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With the growing use of nanotechnology and nanodevices in many fields of engineering 

and science, a need for understanding the thermal properties of such devices has 

increased.  The ability for nanomaterials to conduct heat is highly dependent on the purity 

of the material, internal boundaries due to material changes and the structure of the 

material itself.  Experimentally measuring the heat transport at the  nanoscale is 

extremely difficult and can only be done as a macro output from the device. 

Computational methods such as various Monte Carlo (MC) and molecular dynamics 

(MD) techniques for studying the contribution of atomic vibrations associated with heat 

transport properties are very useful.  The Green–Kubo method in conjunction with 

Fourier’s law for calculating the thermal conductivity, κ, has been used in this study and 

has shown promise as one approach well adapted for understanding nanosystems.  

Investigations were made of the thermal conductivity using noble gases, modeled with 



 

Lennard-Jones (LJ) interactions, in solid face-centered cubic (FCC) structures.  MC and 

MD simulations were done to study homogeneous monatomic and binary materials as 

well as slabs of these materials possessing internal boundaries.  Additionally, MD 

simulations were done on silicon carbide nanowires, nanotubes, and nanofilaments using 

a potential containing two-body and three-body terms.  The results of the MC and MD 

simulations were matched against available experimental and other simulations and 

showed that both methods can accurately simulate real materials in a fraction of the time 

and effort. 

The results of the study show that in compositionally disordered materials the selection of 

atomic components by their mass, hard-core atomic diameter, well depth, and relative 

concentration can change the κ by as much as an order of magnitude.  It was found that a 

60% increase in mass produces a 25% decrease in κ.  A 50% increase in interatomic 

strength produces a 25% increase in κ, while as little as a 10% change in the hard core 

radius can almost totally suppress a materials ability to conduct heat.  Additionally, for 

two LJ materials sharing an interface, the atomic vibrations altering the heat energy 

depend on the type of internal boundary in the material.  Mass increases across the 

interfacial boundary enhance excitation of the very low frequency (ballistic) vibrational 

modes, while the opposite effect is seen as increases in hard core radius and interatomic 

strength enhance excitation of higher frequency vibrational modes.  Additionally, it was 

found that this effect was diminished for higher temperatures around half the Debye 

temperatures.  In nanodevices and nanomachines, there is an additional factor that 



 

degrades heat transport at the boundary.  In fact, the interface induces a temperature jump 

consistent with a thermal resistance created by the boundary.  It was found that the 

temperature jump, which is due to a boundary resistance, was significant in boundaries 

involving small mass changes, lesser in changes in hard core radii changes and even 

lesser for interatomic strength changes.  The study of SiC nanowires and nanotubes 

showed that the structural changes produced vastly different κ.  The κ in closely packed 

structures like nanowires and nanofilaments approximated that of the bulk SiC, yet were 

less sensitive to temperature than the 1/T relationship traditionally found in bulk systems.  

The more open nanostructures, like nanotubes, had vastly lower κ values and are almost 

totally insensitive to temperature variation. 

The results of this study can be used in the design of nano-machines where heat 

generation and transport is a concern.  Additionally, the design of nano-machines which 

transport heat like nano-refrigerators or nano-heaters may be possible due to a better 

selection of materials with the understanding of how the materials affect their 

nanothermal properties at the nano scale. 
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CHAPTER 1 INTRODUCTION 

It is known that heat is transported better through solid materials that are pure and 

crystalline.  Any type of impurity, defect, doping, void, or internal boundary within the 

material increases the resistance to heat transport, and thus, reduces the ability to 

transport thermal energy.  With the growing interest in nanotechnology, the study of 

thermal conduction properties of systems with reduced dimensions, thin films, nanotubes, 

nanowires, and super lattices has increased.  In nanomaterials and nanostructures, 

phenomena are highly dependent on the length scale where vibrations between nearest-

neighbor atoms occur.  The use of molecular dynamics (MD) and the Green–Kubo (GK) 

methods for calculating the thermal conductivity, κ, have shown promise as atomistic 

approaches for understanding nanosystems at the nanometer scale.  For example, there 

are several recent calculations on pure noble gases with Lennard-Jones (LJ) interactions 

in which MD was the method of choice [1-5].  For binary crystals, the literature is not so 

abundant.  There are over 6000 bi-atomic combinations of elements of which only a few 

hundred have been tested for their thermal conductivity.  For some phenomena, such as 

thermoelectricity, to decrease the lattice thermal conductivity may increase the 

performance efficiency of the device by a factor of two or three. 

In a crystal, and in nanostructures, the thermal conductivity is composed of two additive 

contributions: lattice, ߢ௣௛, and electronic, ߢ௘.  The lattice contribution captures 
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phenomena associated with lattice vibrations and phonon scattering and is dominated by 

the structural characteristics of the crystal or the nanostructure.  The electronic 

contribution is proportional to the electric conductivity through the Wiedemann–Franz 

law [6-7].  The composition of a crystal affects the lattice symmetry characteristics and, 

consequently, the lattice vibrations.  Therefore, the lattice contribution to the thermal 

conductivity in a crystal should reflect changes according to its composition.  In contrast, 

 ௘ is a function of the conduction properties and these are expected to remain almostߢ

constant for families of solids with similar compositional components.  A phenomenon 

that reduces ߢ௣௛ produces an overall reduction of the thermal conductivity if the electric 

conductivity is not affected.  In dielectrics, and the noble gases specifically, changes in 

 .௣௛ do not simultaneously affect the electronic conductivityߢ

The computational approach taken in this research is through atomic-level computer 

simulations using several simple models of binary LJ solids employing a variety of 

methodologies, including different types of MD and different types of Monte Carlo (MC) 

techniques.  The simulations were expanded to MD investigation of silicon-carbide (SiC) 

nanostructures with a classical potential proposed by Vashishta [8].  The approach 

underlying this calculation, from an atomistic perspective, is linear response theory of 

many body systems.  Under this approach, the lattice thermal conductivity is the 

“response” of a material to a time dependent perturbation, which is the thermal gradient 

established through it. 
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In this dissertation, research is presented which identifies various lattice changes and 

their effects on the thermal conductivity in binary LJ crystals.  The study in this 

dissertation spans from changes in the lattice thermal conductivity due to atomic 

vibrations for binary crystals with compositional disorder, to size effects in SiC 

nanowires and nanotubes.  This research work identified ranges of combinations of 

binary materials, disorder conditions, and nanodevice shapes and sizes which reduce the 

thermal conductivity of the simulated materials and may warrant further experimental 

work.  This dissertation is organized as follows: 

Chapter 2 presents an overview of the theory and methods.  The chapter begins with an 

overview of the modeling techniques employed with the MC and MD simulations.  

Several of the statistical mechanics ensembles proposed by Gibbs are presented as to 

their applicability to the simulations addressed in this research.  A discussion of the two 

model potentials of interaction employed in the study is included in this chapter.  The 

work presented in chapters 3 and 4 uses the LJ potential (two-body forces), and the work 

in chapter 5 uses a model potential proposed by Vastisha [8] containing Coulomb two-

body interactions and three-body terms.  The next section of this chapter discusses the 

methods used to analyze the atomic configurations for parameters, including: 

computational box size in simulations, shape of the computational box, structural and 

thermodynamic quantities, pressure, order parameters, velocity distribution, mean square 

displacement, radial distribution functions, and the dynamical properties studied (heat 

flux, frequency, density of states, and thermal conductivity).  The chapter continues with 
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a discussion of how a thermal gradient was produced across the computational box and 

finally presents a few conclusions on the methods used. 

Chapter 3 presents the results of thermal conductivity as a function of temperature of 

homogeneous compositionally disordered binary crystals with atoms interacting through 

LJ potentials.  The two species in the crystal differ in mass, hard-core atomic diameter, 

well depth and relative concentration.  The isobaric MC was used to find the equilibration 

density of the samples at near-zero pressure and various temperatures.  The isoenergy 

MD simulations combined with the Green–Kubo approach were taken to calculate the 

heat current time-dependent autocorrelation function and determine the lattice thermal 

conductivity of the sample.  The chapter provides a step-by-step discussion of the process 

used in this phase of the research: (1) how the equilibrium crystal density was obtained 

for a near zero pressure simulation, (2) how the thermal conductivity was obtained, (3) 

how compositional disorder was modeled, and (4) how the models and methods were 

validated against experimental and other computational results.  Next the chapter presents 

discussions of how each physical parameter effects the thermal conductivity 

(computational box size, changes in mass, hard core radius, and interatomic strengths, 

temperature, and density).  The chapter concludes with a set of observations.  This 

chapter is a synopsis of the work which was published in reference [9]. 

Chapter 4 contains results on the effects of internal boundaries on the thermal 

conductivity.  The implementation of non-equilibrium molecular dynamics (NEMD) 

simulations is discussed in the context of determining the thermal conductivity effects of 

various monatomic and binary materials with internal boundaries.  With this 
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computational strategy, a thermal bath was simulated on each side of the computational 

box and the Fourier law is used to determine κ.  A thorough analysis of the heat 

contribution on the vibrations of atoms is discussed.  Effects on the density of vibrational 

states due to the interface created between two types of solid LJ systems was investigated 

as a function of the atomic masses and model potential parameters.  The chapter opens 

with a discussion of the setup and model validation, then proceeds with discussions of the 

effects of the interface between two LJ solids on the lattice vibrations due to material 

property changes (similar to those discussed in Chapter 3), as well as mutual orientation 

of the solid lattices.  Further discussions present analyses of the thermal resistance as a 

function of temperature.  The chapter concludes with a summary of conclusions obtained 

from the research.  The results presented in Chapter 4 have been published in [10]. 

Chapter 5 contains a study of the thermal conductivity in SiC nanostructures.  Within the 

past few years, extensive work has begun on the use of nanodevices in science.  The 

nanodevices can consist of wires, pipes, storage tanks, motors, and pumps, just to name a 

few.  Most of the initial work has been on the use of pure carbon nanowires and 

nanotubes.  Recently, SiC highly ordered structures have begun to be synthesized.  The 

research presented in this chapter is an expansion of the work presented in chapters 3 and 

4, now specifically tailored to study SiC in various sizes of nanowires and nanotubes in 

both their armchair and zigzag chiral configurations.  The thermal conductivity of these 

SiC nanostructures has not been experimentally tested as of today.  Therefore, this work 

makes predictions for SiC nanostructures that will aid the laboratory researchers in their 

future measurements.  This chapter discusses the processes used to determine the thermal 
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conductivity and determine if the nanostructure configuration was stable.  The chapter 

concludes with a presentation of the results and conclusions.  The results of this work are 

currently under review for publishing in [11]. 

Chapter 6 presents discussion of three computational challenges which include: (1) the 

counteracting of the effects of finite computational box sizes with the use of periodic 

boundary conditions (PBC), (2) software error handling used in the research, and (3) a 

discussion of the use of an energy balance test using the statistical deviations of the 

average atomic energies.  The chapter also includes a brief overview of the software used 

in the computational and data analysis portions of the research. 

Chapter 7 presents a summary of the results and conclusions from the methods, processes 

and results in this dissertation.  Additionally, a discussion of how this research has 

contributed to the general body of knowledge within the study of thermodynamic 

properties within materials and nanodevices is presented. 

The dissertation is supplemented by Appendix A, containing a copy of the published 

papers and Appendix B, containing sample original code developed along with the work.  

An extensive bibliography is presented after Appendix B. 
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CHAPTER 2 THEORY AND METHODS 

2.1 MODELING 

2.1.1 Background on Statistical Mechanics Simulations 

Two simulation approaches are used in this research:  Metropolis Monte Carlo (MC) and 

Molecular Dynamics (MD).  The MC methods simulate how atoms will act/react as they 

seek thermal equilibrium using stochastically selected discrete changes of atomic 

positions for each atom in the computational box.  MC methods in statistical physics 

model equilibrium and nonequilibrium thermodynamic systems by stochastic computer 

simulations.  Starting from a description of the desired physical system in terms of 

modeling how atoms interact among themselves, pseudo-random numbers are used to 

construct the appropriate probability with which the various generated states of the 

system have to be weighted.  For equilibrium systems, the probability is defined 

according to either the microcanonical, canonical, iso-pressure-iso-temperature, or grand 

canonical ensembles. 

The purpose of MC simulations is to obtain numerically the ensemble averages of desired 

system properties.  In practice, the implementation is simple and can be seen as a 

sequence of simulation steps that build a Markov chain.  At each MC step, a single atom 

is selected and then relocated to a new position.  The new position is determined by 
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randomly selecting a direction and moving the atom a predetermined distance in that 

direction.  After moving the atom, the potential energy of the system is recalculated.  The 

next step in the process is to determine if the movement should be accepted, or the atom 

returned to its previous position.  The acceptance criterion depends on the statistical 

mechanics ensemble that is being simulated.  The process is repeated until the desired 

equilibrium is reached. 

MD simulations are similar to real experiments.  In a laboratory experiment, a sample of 

the system to be studied is first prepared.  Next the researcher “connects” the sample to a 

measuring instrument.  Finally, the property is measured.  In a MD simulation, one 

follows the same approach.  First, a sample is prepared by selecting a model of how the 

atoms will interact between themselves.  Next, the sample is placed in the instrument, 

which in MD means that the classical equations of motion of the atoms (ordinary 

differential equations (ODE)) need to be solved numerically.  Once the coupled ODEs are 

solved, the process is repeated until the system no longer changes with time 

(equilibrium); then the actual measurements are taken.  In MD, the measured quantities 

are expressed as time averages of the modeled quantities, once the system has reached 

thermal equilibrium. 

In both simulation approaches, MC or MD, a computer experiment is performed, with the 

purpose of calculating the average value of desired properties. Average values are to be 

compared with measured properties in the laboratory.  Average values with MC 

stochastic-based averages in MD are based on the knowledge of the probability of how 
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the atoms evolve in time.  If the system under study is ergodic, both types of averages 

should be equal. 

ெ஽ۄܣۃ  ൌ  ҧெ஼ (1)ܣ

A system is ergodic when averages do not depend on the initial conditions. 

The use of statistical mechanics allows the study of many body systems by computer 

simulations.  Through experimentation, the parameters within the system (T, P, V, and N) 

can be measured as averages over the atoms in the system.  Unfortunately, unless the 

experiment is carefully controlled, the measurement itself can disturb the system as a 

whole.  For example, measuring the heat generated within a solid system can only be 

measured from the outside of the solid.  Thus, what is actually happening internal to the 

solid becomes a postulate.  Likewise, experimentation cannot measure instantaneous 

quantities for many properties like the velocity of a given atom at a given instant.  

Therefore, statistical mechanics simulations can be used to study properties at the atomic 

scale that experimentation cannot. 

2.1.2 Gibbs Ensembles of Statistical Mechanics 

To analyze a system by simulation, a set of thermodynamic parameters must be fixed.  

The more popular parameters used during the research to define ensembles include:  

number of particles (N), pressure (P), temperature (T), energy (E), volume (V), or density 

(ρ), and chemical potential (μ) [12-14].  Depending upon which of these fundamental 

parameters are kept constant, different types of probabilistic functions are associated to 

the thermodynamic states of the system.  The four basic statistical mechanics ensembles 
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are microcanonical, canonical, isobaric-isothermal, and grand canonical.  A brief 

description of how these ensembles are implemented in simulation is given in the 

following paragraphs. 

For this dissertation, a combination of MC and MD methods were used.  The MC was 

used for determining pressures and establishing base static parameters.  The MD was 

used for dynamical properties in both equilibrium and NEMD methods. 

2.1.2.1  NVE Ensemble 

The NVE ensemble (a.k.a. micro-canonical ensemble) is defined by having a constant 

number of particles in a constant volume at a constant energy.  This represents an isolated 

system and these systems are conservative [12-13].  This is the most commonly used 

ensemble in MD.  Within an MD simulation, the motion is governed by the Hamilton 

equations of motion: 

 
డு

డ௥Ԧ೔
ൌ െ݌Ԧ௜  ;  

డு

డ௣Ԧ೔
ൌ െݎԦ௜ (2) 

where H is the Hamiltonian of the system, which has the general form 

ܪ  ൌ ∑ ቀଵ

ଶ
௜݌

ଶቁே
௜ୀଵ ൅ ܷሺݎԦଵ, ,Ԧଶݎ … ,  Ԧேሻ (3)ݎ

Here N is the number of atoms in the system, ݉௜ are the atomic masses, ݒ௜ are the atomic 

velocities, and U is the potential energy function which depends on the positions ݎԦ௜.  The 

first term is the kinetic energy that depends on the linear momenta, ݌Ԧ௜ ൌ ݉௜ݒԦ௜. 
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The set of 6 N ODE’s, Eqn (2),  are coupled through U.  There are many numerical 

methods used in the literature for their solution.  In this research, the Verlet algorithm in 

its velocity form is adopted [15].  Thus, the ODEs are transformed into finite difference 

equations, such that for each coordinate, the two finite differences are: 

ݐ௜ሺݔ  ൅ ሻݐ݀ ൌ ሻݐ௜ሺݔ ൅ ݐ∆ሻݐ௜ሺݒ ൅ ଵ

ଶ

ிೣ೔ሺ௧ሻ

௠೔
 ଶ (4)ݐ∆

௫೔ݒ 
ሺݐ ൅ ሻݐ݀ ൌ ௫೔ݒ

ሺݐሻ ൅ ቂ
ிೣ

೔
ሺ௧ሻାிೣ

೔
ሺ௧ାௗ௧ሻ

ଶ௠೔
ቃ  (5) ݐ∆

where ∆t is the time step adopted and ܨԦ௜ ൌ െ׏ሬሬԦ୧U.  Equations (4) and (5) are iterated, 

starting with time ݐ ൌ 0, until the quantities that depend on both ݔԦ௜ሺݐሻ and ݒԦ௜ሺݐሻ do not 

change much with time. 

A time averaged quantity A is obtained from 

ۄܣۃ  ൌ lim௧೟೚೟ೌ೗՜ஶ
ଵ

௧೟೚೟ೌ೗
׬ ,ሻݐԦሺݎ൫ܣ ሻ൯ݐԦሺ݌

௧೟೚೟ೌ೗

଴  (6) ݐ݀

In practice ݐ௧௢௧௔௟ is finite.  The numeric implementation of this integral is 

ۄܣۃ  ൌ ଵ

ெ∆௧
∑ ெݐ∆௞ܣ

௞ୀଵ  (7) 

where ∆ݐ is the numeric time step and M is the number of time steps. 

2.1.2.2  NVT Ensemble 

In the NVT ensemble (a.k.a. canonical ensemble) the number of particles (N), volume 

(V), and temperature (T) are constant thermodynamic parameters.  This ensemble is the 
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most commonly used in MC simulations.  In practice, for MC simulations, the criterion 

for accepting a move is the following: 

 If the potential energy of the system, ܷ௡௘௪, after a move decreases (becomes 

more negative) with respect to the potential energy prior to the move, ܷ௢௟ௗ, the 

move is accepted. 

 If the potential energy of the system after the move ሺܷ௡௘௪ሻ increases (becomes 

less negative) than the potential energy prior to moving ሺܷ௢௟ௗሻ, then the following 

test is performed to determine if the move is accepted: 

݈݀݋ሺ ݕݐ݈ܾܾ݅݅ܽ݋ݎ݌  ՜ ሻݓ݁݊ ൌ ݌ݔ݁ ቀെ ௎೚೗೏ି௎೙೐ೢ

௞ಳ்
ቁ (8) 

where ݇஻ is the Boltzmann constant and T is the temperature.  If this probability is 

greater than a random number picked from a uniformly distributed set 0 to 1, then 

the move is accepted.  Otherwise, the move is rejected, and the atom is returned to 

its previous position, and the previous energy ܷ௢௟ௗ is kept for the system.  It is 

very important that the random number generator used gives rise to a true uniform 

distribution of random numbers. 

The MD simulations at constant temperature allowed the particles to move freely and 

interact and then the velocities are corrected via different methods referred to as 

thermostats to maintain temperature constant.  Two algorithms are commonly used, the 

Anderson thermostat and the Nosé-Hoover thermostat [14].  However, there is the 

Hoover thermostat that is less computer processing intensive.  In this research, the latter 
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was used.  One starts from the definition of the temperature as an average value over 

time: 

 ܶ ൌ  ଶ

ଷே
∑ۃ ݉௜ݒ௜

ଶே
௜ୀଵ  (9) ۄ

where the sum is twice the total kinetic energy of the system of N atoms.  This thermostat 

is set in such a way that the velocities are multiplied by a factor, f, in order to reach the 

desired temperature, ௗܶ௘௦௜௥௘ௗ.  The factor is easily defined as ݂ ൌ ට்೏೐ೞ೔ೝ೐೏

்
.  Once the 

factor is defined, the velocities are multiplied by that factor.  The f changes dynamically 

as the MD proceeds in time.  After some time, the f sets to be very close to one. 

2.1.2.3  NPT Ensemble 

The NPT ensemble (a.k.a.; isobaric-isothermal ensemble) is defined as having a constant 

number of particles (N), constant pressure (P), and constant temperature (T).  In MC 

simulations, the volume of the computational cell is changed at random with some 

frequency.  The criterion for accepting or rejecting a particle move in the MC considers a 

different probability than in equation (8) because the volume of the computational cell is 

modified to maintain P constant.  This is physically represented as a piston inside of a 

very large volume.  The piston allows exchange of energy from and out of the 

computational box but does not permit atoms to escape.  The piston moves in or out at a 

preset frequency. 

The NPT ensemble implementation with MC includes the extra change in volume (from 

௢ܸ௟ௗ to ௡ܸ௘௪) after each of the particles is moved in the same manner as they were moved 



14 

in the NVT ensemble.  The potential energy of the resulting computational box is 

calculated and compared to the potential energy from immediately before the change.  If 

the potential energy, ܷ௡௘௪ሺ ௡ܸ௘௪ሻ, decreases (become more negative), the change is 

accepted.  If the potential energy is greater (less negative than the old potential energy 

ܷ௢௟ௗሺ ௢ܸ௟ௗሻ), then the following test is made: 

݈݀݋ሺݕݐ݈ܾܾ݅݅ܽ݋ݎ݌ ՜ ሻݓ݁݊ ൌ 

݌ݔ݁ ቆ ିଵ

௞ಳ்
൫ܷ௡௘௪ሺ ௡ܸ௘௪ሻ െ ܷ௢௟ௗሺ ௢ܸ௟ௗሻ൯ ൅ ܲሺ ௡ܸ௘௪ െ ௢ܸ௟ௗሻ െ ே

௞ಳ்
݈݊ ቀ௏೙೐ೢ

௏೚೗೏
ቁቇ (10) 

where P is the set pressure, N is the number of atoms, ௡ܸ௘௪ and ௢ܸ௟ௗ are the volumes of 

the computational box before and after the move, respectively.  If the resulting value of 

equation (10) is greater than a random number uniformly distributed between 0 and 1, 

then the move is accepted.  Otherwise, the move is rejected and the volume and atomic 

positions are reset back to the values in the old step. 

In MD simulations, the NPT is simulated by allowing the outer boundaries of the 

computational box to expand or contract based on the internal forces of the box. 

2.1.2.4  μVT Ensemble 

In this ensemble, (a.k.a. grand canonical ensemble) the chemical potential (μ), volume 

and temperature are fixed while particles are added or removed to maintain fixed 

chemical potential.  This ensemble is mostly used in MC simulations and was not 

implemented in this research but is included in this listing for completeness.  Physically, 
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this ensemble is good to simulate osmosis phenomena where particles can pass through a 

membrane wall. 

2.2 INTERATOMIC POTENTIALS 

During the research, two model potentials were adopted.  The first was the LJ potential 

which modeled prototype rare gas systems where the interatomic forces contain a 

repulsive and a dispersive attractive component.  The LJ potential is well suited for atoms 

without bonds such as the noble gasses.  This model potential was used in the work 

presented in Chapters 3 and 4.  A second potential used in the research was a potential for 

SiC introduced in refs [8, 16-18], containing terms including Coulomb interactions and 

three-body terms modeling covalent bonding between Si and C atoms. 

2.2.1 Lennard-Jones Potential 

A prerequisite of the atomic simulations is to have reasonable interatomic potentials to 

model the interactions between the atoms.  A well known potential model: the LJ 

potential (equation 11) was used during the first two phases of the research for solid 

materials.  The LJ describes dispersive classical interatomic forces at long range, and is 

strongly repulsive at short range.  Figure 1 depicts the LJ model potential. 

The LJ potential has two parameters:  σ (hard core radius), which is the distance between 

the atom centers when the potential equals zero, and ε (interatomic strength), which is the 
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Figure 1:  LJ Potential Model 

 

depth of the attractive well (the lowest point of the potential in Figure 1).  The LJ model 

is defined as: 

ሻݎሺݑ  ൌ ߝ4 ൤ቀఙ

௥
ቁ

ଵଶ
െ ቀఙ

௥
ቁ

଺
൨ (11) 

where r is the distance between two atoms,  and  are parameters depending on the 

material.  In the simulations, a computational box containing N atoms at a given density 

is defined. 

For a system of N atoms, the total potential energy when atoms interact through LJ is: 

 ܷ ൌ ∑ ∑ ௜௝൯ேݎ൫ݑ
௝வ௜

ேିଵ
௜ୀଵ  (12) 
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where u(rij) is the energy per atomic pair (equation 11), and rij is the distance between 

atoms i and j. 

For monatomic solids, equation 12 gives the crystal potential energy.  For binary solids 

(i.e. atoms of type A and atoms of type B), a combination rule for the parameters is 

considered.  Now atoms of type A interact with atoms of type A with LJ that have 

parameters ߪ஺, and ߝ஺.  Likewise, atoms of type B interact with LJ potentials that have 

parameters ߪ஻, and ߝ஻.  The interactions between pairs AB are modeled by LJ potentials 

with parameters: 

஺஻ߪ  ൌ
ሺఙಲାఙಳሻ

ଶ
஺஻ߝ  ;   ൌ  ஻ (13)ߝ஺ߝ√

Even though each pair interaction is represented very simply, there are three different 

pairs of interactions to be taken into consideration.  Each pair carries different 

parameters.  A solid system of binary nature (e.g. a binary alloy) is then composed of 

sums of three non-equivalent pair interactions for AA, BB, and AB. 

2.2.2 Silicon Carbide Model Potential 

This model potential includes both a two-body Coulomb interaction as well as a three-

body interaction describing the covalent bonding between Si and C atoms.  This was 

suggested by published work on Si grain boundaries (see section 4.1).  The total potential 

energy of the system is given by 

 ܸ ൌ ∑ ௜ܸ௝
ሺଶሻ൫ݎ௜௝൯ ൅ ே

௜ழ௝ ∑ ௝ܸ௜௞
ሺଷሻ൫ݎ௜௝, ௜௞൯ேݎ

௜,௝ழ௞  (14) 
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where ௝ܸ௜௞
ሺଷሻ is the three-body potential, and ௜ܸ௝

ሺଶሻ is the two-body potential which is 

determined as 

 ௜ܸ௝
ሺଶሻ൫ݎ௜௝൯ ൌ

ு೔ೕ

௥೔ೕ

ആ೔ೕ ൅
௓೔௓ೕ

௥೔ೕ
݁ି௥೔ೕ ఒ⁄ െ

஽೔ೕ

ଶ௥೔ೕ
ర ݁ି௥೔ೕ క⁄ െ

ௐ೔ೕ

௥೔ೕ
ల (15) 

where ܪ௜௝ is the strength of the steric repulsion of 23.67291 eVÅ଻ for Si-Si, 447.09026 

eVÅଽ for Si-C, and 471.74538 eVÅ଻ for C-C pairs, ܼ௜ is the effective charge of +1.201 

electron charges for Si and -1.201 for C, ܦ௜௝ is the strength of the charge-dipole attraction 

of 2.1636 ݁ଶÅଷ for Si-Si, 1.0818 ݁ଶÅଷ for Si-C, and zero for C-C pairs, ௜ܹ௝ is the van der 

Waals strength of zero for Si-Si and C-C, and 61.4694 ܸ݁Å଺ for Si-C pairs, ߟ௜௝ is the 

exponent of the steric repulsion term of 7 for Si-Si and C-C, and 9 for Si-C interactions, ߣ 

and ߦ are screening lengths of 5.0 Å and 3.0Å, and ݎ௜௝ is the distance between the atoms i 

and j.  A cutoff radius, ݎ௖௨௧, of 7.35Ǻ is used as the longest distance up to which atoms 

interact for two-body interactions.  The three-body potential ௝ܸ௜௞
ሺଷሻ is determined as 

 V୨୧୩
ሺଷሻ ൌ  ܴሺଷሻ൫ݎ௜௝,  ௜௞൯ ܲሺଷሻ൫Θ௝௜௞൯ (16)ݎ

where ܲሺଷሻ is the bond-bending contribution and ܴሺଷሻ is the bond-stretching contribution 

of 

 ܴሺଷሻ൫ݎ௜௝, ௜௞൯ݎ ൌ ݌ݔ௝௜௞݁ܤ ൬
ఊ

௥೔ೕି௥೚
൅ ఊ

௥ೕೖି௥೚
൰ δሺݎሻ (17) 

with ܤ௝௜௞ being the strength of the interaction of 9.003 eV, ߛ is a unit conversion of 1Å, ݎ௢ 

is 2.90 Å and δሺݎሻ is a step function limiting the maximum distance for three-body 
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interactions at ݎ௢ between the i-j or j-k atoms.  The bond bending potential as 

 ܲሺଷሻ൫Θ௝௜௞൯ ൌ
ቀ௖௢௦൫஀ೕ೔ೖ൯ି௖௢௦ሺ஀ഥሻቁ

మ

ଵା஼ೕ೔ೖቀ௖௢௦൫஀ೕ೔ೖ൯ି௖௢௦ሺ஀ഥሻቁ
మ (18) 

where Θ௝௜௞ is the bond angle between j-i-k atoms, Θഥ is 109.47௢, and ܥ௝௜௞ is a constant of 

5.0.  Even though the interior angle in a hexagon is 120௢, 109.47௢ is the relaxed bond 

angle for a Si-C-Si or C-Si-C bond [8, 18].  The alternation of Si and C atoms was such 

that bonds of around 1.9 Å are the dominant majority, based on the model potential [8, 

19-21]. 

2.3 UNITS 

During the research described in Chapters 3 and 4, the work was done to derive 

relationships between model potential parameters and both dynamical and 

thermodynamic properties.  By using dimensionless units (called “reduced units”), 

systems that can be modeled with the same model potential are addressed in a universal 

fashion, thus permitting an intrinsic saving of time and effort.  Table 1 presents a 

summary of the reduced units used for systems modeled by LJ potentials.  For example, 

for simulating the properties of a noble gas (neon, argon, krypton, xenon), all of these 

atoms are well modeled by the same LJ potential.  As a result, it is not needed to repeat 

calculations for all of these elements.  One simulation in appropriate reduced units will 

give universal results, which are valid for all noble gasses.  Reduced units are obtained in 

terms of the parameters of the model potential.  Table 1 gives the reduced units of 
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quantities used in Chapters 3 and 4.  Quantities in reduced units are normally referred to 

by an asterisk super index.  For deriving the reduced units of binary LJ systems, the 

actual units of one type of atom were selected as the reference atom and then the reduced 

units of the second/third atoms were determined in terms of the reference atom.  Under 

these assumptions, the reduced units of the reference atom were nominally 1.  The work 

described in Chapter 5 was done in real/physical units.   

 

Table 1:  Summary of reduced units for the LJ potential.  Here kB is the Boltzmann 
constant. 

Quantity Unit Reduced Units 

Energy (E)   
EE *

 

Force (F) 
ߝ
ߪ

 
FF *

 

Length (x) σ 
xx *

 

Mass (m) m ݉כ ൌ ݉⁄݉ ൌ 1  

Time (t)  mt 0  
0

*

t
tt   

Velocity (v) ටߝ ݉⁄  
mvv *

 

Particle Density (ρ) 
1

 ଷߪ
3 *  

Temperature (T) 
ߝ

݇஻
 


TkT B*

 

Thermal Conductivity (κ) 
݇஻

ߪ௢ݐ
 







Bk
t  0*  
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2.4 SIMULATION DETAILS 

2.4.1 Boundary Conditions 

The best calculations are done with very large systems that, in effect, are nearly infinite 

systems from a microscopic viewpoint.  This is obviously not practical for computational 

resources because a lot of computer time is required for just one calculation point.  

Therefore, finite sized computational boxes were needed to be defined in Chapters 3 and 

4 that would simulate actual infinite systems.  To simulate infinite size samples with 

finite computational sized boxes in 1, 2, or 3 dimensions, periodic boundary conditions 

(PBC) were used.  PBCs assume that a computational box is repeated periodically in each 

of the working space dimensions out to infinity.  PBC replicate the entire box by a 

translation operator in each direction.  For example a finite wire can be simulated as 

being infinitely long with PBC along its length direction.  A finite cubic box can simulate 

an infinite 3D system by using PBC along the three coordinate axes.  An effective 

numerical method to implement PBCs is the “minimum image convention.”  The 

algorithm allows inclusion of the actual computational box and its first shell of periodic 

images surrounding it.  Furthermore, the implemented simulation will only calculate the 

forces for the minimum distance between the given atom and the real or image of the 

second atom.  Therefore calculations will be limited to atoms (real or replicated) that are 

apart by less than half of the width of the computational box as the cutoff radius.  For this 

research, 49% of the width of the computational box was used.  Effectively, this is 
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achieved by introducing a cutoff distance in the forces.  Thus, any two atoms separated 

by distances larger than the cutoff, do not interact. 

When using PBCs, the simulation must be carefully set up such that the computational 

box is small enough to permit reasonable calculational times, yet large enough to not 

experience the edge effects of the computational box.  For example, an edge effect would 

manifest itself in the study of a collective vibration with wave length longer than the size 

of the computational box.  For the LJ simulations, it was determined that the 

computational box needed to be a minimum of 4 or 5 times the pattern of atoms in the 

unit cell of the FCC crystal.  The effects were minimized by choosing a size of 5 times 

the FCC unit cell (Chapters 3 and 4) and 15 atomic planes in the case of the SiC 

nanostructures. 

2.4.2 Cubic Computational Box 

A homogeneous block of material was modeled with PBCs in all 3 directions.  These 

blocks were used in both MC and MD methods.  Simulations with these PBCs were used 

for the homogeneous mono- and binary materials described in Chapter 3. 

2.4.3 Slab Computational Box 

For simulations described in Chapter 4, a simulated 3-D infinite slab of material was 

modeled, which had a hot thermal bath on one side and a cold bath on the other.  Figure 2 

shows a schematic view of the infinite slab model.  The computational box has periodic 

boundary conditions in the two dimensions perpendicular to the flow of energy (green 
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arrows on Figure 2). The third direction is connected to two simulated thermal baths 

creating a cold side and a hot side of the sample as shown in Figure 2.  There are no 

PBC’s in this direction.  The region in between the thermal baths is divided into several 

sub-regions along the x-direction (which are referred to as “slices” in the remainder of 

this dissertation), as shown in Figure 3.  This geometrical setup, plus the two thermal 

baths, produced a temperature gradient across the short direction within the analyzed 

material.  Figure 3 shows an expanded view of the computational cell being modeled for 

the non-equilibrium MD (NEMD) studies.  Because a constant gradient of temperature 

was maintained, there was a flux of energy flowing from the hot to the cold end. 

 

 

Figure 2:  Schematic view of the computational box used in the NEMD studies of 
Chapter 4 
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Figure 3:  Expanded view of simulated system of slices for NEMD work with slabs 

 

The thermal baths were modeled using an isothermal MD approach.  Within each bath, 

the temperature was calculated for the bath atoms, then corrected, as described in 2.2.1 

PBC’s were not used in the direction of the thermal baths. 

2.4.4 Nanostructures Computational Box 

The simulation setup for the nanodevices was similar to the slab NEMD, except that a 

finite nanowire or nanotube was placed between the thermal baths.  The PBC’s were not 

used.  The conventions used were the same as those for the slab computational box as 

shown in Figure 4, except PBC’s were not used in any direction.  Additionally, for the 

SiC nanostructures, a hard wall was used on each axial end of the nanostructure.  This 

hard wall was simulated by not allowing motion to the atoms in the last plane in the axial 

direction at each end.  The hard wall prevented the nanotubes from necking down as the 

nanotube slowly grew in length. 
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Figure 4:  Expanded view of simulated system of slices for NEMD work with 
nanostructures described in Chapter 5 

 

For these nanostructures, it was of paramount importance to first determine the length of 

the system.  Systems that were too short failed to yield reliable data.  On the average, the 

length of the central portion needed to be about 3.5nm or longer for the SiC nanowires 

and nanotubes. 

2.5 STRUCTURAL AND THERMODYNAMIC QUANTITIES 

Simulations must reach a state of thermal equilibrium.  In equilibrium, the system has 

relaxed, and is away from the initial arbitrary configuration.  In this dissertation, systems 

that are isolated (Chapter 3) or subjected to thermal gradients (Chapters 4 and 5) were 

considered.  No other external forces were present.  In all cases, the systems were first 

allowed to reach thermal equilibrium.  For the slab and nanostructures, the thermal baths 

were set, once the system had reached equilibrium.  Then, in these NEMD simulations, 

the infinite slab and nanostructures were further allowed to reach a steady state condition, 
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such that the heat flux was constant over time.  Only then, could the data collection 

begin.   

Several parameters were monitored to reach both thermal equilibrium and steady state 

heat flow as described in the following sections.  The first 4 parameters described were 

found to be effective but were very computationally intensive as compared to monitoring 

the temperature stabilization. 

2.5.1 Pressure 

There are several different (but equivalent) ways to measure the pressure of a classical N-

body system [12].  The most common among these is based on the virial equation for the 

pressure.  The virial equation is: 

 ܲ ൌ ஻ܶ݇ߩ  ൅ ۃ  ଵ

௏ௗ
∑ ݂൫ݎ௜௝൯ · ௜௝ݎ

ே
௜ழ௝  (19) ۄ

where P is the average system pressure, ߩ is the system density, ܶ is the average 

temperature, ܸ is the volume, d is the dimensionality of the system, ݂ is the force 

between atoms i and j at a distance ݎ௜௝ and the brackets < > indicate either an ensemble 

average or a time average.  The virial sum gave an indication of equilibrium in the MC 

simulations when it stabilized on a given pressure with small fluctuations. 

2.5.2 Positional Order Parameter 

Positional order parameter, λ, is a measure of the shift from the initial ‘perfectly placed’ 

locations in a crystalline configuration.  λ was determined by comparing the current 
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atoms position to atoms placed in a perfect FCC lattice.  When the values of λ stabilized, 

then the system was approaching equilibrium.  For atoms in the FCC lattice, λ gives a 

measure of how close or far from the FCC the system is.  The λ is calculated as: 

ఈߣ  ൌ ଵ

ே
∑ cos ସగఈ೔

௔
ே
௜  (20) 

where α is x, y, or z and a is the lattice constant. 

2.5.3 Boltzmann’s H-function 

At thermal equilibrium, the velocity distribution of the atoms in the computational box 

should be Maxwellian [14].  Thus the atomic momenta ݌௜ are distributed according to the 

following function: 

 ܰሺ݌ሻ ൌ ׬ ܰሺݎ, ݎሻ݀݌ ൌ ே

஼
݌ݔ݁ ቀെ ௣మ

ଶ௠௞ಳ்
ቁ  or  ݂ሺݒ௫ሻ ൌ ே

஼
݌ݔ݁ ቀെ ௠௩ೣ

మ

ଶ௞ಳ்
ቁ (21) 

where C is a constant that ensures normalization.  The Boltzmann H-function is defined 

as: 

ሻݐ௫ሺܪ  ൌ ׬ ݂ሺݒ௫ሻ݈݊൫݂ሺݒ௫ሻ൯
ஶ

ିஶ  ௫ (22)ݒ݀

where ݒ௫ is the x component of the velocity.  The H-function requires an update of the 

function ݂ሺݒ௫ሻ given in equation (21) as the MD simulation progresses.  Because for an 

isolated system equilibrium is the most probable state, and because the Maxwell 

distribution of velocities ݂ሺݒ௫ሻ is positive and normalized, then ݈݊൫݂ሺݒ௫ሻ൯ is negative, 

and as a function of time, the H-function should decrease and have a negative value. 
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2.5.4 Mean Square Displacement (MSD) 

The mean square displacement (MSD) is defined as the time average of the square of the 

distance between the initial position ݎ௢ and the current position of each atom.  When the 

time averaged MSD becomes stable, then the atoms (on average) are vibrating around a 

constant position and, therefore, equilibrium is reached [14].  On the other hand, the 

MDS grows linearly with time, according to Einstein’s relation of diffusion. 

ݎ|ۃ  െ ۄ௢|ଶݎ ؠ ܦܵܯ ן  ஽௧

ଶௗ
 (23) 

where D is the coefficient of self diffusion and d the dimensionality of the system.  In 

simulation, one deals with a finite size computational box; therefore, a particle can only 

diffuse as much as the size of the box.  Figure 5 is an example of a LJ system in the liquid 

state.  At short time intervals, the linear dependence is clear.  However, after about 0.08  

 

Figure 5:  MSD as a function of time for a LJ fluid 
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time units, the particles have reached the size of the box cannot go further away, and the 

MSD reaches its maximum possible value. 

2.5.5 Temperature Stabilization 

The temperature stabilization was perhaps the best determination that thermal equilibrium 

was reached.  The temperature profile would either be a constant for equilibrium runs or 

would develop a slope as a function of position for the non-equilibrium runs. 

During the equilibrium runs, the atom velocities were scaled by a factor to reset the 

temperature to the desired temperature (or profile) at periodic intervals.  This trick was 

implemented to be dynamic.  The frequency of scaling was initially set to be a nearly 

every time step.  As the scaling factor changed to near 1, the frequency of the scaling was 

decreased.  The process of scaling was terminated when the scaling factor would be 10-5 

away from 1.  This process gave a speedup to calculations, saving well over half of the 

CPU time required to reach an equilibrium or steady state condition. 

2.5.6 Pair Distribution Function 

The pair distribution function, ݃ሺݎሻ, is a signature of the structure in an N-body system.  

The ݃ሺݎሻ represents the probability of finding atoms at distances r away from any given 

atom in the system.  The following equation was used: 

 ݃ఈ ൌ
∑ ேೖሺ௥,∆௥ሻಾ

ೖసభ

ெቀభ
మ

ேቁఘ௏ሺ௥,∆௥ሻ
 (24) 



30 

where ௞ܰ is the number of distances between ݎ and ݎ ൅  M is the total ,ݎ∆݇ at time ݎ∆

number of time steps used, ߩ is the system number density, and ܸሺݎ,  ሻ is the volumeݎ∆

between two spheres, one of radius r and the other of radius r+∆ݎ.  Here α is an atom pair 

type (A-A, A-B, B-B), ܰሺݎఈሻis the number of atom pairs at distance r apart, Δݎ is the 

binning width.  Figure 6 is a sample plot for a liquid binary mixture at a low temperature 

(T=36K) at equilibrium.  The ݃ሺݎሻ for type A to type A atoms is shown by the solid line, 

A-B atoms is the short dash line, and B-B atoms is represented by the long dash line.  

݃ሺݎሻ gave an indication of equilibrium being reached when the function stabilized with 

the predicted plotted peak values. 

 

Figure 6:    Pair correlation function as a function of distance for a binary LJ system at 
T=36K, ρ=0.382.  Solid line is for A-A atoms, short dashed line is for B-B 
atoms and long dashed line is for A-B atoms. 
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2.6 DYNAMICAL PROPERTIES 

Several dynamical functions were employed in the research as described in this section. 

2.6.1 Time Dependent Correlation Function and Green-Kubo Formalism 

A dynamical approach to calculate the thermal conductivity,  is based on the Green-

Kubo (GK) formula [22-23].  The GK expression relates the two-times autocorrelation 

function, ܥሺ߬ሻ, of the heat current, ܬԦሺ߬ሻ, to the thermal conductivity,  [13, 24-26]: 

ሺ߬ሻܥ  ൌ  
ۄ௃Ԧሺ௧ାఛሻ௃Ԧሺ௧ሻۃ

ۄ௃ሺ௧ሻమۃ
 (25) 

where the angular brackets <.> indicate an average at thermal equilibrium, ܬԦሺݐሻ is the heat 

current at a given time, and ܬԦሺݐ ൅ ߬ሻ is the heat current at ߬ time later.  The correlation 

function describes the memory decay of a system property as a function of time.  For this 

work, the desired thermal property was the thermal conductivity: 

ߢ  ൌ  ଵ

ଷ௏௞ಳ்మ ׬ ሺ߬ሻ݀߬ܥ
ஶ

଴  (26) 

where V is the volume of the sample, ݇஻ is Boltzmann’s constant, and T is the 

temperature. 

The GK approach works well for both amorphous and crystalline models, as long as the 

system is homogeneous.  GK takes full account of anharmonic properties, but is classical 

in nature. 
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Ladd, et al. [24] were the first to use the GK formalism to calculate thermal conductivity 

for solids with interactions following an inverse-twelfth power law potential.  Later, 

Gillan extended this method for the study of ܬԦ in palladium doped with hydrogen [27].  

More recently, Chen et al. used this same approach to study the thermal conductivity of 

pure Ar doped with Xe [28]. 

The proportionality between a transport coefficient, such as , and the associated time 

correlation function of a quantity coupled to the external force producing the transport 

process, is a general result of linear response theory.  It was first demonstrated to be 

applicable to the transport of heat when Mori [29] introduced the concept of “local 

thermal equilibrium.”  Indeed, when a heat current is flowing through a material, the 

solid is not in thermal equilibrium.  However, the system is locally close to being in 

thermal equilibrium.  Small regions within the material may be thought to be in thermal 

equilibrium, thus having the same T.  It is only under that assumption that equation (26) 

is valid. 

A generalization for an isotropic system is to consider the tensor , where  and  are 

the coordinates x, y, z. 

2.6.2 Heat Flux 

The heat flux (a.k.a. Ji) across the computational box was monitored as the sample 

approached the steady state condition.  The conduction of heat occurs through flow of 

energy and can be expressed as a vector in terms of the dynamical variables ݎԦ, ݌Ԧ of each 
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atom.  The heat current operator assumes the following microscopic expression [13, 24, 

30-32]: 

,ݎఈሺܬ  ሻ݌ ൌ ∑ ቂ ௣మ

ଶ௠೔
൅ ଵ

ଶ
∑ ௜௝൯ேݎ൫ݑ

௝ஷ௜ ቃ ቀ௣೔ן

௠೔
ቁ ൅ ଵ

ଶ
∑ ∑ ቂቀ ௣Ԧ೔

௠೔
ቁ · ௜௝ቃேܨ

௝ஷ௜ ௜௝ఈݎ
ே
௜ୀଵ

ே
௜ୀଵ  (27) 

where  = x,y,z, the ݌௜ are the momenta of atoms with mass ݉௜, ݑ൫ݎ௜௝൯ are the 

interatomic potential energies, and ܨ௜௝  are the forces between atoms i and j.  Equation 

(27) can be simplified to [30]: 

Ԧܬ  ൌ  ∑ E୧
ே
௜ୀଵ Ԧ௜ݒ ൅  ଵ

ଶ
∑ ∑ ൫ݒԦ୧ · Ԧ௜௝൯ேܨ

௝ஷ௜ Ԧ௜௝ݎ
ே
௜ୀଵ  (28) 

where ܧ௜ is the total energy of each atom, and ݒԦ௜ is its velocity. 

In the NEMD, one is interested in the flow of thermal energy along the direction that has 

the applied thermostats (Figures 2, 3, and 4).  Although the heat flux perpendicular to this 

axis (ܬ௬ and ܬ௭ሻ is not relevant to the calculation of checking that the transversal 

components were small ensured that the NEMD simulation was reliable.  Small values 

for the ܬ௬ and ܬ௭ were due to the round-off errors and truncated variables in the 

simulation.  Therefore, when  the cross term heat currents calculated were on the order of 

0.1% to 5% of the longitudinal heat current, the runs were considered to be good. 

2.6.3 Vibrational Spectrum from a Classical Approach 

Phonons are quanta of lattice vibrations.  In MD simulations, phonons are not explicitly 

calculated, yet their properties can be simulated from the movements of the atoms in the 

system [5].  The vibrational spectrum of the monatomic case (all atoms are of type A) 
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was determined from the time dependent autocorrelation function of velocities of each 

atom and then taking a Fourier transform (FT).  The resulting FT is proportional to the 

absorption spectrum of the system [33]. 

The velocity autocorrelation function, ܥ௩௘௟ሺ߬ሻ, and Fourier transform are: 

௩௘௟ሺ߬ሻܥ  ൌ ∑ ݐԦ௜ሺݒۃ ൅ ߬ሻ · ேۄሻݐԦ௜ሺݒ
௜ୀଵ  (29) 

ሚ௩௘௟ሺ߱ሻܥ  ൌ ଵ

ଶగ
׬ ݁ି௜ఠఛஶ

ିஶ  ௩௘௟ሺ߬ሻ݀߬ (30)ܥ

Atomic velocities in each direction were used from a time period of about 214 steps.  The 

data was divided into 16 discrete sections and the ܥ௩௘௟ሺ߬ሻ taken for each, in each of the 

three directions.  The ܥ௩௘௟ሺ߬ሻ values were calculated then padded with zeros as the input 

to the Fourier transform.  The Fourier transform was taken on the resulting values and 

then averaged and normalized over the entire range.  The resulting histogram showed the 

density of states of vibrational modes. 

Figure 7a shows a typical result of ܥሚ௩௘௟ሺ߱ሻ for the entire frequency range and with an 

expansion of the scales in Figure 7b showing the peaks more clearly.  This density of 

states (DOS) changes with temperature.  To study the thermal effect, runs were made at 

three temperatures, 7.5K, 17.5K, and 27.5K.  Table 2 shows the frequency at peak values 

of DOS of vibrational states for the three temperatures, for the case of Ar, ߝ ൌ  and ܭ120

ߪ ൌ 3.4Հ.  Values of ω were obtained by realizing that for a Δt=0.05*2.15 10-12 sec and 

256 points in the FFT, the ∆߱ ൌ ଶగ

ଶହ଺כ∆௧
 was approximately 20 THz.  Similar results are 

reported in [5] of the phonon spectrum for solid Ar in the near infrared region. 
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Figure 7:  Typical DOS of vibrational states for a 50:50 solid mixture of LJ atoms at 
T=0.167 

Table 2:  Frequency of the peaks in the vibrational spectrum for argon 

Temperature Frequency of the 
highest peak 

Frequency of the 
secondary peak 

27.5K 3.35 1013 Hz 2.50 1013 Hz 

17.5K 3.3 1013 Hz 2.39 1013 Hz 

7.5K 3.26 1013 Hz 2.39 1013 Hz 

The results match those experimentally determined for argon in [34]. 

2.7 NON-EQULIBRIUM MD SIMULATIONS 

In 1958, Mori [29] proposed a crucial concept for the development of the statistical 

mechanics of non-equilibrium systems, systems where the temperature of the system is 
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not the same in all points of space.  If the macroscopic quantities vary very slowly over a 

mean free path between collisions, then these same collisions quickly drive the system to 

a state that is as close as possible to the thermal equilibrium state.  Mori defined the 

concept of a “local equilibrium.”  The local equilibrium concept is simple to understand 

if one thinks that the one-particle velocity distribution probability is of Maxwell type, but 

the five fundamental parameters of thermodynamics -- density, ߩሺݔሻ, local linear 

momentum, ݌ሺݔሻ, and the energy depend slowly on space (x) and time.   An 

instantaneous state of the system deviates only slightly from local equilibrium.  What 

Mori did was to extend the local equilibrium concept from the one-particle distribution to 

the complete N-body distribution.  The reader should remember that the atomic 

description of the heat current operator, equations (27) and (28), are valid for non-

equilibrium systems. 

The heat flux, ܬԦ, may be thought as the net amount of energy transported across unit area 

in unit time when the system is under a thermal gradient, e.g., in contact with two 

reservoirs at temperatures ௛ܶ௢௧  and ௖ܶ௢௟ௗ (see Figures 2 and 3).  Then the local 

equilibrium average of ܬԦ becomes proportional to the local gradient of temperature T, 

following the Fourier law: 

Ԧܬ  ൌ
೗೚೎ೌ೗ۄ௃Ԧۃ

௏೗೚೎ೌ೗
ൌ െ׏ۃߢሬሬԦܶۄ௟௢௖௔௟ (31) 

The lattice thermal conductivity, ߢ, of a solid, is then defined as the coefficient of 

proportionality between the steady-state flow of heat and the temperature gradient within 

the material.  Fourier’s law implies that the thermal energy transfer within the material is 
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a random process and thus behaves as a diffusive quantity undergoing many collisions 

along its travel through the material.  The underlying partial differential equation 

representing this behavior is the heat conduction equation, which is a diffusion equation: 

௩ܥߩ 
ߝ݀

ൗݐ݀ ൌ ,ଶεሺr׏ߢ tሻ 32) 

where εሺr, tሻ is the energy above the average energy, ߩ is the mass density of the 

material, and ܥ௩ is the specific heat at constant volume.  This is the continuum 

representation of the process of heat conduction.  In the literature, instead of εሺr, tሻ, one 

finds the temperature, ܶ, but the two quantities are proportional, because, from a 

microscopic approach, the solid is given an atomistic description, such that the total 

energy of N atoms is, 

 Εሺr, tሻ ൌ  ∑ ሾε୧ െ ሿδሺrۄε୧ۃ െ r୧ሻ
N
୧ୀଵ  (33) 

here ri is the instantaneous position of every atom and δ is the Dirac delta function.  This 

means that the thermal energy being conducted is now scattered by an array of vibrating 

atoms. 
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CHAPTER 3 THERMAL CONDUCTIVITY STUDY OF BINARY 

LENNARD-JONES SYSTEMS 

3.1 INTRODUCTION 

The focus of this portion of the research work was to investigate the lattice thermal 

conductivity of binary crystals with compositional disorder.  It is known that heat is 

transported better through solid materials that are pure and crystalline.  Any type of 

impurity, defect, doping, or internal boundary within the material increases the resistance 

to heat transport, and thus, reduces the ability to conduct thermal energy.  With the 

growing interest in nanotechnology, the study of thermal conduction properties of 

systems with reduced dimensions and super lattices has increased.  In nanomaterials and 

nanostructures, phenomena are highly dependent on the length scale where vibrations 

between nearest neighbor atoms occur.  The use of MD with Green-Kubo (GK) approach 

has shown promise as an atomistic approach to understand the thermal conductivity of 

nanoscale systems.  For example, there are several recent calculations on pure noble 

gasses with LJ interactions in which MD simulations were the method of choice [1-5].  

The present work focused on identifying ranges of disorder conditions which reduce the 

lattice thermal conductivity, κ, of the simulated binary solids and may warrant further 

experimental work. 
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The effect of disorder on thermal conductivity was investigated using several simple 

models of binary LJ solids.  Disorder was investigated due to differences in the LJ 

parameters of hard core radius ( ), interatomic bond strength ( ), and mass (m) of the 

atoms in the system.  Several relative concentrations of simulated binary mixtures were 

studied as a function of selected potential parameters and analyzed across various 

temperatures.  The computational approach taken was to perform atomic-level computer 

simulations employing a combination of isoenergy MD and NPT MC to calculate the   

within the GK approach of many body systems (see section 2.6.1).  To validate the work, 

results were compared to other reported results and experimentation available for 

monatomic crystals of noble gases. 

3.1.1 Setup 

A crystalline binary mixture of 500 atoms was simulated in a cubic computational box 

with periodic boundary conditions (PBC) in each direction.  The LJ potential was used as 

a prototype interaction between atoms.  In the calculations, the cutoff radius, ݎ௖, was 

taken as 49% of the width of the computational box.  The compositional disorder 

introduced in the reference lattice due to the guest atoms is modeled parametrically by 

changes of , ε, and mass.  The system is homogeneous since the A and B atoms are 

distributed at random within the sample as shown in Figure 8.  The composition of the 

binary crystal uses atoms of type ‘‘A’’ as the reference and atoms of type ‘‘B’’ as the 

guest.  There are three types of LJ parameters: (1) atoms of type A have LJ parameters ߪ஺ 

and ߝ஺; (2) atoms of type B interact through LJ potentials with parameters ߪ஻ and ߝ஻; (3) 
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interactions between A and B atoms are modeled with LJ parameters ߪ஺஻ and ߝ஺஻ (see 

section 2.2.1).  All parameters were compared relative to the reference A atoms.  

Quantities are expressed in reduced units with respect to the reference atoms’ LJ 

parameters (ߪ஺, ߝ஺ and ݉஺) (See section 2.3).   Densities considered correspond to solid 

mixtures. 

 

Figure 8:  Schematic view of a compositionally disordered binary LJ solid with a 50:50 
mixture of green and red atoms 

 

Four compositional mixture cases were considered with the following characteristics: 

100% of pure A atoms, 75% of A atoms and 25%B atoms, 50% of each type, and 25% of 

A atoms and 75% of B atoms.  Simulations started at a reduced temperature of 0.5 from a 

configuration with atoms placed in a perfect FCC lattice.  Next, an initial atom type 

assignment was constructed such that atoms were randomly assigned as type A or B 

consistent with the desired relative concentration of the two types of atoms.  Throughout 
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this study, to indicate the ratio of parameters, the symbols ܴఙ, ܴఌ,  and ܴ௠ are used for 

஻ߪ ஺ൗߪ ஻ߝ , ஺ߝ
ൗ , and ݉஻ ݉஺

ൗ , respectively. 

The system was equilibrated by NPT MC, which allowed for moves of the atoms in 

random directions and changes of the entire computational box volume (V).  The 

acceptance criterion between old ( ௢ܸ௟ௗ) and new ( ௡ܸ௘௪) configurations is given by [12] 

(see equation 10 in section 2.1.2.3  .  The equilibrium density of the binary system was 

then obtained for several temperatures. 

The NPT MC simulations were run between 1 and 3 million steps, with each step being a 

single atom movement of each atom and one volume adjustment.  The density and other 

calculated quantities were determined as averages over the final quarter of the NPT MC 

run.  Therefore, the final position of the atoms within the box is consistent with this 

average density.  The average density is defined as ܰ ൗۄܸۃ  irrespective of the types of 

atoms.  Because the computational box is finite, the value of the pressure was adjusted by 

subtracting the pressure that would be exerted by a structureless infinite-sized sample 

outside of the computational box [12]. 

For the monatomic system, the equilibrium structure was FCC for all temperatures 

considered.  At low temperatures, no stable amorphous phase was found.  The result is 

consistent with those previously reported in Ref [3].  Because the NPT MC calculation 

does not include the mass in the simulation, the equilibrium ρ for binary samples with A 

and B atoms having equal σ and only different ε is the same as the density of the 

monatomic system.  Therefore, the NPT MC calculations were carried out to determine ρ 
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at different temperatures when ܴఙ ് 1.  Figure 9 shows the temperature behavior of the 

average ρ for equilibrated systems at zero pressure for samples with a 50:50 relative 

concentration.  The curves correspond to different ܴఙ.  The value of ρ of pure Ar reported 

in Ref. [3] compares well with the results.  As expected, when ܴఙ increases, the volume 

must also increase, decreasing ρ.  The standard deviation (SD) of the average density is 

very low, of the order of the symbol size used in Figure 9.  These small fluctuations 

certainly ensure that the decrease of ρ with temperature illustrated in Figure 9 is indeed 

realistic. 

 

 

Figure 9:  Density as a function of temperature for the binary LJ system with 50:50 
relative concentration.  Quantities are in reduced units. 
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3.1.2 Determining Thermal Conductivity 

The next step was to initiate the isoenergy MD study using the output of the NPT-MC 

runs.  Each MD trial was run 350,000 time steps of ∆ݐ ൌ 0.005 to allow the system first 

to equilibrate at the desired temperature, then run for another half a million time steps to 

calculate the desired heat current operator values.  Next was to calculate the time 

dependent autocorrelation function, ܥሺ߬ሻ , of the heat current operator (see sections 2.6.1 

and 2.6.2).  Each autocorrelation function run typically used 214 time steps.  It was found 

that for ܴఙ, ܴఌ,  and ܴ௠ near a value of one, required longer times to compute the 

autocorrelation function than when disorder sets in. 

The κ was obtained by integrating ܥሺ߬ሻ over the range of ൣ0,  ௧௥௔௝൧, according to equationݐ

(25) where ݐ௧௥௔௝ is the total time for which the autocorrelation function was calculated.  

Optimally, it would be best to calculate ܥሺ߬ሻ out to an infinitely long trajectory instead of 

just the finite trajectory length, but this is not possible numerically.  It was observed that 

 ሺ߬ሻ could be approximated as shown in Figure 10 by an exponentially decaying cosineܥ

function, ݁ି఍ᇲ௧ cosሺݐߞሻ , and fit the parameters ߞ and ߞᇱ to the numerical MD results.  

Then the integration in equation (26) was done from the actual simulation data for 

0 ൑ ߬ ൑ ௙௜௧ݐ ௙௜௧ and used the decaying cosine function forݐ ൑ ߬ ൑ ∞.  The value ݐ௙௜௧ of 

was set to be 1.25 times the period of the fitted cosine function.  The time1
ᇱൗߞ  defines the 

correlation relaxation time.  In Figure 10, ݐ௙௜௧ was about 5.5 time units. 
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Figure 10:  Calculated time dependent autocorrelation function of the heat current 
operator as a function of time lag 

 

3.1.3 Computational Disorder 

The NPT MC samples prepared in the manner described in previous paragraphs represent 

different types of compositional disorder.  For all values of ܴఌ  and ܴ௠ simulated, but 

keeping ܴఙ ൌ 1, the structure of the equilibrated sample is the FCC lattice.  Thus the 

system disorder is based on a random mixture of atoms A and B which are positioned on 

a perfect lattice.  In contrast, when size disorder was introduced with ܴఙ ൐ 1.1, the FCC 

lattice collapses.  This is shown in Figure 11 (top) which depicts the pair correlation 

function g(r) of a 50:50 mixture sample at ܶ ൌ 0.0167 with ܴఌ ൌ 1 and ܴ௠ ൌ 1 and 

three different ܴఙ values (1.0, 1.1 and 1.25 – solid, dashed, dotted lines, respectively) 

(See section 2.5.6) in which the gAA(r), gAB(r) and gBB(r) values have been depicted 
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together.  Note that the subscripts in g(r) indicate which type of atoms the distance was 

measured for.  Figure 11(bottom) shows the same case as the top with a scaling of ߩଵ ଷ⁄  

applied to the distance dependence.  It is very clear that for ܴఙ ൌ 1.25 (dotted line), the 

compositional disorder of the 50:50 sample affects the structure very significantly and the 

FCC crystal collapses into a homogeneous amorphous solid.  The structure of this 

amorphous solid mixture is very different from the structure found in atomic clusters 

[35], where the atoms with smaller  segregated and formed a subcluster surrounded by 

the large  atoms. 

 

 

Figure 11:  Pair distribution function of a 50:50 mixture at T=0.167: (top) g(r) vs. 
interatomic distance, (bottom) same results as in (a) as function of scaled 

distances by ߩ
ଵ

ଷൗ .  Solid lines are gAA, dashed lines are gBB, and dotted lines 
are gAB 
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3.2 DETERMINATION OF THE LATTICE THERMAL CONDUCTIVITY 

3.2.1 Calibration of Results 

A sample with 500 atoms (ܰ ൌ 4݊ଷ where n is the number of FCC cells on each 

direction) with only one type of atom was prepared, and κ was obtained for several 

temperatures using the steps described in section 3.1.2.  These results allowed a 

validation of the method by comparison with several calculations done in [3, 24, 27, 35] 

as well as with experimental results [36].  Figure 12 shows this comparison, indicating 

that the results ( ) are in full agreement with previous calculations and with the 

experimental results presented in Ref. [3] (◊), Ref. [28] (○), Ref. [25] (∆), Ref. [36] (+), 

Ref. [37] (□), and follows the expected inverse power relationship as a function of 

temperature.  

In the GK approach, there is an implicit dependence of κ on the volume of the sample.  

Sample size effects were studied in Ref. [25] where the authors considered computational 

box sizes containing between 108 and 4000 atoms.  Those authors concluded that for Ar 

in the temperature domain of 20–70 K, the size effects are irrelevant for all practical 

purposes when calculating κ for a pure Ar system.  This is consistent with the findings for 

computational cells containing 108–2048 atoms.  It was found that computational boxes 

smaller than 108 atoms were too small for meaningful results.  Figure 13 illustrates the 

dependence of the equilibrium system density, κ, and potential energy averages as a 

function of the number of FCC cells (n) that build the computational box edge.  The  
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Figure 12:  Thermal conductivity as a function of temperature ( ) compared to other 
theoretical and experimental works for pure Ar at zero pressure.  Inset is 
expansion of region near (0,0) {Ref. [3] (◊), Ref. [28] (○), Ref. [25] (∆), Ref. 
[36] (+), Ref. [37] (□)} 

 

number of atoms is ܰ ൌ 4݊ଷ.  The study further ensures that results of κ with systems 

containing roughly 500 atoms are reliable. 

3.2.2 Thermal conductivity of binary mixtures as a function of the compositional disorder 

Based on the continued good agreement with both the previously discussed comparisons, 

a system size of 500 atoms was selected for all results reported in this work.  The 

following compositional mixtures were considered: ܴఙ of 1.0, 1.1, 1.25, 1.5 and 2.0; ܴఌ 

of 1.0, 1.25 and 1.5; and ܴ௠ of 1.0, 1.6, 2.1 and 3.3; at the following different relative 

concentrations of A and B atoms ranging 100% A atoms, 75% A with 25% B, 50% A 

with 50% B, and 25% A with 75% B. 
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Figure 13:  Finite size effects due to computational box size for Ar systems at T=0.167 

 

For samples with relative concentrations of 50:50, at a temperature of T = 0.167, Figure 

14 illustrates the lattice κ as a function of one parameter ratio (ܴఙ, ܴఌ,  or ܴ௠), while the 

other two parameter ratios are kept constant.  Figure 14 (a) and (b) show a dramatic 

decrease of κ with increasing ܴఙ.  In fact, Figure 14(a) shows that κ decreases by a factor 

of over 6 between ܴఙ ൌ 1 and ܴఙ ൌ 1.1 for a constant mass ratio and various values of 

ܴఌ.  Likewise, Figure 14(b) shows a dramatic decrease in κ between ܴఙ ൌ 1 and ܴఙ ൌ

1.1 for different mass ratios.  In this case again, κ decreases by factors up to 6 depending 

upon ܴ௠.  While Figure 14(b) shows a substantial decrease in κ between ܴఙ ൌ 1 and 

ܴఙ ൌ 1.1, the two atom types would have to be the same to have ܴఙ ൌ 1 and ܴ௠ ൌ 1, 
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which is an unrealistic case.  On the contrary, Figure 14(c) shows that, for ܴఙ ൌ 1 and 

ܴ௠ ൌ 1, κ increases slightly as a function of ܴఌ and decreases as ܴఙ increases.  This 

increase lies within the SDs of the κ results and might not be a real effect. 

The conclusion of the parameter analysis is that at T= 0.167, both radius disorder and 

mass disorder impose a strong depletion of κ.  Even a slight difference in atomic radius 

of only 10% has a major effect on decreasing κ, while the mass ratio has a more gradual 

depleting effect on κ.  The mass disorder leaves the crystalline symmetry intact.  In 

comparison, the radius disorder allows the solid to acquire incipient amorphous  

 

 

Figure 14:  Thermal conductivity as a function of parameter ratios for a sample at 
T=0.167 and ρ=1.035; (a) ܴ௠ ൌ 1 , ܴఌ ൌ 1.0ሺᇞሻ, 1.25ሺלሻ, 1.5 ሺᇝሻ, (b) 
ܴఌ ൌ 1, ܴ௠ ൌ 1.0ሺ ᇝሻ, 1.6ሺ◊ሻ, 2 .1ሺᇞሻ, 3.3ሺלሻ ; and (c) ܴ௠ ൌ 1, ܴఙ ൌ
1.0 ሺᇝሻ, 1.1ሺ◊ሻ, 1.25ሺᇞሻ, 2.0ሺלሻ 
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characteristics as evidenced by the pair correlation function signature illustrated in Figure 

11.  In fact, for the large difference in atomic radii of 25%, Figure 11 indicates that the 

FCC symmetry is already lost and the solid is no longer a crystal. 

3.2.3 Temperature Effects on the Thermal Conductivity 

For monatomic crystalline materials, the expected theoretical dependence of the thermal 

conductivity with temperature follows an inverse power law [6-7].  While previous MD 

simulations [28] reported κ exhibiting this expected behavior, the results show a 

departure for any of the proposed samples with disorder.  Figure 15 shows the κ behavior 

for various values of ܴఌ of 1.0, 1.25 and 1.5 and ܴ௠ ൌ 1 for a 50:50 concentration.  In 

Figure 15 the inverse temperature dependence is plotted with a dotted line to guide the 

eye.  Figure 15(a) depicts the temperature dependence for ܴఙ ൌ 1 with the square, circle 

and triangle symbols identifying the three values of ܴఌ (1.0 (□), 1.25 (○), and 1.5 (∆)), 

respectively.  SDs are shown for the ܴఌ ൌ 1.25 case and are representative of the other 

cases.  Figure 15(b) gives results for systems with ܴఙ ൌ 1.1 as solid lines corresponding 

to ܴఌ = 1.0, 1.25, and 1.5 (top, middle and bottom) and dashed lines for ܴఙ ൌ 1.25.  SDs 

are about 1–2 units of κ for all results.  It is apparent from these plots that the ordered 

crystal with no core radius disorder follows the 1/T relationship very closely (Figure 

15(a)), while any of the compositionally disordered systems (Figure 15(b)) present a 

nearly constant κ as a function of temperature.  This degrading of the thermal conduction 

is similar to that predicted for covalent binary crystals with defects [38] where κ was 

found to be essentially temperature independent.  In the study, it should be remembered 
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that compositional disorder in which the atomic radii differ by only 10% produces a 

dramatic reduction of κ to a minimum value, which keeps fairly constant for the 

temperatures investigated.  In summary, it should be emphasized that the radii disorder 

has an extremely strong effect to reduce κ, bringing its value to be a minimum for all 

calculations with widely varying material parameters. 

 

 

Figure 15:  Thermal conductivity as a function of temperature for parameter ratios: (a) 
ܴఙ ൌ 1.0 , ܴఌ ൌ 1.0 ሺᇝሻ, 1.25ሺלሻ, 1.5ሺᇞሻ , and (b) ܴఙ ൌ 1.1 (solid) ܴఙ ൌ
1.25 for ܴఌ ൌ 1.0 ሺ݌݋ݐሻ, 1.25ሺ݈݉݅݀݀݁ሻ, 1.5ሺܾ݉݋ݐݐ݋ሻ 
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3.2.4 Concentration Effects 

The last part of this study pertains to changes in the relative concentrations of the A and 

B atoms.  Relative concentrations of A:B atoms of 25:75 and 75:25 were analyzed in 

addition to the 100% type A and the 50:50 mixture cases discussed above.  As the 

concentration changes, when the disorder is on the radii, there is a significant effect on 

the equilibrium density, ρ, as shown in Figure 16 for the case of a 50:50 mixture. 

 

Figure 16:  Density as a function of temperature for 50:50 relative concentrations in the 
mixture.  Filled symbols for ܴ1.1 = ߪ and open symbols for ܴ1.25 = ߪ.  The 
circle, triangle and square are for ܴ1.25 ,1.0 = ߝ and 1.5, respectively.  ܴߝܴ =ߪ 
= ܴ݉ =1 is shown as crosses. 

In analyzing mixtures with the 25:75, 50:50 and 75:25 relative concentrations over the 

range of T, ܴఙ, ܴఌ and ܴ௠, the behavior of κ was very similar to that of the 50:50 case.  

Table 3 summarizes all results of κ for the various disorder cases at five temperatures.  
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Once again, for these relative concentrations studied, the maximum decrease in κ is 

through ܴఙ. 

 

 

Table 3:  Lattice thermal conductivity for mixtures with various relative concentrations at 
temperatures 0.042, 0.083, 0.167, 0.333, and 0.5 in reduced units 

Relative 
Concentration 

Temp  
࣌ࡾ ൌ 1 
࢓ࡾ ൌ 1 
ࢿࡾ ൌ 1

 ࢓ࡾ ࢿࡾ ࣌ࡾ

1.1 1.25 1.25 1.5 1.6 2.1 3.3 

100% A 

0.042 
0.083 
0.167 
0.333 
0.5    

476.6
200.1
  79.5
  31.9
  14.5 

       

75% A, 
25% B 

0.042 
0.083 
0.167 
0.333 
0.5    

 

  8.8 
  9.5 
10.4 
10.6 
  6.8 

5.8
7.1
6.6
6.0
3.2 

331.5 
201.1 
 98.9 
 37.4 
 16.8 

184.2
138.8
75.4
35.8
18.1 

- 
- 

22.9 
- 
- 

- 
- 

12.4 
- 
- 

-
-

7.2
-
- 

50% A, 
50% B 

0.042 
0.083 
0.167 
0.333 
0.5    

 

8.3 
8.5 
8.4 

10.0 
7.6 

9.1
6.3
6.0
6.1
5.5 

329.4 
193.2 
 98.4 
 41.8 
 23.5 

230.1
164.7
113.1
 49.9
 26.2 

- 
- 

18.9 
- 
- 

- 
- 

9.4 
- 
- 

-
-

4.8
-
- 

25% A, 
75% B 

0.042 
0.083 
0.167 
0.333 
0.5    

 

7.5 
9.0 

16.9 
11.2 
8.5 

9.4
6.2
6.3
5.8
5.4 

231.2 
331.8 
107.9 
 55.3 
 24.6 

275.1
199.6
141.3
 79.1
 39.8 

- 
- 

22.8 
- 
- 

- 
- 

14.7 
- 
- 

-
-

3.6
-
- 
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Additionally, as is shown in Figure 14(c) for the 50:50 relative concentrations, the effect 

of increasing ܴఌ while ܴఙ and ܴ௠ remain constant, produced an apparent slight increase 

in κ.  This effect is also present for the other relative concentrations as reported in Table 

4 at T = 0.042, 0.083, 0.167, 0.333 and 0.500 (top to bottom in each table entry).  For any 

parameter ratio ≠ 1, the other two parameter ratios = 1.  Values are in reduced units. 

3.2.5 Compositional Disorder Effect on the Heat Current Autocorrelation Function Time 

To compute the lattice thermal conductivity, the autocorrelation function of the heat 

current operator ܥሺ߬ሻ was approximated by an exponentially decaying cosine function 

(see section 2.6.1).  In Figure 17, the vertical axis on both plots depicts the system 

relaxation time and is plotted as a function of ܴఙ in Figure 17(a) and ܴ௠ in Figure 17(b).  

This figure clearly illustrated that the relaxation time is directly related to the core radius 

and mass disorder present in the sample.  The change in relaxation time due to the ܴఌ 

disorder is small as evidenced by the three curves in Figure 17(a) and (b). 

3.3 SUMMARY AND CONCLUSIONS 

Throughout this phase of the research work, it has been shown that studying the effects of 

compositional disorder and temperature on the thermal conductivity of binary mixtures 

can be demonstrated in computer-simulated experiments.  The work was performed on a 

personal computer with a single Pentium 4 processor (3.2 GHz) and each NPT MC and 

MD run consumed about 9 and 4 hr of processing time, respectively, per data point, 

making the work reasonable to accomplish. 
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Figure 17:  Relaxation time as a function of parameter ratios for the 50:50 sample for 
T=0.167, ρ=1.035, (a) ܴఌ ൌ 1.0 ሺᇝሻ, 1.25ሺלሻ, 1.5ሺᇞሻ, (b) on each plot. 

 

The results of this work show that compositional disorder at the nanoscale in crystalline 

and amorphous binary mixtures decrease the lattice thermal conductivity in a dramatic 

fashion.  Findings in this work are important for tailoring the synthesis of new materials 

with low heat conduction characteristics.  The relative properties of LJ solid mixtures are 

summarized below in order of importance for degrading the lattice thermal conductivity: 

(1) Core radius.  Atoms should have different core radius.  Even a 10% difference brings 

the lattice thermal conductivity to a minimum constant value and suppresses the inverse 

power law dependence with temperature.  The reason for the dramatic degradation of the 
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heat conduction is the additional phonon scattering imposed at the nanoscale by atoms 

that are displaced from the crystal structure yielding an amorphous solid. 

(2) Mass.  Atoms should have different masses.  Differences of 60% in mass decrease the 

thermal conductivity by about half at any temperature below the melting point. 

(3) Interatomic interaction strength.  Atoms should have almost equal values.  With a 

50% difference in strength, thermal conductivity can be increased up to 25%, which is 

not a desired outcome. 

(4) Temperature.  Temperature is a key factor for any application searching to deplete 

heat conduction due to atomic vibrations.  This work was done for reduced temperatures 

of up to 0.5, which are below the melting points of the pure LJ crystals studied.  In this 

temperature range, when core radius disorder exists, the lattice thermal conductivity is 

essentially temperature independent and markedly degraded due to the enhanced phonon 

scattering induced by atoms with different radii randomly located on an FCC crystal. 

(5) Composition relative concentration.  Relative concentration of the two components in 

the crystal appears to have only a minor effect on the thermal conductivity. 
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CHAPTER 4 DETERMINATION OF INTERFACE EFFECTS ON 

THERMAL CONDUCTIVITY 

4.1 BACKGROUND 

Large scale integrated circuitry, components, and sensors rely on internal solid-solid 

interfaces for controlling the operation of the device and on efficient thermal energy 

management for dissipating heat generated inside the device.  Since the discovery of a 

thermal boundary resistance at cryogenic solid-liquid interfaces by Kapitza in 1938 [39], 

researchers have investigated the cause of the thermal resistance and quantify its 

magnitude as a function of material properties, temperature, and pressure.  The thermal 

boundary resistance internal to a system is referred to as the Kapitza resistance (Ω௄). 

In solids, the thermal boundary resistance plays an important role in determining heat 

flow, both in cryogenic and room-temperature applications.  Two approaches have been 

used successfully in the past to model thermal transport at a solid-solid interface at low 

temperatures: the acoustic mismatch model (AMM) and the diffuse mismatch model 

(DMM) [40,41].  The AMM is more applicable at extremely low temperatures, while the 

DMM works better at slightly higher temperatures.  However, at intermediate cryogenic 

temperatures and above, the experimental Ω௄ is larger than that predicted by AMM and 
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DMM.  At an interface, phonon scattering has a large effect on the heat transport across 

the interface, unfortunately the AMM and DMM do not take this into account. 

Several researchers have studied with computational-theory approaches the boundary 

resistance at flat interfaces [42], diffuse scattering of the vibrational states at each side of 

the interface [41,43], structural ordering on each side of an interface [41-42,44-47], and 

effect of mass changes on each side of the interface on the eventual overlapping of 

vibrational states and energy transport [48,49].  NEMD techniques with LJ interactions 

has been applied to study thermal properties in non-homogeneous systems such as grain 

boundaries [1, 50-53] and for simulating the directional heat flow perpendicular to 

infinite thin films in one-, two-, or three-dimensional LJ systems [1,32,42-44,48-55].  

Additionally, researchers have used NEMD to determine the Kapitza resistance at grain 

boundaries [42,43,53,54,56].  Other studies [43,53,54,57,58] have proposed that the 

Kapitza effect is due to reflection of the harmonic phonons at the interface or grain 

boundary, or to inelastic effects and anharmonicities.  Additionally, a few researchers 

have investigated a silicon grain boundary simulated with the Stillinger-Weber potential 

[43,53], and  a combination of two FCC lattices, one LJ and one Morse potential [54]. 

Reference [57] is a study of the thermal boundary resistance of a LJ system with 

geometry similar to the one presented in this paper; however, the acoustic mismatch 

model is used instead of exploiting directly the NEMD computer experiment results.  The 

NEMD was used in [58] to study the temperature jump at a liquid-solid boundary.  Based 

on these few studies, it is apparent that there is no general understanding of the Kapitza 



59 

resistance as a function of the atomic parameters entering in the modeling of the 

materials. 

The research presented in this chapter addresses the effects of an interface on the atomic 

vibrations in LJ solids, without or with a heat current flowing through the solid sample.  

Selection of the type of materials could limit, encourage, or restrict the flow of thermal 

energy through a solid-solid interface.  The study expands the work in [9] by focusing on 

the thermal boundary resistance occurring at the interface between two LJ solids as a 

function of the ratio of atomic parameters of these solids. 

4.2 MODELING 

4.2.1 Setup 

MD simulations were performed using a square-prism computational box elongated along 

the X axis with periodic boundary conditions in the two perpendicular directions (Y and 

Z) (see 2.4.1 and Figure 2).  The system contained 2000 atoms placed in an FCC lattice 

of size 520ݔ5ݔ unit cells in a [100] orientation with a density of ρ = 1.07 at T = 0.12, and 

ρ = 1.04 at T = 0.33.  The system was divided in half with reference atoms (type A) on 

the ‘hot’ (or positive X) side and atoms of either A or B type on the ‘cold’ side.  Atoms 

were allowed to interact using the LJ potential with the parameters discussed in the 

previous chapter.  Figure 18 is a schematic representation of the simulated interface. 

When the core radius for type B atoms was different than the core radius of the type A 

atoms, the FCC lattice contained a different number of XY-planes and XZ-planes on each 
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Figure 18:  Schematic representation of the system used to simulate the interface between 
two LJ solids 

 

side of the interface.  This was done to permit the use of the PBC.  The time step (in 

reduced time) in the MD runs was ∆ݐ ൌ 0.005.  A radial cutoff of 3.8 ߪ஺ was adopted.  

The following values of the parameters ratios are considered: i) for parameter ε, ܴఌ  = 

1.0, 1.25, 1.5, and 2.0; ii) for parameter , ܴఙ = 1.0, 1.1, and 1.2; iii) for mass, ܴ௠ = 1.0, 

1.6, 2.1, and 3.3. 

To simulate a thermal current flowing from the hot to the cold ends, a non-equilibrium 

MD (NEMD) was used.  At each end of the system, a thermal bath containing about 200 

atoms was simulated as described in section 2.4.3.  Atoms in each thermal bath move 

according to a constant temperature MD, with their velocities scaled at every time step to 

ensure the temperature desired for that bath.  Atoms in between these two thermal bath 

regions move with iso-energy MD and data is collected only on these central atoms 

(typically 1600 atoms) (See Figure 3). When the NEMD runs were initiated, the system 

had to be run for enough time steps to reach a steady state condition.  The steady state 

condition was known when the thermal energy current was constant along the length of 

the computational box in the direction of the energy flow.  This NEMD arrangement has 
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been used by other authors in calculations of the lattice thermal conductivity [1,32,49-

54,57,58]. 

Steady state data of all studied properties are averaged over each slice of approximately 

100 atoms in equal sized regions perpendicular to the computational box length (see 

Figure 3).  As a result of the different MD methods between the atoms in the thermostat 

and the atoms in the active central region where data are taken, a few planes of atoms 

adjacent to the thermal baths were not considered for reporting of results.  A similar 

consideration was adopted by other researchers [1,32,51,53]. 

4.2.2 Model Validation 

In the NEMD, a temperature gradient ׏ሬሬԦT sets in due to the flow of energy across the 

computational box.  With this geometrical setup, the heat current components 

perpendicular to the energy flow should be negligible.  Indeed, that is the case in the 

calculations.  The temperature difference between the two thermal baths was chosen to be 

large with respect to the temperature fluctuations, but small enough to reproduce 

attainable laboratory situations.  In these runs, the cold bath temperature was about 60% 

of the hot bath temperature.  This choice is similar to the 65% - 70% employed in other 

works [1,51,55]. 

Figure 19 shows the thermal conductivity as a function of temperature for one-component 

systems with different values of the parameters ε,  and mass.  Six different masses and 

LJ parameters were considered: Figure 19a: ܴఌ= 0.7 (●), 0.8 (▲), 0.9 (■), 1.25 (□), 1.5 
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(∆), 2.0 (○).  Stars and standard deviations are from [9].  Solid diamonds pertain to the 

reference LJ system and dotted line (in a,b,c) is the best fit to these values.  Crosses and 

standard deviation are from [9].); Figure 19b: ܴఙ= 0.7 (●), 0.8 (▲), 0.9 (■), 1.1 (□), 1.2 

(∆), 1.25 (○); Figure 19c: ܴ௠=  0.3 (●), 0.5 (▲), 0.7 (■), 1.6 (□), 2.1 (∆), 3.3 (○).  In all 

cases, the dotted line corresponds to the reference system ܴఌ= ܴఙ= ܴ௠ =1.  Standard 

deviations are shown on the figure; however, their values of about 3% to 7% of the 

average value are within the size of the symbols. 

 

 

Figure 19:  Thermal conductivity as a function of temperature.  (a) ܴఌ= 0.7 (●), 0.8 (▲), 
0.9 (■), 1.25 (□), 1.5 (∆), 2.0 (○), Stars and standard deviations are from [9].  
Solid diamonds pertain to the reference LJ system and dotted line (in a,b,c) is 
the best fit to these values.  Crosses and standard deviation are from [9].); (b): 
ܴఙ= 0.7 (●), 0.8 (▲), 0.9 (■), 1.1 (□), 1.2 (∆), 1.25 (○); (c) ܴ௠=  0.3 (●), 0.5 
(▲), 0.7 (■), 1.6 (□), 2.1 (∆), 3.3 (○). 
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The parameter dependence of κ compares well with the previous work within the GK 

approach described in Chapter 3 and in [9].  The expected inverse temperature 

relationship for crystalline systems is clearly shown by the log-log plot of Figure 19 and 

can be used to interpolate between different LJ systems, as suggested by other authors for 

other potentials [42,43,53,54,57,58].  Based on the results, such interpolation yields a 

power law relationship for each varied parameter (, ε, and mass):  ܴఙ
ିଶ, ܴఌ

ଷ/ଶ, and 

ܴ௠
ିଵ/ଶ. 

4.2.3 Effect of the elongated computational box on the lattice vibrations 

The velocity autocorrelation function for ܰ atoms defined in equation (29) (section 2.6.3) 

is calculated better after normalization, such that: 

ሻݐ௩௘௟ሺܥ  ൌ  
∑ ൫௩ഢሬሬሬԦሺ௧ሻכ௩ഢሬሬሬԦሺ଴ሻ൯ಿ

೔సభ

∑ ൫௩ഢሬሬሬԦሺ଴ሻכ௩ഢሬሬሬԦሺ଴ሻ൯ಿ
೔సభ

 (34) 

where ݒపሬሬሬԦ are the atom velocities and t is a time lag.  Typically 500,000 ∆ݐ time steps 

were required to reach equilibrium followed by 20,000∆ݐ for data collection.  The data 

was subdivided into short sequential time segments and then an autocorrelation function 

was performed on each segment.  The final ܥ௩௘௟ሺݐሻ is then an average over several 

functions.  A Fourier transform was made of the result according to equation (30) and the 

density of vibrational states (DOS) was obtained for prismatic computational boxes.  The 

resulting DOS compared very well with published results in which the computational box 

was cubic [59,60].  Therefore, it was concluded that an elongated shape of the 

computational box does not affect significantly the distribution of vibrational frequencies. 
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4.3 EFFECTS ON THERMAL CONDUCTIVITY 

4.3.1 Vibrational Modes of Monatomic Systems 

A sample was established using the computational box shown in Figure 18 for LJ atoms 

with ܴఙ ൌ ܴఌ ൌ ܴ௠ ൌ 1.0, ρ = 1.07 at T = 0.12, and also at ρ = 1.04, T = 0.33.  This was 

referred to as the reference system.  MD runs were made allowing the system to reach 

thermal equilibrium first, then the vibrational mode DOS was determined.  In subsequent 

runs, all atoms in the system were changed to have a different LJ parameter and the DOS 

was determined for each monatomic system.  Each of the DOS obtained was normalized 

over the entire frequency spectrum and are shown in Figure 20.  Figure 20 shows the 

DOS for each LJ parameter for each of the two temperatures.  Figure 20 a-c are for 

T = 0.12 and Figures 20 d-f are for T = 0.33.  In each plot, the solid line is the reference 

system.  Figure 20 a and d show the DOS for ܴఌ = 1.25 (●), 1.5 (□), and 2.0 (∆) with 

ܴఙ  = ܴ௠= 1.  Figure 20 b and e show the DOS for ܴఙ  = 1.1 (●) and 1.2 (□) with  and 

ܴఌ = ܴ௠ = 1.  Figure 20 c and f show the DOS for ܴ௠ = 1.6 (●), 2.1 (□), and 3.3 (∆) with 

ܴఌ = ܴఙ = 1.  

It can be seen that there is a strong difference between the DOS for the reference system 

and the DOS for monatomic systems with different atomic parameters.  It is to be noted 

that the DOS is shifted towards smaller frequencies as the mass is increased.  On the 

other hand, increases in ε, and to a lesser extent ߪ, with respect to the reference system, 

tend to add high frequency vibrational modes to the DOS. 
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Figure 20:  Normalized density of states (DOS) of one-component systems in thermal 
equilibrium for various LJ parameters.  (a-c) are for T = 0.12 and (d-f) are for 
T = 0.33.  The solid line is for ܴఌ ൌ ܴఙ ൌ ܴ௠ ൌ 1 in all plots.  In (a) and (d) 
the DOS for ܴఌ = 1.25 (●), 1.5 (□), and 2.0 (∆) with ܴఙ = ܴ௠= 1.  In (b) and 
(e) the DOS for ܴఙ  = 1.1 (●) and 1.2 (□) with  and ܴఌ = ܴ௠ = 1.  In (c) and 
(f) show the DOS for ܴ௠ = 1.6 (●), 2.1 (□), and 3.3 (∆) with ܴఌ = ܴఙ = 1. 

 

4.3.2 Vibrational Modes of Binary Systems across the Interface of Two LJ Systems in 

Equilibrium 

It is known that any disorder or change in a material property will affect the ability of a 

material to transport heat, especially that of an interface.  It was unknown as to how the 

vibrational modes of a system would change with the presence of an interface.  To study 

this, a sample was established with reference (type A) atoms on the ‘hot’ end and atoms 

with one of the three studied LJ parameters changed (type B) on the ‘cold’ end.  NEMD 

runs were made using the method described in the previous section to determine the 
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vibrational mode DOS for ρ = 1.07 at T = 0.12, and also with ρ = 1.04 at T = 0.33.  

Subsequent runs were made varying the type B through the range of values previously 

studied.  Figure 21 shows the difference between the reference system of ܴఌ ൌ ܴఙ ൌ

ܴ௠ ൌ 1 which is shown as the solid line on Figure 20 and the DOS obtained for each 

two-component system at each of the two temperatures. 

 

 

Figure 21:  Normalized density of states (DOS) of binary systems in thermal equilibrium 
relative to the DOS of the one-component reference system for various LJ 
parameters.  (a-c) are for T = 0.12 and (d-f) are for T = 0.33.  In (a) and (d) 
the DOS for ܴఌ = 1.25 (●), 1.5 (□), and 2.0 (∆) with ܴఙ = ܴ௠= 1.  In (b) and 
(e) the DOS for ܴఙ  = 1.1 (●) and 1.2 (□) with  and ܴఌ = ܴ௠ = 1.  In (c) and 
(f) show the DOS for ܴ௠ = 1.6 (●), 2.1 (□), and 3.3 (∆) with ܴఌ = ܴఙ = 1. 

 

For interfaces due to changes in ߝ஻, Figure 21 a and d show an increase in the DOS of 

vibrational modes at high frequencies (60-80) and a decrease at lower frequencies around 
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20-40, both of which persist at T = 0.33.  The effect is about the same for all ܴఌ values.  

Interfaces due to different ߪ஻ shown in Figure 21 b and e display DOS changes similar to 

the changes in ߝ஻, but now in different frequency regions.  On the other hand, as shown 

in Figure 21 c and f, the effect of mass changes produce a depletion of modes in the DOS 

in the range 30 ൑ ω ൑ 50 and an increase of mode density in the lower frequency region 

10 ൑ ω ൑ 30.  The mass effect is more acute the larger ܴ௠ becomes, in agreement with 

previous findings [49].  In all cases, the effect of the interface is identified by DOS 

changes above and below a characteristic frequency of ω௖ ؆ 30. 

4.3.3 Vibrational Mode Changes between Equilibrium and non-Equilibrium Systems with 

a Boundary Interface 

It was investigated as to whether the presence of a heat current affects the vibrational 

mode DOS.  To study this, the reference system was again composed of only reference 

atoms with ܴఙ ൌ ܴఌ ൌ ܴ௠ ൌ 1.0, with ρ = 1.07 at T = 0.12, and also with ρ = 1.04 at T = 

0.33.  For each temperature, one run of the system with an interface was done in 

equilibrium and its DOS was collected.  A second run of the same system was done with 

NEMD, such that an imposed thermal gradient is established across the system.  After the 

systems were allowed to reach either equilibrium or a steady state, data was collected, 

and the normalized vibrational mode DOS was calculated.  The two results are shown on 

Figure 22.  
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Figure 22 clearly shows that at the higher temperature, the DOS displays marginal 

changes when the system is in NE.  However, at the lower temperature, the DOS of the 

NE system is slightly enhanced around ω ൌ 30. 

 

Figure 22:  Normalized vibrational modes DOS for non-equilibrium (dashed line) and 
equilibrium (solid line) monatomic system at (a) ρ = 1.07, T = 0.12, and (b) ρ 
= 1.04, T = 0.33.  Error bars identify the average SD of the correlation 
functions. 

 

The work was continued to investigate how the normalized vibrational mode DOS 

changes for the two-component system with a boundary in Figure 18, and when a thermal 

current is imposed with thermal baths.  Figure 23 shows the differences between the 

normalized NE DOS and the equilibrium DOS.  Figure 23 a-c are for T = 0.12 and Figure 

23s d-f are for T = 0.33.  Figure 23s a and d show the DOS for ܴఌ = 1.25 (●), 1.5 (□), and 
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2.0 (∆) with ܴఙ = ܴ௠= 1.  Figure 23 b and e show the DOS for ܴఙ  = 1.1 (●) and 1.2 (□) 

with ܴఌ = ܴ௠ = 1.  Figure 23 c and f show the DOS for ܴ௠ = 1.6 (●), 2.1 (□), and 3.3 (∆) 

with ܴఌ = ܴఙ = 1. 

 

Figure 23:  Non-equilibrium DOS of binary systems relative to their DOS in thermal 
equilibrium for various LJ parameters.  (a-c) are for T = 0.12 and (d-f) are for 
T = 0.33.  In (a) and (d) the DOS for ܴఌ = 1.25 (●), 1.5 (□), and 2.0 (∆) with 
ܴఙ = ܴ௠= 1.  In (b) and (e) the DOS for ܴఙ  = 1.1 (●) and 1.2 (□) with ܴఌ = 
ܴ௠ = 1.  In (c) and (f) show the DOS for ܴ௠ = 1.6 (●), 2.1 (□), and 3.3 (∆) 
with ܴఌ = ܴఙ = 1. 

 

In systems with ε and mass changes and at T = 0.12, there is a modest increase of the 

DOS at frequencies around 30 and a small decrease around 50-60 due to the heat flow.  

At T = 0.33, the DOS is enhanced in a broader range at the low frequencies and depleted 

at higher frequencies for all binary systems involving atoms with two values of the 
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parameter ε or the mass.  However, two-component systems with different ߪ (Figure 23b) 

display an enhancement of the NE DOS at higher frequencies and depletion at low 

frequencies.  This effect tends to disappear at higher temperatures. 

Summarizing, at T = 0.12, the overall effect of a 2-atom type interface in equilibrium is 

to modestly enhance the DOS at frequencies above ω௖, and deplete it below this 

characteristic frequency for ܴఌ, ܴ ൐ 1, whereas, the opposite behavior is demonstrated 

for ܴ௠ ൐ 1.  When these two-component systems are not in thermal equilibrium, at 

T = 0.12, the trend is an enhancement of the DOS below the ω௖ region for systems with 

different ε or mass.  This is indicative that the heat flow enhances scattering of the 

transverse frequency phonons.  These trends are smeared out at a higher temperature.  On 

the other hand, interfaces built with atoms that have different  values display a reverse 

behavior where the DOS is depleted of modes at frequencies below ω௖ and enhanced 

above it. 

4.4 INTERFACE EFFECTS ON THERMAL CONDUCTIVITY 

4.4.1 Thermal Boundary Resistance 

It is well known that solid-solid and liquid-solid interfaces act as a resistance to the heat 

flow perpendicular to them and give rise to the Kapitza resistance (Ω௄).  This effect is 

measurable because of the discontinuity in the temperature profile occurring at the 

interface.  Such temperature discontinuity is quite distinct across an interface built with 

two types of atoms and is detectable even for 1-D systems where atoms are linked 
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harmonically [42].  The calculation focuses on Ω௄ of binary LJ solid-solid interfaces as a 

function of ε,  and atomic mass.  Figure 24 shows a typical temperature profile at 

T = 0.3 (ܴ௠ = 3.3, ܴఌ = ܴఙ = 1 with ρ = 1.04) where the temperature discontinuity at the 

interface Δ ௜ܶ௡௧௘௥௙௔௖௘ is clearly seen.  The Kapitza length (discussed in the following 

section) is shown on Figure 24 as well. 

 

 

Figure 24:  Temperature profile of the LJ system across the interface at T = 0.3 with ܴ௠ 
= 3.3, ܴఌ = ܴఙ = 1 and ρ = 1.04.  Horizontal lines show the Kapitza length 
calculated for hot side, interface, and cold side (top, middle, bottom), 
respectively).  Temperature standard deviation is shown as vertical error bars. 

 

The thermal resistance, Ω௄, is calculated as [53]: 

 
ଵ

Ω಼
ൌ ଴ߢ 

்׏
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 (35) 
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where ߢ଴ is the bulk thermal conductivity.  However, since it is known the ߢ at each side 

of the solid-solid interface, the atomistic approach for calculating Ω௄ is to use the actual 

 values for the LJ crystal at each side of the interface.  In fact, a thermal current ܶ׏ and ߢ

sees the interface as two resistances in series because the heat current must be the same at 

both sides of the interface if no additional energy sources or sinks exist.  It follows that: 

 Ω௄ ൌ  ∆ ௜ܶ௡௧௘௥௙௔௖௘ ቀ ଵ

఑ಲ்׏ಲ
൅ ଵ

఑ಳ்׏ಳ
ቁ (36) 

where ߢ஺,஻ and ׏ ஺ܶ,஻ are the thermal conductivity and temperature gradient of the LJ 

systems A and B that meet at the interface.  Figure 25 shows the dependence of the 

temperature jump ∆ ௜ܶ௡௧௘௥௙௔௖௘ at the interface as a ratio to the average temperature at the 

interface and the resulting Ω௄ of the two-component systems for various temperatures 

and parameter ratios. 

It is observed that as the parameter ratio moves away from the 1:1 ratio (no interface) the 

temperature discontinuity and the Ω௄ become more pronounced.  Runs were made to 

compare the thermal resistance for each of the three parameter ratios.  Temperate drops 

are plotted relative to the temperature difference between the hot and cold thermal baths.  

Additionally, as the average temperature in the system is increased, the interface 

temperature discontinuity and the Kapitza resistance are less pronounced.  It can also be 

seen that the Ω௄ increases at about the same rate with changes of ܴఌ, ܴఙ,and ܴ௠.  In 

general, the building up of this thermal resistance is assigned to an increased reflectance 

of phonons by the interface [41,57]. 
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Figure 25:  Temperature drop ratio at the interface (left scale) and Kapitza resistance 
(right scale) as a function system parameters at various temperatures of : 0.10 
(♦), 0.125 (■), 0.165 (▲), 0.33 (□), 0.425 (◊), and 0.5 (○). 

 

As discussed above, the equilibrium MD simulation shows that the interface increases the 

DOS of vibrational states in the region of high frequencies for two-component systems 

with different ε or , but for systems with different masses the increase occurs at lower 

frequencies.  Based on these results, it immediately follows that two-component systems 

with different ε or  should display larger Ω௄ than the case with different masses at the 

same temperature.  Illustrated in Figure 25 is a confirmation of this result.  However, in 

the non-equilibrium situation, when the system reaches the steady state, the DOS of 

vibrational states is significantly populated in the region of ߱௖.  For systems with 

different ε and mass, as shown in Figure 25, is based on this result.  It is then expected 

that the ∆ ௜ܶ௡௧௘௥௙௔௖௘ for two-component systems with different ε and mass would be larger 
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than for systems with different  as is shown in Figure 25.  Increasing the temperature 

should reduce the Kapitza resistance and the temperature jump at the interface should be 

decreased.  The results confirm both effects. 

4.4.2 Interface Width 

An additional characteristic quantity of interfaces is the Kapitza length 

 ݈఑ ൌ Ω௄ߢ   (37) 

associated to the effective thickness of material involved in the interface [39,58].  It has 

been theorized [58] that when ߢ is large, ݈఑ will be large and the effect may be observed, 

but no data were provided for supporting the analysis.  In the example of Figure 24, 

values of ߢ and Ω௄ are 32 and 0.3, respectively, yielding a ݈఑ of about 9.  This example 

was studied for several lengths of the computational prism to determine their eventual 

effect on ݈఑.  The Ω௄ calculated for prism-shape computational boxes with lengths of 

42.3, 73.7, 105, and 136.4, were all within the standard deviation of 11.4%, indicating 

that this property is basically insensitive to the length of the computational prism and the 

temperature jump at the interface is observed in all cases.  From the results summarized 

in Figure 23 and Figure 25, it is predicted that ݈఑ varies as 1 ܶଶൗ . 

4.4.3 Crystal Orientation at the Interface 

The effect on ߢ and Ω௄, due to changes in the orientation of the crystals on each side of 

the interface, was also studied.  First, it was determined that one-component systems did 
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not give rise to a discontinuity in the temperature at the interface when the interface was 

created by rotating atoms in the ‘cold’ half of the box to Miller Indices [110], [111], 

[120], [121], [122], while keeping atoms in the reference (or ‘hot’) half of the box at 

[100].  Second, the ߢ for these rotated systems is within the standard deviation of values 

reported in Figure 23.  Third, in the case of two-component systems in which the A 

system is in the [100] orientation and the B system is rotated and its parameters change, 

the results for the temperature jump and the Ω௄ are within 3% to 9% of values reported in 

Figure 25.  Based on these calculations, it is concluded that the relative orientation of the 

crystal planes meeting at the interface do not affect the thermal properties. 

4.5 INTERFACE BOUNDARY EFFECTS ON THERMAL CONDUCTIVITY 

CONCLUSIONS 

In this work it has been quantitatively demonstrated that the influence of the interface 

between two LJ solid systems on the density of vibrational states as a function of the 

atomic mass and LJ parameters.  A characteristic frequency of ߱௖ ൌ 30 (in reduced 

units) is predicted below which the DOS is depleted and enhanced above it for ܴఌ, and 

ܴఙ ൐ 1, while the opposite behavior is demonstrated for ܴ௠> 1.  However, when a 

thermal energy flow is established, the DOS is enhanced below, ߱௖ and depleted above it 

for the cases ܴఌ, and ܴ௠ ൐ 1.  This is indicative that the heat flow enhances scattering of 

the transverse frequency phonons only in these two cases.  At higher temperatures, these 

effects are less visible. 
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The NEMD computer experiment of two-component LJ systems sharing an interface 

leads to very clear observations that allow for identification of the thermal boundary 

resistance and its dependence on the LJ parameters and atomic mass.  Both the Kapitza 

resistance and the temperature discontinuity at the interface increase as the parameter 

ratio between properties of the targeted material to the reference material moves away 

from the value of one.  Additionally, both the Kapitza resistance and the interface 

temperature discontinuity increase with decreasing temperature.  It is predicted that the 

Kapitza length increases as 1 ܶଶൗ  as temperature is decreased and is independent of the 

size of the computational box.  The relationships contained in this dissertation and 

reference [10] may serve as reference for scientists and engineers in search of novel 

combination of materials in problems related to thermal management at the nanoscale. 

The interface is responsible for a depletion of modes at low frequency and an 

enhancement at higher frequencies when the potential parameters are increased relative to 

the reference solid. Opposite trends are observed when the atomic mass increases. When 

a heat current is established across the interface, the density of vibrational states at low 

frequency is increased and the temperature profile across the binary sample displays a 

discontinuity at the interface, which is more pronounced as the material parameters 

become more dissimilar.  The thermal boundary resistance (Kapitza resistance) increases 

as the difference between the two material properties increase and decrease with 

increasing temperature.  Plots of the thermal conductivity as a function of temperature for 

solids with various parameters are provided, all of them showing the expected ܶିଵ 

behavior.  All of the calculations of ߢ௣௛ will be done at near room temperature (300 K). 
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CHAPTER 5 DETERMINATION OF THERMAL 

CONDUCTIVITY IN NANOWIRES, NANOTUBES, AND 

NANOFILAMENTS 

5.1 BACKGROUND 

Nanostructures began to emerge in the mid-1980s as building blocks useful to assemble 

larger materials and design special macromolecular constructs with novel mechanical and 

thermal characteristics.  Today, nanodevices are fundamental for achieving improved 

mechanical, thermal, and electronic controls.  Among other properties, the thermal 

conductivity of the device may be critical to control functioning and the stability of the 

macro-system to perform efficiently [61].  One postulated application of nanodevices is 

to act as heat conduits/sinks or refrigeration units for computer circuitry [62].  An 

important question is to whether these nanodevices are good or bad heat conductors and 

at the same time they remain stable at operational temperatures.  Silicon carbide (SiC) is 

a broadly used material in nanoelectronics and has proven to sustain a variety of stable 

nanostructures.  SiC nanotubes and nanowires have been fabricated experimentally, and a 

multitude of hollow fullerine-like clusters have been predicted which could be useful in 

building nanodevices [20,63]. 
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Carbon and silicon are both group IVA elements on the periodic table and as a result can 

exhibit either sp2 or sp3 bonds [19].  These bonds cause bulk SiC to be among the hardest 

materials and is very well suited for electronic devices being operated in extreme 

environments [21].  In fact, bulk SiC has a wide band gap, high thermal conductivity, and 

is even resistant to various forms of radiation.  It has been postulated that the use of SiC 

in nanostructures and nanodevices should exhibit these same properties.  Although 

experimental advances are seen every day, it is still difficult to perform measurements of 

thermal properties at the nanoscale.  Therefore, the uses of computational simulations of 

thermal properties are useful for adding understanding of the mechanisms in 

nanosystems.  A number of non-equilibrium molecular dynamics (NEMD) studies for the 

determination of thermal properties in non-homogeneous systems have been published 

[1,10,50-52].  For example, NEMD was used for obtaining the lattice thermal 

conductivity by simulating the directional heat flow perpendicular to infinite thin films in 

one-, two-, or three-dimensional Lennard-Jones (LJ) systems [1,10,33,42-44,48-53,55]. 

However, little has been investigated for SiC nanostructures other than tensile strain 

simulations using a Brenner-Tersoff potential [47,64-66] and tight binding approaches 

concerning their energetic stability [19,20]. 
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5.2 MODELING 

5.2.1 Setup 

Simulations were performed on SiC tubes, elongated filaments, and wires laid along the 

X-axis.  The initial configurations of nanowires were obtained from cuts of the 3C and 

2H crystalline polytypes.  For nanotubes, initial configurations with either armchair or 

zigzag chirality were considered.  The alternation of Si and C atoms was such that bonds 

of around 1.9 Å [8,19-21] are the dominant majority.  Please note that real units were 

used in this phase of the research. 

The simulations for nanostructures used the silicon carbide model potential described in 

Section 2.2.2.  No periodic boundary conditions were used.  A simulated thermostat was 

attached at each end of the nanostructure as a continuation of that structure.  Each 

thermostat contained 100-150 atoms that were kept at a constant temperature.  The 

thermostats were sized such that their width along the X-axis would be greater than 7.3Å, 

which is the cutoff distance of the 2-body part of the model potential.  On the outside 

ends of the bath three-to-four planes of atoms were kept fixed in position to prevent 

deformations of the cross sections of the nanostructures.  Atoms in-between the two 

thermal bath regions move with iso-energy MD and data are collected only on these 

central atoms (typically 320-384 atoms).  Figure 26 depicts this setup. 

When a temperature drop exists between the two thermal baths, a thermal energy flow is 

established along the elongated tube or wire and the system is neither in thermal 
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equilibrium nor in a steady state.  However, after about 200 ps the system reaches the 

steady state and the thermal energy current is roughly constant along the length of the  

 

Figure 26:  Nanotube computational setup 

 

nanostructure.  This NEMD arrangement is similar to that used in calculations of the 

lattice thermal conductivity [1,10,32,48-52,54,57,58,65,67].  The temperature difference 

between the two thermal baths was chosen to be large with respect to the temperature 

fluctuations but small enough to reproduce attainable laboratory situations.  In the 

simulations, the cold bath temperature was about 40% of the hot bath temperature, which 

is less than the 60% cold:hot temperature ratio used in Chapter 4.  This choice is similar 

to that employed in other works [1,10,50,55]. 

For the non-equilibrium analysis, the data section of each nanostructure, was subdivided 

in eight slices along its length as shown in Figure 4.  Each slice contains typically 40- to 

48-atoms.  The purpose of this set up is to be able to average properties locally in each 

slice.  Simulations were started for the equilibrated configuration of all systems.  Once 
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the steady state of thermal energy conduction is reached, then the thermal current is the 

same in all slices, and the temperature profile is remarkably constant.  Figure 27 shows 

both temperature profile and thermal current  across a 3C nanowire.  Nanotube and 

nanofilaments thermal profiles were similar.

 

Figure 27:  Temperature and heat current profile across a nanowire in the steady state at 
300K: (a) temperature profile (♦) with SD for temperature and position, (b) 
heat current profile (○) 

 

Points in Figure 27 correspond to averages for each slice over 6 psec after the steady state 

is reached.  As a result of the different dynamics between the atoms in the thermostat and 

the atoms in the active central region where data are taken, a few planes of atoms 

adjacent to the thermal baths were not considered for reporting of results in the sections 
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to follow.  A similar consideration has been adopted in the literature by several authors 

[1,10,32,50,52]. 

5.2.2 Model Validation 

With this geometrical setup, the heat current components perpendicular to the energy 

flow should be negligible.  Indeed, that is the case where the perpendicular flow was 

around 1% of the axial flow.  As expected, the longer the time over which the data were 

averaged, the lower the perpendicular flow became. 

Both ܬԦ and ܶ were calculated in the NEMD setup described above and then the lattice 

thermal conductivity ߢ is obtained from Fourier’s law (Equation 31).  The ߢ was 

determined for five temperatures: 150K, 300K, 500K, 750K, and 1000K.  Results 

obtained here are close to results in Ref. [68] using a potential proposed by Halicioglu 

[69].  The results closely match the experimental values for bulk SiC in Ref. [70], the ߢ 

values and temperature relationship for armchair nanotubes in Ref. [71] and for 

nanowires in [62,68].  The work presented in this dissertation has investigated more 

temperature variations and more types of nanowire configurations and has included the 

previously unstudied zigzag nanowires. 
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5.3 THERMAL CONDUCTIVITY IN NANOSTRUCTURES 

5.3.1 Nanowires 

Nanowire configurations carved from the 3C and 2H crystalline polytypes of SiC in the 

[-100], [-111] and [001], [110] directions, respectively, (Figure 28) have been previously 

demonstrated to be stable under a tight binding model [20].  The nanowires simulated 

kept their structure up to temperatures of 1000K under the model potential used in this 

work.  The MD averaged energies per SiC pair extrapolated to zero temperature were -

11.75 eV and -11.46 eV for 3C [100], [-111] and -11.98 eV and -11.43 eV for the 2H 

[100], [110], nanowires, respectively.  These results matched qualitatively the tight 

binding energies per SiC pair of -11.7 eV and -11.0 eV for 3C [-100], 3C [-111], and -

11.6 eV and -10.3 eV for 2H [001], [110] nanowires calculated in Ref. [20]. 

 

Figure 28:  SiC Nanowire cross sections 
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The MD equilibrated configurations of these four nanowires were taken as initial 

configurations for the NEMD simulation.  The results are shown in Figure 29, where the 

filled symbols (♦, ▲) correspond to the 3C wires and empty symbols (○, □) correspond 

to the 2H wires. 

 

Figure 29:  Thermal conductivity as a function of temperature for nanowires:  
3C ሾ1ത00ሿ (♦), 3C ሾ1ത11ሿ (▲), 2H [001] (○), and 2H [110] (□) 

 

The 2H [110] and the 3C ሾ1ത00ሿ nanowires follow an inverse power law for temperature 

as is expected in bulk systems and described in Chapters 3 and 4.  The inverse power law 
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is ߢ ൌ ఈ

்
 where α is a constant.  However, the other two wires in the temperature range 

studied, display an almost constant thermal conductivity suggesting that these wires are 

less sensitive to temperature variations. 

5.3.2 Armchair Nanotubes 

Four armchair nanotube sizes were simulated: (2,2), (3,3), (4,4), and (5,5), as suggested 

by [68].  In reaching an equilibration for the four nanotubes, the (2,2) and (5,5) armchair 

nanotubes were stable and remained as nanotubes in the range 150 K – 1000 K, while the 

(3,3) and (4,4) armchair nanotubes collapsed into a flatten structure which are referred to 

as nanofilaments.  Once the nanotube collapsed to the nanofilaments for the (3,3) and 

(4,4) armchair nanotubes, the resulting structures remained stable and equilibrated well.  

Figure 30 shows these resulting configurations. 

The dependence of  with temperature for these armchair tubes and filaments is shown in 

Figure 31, where ♦ and ▲ correspond to the armchair nanotubes (2,2) and (5,5) and □, ○ 

correspond to nanofilaments generated from the (3,3), (4,4) nanotubes, respectively. 

The (2,2) nanotube follows the inverse power law for temperature.  However, the others 

follow a power law to a power of -0.65 for the two nanofilaments and -0.4 for the (5,5) 

nanotube.  These results suggest that the (5,5) nanotube is too open a structure to carry 

heat efficiently and therefore insensitive to temperature variations with regards to its 

thermal conductivity. 
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Figure 30:  Armchair nanotubes and nanofilament configurations 

 

The average energy per SiC pair extrapolated to zero temperature was -11.4 eV for both 

the (2,2) and (5,5) nanotubes and -11.5 eV, -11.63 eV for the (3,3), (4,4) tubes that 

collapsed to nanofilaments.   Energies of both the (2,2) and (5,5) nanotubes are in 

qualitative agreement with the tight binding results of 10.0 eV, 10.5 eV [20] and are close 

to those calculated with MD by [62]. 

5.3.3 Zigzag Nanotubes 

The zigzag nanotube (4,0) remained stable and equilibrated well in a configuration 

similar to the initial structure while zigzag nanotubes (6,0), (8,0), and (10,0) collapsed 

into a nanofilaments.  The structure of these filaments was different from filaments 

obtained from the armchair nanotubes.  The resulting zigzag filaments have structure 
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Figure 31:  Thermal conductivity as a function of temperature for armchair nanotubes and 
nanofilaments:  (2,2) (♦),  (5,5) (▲) nanotubes, and (3,3) (□), (4,4) (○) 
nanofilaments 

 

 

with a (4,0) nanotube paired with either hexagonal rings on the side or a (2,0) nanotube 

paired with a series of (4,0) nanotubes.  Figure 32 shows these resulting zigzag nanotube 

and nanofilament configurations. 
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Figure 32:  Zigzag nanotubes and nanofilament configurations 

 

Figure 33 shows the dependence of κ with temperature, where ♦ corresponds to the 

nanotube (4,0), and ∆, ○, and □ correspond to the nanofilaments collapsed from the (6,0), 

(8,0), (10,0) nanotubes, respectively.  A structural change from hexagonal rings of Si-C 

atoms into rings of 5 or 7 atoms has been observed by other researchers for both types of 

nanotubes under thermal and mechanical stresses [21,61,65,66,71]. 
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Figure 33:  Thermal conductivity as a function of temperature for zigzag nanotubes and 
nanofilaments:  nanotube (4,0) (♦), and nanofilaments (6,0) (∆), (8,0) (○) and 
(10,0) (□) 

 

None of the zigzag nanotube and resulting nanofilaments follow the inverse power law 

for temperature.  The power of -0.77 (4,0), and -0.6 for the nanofilaments was observed, 

suggesting that the zigzag nanotube and nanofilaments are not very sensitive to 

temperature variations with regards to thermal conductivity. 
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The average energy per SiC pair at a zero temperature was -11.4 eV for the (4,0) 

nanotube and -11.6, -11.7, and -11.7 eV for the nanotubes (6,0), (8,0, (10,0) collapsed to 

nanofilaments.  The (4,0) nanotube energy compares well with the tight binding energy 

of -10.5 eV [20]. 

5.4 NANOSTRUCTURE THERMAL CONDUCTIVITY CONCLUSIONS 

The results in this work have gone farther than published works to determine the thermal 

conductivity of SiC nanostructures in the temperature band of 150K-1000K.  The results 

show that NEMD techniques can be used to further investigate the κ and thermal 

response for entire nanodevices.  The NEMD potential used is stable and may also be 

useful in determining the structural stability of nanodevices under a thermal current as 

well. 

While the κ has been shown experimentally for bulk SiC, it was found that when 

nanostructures are fabricated from SiC, their κ decreases based strictly on the structure 

used for nanotubes and the orientation of the lattice inside of nanowires.  Likewise, the 

SiC nanostructures investigated also showed a wide variation in how they respond under 

various temperature conditions from following an inverse power law as found in bulk 

materials to being almost insensitive to changes in temperature.  This temperature 

sensitivity may be critical to the design and operations of nanodevices and their intended 

uses in electrical, and mechanical applications and definitely warrants further 

investigation by other researchers. 
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CHAPTER 6 COMPUTATIONAL CHALLENGES 

6.1 COMPUTATIONAL EFFECTS 

During the computational analyses a few special items of concern are reviewed below. 

6.1.1 Counteracting PBC effects 

Molecular simulations are based on averages over large numbers of atoms for large 

periods of time.  The computing time increased by a factor of n to n2, where n is the ratio 

of the number of atoms.  However, this is not practical, even with today’s computing 

capabilities, so smaller simulation configurations are commonly used.  A concern with a 

smaller system, the edges of the system can have a dramatic and negative effect on the 

accuracy of the simulated data, so PBC are used.  Commonly, PBC are used with 

symmetric sized simulations use a repeating computational box, known as a PBC primary 

cell, which is a square or a cube [14]. 

The simulations presented in Chapter 3 used a cubic computational box which became 

the PBC primary cell with PBC imposed equally in all three dimensions.  The concern 

with these simulations was to have the system being as small as possible yet not have the 

results effected by the use of PBC.  Various sizes of systems were tested (as shown in 
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Figure 13, section 3.2.1) as a macro test to see how the parameters of ρ, κ, or energy were 

affected by the system size.  As a result, the 5 FCC size was chosen for that research. 

The simulations presented in Chapter 4 used a square prism computational box 

representing a cross section of thin film system across the total width of the film.  The 

PBC primary cell was the entire square prism and PBC imposed in two dimensions to 

simulate the film was infinite in size with the finite width.  The work began with a size of 

5 FCC in each dimension as well, however with this research, the wavelength of the 

simulated thermal phonons was being investigated.  With the study of dynamical 

properties, PBC effects can be more pronounced than with mechanical properties.   

As a result, the concern was if the size of the directions using PBC was large enough to 

not experience the effects of the PBC in the tails of the autocorrelation functions 

[14,73,74].  This occurs when the time lag used in the autocorrelation function, ߬௥௘௟௔௫, 

exceeds the time that it takes for a wave traveling at the sonic velocity of the material to 

cross the system, ߬௣௕௖. 

 ߬௣௕௖ ൌ ௅

௩ೞ
 (38) 

where L is the width of the system and ݒ௦ is the sonic velocity.  From the low frequency 

region of the velocity autocorrelation Fourier transform, an estimate of about 3 is 

obtained for the sonic velocity.  To make certain that the system was not subject to these 

effects, both of these times were closely monitored.  The ߬௥௘௟௔௫ used was calculated as 

the decay time of the autocorrelation function as an average over ten time dependent 

velocity autocorrelation functions with different initial times [72].  For the monatomic 
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reference system at T = 0.12 and 0.33 using 512∆ݐ, calculation of these two times was 

repeated for various computational box cross sections showing that 55ݔ FCC unit cell 

cross sections (100 atoms) yield a ߬௣௕௖ ؆ ஺, which is longer than ߬௥௘௟௔௫ݐ 2.6 ؆  ,஺ݐ 0.2

where ݐ஺ is the reduced time unit for the system.  Other material simulations were also 

tested and did not violate this condition either.  Thus, effects of the boundary conditions 

are negligible and the use of PBC did not degrade the results. 

6.1.2 Software Error Handling 

During the initial steps in establishing a new trial or a new configuration, the software 

had to have several error handling and error prevention routines installed to prevent the 

configuration from expanding rapidly and essentially ejecting atoms.  With a new trial, 

the positions of each atom were set into a perfect lattice or structure configuration for the 

postulated density for the trial temperature.  Unfortunately, the velocities for each atom 

could not be set in an exact manner where they would be near an equilibrium or steady 

state condition on the first few steps, instead, the velocities were chosen from a random 

normal distribution around the trial temperature.  As a result, the possibility existed that 

two velocities would cause atoms to become too close and produce large forces which, in 

the next step, would produce a large velocity and eject the atom from the computational 

box.  The error handling installed would temper the forces so that their velocities would 

not be relatively large.  This was done by establishing a minimum distance at which the 

forces would be calculated.  Additionally, a new configuration was initially allowed to 
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equilibrate at an extremely low temperature (less than 1K) before being warmed to the 

trial’s temperature. 

An additional error handling was to periodically do minor corrections of the positions and 

velocities to ensure that there was no motion of the center of mass of the computational 

box.  Slight movements were observed due to round off errors and the time step being 

chosen at the upper bounds.  This was done by simply summing the positions or 

velocities then finding the average value and correcting by the opposite value.  A system 

with no movement in the center of mass should have zeros as the summed values.  For 

simulations after equilibration, the sums were on the order of a factor of 10-13.  This is 

expected for runs in double precision. 

6.1.3 Energy Conservation Test 

A computational box was allowed to reach equilibrium and stored.  Then the stored  

equilibrium configuration is allowed to react for a given time period.  The square root of 

the standard deviation of the energy was plotted for various time step sizes.  The result 

should be a straight line passing through zero for a step size of zero.  Figure 34 shows a 

sample result. From this result, the maximum time step that could be used is where the 

result remains on the straight line.  For simulations, the step size was chosen to be about 

¾ of this value. 



95 

 

Figure 34:  Square root of the standard deviation as a function of time step size 

 

6.2 SOFTWARE USED 

6.2.1 Computational Software Environments 

All of the computational software routines used in the research study were written from 

scratch by the author using Fortran 90 and Fortran 95 with the exception of the Fourier 

Transformation routine provided in Ref. [75]. 

The majority of the computational software was run on a variety of personal computers 

using the Intel Pentium 4 ® family of processors.  Additionally, some of the code was run 

on a variety of UNIX based machines located in the GMU Computational Sciences and 

Informatics Department laboratories.  Both the PC and UNIX based machines used a 
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Fortran compiler and run-time environment developed by the Portland Group Compiler 

Technology, of Portland Group, Inc (PGI®), a company within STMicroelectronics, Inc, 

of Wilsonville, Oregon [76]. 

A multiprocessor parallel computer facility at the GMU Computational Sciences and 

Informatics Department called “Bach” was also used for some of the runs [77].  Bach 

uses 64 Intel Itanium 2® processors in a SUSE Linux® operating system.  The Bach uses 

the Intel® Fortran Compiler “ifort” version 9.0. 

6.2.2 Fortran Code 

The Fortran code developed for the research was limited by the versions of Fortran 

supported on the compiler versions of the various machines used.  Each of the Fortran 

compilers supported OpenMP [78] which was used to assist in optimizing performance of 

the code and utilizing the multi-processor capabilities on each of the machines used.  The 

OpenMP support group defines OpenMP as: “a portable, scalable model that gives 

shared-memory parallel programmers a simple and flexible interface for developing 

parallel applications for platforms ranging from the desktop to the supercomputer.”  

Appendix B provides several examples of the software developed.  Each of these 

examples was embedded in an OpenMP routine. 

The use of multi-processors reduced the time needed to run the computational software.  

The PC used during the final stages of the research uses an Intel ® Core 2™ Quad CPU 

Q9300 running Windows Vista® which automatically used all available processors.  

Runs on the older PCs with Pentium 4 ® processors showed about a 35% decrease in 
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time required to run the simulations.  Previously it was stated that using the fewest 

number of atoms in a simulation would reduce the time needed to run simulations.  

Figure 35 shows the processing time required for various system sizes. 

 

 

Figure 35:  Processing time required for various system sizes 

 

For a computation that compares each atom against every other atom, the number of 

calculations increases at roughly at ݊ଶ, where n is the ratio of atoms.  However, in the 

system used in this research, there is a limit on the range that forces were calculated so 

the number of calculations would increase by ݊ଶ until the force range was reached, then it 

would increase somewhat closer to n where the increase is due to the overhead of the 

number of atoms calculated.  It can be seen that for the low atom ratios, the time required 
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increases rapidly, then as the ratio increases, the rate of time increase is more linear.  

Runs were made using the 3C[100] configuration. 

6.2.2.1  Monte Carlo Programmatic Flow 

The software programs used the flow diagram for MC programs as shown in Figure 36. 

 

 

Figure 36:  MC programmatic flow diagram 
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The steps in Figure 36 are as follows: 

Step 1:  Program call 

Step 2:  Initiate program parameters.  In this step the variables, vectors, and arrays are 

defined, and pressure and temperature constants and other given properties are 

established. 

Step 3:  Load trial data and place atoms.  The input file is read which gives parameters 

needed to determine the run length and other variable parameters.  The atoms in the 

configuration are placed into their initial positions. 

Step 4:  Store and move atoms.  The positions of the atoms are first saved then moved 

one random position step.  The energy of the system is determined. 

Step 5:  Movement accepted?  The selection criteria is established to see if the movement 

results in a lower energy or a higher energy which is permitted by the acceptance criteria 

defined in section 2.1.2.2, equation (8), and section 3.1.1. 

Step 6:  Undo atom movement.  If the movement is not accepted, the atom positions are 

reset to their previous positions. 

Step 7:  Step to change vol?  One MC volume change is done every 3rd atomic movement 

step.  It is determined if this is the third step. 

Step 8:  Change volume.  The volume of the system is increased or decreased by one 

random size step.  The energy of the system is determined. 
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Step 9:  Volume change accepted?  The selection criteria is established to see if the 

volume change results in a lower energy or a higher energy which is permitted by the 

acceptance criteria defined in section 2.1.2.3, equation (10), and section 3.1.1. 

Step 10:  Undo volume change.  If the volume change is not accepted, the atom positions 

and volume are reset to their previous positions and size. 

Step 11:  More steps?  If there are ,more MC steps to be performed, the program returns 

to step 4. 

Step 12:  Calculate system properties.  Properties are calculated from the atomic 

positions. 

Step 13:  Closeout and printout.  The Data is written to files, then the open data files are 

closed.  Printouts are provided to the screen giving final results and runtimes. 

Step 14:  Exit. 

6.2.2.2  Molecular Dynamics Programmatic Flow 

The software programs used the flow diagram for MC programs as shown in Figure 37. 

The steps in Figure 37 are as follows: 

Step 1:  Program call 

Step 2:  Initiate program parameters.  In this step the variables, vectors, and arrays are 

defined, and constant properties are given. 
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Figure 37:  MD programmatic flow diagram 

 

Step 3:  Calculate U and ܷ݀
ൗݎ݀  at rc.  For the force shift, the energy and force are 

calculated at rc. 

Step 4:  Load trial data.  The input file is read which gives parameters needed to 

determine the run length, time step size, and other variable parameters.  The atoms 
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locations are read in and placed into their initial positions.  The velocities of all of the 

atoms scaled to satisfy the selected temperature profile. 

Step 5:  Adjust bath temperatures.  The atom velocities in each thermal bath are adjusted 

to the bath set temperature. 

Step 6:  Calculate 2-body forces.  The two-body forces are determined for each atomic 

pair in the system.  If atoms are beyond the maximum two-body force cutoff distance, the 

atomic pair is skipped.  The potential for each atom and the forces on each atom are 

summed. 

Step 7:  Calculate 3-body forces.  The three-body forces are determined for each atomic 

triple in the system.  If any pair of atoms in the triplet are beyond the maximum three-

body force distance, the atomic triplet is skipped.  The potential for each atom and the 

forces on each atom are summed. 

Step 8:  A data step?  If the step that is being calculated is during the equilibration or 

relaxation phases, (aka prior to collecting data), the program skips to step 13, otherwise 

continues to step 9. 

Step 9:  Calculate system properties.  The heat current is calculated from the atomic 

positions, atomic potentials, and forces on each pair of atoms. 

Step 10:  Update property averages.  The heat current and temperatures are averaged and 

variances are calculated. 
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Step 11:  Collecting velocity data?  If the current step being calculated is a part of the last 

steps determined for the collection of vibrational data, then the program moves to step 12.  

Otherwise the program skips to step 13. 

Step 12:  Collect velocity data.  The velocity is stored for each atom in each direction. 

Step 13:  Update positions and velocities.  The velocities and positions of each atom are 

updated. 

Step 14:  More steps?  If there are remaining step to calculate, the program returns to step 

4.  Otherwise, the program continues to step 15. 

Step 15:  Calculate final properties.  The calculated parameters of heat current, and 

temperature are calculated. 

Step 16:  Calculate autocorrelation and FFT.  From the stored velocity data, the 

autocorrelation is calculated in each direction in 10 time increments, the FFT of the 

resulting autocorrelations is calculated and then averaged to find the DOS. 

Step 17: Closeout and printout.  Data is written to files, then the open data files are 

closed.  Printouts are provided to the screen giving final results and runtimes. 

Step 18:  Exit. 

6.2.2.3  Comparison of MD and NEMD Flow 

Figure 38 illustrates the basic flow of the MD and NEMD methodologies.  The difference 

in code development is that the MD code must continue until the parameters are 
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producing a constant average value for all parameters across the computational box then 

data can be collected from this equilibrium state.  While the NEMD code must first 

achieve an equilibrium state like in the MD, then a set of parameters, like the temperature 

bath in this study, and the system allowed to stabilize.  The system will have reached the 

stable steady state condition when the parameters change in a relatively smooth manner 

from the value at one end to another.  Then data can be sampled at various points along 

the axis of the non-equilibrium condition to achieve a gradient of values. 

 

 

 

Figure 38: Comparison of MD and NEMD Flow 
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6.2.3 Graphics Software 

Graphics and data reduction was done using a variety of tools which included 

MATLAB® and Excel®.  The MathWorks, Inc, product MATLAB® Student version 6.0 

was used.  The MATLAB Editor® was used for developing MATLAB code.  The 

MATLAB was used to produce some of the post-processing graphics.  Additionally, 

Microsoft’s Excel® (versions in 2000, 2003, and 2007) was used for data reduction, 

analysis and plotting.  For producing representations of atomic configurations, RasMol 

[79] was used.  RasMol was developed in the early 1990’s to graphically represent 

complex atomic structures and proteins.  In the past few years, RasMol was updated to 

run on several operating systems and was renames to become RasWin which was also 

used in this research. 

6.2.4 Supporting Software 

Other products used include: Microsoft’s Word® and Notepad® were used to develop 

Fortran code, and Microsoft’s PhotoEditor® and Paint® were used for graphics ‘clean-

up.’ 
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CHAPTER 7 CONCLUSIONS 

In conclusion, this study has presented a detailed analysis of the thermal conductivity of 

changes in material properties and the effects of internal boundaries using MD and MC 

computational simulation methods.  This study has also presented a detailed analysis of 

the thermal conductivity and possible stability of several configurations of SiC nanowires 

and nanotubes.  This work has been successfully validated against theoretical and 

experimental work. 

Several highlights are as follows for the work done with bulk binary homogeneous LJ 

systems.  Selection of materials by their mass, hard-core atomic diameter, well depth, and 

relative concentration can change the κ by as much as an order of magnitude.  When the 

hard core radius increased by only 10%, the κ decreased by 90% due to increased phonon 

scattering.  While a 60% increase in mass only decreased the κ by 25% and a 50% 

decrease in interatomic strength decreased the κ by 25% due to the amount of energy 

needed to vibrate the system and conduct heat.  The effect on κ followed an inverse 

temperature relationship for mass and interatomic strength variations, yet when the hard 

core radius increases, the κ becomes relatively insensitive to temperature. 
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Several highlights are as follows for the work done with thin films.  The study showed 

that for films that are made of a single pure material with no internal boundaries, the 

frequencies of the phonons carrying heat energy change due to the material as the 

parameters changed.  Increases in hard core radii enhanced the higher frequency 

(transverse) phonons while increases in interatomic bond strength increased all phonons 

roughly equally while increases in mass increased the lower frequency (ballistic) 

phonons.  For materials with internal boundaries, mass increases across a boundary 

enhanced the lower frequency phonons, where changes across a boundary produce the 

opposite effect as increases in hard core radius and interatomic strength enhanced the 

higher frequency phonons.  Additionally, it was found that these effects were diminished 

for higher temperatures around half of the Debye temperatures. 

Several highlights are as follows for the work done with SiC nanowires and single walled 

nanotubes.  The study showed that the structural changes produced vastly different κ.  In 

nanowires, the orientation of the internal lattice determined whether (1) the κ 

approximated that of the bulk SiC and followed a inverse temperature relationship or (2) 

the κ was decreased by more than 50% from the bulk SiC and appearing to have a 

constant κ of SiC near its melting point.  For the nanotubes, the smaller nanotubes 

approximated the κ of bulk SiC while as the structure increased in size, the κ decreased 

dramatically.  When the nanotubes collapsed into a stable nanofilaments, the κ was 

slightly enhanced over the expected κ if it had remained a nanotube.  
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To support this study, all computational software was developed by the author.  The use 

of basic computing methods shows that MD and MC work can be performed on the range 

of modern PC processors in reasonable amounts of time using the inherent parallel 

capabilities in those processors.  The use of massively parallel computing machines did 

enhance the processing speed, however, the time improvement for software which uses 

relatively short parallel steps was not dramatic. 

With the growing use of nanotechnology and nanodevices in many fields of engineering 

and science, a need for understanding the thermal properties of such devices has 

increased.  The results of this study can be used in the design of nano-machines where 

heat generation and transport is a concern.  Follow-on studies could be initiated to 

investigate specific designs of discrete and very long nano-devices.  Further work could 

be initiated on macro systems where the selection of materials could produce nano-

machines which transport heat away from other nano-devices to lengthen their operating 

life or allow them to operate more efficiently.  A further out goal of this work could be to 

produce macro devices that could be integrated with computer chips to carry away heat to 

eliminate the need for fans in computers or active cooling systems aboard spacecraft.  

These devices, coupled with similar work with electrical conductivity of nano-materials 

could produce these cooling devices which recycle the waste heat into electricity 

allowing for longer battery life and more ‘green’ devices. 
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A.1   Published Paper: Acta Materialia, vol 54, pp4633-4639, 24 August 2006 [9] 
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A.2   Published Paper: J. Phys: Condens. Matter vol21, pp345402-345409, 
5 August 2009 [10] 
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A.3   Prepublished Paper [11] (Submitted: June 2010 to Computational and 
Theoretical Nanoscience) 
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APPENDIX B   DEVELOPED COMPUTER CODES 

The code provided in this section was developed by the author for the accomplishment of 

the research presented in this dissertation. 

B.1   Lennard-Jones Potential 

Calculate the forces between Lennard-Jones atom pairs as described in section 2.2.1. 

B.1.1  Annotated Code 

DO i = 1, N-1  ! Select each pair of atoms 
   DO j = I+1, N 
      xij = Pos(i,1) - Pos(j,1) 
      IF (ABS(xij) .LE. rc) THEN  ! check if within max 
distance 
         yij = Pos(i,2) - Pos(j,2) 
         zij = Pos(i,3) - Pos(j,3) 
! Hy is the width of the cubic computational box, Hy2 = Hy/2 
         IF (yij .GT. Hy2)  yij = yij – Hy ! change to 
reflection 
         IF (yij .LT. -Hy2) yij = yij + Hy 
         IF (zij .GT. Hz2)  zij = zij - Hz 
         IF (zij .LT. -Hz2) zij = zij + Hz 
         rij = SQRT(xij**2.d0 + yij**2.d0 + zij**2.d0) 
         IF (rij .LE. rc) THEN 
            IF (rij .LE. 0.8d0)  GOTO 902 

            SBB = SB(AType(i),AType(j))  ! read ߪ஺஻ ൌ
ሺఙಲାఙಳሻ

ଶ
 

            EBB = EB(AType(i),AType(j))  ! read ߝ஺஻ ൌ  ஻ߝ஺ߝ√

            EBSBB = EBSB(Atype(i),Atype(j))  ! read 
ଶସ.଴כ ఌಲಳ

ఙಲಳ
మ  

            sr6 = (SBB/rij)**6.d0 
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            Uij = 2.d0*EBB*sr6*(sr6-1.d0) - 
Ushift(AType(i),Atype(j)) 
            Uatom(i) = Uatom(i) + Uij    ! Potential 
energy 
            Uatom(j) = Uatom(j) + Uij 
            sr1 = EBSBB*(2.d0*((SBB/rij)**14.d0) - 
((SBB/rij)**8.d0)) 
            For(i,1) = For(i,1) + (sr1 * xij) ! Force on each 
atom 
            For(i,2) = For(i,2) + (sr1 * yij) 
            For(i,3) = For(i,3) + (sr1 * zij) 
            For(j,1) = For(j,1) - (sr1 * xij) 
            For(j,2) = For(j,2) - (sr1 * yij) 
            For(j,3) = For(j,3) - (sr1 * zij) 
902         dij = dij      !  Dummy line 
         ENDIF 
      ENDIF 
   ENDDO 
ENDDO 

B.1.2  Parameters 

 ௖     Force cutoff radius of 48% width of computational cubeݎ
 

B.2   SiC Two-body Potential 

Calculates the two-body interaction between atoms in SiC as described in section 2.2.2 as 

proposed by Vashishta et al. in [8,17]. 

B.2.1  Annotated Code 

DO i = 1, N-1 !  Select 1st Atom 
   DO j = I+1, N !  Select 2nd Atom 
      xij = Pos(i,1) - Pos(j,1) 
 !  Position of atom in direction X=1, y=2, 
z=3 
      IF (ABS(xij) .GT. rc) GOTO 999 
 !  pair too far apart, Get new "j" Atom 
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      yij = Pos(i,2) - Pos(j,2) 
      zij = Pos(i,3) - Pos(j,3) 
      rij2 = xij**2.d0 + yij**2.d0 + zij**2.d0 
      rij = SQRT(rij2) 
      IF (rij .GT. rc) GOTO 999       !  Get new "j" Atom 
      rijinv = 1.d0 / rij 
      QATij = AType(i) + AType(j)     !  Atom Type C=1 & Si=2 
 !  Find Bond Type: C-C, Si-Si, C-Si 
 !  QV are potential and QF are Force terms 
      QV21 = Hij(QATij)*(rijinv**Ada(QATij)) 
      QF21 = QV21 * Ada(QATij) * rijinv 
      QV22 = Qfact1 * Ze(AType(i))*Ze(AType(j)) * rijinv * 
&               exp(-rij*lambdainv) 
      QF22 = QV22 * (rijinv+lambdainv) 
      QV23 = Qfact1 * Dij(QATij) * 
&               0.5d0 *(rijinv**4.d0) * exp(-rij*zetainv) 
      QF23 = QV23 * ((4.d0*rijinv)+ zetainv) 
      QV24 = Wij(QATij) * (rijinv**6.d0) 
      QF24 = QV24 * 6.d0 * rijinv 
      QV2  = ((QV21 + QV22 - QV23 - QV24 - QVrc(QATij)) - 
&               ((rij - rc) * QDVDRrc(QATij))) 
 ! QVrc and QDVDrc are 1st derivatives of 
two-body 
   force at the inter-atom distance of rc 
      QF2  = (-QF21 - QF22 + QF23 + QF24 - QDVDRrc(QATij)) 
&               * rijinv 
      ETot  = ETot + QV2 + QV2 
      PE(i) = PE(i) + QV2 
      ForNow(i,1) = ForNow(i,1) - (xij * QF2) 
      ForNow(i,2) = ForNow(i,2) - (yij * QF2) 
      ForNow(i,3) = ForNow(i,3) - (zij * QF2) 
      PE(j) = PE(j) + QV2 
      ForNow(J,1) = ForNow(J,1) + (xij * QF2) 
      ForNow(J,2) = ForNow(J,2) + (yij * QF2) 
      ForNow(J,3) = ForNow(J,3) + (zij * QF2) 
      ForIJ(i,j,1) = -xij * QF2 ! force between atomic pair in 
x/y/z 
      ForIJ(i,j,2) = -yij * QF2 
      ForIJ(i,j,3) = -zij * QF2 
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      ForIJ(j,i,1) =  xij * QF2 
      ForIJ(j,i,2) =  yij * QF2 
      ForIJ(j,i,3) =  zij * QF2 
912   QF2 = 0.d0   ! dummy line 
  ENDDO 
ENDDO 

B.2.2  Parameters 

Bond parameters are expressed as: C-C/C-Si/Si-Si 

Ada  = 7/9/7  ሺݏݏ݈݁ݐ݅݊ݑ) 

Dij  = 0/1.0818/2.1636 (݁ଶՀఎ) 

Hij  = 471.74538/447.09026/23.67291   ሺ݁ݒ Հఎሻ 

lambda = 5.0 Հ 
lambdainv = 1.d0/lambda 

rc = 7.35 Հ 
rcinv = 1.d0 / rc 

Wij = 0/61.4694/0     (݁ݒ Հ଺ሻ 

Ze  = -1.201 ݁ 

zeta = 3.0 Հ 
zetainv = 1.d0/zeta 
 

B.3   SiC Three-body Potential 

Calculates the three-body interaction between atoms in SiC as described in section 2.2.2 

as proposed by Vashishta et al. in [8,17]. 

B.3.1  Annotated Code 

DO i = 1, N 
   DO j = 1, N-1 
      IF (atype(i) .EQ. atype(j)) GOTO 910 
      DO k = j+1, N 
         IF (atype(i) .EQ. atype(k)) GOTO 911 
         xij = Pos(i,1) - Pos(j,1) 
         IF (ABS(xij) .GT. r0) GOTO 910  !  Get new "j" Atom 
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         yij = Pos(i,2) - Pos(j,2) 
         zij = Pos(i,3) - Pos(j,3) 
         rij2 = xij**2.d0 + yij**2.d0 + zij**2.d0 
         rij = SQRT(rij2) 
         IF (rij .GT. r0) GOTO 910  !  Get new "j" Atom 
         rijinv  = 1.d0 / rij 
         xik = (Pos(i,1) - Pos(k,1)) 
         IF (ABS(xik) .GT. r0) GOTO 911  !  Get new "k" Atom 
         yik = (Pos(i,2) - Pos(k,2)) 
         zik = (Pos(i,3) - Pos(k,3)) 
         rik2 = xik**2.d0 + yik**2.d0 + zik**2.d0 
         rik = SQRT(rik2) 
         IF (rik .GE. r0) GOTO 911  !  Get new "K" Atom 
         rikinv  = 1.d0 / rik 
         rijkinv  = rijinv  * rikinv 
         rijk2inv = rij2inv * rik2inv 
         xjk = (Pos(j,1) - Pos(k,1)) 
         yjk = (Pos(j,2) - Pos(k,2)) 
         zjk = (Pos(j,3) - Pos(k,3)) 
         rjk2 = xjk**2.d0 + yjk**2.d0 + zjk**2.d0 
         rjk = SQRT(rjk2) 
         rjkinv = 1.d0/rjk 
 
         COSijk = 0.5d0 *(rij2 + rik2 - rjk2) * rijinv*rikinv 
         CosCos = Cosijk - Cos109 
         CosCos2 = CosCos * CosCos 
         DPDCOS = (2.d0 * CosCos) / 
&                 ((1.d0 + (Cijk * CosCos2))**2.d0) 
         Pijk   = CosCos2 / (1.d0 + (Cijk * CosCos2)) 
         Rijk  = Bijk * dexp(1.d0/(rij-r0)) * 
&                 dexp(1.d0/(rik-r0)) 
         RGP = -Rijk * gamma * Pijk 
         DRijinv = 1.d0 / (rij * ((rij-r0)**2.d0)) 
         DRikinv = 1.d0 / (rik * ((rik-r0)**2.d0)) 
         RoverR = -rjk * rijinv * rikinv 
 
         QRP = Rijk * pijk * 0.3333333333d0 
         PE(i) = PE(i) + QRP 
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         PE(j) = PE(j) + QRP 
         PE(k) = PE(k) + QRP 
         Forijk = - (RGP* (drijinv*xij + drikinv*xik)) 
&                 - Rijk * DPDCOS * 
&                 (((rikinv - (rijinv * cosijk)) * xij*rijinv) + 
&                 ((rijinv - (rikinv * cosijk)) * xik*rikinv)) 
         ForIJ(i,j,1) = ForIJ(i,j,1) + (Forijk * 0.5d0) 
         ForIJ(i,k,1) = ForIJ(i,k,1) + (Forijk * 0.5d0) 
         Forijk = - (RGP* (drijinv*yij + drikinv*yik)) 
&                 - Rijk * DPDCOS * 
&                 (((rikinv - (rijinv * cosijk)) * yij*rijinv)+ 
&                 ((rijinv - (rikinv * cosijk))*yik*rikinv)) 
         ForIJ(i,j,2) = ForIJ(i,j,2) + (Forijk * 0.5d0) 
         ForIJ(i,k,2) = ForIJ(i,k,2) + (Forijk * 0.5d0) 
         Forijk = - (RGP* (drijinv*zij + drikinv*zik)) 
&                 - Rijk * DPDCOS * 
&                 (((rikinv - (rijinv * cosijk)) * zij*rijinv)+ 
&                 ((rijinv - (rikinv * cosijk)) * zik*rikinv)) 
         ForIJ(i,j,3) = ForIJ(i,j,3) + (Forijk * 0.5d0) 
         ForIJ(i,k,3) = ForIJ(i,k,3) + (Forijk * 0.5d0) 
         ForIJ(j,i,1) = ForIJ(j,i,1) - (RGP* (-drijinv*xij)) 
&                 - Rijk * DPDCOS * 
&                 ((-(rikinv - (rijinv * cosijk)) * xij*rijinv) + 
&                   (RoverR * xjk * rjkinv)) 
         ForIJ(j,i,2) = ForIJ(j,i,2) - (RGP* (-drijinv*yij)) 
&                 - Rijk * DPDCOS * 
&                 ((-(rikinv - (rijinv * cosijk)) *yij*rijinv)+ 
&                 ( RoverR * yjk * rjkinv)) 
         ForIJ(j,i,3) = ForIJ(j,i,3) - (RGP* (-drijinv*zij)) 
&                 - Rijk * DPDCOS * 
&                 ((-(rikinv - (rijinv * cosijk)) * zij*rijinv)+ 
&                 ( RoverR * zjk * rjkinv)) 
         ForIJ(k,i,1) = ForIJ(k,i,1) - (RGP* (-drikinv*xik)) 
&                 - Rijk * DPDCOS * 
&                 ((-(rijinv - (rikinv * cosijk)) * xik*rikinv)+ 
&                   (-RoverR * xjk * rjkinv)) 
         ForIJ(k,i,2) = ForIJ(k,i,2) - (RGP* (-drikinv*yik)) 
&                 - Rijk * DPDCOS * 
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&                 ((-(rijinv - (rikinv * cosijk)) * yik*rikinv)+ 
&                 (-RoverR * yjk * rjkinv)) 
         ForIJ(k,i,3) = ForIJ(k,i,3) - (RGP* (-drikinv*zik)) 
&                 - Rijk * DPDCOS * 
&                 ((-(rijinv - (rikinv * cosijk)) * zik*rikinv)+ 
&                 (-RoverR * zjk * rjkinv)) 
911      Xij = 0.d0   !  Need a new "K" atom 
      ENDDO 
910   Xij = 0.d0   !  Need a new "J" atom 
   ENDDO 
ENDDO 

B.3.2  Parameters 

Bijk = 9.003 ݁ݒ 

Cijk = 5.0  ሺݏݏ݈݁ݐ݅݊ݑ) 
COS109 = Cosine of 109º 

gamma =  1.0Հ 

r0 = 2.9 Հ 
 

B.4   Determination of Heat Current:  

Calculates the heat current in each slice of the computational box as described in section 

2.6.2 with the following microscopic expression [13,23,29-31]: 

,ݎఈሺܬ  ሻ݌ ൌ ∑ ቂ ௣మ

ଶ௠೔
൅ ଵ

ଶ
∑ ௜௝൯ேݎ൫ݑ

௝ஷ௜ ቃ ቀ௣೔ן

௠೔
ቁ ൅ ଵ

ଶ
∑ ∑ ቂቀ ௣Ԧ೔

௠೔
ቁ · ௜௝ቃேܨ

௝ஷ௜ ௜௝ఈݎ
ே
௜ୀଵ

ே
௜ୀଵ  (38) 

where  = x,y,z, the ݌௜ are the momenta of atoms with mass ݉௜, ݑ൫ݎ௜௝൯ are the 

interatomic potential energies, and ܨ௜௝  are the forces between atoms i and j. 

B.4.1  Annotated Code 

DO i = 1, N  !  Select 1st atom 
   AS = ASlice(i)  !  1st atom’s slice in the system 
   KE = 0.5d0 * mass(Atype(i)) * ((Vel(i,1)**2.d0) + 
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&       (Vel(i,2)**2.d0) + (Vel(i,3)**2.d0)) * Qfact3 

           ! Qfact3 is a unit conversion of:  ܸ݁ ݋ݐ 
௞௚ Հమ 

௦మ  

   T(AS) = T(AS) + KE  !  Temperature of the slice 
                    !  Calculate the 1st term, PE is Potential 
Energy 

   Jx(AS) = Jx(AS) + ((KE + PE(i)) * vel(i,1))     ! Units: 
௘௏ Հ 

௦
 

   Jy(AS) = Jy(AS) + ((KE + PE(i)) * vel(i,2)) 
   Jz(AS) = Jz(AS) + ((KE + PE(i)) * vel(i,3)) 
   DO j = 1, N  !  Select 2nd atom 
      IF (i .NE. J) THEN 
         xij = Pos(i,1) - Pos(j,1) 
         yij = Pos(i,2) - Pos(j,2) 
         zij = Pos(i,3) - Pos(j,3) 
         rij = SQRT(xij**2.d0 + yij**2.d0 + zij**2.d0) 
!  Calculate the 2nd term, ForIJ(I,j,α) is the force of atom j on 
atom i in the α direction 
         Jtemp = 0.5d0 * ((vel(i,1) * ForIJ(i,j,1)) + 
&                (vel(i,2) * ForIJ(i,j,2)) + 
&                (vel(i,3) * ForIJ(i,j,3))) 
         Jx(AS) = Jx(AS) + (JTemp * xij) 
         Jy(AS) = Jy(AS) + (JTemp * yij) 
         Jz(AS) = Jz(AS) + (JTemp * zij) 
      ENDIF 
914   xij = 0.d0 
   ENDDO 
913  xij = 0.d0 
ENDDO 
Jx = Jx * 0.25d0  !  ½ factors 
Jy = Jy * 0.25d0 
Jz = Jz * 0.25d0 

B.4.2  Parameters 

Qfact3 = 0.062415 ݇݃ Հ
2

 
௘௏ 2ݏ  units conversion 
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B.5   Calculation of Autocorrelation and Density of States 

Calculated the autocorrelation of the velocity in each direction, averaged them and then 

took the Fourier Transform to determine the density of states as described in section 

2.6.1.  Normally the vibrational data was taken as 10 time segments (or trials) in 

calculating the Autocorrelation.  The FFT routine was adapted from [74]. 

B.5.1  Annotated Code 

DO k = 1, 3  ! Each direction 
   LongC = 0.d0 
   C1 = 0.d0 
   DO I = 1, N 
      Data = 0.d0 
      AData = 0.d0 
      DO NS = 0, VibrTrial-1 ! Trial number 
         DO j = 1, NSize2 
!  Nsize is the number of steps, Nsize2 is double the number 
!  StepsVibr si the number of stored steps of data 
!  Vibr is the array holding the velocity data 
            Data(j) = Vibr((NS*(StepsVibr-
NSize)/VibrTrial)+j,i,k) 
         ENDDO 
         CALL Auto(Data, NSize, AData)   !  Autocorrelation 
Subroutine 
!  Data is the input raw vibrational data, AData is the output 
Autocorrelation 
         DO j = 1, NSize 
            LongC(j) = LongC(j) + AData(j) ! average over trials 
         ENDDO 
      ENDDO 
   ENDDO 
   LongC = LongC / VibrTrial / AtomsAC 
 !  AtomsAC is number of atoms 
   DO I = 1, NSize 
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      C1(i+i-1) = LongC(i)  !  convert to complex number 
array 
   ENDDO 
   CALL FFT(C1, NSize, Isign) !  Fourier transformation 
subroutine 
                    ! with NSize2 pairs of data elements 
967  I = 1 
ENDDO 

 

SUBROUTINE Auto (Data, NSize, C) 

   INTEGER NSize, NSize2, T, Tau 
   REAL*8  AvgC0, C0, C(20000), Data(20000) 
 
! ------------  Calculate C0 ---------------- 
   NSize2 = NSize * 2.d0       ! Nsize is the # items in output 
   C0 = 0.d0 
   DO T = 1, NSize2 
      C0 = C0 + Data(T)*Data(T) 
   ENDDO 
   C0 = C0 / NSize2 
! ----------------  Calculate C(τ)  ------------------ 
   C  = 0.d0 
   DO Tau = 1, Nsize 
      DO T = 1, Nsize2 - Tau 
         C(Tau+1) = C(Tau+1) + Data(T)*Data(T+Tau) 
      ENDDO 
      C(Tau+1) = C(Tau+1) / (NSize2 - Tau) 
   ENDDO 
   C = C / C0 
   C(1) = 1.d0 
 
   RETURN 
   END 
 
SUBROUTINE FFT(Data, NN, Isign) 

!  data is old fashion Complex vector of [r I r I r I r I . ...] 
!       with NN pairs of data elements 
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!  Isign is 1 for an FFT and -1 for an Inverse FFT 
 
   INTEGER  i, Isign, Istep, j, m, N, NN, Mmax 
   REAL*8  TempI, TempR, WR, WI, WPR, WPI, WTEMP, THETA 
   REAL*8  Data(66000) 
 
   N = 2 * NN        ! length of Data array of NN complex ele 
   j = 1 
   DO i = 1, N, 2 
      IF (j .GT. i) THEN 
         TempR = Data(j) 
         TempI = Data(j+1) 
         Data(j) = Data(i) 
         Data(j+1) = Data(i+1) 
         Data(i) = TempR 
         Data(i+1) = TempI 
      ENDIF 
      m = NN 
101   IF ((m .GE. 2) .AND. (j .GT. m)) THEN 
         j = j - m 
         m = m/2 
         GOTO 101 
      ENDIF 
      j = j + m 
   ENDDO 
          ! Begin the Danielson-Lanczos section of the routine 
   Mmax = 2 
102  IF (N .GT. Mmax) THEN   ! Outer loop executes log2(NN) times 
      Istep = 2 * Mmax 
      Theta = 6.28318530717959d0 / (Isign * Mmax) 
      WPR = -2.d0 * SIN(0.5d0 * Theta)**2.d0 
      WPI = SIN(Theta) 
      WR = 1.d0 
      WI = 0.d0 
      DO M = 1, Mmax, 2 
         DO i = m, n, Istep 
            j = i + Mmax     ! Danielson-Lanczos formula 
            TempR = WR * Data(j) - WI * Data(j+1) 
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            TempI = WR * Data(j+1) + WI * Data(j) 
            Data(j) = Data(i) - TempR 
            Data(j+1) = Data(i+1) - TempI 
            Data(i) = Data(i) + TempR 
            Data(I+1) = Data(i+1) + TempI 
         ENDDO 
         Wtemp = WR          !  Trigonometric recurrence 
         WR = WR * WPR - WI * WPI + WR 
         WI = WI * WPR + Wtemp * WPI + WI 
      ENDDO 
      Mmax = Istep 
      GOTO 102 
   ENDIF 
 
   RETURN 
   END 
 

B.5.2  Parameters 

None 

 

B.6   Maintain Constant Temperature in Thermal Baths 

This routine reset the temperature within each thermal bath back to the set temperature.  

This is only a section of the routine for a single bath. 

B.6.1  Annotated Code 

KE0 = 0.d0  ! Kinetic Energy of Bath 
DO i = 1, N 
   KE0 = KE0 + (mass(Atype(i)) * ((Vel(i,1)**2.d0) + 
&              (Vel(i,2)**2.d0) + (Vel(i,3)**2.d0))) 
   AtomCount = AtomCount + 1 !  count number of atoms 



146 

 

ENDDO 
KE0 = KE0 * 0.5d0 * qfact5 / AtomCount 
  ! Qfact5 is a unit conversion 
Tfactor = (Tmid / KE0)**0.5d0  ! Tmid is the Bath 
Temperature 
Vel = Vel * Tfactor 
 

B.6.2  Parameters 

Qfact5 = >  724.2713 Kelvin = 1 ܸ݁ 

௦  Հ
2 
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