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Abstract

The paper describes a novel method for
constructive induction, called PRAX (Principal
Axes). The underlying idea of the method is to
determine descriptions of a class of certain basic
concepts, and then use these descriptions as
“principal axes™ with which all other concepts
can be described. Given examples of a new
concept, the system determines a similarity
matrix (SM) for that concept, that contains the
average degree of similarity between the concept
examples and the principal axes. These degrees of
similarity are viewed as newly constructed
attributes. To recognize an unknown concept
instance, the method creates an SM for it, and
then seeks the best matching similarity matrix of
all known concepts. In experimental testing of
the method on the problem of learning
descriptions of a large number of visual textures,
the PRAX method significantly outperformed the
k-NN classifier often used for such problems. A
very important result of this research is a
demonstration that a symbolic learning method
can be successfully applied to the domain of
continuous attributes of low level vision in
which nonsymbolic methods have been
traditionally employed.

1 INTRODUCTION

The ability to inductively derive general patterns and laws
from data is fundamental to human cognition and
intelligence. Such ability is crucial for object recognition,
classification, discovery of scientific laws and creativity.
Most inductive learning methods developed so far create
general descriptions that use attributes (generally,
descriptors) that are selected from among those present in

the original examples. Among known systems for such
selective induction systems are AQVAL/1 (Michalski,
1973), ID3 (Quinian, 1983), ASSISTANT (Cestnik,
Kononenko & Bratko, 1987), and CN2 (Clark and Niblet,

~ 1989). An advance over selective induction systems are

constructive induction systems that are able to generate
and use new descriptors in the hypothesized description.
These new descriptors can be attributes, predicates, terms,
functions, transformations, etc., which should be more
relevant to the learning problem than those initially
given. A constructive learning algorithm thus performs a
problem-oriented transformation of the knowledge
representation space (Michalski, 1978; Rendell, 1985;
Matheus, 1989; Drastal, Czako & Raatz, 1989).

The idea of constructive induction was first proposed by
Michalski (1978), and implemented in the INDUCE.1
system for learning structural descriptions from examples.
INDUCE.1 used a variety of constructive generalization
rules to generate new descriptors. These rules included a
“replacing a property by an implied property” rule, various
“counting arguments” rules, the “generating chain
properties” rule, and “detecting a descriptor inter-
dependence” rules (see also Michalski, 1983).
Subsequently, a number of other systems that exhibit
constructive induction capabilities have been developed
(Bloedorn & Michalski, 1991; Wnek & Michalski, 1991).

Current constructive induction methods can be divided into
four categories:

« Data-Driven (DCI) - by analyzing and exploring the
input data.
Example systems:
INDUCE (Michalski, 1978)
LEX (Mitchell, Utgoff & Banerji, 1983)
AM, EURISCO (Lenat, 1983)
BACON (Langley, Bradshaw & Simon, 1983)
STAGGER (Schlimmer, 1987)
AQ17-DCI (Bloedorn & Michalski, 1991)



« Hypothesis-Driven (HCI) - by analyzing generated
hypotheses.
Example systems:
FRINGE (Pagallo & Haussler, 1990) - for decision trees
AQ17-HCI (Wnek & Michalski, 1991) - for decision
rules

« Knowledge-Driven (KCI) - by applying expert-
provided knowledge.
Example systems:
INDUCE (Michalski, 1978)
AQ15 (Michalski, Mozetic, Hong & Lavrac, 1986)
MIRO (Drastal, Czako & Raatz, 1989)
DUCE, CIGOL (Muggleton, 1987)

« Multistrategy (MCI) - by integrating several
methods.

Example systems:

PLSO (DCI, KCI; Rendell, 1985)

CITRE (DCI & KCI; Matheus, 1989)

AQ17 (DCL, HCI, KCI--A-rules & L-rules, GDN" ;
(Stepp & Michalski, 1986); Bloedomn, Michalski &
Wnek, 1992).

In an attribute-based learning system, the abstraction level
of attributes strongly affects the complexity of the
hypothesized rules. By employing high-level attributes,
the concept representation can be simplified. Such
attributes may, however, be encoded as very complex
functions of low-level primitives. In such cases, to
improve the efficiency, these complex functions have to
be compiled (Flann & Dietterich 1986). Constructive
induction may lead to the maximal simplification of the
generated descriptions and/or improvement in the
predictive accuracy of the hypothesis. The predictive
accuracy can be measured by applying the hypothesis to
the testing data, and determining the correctness of the
predictions. i

The PRAX method represents a form of the hypothesis-
driven constructive induction (Wnek & Michalski, 1991).
Constructive induction of this type analyzes inductive
hypothesis in order to transform an initial descriptor set
into a new, problem-relevant descriptor set. In general,
the transformation of a descriptor set may involve
generalization or specialization. One may generalize the
set by dropping (removing) attributes or narrowing their
domains, or one may specialize the set, by adding new
attributes or extending domains of existing attributes.
More specifically, construction of a new descriptor may

* GDN stands for Goal Dependency Network that was
originally introduced in (Stepp & Michalski, 1986) for
generating problem-relevant attributes for conceptual
clustering.

involve detecting four types of attribute patterns: null-
pattern, condition-pattern, rule-pattern, and ruleset-
pattern. Null-pattern of an attribute is detected when the
attribute is used in few or no conditions of the
hypothesis. In this case, the attribute can be removed
from the descriptor set without loosing the ability to
properly express target concept. Condition-patterns are
detected, if the analyzed hypothesis contains conditions
that repeatedly involve the same values of a single
attribute. Rule-patterns involve conjunctions of
conditions. Ruleset-patterns are found in sets of rules,
i.e., disjunctions of rules. The new attributes can have
either binary or real values.

The PRAX method uses rule-pattern attributes with a real
valued similarity measure. This learning process is
accomplished in two phases that represent two major
transformations on the representation of the domain. In
the first phase the system learns discriminant descriptions
of initial concepts. These descriptions are called principal
axes. In the second phase the principal axes are used to
incrementally learn new concepts. Any newly acquired
description of a concept is represented as a similarity
measure between already learned Principal Axes
description and instances of the new concept. These
similarity measures are represented as a matrix data
structure, called Similarity Matrix (SM).

An empirical evaluation of the method is presented using
the texture data (24 texture classes represented in the eight
dimensional feature space). The recognition results of the
PRAX method are compared with the results obtained
from the k-NN classifier. The next three sections describe
two phases of the method; learning Principal Axes and
learning Similarity Matrix. Section 5 explains the
constructive induction aspect of the presented method and
the empirical evaluation is presented in section 6.

2 LEARNING PRINCIPAL AXES

The problem-oriented descriptors - principal axes - are
leamned using the standard AQ algorithm (Michalski,
1973). Specifically, the algorithm is used to generate a
discriminant description of initial concepts (Principal
Axes). The concept descriptions learned by AQ algorithm
are represented in VL1, which is a simplified version of
the Variable-Valued Logic System VL, and are used to
represent attributional concept descriptions. In the
application of machine learning to texture recognition
described in this paper, a concept represents a single
texture class. A description of a concept is a disjunctive
normal form which is called a cover. Below is an
example of a cover generated by the AQ module:

[x1=10..54] & [x3=18..54] & [x5=11..17] & [x6=6] or
{x3=18..54] & [x4=16..54] & [x6=0..6] & [x8=5..12]



The above cover (disjunctive normal form) consists of
two disjuncts. It covers learning instances represented by
eight attributes (x1 .. x8). For example, the learning
instance <20, 10, 25, 17, 1, 4, 30, 6> is covered by the
second disjunct. The attributes values x3=25, x4=17,
x6=4, x8=6 of that instance are covered by conditional
parts of that disjunct and all other attributes {x1, x2, x5,
x7} are also covered because conditional parts of these
attributes are not present in the disjunct.

The AQ cover is optimized by using the truncation
method that was first introduced by Michalski et al.
(1986). In the AQ cover, each generated disjunct is
associated with a pair of weights; i.e., the t-weight (as the
total number of positive examples covered by the disjunct)
and the u-weight (as the number of positive examples
uniquely covered by the disjunct). The disjuncts are ordered
according to the decreasing values of the t-weight. The t-
weight may be interpreted as the measure of typicality or
the representativeness of a disjunct as a concept
description. The disjuncts with the highest t-weight may
be viewed as describing the most typical concept
examples, and thus serve as its prototypic description. The
disjuncts with the lowest t-weight are truncated from the
description.

3 DISTANCE METRIC

The method uses a non-linear distance metric to calculate
values of new attributes. The distance metric is based on
the idea of flexible matching. In flexible matching, the
degree of closeness between the example and the concept
is determined, instead of a binary decision as used in strict
matching. Specifically, the match of an example E to a
disjunct D is computed by the following formula:

maxj - minj

MATCH(E,D) = H (1_ M)
i

where Ej is the value of the i-th attribute of example E,
Dj is the condition involving the i-th attribute in D,
max; and minj are the maximum and minimum values of
the ith attribute, and m is the number of attributes.
dis(E;, D1) depends on the type of the attribute involved
in the condition. An attribute can be one of two types:
nominal and linear. In a nominal condition, the referent
in a condition is a single value or an internal disjunction
of values, e.g., [color = red v blue v green]. The distance
is 1, if such a condition is satisfied by an example, and 0
if it is not satisfied. In a linear condition, the referent is a
range of values, or an internal disjunction of ranges, e.g.,
[weight = 1..3 v 6..9]. A satisfied condition returns the
value of distance 1. If the condition is not satisfied, the
distance between an example and the condition is the

absolute of a difference between the value of the example
and the nearest end-point of the interval of the condition
normalized by the distance between the farthest value and
the condition. For example, if the domain of x is [0 ..
10}, the value of x for the example E is Ex=4 and the
condition is [x = 7 .. 9], then

dis(Ex, condition) = 17 0 _40 = 1%

A flexible matching method is used to calculate the
degree of match. To illustrate the method the following
example is presented below.

Given:

disjunct D [x1=1..3] & [x2=1] & [x4=0] &
[x6=1..7] & [x8=1]

example E <2,4,2,1,6,10,7,5>

#of attributes: m = 8§

attribute range  maxj - minj = 55

The degree of flexible match to the example is calculated
by evaluating partial matches of a given attribute value of
the example to the corresponding conditional part of the
disjunct. Evaluations for each attribute are:

disxy] = 1 (an attribute value is covered)
disxyg = 1 - 11-41/55=0945
disx3 = 1 (x3 not present in the disjunct)
disx4g = 1 - 10-11/55=0981
disxys = 1 (same as for x3)

disx¢ = 1 - 17 -101/55 = 0945
disx7 = 1 (same as for x3)

disxg = 1 < I15-11/55=0927

and, the degree of match to the disjunct is

MATCHE , D) = IT disg; = 0812

1

The flexible match method as described above is used in
generating the Similarity Matrix (SM) description, i.e.
the concept description expressed in the new
representation space. The SM description is obtained by
applying the flexible matching process to the examples
of the new concept and the previously learned Principal
Axes.

4 GENERATING SIMILARITY
MATRIX

The mechanism of determining SM description is
illustrated in Figure 1 by a simple example in a two
dimensional feature space. Black dots are used to indicate
the learning examples of CLASS 1 and white dots are the
testing examples of CLASS 1. White rectangles are



learning examples of CLASS 2 . Generation of SM is
based on the calculation of the degree of match between
instances of CLASS 1 and CLASS 2 to three disjuncts:
PA,, PAj, and PA3. These disjuncts represent the
Principal Axes learned in the previous step by using
examples of some initial classes (examples of that classes
are not depicted in the Figure 1). The process of
generating SMs is illustrated in Table 1. Table 1 shows
also how the generated SM descriptions are used to
recognize CLASS 1 testing examples (white dots). ’I"he
following are two SMs generated from learning
examples. They represent an average (normalized to 100)
match to three principal axes ( PAj, PAg, and PA3 )

x24 PA; PA, PA,

Principle Axes X4
PA;: [x1=1.4] & [x2=3..5]
PAy: [x1=2.4] & [x2=6..8]
PA3: [x1=5..7] & [x2=3..6]
Figure 1: Two Classes Example.

CLASS 1 SM [86, 80, 73]

CLASS 2 SM {61, 47, 83]

SM generated from testing examples of CLASS 1 is
SM-test = 91, 80, 74]

The following is the calculation to determine class
membership of testing examples:

Match(Test , CLASS 1) =

Match( [91, 80, 741, [86, 80, 73]) =
(abs(91-86) + abs(80-80)+abs(74-73))/3 =
(5+0+1)/3=2

Match(Test , CLASS 2) =

Match( [91, 80, 741, (61, 47, 83D =
(abs(91-61)+abs(80-47)+abs(74-83))/3 =
(30+33+9)/3=24

Testing examples are matched by CLASS 1.

5 DESCRIPTION SPACE
TRANSFORMATION

The process of learning texture descriptions, in the
PRAX method, imposes two major transformations on
the representation of the domain. The starting,
intermediate, and final descriptions are expressed within
three level language. Higher levels extend properties of
lower levels by grouping features from the previous
level. The domain knowledge is primarily expressed in
terms of eight features. These features represent eight
Laws masks”. Each of them already carries meaningful
information, relevant to the texture domain. However,
when considered separately, these features do not
sufficiently discriminate among many classes of textures.
(It would be the same as trying to distinguish texture
classes by using only one property, e.g. density of
horizontal edges).

Thus, the second level language facilitates building
conjunctive expressions of feature values used in the first
place. This allows for the expressing of discriminatory
features of textures with respect to relevant values of all
features, but still lacks sufficient precision in describing
highly flexible, imprecise concepts, such as textures.
Therefore, the expressions found, are not used as final
descriptions of the class concepts, but they serve as
dynamically constructed features for building final
descriptions. The features, found in this step, structure
the knowledge contained in the training examples of
different texture classes. Feature descriptions reflect
important relations between selected feature values in
accordance with the goal of being discriminable among
given classes. At this point, the problem of finding
texture classes descriptions receives proper orientation and
is encoded into the new features, which are relevant to the
learning goal. The new features are assumed to have
continuous values within the O to 1 range (a degree of
match to a disjunct, in the SM description they are
normalized in the range 0..100).

The final concept description is expressed in the form of
the Similarity Matrix. The size of the matrix - the

* The most frequently used methods of texture feature
extraction are based on the analysis of a local subset of
pixels. This subset is defined by a small window in order to
derive local characteristics of covered pixels. There are
many methods applied to derive local characteristics of
pixels. Since the development of low-level image
processing techniques is not in scope of this research, we
decided to apply well known and well performing low-level
operators to extract texture features. Laws' energy filters
(Laws, 1980) were chosen to transform raw image data into
texture features. Laws masks are the most often used
features in the texture analysis.



The first column represents examples as shown in Figure 1 (e.g. 8, b, ¢, w..uet ).
es) PAl, PA2. PA3.

Other columns represent the degree of match of these examples to disjuncts (ax

SMs are normalized to the 1..100 range of average degrees of match to each disjunct.

CLASS 1 learning examples (black dots in Figure 1)

Example (E)

sl MO RO O

J
Average

CLASS 1 SM

MATCH (E, PAj)
1

1

1

1

1*(1-1/10)=0.9
1*(1-1/10)=0.9
1¥(1-2/10)=0.8
1%(1-2/10)=0.8
(1-2/10)*(1-4/10)=0.48
(1-2/10)*1=0.8

0.86

[86, 80, 73]

MATCH (E, PA2)
(1-1/10)*(1-3/10)=0.63
1*(1-3/10)=)=0.7
1*(1-3/10)=)=0.7
(1-1/10)*(1-1/10)=0.81
(1-1/10)*1=0.9

1

1-1/10)*1=0.9

1
(1-2/10)*(1-1/10)=0.72
(1-2/10)*(1-1/10)=0.72
0.80

CLASS 2 learning examples (white rectangles in Figure 1)

Example (E)

KT YO QO O

Average

CLASS 2 SM = [6],

MATCH (E, PAp)
(1-3/10)*(1-1/10)=0.63
(1-4/10)*(1-1/10)=0.54
(1-5/10)*(1-2/10)=0.4
(1-2/10)*1=0.8
(1-3/10)*1=0.7
(1-4/10)*1=0.6
(1-5/10)*1=0.5
(1-2/10)*1=0.8
(1-4/10)*1=0.6
(1-5/10)*(1-2/10)=0.4
1*(1-2/10)=0.8

0.61

47, 83]

MATCH (E, PA)
(1-3/10)*(1-4/10)=0.42
(1-4/10)*(1-4/10)=0.36
(1-5/10)*1=0.5
(1-2/10)%(1-3/10)=0.56
(1-3/10)*(1-3/10)=0.49
(1-4/10)*(1-3/10)=0.42
(1-5/10)*(1-3/10)=0.35
(1-2/10)*(1-2/10)=0.64
(1-4/10)*(1-2/10)=0.48
(1-5/10)*1=0.5
1%(1-5/10)-0.5

0.47

The following is the calculation of the test SM description
CLASS 1 test examples (white dots in Figure 1)

Example (E)

CRe=TIQEEOOEP

Average

Test SM = [91,

' MATCH (E, PAy)

1%(1-1/10)=0.9
1*(1-1/10)=0.9

b Pt ek b sk b

1*(1-2/10)=0.8
(1-1/10)*(1-3/10)=0.63
(1-2/10)*(1-1/10)=0.72
0.91

74}

MATCH (E, PA3)
1%(1-4/10)=0.6 -
1*(1-4/10)=0.6
1*(1-3/10)=0.7
1%(1-2/10)=0.8
1*(1-2/10)=0.8
1%(1-2/10)=0.8
1*(1-1/10)=0.9
1*(1-1/10)=0.9
1*(1-1/10)=0.9

1

(1-1/10)*1=0.9
(1-2/10)*(1-1/10)=0.72
0.80

MATCH (E, PA3)
(1-4/10)*1=0.6
(1-2/10)*1=0.8
(1-1/10)*1=0.9
(1-4/10)*1=0.6
(1-4/10)*1=0.6
(1-2/10)*1=0.8
(1-4/10)*(1-1/10)=0.54
(1-2/10)*(1-1/10)=.72
1*(1-3/10)=0.7

1

0.73

MATCH (E, PA3)
1*(1-1/10)=0.9
(1-1/10)*(1-1/10)=0.81
(1-2/10)*(1-1/10)=0.45
1

1

(1-1/10)*1=0.9
(1-2/10)*1=0.8

1

(1-1/10)*1=0.9
(1-2/10)*(1-1/10)=0.72
(1-1/10)*(1-2/10)=0.72
0.83

MATCH (E, PA3)
(1-3/10)*(1-1/10)=0.63
(1-2/10)*(1-1/10)=0.72
(1-3/10)*1=0.7
(1-4/10)*1=0.6
(1-3/10)*1=0.7
(1-2/10)*1=0.8
(1-3/10)*1=0.7
(1-2/10)*1=0.8
(1-1/10)*1=0.9
(1-3/10)*(1-1/10)=0.63
1#(1-2/10)=0.8
1%(1-1/10)=0.9

0.74

Table 1: Illustration of Learning And Recognition For the Two Classes Case From Figure 1.




number of colur=: - depends on the number of the initial
training classes. T7:¢ number of rows depends on the
number and generzlity of useful conjunctive features
describing class represented in a column.

The process described above can be viewed as a two step
induction: (1) learning a new, problem-relevant descriptor
set from examples of the initial texture classes, and 2)
learning a description of a given class using descriptors
from the previous step and examples of that class (Figure
2).

Step 1 (Principal Axes Learning)

Examples of
Texture Classes

— General Features

Step 2 (SM Generation)

Examples of .

General Descriptions of
Texture Classes ——4pp
&ex Texture Classes (SM)
General Features

Figure 2: Two-step Inductive Learning

In the example presented in Figure 1 and Table 1 the
initial features {x1, x2} are transformed into new features
{PA{, PA, PA3). This transformation can be expressed

as follows:
T({x1,x2}))=>

{ MATCH ( (x1,x2}, PA]),
MATCH ( {x1,x2}, PA2),
MATCH ( {x1,x2}, PA3) }

Corresponding feature values in two domains for three
examples of CLASS 1 (a, b, and ¢ black dots in Figure
1) are shown below

Initial example New example

a: (1,3) -> (1, 0.63, 0.6)
b: (3,3} -> 1, 0.7, 0.8}
c: (4,3) -> {1, 0.7, 0.9}

In the experiment with texture classes the initial eight
features (eight Law's masks) {x1,..,x8} are transformed
into 170 features { PAj,...PA170 } that represent 170
disjuncts (Principal axes) learned by the AQ method
using instances of eight texture classes.

6 EMPIRICAL EVALUATION

In expedmeﬁts we used 24 texture classes. A texture class
was encoded as an image file 512 by 512 pixels. From
each class two sets of examples were extracted. The first
set, with 200 examples, was used as the learning data and
the second set, with 200 examples, was used as the
testing data. Each examples of a given texture was
represented using 8 features. Feature values were extracted
using Laws masks. All feature values were scaled to the
linear range 0 to 54 (this is the range of linear attributes
that the AQ algorithm can handle). The learning data was
extracted from the left hand side of the texture image and
the testing data from the right hand side. For each run of
the experiment different learning and testing data sets
were used. Eight classes (C1 to C8 in Figure 3) were
chosen to learn the Principal Axes. The learned Principal
Axes after truncation consisted of 115 disjuncts.
Examples of all 24 classes (including initial eight) were
used to generate SM description. All SM descriptions
were stored as the learned descriptions of texture classes.
In the recognition phase 200 testing examples of each
class (extracted from a different texture area than the one
used for the learning examples) were used to generate an
SM description to test the recognition accuracy. SM
descriptions obtained from the testing examples were
matched (a simple matching calculations are presented in
section 4 ) with the SM descriptions obtained from the
learning examples. Results of a one run of the
experiment are presented in Table 2. An example of SM
descriptions for class C9 obtained from learning and
testing examples are presented in Appendix.

The method was compared with the k-NN (k-Nearest
Neighbor) classifier. During five experiments (in each
experiments we used different learning and testing sets )
we obtained on average one class mis-classified (for k=1
to 10). For the next step the two methods with mis-
classification noise present were compared. A 10% mis-
classification noise was introduced to the texture data (10
% of learning examples of a given class were shuffled
from other classes). The k-NN classifier was unable to
correctly recognize two classes (C1 and C3) while the
PRAX method correctly recognized all 24 classes. The
first degradation of the method was observed with 20% of
mis-classification noise (on average 2 classes not
recognized by the PRAX method and 7 classes not
recognized by k-NN classifier).

7 SUMMARY

The presented method consists of two phases that
represent two major transformations on the representation
of the domain. The initial phase of the method determines
a set of discriminant descriptions of a class of basic



Tested Class Closest Match { Degree Second Closest § Degree Worse Match Degree
C1l Cl 2.36 C21 11.28 C8 47.64
C2 Cc2 11.4 Cc22 14.59 C8 49.21
C3 C3 5.15 C13 12.97 Cl4 51.55
C4 C4 7.70 C9 15.65 C15 38.31
C5 C5 5.17 C6 18.87 C8 40.04
C6 C6 2.62 C5 19.89 C24 45,60
Cc7 Cc7 8.21 C13 9.52 Cl4 44,63
C8 C8 4.60 C10 6.30 Cc22 51.20
C9 C9 2.60 C10 13.24 C15 52.53
C10 C10 : 0.96 C8 3.16 C22 50.99
Cl1 Cl1 9.41 C22 12.59 C8 43.92
C12 Cl12 4.41 C24 5.55 C15 43.69
C13 C1i3 4.62 C18 7.01 C8 47.94
Cl4a Cl4 3.86 C18 8.83 C9 47.77
C15 C15 5.31 C3 11.78 Cl4 43.07
C16 C16 7.69 C8 5.60 C22 51.06
C17 C17 4.46 C6 13.08 C13 50.71
C18 C18 2.59 C7 14.09 Cl4 46.95
C19 C19 3.31 C5 21.34 C3 55.99
C20 C20 5.74 C18 7.23 C10 52.18
C21 C21 4.73 C23 8.83 Cl4 44 .87
C22 C22 3.35 C22 8.42 C10 48.87
C23 C23 2.02 C36 7.36 C8 50.19
C24 : C24 1.99 Cll 4.18 C12 46.65

Table 2: Recognition results of one run of the experiment. The third column represents the value of the closest degree of
match. This value is calculated as an average difference between corresponding entrics of the learned and test SM
descriptions. An example of the such calculation is depicted in Table 1 for a simple two feature domain. The second
closest and the worse matches are also included in the table below to show the range of degree of match values for all

classes.

concepts selected by a teacher. The descriptions of these
concepts constitute the principal axes that serve as
constructed attributes for expressing any new concept
descriptions. A description of any new concept is
represented as a similarity matrix that specifies the
degrees of similarity between the examples of the new
concept and the principal axes. Experimental results of
texture recognition were presented to illustrate the
feasibility of our novel methodology. The results are very
encouraging when compared with results presented in
other computer vision papers on texture recognition (they
do not report on recognition of more than 20 textures).

The main strength of the method lies in a problem-
relevant transformation of the descriptor space. The new
descriptors form generalized sub-spaces of the initial,

training space. In addition, the method uses a non-linear

distance metric to calculate values of new attributes. The
distance metric based on the idea of flexible matching is
less sensitive to noise, then traditional Euclidean
distances used by pattern recognition methods.

In experimental testing of the method on the problem of
learning descriptions of a large number of visual textures,
the PRAX method outperformed the k-NN classifier.

The current problem with the method is that it does not
have the mechanism to decide how to choose basic
concepts. Choosing the minimal subset of concepts to be
used for principal axes generation is crucial for method
optimization. This problem is subject to further research.
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Figure 3: Samples From the Learning Area of 24 Textures.
Approximately 40 x 40 Pixels (Brodatz Album of Textures, 1966).
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Appendix

C9-learned SM

89.2 51.3 85.4 54.8 63.5 48.6 95.5 60.9
61.9 74.4 67.8 15.9 49.3 31.4 71.3 66.4
68.3 61.3 79.3 0.6 55.1 39.7 75.0 73.1
60.0 58.1 69.8 0.2 57.0 36.6 - 72.1
86.7 48.7 64.9 48.1 - 12.3 - 46.3
65.3 55.3 78.9 29.1 - 24.2 - 74.8
69.8 80.6 75.9 5.9 - 41.9 - 55.3
62.7 56.2 70.2 51.5 - 45.3 - 31.1
55.5 84.2 65.5 31.3 - 48.2 - 49.4
65.3 35.1 65.5 20.5 - 38.3 - 67.3
86.2 48.6 42.2 - - 17.8 - 56.6
63.9 0.1 48.5 - - 60.5 - 3.0
77.9 45.2 43.2 - - 60.6 - 60.0
86.9 29.7 81.8 - - 59.9 - 88.7
90.2 80.3 63.7 - - 68.4 - 68.9
71.4 86.6 84.6 - - 6.2 - 36.2
69.9 49.1 73.7 - - 18.5 - 70.9
81.9 54.7 - - - 39.9 - 40.6
55.2 65.7 - - - 51.6 - -
65.3 - - - - 13.9 - -

- - - - - 50.8 - -

- - - - - 62.6 - -

- - - - - 54.4 - -

- - - - - 26.6 - N
C9-test SM v

88.3 46.5 88.5 55.0 69.5 44.4 95.4 60.7
61.2 71.4 70.2 15.9 56.1 27.0 69.7 68.3
69.5 57.0 83.1 3.8 59.5 39.7 73.2 73.2
60.2 52.8 71.4 0.2 61.5 35.0 - 71.9
87.0 45.7 67.6 48.4 - 10.0 - 47.1
63.4 52.2 81.7 28.0 - 22.5 - 74.4
70.8 78.6 78.3 4.8 - 38.8 - 58.0
61.6 50.3 72.2 49.7 - 42.1 - 26.6
60.0 83.3 70.1 31.2 - 45.2 - 45.1
63.5 30.8 69.2 16.4 - 33.8 - 66.4
87.6 46.6 45.8 - - 16.8 - 58.8
64.1 0.1 50.9 - - 61.2 - 54.6
74.8 40.5 44.3 - - 59.4 - 59.3
88.4 27.8 83.1 - - 59.4 - 88.4
91.7 79.4 66.4 - - 67.5 = €575
70.0 87.1 87.5 - - 4.3 - 32.9
71.4 45.9 76.5 - - 13.2 - 67.0
82.4 51.4 - - - 39.3 = 40.4
56.4 65.6 - - - 49.4 ;" "
6.9 - B - - 12.1 s -

s - - - - 49.1 - N

- - - - - 60.4 - "

e - - - - 49.8 - -

- - - - - 22.2 - N

Two SM descriptions for class C9 obtained from training and testing examples. Each entry in the SM description is an
average degree of match (normalized to the range 0 to 100 ) of 100 learning examples of the class C9 to a given disjunct
(170 disjuncts were learned in the first phase of the method from examples of classes C1 to C8 and 55 lightest disjuncts
covering on average 20% of examples of each class were truncated leaving 115 disjuncts). The class C9 is the first new
incrementally learned class that has only SM description. Classes C1 to C8 have both the rule-based (the AQ learned

descriptions) and SM descriptions.




