 19]. Figure 5
shows the thermal conductivity as a function of temperature for
one-component systems with different values of the parameters
€, 0 and mass. Six different masses and LJ parameters
were considered: (i) R, = 0.7, 0.8, 09, 1.25, 1.5 and 2.0
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(figure 5(a)); (i) R, = 0.7, 0.8, 0.9, 1.1, 1.2 and 1.25
(figure 5(b)) and (iii) R, = 0.3, 0.5, 0.7, 1.6, 2.1 and
3.3 (figure 5(c)). In all cases the dotted line corresponds
to the reference system R. = R, = R, = 1. Standard
deviations are shown on the figure, however, their values
of about 3%-7% of the average value are within the size
of the symbols. The parameter dependence of & compares
well with our previous work within the Green—-Kubo (GK)
approach [23]. This alternative method for caleulating « yields
large standard deviations at low temperatures, pointing out one
of the disadvantages of the GK versus the NEMD approach.
The expected inverse temperature relationship for crystalline
systems is clearly shown by the log-log plot of figure 5. This
can be exploited to interpolate between different L] systems,
as also suggested by other authors [4, 5, 16, 18, 21, 22].
Based on our results such an inferpolation yields a power law
relationship for each varied parameter (e, o, mass): R':’D', R, o
and R,

It is well known that solid-solid and liquid-solid
interfaces act as a resistance lo the heal flow perpendicular
to them and give rise to the Kapitza resistance (k).
This effect is measurable because of the discontinuity in
the temperature profile occurring at the interface. Such
temperature discontinuity is quite distinct across an interface
built with two types of atoms and is detectable even for
1D systems where atoms are linked harmonically [4]. Ouwr
caleulation focuses on Qg of binary L] solid—solid interfaces as
a function of €, ¢ and atomic mass. Figure 6 shows a typical
temperature profile at T = 0.3(R, = 33, R, = R, = 1)
where the temperature discontinuity at the interface A Fipterface
is clearly seen. Following [16], §2k is calculated as

1 VT
=Ky
SEK A I'm[cll':u:c

4

where xg is the bulk thermal conductivity. However, since
we know the x on each side of the solid—solid mterface, the
atomistic approach for calculating £2g is to use the actual «
and VT values for the LJ crystal on each side of the interface.
In fact, a thermal current sees the interface as two resistances in
series because the heal current must be the same on both sides
of the interface if no additional energy sources or sinks exist.
Tt follows that

82k = ATinertace (

1 1 s
KaVTy xBVTh) 2
where xap and VT g are the thermal conductivity and
temperature gradient of the LI systems A and B that meet at the
interface. Figure 7 shows the dependence of the temperature
jump A Fipperiace at the interface and the resulting £2x of the two-
component systems for various lemperalures and parameter
ratios. It is observed that, as the parameler ratio moves away
from the 1:1 ratio (no inlerface), the temperature discontinuity
and the §x become more pronounced. Additionally, as the
average temperature in the system is increased, the interface
temperature discontinuity and the Kapitza resistance are less
pronounced. It can also be seen that the Sig increases at about
the same rate with changes of K., R,, or K,. In general,
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Figure 6. Temperature profile of the NE LJ system with interface at
X = Oand R, = 3.3 at average temperature T = (.33, Error bars
are the standard deviation of the NEMD run,

the building up of this thermal resistance is assigned to an
increased reflectance of phonons by the interface [3, 21]. As
discussed in section 3 and shown in figure 2, our equilibrium
MD simulation shows that the interface increases the DOS of
vibrational states in the region of high frequencies for two-
component systems with different ¢ or o but for systems
with different masses the increase occurs at lower frequencies.
Based on these results, it immediately follows that two-
component systems with different € or o should display larger
$ig than the case with different masses at the same temperature.
Nlustrated in figpure 7 is a confirmation of this result. However,
in the non-eguilibrium situation, when the system reaches the
steady state, the DOS of vibrational states is significantly
populated in the region of @, only for systems with different
e and mass, as shown in figure 4. Based on this resull, it is
then expected that the ATiemce fOr tWo-component systems
with different ¢ and mass would be larger than for systems with
different o, as is shown in figure 7. Increasing the temperature
should reduce the Kapitza resistance and the temperature jump
at the interface should be decreased. Our resulls confirm both
effects.

An additional characteristic quantity of interfaces is the
Kapitza length lgx = w2k associaled with the effective
thickness of material involved in the interface [1, 22]. It has
been theorized [22] that, when x is large, lx will be large
and the effect may be observed but no data were provided
for supporting this ansatz. In the example of figure 6, values
of & and $2g are 32 and 0.3, respeclively, yielding an [g of
about 9. This example was studied for several lengths of
the computational prism to determine their eventual effect on
Ix. The §2g caleulated for prism-shaped computational boxes
with lengths of 42.3, 73.7, 105 and 136.4 were all within the
standard deviation of 11.4%, indicating that this property is
basically insensitive to the length of the computational prism
and the temperature jump at the interface is observed in all
cases. From our results summarized in figures 5 and 7, we
predict that /g varies as 1/ T2,

We also studied the effect on « and $2y due to changes
in the orientation of the crystals on each side of the interface.
First, it was determined that one-component systems did not
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give rise to a discontinuity in the temperature at the interface
when the interface was created by rotating atoms in half of the
box to Miller indices [110], [111],[120], [121] and [122] while
keeping atoms in the other hall of the box at [100] (reference
syslem). Second, the x for these rolated systems is within the
standard deviation of values reported in figure 5. Third, in the
case of two-component systems in which the A system is in the
[100] orientation and the B system is rotated and its parameters
change, the results for the temperature jump and the Sdg are
within 3%-9% of values reported in figure 7. Based on these
calculations, we conclude that the relative orientation of the
crystal planes meeting at the interface do not affect the thermal
properties.

5. Conclusions

In this work we have quantitatively demonstrated the influence
of a two-atom lype interface between two LJ solid systems on
the density of vibrational states as a function of the atomic
mass and L] parameters. A characteristic frequency of . = 30
is predicted below which the DOS is depleted and enhanced
above it for R., R, = 1 while the opposite behavior is
demonstrated for R, = 1. However, when a thermal energy
flow is established the DOS is enhanced below «, and depleted
above it for the cases R., R, = 1. This is indicative that
the heat flow enhances scattering of the transverse frequency
phonons only in these two cases. At higher temperatures these
effects are less visible.

The NEMD computer experiment of two-component 1LJ
systems sharing an interface leads to very clear observations
that allow for identification of the thermal boundary resistance
and its dependence on the L] parameters and atomic mass.
Both the Kapitza resistance and the temperature discontinuity
at the interface increase as (he parameter ratio belween
properties of the targeted material to the reference material
moves away from the value of one. Additionally, both the

Kapitza resistance and the interface temperature discontinuity
increase with decreasing temperature. ‘We predict that the
Kapitza length increases as 1/7% as the temperature is
decreased and is independent of the size of the compulational
box. The relationships conlained in this paper may serve as
a reference for scienlisls and engineers in search of novel
combinations of materials in problems related to thermal
management at the nanoscale.
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Abstract

This paper presents results a non-equilibrium Molecular Dynamics approach to determine the lattice
thermal conductivity of nanowires, nanotubes, and nanofilaments of silicon carbide. The nanostructures
are modeled with the classical potential proposed in J. Appl. Phys., 101, 103515 (2007). These
nanostructures display very low lattice thermal conductivity, about 50 times smaller than bulk SiC.
Among the studied nanostructures, the 3C | 100] nanowires have the highest thermal conductivity, and
the (3,5) nanotubes display the lowest. Dependence on temperature of the lattice thermal conductivity
exhibits an inverse power relationship only for nanowires 3C [ 100]. 2H [110] and the (4.0), (2.2)
nanotubes. All other structures have thermal conductivities decreasing more gently as a function of
increasing temperature, except for nanowires 3C and nanotubes (5,5)where the thermal conductivity is
almost constant as a function of temperature.

Keywords: thermal conductivity, non-equilibrium molecular dynamics, silicon carbide, SiC nanowires,
SiC nanotubes, SiC nanofilaments

conduits/sinks or field emitting units [2]. An

1. Introduction. important question is to whether these
Nanostructures began to emerge in the mid- nanodevices are good or bad heat conductors and
1980s as building blocks useful to assemble at the same time they remain stable at operational

temperatures. Silicon carbide (8iC) is a broadly
used material in nanoelectronics and has proven
to sustain a variety of stable nanostructures [2-4].
SiC nanotubes and nanowires have been
fabricated experimentally [2,4], and a multitude
of hollow fullerene-like clusters have been
predicted which could be useful in building
nanodevices [3].

larger materials and design special
macromolecular constructs with novel
mechanical and thermal characteristics. Today,
nanodevices have emerged as fundamental for
achieving improved mechanical, thermal, and
electronic controls. Among other properties, the
thermal conductivity of the device may be
critical to the control function and the stability of
the macro-system itself [1]. One postulated Carbon and silicon are both group-IV elements
application of nanodevices is to act as heat that exhibit grﬁ and gp3 bonds. These bonds
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cause bulk SiC to be among the hardest materials
and to be well suited for devices being operated
in extreme environments [5]. In fact, bulk SiC
has a wide band gap [6], high thermal
conductivity [7], and is resistant to various forms
of radiation [8]. It has been postulated that the
use of SiC in nanostructures and nanodevices
should exhibit equivalent characteristics [3].
Although experimental advances are seen every
day, it is still difficult to perform measurements
of thermal properties at the nanometer scale.
Therefore, computational simulations are useful
for adding understanding of properties and
mechanisms in systems at the nano-scale. A
number of non-equilibrium molecular dynamics
(NEMD) studies for the determination of thermal
properties in non-homogeneous systems have
been published [9-15]. For example. NEMD was
used for obtaining the lattice thermal
conductivity by simulating the directional heat
flow perpendicular to infinite thin films in one-,
two-, or three-dimensional Lennard-Jones
systems [9,11,16]. However, little has been
investigated for thermal characteristics of SiC
nanostructures, although a good number of
atomistic simulations addressing thermal
properties of SiC are available [17-22].
Atomistic simulations of energetic stability and
mechanical deformations of SiC nanowires and
nanotubes [23-25] have been put forward using
the Tersoff potential [26]. Electronic structure
studies of SiC nanocages, nanotubes, and
nanowires have been published, both within
density functional theory [3,27] and tight binding
[28] approaches. Studies of thermal conductivity
of SiC nano-guides using the Tersoff potential
have predicted a strong degradation of the
thermal conduction ability [29]. A study of
thermal transport in SiC nanotubes within the
Green-Kubo approach for calculating the thermal
conductivity has been put forward [30].
However, this approach is adequate for
homogeneous, isotroptic systems, which is not
the case in nanotubes.
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This work addresses the determination of the
lattice thermal conductivity of four types of SiC
nanowires, and a variety of nanotubes with
zigzag and armchair chiralities and different
diameters. The approach is based on NEMD
employing a potential proposed in Ref. [20]. The
work builds on our previous NEMD
implementation [16] in which we examined
thermal properties of thin films due to interfaces
between two different LT films. Additionally,
nanowires and nanotubes stable configurations
obtained in previous work [28] are used as
starting points for the atomistic simulations.
This paper is organized as follows: section 2
describes the combination of equilibrium
molecular dynamics (MD) and NEMD
approaches used for the numerical determination
of the lattice thermal conductivity. Section 3
addresses the determination of the lattice thermal
conductivity in the different nanostructures and
presents our results for nanowires, nanotubes and
nanofilaments. The summary in section 4
concludes this paper.

2. Molecular Dynamics Approach:
Equilibrium and Non-equilibrium

To simulate the interaction between atoms in
SiC, the model potential proposed by Vashishta,
et al. is used throughout [20,21]. This model
potential includes two-body charge multipole
interactions as well as three body terms
describing the covalent bond bending/stretching
with a version of the Stillinger-Weber potential
[31]. Thus, the total potential of the system is
given by

U=X; U(Z)(Tij) + Xl jer U(B)(Tr'j: r) (1)

Here, n is the total number of atoms, U @ s the
2-body term given by

Hii

where 73 is the distance between toms 7 and ,
H;; is the strength of the steric repulsion of
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23.67291 eVA for Si-Si, 447.09026 e VA for Si-
C, and 471.74538 e VA for C-C interactions, Z; is
the effective charge of +1.201 e for Si and -1.201
for C, I;; is the strength of the charge-dipole
attraction of 2.1636 e2A3 for Si-Si, 1.0818 e2A3
for S1-C, and zero for C-C interactions, W;; is the
van der Waals strength of zero for Si-8i and C-C,
and 61.4694 e VA® for Si-C interactions, 13518
the exponent of the steric repulsion term of 7 for
Si-Siand C-C, and 9 for Si-C interactions, A and
& are screening lengths of 5.0 A and 3.0 A,
respectively.

The 3-body term U @) in Eq. lis given by

U[3j (Tijlrik) == R(SJ(Tu,Tik) P(g)(Oﬂk) (3)

where R® is the bond-stretching interaction and
P®) is the bond bending potential. The
contribution R®) is defined as

¥
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where, Byy, is the interaction strength of 9.003

eV, y is a unit conversion of 1A, and §(r) is
a step function cutting the force when
distances between the 1-j or j-k atoms are

larger than 7.35 A The bond bending

R®(rij,7i) = Bjexp (

zeaza

consistent with optimized and stable geometries
optimized under the tight-binding approximation
[28]. The alternation of Si and C atoms in these
systems is such that bonds of around 1.9 A
[3,20,21,27,28] are the dominant majority.

The first stage of our simulations is the
determination of wires and tubes stability under
the model potential. This is achieved by
equilibrating with constant energy MD the open-
end wire or tube systems at various temperatures.
Runs to equilibrate the systems are performed for
about a half million time steps of At=03x 10"
sec.

The NEMD stage is achieved through a setup
consisting of a simulated thermostat attached at
each end of the elongated tube or wire that has
been equilibrated at a desired temperature. As
depicted in figure 1, each thermostatis a
contimiation of the tube or wire contaimng about
100-150 atoms that arc kept at a constant
temperature. One thermostat is kept at relatively
high temperature and the other thermostat is kept
at lower temperature such that a temperature

Heat Flow
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PE(@...) =
( ﬂk) 1+ij(cas(@j,k)fcos(@))z
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where 0, 1s the bond angle between j-i-k atoms,
® is the reference angle of 109.47%and Ciix =
5.0. Even though the interior angles in a
hexagon are 120°, the 109.47° is the relaxed
angle for a Si-C-8i or C-Si-C bonds [19-21].

For all MD simulations elongated SiC tubes,
filaments, and wires are laid along the X-axis.
No periodic boundary conditions are used. Our
initial configurations are nanowires obtained
from cuts of the 3C and 2H crystalline polytypes,
and nanotubes with either armchair or zigzag
chirality. These initial configurations are
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o
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Figure 1. Computational setup for the non-
equilibrium molecular dynamics simulations.

gradient would develop across the tube or wire.
The thermal baths are sized such that their length
along the X-axis is greater than 7.35 A, the cutoff
radius of the 2-body part of the model potential.
Atoms in each thermal bath are kept at a desired
constant temperature by scaling their velocities at
every time step. On the outside ends of the bath,
three-to-four planes of atoms are kept fixed in
position to prevent deformations of the cross
sections of the nanostructures. Atoms in the



region between the two thermal baths move
according to iso-energy MD and data are
collected only on these central atoms (typically
320 to384 atoms).

When a temperature drop exists between the two
thermal baths, a thermal energy flow is
established along the elongated tube or wire and
the system is neither in thermal equilibrium nor
in a steady state. However, after about 200
picoseconds the system reaches the steady state
and the thermal energy current is roughly
constant along the length of the nanosystem.
This NEMD arrangement has been adopted in
other lattice thermal conductivity calculations [9-
15,29]. However, in our case there are no
periodic boundary conditions in any direction as
in such works.

3. Lattice Thermal Conductivity of SiC
Nanostructures.

Because a temperature gradient sets in once the
system reaches a steady state, the Fourier law of
heat conduction is applicable, such that:

f N —K/GT (6)

where J is the heat current per umit volume and x
is the lattice thermal conductivity [8,10].
Atomistic inspection of J is obtained from [32]:

- 1 . e ey

J =5 B+ R T (V- F) T (D)
where E; is the total energy of each atom, V; is
the velocity of each atom, F; ; and 7}; are the

forces and interatorme distance vectors between
each pair of atoms, and V is the volume.

For the non-equilibrivm analysis, the data
collection section of each wire or tube shown in
figure 1 is subdivided in slices along its length.
Each slice contains typically 40 to 48-atoms.
The purpose of these sub-regions is the ability to
average properties locally within each slice.
Simulations are started for the equilibrated
configuration of all systems. Once the

temperature difference between the two
thermostats is established, there is a transient
time in which the average thermal current (Eq. 7)
in each slice is not constant. Similarly, during
this transient time, the temperature profile across
the length of the system (built from local
averages in each slice) is net linear. However,
once the steady state of thermal energy
conduction is reached, then the thermal current is
approximately the same in all slices, and the
temperature profile is remarkably linear. A
typical case is shown in Figure 2 illustrating both
temperature and thermal current profiles across
the length of a 3C nanowire at an average
temperature of ~300 K. Points in this figure
correspond to averages for each slice over 6 ps
after the steady state is reached. As aresult of
the different dynamics between the atoms in the
thermostat and the atoms in the active central
region where data are taken, a few planes of
atoms adjacent to the thermal baths were not
considered for reporting of results in the sections
to follow. A similar consideration has been
adopted in the literature by several authors
[11,12,16].
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Figure 2. Temperature and heat current across
the device. (a) Temperature profile. Error bars
identify standard deviations (s.d.). (b) Heat
current at an average temperature of ~300K.
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With this geometrical setup, the heat current
components perpendicular to the energy flow
should be negligible. Indeed, that is the case in
our calculation where the perpendicular flow is
around 1% of the flow along the length of the
nanostructure. Additionally, it is confirmed that
the longer data are averaged, the smaller the
perpendicular flow becomes. The temperature
difference between the two thermal baths is
chosen to be large with respact to the
temperature fluctuations but small enough to
reproduce attainable laboratory situations. In our
simulations the cold bath temperature is about
40% of the hot bath temperature. This choice is
similar to that employed in other works
[11,16,29].

Both f and T are calculated within the NEMD
approach described in the previous section and
then the lattice thermal conductivity x is obtained
from Eq. (6). The objective is to find k at five
temperatures: 150 K, 300 K, 500 K, 750 K, and
1000 K.

3.1 Nanowires

Nanowire configurations are obtained by carving
the zinc-blende 3C and the wnrzite 2H crystalline
polytypes of SiC along the [ 100], [ 111] and
[001], [110] directions, respectively. These
elongated cuts have been demonstrated to be
stable [28] and are shown in figure 3. During the
MD equilibration process these four nanowires
are extremely stable throughout the runs at all
temperatures in the range 150 K — 1000 K.
Indeed, these wires kept their structure up to
temperatures of 1000K. The equilibrium MD
average potential energies per SiC pair,
extrapolated to zero temperature, have values of -
11.75 eV, -11.46 eV for 3C [100], [ 111] and -
11.98 eV, -11.43 eV for 2H [100], [110]
nanowires. These results match qualitatively the
tight binding energies per SiC pair of -11.7 eV, -
11.0 eV for 3C [100], [111], and -11.6 eV,

-10.3 eV for 2H [001], [110] nanowires
calculated in Ref [28].
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[001]

2H
Figure 3. Cross sections of the SiC nanowires
cut from the zinc-blende 3C and the wurzite 2H

polytypes.

The MD equilibrated configurations of these four
nanowires were taken as initial configurations for
the NEMD calculation of the lattice thermal
conductivity k. The results of k as a function of
temperature are shown in figure 4. The 3C [ 100]
nanowire has the highest thermal conductivity,
which is expected since this is the most stable
wire among those studied here. The almost
constant k obtained for 2H [001] and 3C [ 111]
wires are close to predictions in Ref. [29].
Although the 3C [ 100] and 2H [110] wires,
present the expected T™' power law decrease as a
function of temperature, our resuls predict
thermal conductivities two orders of magnitude
lower than in bulk SiC measurements [7,18]. In
conclusion, nanowires are poor heat conductors,
a property that can be used in a variety of
nanodevices.
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Figure 4. Thermal conductivity as a function of
temperature for nanowires: 3C [ 100] (4),
3C[111] (A),2H [001] (o), 2H [110] (o). Error
bars identify s.d.

3.2 Armchair Nanotubes

Simulations are done on nanotubes with armchair
chirality, as shown in figure 5. Four armchair
nanotube diameters are considerad: (2,2), (3,3),
(4,4), and (5,5). When the MD equilibration
process is done on these nanotubes, not all
nanotubes maintain their initial shape. The
armchair (2,2) and (5,5) nanotubes are
structurally stable under the model potential and
remain in a tubular shape throughout the
simulation at all temperatures in the range 150 -
1000 K. However, the (3,3) and (4,4) nanotubes
collapse into flatten structures which we refer to
as nanofilaments F33 and F44. Moreover, these
new structures remain stable and equilibrate well
at the considered temperatures. Figure 5 shows
the resulting stable nanofilament structures. The
average potential energy per SiC pair
extrapolated to zero temperature is -11.4 eV for
both the (2,2) and (5,5) nanotubes and -11.5 eV, -
11.63 eV for the collapsed (3,3), (4,4) tubes. The
potential energies of both nanotubes are in
qualitative agreement with the tight binding
results of 10.0 eV, 10.5 eV [28] and are close to
those calculated with MD in Ref. [24]. In both
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the (2,2) and (5,5) single wall nanotubes, the
carbon atoms are slightly pushed toward the
outside of the tube surface and the silicon atoms
toward the inside. The puckering is about 0.1 A
and decreases as temperature increases.

Nanotubes
0O o
(;‘2.;” (5,5) \.lv‘—tl,

NanoFilaments

L300

(F33) (F44)
End Views

Figure 5. Structure of SiC armchair nanotubes
(2,2) and (5,5) and filaments F33 and F44.

Side Views

The dependence of k with temperature for these
armchair tubes and filaments is shown in Figure
6. The temperature dependence of x for tube
{2,2) follows a power law k~T 1. In contrast,
tube (5,5) presents an almost constant « as a
function of temperature. This prediction is
discrepant with results in Ref. [30] where the
Green-Kubo (GK) approach was used. We note
that the GK is appropriate for isotropic systems,
and thus is not adequate for structures such as
tubes. The power law relationship of k for the
nanofilaments is x ~T ~%¢5 indicating a more
gentle decrease with increasing temperature. The
fluctuations for these tube/filament systems are
quite large, as is visually seenin Fig. 6. For
clarity, only the positive standard ddeviation
(s.d.) is depicted in the figure.
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Figure 6. Thermal conductivity as a fiunction of

temperature for armchair nanotibes and

nanofilaments: (2,2) (), (5.5) (A) nanotubes,

and F33 (o), F44 (o) nanofilaments. Error bars

identify s.d.

3.3 Zigzag nanotubes

The zigzag nanotube (4,0) remains stable and
equilibrated well in a configuration simmilar to the
initial structure while nanotubes (6,0), (8,0), and
(10,0) collapsed into nanofilaments that acquired
shapes different than those obtained from the
armchair nanotubes. We refer to these
nanofilaments as F60, F80, F100 as a way to
identify their original nanotube configuration.
The resulting zigzag filaments have a (4,0) tube
twinnad on the side with other tubes. Figure 7
shows these resulting nanofilament structures,
showing that cross sections of filaments Fo0 and
F100 are comparable, namely a (4,0) distorted
tube twinned to hexagonal side tubes. On the
other hand, filament F80, has intercalated a (2.2)
tube intermixing tubes with differnt chirialitics.
This effect is consistent with structural changes
from hexagonal rings into rings of 5 or 7 atoms
observed by other researchers in SiC armchair
and zigzag nanotubes under thermal and
mechanical stresses [17-19,23]. The average
potential energy per SiC pair at a zero
temperature is -11.4 eV for the (4.0) nanotube,
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which compares well with the tight binding
energy of -10.5 ¢V [28]. The extrapolated-to-
zero-temperature potential energies of the
nanofilaments Fo0, FR0, F100 are -11.6, -11.7,
and -11.7 eV indicating that these structures are
very stable. The prediction is then than
nanofilaments are structurally preferred under the
potential model used in this work.

Nanotube

(4,0)
NanoFilaments

CIIOTDS  yrrrreys

(Fe0) (F80)

LA OO
(F100)
End view Side View

Figure 7. Structure of the SiC (4,0) zigzag
nanotube and nanofilaments F60, FR0 and F100.

Figure 8 shows the dependence of k with
temperature. The (4,00 nanotube presents a
gentle power law behavior as a function of
temperature, k~T%®  The decrease in k due to
increasing temperature in the three nanofilaments
is quite comparable, smoother than the
degradation occurring in the (4,0) nanotubes, and
behaving approximately as T %95 By
analyzing Fig. 6 and Fig. 8, one concludes that «
for all nanofilaments behave comparably as a
fimction of temperature.



K (Wim/K)

——

0 300 600 900 1200
Temperature (K)
Figure 8. Thermal conductivity as a function of
temperature for zigzag nanotube and
nanofilaments: nanotube (4,0) (¢), and
nanofilaments F60 (A), F80 (o), F100 (+). Error
bars identify s.d.

4, Conclusions

In this work we have analyzed the temperature
dependence of the lattice thermal conductivity
for a variety of SiC nanowires, nanotubes, and
nanofilaments. Findings show that all of these
nanostructures are very poor thermal conductors,
showing lattice thermal conductivities two orders
of magnitude smaller than bulk values.
Additionally, the lattice thermal conductivity
dependence with temperature in nanostructures
varies greatly with the structure from an inverse-
temperature relationship to nearly insensitive-to-
temperature variations. This property may be
critical to the design and operations of
nanodevices and their intended uses in electrical
and mechanical applications.

Our results for the lattice thermal conductivity of
3C [111] nanowires match closely results
published in Ref. [29] that show a basically
constant 1 in the temperature range 150-1000 K.
Additionally, we predict a power law decrease of

k with temperature for the other three nanowires
3C[100], 2H [001], and 2H [110]. Our result

for « of nanotube (4,0) is consistent with those
obtained for all other nanostructures. However,
the value of k is in disagresment by two orders
of magnitude with the prediction of Ref. [30]
calculated within the GK approach. Our results
show that NEMD techmques can be used to
further investigate the k and thermal response for
nanodevices in a reliable fashion.
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APPENDIX B  DEVELOPED COMPUTER CODES

The code provided in this section was developed by the author for the accomplishment of

the research presented in this dissertation.

B.1 Lennard-Jones Potential

Calculate the forces between Lennard-Jones atom pairs as described in section 2.2.1.

B.1.1 Annotated Code

=1, N-1 ! Select each pair of atoms
DO j = 1+1, N
xij = Pos(i,1l) - Pos(j,1)

IF (ABS(xij) -LE. rc) THEN ! check if within max
distance

vij Pos(1,2) - Pos(j.,2)

zij = Pos(i,3) - Pos(,3)
I Hy is the width of the cubic computational box, Hy2 = Hy/2

IF (yij .GT. Hy2) yij = yij — Hy ! change to
reflection

IF (yij -LT. -Hy2) yij = yij + Hy

IF (zij .GT. Hz2) zij = zij - Hz

IF (zij -.LT. -Hz2) zij zij + Hz

rij = SQRT(xij**2.d0 + yij**2.d0 + zij**2.d0)

IF (rij .LE. rc) THEN

IF (rij .LE. 0.8d0) GOTO 902

DO

SBB = SB(AType(i),AType(j)) ! read oy =
(ca+op)
2
EBB = EB(AType(i),AType(G)) ! read g5 = /€465
EBSBB = EBSB(Atype(i).Atype(j)) ! read 2tas

0AB

sré6 = (SBB/rij)**6.d0
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Uij = 2.dO*EBB*sr6*(sr6-1.d0) -
Ushift(AType(i),Atype())

Uatom(i) = Uatom(i) + Uij ! Potential
enerqgy

Uatom(j) = Uatom() + Uij

srl = EBSBB*(2.d0*((SBB/rij)**14.d0) -
((SBB/rij)**8.d0))

For(i,1) = For(i,1) + (srl * xij) ! Force on each

atom
For(i,2) = For(i,2) + (srl * yij)
For(i,3) = For(i,3) + (srl * zij)
For(J,l1) = For(j,1) - (srl * xij)
For(.,2) = For(J,2) - (srl * yij)
For(j,3) = For(,3) - (srl * zij)

902 dij = dij ! Dummy line

ENDIF
ENDIF
ENDDO
ENDDO

B.1.2 Parameters

T Force cutoff radius of 48% width of computational cube

B.2  SiC Two-body Potential

Calculates the two-body interaction between atoms in SiC as described in section 2.2.2 as

proposed by Vashishta et al. in [8,17].

B.2.1 Annotated Code

DO i =1, N-1 ! Select 1°° Atom
DO j = I+1, N ! Select 2" Atom
xij = Pos(i,1l) - Pos(,1)

! Position of atom in direction X=1, y=2,

IF (ABS(xij) -GT. rc) GOTO 999
! pair too far apart, Get new "j" Atom
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yij = Pos(i,2) - Pos(,2)

zij = Pos(i,3) - Pos(j,3)

rij2 = xij**2.do + yij**2.d0 + zij**2.do
rij = SQRT(rij2)

IF (rij .GT. rc) GOTO 999 ! Get new "j" Atom
rijinv = 1.d0 7/ rij
QATIj = AType(i) + AType(q) ! Atom Type C=1 & Si=2

! Find Bond Type: C-C, Si-Si, C-Si

! QV are potential and QF are Force terms
Qv21 = Hij(QATij)*(rijinv**Ada(QATij))
QF21 = Qv21 * Ada(QATij) * rijinv
Qv22 = Qfactl * Ze(AType(i))*Ze(AType(J)) * rijinv *

& exp(-rij*lambdainv)

QF22 = Qv22 * (rijinv+lambdainv)

Qv23 = Qfactl * Dij(QATij) *
& 0.5d0 *(rijinv**4.d0) * exp(-rij*zetainv)

QF23 = QV23 * ((4.dO*rijinv)+ zetainv)

Qv24 = Wij(QATij) * (rijinv**6.d0)

QF24 = Qv24 * 6.d0 * rijinv

Qv2 = ((Qv21 + Qv22 - QV23 - QV24 - QVrc(QATij)) -
& ((rij - rc) * QDVDRrc(QATij})))

! QVrc and QDVDrc are 1°° derivatives of
two-body
force at the inter-atom distance of rc

QF2 = (-QF21 - QF22 + QF23 + QF24 - QDVDRrc(QATij))
& * rijinv

ETot = ETot + QV2 + QV2

PE(i) = PE(i) + QV2

ForNow(i,1) = ForNow(i,l) - (xij * QF2)

ForNow(i,2) = ForNow(i,2) - (vyij * QF2)

ForNow(i,3) = ForNow(i,3) - (zij * QF2)

PE(J) = PE(@) + Qv2

ForNow(J,1) = ForNow(J,1) + (xij * QF2)

ForNow(J,2) = ForNow(J,2) + (yij * QF2)

ForNow(J,3) = ForNow(J,3) + (zij * QF2)

ForlJ(i,jJ,1) = -xij * QF2 ! force between atomic pair in
x/y/z

ForlJ(i,j,2) = -yij * QF2

For1Jd(i,j,3) = -zij * QF2
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ForlJ(J,i1,1) = xij * QF2
ForlJ(j,i,2) = vyij * QF2
ForlJd(j,i,3) = zij * QF2
912 QF2 = 0.dO ! dummy line
ENDDO
ENDDO

B.2.2 Parameters

Bond parameters are expressed as: C-C/C-Si/Si-Si

Ada = 7/9/7 (unitless)
Dij = 0/1.0818/2.1636 (e?im)
Hij = 471.74538/447.09026/23.67291  (evA")

lambda = 5.04
lambdainv = 1.d0/lambda

rc = 7.354

rcinv = 1.d0 / rc

Wij = 0/61.4694/0 (ev A%)
Ze = -1.201e

zeta = 3.0A
zetainv = 1.d0/zeta

B.3  SiC Three-body Potential

Calculates the three-body interaction between atoms in SiC as described in section 2.2.2

as proposed by Vashishta et al. in [8,17].

B.3.1 Annotated Code

DO 1 =1, N
DO j =1, N-1
IF (atype(i) -EQ. atype(j)) GOTO 910
DO k = j+1, N
IF (atype(i) -EQ. atype(k)) GOTO 911
Xij = Pos(i,1l) - Pos(j,1l)
IF (ABS(xij) .GT. rO) GOTO 910 ! Get new "j'" Atom
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yij = Pos(i,2) - Pos(.,2)

zij = Pos(i,3) - Pos(j,3)

rij2 = xij**2.do + yij**2.do + zij**2.do

rij = SQRT(rij2)

IF (rij .GT. r0) GOTO 910 ! Get new "j" Atom
rijinv = 1.d0 / rij

xik = (Pos(i,1) - Pos(k,1l))

IF (ABS(xik) .GT. rO) GOTO 911 ! Get new k' Atom
yik = (Pos(i,2) - Pos(k,2))

zik = (Pos(i,3) - Pos(k,3))

rik2 = xik**2.d0 + yik**2.d0 + zik**2.d0

rik = SQRT(rik2)

IF (rik .GE. r0) GOTO 911 I Get new "K" Atom
rikinv = 1.d0 / rik
rijkinv = rijinv * rikinv

rijk2inv = rij2inv * rik2inv

xjk = (Pos(,1) - Pos(k,1l))
yvik = (Pos(,2) - Pos(k,2))
zjk = (Pos(j,3) - Pos(k,3))

rjk2 = xjk**2.d0 + yjk**2.d0 + zjk**2.d0
rjk = SQRT(rjk2)
rjkinv = 1.d0/rjk

COSijk = 0.5d0 *(rij2 + rik2 - rjk2) * rijinv*rikinv
CosCos = Cosijk - Cos109
CosCos2 = CosCos * CosCos
DPDCOS = (2.d0 * CosCos) /
((1.d0 + (Cijk * CosCos2))**2.d0)
Pijk = CosCos2 / (1.d0 + (Cijk * CosCos2))
Rijk = Bijk * dexp(1.d0/(rij-r0)) *
dexp(1.d0/(rik-r0))
RGP = -Rijk * gamma * Pijk
DRijinv = 1.d0 7/ (rij * ((rij-r0)**2.d0))
DRikinv = 1.d0 / (rik * ((rik-r0)**2.d0))
RoverR = -rjk * rijinv * rikinv

QRP

= Rijk * pijk * 0.3333333333d0
PECi) =

PE(i) + QRP
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PE(J) = PE(J) + QRP
PE(k) = PE(k) + QRP
Forijk = - (RGP* (drijinv*xij + drikinv*xik))
- Rijk * DPDCOS *
(((rikinv - (rijinv * cosijk)) * xij*rijinv) +
((rijinv - (rikinv * cosijk)) * xik*rikinv))
ForlJ(i,j,1) = Forld(i,j,1) + (Forijk * 0.5d0)
ForlJ(i,k,1) = ForlJd(i,k,1) + (Forijk * 0.5d0)
Forijk = - (RGP* (drijinv*yij + drikinv*yik))
- Rijk * DPDCOS *
(((rikinv - (rijinv * cosijk)) * yij*rijinv)+
((rijinv - (rikinv * cosijk))*yik*rikinv))
ForlJ(i,j,2) = ForlJd(i,j,2) + (Forijk * 0.5d0)
ForlJd(i,k,2) = Forld(i,k,2) + (Forijk * 0.5d0)
Forijk = - (RGP* (drijinv*zij + drikinv*zik))
- Rijk * DPDCOS *
(((rikinv - (rijinv * cosijk)) * zij*rijinv)+
((rijinv - (rikinv * cosijk)) * zik*rikinv))
ForlJ(i,j,3) = ForlJd(i1,j,3) + (Forijk * 0.5d0)
ForlJ(i,k,3) = ForlJd(i,k,3) + (Forijk * 0.5d0)
For1lJ(j,i1,1) = ForlJd(g,i,1) - (RGP* (-drijinv*xij))
- Rijk * DPDCOS *
((-(rikinv - (rijinv * cosijk)) * xij*rijinv) +
(RoverR * xjk * rjkinv))
For1J(jJ,1,2) = ForlJ(j,i,2) - (RGP* (-drijinv*yij))
- Rijk * DPDCOS *
((-(rikinv - (rijinv * cosijk)) *yij*rijinv)+
( RoverR * yjk * rjkinv))
For1lJ(j,i1,3) = For1lJ(j,i,3) - (RGP* (-drijinv*zij))
- Rijk * DPDCOS *
((-(rikinv - (rijinv * cosijk)) * zij*rijinv)+
( RoverR * zjk * rjkinv))
ForlJd(k,i1,1) = Forld(k,1,1) - (RGP* (-drikinv*xik))
- Rijk * DPDCOS *
((-(rijinv - (rikinv * cosijk)) * xik*rikinv)+
(-RoverR * xjk * rjkinv))
ForlJ(k,i,2) = ForlJd(k,i,2) - (RGP* (-drikinv*yik))
- Rijk * DPDCOS *
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& ((-(rijinv - (rikinv * cosijk)) * yik*rikinv)+
& (-RoverR * yjk * rjkinv))
ForlJd(k,i1,3) = ForlJ(k,i,3) - (RGP* (-drikinv*zik))
& - Rijk * DPDCOS *
& ((-(rijinv - (rikinv * cosijk)) * zik*rikinv)+
& (-RoverR * zjk * rjkinv))
911 Xij = 0.dO I Need a new "K' atom
ENDDO
910 Xij = 0.dO I Need a new "J" atom
ENDDO
ENDDO

B.3.2 Parameters
Bijk .003 ev

Cijk = 5.0 (unitless)
C0S109 Cosine of 109°

gamma = 1.0A&

ro = 2.94

B.4  Determination of Heat Current:

Calculates the heat current in each slice of the computational box as described in section

2.6.2 with the following microscopic expression [13,23,29-31]:
Ja(r,p) = [_ + Z}:ﬁl u(ru)] (pw() X [( il) Fij] Tija (33)

where a = X,y,z, the p; are the momenta of atoms with mass m;, u(ri j) are the

interatomic potential energies, and Fj; are the forces between atoms i and j.

B.4.1 Annotated Code

DO i =1, N ! Select 1°° atom
AS = ASlice(i) ! 1°% atom’s slice in the system
KE = 0.5d0 * mass(Atype(i)) * ((vel(i,1)**2.d0) +
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& Vel (i,2)**2.d0) + (Vel(i,3)**2.d0)) * Qfact3
kg A?
SZ
T(AS) = T(AS) + KE ! Temperature of the slice
! cCalculate the 1°* term, PE is Potential

! Ofact3 is a unit conversion of: eV to

Energy
IX(AS) = Ix(AS) + ((KE + PE(i)) * vel(i,1)) ! nits: 28
JY(AS) = Jy(AS) + ((KE + PE(i)) * vel(i,2))
Jz(AS) = Jz(AS) + ((KE + PE(i1)) * vel(i,3))

DO j =1, N ! Select 2°¢ atom
IF (i .NE. J) THEN
xij = Pos(i,1l) - Pos(,1)

yij = Pos(i,2) - Pos(J,2)
zij = Pos(i,3) - Pos(,3)
rij = SQRT(xij**2.d0 + yij**2.d0 + zij**2.d0)

! Calculate the 2™ term, ForIJg(I,j,a) is the force of atom j on
atom 1 in the a direction

Jtemp = 0.5d0 * ((vel(i,1) * Forld(i,j,1)) +

& (vel(i,2) * Forld(i,j,2)) +

& (vel(i,3) * ForlJd(i,j,3)))
IX(AS) = Ix(AS) + (JTemp * xij)
Jy(AS) = Jy(AS) + (JTemp * yij)
Jz(AS) = Jz(AS) + (JTemp * zij)

ENDIF
914 xij = 0.dO
ENDDO

913 xij = 0.dO

ENDDO

JIx = JIx * 0.25d0 ! ¥ factors

Jy = Jy * 0.25d0
Jz = Jz * 0.25d0

B.4.2 Parameters

2
kg A
eV s2

Qfact3 = 0.062415

units conversion
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B.5 Calculation of Autocorrelation and Density of States

Calculated the autocorrelation of the velocity in each direction, averaged them and then
took the Fourier Transform to determine the density of states as described in section
2.6.1. Normally the vibrational data was taken as 10 time segments (or trials) in

calculating the Autocorrelation. The FFT routine was adapted from [74].

B.5.1 Annotated Code

DO k =1, 3 ! Each direction
LongC = 0.dO
Cl = 0.do
DO I =1, N
Data = 0.dO
AData = 0.dO
DO NS = 0, VibrTrial-1 I Trial number

DO jJ = 1, NSize2
! Nsize is the number of steps, Nsizel? is double the number
! StepsVibr si the number of stored steps of data
! Vibr is the array holding the velocity data

Data(j) = Vibr((NS*(StepsVibr-
NSize)/VibrTrial)+j,i,k)
ENDDO
CALL Auto(Data, NSize, AData) ! Autocorrelation

Subroutine

! Data is the input raw vibrational data, AData 1is the output
Autocorrelation

DO jJ = 1, NSize
LongC(J) = LongC(jJ) + AData(j) ! average over trials
ENDDO
ENDDO
ENDDO
LongC = LongC / VibrTrial / AtomsAC
' AtomsAC is number of atoms
DO I = 1, NSize
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C1(i+i-1) = LongC(i) ! convert to complex number
array

ENDDO
CALL FFT(C1, NSize, Isign) ! Fourier transformation
subroutine
! with NSize2 pairs of data elements
97 1 =1
ENDDO

SUBROUTINE Auto (Data, NSize, C)
INTEGER NSize, NSize2, T, Tau
REAL*8 AvgCO, CO, C(20000), Data(20000)

P Calculate Cyp ———————————————-—
NSize2 = NSize * 2.dO ! Nsize is the # items in output
CO = 0.dO
DO T = 1, NSize2
CO = CO + Data(T)*Data(T)

ENDDO
CO = CO / NSize2

I —————————————— Calculate C(t) ———==———===="—"—=——-
C =0.do

DO Tau = 1, Nsize
DO T = 1, Nsize2 - Tau
C(Tau+l) = C(Tau+l) + Data(T)*Data(T+Tau)
ENDDO
C(Tau+l) = C(Tau+l) / (NSize2 - Tau)
ENDDO
c=cCc/CcCo
C(1) = 1.do

RETURN
END

SUBROUTINE FFT(Data, NN, Isign)

! data is old fashion Complex vector of [r I r I r I r I .
! with NN pairs of data elements
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! Isign is 1 for an FFT and -1 for an Inverse FFT

INTEGER 1, Isign, Istep, j, m, N, NN, Mmax
REAL*8 Templ, TempR, WR, WI, WPR, WPI, WTEMP, THETA
REAL*8 Data(66000)

|
N

*
=
=

N ! length of Data array of NN complex ele
j=1
DO 1 =1, N, 2
IF (J -GT. i) THEN
TempR = Data(j)
Templ = Data(j+1)
Data(j) = Data(i)
Data(j+1) = Data(i+l)
Data(i) = TempR
Data(i+1l) = Templ
ENDIF
m = NN
101 IF ((m .GE. 2) _AND. (J -GT. m)) THEN
iJ=3-m
m=m/2
GOTO 101
ENDIF
J=3+m
ENDDO
! Begin the Danielson-Lanczos section of the routine
Mmax = 2
102 IF (N .GT. Mmax) THEN I Quter loop executes 1og2(NN) times
Istep = 2 * Mmax
Theta = 6.28318530717959d0 / (Isign * Mmax)
WPR = -2.d0 * SIN(0.5d0 * Theta)**2.d0O
WPI = SIN(Theta)
WR 1.d0
wl 0.dO
DO =1, Mmax, 2
m, n, Istep
J i + Mmax I Danielson-Lanczos formula
TempR = WR * Data(j) - Wl * Data(j+1)

= 1

|w)

0]
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Templ = WR * Data(j+1) + WI * Data(j)
Data(j) = Data(i) - TempR
Data(j+1) = Data(i+l) - Templ
Data(i) = Data(i) + TempR
Data(l+1) = Data(i+l) + Templ
ENDDO
Wtemp = WR I Trigonometric recurrence
WR = WR * WPR - WI * WPI + WR
WI = WI * WPR + Wtemp * WPI + WI
ENDDO
Mmax = Istep
GOTO 102
ENDIF

RETURN
END

B.5.2 Parameters

None

B.6  Maintain Constant Temperature in Thermal Baths

This routine reset the temperature within each thermal bath back to the set temperature.

This is only a section of the routine for a single bath.

B.6.1 Annotated Code

KEO = 0.dO ! Kinetic Energy of Bath

DO 1 =1, N
KEO = KEO + (mass(Atype(i)) * ((vel(i,1)**2.d0) +

& (vel(i,2)**2.d0) + (Vvel(i,3)**2.d0)))
AtomCount = AtomCount + 1 ! count number of atoms
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ENDDO
KEO = KEO * 0.5d0 * gfact5 / AtomCount
1 Ofacth is a unit conversion

Tfactor = (Tmid / KEO)**0.5d0 ! Tmid is the Bath
Temperature

Vel = Vel * Tfactor
B.6.2 Parameters

QfactS => 724.2713 Kelvin = 125
s A
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