
A COMPREHENSIVE PROCESS FOR SPATIOTEMPORAL ANALYSIS OF 
NETWORK-BASED PHENOMENA 

by
 

David C. Eckley
 
A Thesis
 

Submitted to the
 
Graduate Faculty
 

of
 
George Mason University
 
in Partial Fulfillment of
 

The Requirements for the Degree
 
of
 

Master of Science
 
Geographic and Cartographic Sciences
 

Committee: ~. M / 
~f.;1 .J / I. Cc..4--t I'\.--v Dr. Kevin Curtin, Chair 

Dr. Nigel Waters, Committee 
Member 

Dr. Andrew Loerch, Committee 
Member 

Dr. Peggy Agouris, 
Department Chairperson 

Dr. Richard Diecchio, Associate 
Dean for Academic and Student 
Affairs, College of Science 

Dr. Vikas Chandhoke, Dean, 
College of Science 

Fall Semester 2010 Date: 
George Mason University 
Fairfax, VA 



 
 

 
 
 

 
A Comprehensive Process for Spatiotemporal Analysis of Network-Based Phenomena 

 
A thesis submitted in partial fulfillment of the requirements for the degree of Master of 
Science in Geographic and Cartographic Sciences at George Mason University 

 
 
 

By 
 
 
 
 

David C. Eckley 
Bachelor of Science 

United States Military Academy, 2000 
 
 
 
 

Director: Dr. Kevin Curtin, Associate Professor 
Department of Geography and Geoinformation Science 

 
 
 
 
 

Fall Semester 2010 
George Mason University 

Fairfax, VA 
 
 
 
 
 
 
 
 



ii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright: 2010 David C. Eckley 
All Rights Reserved 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



iii 
 

 
 
 
 
 

Dedication 
 
 
 

This work is dedicated to the American Soldier.  The research enclosed is focused on 
developing methods that can identify and defeat the network-based attacks of our 
adversary. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



iv 
 

 
 
 

 
Acknowledgements 

 
 
 

“Whatever you do, work at it with all your heart, as working for the Lord, not for men.” 
Colossians 3:23 

 
This work is for Him. 
 
Cathryn, what a tremendous sacrifice you have made these past months, and what grace 
you have demonstrated managing our home, caring for our boys, battling morning 
sickness, and loving me.  None of these words would be on paper without you.  I love 
you. 
 
Ezra, Micaiah, and John, you will never know how much your welcome home greetings 
mean to me. 
 
Dad and Mom, the discipline and independence you instilled in me continue to drive my 
pursuit of excellence in the work I’m given to do.  Dad, I greatly admire your mastery of 
the English language and appreciate your help in editing this manuscript. 
 
Dr. Curtin, your mentorship and subtle encouragement helped me set the bar very high in 
this academic pursuit.  Your passion for geography and GIS is contagious and has 
motivated me to do my best work. 
 
Dr. Waters, Dr. Loerch, thank you for your expertise and validation of this research. 
 
JIEDDO Research Team, your work has amazed and inspired me to pursue this thesis.  
Thank you for your dedication to the American Service Member.  
 
Nancy, your kindness and professionalism are admirable.  Thank you for introducing me 
to the power of Python. 
 
Dr. Leslie, Adobe Illustrator has opened up a whole new world of opportunities for me. 
 
Several network-based analyses implemented in this study utilized the SANET toolbox 
developed by Dr. Okabe, Dr. Okunuki and Dr. Shiode.  The author is grateful for their 
provision of these tools and their continuing contributions to network-based analysis. 
 



v 
 

 
 
 
 

 
Table of Contents 

 
 
 

 Page 

List of Tables .................................................................................................................... vii 

List of Figures .................................................................................................................. viii 

List of Abbreviations/Symbols ........................................................................................... x 

Abstract .............................................................................................................................. xi 

Forward ............................................................................................................................... 1 

Introduction ......................................................................................................................... 4 

What Is a Spatiotemporal Cluster? .................................................................................. 4 
Why Conduct Spatiotemporal Cluster Analysis? ............................................................ 5 
The Issue of Spatial and Temporal Measures .................................................................. 5 
Global vs. Local Statistics ............................................................................................... 7 
The Origin of Spatiotemporal Cluster Analysis .............................................................. 8 
The Development of Spatiotemporal Clustering Methods and Current Applications ... 10 
GIS Applications ........................................................................................................... 11 
Significance of this Research ........................................................................................ 12 
Thesis Structure ............................................................................................................. 13 

PART 1 A Process for Investigating Spatiotemporal Clustering of Network-Based 
Phenomena ........................................................................................................................ 14 

Introduction ................................................................................................................... 14 
Step 1: Define a Research Problem and Analytical Approach ...................................... 16 
Step 2: Acquire and Evaluate the Data .......................................................................... 17 
Step 3: Pre-process the Data .......................................................................................... 19 

Format and Map the Data .......................................................................................... 19 
Examine the Data ....................................................................................................... 22 

Step 4: Test for Spatial Clustering ................................................................................. 26 
Continuous Space Tests .............................................................................................. 27 
Network Space Tests................................................................................................... 30 

Step 5: Test for Temporal Clustering ............................................................................ 36 
Step 6: Test for Spatiotemporal Clustering ................................................................... 40 



vi 
 

Step 7: Explain the Results ............................................................................................ 45 
Conclusions ................................................................................................................... 47 

PART 2 An Examination of Significance Tests and Critical Parameters for Network-
Based Spatiotemporal Cluster Analysis ............................................................................ 48 

Introduction ................................................................................................................... 48 
Study Areas and Datasets .............................................................................................. 50 
Significance Tests for the Knox Method ....................................................................... 52 

Chi-square and Poisson Distributions ....................................................................... 52 
Normal Distribution ................................................................................................... 55 
Monte Carlo Simulations ........................................................................................... 56 
Multiple Testing .......................................................................................................... 58 

Knox Method Critical Parameters ................................................................................. 60 
Conclusions ................................................................................................................... 63 

PART 3 SCAn: A Spatiotemporal Analysis Tool for Networks ....................................... 64 

Introduction ................................................................................................................... 64 
Program Requirements .................................................................................................. 65 
Tool 1: ST Cluster Basic ............................................................................................... 66 
Tool 2: ST Cluster Automatic ....................................................................................... 68 
Tool 3: ST Cluster Table ............................................................................................... 71 
Tool 4: ST Cluster Monte Carlo .................................................................................... 73 
Tool 5: ST Cluster Range Detector ............................................................................... 75 
Program Limitations ...................................................................................................... 76 
Future Program Developments ...................................................................................... 77 

Recommendations for Future Research ............................................................................ 78 

APPENDIX SCAn Python Scripts .................................................................................... 81 

Tool 1: ST Cluster Basic ............................................................................................... 81 
Tool 2: ST Cluster Automatic ....................................................................................... 94 
Tool 3: ST Cluster Table ............................................................................................. 110 
Tool 4: ST Cluster Monte Carlo .................................................................................. 117 
Tool 5: ST Cluster Range Detector ............................................................................. 125 

References ....................................................................................................................... 132 

  



vii 
 

 
 
 
 

List of Tables 
 
 

Table Page 
Table 1- 1.  Redundancy of attribute labels in traffic collision data for Franklin 

County, OH, January-March 2009. ....................................................................... 22 
Table 1- 2.  Continuous and network average nearest neighbor test results for 

traffic collisions in Franklin County, OH, January-March 2009. ......................... 35 
Table 1- 3.  Temporal interval analysis for traffic collisions in Franklin County, 

OH, January-March, 2009..................................................................................... 38 
Table 1- 4.  Results for two linear nearest neighbor statistics given traffic fatalities 

in Fairfax County, VA, 2004-2008. ...................................................................... 39 
Table 1- 5.  Spatiotemporal clusters, Knox R, for the given spatial and temporal 

critical distance ranges and associated statistical significance for traffic 
collisions in Franklin County, OH, January-March, 2009.   Highlighted 
values are significant where 𝑄 ≤ the Bonferroni correction for 𝛼 = 0.05. ......... 43 

Table 1- 6.  Selected attribute values for traffic collisions contributing to 
spatiotemporal clusters in Figure 1-9.  Weather attribute was derived from 
www.wunderground.com(2009). .......................................................................... 45 

Table 2- 1. Characteristics of datasets used in Part 2 of this study. .................................. 52 
Table 2- 2. Comparison of probabilities for the observed Knox statistic given, the 

chi-square distribution, the normal distribution, and those distributions 
depicted in Figures 2-3 and 2-4.  *The space shuffled distribution is 
recommended and used in the tool described in Part 3. ........................................ 58 

Table 2- 3. Spatiotemporal clusters, Knox R, for the given spatial and temporal 
critical distance ranges and associated statistical significance for traffic 
collisions in Franklin County, OH, January-March, 2009.   Highlighted 
values are significant where 𝑄 ≤ the Bonferroni correction for 𝛼 = 0.05. ......... 59 

Table 2- 4.  Results of nearest neighbor distance cluster analysis for both the 
spatial and temporal dimensions of the given datasets. ........................................ 61 

Table 2- 5. Comparison of the Knox statistic and associated probabilities 
calculated using the minimum nearest neighbor distance in space and time 
as the critical parameters.  Highlighted values indicate 𝑄 ≤  𝛼 = 0.05. .............. 62 

Table 2- 6. Comparison of the Knox statistic and associated probabilities 
calculated using the average nearest neighbor distance in space and time 
as the critical parameters.  Highlighted values indicate 𝑄 ≤  𝛼 = 0.05. .............. 62 

Table 2- 7. Comparison of the Knox statistic and associated probabilities 
calculated using the maximum nearest neighbor distance in space and time 
as the critical parameters.  Highlighted values indicate 𝑄 ≤  𝛼 = 0.05. .............. 62 



viii 
 

 
 
 

 
List of Figures 

 
 

Figure Page 
Figure 1.  Graphical representation of the distance measurement differences 

between two points measured in continous and network space. ............................. 7 
Figure 1- 1.  Map of 586 injury-causing traffic collisions on major roads in 

Franklin County, OH from January to March 2009. ............................................. 21 
Figure 1- 2.  Distribution of spatial distance between pairs of traffic collisions in 

Franklin County, OH, January-March 2009. ........................................................ 23 
Figure 1- 3.  Distribution of temporal distance in days between pairs of traffic 

collisions in Franklin County, OH, January-March 2009. .................................... 24 
Figure 1- 4.  Distribution of temporal distance in hours between pairs of traffic 

collisions in Franklin County, OH, January-March 2009. .................................... 24 
Figure 1- 5.  Number of traffic collisions occurring by day of the week in 

Franklin County, OH, January-March 2009. ........................................................ 25 
Figure 1- 6.  Number of traffic collisions occurring by day in Franklin County, 

OH, January-March 2009...................................................................................... 25 
Figure 1- 7.  Number of traffic collisions occurring by hour of the day in Franklin 

County, OH, January-March 2009. ....................................................................... 26 
Figure 1- 8.  SANET’s Network Nearest Neighbor Distance Tool results. ..................... 34 
Figure 1- 9.  Map of traffic collisions contributing to spatiotemporal clusters 

defined by a spatial critical distance of 400 meters and a temporal critical 
distance of 0 hours (occurred during the same hour)  in Franklin County, 
OH, January-March, 2009..................................................................................... 44 

Figure 2- 1. Fatality-causing traffic collisions on major roads in Fairfax County, 
Virginia, 2004-2008. ............................................................................................. 51 

Figure 2- 2. Comparison of the reference distribution generated by 1000 Monte 
Carlo simulations of spatiotemporal clusters in traffic collisions in 
Franklin County, OH, January-March 2009, where δ =  400 meters and τ = 
2 hours.  The Poisson distribution is generated from the reference 
distribution mean of 4.24. ..................................................................................... 54 

Figure 2- 3. Difference in reference distributions and probabilities generated by 
1000 Monte Carlo simulations of the Knox statistic for traffic collisions in 
Franklin County, OH, January-March 2009,  where δ = 400 meters, τ = 2 
hours, and R = 8. ................................................................................................... 57 

Figure 2- 4. Difference in reference distributions and probabilities generated by 
10,000 Monte Carlo simulations of the Knox statistic for traffic collisions 



ix 
 

in E. Fairfax County, VA, 2004-2008 where δ = 1214 meters, τ = 7 days, 
and R = 1. .............................................................................................................. 57 

Figure 3- 1.  User input screen for SCAn’s ST Cluster Basic. .......................................... 67 
Figure 3- 2.  The output dialogue screen for SCAn’s ST Cluster Basic. .......................... 68 
Figure 3- 3.  The user input screen for SCAn’s ST Cluster Automatic. ........................... 69 
Figure 3- 4.  Output dialogue for SCAn’s ST Cluster Automatic. .................................... 70 
Figure 3- 5.  Input screen for SCAn’s ST Cluster Table. .................................................. 71 
Figure 3- 6.  Output dialogue for SCAn’s ST Cluster Table. ........................................... 72 
Figure 3- 7.  Input screen for SCAn’s ST Cluster Monte Carlo. ...................................... 73 
Figure 3- 8.  Output dialogue for SCAn’s ST Cluster Monte Carlo. ................................ 74 
Figure 3- 9.  User input screen for SCAn’s ST Cluster Range Detector .......................... 75 
Figure 3- 10. Output dialogue for SCAn’s ST Cluster Range Detector. ........................... 76 
 
  



x 
 

 
 
 

 
List of Abbreviations/Symbols 

 
 
 
α   Probability level at which a statistic is considered significant 
δ   Critical spatial distance used in determining the Knox statistic 
EDA   Exploratory Data Analysis 
ESDA   Exploratory Spatial Data Analysis 
GIS   Geographic Information System 
GIScience  Geographic Information Science 
GUI   Graphic User Interface 
IED   Improvised Explosive Device 
Q   Probability of observing a statistic according to the normal 

                             distribution 
𝑅   Knox statistic 
𝑅𝑙    Linear average nearest-neighbor statistic 
𝑅𝑝   Continuous space average nearest-neighbor statistic 
SCAn   Spatiotemporal Cluster Analysis on a network 
SANET  Spatial Analysis on a Network 
ST   Spatiotemporal 
τ   Critical temporal distance used in determining the Knox statistic 
 



 

 
 
 

Abstract 
 
 
 

A Comprehensive Process for Spatiotemporal Analysis of Network-Based Phenomena 
 
David C. Eckley, M.S. 
 
George Mason University, 2010 
 
Thesis Director: Dr. Kevin Curtin 
 
 
 
This thesis describes an efficient and effective process for conducting spatiotemporal 

cluster analysis of network-based phenomena.  While various methods are published 

which describe spatiotemporal analysis of phenomena in continuous space, the literature 

is lacking for the application of these methods in network space.  Through a step by step 

process, Part 1 of this thesis establishes the validity of a network application for the 

spatiotemporal clustering method proposed by Knox (1964).  Further, it presents an 

intuitive technique for determining the critical parameters in space and time for the 

spatiotemporal test, by examination of minimum and average nearest neighbor distances 

in both dimensions independently.  Through examples, Part 2 explores the significance 

tests used by the described spatiotemporal clustering methodology and expounds upon 

the critical parameter determination mentioned in Part 1.  Part 3 presents a GIS-based 

toolbox, SCAn (Spatiotemporal Cluster Analysis on a network) designed to perform 



 

 
 

spatiotemporal cluster analysis of network-based phenomena using the methods 

presented in Part 1 and Part 2.  
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Forward 
 

 “The greatest value of a picture is when it forces us to notice what 
we never expected to see.”  (Tukey 1977) 
 

  
It is not normally the practice of the U.S. Army to offer incentives to its officer 

corps for the purpose of retention, but for a period of time between 2007-2009 such an 

exception was made for company grade officers.  Of various incentives offered, the 

opportunity to attend graduate school full-time for 18 months seemed an especially 

generous option.  With the war-time operational tempo requiring frequent deployments, 

an exclusively education-focused assignment would afford an officer not only a chance to 

meet higher educational goals, but also a brief period of stability with focused family 

time.  The author is especially grateful to have been afforded this great privilege and has 

purposed to make this temporary assignment worth every penny invested by the Army on 

behalf of the U.S. tax payer. 

And so, as a research topic was considered for the subject of this thesis, at the 

forefront of the author’s mind was how to turn this educational opportunity into a 

contribution for the ongoing war effort.  With a background and interest in Geographic 

Information Systems (GIS) and Geographic Information Science (GIScience), a 

geographically-based problem was of particular interest.  Working with a Department of 

Defense (DoD) sponsored research team at the university, the author’s interests were 

further focused on problems arising from the effort to counter the adversary’s use of 
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Improvised Explosive Devices (IEDs) in Iraq and Afghanistan.  Recognizing that IEDs 

are generally restricted in space to the transportation network upon which they occur, and 

that IED incidents have both a spatial and temporal component, a geographic research 

question began to emerge.  Since IED incidents are not the result of a random process, 

but rather are caused by the agents who use them as weapons against coalition forces, 

defense research has demonstrated that clustering of these events occur in both space and 

time, functions of both where and when the adversary is operating; or equally as likely, 

where and when coalition forces use the road network.   Understanding the above, the 

following specific research question seemed plausible: “What can be learned about the 

adversary from the analysis of the spatiotemporal clustering of IED incidents?”  If spatial 

clusters reveal operational areas, and temporal clusters reveal operational periods, could 

spatiotemporal clusters reveal a correlation between the two which could be exploited? 

While these were intriguing questions, it quickly became evident that the data 

required for such research could not be openly published.   Therefore, either notional data 

would need to be derived to replicate the phenomena of IED occurrence or data for 

phenomena with similar characteristics could be explored.  Not wanting to deal with the 

security concerns involved in accomplishing the former, the author decided to pursue the 

latter option, recognizing too, that the significance of research lies not only in solving 

specific problems, but in developing methods that can be repeatedly used to solve many 

similar problems like the question of interest.   

Determining that the research data should represent static events with both a 

spatial and temporal component and that the events should be restricted to network space, 
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the author chose to use traffic collision data as the subject of this thesis.  The data were 

easy to obtain given that the body of research on the study topic of traffic collisions is 

enormous.  While the causality of IED incidents and traffic collisions cannot be 

compared, there were potential factors such as weather, construction, or poor road 

management that could theoretically lead to significant spatiotemporal clustering of 

traffic collisions. 

It was from these ideas that the following thesis became a reality.  While this 

research will not specifically address any applications for the IED problem discussed 

above, it does describe and explain a methodology for conducting spatiotemporal analysis 

of similar network-based phenomena, in a straight-forward, comprehensive way, and 

presents a GIS-based tool with which to do so.   

If this picture helps anyone discover what they didn’t expect to see, this effort has 

been worthwhile. 
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Introduction 
 
 

What Is a Spatiotemporal Cluster? 
 
 While the term “cluster” can be used to describe patterns represented by various 

types of phenomena, this research is concerned with those patterns created by individual 

events limited to finite points in geographic space.  In this context, an event has both a 

spatial and temporal component.  More specifically then, a spatial cluster, is a geographic 

point pattern that is represented by an excess number of events relative to the expected 

pattern, such as a local aggregation of cancer cases, pockets of crime in blighted urban 

areas, or high collision rates at congested intersections.  Likewise, a temporal cluster is 

represented by the occurrence of a greater number of events than that expected during a 

particular portion of a specified time period, such as excess flu cases during the month of 

April, increased incidents of rape during hours of darkness, or many traffic accidents 

during a rainstorm following an extended period of dryness.  A spatiotemporal cluster 

exists when an excess number of events that occur within some geographic space are also 

unexpectedly close in time, such as a significant population of students in a given 

classroom contracting an infectious disease during the same week, a spike in purse 

snatching on the National Mall during a holiday weekend, or excessive fender benders 

during rush hour traffic.    
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Why Conduct Spatiotemporal Cluster Analysis? 
 

From a purely theoretical standpoint, spatiotemporal cluster analysis is one of 

many techniques utilized in Exploratory Spatial Data Analysis (ESDA) for geographic 

pattern recognition (Jacquez 2008).  Once spatial patterns have been identified and 

defined through ESDA, hypotheses may be developed to specify real and testable 

explanations for the observed patterns (Jacquez 2008).  Recognition of these patterns is 

important as they illuminate underlying space-time processes which are the focus of 

many geographic studies. 

Practically speaking, while spatial and temporal clusters may exist independently, 

spatiotemporal clusters indicate a correlation between the spatial and temporal dimension 

for the given phenomenon.  Identifying and determining a correlation in spatiotemporal 

clusters may provide valuable insight beyond the determination of exclusively spatial or 

temporal clusters.  In epidemiology, spatiotemporal clusters may reveal the relationship 

between origin and onset of disease; in criminology, the relationship between the location 

and recurrence of a particular criminal activity; in transportation research, the highest risk 

periods of travel within given portions of the network.   

 

The Issue of Spatial and Temporal Measures 
 

As cluster analysis depends upon a measure of separation between events, 

choosing an appropriate distance measure and resolution or granularity for the 

phenomenon under study is important.  Using identical distance measures to study 

differing phenomena may result in misleading conclusions or a loss of information.  
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When exploring temporal clustering, the granularity of the temporal scale should be 

considered.  If examining traffic collisions during peak traffic periods, more information 

will likely be gained from considering the number of collisions which occurred by hour 

as opposed to the number which occurred each week.  If peak traffic periods occur daily 

at specific hours, then knowing the frequency of collisions by week will not help the 

researcher determine whether temporal clustering of traffic collisions corresponds to 

daily peak traffic hours.  If traffic collisions were measured by hour, then this analysis 

could be conducted.  Similarly, since vehicles are restricted to the network space within 

which they travel, analyzing clusters of traffic collisions using Euclidean measures could 

lead to a false discovery of clustering not related to the same spatial process.  Consider 

Figure 1.  While a Euclidean measurement might place the two points in a cluster defined 

by a distance threshold equal to their depicted separation in Figure 1, the same points 

would not produce a cluster when considering their separation using a network distance 

measurement. Yamada and Thill (2004) illustrate the pitfall of conducting analysis of 

network-based phenomena with continuous space measurements in the place of network 

measures with traffic data from Buffalo, NY.  Extensive research such as that just 

mentioned has demonstrated the validity of using network measures to analyze network-

based phenomena and numerous continous space statistical methods have been extended 

network space (Okabe et al. 1988; Black 1991; Miller 1999; Okunuki and Okabe 2002; 

Okabe and Satoh 2006; Yamada and Thill 2007; Yamada and Thill 2010; Shiode 2008; 

Shiode and Shiode 2009; Okabe, Yomono, and Kitamura 1995).  One of the goals of this 

research is to contribute to this work of extending continuous space statistics to network 
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space by adapting the Knox test to conduct spatiotemporal analysis of network-based 

phenomena.   

 

 
 

Figure 1.  Graphical representation of the distance measurement differences between two points 
measured in continous and network space. 

 
 
Global vs. Local Statistics 
 
 A common differentiation between spatial statistical tests is the scale at which a 

given test is sensitive.  In the case of tests for spatial clustering, a global statistic is one 

that provides a summarized spatial structure for the entire study area without identifying 

where the specific clusters are located, while local statistics define clustering within small 

areas which together comprise the larger study area (Jacquez 2008).  Many local statistics 
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like Local Indicators of Spatial Autocorrelation (LISA) (Anselin 1995; Ord and Getis 

1995) have global counterparts such as Moran’s I (1950). 

 The Knox test, which is the focus of this research, is unique in that while it is a 

global statistical test, it is possible to display the pairs of events which contribute to the 

global spatiotemporal clustering.  While it is possible to visualize the cluster(s) defined 

by the global test, the statistical significance of the test can only be determined for the 

global case, and not each individual event pair. 

  

The Origin of Spatiotemporal Cluster Analysis 

Academic research traces the origin of spatiotemporal clustering techniques to the 

work of Knox (1964) who was interested in the epidemiology of various cancers.  Knox’s 

method involved the comparison of distances between all pairwise cases of disease in 

both space and time, with the statistic equal to the number of pairs which were both close 

in space and time, based on some specified measure of closeness.  Knox supposed that 

related cases would be closer together in space and time, while unrelated cases would 

tend to have a larger separation.  A difficulty with his statistic was the determination of 

significance, as the same case could be used multiple times in determining the 

adjacencies in space and time.  Knox conjectured that his statistic followed a Poisson 

distribution.  David and Barton (1966), proved Knox’s conjecture that his statistic was 

Poisson.  Further, they provided the mean and variance of the statistic.  Mantel (1967) 

provided the permutation variance of the Knox statistic, describing how to apply Monte 

Carlo methods to determine the statistic’s significance. 
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Knox’s statistic is both simple and efficient, and remains the most common 

spatiotemporal clustering method in epidemiology today.  However, a major complaint 

with the statistic is the need to define arbitrary critical parameters measuring closeness in 

space and time.  Many researchers have suggested techniques to improve this perceived 

shortfall.  David and Barton (1966) proposed their own statistic which compares spatial 

clusters within subsets of time defined by the average time interval between events.  

Mantel (1967) proposed the use of reciprocal transformations for the actual space and 

time labels of cases.  Klauber (1971) defined a two-sample spatiotemporal clustering test.  

These and other similar tests are described in William’s (1984) thorough review of 

continous space spatiotemporal clustering.  Later techniques specific to epidemiology 

include Baker’s (1996) modification of Knox’s method, where spatiotemporal clusters 

were detected within a range of acceptable space and time critical parameters, Jacquez 

(1996) k-nearest neighbor method, which specified spatiotemporal clusters based on 

which points were neighbor in space and time, and a variety of other researchers who 

developed scan statistics to enable the detection of emerging spatiotemporal clusters 

(Kulldorff and Hjalmars 1999; Rogerson 2001; Assuncao and Correa 2009; Mirghani et 

al. 2010). 

Similar to the efforts of those aforementioned, this research introduces another 

technique by which to determine appropriate spatial and temporal critical distances for 

defining spatiotemporal clusters when appropriate critical parameters are unknown.  It 

involves a preliminary examination of nearest neighbor distances in both space and time 
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and uses the test results to define a range of critical spatial and temporal distances which 

are used as parameters for a Knox-based spatiotemporal analysis. 

 

The Development of Spatiotemporal Clustering Methods and Current 
Applications 
 

As computer and satellite technology has improved over the past two decades, so 

has the variety and complexity of geographic spatiotemporal clustering techniques.  

While the origins of spatiotemporal cluster investigation lie almost exclusively in 

epidemiology, other applications of the statistic have now been explored.  Black (1991) 

extended spatiotemporal cluster analysis to traffic accidents on a linear stretch of 

highway.  Jacquez (1996) developed a spatiotemporal cluster test which he used to 

expose the spatiotemporal clustering of forest fires in Canada.  Criminal activity-based 

spatiotemporal clusters have been investigated by Assuncao et al. (2007) and Nakaya and 

Yano (2010).  Lesniak and Isakow (2009) applied spatiotemporal clustering analysis to 

seismic activity and further spatiotemporal analysis has been conducted with traffic 

collision data by Mountrakis and Gunson (2009) and Khan et al. (2009). 

The most recent spatiotemporal methodological advances include a windowed 

nearest neighbor approach (Pei et al. 2010), multi-dimensional map algebra (Mennis 

2010), visualizing clusters in a space-time cube (Nakaya and Yano 2010), the use of 

bivariate kernel density estimators (Mountrakis and Gunson 2009), cross k-function 

analysis (Khan et al. 2009), and stack-based spatiotemporal clustering (Chang, Zeng, and 

Chen 2008). 
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With the exception of Black (1991), Mountrakis and Gunson (2009), and Khan et 

al. (2009), all of the original spatiotemporal clustering techniques and their most recent 

counterparts rely on Euclidean distance measures.  In accordance with the preceding 

discussion of distance measures, this research will apply this general method to network-

based phenomena using network spatial measures. 

 

GIS Applications 
 
 Originally designed in the 1960s, Geographic Information Systems (GIS) are the 

primary tools for the collection, storage, management, query, analysis, and display of 

spatial data today.  The unique data structures employed by GIS technology allows for 

the statistical analysis of large spatial datasets, a capability which has greatly advanced 

the ability to perform ESDA and design new spatial statistical techniques.  While there 

are numerous GIS designed for specific applications, such as TransCAD, used by the 

transportation industry, arguably the most universally employed GIS software today is 

ESRI’s ArcGIS.   ArcGIS’s Spatial Analyst, Tracking Analyst, and Network Analyst 

provide statistical tools for assessing spatial, temporal, and network-based data 

respectively. ArcGIS lacks the capability to perform the spatiotemporal analyses 

described thus far. 

 That is not to say that GIS software does not exist to perform spatiotemporal 

clustering analysis.  Many of these applications are stand-alone tools designed for very 

specific analyses.  SaTScan, developed by Martin Kulldorff (2006), searches for spatial, 

temporal, and spatiotemporal clusters in data but does not have a graphical interface nor 
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is it integrated with any specific GIS program (Block 2007).  Similar to SaTScan, 

GeoSurveillance provides both retrospective and prospective tests for spatiotemporal 

clustering.  GeoSurveillance improves upon SaTScan as a stand-alone system by 

incorporating a Graphic User Interface (GUI), but like SaTScan, is not integrated with 

any mainstream GIS programs (Yamada, Rogerson, and Lee 2009).  Another stand-alone 

GIS, TerraSeer offers various spatiotemporal analysis packages and shares compatibility 

with files used by ESRI, MapInfo, and ENVI programs (Jacquez 2008). 

 Unlike these tools described above, but similar to the SANET toolset developed 

by Okabe and his team (2009), the spatiotemporal cluster analysis toolbox described in 

this research, called SCAn (Spatiotemporal Cluster Analysis on a network), integrates 

directly into ArcGIS ArcMap software and can be run through the ArcToolbox menu 

display.  This tool is free and simple to use and provides a currently non-existent 

capability in ArcGIS to conduct spatiotemporal cluster analysis using network distance 

measures. 

 

Significance of this Research 
 
 Unlike works preceding this effort, the following thesis presents a step-by-step 

comprehensive process for investigating the global spatiotemporal clustering of network-

based phenomena.  A new technique is described for determining an appropriate range of 

values for the critical distance parameters in space and time when appropriate values are 

unknown.  The determination of statistical significance for these tests is examined and a 

caution is cited in generating reference distributions from Monte Carlo simulations.  
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Finally, a user-friendly ArcGIS-based tool (which can perform the analyses described) is 

presented.  

 

Thesis Structure 
 

This thesis begins in Part 1 with a technical methodology for conducting a 

spatiotemporal cluster analysis of network-based phenomena, using traffic collision data 

as the test case.  Part 2 explores the statistical relevance and significance of the 

methodology set forth in Part 1 and provides various illustrations as expository aides.  

Finally, Part 3 describes the GIS-based tool designed to implement the statistical tests 

described in Parts 1 and 2 and is intended to serve as a general user’s guide for the 

application. 
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PART 1 
A Process for Investigating Spatiotemporal Clustering of Network-

Based Phenomena 
 
 
 
Introduction 
 
 The specific analysis to be addressed in this study is the spatiotemporal clustering 

of events occurring on a network.  Unlike continuous space, network space is one-

dimensional and the events which occur on it are restricted to it.  There are many 

network-based phenomena that are regularly researched, such as pipeline leaks, power 

failures, carjacking, or as discussed previously, IED attacks and traffic collisions.  While 

it is not unusual to perform spatial or temporal cluster analysis of such network-based 

phenomena, spatiotemporal analyses are much less common.  Temporal cluster analysis 

has long been performed by the transportation research community, and the temporal 

characteristics of traffic studies are well known (Lord and Mannering 2010).  Spatial 

clustering, in the continuous case, dates to the early 1900’s (Clements 1905; Voronoi 

1907), but adaptation of popular continuous space statistics to network space has only 

begun within the past two decades (Okabe et al. 1988; Black 1991; Miller 1999).  In 

contrast, although continous space spatiotemporal cluster analysis has been thoroughly 

investigated in epidemiology (Knox and Bartlett 1964; Smith et al. 1976; Meighan and 

Knox 1965; Lloyd and Roberts 1973; Roberts, Laurence, and Lloyd 1975; Glass and 

Mantel 1969), the analytical extension to the network-based case remains uncommon.   
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The intent of this work is to describe a comprehensive process for conducting 

spatiotemporal cluster analysis of network-based phenomena where one does not 

currently exist.  The underlying spatiotemporal method employed in this process is the 

Knox test, and a common critique of this method is the need to designate arbitrary critical 

spatial and temporal distances as clustering parameters.  Original to this research, a 

simple technique is suggested for determining an acceptable range of critical spatial and 

temporal distances when they are unknown, which are obtained through the results of 

spatial and temporal cluster analysis using the average nearest neighbor distance test.  

The range of acceptable values is then used to search for spatiotemporal clusters using the 

GIS tool provided here, SCAn. 

 In order to demonstrate this process, the network-based phenomenon of traffic 

collisions will be examined.  Traffic collisions provide a good case study for 

spatiotemporal cluster analysis as the data are easy to obtain and reporting standards 

require very specific attribute information about each event, including precise locations 

(often with at least 10 meter resolution) and precise times (often with minute granularity).  

In addition to these key attributes, traffic collision reports compiled by law enforcement 

officials typically contain extensive details about the physical and human conditions 

present at the time and place of collision.  If associated with the traffic collision data 

table, this information may help explain a discovery of spatiotemporal clustering.   

The organization of the proposed comprehensive process is as follows: Step 1 

involves defining the spatiotemporal problem of interest; Step 2 addresses concerns for 
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acquiring and evaluating the data to be analyzed; Step 3 discusses the requirements for 

pre-processing the data subjected to analysis and presents possible ways to spatially and 

temporally examine the data; Step 4 assesses the spatial clustering of the data through an 

examination of nearest neighbors in order to determine an acceptable range of critical 

spatial distances in determining spatiotemporal clusters; Step 5 tests for temporal 

clustering in the data for the same purpose; Step 6 evaluates the findings of Steps 4 and 5 

by testing for spatiotemporal clusters; Step 7 seeks to explain the results of the preceding 

steps.   

 

Step 1: Define a Research Problem and Analytical Approach 
 
 Fundamental to any scientific research is the need for defining a problem.  As 

described above, the interest here is to answer questions concerning a problem that fits 

within the specific constraints required for the conduct of network-based spatiotemporal 

analysis.  First, the problem must be geographically limited to network space, and 

second, the problem must have finite and quantifiable spatial and temporal measures.  

While there are many problems that fit within this scope, the problem to be addressed as 

an example here is that of traffic collisions.   

 Once the problem is defined, there are two primary ways to approach the data 

comprising the problem.  First, confirmatory data analysis may be pursued.  This 

deductive approach is widely accepted, and involves the generation of hypotheses in 

order to seek definite answers to specific research questions.  Inferential statistics are 

utilized which rely on probability models and confidence interval estimations.  A 
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significant drawback of this approach is that it can create a misleading perception of 

precision, which is especially true when dealing with the complexities of geographic 

processes that rarely conform to any type of true randomness (Jacquez 2008).  The other 

option is to pursue exploratory data analysis.  An inductive approach, exploratory data 

analysis or as previously described, ESDA, uses descriptive statistics to let the data 

propose questions and develop hypotheses.  ESDA attempts to evaluate the validity of 

assumptions and relies heavily on graphical displays to support conclusions.  The 

drawback with this analytic technique is that it usually does not provide definitive 

answers and can generate subjective results (Michaelsen 2007). 

 Although this research presents a specific process by which to conduct 

spatiotemporal cluster analysis, the data analysis approach taken here is primarily 

exploratory.  Before any hypotheses are generated for spatiotemporal clustering, the data 

will first be collected, pre-processed, and then analyzed for purely spatial and temporal 

clustering.  In so doing, information learned from spatial and temporal clustering in the 

data should inform the researcher how to define the variables for the spatiotemporal tests.   

Without knowledge of the underlying spatial and temporal distributions, a spatiotemporal 

analysis may not be as meaningful. 

 

Step 2: Acquire and Evaluate the Data 
 

While event-based spatiotemporal datasets have not always been easy to generate 

or analyze, the advent of powerful computers and GPS technology has made their 

existence and utility prevalent.  Where traffic collisions were once recorded based on 
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their proximity to a specific intersection or highway mile-marker, today their locations 

are usually recorded precisely with geographic coordinates.  Improved emergency 

response times and traffic cameras have made it possible to record more accurate time 

stamps for these events as well.  In the case of traffic collisions, many local, county, and 

state governments publicly provide access to such data.   

Because this research is specifically concerned with network-based phenomena, 

in addition to an event-based spatiotemporal dataset, a network dataset is required, which 

defines the network space within which the events of interest occur.  Again, in the case of 

traffic collisions, most related road network data is publically available at the local or 

regional level, but if it is not, U.S. Census Bureau’s TIGER files may be utilized for U.S. 

specific research (www.census.gov). 

Prior to utilizing such data for research, however, it is important to evaluate the 

data for accuracy and completeness so as not to compromise the analytic results.  Data 

quality may be assessed by reviewing the associated metadata or if there is any question, 

by contacting the publisher directly.    

For the test case, traffic collisions along major roadways in Franklin County, 

Ohio, from January to March, 2009 are considered.  Traffic collision data were obtained 

through the Ohio Department of Public Safety’s crash request portal (Kennedy 2010) and 

the road data through OpenStreetMap (2010).  See Figure 1-1 for a map of the data 

following the pre-processing of Step 3.  

 

http://www.census.gov/�
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Step 3: Pre-process the Data 

Format and Map the Data 
 

If the data is assessed to be of acceptable quality and coverage, a key first step in 

formatting the data is to ensure there are no duplicate entries or entries that are missing 

either the spatial or temporal attribute.  This is important for cluster analysis as duplicate 

entries could cause false clustering in the data, while missing spatial or temporal 

attributes could cause automated calculations to fail or report inaccurate results.  That is 

not to say that multiple events may occur at the exact same location but at different times, 

or alternatively at the same time but at different locations.  Depending on the purpose of 

the study, such spatial or temporal attribute redundancy is acceptable but should be noted 

as it may lead to unique or unexpected results.  

Once duplicate and incomplete entries have been removed, additional formatting 

may be required.  Both the spatial and temporal attribute fields should be audited.  Spatial 

formatting will likely require the transformation of the geographic events and the network 

dataset onto an acceptable map projection and coordinate system.  The selected 

projection should be appropriate for the analysis conducted.  Because network-based 

spatiotemporal cluster analysis examines distances between point pairs of the 

phenomenon, a map projection which preserves distance is preferred, although a 

compromise projection may be suitable, especially for large scale study areas.  Similarly, 

temporal attributes may need to be formatted into a date/time format that can be read by 

the GIS performing the analysis. 
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Next, the number of events and extent of the study area (network) must be 

considered.  While technology has greatly enhanced many geographic analyses, trying to 

compute certain statistical methods with large datasets may take an excessive amount of 

time or exhaust computer memory.  If a large dataset must be subdivided for time-saving 

reasons, the division of data should be undertaken carefully as it may bias the results of 

cluster analysis.   

Finally, before analysis may be conducted in network space, the line segment 

dataset must be converted into a network dataset and the event data must be located 

within the network space.  This is a critical pre-analysis step, but because procedures vary 

between GIS programs, the process will not be described here. 

For the Franklin County traffic collision data, the event and network datasets were 

transformed onto the Lambert Conformal Conic projection with the Southern Ohio State 

Plane coordinate system.  While not preserved, this projection reduces distance and area 

distortions across the study area.  Additionally, the temporal attribute was reformatted 

from a date-time format into a format which listed the date, weekday, hour, and minute 

values in separate fields.  This was done in order to facilitate temporal analyses of 

varying granularity. 

For this particular study, only a subset of the total collisions and a subset of the 

road infrastructure are considered.  This was done in order to work with a manageable set 

of data small enough not to require excessive time for computational analyses and large 

enough to provide meaningful statistical results.  From the complete Franklin County 

collision dataset for 2009, only those collisions involving injuries during the months of 
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January through March are considered.  From the network dataset, only primary roads 

and highways inside Franklin County were considered.  Based on these selections, this 

reduced the dataset for the study from 29,129 collision events to 586 and from 29,357 

road segments to 2034 representing 930 linear kilometers of roadway.  See Figure 1-1 for 

a map of the study area and data. 

 

 
 

Figure 1- 1.  Map of 586 injury-causing traffic collisions on major roads in Franklin County, OH 
from January to March 2009. 
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Examine the Data 

It is important to become familiar with the test data before performing specific 

analyses.  Understanding the spatial and temporal characteristics of the data under study 

can help formulate specific research questions and hypotheses, as well as help explain the 

results obtained from the cluster analysis. 

 
Table 1- 1.  Redundancy of attribute labels in traffic collision data for Franklin County, OH, 
January-March 2009. 

  Spatial Attribute Temporal Attribute 
Total Events 586 586 
Unique Events 474 581 
     Attribute shared by 2 Events 50 5 
     Attribute shared by 3 Events 11 0 
     Attribute shared by 4 Events 8 0 
     Attribute shared by 5 Events 1 0 
     Attribute shared by 11 Events 1 0 

    

As mentioned in the previous section, identifying the existence of duplicate 

spatial or temporal attributes is of particular interest to cluster analysis.  For the Franklin 

County traffic collision data used in this study, the existence of such duplicates is 

prevalent, especially in the spatial attribute (see Table 1-1).  The spatial duplicates can be 

explained by the practice of using a street intersection as a point of reference for a traffic 

collision instead of locating the exact position of the collision.  In the data used for this 

study, of the 586 events, 474 unique locations, and 581 unique time stamps are 

represented.  The effect of the spatial duplicates will be noted later in Step 4. 
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Because this research is interested in investigating continuous and network 

distance measures and various temporal granularities in the context of spatiotemporal 

cluster analysis, several figures are presented here.  Figures 1-2 through 1-4 present the 

distribution of spatial and temporal distances between pairs.  For the spatial distribution 

(Figure 1-2), the minimum distance between collision pairs is 0 meters, the maximum 

distance is 58,018 meters, and the mean is 16,208 meters.  For the temporal distribution 

in days (Figure 1-3), the minimum distance between collision pairs is 0 days (events 

 

 
Figure 1- 2.  Distribution of spatial distance between pairs of traffic collisions in Franklin 
County, OH, January-March 2009. 
 
 
 
occurred on the same day), the maximum is 89 days, and the mean is 30 days.  The 

temporal distribution in hours (Figure 1-4) is bounded by a minimum of 0 hours (events 

occurred during the same hour), a maximum of 2149 hours, with a mean of 718 hours. 

Figures 1-5 through 1-7 show the frequency distributions for various temporal 

granularities of the data. In Figure 1-5, depicting day of week frequencies, the minimum 
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Figure 1- 3.  Distribution of temporal distance in days between pairs of traffic collisions in 
Franklin County, OH, January-March 2009.   
 
 

 
Figure 1- 4.  Distribution of temporal distance in hours between pairs of traffic collisions in 
Franklin County, OH, January-March 2009.   

 
 
 
number of collisions occurred on Saturdays, with 45, the maximum on Fridays, with 105, 

and the average weekday occurrence was 84 collisions.  Looking at collisions by day 

(Figure 1-6), the minimum tally was 0 events on March 2nd, and the maximum number 

was 19 on January 16th, with a daily average of 6.5 collisions.  Finally, in collisions by 

hour of the day (Figure 1-7), the minimum number of events occurred at 0400, with 3, 
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Figure 1- 5.  Number of traffic collisions occurring by day of the week in Franklin County, OH, 
January-March 2009. 
 
 
 

 
Figure 1- 6.  Number of traffic collisions occurring by day in Franklin County, OH, January-
March 2009. 
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Figure 1- 7.  Number of traffic collisions occurring by hour of the day in Franklin County, OH, 
January-March 2009. 

 
 
the maximum at 1700, with 49, and an average number of collisions by hour of  the day 

at 24.4. 

 While these figures and values are not necessarily meaningful at this point in the 

spatiotemporal analysis process, they may provide insight for results from Steps 4 

through 7. 

 

Step 4: Test for Spatial Clustering 
 
 In review, a spatial cluster is a geographic point pattern that is represented by an 

excess number of points relative to the expected pattern.  While the focus of this research 

is the investigation of spatiotemporal clusters, examination of the underlying spatial 

distribution should not be overlooked.  Understanding the spatial pattern of the 

phenomenon under study may help formulate questions and hypotheses about possible 

spatiotemporal correlation. 
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 Another reason to first investigate the spatial distribution is to determine an 

appropriate resolution at which to search for spatiotemporal clusters in the geographic 

space.  If the events studied have an average separation in kilometers, then it probably 

does not make sense to search for clusters at a resolution of 1 meter. 

 As previously discussed, this research is concerned primarily with network-based 

phenomena, however, in order to compare and contrast the differences between 

continuous and network tests for spatial clustering, both are presented here. 

Continuous Space Tests 
 
 There are a variety of continuous space spatial clustering tests used to describe 

point distributions.  While there are both global and local spatial clustering tests, only the 

global variety are considered here.  Some of the more popular tests include quadrat 

analysis (Clements 1905), Voronoi diagrams (Voronoi 1907), Moran’s I (Moran 1950), 

average nearest neighbor (Clark and Evans 1954), kernel density analysis (Parzen 1962), 

and Ripley’s K (Ripley 1981).  Perhaps the most commonly used of those above is the 

average nearest neighbor test.  Because this test will provide a sense of the spatial scale at 

which points are distributed, it is a good choice for this step. 

 The average nearest neighbor distance test proposed by Clark and Evans (1954) 

examines the distance between each point in a distribution and its nearest neighbor.  The 

distance between each point and its closest neighbor is summed and the average is taken.  

In the following equation quantifying this method, 𝑑̅𝑂 is the observed average distance, 𝑛 

is the number of points in the distribution, and 𝑀𝑖𝑛�𝑑𝑖𝑗� is the shortest distance between 



 

28 

point 𝑖 and its neighbor point 𝑗 in continuous space: 

 

𝑑̅𝑂 =
∑ 𝑀𝑖𝑛(𝑑𝑖𝑗𝑛
𝑖=1 )

𝑛
                                                                                                                   (1.1) 

 

In order to determine whether the observed point distribution is clustered or not, 

the average nearest neighbor distance is compared to the expected value of the average 

nearest neighbor when points are distributed according to the Poisson point process.  The 

expected average nearest neighbor distance is given by the equation: 

 

𝑑̅𝐸 =
0.5
�𝑛/𝐴

                                                                                                                                  (1.2) 

 

where 𝑑̅𝐸 is the expected value of the average nearest neighbor distance, 𝑛 is the number 

of points in the distribution, and 𝐴 is the geographic area bounding the points in the 

distribution.  It should be noted that this is the basic formula for the test and it does not 

take into consideration irregularly shaped areas or boundary edge effects.  Formally, the 

average nearest neighbor statistic is annotated: 

 

𝑅𝑃 =
𝑑̅𝑂
𝑑̅𝐸

                                                                                                                                        (1.3) 
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 If 𝑅𝑃 is greater than 1, meaning that the observed average nearest neighbor 

distance is greater than the expected nearest neighbor distance for a random distribution, 

then the observed distribution is dispersed.  If 𝑅𝑃 is less than 1, the observed distribution 

is clustered.  In order to test for the significance of 𝑅𝑃, a formula for the z-score is 

provided: 

 

𝑧 =
𝑑̅𝑂 − 𝑑̅𝐸
𝑆𝐸

                                                                                                                                 (1.4) 

 

where 𝑆𝐸 is the standard error of the variance given by: 

 

𝑆𝐸 =
0.26136
�𝑛2/𝐴

                                                                                                                             (1.5) 

 

An important assumption made by the calculations for the average nearest 

neighbor distance statistic and its associated test for significance is that for the expected 

random distribution, points are free to locate anywhere within the area described by the 

numerical value given.  In the case of network-based phenomena, this assumption is 

invalid, as point distributions are constrained to network space.  This is not an appropriate 

test to use for network-based phenomena, but it is provided here as a means for 

comparison. 

For the test case of traffic collisions in Franklin County, measured in continuous 

space, the minimum nearest neighbor distance between all the given points in the 586-
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point distribution is 0 meters, while the maximum nearest neighbor distance is 7470 

meters. Based on the formulae given above, the observed average nearest neighbor 

distance is 187 meters, the expected distance is 748 meters, and the average nearest 

neighbor statistic is 0.25.  Because the statistic value is less than 1, the point distribution 

in the test case is clustered.  For significance testing, a statistic is typically considered 

significant if the probability of its value occurring is less than 5% given the expected 

distribution of the statistic under the case of spatial randomness.  For a normal 

distribution, a probability of 5% is equivalent to a z-score of +/-1.96.  In order to be 

significant, the z-score of the observed statistic should be greater than 1.96 or less than -

1.96.  The z-score for the test case is -34.74 indicating that the observed clustering is 

significant. 

Network Space Tests 
 

Because this research is focused on network-based phenomena, it is important to 

consider spatial clustering tests which deal specifically with network space.  Over the 

past twenty years, all of the popular continuous space statistics described in the preceding 

section have been extended to network space: network quadrat (Shiode 2008), network 

Voronoi diagrams (Okabe et al. 2000), network Moran’s I (Black 1992), network average 

nearest neighbor (Okabe, Yomono, and Kitamura 1995), network kernel density analysis 

(Flahaut et al. 2003), and network Ripley’s K (Okabe and Yamada 2001).  For the sake of 

comparison with the above section, the network average nearest neighbor distance test 

will be discussed here. 
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Conceptually, the network and continuous average nearest neighbor distance 

statistics are the same.  The difference lies in how the distance to the nearest neighbor is 

measured and how the distribution of the expected nearest neighbor distances is derived.  

The formulas described in equations 1.6 through 1.11 can be found the work by Okabe et 

al. (1995). The network average nearest neighbor distance is: 

 

𝑡𝑂̅ =
∑ 𝑀𝑖𝑛(𝑡𝑖𝑗𝑛
𝑖=1 )

𝑛
                                                                                                                     (1.6) 

 

where 𝑡𝑂̅ is the value of the observed average nearest neighbor distance, 𝑛 is the number 

of points in the distribution, and 𝑀𝑖𝑛�𝑡𝑖𝑗� is the shortest path distance between point 𝑖 

and its neighbor point 𝑗 in network space. 

 In the case where the “network” within which the point distribution exists is 

represented by a single line, the equation for the expected value of the average nearest 

neighbor distance is: 

 

𝑡𝐸̅ =
(𝑛 + 2)𝑙

2𝑛(𝑛 + 1)
                                                                                                                          (1.7) 

 

where 𝑡𝐸̅ is the value of the expected average nearest neighbor distance when points are 

distributed on the line according to the Poisson point process, 𝑛 is the number of points in 

the distribution, and 𝑙 is the length of the line.  In the case where the network is made up 
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of multiple line segments, the expected distance is given by a probability distribution 

function: 

 

𝐹(𝑡̅) = �
𝑙𝑗
𝑙𝑇
𝐹𝑗(

𝑚

𝑗=1

𝑡̅)                                                                                                                     (1.8) 

 

where 𝑙𝑗/𝑙𝑇 is the probability of a point being placed line segment 𝑗 in network 𝑇, and 

𝐹𝑗(𝑡̅) is the probability distribution function of the average nearest neighbor distance on 

line segment 𝑗.  The derivations for both of these equations are complex and can be found 

in Okabe et al. (1995). 

 The network average nearest neighbor statistic is now defined as: 

 

𝑅𝐿 =
𝑡𝑂̅
𝑡𝐸̅

                                                                                                                                       (1.9) 

 

 The expected value of 𝑅𝐿 given a Poisson point process on a line is 

 𝐸(𝑅𝐿) = 1.   Similar to the continuous test, if 𝑅𝐿 is greater than 1, meaning that the 

observed network average nearest neighbor distance is greater than the expected network 

average nearest neighbor distance for a random point distribution on a line, then the 

observed distribution is dispersed.  If 𝑅𝐿 is less than 1, the observed distribution is 

clustered.  When testing for significance in the case of points distributed across a single 
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line, the z-value can be found by: 

 

𝑧 =
𝑅𝐿 − 𝐸(𝑅𝐿)
�𝑉𝑎𝑟(𝑅𝐿)

                                                                                                                        (1.10) 

 

where 𝑉𝑎𝑟(𝑅𝐿) = 𝑉𝑎𝑟(𝑡̅)/𝑛  with the variance of 𝑡̅ given by: 

 

𝑉𝑎𝑟(𝑡̅) =
(𝑛3 + 8𝑛2 − 8)𝑙2

4𝑛2(𝑛 + 1)2(𝑛 + 2)
                                                                                             (1.11) 

 

In order to test for significance in the case of a network comprised of many line 

segments, Monte Carlo methods are employed using Okabe et al.’s SANET software 

(2009). 

 In the test case of 586 traffic collisions distributed across the major road network 

of Franklin County, by network space measures, the minimum shortest path distance 

between any two neighbors is 0 meters while the maximum nearest neighbor distance is 

7470 meters.  While uncommon, the identical maximum distance between nearest 

neighbors in both continuous and network space for this dataset can be explained by the 

fact that these two events are located on a unidirectional segment of road.  Based on the 

equations above, the network average nearest neighbor distance is 399 meters.  This 

result is more than double the value obtained when calculating the average nearest 

neighbor distance in continuous space of 187 meters, indicating that the density of points 

is greater in continuous space than network space.   
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In order to calculate the actual network average nearest neighbor statistic, the 

SANET toolbox for ArcGIS was implemented (Okabe, Okunuki, and SANET Team 

2009).  Figure 1-8 displays the results which can be interpreted in similar fashion to 

Ripley’s K-function graph (1981).  The first observation to note in the results is that the 

cumulative points do not add up to the expected value of 586.  This is because SANET 

does not account for the redundancy of the spatial attribute in the dataset.  Events 

occurring at identical locations are considered to be the same point.  In the chart, the 

expected point distribution and the distributions for significant clustering and dispersion 

at the 1% and 5% confidence intervals were derived through 10,000 Monte Carlo 

simulations of the probability distribution function given previously.  While Figure 1-8 

does not give a specific value for the network average nearest neighbor statistic, it can be 

determined that significant clustering occurs for those events whose nearest neighbor is 

located within 1300 meters. 

Figure 1- 8.  SANET’s Network Nearest Neighbor Distance Tool results.       
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 This spatial clustering analysis offers several insights into the nature of the spatial 

distribution under study (see Table 1-2).  The first observation is that the continuous and 

network distribution of traffic fatalities in Franklin County are quite different.  While the 

minimum, maximum, and range of nearest neighbor distance values are identical for both 

continuous and network measures (this is rare), the difference in the averages is 

considerable.   Based on the tests performed above, significant global clustering does 

occur in both continuous and network space, but the z-value of the continuous test, when 

compared to the output of the network test, suggests that the clustering observed in 

continuous space is rarer than that observed in network space.  These differences 

illustrate the importance of using appropriate spatial measures for the phenomenon under 

study.  It is clear that using Euclidean measures for traffic collisions restricted to network 

space may lead to false conclusions when attempting to explain their distribution.  

Network measures should be used for network-based phenomena. 

 

Table 1- 2.  Continuous and network average nearest neighbor test results for traffic collisions in 
Franklin County, OH, January-March 2009. 

Average Nearest Neighbor Test Results Continuous Space Network Space 
Minimum Nearest Neighbor Distance 0 m 0 m 
Maximum Nearest Neighbor Distance 7470 m 7470 m 
Nearest Neighbor Distance Range 7470 m 7470 m 
Average Nearest Neighbor Distance 187 m 399 m 
Expected Nearest Neighbor Distance 748 m See Figure 1-8 
Average Nearest Neighbor Statistic 0.25 See Figure 1-8 
Clustered/Random/Dispersed Clustered Clustered 
z-score -34.74 N/A 
Probability (Q) 0 See Figure 1-8 
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 Secondly, it is now possible to determine a sense for the scale at which the 586 

traffic collisions are spatially dispersed within the Franklin County major road network.  

The closest neighbors are collocated, the most distant neighbors are 7470 meters apart, 

and the average distance between nearest neighbors is 399 meters within the network.  

Overall, the spatial distribution of traffic collisions in the study area demonstrates 

significant clustering.  These findings now provide basis for making decisions about 

appropriate spatial critical distances when testing for spatiotemporal clusters.  Since we 

know some collisions are collocated and that significant clustering exists up to 1300 

meters, an acceptable range of appropriate spatial critical distances might exist between 0 

and 1300 meters.  A somewhat more conservative range is represented between the 

minimum nearest neighbor distance and the mean, or in this case, 0 and 399 meters. The 

latter range will be tested in Step 6. 

 
Step 5: Test for Temporal Clustering 
 

A temporal cluster is represented by the occurrence of a greater number of events 

than that expected during a particular portion of a specified time period.  A simple way to 

test for clustering in time is by considering the time period as a single line in space, and 

then performing a linear (or network) nearest neighbor distance test according to a 

specified unit interval.  Various linear nearest neighbor tests have been proposed, 

including those by von Neumann (1941), Pinder and Witherick (1973), Young (1982), 

and Okabe et al. (1995).  For ease of evaluation, Young’s statistic is chosen here, and the 
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results will be compared with those from Okabe et al.’s statistic above (Equations 1-6 

through 1-11).   

Young’s statistic is given by: 

 

𝑀 =
∑ 𝑀𝑖
𝑛
𝑖=1

𝐿
                                                                                                                              (1.12) 

 

For points 𝑋1, … ,𝑋𝑛 along a line of length 𝐿, where  𝐷1 = 𝑋1  and                    

𝐷𝑖 = 𝑋𝑖 − 𝑋𝑖−1,  and where 𝑀𝑖 is the minimum value of 𝐷𝑖 ,  𝐷𝑖+1.   A value of 𝑀 close to 

0 indicates clustering of the data points, while a value of 𝑀 close to 𝑛/(𝑛 + 1) indicates 

dispersion of the data points.   

The expected value and variance of 𝑀 follow: 

  

𝐸(𝑀) =  
𝑛

2(𝑛 + 1)
,     𝑉𝑎𝑟(𝑀) =  

2𝑛 − 1
12(𝑛 + 1)2

                                                       (1.13, 1.14) 

 

The z-value can be calculated: 

 

𝑧 =
𝑀 − 𝐸(𝑀)
�𝑉𝑎𝑟(𝑀)

                                                                                                                          (1.15) 

 

Before performing the linear nearest neighbor test to assess temporal clustering 

within the test data, an appropriate temporal interval must be chosen.  A simple technique 
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to determine a meaningful interval is to divide the total number of events in the dataset by 

the sum of the possible temporal intervals in the study period.  This is demonstrated in 

Table 1-3.  Redundancy of events within a temporal interval may cause a loss of 

information when searching for temporal clustering, while choosing an excessively small 

temporal interval may not add any information.  Based on the results of Table 1-3, hours 

will be used as the temporal interval for this study. 

 
Table 1- 3.  Temporal interval analysis for traffic collisions in Franklin County, OH, January-
March, 2009. 

Time Interval 

Number of Intervals             
in Study Period                        

(January-March 2009) 

Number of Events                
per Interval                          

(586 Collisions) 
Month 3 195.33 
Week 12.9 45.43 
Day 90 6.51 
Hour 2160 0.27 
Minute 129600 0.005 

    

A comparison of results for Young and Okabe et al.’s statistic for the test case are 

given in Table 1-4.  While the two tests use different standardization techniques, the 

results are nearly identical.  Young’s test standardizes the statistic by the time period of 

study, in this case 2160 hours (90 days), while Okabe et al.’s statistic uses the total 

number of points in the test distribution, 586.  Consequently, the derivations of the first 

two moments differ for each test.  Both tests, however, suggest that the temporal 

distribution of traffic collisions in Franklin County between January and March 2009 is 
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slightly more clustered than the expected random temporal distribution and statistically 

significant. 

While the tests do provide very similar results, the benefit of using Okabe et al.’s 

statistic is the ability to observe the average and expected nearest neighbor distance as a 

function of the temporal interval.  As was done in Step 4, from the results here, a basis 

can be established from which to determine an appropriate range of temporal critical 

distance values when testing for spatiotemporal clusters in Step 6.  Again, using the 

smallest nearest neighbor distance between traffic collisions as a minimum, and the 

average nearest neighbor distance as the maximum, an acceptable range of temporal 

critical distance values is between 0 and 1.65 hours.  This range will be tested in the next 

step.  

 

Table 1- 4.  Results for two linear nearest neighbor statistics given traffic fatalities in Fairfax 
County, VA, 2004-2008. 

Linear Nearest Neighbor Test Okabe et al.'s Test Young's Test 
Minimum Nearest Neighbor Distance 0 hours 0 hours 
Maximum Nearest Neighbor Distance 13 hours 13 hours 
Nearest Neighbor Distance Range 13 hours 13 hours 
Average Nearest Neighbor Distance 1.65 hours N/A 
Expected Nearest Neighbor Distance 1.87 hours N/A 
Average Nearest Neighbor Statistic 0.88 0.44 
Clustered/Random/Dispersed Clustered Clustered 
z-value -1.46 -3.4 
Probability (Q) 0.072 0.0003 
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Step 6: Test for Spatiotemporal Clustering 
 

The object of this penultimate step is to test for spatiotemporal clustering in the 

phenomena under study, that is whether or not there are an excess number of events 

occurring within some geographic space that are also unexpectedly close in time. While 

the literature discusses a variety of spatiotemporal clustering methods (as shown above), 

the Knox method is still perhaps the most straight-forward and widely used today, a 

network-based application which is the focus of this study.  A detailed explanation of the 

general method can be found in Cliff and Ord (1981) and with examples in Upton and 

Fingleton (1985).  The derivations for the expected value and variance of the statistic 

were first described in David and Barton’s (1966) assessment of Knox’s work and are 

provided here for reference as well. 

The Knox method involves the construction of two event proximity matrices with 

the dimensions of 𝑛 × 𝑛 for 𝑛 events.  The first matrix defines spatial proximity where a 

1 is included in some cell 𝑋𝑖𝑗 if event 𝑖 occurred within some critical spatial distance δ of 

event 𝑗 and 0 otherwise.  The second matrix defines temporal proximity where a 1 is 

included in some cell 𝑌𝑖𝑗 if event 𝑖 occurred within some critical temporal distance τ of 

event 𝑗 and 0 otherwise.  For both matrices, if 𝑖 = 𝑗, then the entry is 0.  The Knox 

statistic is then obtained by the cross-product: 

 

𝑅𝛿𝜏 = ��𝑋𝑖𝑗𝑌𝑖𝑗 
𝑗<𝑖

𝑛

𝑖=1

                                                                                                               (1.16) 

 



 

41 

If the events are completely independent spatially and temporally, then there is no space-

time interaction and 𝑅𝛿𝜏 = 0.  For rendering simplicity, 𝑅𝛿𝜏 is hereafter written as 𝑅. 

The expected value for 𝑅 can be found by: 

 

𝐸(𝑅) =
𝑆0𝑇0

𝑛(𝑛 − 1)                                                                                                                     (1.17) 

 

where 𝑆0 = ∑ ∑ 𝑋𝑖𝑗𝑗𝑖  (𝑖 ≠ 𝑗),  𝑇0 = ∑ ∑ 𝑌𝑖𝑗𝑗𝑖  (𝑖 ≠ 𝑗), and 𝑛 is the number of events. 

 

The variance of 𝑅 is: 

 

𝑉𝑎𝑟(𝑅) =
𝑆1𝑇1
2𝑛(2) +

(𝑆2 − 2𝑆1)(𝑇2 − 2𝑇1)
4𝑛(3)  

 

+
(𝑆02 + 𝑆1 − 𝑆2)(𝑇02 + 𝑇1 − 𝑇2)

𝑛(4) − {𝐸(𝑅)}2                                                                      (1.18) 
 

where    𝑆1 = 1
2
∑ ∑ (𝑋𝑖𝑗𝑗 + 𝑋𝑗𝑖)2𝑖  (𝑖 ≠ 𝑗);    𝑆2 = ∑ (𝑋𝑖0 + 𝑋0𝑖)2𝑖 ;    𝑋𝑖0 = ∑ 𝑋𝑖𝑗𝑗  

 
𝑋0𝑖 = ∑ 𝑋𝑗𝑖𝑗 ;     𝑛(2) = 𝑛(𝑛 − 1);      𝑛(3) = 𝑛(𝑛 − 1)(𝑛 − 2); 
 
𝑛(4) = 𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3). 
 

where the formulae for 𝑇0, 𝑇1,  𝑇2 are identical in form to those for 𝑆0, 𝑆1,  𝑆2 with the 

exception that X is replaced by Y wherever it occurs in the formulae. 
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When the number of events is large (greater than 30), the normal approximation 

may be assumed, however studies by Mielke (1978) and Siemiatycki (1978) identify 

potential exceptions which emphasize the approximate nature of this assumption. 

In order to calculate the value of the test statistic for a normal approximation, 

follow: 

 

𝑧 =
|𝑅 − 𝐸(𝑅)| − 1
�𝑉𝑎𝑟(𝑅)

                                                                                                                 (1.19) 

 

 In order to implement this method for the data under study, the critical parameters 

defining the spatiotemporal clusters for the test must be determined.  Unlike 

spatiotemporal studies in epidemiology, where critical parameters can be defined by the 

known etiology of disease, for the case of traffic collisions, critical parameters are 

difficult to discern and relative to the spatial and temporal processes involved at the area 

and time of study.  Instead of methodically implementing every possible combination of 

spatial and temporal critical distances for the study data, a technique for determining an 

acceptable range of critical spatial and temporal distances has been presented in Steps 4 

and 5 of this process.  Based on Step 4, a conservative range of acceptable spatial critical 

distances was defined between 0 and 399 meters.  Likewise, in Step 5, a range of 

acceptable temporal critical distances was defined between 0 and 1.65 hours.  The results 

of testing for spatiotemporal clusters using the GIS tool, SCAn (the focus of Part 3 of this 
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research), are presented in Table 1-5, where the spatial critical distance range was tested 

at 100 meter intervals and the temporal critical distance range at 1 hour intervals.   

While it is commonly accepted that a statistic is significant when its probability of 

occurrence is less than 5%, or 𝛼 = 0.05, in this case a Bonferroni correction is 

implemented because multiple tests (hypotheses) are being performed on the same 

statistic.  The adjusted Bonferroni correction used here was suggested by Simes (1986) 

and the procedure is described further in Part 2 of this work.  For Table 1-5, only the 

highlighted Knox R values meet the significance criteria of 𝑄 ≤ the Bonferroni 

correction for 𝛼 = 0.05.   

 
Table 1- 5.  Spatiotemporal clusters, Knox R, for the given spatial and temporal critical distance 
ranges and associated statistical significance for traffic collisions in Franklin County, OH, 
January-March, 2009.   Highlighted values are significant where 𝑄 ≤ the Bonferroni correction 
for 𝛼 = 0.05. 

Critical Spatial 
Distance      
(meters) 

Critical Temporal 
Distance        
(hours) 

Knox-R 
Value Probability (Q) 

Bonferroni 
Correction for      

α = 0.05 
0 0 0 0.233 0.020 

 
1 1 0.498 0.050 

 
2 2 0.216 0.013 

100 0 1 0.408 0.030 

 
1 2 0.291 0.023 

 
2 3 0.222 0.017 

200 0 1 0.483 0.043 

 
1 2 0.413 0.033 

 
2 3 0.368 0.027 

300 0 1 0.473 0.040 

 
1 2 0.489 0.047 

 
2 3 0.464 0.037 

400 0 5 0.000003 0.003 

 
1 6 0.004 0.007 

 
2 8 0.005 0.010 
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 Using the GIS tool SCAn, presented in Part 3 of this thesis, it is possible to map 

the spatiotemporal clusters that contribute to the observed Knox R values.  In order to 

illustrate this capability, the traffic collisions contributing to the significant 

spatiotemporal clustering at a critical spatial distance of 400 meters and a critical 

temporal distance of 0 hours (meaning the events occurred within the same hour) are 

presented in Figure 1-9.  The attributes associated with the mapped traffic collisions 

representing spatiotemporal clusters in Figure 1-9 are presented in Table 1-6. 

 
Figure 1- 9.  Map of traffic collisions contributing to spatiotemporal clusters defined by a spatial 
critical distance of 400 meters and a temporal critical distance of 0 hours (occurred during the 
same hour)  in Franklin County, OH, January-March, 2009. 
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Table 1- 6.  Selected attribute values for traffic collisions contributing to spatiotemporal clusters 
in Figure 1-9.  Weather attribute was derived from www.wunderground.com(2009). 

ID Date Day of Week Time Weather 
1 1/16/2009 Friday 4:35:00 PM Record low temp (-14 degrees) 
2 1/16/2009 Friday 4:15:00 PM Record low temp (-14 degrees) 
3 1/20/2009 Tuesday 9:00:00 AM Record low temp (-1 degree) 
4 1/20/2009 Tuesday 9:05:00 AM Record low temp (-1 degree) 
5 1/26/2009 Monday 12:06:00 PM Snow 
6 1/26/2009 Monday 12:27:00 PM Snow 
7 1/30/2009 Friday 6:44:00 PM Snow 
8 1/30/2009 Friday 6:44:00 PM Snow 
9 2/26/2009 Thursday 6:45:00 PM Rain (0.05 inches) 
10 2/26/2009 Thursday 6:13:00 PM Rain (0.05 inches) 

       

An examination of Figure 1-9 and Table 1-6 reveals likely spatial and temporal 

processes contributing to the existence of the observed spatiotemporal clusters.  In the 

case of Figure 1-9, the spatiotemporal clusters depicted on the map are located in the 

vicinity of major intersections or access/exit ramps to multi-lane highways or freeways, 

locations where vehicles are abruptly changing travel speed and/or lanes.  Table 1-6 

indicates that the spatiotemporal clusters occurred during periods of extreme weather in 

every case, and during weekday rush hour traffic in four out of five clusters.   

 

Step 7: Explain the Results 
 
 An important final step of this comprehensive process involves using any 

available resources to explain the results observed in the preceding steps.  There may be 

obvious conclusions to be made or new questions may emerge requiring further 

investigation.      
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 In the test case presented here, the fact that significant clustering was observed in 

both the spatial and temporal dimensions indicates that there are underlying spatial and 

temporal processes effecting the distribution of traffic collisions both in the network 

space and during the temporal period of study.  A further examination of clustering in the 

spatial dimension should reveal the general areas or specific locations on the network 

where the greatest number of collisions have occurred, possible factors being restricted 

traffic flow, an intersection of traffic lanes, or poor surface maintenance.  Similarly, a 

further investigation into the strictly temporal clustering observed in the test data will 

reveal the temporal periods with the greatest number of traffic collisions, likely the result 

of peak traffic flow, reduced visibility, or temporally-based environmental changes, such 

as extreme weather. The added level of analysis provided by testing for spatiotemporal 

clusters reveals those specific locations where traffic collisions occur in rapid succession.  

The results presented above suggest that periods of extreme weather create conditions 

within specific portions of the network where traffic collisions are prone to happen, 

which in this study are areas at which traffic merges or intersects. This result may not be 

surprising, but it illuminates a risk that can be further investigated.  While the temporal 

aspect of extreme weather cannot be controlled, the contributing spatial factors can be 

examined and may lead to spatial solutions that can mitigate the temporal risk, such as 

improving the road surface, erecting signage, or reducing traffic flow to the area.  It is 

apparent from these findings that a spatiotemporal cluster analysis of traffic collisions 

could be implemented as a tool in prioritizing research, maintenance, and development on 

a given transportation network.  Conversely, a spatiotemporal cluster analysis may be 
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useful in assessing the relative safety of a transportation network by observing an absence 

of overall spatiotemporal clustering or by observing those portions of the network where 

clustering has not been exhibited. 

 
Conclusions 
 
 This research has presented a comprehensive process for the spatiotemporal 

clustering analysis of network-based phenomena.  A thorough implementation of the 

process described will provide a greater understanding of the spatial, temporal, and 

spatiotemporal distribution of the phenomenon under study.  While the determination of 

spatial and temporal critical distance parameters for the Knox test may be intuitive in 

some studies, when it is not, an effective technique has been described here that identifies 

spatiotemporal clustering based on a range of nearest neighbor distance values in both 

space and time.  This process did not address the statistical theory of the methods 

described, however the ensuing Part 2 will highlight a few specific concerns.  Neither did 

this process describe the GIS tools used to implement the process described.  These 

details are addressed in Part 3.  Through the example of the traffic collision phenomenon 

examined here, a compelling case for the usefulness of a network-based extension of 

Knox method has been presented, and the potential benefit of such spatiotemporal 

analysis has been explained.   
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PART 2 
An Examination of Significance Tests and Critical Parameters for 

Network-Based Spatiotemporal Cluster Analysis 
 
 
 

Introduction 

 In statistical testing, perhaps the most important element and greatest challenge is 

determining the significance of the statistical finding.  Generally speaking, statistical 

significance is based on how closely the observed result compares to the distribution of 

the expected result.  If the observed result is uncommon when compared to the expected 

distribution, it is said to be significant.  The distribution of the expected result typically 

follows some type of stochastic model describing the process under examination.  Often, 

the normal distribution is used as the sampling distribution, although it is not always an 

appropriate assumption, especially when sample sizes are very small. 

 This challenge of determining significance is relevant to the Knox method used in 

this study.  While significance tests for the Knox method have been developed for the 

chi-square distribution, the normal distribution, and Monte Carlo methods, the normal 

distribution has been primarily used for this research partly based on the assumption that 

GIS users often work with large sample sizes.  Large samples sizes tend to conform to the 

normal distribution, making a significance test that conforms to a normal approximation 

acceptable here.  While Monte Carlo simulations may create the best reference 

distribution for significance testing, because the assumption of large sample sizes is 
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made, the generation of Monte Carlo simulations can become quite time consuming, and 

are therefore not used as the primary significance test in this study.  For a reference 

purpose, however, each significance test is described here, and the results of all three 

tests are presented for comparison (see Table 2-2). The ability to perform each test is 

provided within the SCAn tool described in Part 3 of this work, so that a decision on 

which significance test to be implemented can be based on the desired accuracy and time 

available for performing the test.  Regardless of the significance test selected for the 

Knox method, if multiple iterations of the test are performed on the same dataset, then the 

probability levels determining significance should be adjusted.  This is commonly 

accomplished through Bonferroni methods which will be discussed here.  

 Additionally, as part of the comprehensive process described in Part 1 of this 

research, a technique was presented for determining spatial and temporal critical 

distances in the execution of spatiotemporal testing.  Provided here are the significance 

test results for multiple ranges of critical parameters derived from the nearest neighbor 

distance test in space and time.  These findings determined the recommendation to use a 

range of critical parameter values between the minimum and the average nearest neighbor 

distance for both the spatial and temporal domains.  

 The organization of Part 2 follows: first, the datasets used as a basis for 

comparison in this part of the study are described; next, three significance testing 

methods used for the Knox test are presented, with a discussion on adjusting significance 

levels when performing multiple tests; finally, an examination of the process for 
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determining a range of critical parameters for spatiotemporal cluster testing using nearest 

neighbor distance values is provided. 

 
Study Areas and Datasets 
 
 For the purposes of comparing the varying results of the statistical significance 

tests described hereafter, multiple datasets are examined.  There are a total of seven 

datasets representing two different study areas used in this portion of the thesis.  The two 

study areas represented are the major road network of Franklin County, Ohio, depicted 

previously in Figure 1-1, and the major road network of Eastern Fairfax County, Virginia, 

depicted in Figure 2-1.   Within the Franklin County study area, four datasets 

representing actual injury-causing traffic collisions are examined, one for each successive 

three-month period during the year of 2009.  An additional randomly generated dataset is 

presented for this study area, created using SANET’s random point generator tool 

(Okabe, Okunuki, and SANET Team 2009) to define the event locations on the network, 

and a random number generator to define event time stamps.   

Within the Fairfax County study area, two datasets are presented.  One contains 

the fatality-causing traffic collisions during the five-year period between 2004 and 2008 

and one contains randomly generated values within the same spatial and temporal 

constraints as the observed data.  Table 2-1 lists characteristics of each dataset 

successively. Note the difference in point density between the two study areas. 
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Figure 2- 1. Fatality-causing traffic collisions on major roads in Fairfax County, Virginia, 2004-
2008. 
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Table 2- 1. Characteristics of datasets used in Part 2 of this study. 

Minimum Nearest Neighbor Distance 

Network 
Distance 

(km) 

Temporal 
Period 
(days) 

Number        
of 

Events 
Spatial/Temporal 

Event Density 
Franklin Co. Collisions (Jan-Mar '09) 930 90 586 0.63 / 6.51 
Franklin Co. Collisions (Apr-Jun '09) 930 91 671 0.72 / 7.37 
Franklin Co. Collisions (Jul-Sep '09) 930 92 653 0.70 / 7.10 
Franklin Co. Collisions (Oct-Dec '09) 930 92 698 0.75 / 7.59 
Random Set (Franklin Co. Network) 930 90 698 0.75 / 7.76 
E. Fairfax Co. Fatalities ('04-'08) 950 1827 125 0.13 / 0.07 
Random Set (E. Fairfax Co. Network) 950 1827 125 0.13 / 0.07 

      
 
 
Significance Tests for the Knox Method 
 

Chi-square and Poisson Distributions 
 
 Because the pairings derived through the Knox method can be summarized in a 

two by two contingency table, the chi-square test has been suggested as a means of 

testing for the significance of the statistic (Knox 1964; Jacquez 1996).  The contingency 

table is established such that: 

 

  Space 
  ≤ 𝛿 > 𝛿 

Time ≤ 𝜏 a b 
> 𝜏 c d 

 

 

where δ is the critical spatial distance, τ is the critical temporal distance, a is the value of 

spatiotemporal pairs, b is the value of temporal pairs, c is the value of spatial pairs, and d 



 

53 

is the value of all other pairs.  In the contingency table above, the value of a is the Knox 

statistic, 𝑅. 

 Chi-square (𝜒2) is then calculated by: 

 

𝜒2 = ��
(𝑂𝑖𝑗 − 𝐸𝑖𝑗)2

𝐸𝑖𝑗𝑗𝑖

                                                                                                          (2.1) 

 

where 𝑂𝑖𝑗 is the observed value in cells a through d of the contingency table and 𝐸𝑖𝑗 is: 

 

𝐸𝑖𝑗 =
𝑅𝑖 × 𝐶𝑗
𝑁

                                                                                                                                (2.2) 

 

with 𝑅𝑖 the row sum for the observed value 𝑂𝑖𝑗, 𝐶𝑗 the column sum for the observed value 

𝑂𝑖𝑗, and 𝑁 the grand total number of observations, a + b + c + d.   

 In this instance the probability of 𝜒2 may be determined from a chi-square 

distribution table with one degree of freedom.  Generally speaking, the higher the 𝜒2 

value, the more rare the result.  A large 𝜒2 value indicates that somewhere in the 

contingency table, the observed frequencies for a given cell differ markedly from the 

expected values, although the 𝜒2 value does not indicate which cell (or cells) are 

contribute to the observed effect (Anon. 2010a).  Baker (1996) notes that because a 

majority of the terms in the 𝜒2 contingency table will result from the squared differences 
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between observed and predicted numbers of close pairs over distances much larger than 

the specified critical distances, the power of the 𝜒2 test is reduced.   

 
Figure 2- 2. Comparison of the reference distribution generated by 1000 Monte Carlo simulations 
of spatiotemporal clusters in traffic collisions in Franklin County, OH, January-March 2009, 
where δ =  400 meters and τ = 2 hours.  The Poisson distribution is generated from the reference 
distribution mean of 4.24. 

 

If the value of a, or the Knox statistic, 𝑅, is very small, then it has been 

demonstrated that the significance of the value may be directly calculated using a single-

tailed Poisson distribution where the mean is equal to 𝐸𝑖𝑗 above (Knox and Gilman 1992; 

David and Barton 1966).  The Poisson tendency of the Knox statistic distribution is 

characterized by the data of this study as well (see Figure 2-2).  Table 2-2 shows how the 

probability of the Knox statistic based on the 𝜒2 distribution, and the Poisson distribution 

compare to the other significance tests presented in this study.  It should be noted that 
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although the Poisson distribution and the Monte Carlo distribution generated in Figure 2-

2 are nearly identical, the derived probabilities of the observed Knox statistic based on 

these distributions is different, as reported in Table 2-2.  This unexpected difference is 

due to how the probabilities are calculated in each case. 

 
Normal Distribution 
 
 Developed for the Knox test initially by David and Barton (1966), the formulae 

for significance testing according to a normal approximation have been previously 

presented in Equations 1.17 – 1.19.  Details of these calculations are also provided in 

Upton and Fingleton (1985).  When sample sizes are large (generally greater than 60 

events) then this is an appropriate distribution for significance testing.  The probability of 

observing the Knox statistic according to this normal approximation (Q) is used 

throughout this study.  As previously mentioned, comparison of the probabilities of the 

Knox statistic based on the various distributions discussed here can be found in Table 2-

2.  From this table, it is apparent that the Knox statistic probability based on the normal 

approximation most closely resembles the probability based on the Monte Carlo 

generated reference distribution (where space labels are shuffled).  As the Monte Carlo 

distribution provides the best representation of possible Knox values for a given test, the 

fact that the normal and Monte Carlo probabilities are similar is further evidence in 

support of using the normal approximation when an expedient significance test is 

required.   
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Monte Carlo Simulations 
 
 While originally suggested by Knox (1964), Mantel (1967) provided details for 

generating a reference distribution for the Knox statistic using Monte Carlo simulations.  

The process involves the repeated randomization of event labels, while calculating the 

Knox statistic for each iteration, until enough values have been generated to build an 

empiric distribution adequate for significance testing purposes.  While there is no 

standard number of iterations required to create an “adequate” reference distribution, the 

literature suggests anywhere between 1000 to 10,000 repetitions to be sufficient (Mantel 

1967; Baker 1996).  In order to determine the probability value of the observed Knox 

statistic, the proportion of the right hand tail of the reference distribution whose simulated 

Knox values are equal to or greater than the original statistic is calculated. 

 In the execution of Monte Carlo simulations for the Knox test, the literature 

suggests that which labels are shuffled is immaterial (Mantel 1967; Baker 1996; Jacquez 

1996).  Through the examination of this technique using the data under study, it is 

apparent that shuffling the time labels while the space labels remain fixed, or shuffling 

the space labels while the time labels remain fixed, provide very similar results.  

However, if both time and space labels are shuffled concurrently, a very different 

reference distribution is generated which increases the probability of the observed 

statistic (see Figures 2-3 and 2-4).  The theoretical explanation for this effect will not be 

explained here and is a subject for future research.  For the GIS tool described in Part 3, 

the Monte Carlo test implemented there holds the time labels constant while shuffling the 

space labels. 
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Figure 2- 3. Difference in reference distributions and probabilities generated by 1000 Monte 
Carlo simulations of the Knox statistic for traffic collisions in Franklin County, OH, January-
March 2009,  where δ = 400 meters, τ = 2 hours, and R = 8. 
 
 
 
 

 
Figure 2- 4. Difference in reference distributions and probabilities generated by 10,000 Monte 
Carlo simulations of the Knox statistic for traffic collisions in E. Fairfax County, VA, 2004-2008 
where δ = 1214 meters, τ = 7 days, and R = 1. 
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Table 2- 2. Comparison of probabilities for the observed Knox statistic given, the chi-square 
distribution, the normal distribution, and those distributions depicted in Figures 2-3 and 2-4.  
*The space shuffled distribution is recommended and used in the tool described in Part 3. 

  Franklin Co. (Jan-Mar '09) E. Fairfax Co. ('04-'08)          
Distribution δ = 399 m, τ = 2 hours;  R = 8 δ = 1214 m, τ = 7 days;  R = 1 

Chi-square  0.022 0.254 
Chi-square (Poisson) 0.147 0.331 

Normal  0.030 0.444 
Space Shuffled  0.057 0.676 
Time Shuffled  0.072 0.705 

Space and Time Shuffled  0.253 0.889 

    
 
 

Multiple Testing 
 
 In order to maintain statistical rigor in the query for significant test results 

performed as described by the methodology in Part 1, methods for adjusting the level at 

which the observed statistic is determined significant should be considered.  In the case 

of ESDA, Jacquez (2008) suggests that Bonferroni (Sidak 1967; Simes 1986), Holmes 

(Holland and Copenhave 1987) or Hochberg (1988) methods may be implemented. This 

research deals with the Bonferroni techniques.  While the traditional Bonferroni 

adjustment involves dividing the desired 𝛼 by the number of tests performed, or 𝛼/𝑛, this 

correction can be seen as excessively conservative and improved methods have been 

suggested.  Simes (1986) provides justification for a Bonferroni modification where the 

probability values of all iterations of the performed test are ordered, 𝑃(1), … ,𝑃(𝑛).  The  
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null hypothesis for a given iteration is rejected if: 

𝑃(𝑗) ≤
𝑗𝛼
𝑛

                                                                                                                                      (2.3) 

where 𝑗 = 1, … ,𝑛.   

This method was employed in Table 1-5 of Part 1 which is reprinted here in Table 

2-3 so that the traditional and improved Bonferroni adjustments can be compared.  The 

strictness of the traditional Bonferroni adjustment is readily apparent when compared to 

the results of the modified adjustment. 

 
Table 2- 3. Spatiotemporal clusters, Knox R, for the given spatial and temporal critical distance 
ranges and associated statistical significance for traffic collisions in Franklin County, OH, 
January-March, 2009.   Highlighted values are significant where 𝑄 ≤ the Bonferroni correction 
for 𝛼 = 0.05. 

Critical 
Spatial 

Distance      
(meters) 

Critical 
Temporal 
Distance        
(hours) 

Knox-R 
Value 

Probability 
(Q) 

Modified 
Bonferroni 
Correction      
for α = 0.05 

Traditional 
Bonferroni 
Correction      
for α = 0.05 

0 0 0 0.233 0.020 0.003 

 
1 1 0.498 0.050 0.003 

 
2 2 0.216 0.013 0.003 

100 0 1 0.408 0.030 0.003 

 
1 2 0.291 0.023 0.003 

 
2 3 0.222 0.017 0.003 

200 0 1 0.483 0.043 0.003 

 
1 2 0.413 0.033 0.003 

 
2 3 0.368 0.027 0.003 

300 0 1 0.473 0.040 0.003 

 
1 2 0.489 0.047 0.003 

 
2 3 0.464 0.037 0.003 

400 0 5 0.000003 0.003 0.003 

 
1 6 0.004 0.007 0.003 

 
2 8 0.005 0.010 0.003 
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Knox Method Critical Parameters 
 

An assumption made in network-based spatiotemporal clustering, is that the 

closer events are together in space and time, the more meaningful their relationship.  It is 

therefore desirable to identify the smallest critical parameters possible that reveal a 

significant result.  In order to accomplish this in an objective manner, the distribution of 

events in relationship to their nearest neighbors is considered.  Since the Knox method 

employed is concerned with the distance between points in space and time, considering 

critical parameters for space and time based on an examination of nearest neighbor 

distances in space and time seems logical, especially when acceptable critical parameters 

for the spatiotemporal test are unknown.  The objective here is not to determine a specific 

individual value for the critical parameters in space and time, but rather to determine an 

acceptable range of critical parameters to apply to the spatiotemporal test.  While 

methods have been published for identifying the most significant result within a given 

range of spatiotemporal parameters (Baker 1996), methods for determining an acceptable 

range of values when they are unknown have not.  

In order to evaluate this methodology, nearest neighbor distance calculations were 

performed on the spatial and temporal attributes of the datasets under study.  The lower 

bound for the parameter range is intuitively the minimum nearest neighbor distance, as no 

pair of events can be closer together than this distance.  The value in question, however, 

is the upper bound.  Both the average nearest neighbor distance and the maximum nearest 

neighbor distance are considered.  Since the eventual spatiotemporal testing will involve 

multiple tests requiring a Bonferroni adjustment, it is desirable for the critical parameter 
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range to remain as small as possible in order to reduce the total number of tests 

performed.   

Table 2-4 reveals the results of tests for clustering in the spatial and temporal 

dimensions as described in Step 4 and Step 5 of Part 1. Tables 2-5 through 2-7 show the 

results of spatiotemporal tests where the minimum, average, and maximum nearest 

neighbor distances were used as critical parameters for both space and time.  In almost 

every case, when the average nearest neighbor distance was used as the critical parameter 

for space and time, the spatiotemporal statistic was significant (Table 2-5).  Therefore, it 

seems appropriate to use the range of values between the minimum and average nearest 

neighbor distances as an initial range of inputs for spatiotemporal critical parameters, 

based on the assumption that if the upper bound of the range is significant, then it is 

possible that values below it will be significant as well.  If this range does not produce a 

significant test result, then the next logical range to consider is between the average 

nearest neighbor distance (lower bound) and maximum nearest neighbor distance (upper 

bound).  In this way, the impact of the Bonferroni correction is minimized. 

 
Table 2- 4.  Results of nearest neighbor distance cluster analysis for both the spatial and temporal 
dimensions of the given datasets. 

Nearest Neighbor Distance Results 
Spatial 

Dimension  
Temporal 

Dimension 
Franklin County Collisions (Jan-Mar '09) Clustered Clustered 
Franklin County Collisions (Apr-Jun '09) Clustered Clustered 
Franklin County Collisions (Jul-Sep '09) Clustered Clustered 
Franklin County Collisions (Oct-Dec '09) Clustered Clustered 
Random Set (Franklin County Network) Random Random 
Eastern Fairfax County Fatalities (‘04-‘08) Clustered Random 
Random Set (Fairfax County Network) Random Random 
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Table 2- 5. Comparison of the Knox statistic and associated probabilities calculated using the 
minimum nearest neighbor distance in space and time as the critical parameters.  Highlighted 
values indicate 𝑄 ≤  𝛼 = 0.05. 

Minimum Nearest Neighbor Distance 
Spatial 

Measure  
Temporal 
Measure  

Knox 
R 

Probability   
(Q) 

Franklin County Collisions (Jan-Mar '09) 0 m 0 h 0 − 
Franklin County Collisions (Apr-Jun '09) 0 m 0 h 0 − 
Franklin County Collisions (Jul-Sep '09) 0 m 0 h 2 0.000 
Franklin County Collisions (Oct-Dec '09) 0 m 0 h 2 0.012 
Random Set (Franklin County Network) 12 m 0 h 0 − 
Eastern Fairfax County Fatalities (’04-‘08) 12 m 0 d 0 − 
Random Set (Fairfax County Network) 112 m 0 d 0 − 

      
Table 2- 6. Comparison of the Knox statistic and associated probabilities calculated using the 
average nearest neighbor distance in space and time as the critical parameters.  Highlighted 
values indicate 𝑄 ≤  𝛼 = 0.05. 

Average Nearest Neighbor Distance 
Spatial 

Measure  
Temporal 
Measure  

Knox 
R 

Probability   
(Q) 

Franklin County Collisions (Jan-Mar '09) 399 m 1.65 h 7 0.030 
Franklin County Collisions (Apr-Jun '09) 354 m 1.44 h 12 0.000 
Franklin County Collisions (Jul-Sep '09) 344 m 1.47 h 9 0.005 
Franklin County Collisions (Oct-Dec '09) 320 m 1.34 h 11 0.000 
Random Set (Franklin County Network) 495 m 1.56 h 0 − 
Eastern Fairfax County Fatalities (’04-‘08) 1214 m 7 d 1 0.444 
Random Set (Fairfax County Network) 1318 m 7.27 d 0 − 
      

Table 2- 7. Comparison of the Knox statistic and associated probabilities calculated using the 
maximum nearest neighbor distance in space and time as the critical parameters.  Highlighted 
values indicate 𝑄 ≤  𝛼 = 0.05. 

Maximum Nearest Neighbor Distance 
Spatial 

Measure  
Temporal 
Measure  

Knox 
R 

Probability   
(Q) 

Franklin County Collisions (Jan-Mar '09) 7470 m 13 h 449 0.062 
Franklin County Collisions (Apr-Jun '09) 5516 m 15 h 408 0.192 
Franklin County Collisions (Jul-Sep '09) 5396 m 21 h 551 0.311 
Franklin County Collisions (Oct-Dec '09) 5224 m 20 h 749 0.001 
Random Set (Franklin County Network) 3236 m 16 h 96 0.285 
Eastern Fairfax County Fatalities (’04-‘08) 8447 m 40 d 83 0.048 
Random Set (Fairfax County Network) 8685 m 29 d 55 0.359 
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Note that, as expected, the randomly generated datasets do not demonstrate spatial 

or temporal clustering in Table 2-4.  Nor do they demonstrate any significant 

spatiotemporal clustering in Tables 2-5 through 2-7.  While this may be obvious, it is 

worth noting and reinforces the supposition that independent clustering in space and time 

is related to spatiotemporal clustering.  This also seems to reinforce the importance of 

testing for clustering in space and time independently prior to proceeding with a 

spatiotemporal analysis.  Although significant spatiotemporal clusters may exist when 

spatial and temporal clusters do not, a researcher may not wish to invest the time in a 

spatiotemporal cluster analysis if there is an absence of clustering in both space and time. 

 
Conclusions 

 This statistical discussion has described various possibilities for significance 

testing of the Knox statistic.  The Knox statistic probabilities based on these tests have 

been compared for two datasets in Table 2-2.  While the Monte Carlo method provides 

the most accurate reference distribution, it becomes exceedingly time consuming for 

large datasets, and therefore the normal approximation seems to be an acceptable default.  

In generating a reference distribution from Monte Carlo simulations, it has been 

demonstrated that only the space labels or only the time labels should be shuffled, but not 

both simultaneously.  Finally, further explanation has been provided for the 

determination of an appropriate range of critical parameters for network-based 

spatiotemporal cluster analysis.  If clustering is present in the spatial and temporal 

dimensions of the dataset, using a range of critical parameters based on the minimum and 

average nearest neighbor distance for both space and time seems acceptable. 
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PART 3 
SCAn: A Spatiotemporal Analysis Tool for Networks 

 
 
 

Introduction 
 
 This portion of the thesis outlines the tools of a GIS-based toolbox called SCAn 

(Spatiotemporal Cluster Analysis on a network) designed to perform spatiotemporal 

cluster analysis of network-based phenomena using the methods presented in Part 1 and 

Part 2.  While other programs have been designed to analyze spatiotemporal clustering, 

few interface directly with ArcGIS and none employ network-based analyses.  The intent 

of SCAn is to provide a simple network-based spatiotemporal cluster analysis tool that 

can be easily used by ArcGIS ArcMap users. 

  
While SCAn is still under development, it currently provides the following tools: 

Tool 1: ST Cluster Basic 

Tool 2: ST Cluster Automatic 

Tool 3: ST Cluster Table 

Tool 4: ST Cluster Monte Carlo 

Tool 5: ST Cluster Range Detector 
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 The order of Part 3 follows: first, the basic requirements for using nbSTAT will be 

discussed; next, each tool will be described in turn; finally, program limitations and 

future developments will be addressed. 

 
Program Requirements 

 The scripting language used to develop SCAn is Python 2.5.  While most of the 

programming uses the ArcObject 9 geoprocessor and internal Python modules, there are 

two external Python modules utilized by SCAn tools and that must be downloaded to the 

user’s desktop or server in order for the tools to function properly.  These modules are 

numpy and scipy and both can be downloaded for free from the internet.   

 SCAn is designed for compatibility with ArcGIS 9 versions and higher.  While 

SCAn will work with any license, it does depend on the Network Analyst extension 

which should be activated prior to using any of the described tools.  A basic working 

knowledge of ArcGIS is required in order to make use of SCAn.  All of the provided tools 

are accessed and run from within ArcToolbox. In order to utilize any of the tools 

described, four basic steps are required: 

1) In ArcCatalog, create a personal geodatabase. 

2) Within the geodatabase, create a feature dataset. 

3) Within the feature dataset, create a network dataset from the shapefile(s) 

representing the network to be analyzed. 

4) Within the feature dataset, create a feature class from the event data to be 

analyzed which must be located on the network.  The feature class must have a 

field of type “date” which holds the dates of the features.  If an hourly analysis is 
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desired, then a field must also be created within the feature class which holds a 

one or two digit value in 24-hour format pertaining to the event described (e.g. if 

the event occurred at 7:19 AM, then field should only include a “7”; if the event 

occurred at 7:19 PM, then the field should read “19”.) 

 
Tool 1: ST Cluster Basic 

 ST Cluster Basic performs a spatiotemporal cluster analysis using the Knox 

method described in Part 1 (see Figure 3-1).  It requires the following user inputs: 

1) The network dataset upon which analysis will occur. 

2) The impedence attribute of the network.  This is a user-defined attribute when 

creating a network dataset and can be found in the network dataset’s 

properties dialogue. 

3) The feature class containing events to be analyzed. 

4) The temporal granularity desired for the analysis (day or hour). 

5) A selection of the feature class fields containing the date and hour 

information. 

6) Critical spatial parameter as an integer in the units of the network dataset. 

7) Critical temporal parameter as an integer in either days or hours. 

8) The workspace in which to store the output feature class containing the events 

contributing to observed spatiotemporal clustering. 
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Figure 3- 1.  User input screen for SCAn’s ST Cluster Basic. 

 
 

Using the above inputs, ST Cluster Basic computes the Knox statistic, determines 

its probability according a chi squared and normal distribution, and prints all of the 

contributing spatiotemporal clusters as coordinate pairs based on the feature class Object 

ID (OID) to the tool’s dialogue screen (see Figure 3-2).  This screen can subsequently be 

copied and pasted into a text or other file for future reference. Additionally, the events 

contributing to the observed clustering are saved in a feature class with the name 

“PointsInCluster_x_y,” where “x” is the given spatial parameter value and “y” is the 

given temporal parameter value.  The feature class may subsequently be added to an 

ArcMap display for viewing or used for additional analyses.  
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Figure 3- 2.  The output dialogue screen for SCAn’s ST Cluster Basic. 
 
 
 
Tool 2: ST Cluster Automatic 

 ST Cluster Automatic does not require the user specification of critical parameters 

(see Figure 3-3).  This tool does require the following inputs: 

1) The network dataset upon which analysis will occur. 

2) The impedence attribute of the network.  This is a user-defined attribute when 

creating a network dataset and can be found in the network dataset’s 

properties dialogue. 

3) The feature class containing events to be analyzed. 

4) The temporal granularity desired for the analysis (day or hour). 

5) A selection of the feature class fields containing the date and hour 

information. 
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6) The desired significance level, α, by which to select a significant 

spatiotemporal cluster during the analysis.  

 

 
Figure 3- 3.  The user input screen for SCAn’s ST Cluster Automatic. 

 
 

Using these inputs, ST Cluster Automatic performs nearest neighbor distance 

analysis on both the spatial and temporal dimension of the dataset to determine a range of 

critical parameters.  It then evaluates the determined range and reports the Knox statistic 

and associated critical parameters for the result which returned the lowest probability of 

occurrence taking into consideration a Bonferroni correction based on the user provided 

significance level.  The results are printed to the tool’s output screen (see Figure 3-4). 
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Figure 3- 4.  Output dialogue for SCAn’s ST Cluster Automatic. 
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Figure 3- 5.  Input screen for SCAn’s ST Cluster Table. 

 
 
Tool 3: ST Cluster Table 

 ST Cluster Table evaluates the Knox statistic for a range of user-defined critical 

parameters and prints out a table with the results according to the spatial and temporal 

intervals specified (see Figure 3-5).  It requires the following: 

1) The network dataset upon which analysis will occur. 

2) The impedence attribute of the network.  This is a user-defined attribute when 

creating a network dataset and can be found in the network dataset’s 

properties dialogue. 

3) The feature class containing events to be analyzed. 

4) The temporal granularity desired for the analysis (day or hour). 
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5) A selection of the feature class fields containing the date and hour 

information. 

6) Maximum, minimum, and incrementing interval for the critical spatial 

parameters in integer format according to the units of the network dataset. 

7) Maximum, minimum, and incrementing interval for the critical temporal 

parameters as an integer in either days or hours. 

The results are printed to the tool’s output dialogue which may be copied to a text 

file or spreadsheet program for further analysis (see Figure 3-6). 

 

 

Figure 3- 6.  Output dialogue for SCAn’s ST Cluster Table. 
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Figure 3- 7.  Input screen for SCAn’s ST Cluster Monte Carlo. 

 
 
Tool 4: ST Cluster Monte Carlo 

 ST Cluster Monte Carlo evaluates the Knox test and determines the statistical 

significance based a specified number of Monte Carlo simulations (see Figure 3-7).  It 

requires the following: 

1) The network dataset upon which analysis will occur. 

2) The impedence attribute of the network.  This is a user-defined attribute when 

creating a network dataset and can be found in the network dataset’s 

properties dialogue. 

3) The feature class containing events to be analyzed. 

4) The temporal granularity desired for the analysis (day or hour). 
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5) A selection of the feature class fields containing the date and hour 

information. 

6) Critical spatial parameter as an integer in the units of the network dataset. 

7) Critical temporal parameter as an integer in either days or hours. 

8) Desired number of Monte Carlo simulations. 

In addition to the information provided in the output screen by Tools 1 and 2, ST 

Cluster Monte Carlo’s output (see Figure 3-8) also provides details on the generated 

reference distribution which can be imported into a spreadsheet program to generate 

graphs if desired (Figures 2-3 and 2-4 were generated in this manner). 

 

Figure 3- 8.  Output dialogue for SCAn’s ST Cluster Monte Carlo. 
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Figure 3- 9.  User input screen for SCAn’s ST Cluster Range Detector 

 
 
Tool 5: ST Cluster Range Detector 

 ST Cluster Range Detector conducts a nearest neighbor distance analysis of the 

spatial and temporal dimensions and reports a recommended range of spatiotemporal test 

critical parameters (see Figures 3-9 and 3-10). The user must provide: 

1) The network dataset upon which analysis will occur. 

2) The impedence attribute of the network.  This is a user-defined attribute when 

creating a network dataset and can be found in the network dataset’s 

properties dialogue. 

3) The feature class containing events to be analyzed. 

4) The temporal granularity desired for the analysis (day or hour). 

5) A selection of the feature class fields containing the date and hour 

information. 
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Figure 3- 10. Output dialogue for SCAn’s ST Cluster Range Detector. 

 
 
Program Limitations 

While the program requirements described above are not complicated, they do 

demand some familiarity with ArcGIS and the Network Analyst extension.  This may be 

seen as a limitation for some, but it can easily be overcome using the ArcGIS help menu.   

 Perhaps the greatest limitation of the SCAn toolset is the lengthy amount of time 

required to execute some tools when large feature classes are analyzed.  A detailed 

analysis defining the time required for the execution of each tool based on the number of 

events in the analyzed feature class has not been conducted.  However, a general 

observation is that for the Fairfax County dataset, consisting of 125 features, no tool took 

more than 10 minutes to complete.  In fact, for the 125-feature dataset, every SCAn tool 

with the exception of Tool 4 executed in well under 5 minutes.  The Franklin County 
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dataset with almost 600 features required much more time to execute.  While Tool 1 and 

Tool 5 were executed in under 5 minutes, Tool 2 took 15 minutes and Tools 3 and 4 

could take much longer depending on the parameters set.   

Finally, the need to generate an OD Matrix Layer is in and of itself a limitation 

when large datasets need to be analyzed.  This function is performed internally for each 

tool, and the SCAn tools have not been tested with feature datasets greater than 750 

events.  From past experience with ArcGIS version 9.3, system memory ran out when 

attempting to generate an OD Matrix Layer with more than 2000 events. 

 

Future Program Developments 

 In addition to the capabilities described above, work continues to improve the tool 

outputs.  Ideally, text files, feature classes or other GUI output will be optional outputs 

for each tool.  Progress is also being made on continuous space versions of the tools 

mentioned here.   

SCAn may be obtained from the author free of charge. 
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Recommendations for Future Research 

  

Spatiotemporal analysis and network-based statistics continue to be areas of 

growing research.  While there are numerous topics within this context that could benefit 

from focused attention, a few of particular interest to the network-based case of 

spatiotemporal cluster analysis are addressed here. 

One of the improvements observed in continuous-based spatiotemporal cluster 

analysis is the result of work on the problem created by population shift bias (Mantel 

1967; Klauber and Mustacchi 1970; Kulldorff and Hjalmars 1999).  In the case of disease 

studies, when a population shift bias occurs, observed spatiotemporal clustering is likely 

the result of a change in the underlying geographic population distribution and not the 

result of some etiological process. A continuous-based solution provided by Kulldorff 

and Hjalmars (1999) involves linearly interpolating the annual observed population count 

for smallest sub-regions possible of the given study area and then randomly assigning 

cases proportionally to each sub-region.  Monte Carlo methods are then used to generate 

an unbiased reference distribution of Knox statistic values for the randomized study area.  

This unbiased reference distribution is used to determine the significance of the observed 

Knox statistic.  

It may be apparent that the network-based equivalent of population shift bias is a 

traffic flow bias.  Traffic flow across the network has not been considered for this study, 
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but it seems like it could have a real effect on the significance of observed spatiotemporal 

clustering, especially in congested urban areas where traffic flow fluctuates at regular 

temporal intervals.  With accurate traffic flow data or models based on real data, it should 

not be too complicated to extend continuous-based methods that account for population 

shift bias to the network flow case.  This could improve the reliability of network-based 

spatiotemporal cluster significance testing, and seems worthy of further research. 

As described in the introduction, this network extension of the Knox test is a 

global test, meaning it describes the distribution of points throughout the entire study 

area, without addressing the significance of local clusters.  There are various global 

continuous space statistics, like Moran’s I (1950), that have local counterparts (e.g., 

Local Indicators of Spatial Autocorrelation (LISA) (Anselin 1995; Ord and Getis 1995)).  

Local network spatial statistics have also been developed by Yamada and Thill (2007) 

and Shiode and Shiode (2009).  Extension of a local statistic to network-based 

spatiotemporal cluster analysis appears to be a research area yet to be addressed, but 

could provide valuable insight for the traffic collision phenomenon when spatiotemporal 

clustering on congested portions of the network are of interest. 

In various continuous space studies, spatiotemporal scan statistics have become 

popular, which implement a search surface in continuous space, while at the same time 

extending a vertical search through temporal space, in effect moving a three dimensional 

space-time search window throughout the study area to identify spatiotemporal clustering 

at varying scales (Rogerson 2001; Kuldorff 2001, 2006; Block 2007; Chang, Zeng, and 

Chen 2008; Assuncao and Correa 2009; Mirghani et al. 2010; Nakaya and Yano 2010; 
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Pei et al. 2010).  Significance testing is conducted by implementing Monte Carlo 

methods.  Not only can these techniques identify clusters regardless of predefined critical 

parameters, they have also been shown to identify clusters spatially as they emerge 

temporally (Jacquez 2008; Assuncao and Correa 2009).  While there may not be intuitive 

applications for a network-based spatiotemporal scan statistic in traffic collision analysis, 

such an analysis might be especially beneficial in the study of such phenomena as IED 

incidence.  In the combat zones of Iraq and Afghanistan, insurgents who emplace IEDs 

are known to relocate their operational areas or adjust their attack windows based on the 

effectiveness of coalition countermeasures, and a spatiotemporal scan statistic might be 

able to identify the spatial and temporal position of an insurgent relocation.  Again, a 

network-based spatiotemporal scan statistic appears to be an area wide open to future 

research. 

Finally, while a methodology was presented for determining an acceptable range 

for spatiotemporal cluster test critical parameters in space and time using nearest 

neighbor distance values derived from each dimension, a theoretical basis for this 

technique was not established.  Exploring whether or not there is an objective relationship 

between the distances to nearest neighbors in space and time, and the observation of 

spatiotemporal clusters might be another informative area of research for spatiotemporal 

analysis. 
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APPENDIX 
SCAn Python Scripts 

 
 
 
Tool 1: ST Cluster Basic 

#---------------------------------------------------------------------- 
#Name: SCAn Tool 1 - ST Cluster Basic 
#Created by: David Eckley 
#Date created: 20101201 
#Purpose: ST Cluster Basic computes the Knox statistic, determines its 
#probability, and lists all of the contributing spatiotemporal clusters 
#as coordinate pairs based on the feature class Object ID (OID). A 
#feature class is generated with the points contributing to the 
#identified cluster which is also stored within a user defined 
#workspace. 
#---------------------------------------------------------------------- 
 
#====================================================================== 
#IMPORT MODULES 
#====================================================================== 
import os, sys, string, arcgisscripting, math, numpy, scipy 
from sets import Set 
from time import* 
from numpy import* 
from scipy import* 
from scipy import stats 
from knoxStats import chiKnox, normalKnox 
 
#====================================================================== 
#INITIATE GEOPROCESSOR 
#====================================================================== 
gp = arcgisscripting.create(9.3) 
 
#Overwrite any identical outputs 
gp.overwriteoutput = 1 
 
 
#====================================================================== 
#DEFINE VARIABLES PROVIDED BY USER 
#====================================================================== 
 
#Network dataset 
netDataset = gp.GetParameter(0) 
 
#Impedence/cost attribute for the network dataset 
impedence = gp.GetParameterAsText(1) 
 
#Feature class with event details 
tempFC = gp.GetParameter(2) 
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#Type of temporal analysis (boolean variable).If True, hour 
#analysis.  If False, day analysis. 
timeType = gp.GetParameter(3) 
 
#Label used for temporal column in results table 
if timeType == 0: 
    tempLabel = "Days" 
else: 
    tempLabel = "Hours" 
 
#Feature class field containing dates of events 
dateFld = gp.GetParameterastext(4) 
 
#Feature class field containing hour event occurred in 24-hour HH 
#format (e.g. 7AM is 7; 7PM is 19) 
hourFld = gp.GetParameterastext(5) 
 
#Ensure that hour data field was provided if hourly analysis was 
#selected above.  Otherwise, exit program. 
if timeType > 0 and hourFld == "": 
    gp.addmessage("") 
    gp.addmessage("In order to conduct hourly analysis, a field\ 
containing hour data in a 24-hour HH format must be provided.") 
    gp.addmessage("") 
    sys.exit() 
else: 
    pass 
 
#Critical spatial distance in meters.  Convert to integer. 
critDist = int(gp.GetParameter(6)) 
 
#Critical temporal distance in format described by boolean variable 
#above. 
critTime = int(gp.GetParameter(7)) 
 
#Workspace for the geodatabase in which to store the output feature 
#class 
outputGDB = gp.GetParameterAsText(8) 
 
#Name given to output feature class 
outputF = "PointsInCluster_"+str(critDist)+"_"+str(critTime) 
#==================================================================== 
#BUILD OD COST MATRIX LINES LAYER 
#==================================================================== 
 
gp.addmessage("") 
gp.addmessage("Building Origin-Destination Cost Matrix Layer...") 
 
 
th1 = clock() 
 
#Using variables above and ArcToolBox tools  
odLayer = "ODCostMatrix" 



 

83 

lineLyr = "ODCostMatrix\\Lines" 
odLineLyr = "ODRoute_Layer" 
gp.MakeODCostMatrixLayer_na(netDataset, odLayer, impedence, "", "",\ 
                            "","ALLOW_UTURNS", "", "NO_HIERARCHY",\ 
                            "","STRAIGHT_LINES") 
gp.AddLocations_na(odLayer, "Origins", tempFC, "", "5000 Meters", "",\ 
                   "", "MATCH_TO_CLOSEST", "APPEND", "SNAP", "5\ 
Meters") 
gp.AddLocations_na(odLayer, "Destinations", tempFC, "", "5000 Meters",\ 
                   "", "", "MATCH_TO_CLOSEST", "APPEND", "SNAP",\ 
                   "5 Meters") 
gp.Solve_na(odLayer, "SKIP") 
gp.SelectData_management(odLayer, "Lines") 
gp.MakeFeatureLayer_management(lineLyr, odLineLyr, "", "", "") 
 
#Create variable from the OD Cost Matrix Lines Layer 
spaceFC = odLineLyr 
 
#Create variable from the Origin ID Field within the OD Cost Matrix 
#Lines Layer 
desc2 = gp.Describe(odLineLyr) 
fldinfo2 = desc2.FieldInfo 
spaceOrigIDfield = fldinfo2.GetFieldName(1) 
 
#Create variable from the Destination ID Field within the OD Cost 
#Matrix Lines Layer 
spaceDestIDfield = fldinfo2.GetFieldName(2) 
 
#Create variable from the Total Distance/Length Field within the OD 
#Cost Matrix Lines Layer 
spaceDistfield = fldinfo2.GetFieldName(4) 
 
th2 = clock() 
 
pt1 = th2-th1 
pt1int = int(pt1) 
pt1min = int(pt1/60) 
pt1sec = int(pt1int-(pt1min*60)) 
 
 
gp.addmessage("Origin-Destination Cost Matrix Layer complete. Process\ 
time: " + str(pt1min) + " minute(s) and " + str(pt1sec) + " seconds.") 
gp.addmessage("") 
 
#===================================================================== 
#BUILD TEMPORAL MATRIX 
#===================================================================== 
 
gp.addmessage("Creating temporal matrix...") 
 
th3 = clock() 
 
#Define variable that will become the field name for timeline field 
calcFld = "CALC_TIME" 
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#VB expression that will be used in the calculate field operation in 
#hour analysis is conducted 
expnHour = "["+str(dateFld)+"]*24+["+str(hourFld)+"]" 
 
#VB expression that will be used in the calculate field operation in 
#day analysis is conducted 
expnDay = "["+str(dateFld)+"]*1" 
 
#Local variables that will be used in the "make feature layer" 
#operation; a prerequisite to calculating the temporal fields. 
Output_Layer = "tempFC_L" 
Output_Layer2 = "tempFC_L2" 
 
#Assign boolean variable from user inputs as an integer 
bool = int(timeType) 
 
#Conduct calculate field operation if the user selects an hourly 
#analysis 
x = 1 
if bool == x: 
     
    # Make feature layer 
    gp.MakeFeatureLayer_management(tempFC, Output_Layer) 
 
    # Add timeline field and calculate timeline field value 
    gp.AddField_management(Output_Layer, calcFld, "DOUBLE", "", "",\ 
                           "", "", "NULLABLE", "NON_REQUIRED", "") 
    gp.CalculateField_management(Output_Layer, calcFld, expnHour,\ 
"VB","") 
 
    #Assign variable to feature layer that will be used for temporal 
    #analysis and matrix generation     
    timeNN = Output_Layer 
 
#Conduct calculate field operation if the user selects a day analysis 
else: 
     
    # Make feature layer 
    gp.MakeFeatureLayer_management(tempFC, Output_Layer2) 
     
    # Add timeline field and calculate timeline field value 
    gp.AddField_management(Output_Layer2, calcFld, "DOUBLE", "", "",\ 
"","", "NULLABLE", "NON_REQUIRED", "") 
    gp.CalculateField_management(Output_Layer2, calcFld, expnDay,\ 
"VB","") 
 
    #Assign variable to feature layer that will be used for temporal 
    #analysis and matrix generation    
    timeNN = Output_Layer2 
 
#Rename variable assigned to feature layer 
inputTimeFC = timeNN 
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#Assign variable to Object ID Field within feature layer 
desc = gp.Describe(timeNN) 
timeIDfield = desc.OIDFieldName 
 
#Rename variable assigned to timeline field name 
timeLinefield = calcFld 
 
#Initiate the python dictionary which stores the featureclass "ID" 
#field as a key and the corresponding timeline value                                
dctTime = {} 
 
#Set a list variable to hold the first "ID" value in the feature class. 
#This value will be used to standardize the sequential ordering of 
#events to start at a value of "1" 
adjustTimeID = [] 
 
#Initiate the geoprocessor cursor to extract the first value from the 
#user-defined "ID" field and place it in the list variable initiated 
#above 
cur = gp.SearchCursor(inputTimeFC) 
row = cur.Next() 
firstTimeID = int(row.GetValue(timeIDfield)) 
adjustTimeID = [firstTimeID]         
             
#Re-initiate geoprocessor cursor to search all rows in the feature 
#layer containing temporal data                           
cur = gp.SearchCursor(inputTimeFC) 
row = cur.Next() 
 
#Store the user-defined temporal ID field and timeline field values 
#into the initiated python dictionary 
while row: 
    #The dictionary key is set to the integer value in the "ID" field 
    #of the row; this value is adjusted 
    #to start at "1" 
    key = (int(row.GetValue(timeIDfield)) - adjustTimeID[0]) + 1 
    #Variable is given to the integer value in the field containing the 
    #timeline information 
    timelineDay = row.GetValue(timeLinefield) 
    #The key is set to the respective timeline value for each row 
    dctTime[key] = timelineDay 
    #Cursor moves to next row in feature layer 
    row = cur.Next() 
 
#Initiate the python dictionary which stores the calculated time 
#distances between every possible pair of events within the temporal 
#feature layer.  The key is an "ID" field coordinate pair, i.e. (12,55) 
#and the corresponding calculated difference between the timeline 
#distance of the coordinate pair is registered in the dictionary as 
#the associated value 
 
#STATISTICAL NOTE: 
#In order to test the resulting Knox statistic for significance, the 
#count of all possible combinations of pairings is necessary.  While 
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#the Knox statistic is the count of all spatiotemporal pairs that fall 
#inside the user-defined critical distances, it is also necessary to 
#determine the number of spatiotemporal pairs that are inside the 
#temporal distance but outside the spatial distance; inside the spatial 
#distance but outside the temporal distance; and both outside the 
#temporal and spatial distance.  In order to determine these 
#spatiotemporal pairings, dictionaries are established to capture those 
#pairs that fall both inside and outside the temporal distance and both 
#inside and outside the spatial distance. 
 
#Initiate dictionary to capture those temporal pairs which are less 
#than(LT) the user-defined critical distance     
dctTimeLT = {} 
 
#Initiate dictionary to capture those temporal pairs that are greater 
#than (GT) the user-defined critical distance 
dctTimeGT = {} 
 
#STATISTICAL NOTE: 
#In order to calculate the z statistic, it is necessary to know for a 
#given critical temporal distance how many pairs each point has.  For 
#example, if point 101 is a pair with points 5, 18 and 24 for a given 
#critical temporal distance, then point 101 would have a tally of 3. 
#The following lists are initiated in order to record this tally for 
#every point in the temporal data set. 
timeKeyAlist = [] 
timeKeyAlistTally = [] 
 
#This variable is defined to register the count of the total number 
#of point events being analyzed and to determine the stopping point for 
#the subsequent loop operation 
numEvents = len(dctTime) 
 
#Incrementing variables are initiated at "1" because the temporal ID 
#sequence was initiated to that value above. The x and y variables will 
#be used to number the subsequent "ID" pairs generated by this loop. 
x = 1 
y = 1 
 
#The loop will continue until the count of all analyzed points is 
#reached.  This loop calculates the interpoint temporal distance 
#between every possible point combination. 
while x <= numEvents: 
    for key in dctTime: 
        if key <= numEvents: 
            #The temporal distance between the two values is calculated 
            timeDif = abs(dctTime[y] - dctTime[x]) 
            #The temporal pair IDs are set to the current value of x 
            #and y 
            keyA = x 
            keyB = y 
            #Those pairs which fall inside the user defined critical 
            #temporal distance are stored in the "LT" dictionary.  
            #To ensure no duplicate pairings are in the dictionary, 
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            #i.e. (23,42) and (42,23), the condition of keyA < keyB is 
            #set            
            if timeDif <= critTime and keyA < keyB: 
                dctTimeLT[keyA, keyB] = timeDif 
                #All keyA points are recorded in a list to facilite 
                #a tally of all keyA's 
                timeKeyAlist.append(keyA) 
            #Those pairs which fall outside the user-defined critical 
            #temporal distance are stored in the "GT" dictionary 
            else: 
                if timeDif > critTime and keyA < keyB: 
                    dctTimeGT[keyA, keyB] = timeDif 
                else: 
                    pass 
            y = y + 1 
    x = x + 1 
    y = 1 
     
#The following loop tallies the total number of pairs each point has 
#at a given critical temporal distance as well as performing some math 
#which will be used by the KnoxStat module to calculate the z 
#statistic. 
x = 0 
while x <= numEvents: 
    #For the given x value, the tally of occurrence of that value in 
    #the keyA list is assigned to a variable 
    occurX = timeKeyAlist.count(x) 
    #In accordance with the statistical formula for calculated z for 
    #Knox, the following multiplication is calculated 
    occurXx2 = occurX * 2 
    occurXx2squared = occurXx2 ** 2 
    #Each resulting value is stored in another list to be subsequently 
    #summed for use in the calculation of z 
    timeKeyAlistTally.append(occurXx2squared) 
    x = x + 1 
#The sum of all values in the list is assigned to variable used in the 
#calculation of the z statistic 
t2 = sum(timeKeyAlistTally) 
 
 
#Count of time pairs which fall within the user-defined critical 
#distance                               
numCritTimePairs = len(dctTimeLT) 
#Count of time pairs which fall outside the user-defined critical 
#distance 
numNotCritTimePairs = len(dctTimeGT) 
 
th4 = clock() 
pt2 = th4-th3 
pt2int = int(pt2) 
pt2min = int(pt2/60) 
pt2sec = int(pt2int-(pt2min*60)) 
 



 

88 

gp.addmessage("Temporal matrix complete.  Process time: " +\ 
str(pt2min) + " minute(s) and " + str(pt2sec) + " seconds.") 
gp.addmessage("") 
 
#====================================================================== 
#BUILD SPATIAL MATRIX 
#====================================================================== 
 
gp.addmessage("Creating spatial matrix...") 
 
th5 = clock() 
 
#Initiate the python dictionaries which stores the OriginID and 
#DestinationID as a key and the corresponding network distance as the 
#associated value from the OD Matrix Lines layer 
 
#Stores all spatial pairs which fall inside user-defined spatial 
#distance 
dctSpaceLT = {} 
#Stores all spatial pairs which fall outside user-defined spatial 
#distance 
dctSpaceGT = {} 
 
#Set list variables to hold the first value in the OriginID and 
#DestinationID fields of the OD Matrix "Lines" layer. 
#These values will be used to standardize the sequential ordering 
#of events to start at a value of "1"         
adjustOrigID = [] 
adjustDestID = [] 
 
#Initiate the geoprocessor cursor to extract the first value in the 
#OriginID and DestinationID fields of the OD Matrix "Lines" layer 
#and place it in the list variables initiated above 
cur = gp.SearchCursor(spaceFC) 
row = cur.Next() 
firstOrigID = int(row.GetValue(spaceOrigIDfield)) 
firstDestID = int(row.GetValue(spaceDestIDfield)) 
adjustOrigID = [firstOrigID]         
adjustDestID = [firstDestID] 
 
#STATISTICAL NOTE: 
#In order to calculate the z statistic, it is necessary to know for a 
#given critical spatial distance how many pairs each point has.  For 
#example, if point 101 is a pair with points 5, 18 and 24 for a given 
#spatial distance,then point 101 would have a tally of 3.  The 
#following lists are initiated in order to record this tally for every 
#point in the spatial data set. 
spaceKeyAlist = [] 
spaceKeyAlistTally = [] 
 
#Initiate geoprocessor cursor to search the Lines Layer containing the 
#spatial data of points being analyzed 
cur = gp.SearchCursor(spaceFC) 
row = cur.Next() 
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while row: 
    #The dictionary key is set to the integer value in the respective 
    #"ID" field of the row; these value are adjusted to start at "1" 
    keyA = (int(row.GetValue(spaceOrigIDfield)) - adjustOrigID[0]) + 1 
    keyB = (int(row.GetValue(spaceDestIDfield)) - adjustDestID[0]) + 1 
    #Extract the associated value for the spatial distance between the 
    #two points spaceDif = row.GetValue(spaceDistfield)Those spatial 
    #pairs which meet the user-defined critical distance are entered 
    #into the "LT" dictionary to ensure no duplicate pairings are in 
    #the dictionary, i.e. (23,42) and (42,23), the condition of 
    #keyA < keyB is set   
    if spaceDif >= 0 and spaceDif <= critDist and keyA < keyB: 
        dctSpaceLT[keyA, keyB] = spaceDif 
        #All keyA points are recorded in a list to facilite a tally of 
        #all keyA's 
        spaceKeyAlist.append(keyA) 
    #Those spatial pairs that do not meet the user-defined critical 
    #distance are entered into the "GT" dictionary 
    else: 
        if spaceDif > critDist and keyA < keyB: 
             dctSpaceGT[keyA, keyB] = spaceDif              
        else: 
            pass 
    row = cur.Next() 
     
#The following loop tallies the total number of pairs each point has at 
#a given critical temporal distance as well as performing some math 
#which will be used by the KnoxStat module to calculate the z 
#statistic. 
x = 0 
while x <= numEvents: 
    #For the given x value, the tally of occurrence of that value in 
the 
    #keyA list is assigned to a variable 
    occurX = spaceKeyAlist.count(x) 
    #In accordance with the statistical formula for calculated z for 
    #Knox, the following multiplication is calculated 
    occurXx2 = occurX * 2 
    occurXx2squared = occurXx2 ** 2 
    #Each resulting value is stored in another list to be subsequently 
    #summed for use in the calculation of z 
    spaceKeyAlistTally.append(occurXx2squared) 
    x = x + 1 
#The sum of all values in the list is assigned to variable used in the 
#calculation of the z statistic 
s2 = sum(spaceKeyAlistTally) 
 
#Count of spatial pairs which fall within the user-defined critical 
#distance 
numCritSpacePairs = len(dctSpaceLT) 
 
#Count of spatial pairs which fall outside the user-defined critical 
#distance 
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numNotCritSpacePairs = len(dctSpaceGT) 
 
th6 = clock() 
 
pt3 = th6-th5 
pt3int = int(pt3) 
pt3min = int(pt3/60) 
pt3sec = int(pt3int-(pt3min*60)) 
 
gp.AddMessage("Spatial matrix complete.  Process time: " + str(pt3min)\ 
              + " minute(s) and " + str(pt3sec) + " seconds.") 
gp.AddMessage("") 
gp.AddMessage("") 
 
#====================================================================== 
#CONDUCT SPATIOTEMPORAL ANALYSIS 
#====================================================================== 
 
#Compare TimeLT and SpaceLT Dictionaries.  If a pair is in both 
#dictionaries, count the pair as a spatiotemporal pair. This is the 
#Knox Statistic 
x = 0 
for key in dctSpaceLT: 
    if dctTimeLT.has_key(key) == True: 
        x = x + 1 
#Count of spatiotemporal pairs which fall within the user-defined 
#critical distances                                     
knoxAPairs = x 
 
#Compare TimeGT and SpaceLT.  If a  pair is in both dictionaries, 
#count the pair as a spatiotemporal pair 
x = 0 
for key in dctTimeGT: 
    if dctSpaceLT.has_key(key) == True: 
        x = x + 1 
#Count of spatiotemporal pairs which fall within critical spatial 
#distance but outside critical temporal distance 
knoxBPairs = x 
 
#Compare TimeLT and SpaceGT.  If a pair is in both dictionaries, 
#count the pair as a spatiotemporal pair 
x = 0 
for key in dctSpaceGT: 
    if dctTimeLT.has_key(key) == True: 
        x = x + 1 
#Count of spatiotemporal pairs which fall within critical temporal 
#distance but outside critical spatial distance 
knoxCPairs = x 
 
#Compare TimeGT and SpaceGT Dictionaries.  If a pair is in both 
#dictionaries, count the pair as a spatiotemporal pair 
x = 0 
for key in dctSpaceGT: 
    if dctTimeGT.has_key(key) == True: 
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        x = x + 1 
#Count of spatiotemporal pairs which fall outside the user-defined 
#critical distances                                     
knoxDPairs = x 
   
#STATISTICAL OUTPUTS: 
#Set the variable to carry the chi squared value for the Knox 
Statistic. 
#Chi square is calculated according to "chiKnox" which is defined in 
the 
#knoxStats module. 
knoxChiSig = chiKnox(knoxAPairs, knoxBPairs, knoxCPairs, knoxDPairs,\ 
                     numEvents) 
#Probability of knoxChiSig 
chiProb = round(scipy.stats.chisqprob(knoxChiSig, 1),5) 
 
#Set the variable to carry the z value for the Knox Statistic.  The z 
#statistic is calculated according to "normalKnox" which is defined in 
#the knoxStats module. 
knoxZ = normalKnox(knoxAPairs, numCritSpacePairs, numCritTimePairs,\ 
s2, t2, numEvents) 
 
#Probability of knoxZ 
if knoxZ > 0: 
    zProb = round((1 - scipy.stats.zprob(knoxZ)),5) 
else: 
    zProb = round((scipy.stats.zprob(knoxZ)),5) 
 
#====================================================================== 
#REPORT RESULTS 
#====================================================================== 
 
gp.AddMessage("=======================================================\
========================================================") 
gp.AddMessage("") 
gp.AddMessage("Meters" + "\t" + tempLabel + "\t" + "  KnoxR" + "     \ 
chiVal" + "   chiProb" + "\t" + "      zVal" + "\t" + " zProb") 
gp.AddMessage("-------------------------------------------------------\ 
--------------------------------------------------------")     
gp.AddMessage(" %-8d   %-5d   %-5d   %-+0.3f    %-12s %-+0.3f   %-12s"\ 
              % (critDist, critTime, knoxAPairs, knoxChiSig, chiProb,\ 
                 knoxZ, zProb)) 
gp.Addmessage("") 
gp.AddMessage("------------------------------------------------------\ 
---------------------------------------------------------")   
gp.AddMessage("") 
gp.AddMessage("Referenced by ID number and in no particular order,\ 
the spatiotemporal pairs contributing") 
gp.AddMessage("to the cluster are as follows:") 
gp.AddMessage("") 
 
 
#Print to the dialouge screen all spatiotemporal pairs which fall 
#within the user-defined critical distances (the Knox Statistic pairs)                                 
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clusterIDs = [] 
 
for key in dctSpaceLT: 
    if dctTimeLT.has_key(key) == True: 
        gp.AddMessage("" + str(key) + "") 
        clusterIDs.append(key)        
       
gp.AddMessage("")        
gp.AddMessage("=======================================================\ 
========================================================") 
 
#====================================================================== 
#CREATE OUTPUT FEATURE CLASS 
#====================================================================== 
 
clusterEvents = [] 
 
#If there is no spatiotemporal clustering, write message to the screen 
if len(clusterIDs) == 0: 
    gp.addmessage("") 
    gp.addmessage("Knox R = 0, therefore there are no points to export\ 
to a cluster feature class.") 
    gp.addmessage("") 
else: 
    pass 
 
#Write ObjectIDs contributing to cluster to a list 
i = 0 
while i < len(clusterIDs): 
    clusterEvents.append(clusterIDs[i][0]) 
    clusterEvents.append(clusterIDs[i][1]) 
    i = i + 1 
 
#Remove duplicate IDs 
clusterEventsSetA = set(clusterEvents) 
clusterEventsSetB = set(clusterEvents) 
uniqueEvents = clusterEventsSetA|clusterEventsSetB 
uniqueEventsList = list(uniqueEvents) 
 
#Generate a SQL statement to be used in the "select by attribute" 
#function which will create the output feature class 
sqlList = [] 
i = 0 
while i < len(uniqueEventsList): 
    statement = '"'+str(timeIDfield)+'" = ' + str(uniqueEventsList[i]) 
    sqlList.append(statement) 
    i=i+1 
 
glue = " OR " 
clusterSql = glue.join(sqlList) 
 
#From the feature layer, select out only those points which are members 
#of the spatiotemporal cluster 
gp.SelectLayerByAttribute_management(inputTimeFC, "NEW_SELECTION",\ 
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                                     clusterSql) 
#Create a new feature class from the selected points and save to user 
#designated workspace 
gp.FeatureClassToFeatureClass_conversion(inputTimeFC, outputGDB,\ 
                                         outputF) 
 
gp.addmessage("") 
gp.addmessage("A feature class file named '" + outputF + "' has been\ 
saved in the workspace at:") 
gp.addmessage("'" + outputGDB + "' which contains the points\ 
contributing to the spatiotemporal cluster above.") 
gp.addmessage("") 
  
 
#Delete variables 
del dctSpaceLT, dctSpaceGT, dctTime, dctTimeLT, dctTimeGT,\ 
    numCritTimePairs, numNotCritTimePairs, critTime, numEvents 
del t2, s2, timeKeyAlist, timeKeyAlistTally, spaceKeyAlist,\ 
    spaceKeyAlistTally, knoxZ, knoxChiSig,  
del knoxAPairs, knoxBPairs, knoxCPairs, knoxDPairs, numCritSpacePairs,\ 
    numNotCritSpacePairs, adjustOrigID, adjustDestID 
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Tool 2: ST Cluster Automatic 

#---------------------------------------------------------------------- 
#Name: SCAn Tool 2 - ST Cluster Automatic 
#Created by: David Eckley 
#Date created: 20101130 
#Purpose: ST Cluster Automatic performs nearest neighbor distance 
#analysis on both the spatial and temporal dimension of the dataset to 
#determine a range of critical parameters.  It then evaluates the 
#determined range and reports the Knox statistic and associated 
#critical parameters for the result which returned the lowest 
probability of occurrence.   
#---------------------------------------------------------------------- 
 
#====================================================================== 
#IMPORT MODULES 
#====================================================================== 
import os, sys, string, arcgisscripting, math, numpy, scipy 
from time import* 
from numpy import* 
from scipy import* 
from scipy import stats 
from knoxStats import chiKnox, normalKnox 
 
#====================================================================== 
#INITIATE GEOPROCESSOR 
#====================================================================== 
gp = arcgisscripting.create(9.3) 
 
gp.addmessage("") 
gp.addmessage("Executing spatial and temporal critical range\ 
analysis...") 
gp.addmessage("") 
 
th1 = clock() 
 
#====================================================================== 
#DEFINE VARIABLES PROVIDED BY USER 
#====================================================================== 
 
#Network dataset 
netDataset = gp.GetParameter(0) 
 
#Impedence/cost attribute for the network dataset 
impedence = gp.GetParameterAsText(1) 
 
#Feature class with event details 
tempFC = gp.GetParameter(2) 
 
#Type of temporal analysis (boolean variable).If True, hour analysis.  
#If False, day analysis. 
timeType = gp.GetParameter(3) 
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#Label used for temporal column in results table 
if timeType == 0: 
    tempLabel = "Days" 
else: 
    tempLabel = "Hours" 
 
#Feature class field containing dates of events 
dateFld = gp.GetParameterastext(4) 
 
#Feature class field containing hour event occurred in 24-hour HH 
#format (e.g. 7AM is 7; 7PM is 19) 
hourFld = gp.GetParameterastext(5) 
 
#Ensure that hour data field was provided if hourly analysis was 
#selected above.  Otherwise, exit program. 
if timeType > 0 and hourFld == "": 
    gp.addmessage("") 
    gp.addmessage("In order to conduct hourly analysis, a field\ 
containing hour data in a 24-hour HH format must be provided.") 
    gp.addmessage("") 
    sys.exit() 
else: 
    pass 
 
#Variable defining user-defined statistical significance level.  Will 
#be used to calculate Bonferroni correction. 
alpha = gp.GetParameter(6) 
 
#Define list variable to hold the Knox R results for each interval of 
#critical parameter pairings  
rangeResultsList = [] 
 
#===================================================================== 
#CONDUCT SPATIAL NEAREST NEIGHBOR RANGE ANALYSIS 
#===================================================================== 
 
# Define local variables used in the Make Closest Facility Layer 
#analysis. 
CFLayer = "ClosestFacilityLayer" 
RouteLayer = "ClosestFacilityLayer\\Routes" 
CFRouteLayer = "CFRoutes_Layer" 
 
# Make Closest Facility Layer.  This analysis searches for the closest 
#and second closest spatial neighbors between two point feature layers; 
#in this case both layers are the same. 
gp.MakeClosestFacilityLayer_na(netDataset, CFLayer, impedence,\ 
"TRAVEL_TO", "", "2", "", "ALLOW_UTURNS", "", "NO_HIERARCHY", "",\ 
"TRUE_LINES_WITH_MEASURES") 
gp.AddLocations_na(CFLayer, "Facilities", tempFC, "CurbApproach #\ 
0;Attr_Length # 0", "5000 Meters", "OBJECTID", "", "MATCH_TO_CLOSEST",\ 
"APPEND", "SNAP", "5 Meters") 
gp.AddLocations_na(CFLayer, "Incidents", tempFC, "CurbApproach #\ 
0;Attr_Length # 0", "5000 Meters", "OBJECTID", "", "MATCH_TO_CLOSEST",\ 
"APPEND", "SNAP", "5 Meters") 
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gp.Solve_na(CFLayer, "HALT") 
 
# Select only the second nearest neighbors.  The first nearest neighbor 
#is the point itself since this analysis is looking at two identical 
#point layers. 
gp.SelectData_management(CFLayer, "Routes") 
 
# Make a feature layer from the selected events above. 
gp.MakeFeatureLayer_management(RouteLayer, CFRouteLayer,\ 
"\"FacilityRank\" = 2", "", "FacilityID FacilityID VISIBLE\ 
NONE;FacilityRank FacilityRank VISIBLE NONE;Name Name VISIBLE\ 
NONE;IncidentCurbApproach IncidentCurbApproach VISIBLE\ 
NONE;FacilityCurbApproach FacilityCurbApproach VISIBLE NONE;IncidentID\ 
IncidentID VISIBLE NONE;Total_Length Total_Distance VISIBLE NONE") 
 
#Rename variable storing feature layer 
netNN = CFRouteLayer 
 
#Initiate a list to store the spatial nearest neighbor distance values 
nDistList = [] 
 
#Initiate the geoprocessor cursor to extract the spatial nearest 
#neighbor distance value for each event 
cur = gp.SearchCursor(netNN) 
row = cur.Next() 
while row: 
    nDist = int(row.GetValue("Total_Distance")) 
    nDistList.append(nDist) 
    row = cur.Next() 
 
#Count the values in the list 
nNcount = len(nDistList) 
#Assign the minimum Spatial Nearest Neighbor Distance to a variable 
nNmin = min(nDistList) 
#Assign the maximum Spatial Nearest Neighbor Distance to a variable 
nNmax = max(nDistList) 
#Assign the avg NN spatial dist to a variable 
nNavg = sum(nDistList) / nNcount 
 
#Round avg nearest neighbor distance value to the next highest multiple 
#of 100, unless the value is exactly a multiple of 100 
nNavgRound = round(nNavg / 10) 
roundStr = str(nNavgRound) 
roundVal = int(roundStr[-3]) 
if roundVal > 0: 
    spaceCritMax = ((10 - float(roundVal)) + nNavgRound)*10 
else: 
    spaceCritMax = nNavgRound * 10 
 
#Round min nearest neighbor distance value to the next lowest multiple 
#of 100, unless the value is exactly a multiple of 100 
if nNmin > 0: 
    nNminRound = round(nNmin / 10) 
    roundStr = str(nNminRound) 
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    roundVal = int(roundStr[-3]) 
    if roundVal > 0: 
        spaceCritMin = (nNminRound - roundVal)*100 
    else: 
        spaceCritMin = nNminRound * 100 
else: 
    spaceCritMin = 0 
 
gp.addmessage("") 
gp.addmessage("Minimum Network Nearest Neighbor Distance: " +\ 
str(nNmin) + " meters.") 
gp.addmessage("Maximum Network Nearest Neighbor Distance: " +\ 
str(nNmax) + " meters.") 
gp.addmessage("Average Network Nearest Neighbor Distance: " +\ 
str(nNavg) + " meters.") 
gp.addmessage("Spatial Range input for ST Cluster Automatic will be\ 
from " + str(spaceCritMin) + " to " + str(spaceCritMax) + " meters.") 
 
#==================================================================== 
#CONDUCT SPATIAL NEAREST NEIGHBOR RANGE ANALYSIS 
#==================================================================== 
 
#Define a variable for the feature layer field that will hold the 
#calculated timeline value 
calcFld = "CALC_TIME" 
 
#Create SQL statement for the field calculation if hourly analysis is 
#selected 
expnHour = "["+str(dateFld)+"]*24+["+str(hourFld)+"]" 
#Create SQL statement for the field calculation if day analysis is 
#selected 
expnDay = "["+str(dateFld)+"]*1" 
 
#Local variables used in the calculate field process below 
Output_Layer = "tempFC_L" 
Output_Layer2 = "tempFC_L2" 
 
#Define variable to hold boolean value 
bool = int(timeType) 
 
#If hourly analysis is selected, perform this section of code 
x = 1 
if bool == x: 
    gp.addmessage("") 
    gp.addmessage("Temporal Analysis Type: Hour") 
     
    # Add and calculate timeline field to feature layer 
    gp.MakeFeatureLayer_management(tempFC, Output_Layer) 
    gp.AddField_management(Output_Layer, calcFld, "DOUBLE", "", "",\ 
"", "", "NULLABLE", "NON_REQUIRED", "") 
    gp.CalculateField_management(Output_Layer, calcFld, expnHour,\ 
"VB", "") 
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    #Assign variable to output layer     
    timeNN = Output_Layer 
 
    #Assign variable to list holding the timeline values    
    timeList = [] 
 
    #Search through feature layer and extract out the timeline values     
    cur = gp.SearchCursor(timeNN) 
    row = cur.Next() 
    while row: 
        time = row.GetValue(calcFld) 
        timeList.append(time) 
        row = cur.Next() 
 
    #Sort list so that values are ascending       
    timeList.sort() 
 
    #Assign variable to number of items in list     
    numTimes = len(timeList) 
 

#Search through the list of timeline values and calculate the 
#neighbor distance between each event; store in list 

    nList = [] 
    maxList = max(timeList) 
    x=1 
    y=0 
    while x < numTimes: 
        nList.append(timeList[x]-timeList[y]) 
        x=x+1 
        y=y+1 
        
    #Search through list of neighbor distances and select the nearest  
    #neighbor distance for each event 
    numDist = len(nList) 
    nDistList = [] 
    x=1 
    y=0 
    while x < numDist: 
        n=[nList[y],nList[x]] 
        nn=min(n) 
        nDistList.append(nn) 
        x=x+1 
        y=y+1 
       
    #Count number of values in list     
    nNcount = len(nDistList) 
    #Calculate sum of values in list 
    nNsum = float(sum(nDistList)) 
    #Determine minimum value in list 
    nNmin = min(nDistList) 
    #Determine maximum value in list 
    nNmax = max(nDistList) 
    #Determine average value in list 
    nNavg = float(nNsum / nNcount) 
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    #Round avg nearest neighbor distance value to the next highest 
    #multiple of 1, unless the value is exactly a multiple of 1 
    nNavgRound = round(nNavg) 
    roundStr = str(nNavgRound) 
    roundVal = int(roundStr[-1]) 
    if roundVal > 0: 
        timeCritMax = (10 - float(roundVal)) + nNavgRound 
    else: 
        timeCritMax = nNavgRound 
 
    #Round min nearest neighbor distance value to the next lowest  
    #multiple of 1, unless the value is exactly a multiple of 1 
    if nNmin > 0: 
        nNminRound = round(nNmin) 
        roundStr = str(nNminRound) 
        roundVal = int(roundStr[-1]) 
        if roundVal > 0: 
            timeCritMin = nNminRound - roundVal 
        else: 
            timeCritMin = nNminRound 
    else: 
        timeCritMin = 0 
         
    gp.addmessage("Minimum Temporal Nearest Neighbor Distance: " +\ 
str(nNmin) + " hours.") 
    gp.addmessage("Maximum Temporal Nearest Neighbor Distance: " +\ 
str(nNmax) + " hours.") 
    gp.addmessage("Average Temporal Nearest Neighbor Distance: " +\ 
"%0.1f" % (nNavg) + " hours.") 
    gp.addmessage("Temporal Range input for ST Cluster Automatic will\ 
be from " + str(timeCritMin) + " to " + str(timeCritMax) + " hours.") 
    gp.addmessage("") 
 
#All of the code annotation above is the same for the loop below.  The 
#following loop performs the same functions for a day analysis instead 
#of hourly.         
else: 
    gp.addmessage("") 
    gp.addmessage("Temporal Analysis Type: Day") 
     
 
    gp.MakeFeatureLayer_management(tempFC, Output_Layer2) 
    gp.AddField_management(Output_Layer2, calcFld, "DOUBLE", "", "",\ 
"", "", "NULLABLE", "NON_REQUIRED", "") 
    gp.CalculateField_management(Output_Layer2, calcFld, expnDay,\ 
"VB", "") 
 
    timeNN = Output_Layer2 
    timeList = [] 
    cur = gp.SearchCursor(timeNN) 
    row = cur.Next() 
    while row: 
        time = int(row.GetValue(calcFld)) 
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        timeList.append(time) 
        row = cur.Next()         
     
    timeList.sort() 
 
    numTimes = len(timeList) 
 
    nList = [] 
    maxList = max(timeList) 
    x=1 
    y=0 
    while x < numTimes: 
        nList.append(timeList[x]-timeList[y]) 
        x=x+1 
        y=y+1        
 
    numDist = len(nList) 
    nDistList = [] 
    x=1 
    y=0 
    while x < numDist: 
        n=[nList[y],nList[x]] 
        nn=min(n) 
        nDistList.append(nn) 
        x=x+1 
        y=y+1       
         
    nNcount = len(nDistList) 
    nNsum = float(sum(nDistList)) 
    nNmin = min(nDistList) 
    nNmax = max(nDistList) 
    nNavg = float(nNsum / nNcount) 
 
    nNavgRound = round(nNavg) 
    roundStr = str(nNavgRound) 
    roundVal = int(roundStr[-1]) 
    if roundVal > 0: 
        timeCritMax = (10 - float(roundVal)) + nNavgRound 
    else: 
        timeCritMax = nNavgRound 
 
    if nNmin > 0: 
        nNminRound = round(nNmin) 
        roundStr = str(nNminRound) 
        roundVal = int(roundStr[-1]) 
        if roundVal > 0: 
            timeCritMin = nNminRound - roundVal 
        else: 
            timeCritMin = nNminRound 
    else: 
        timeCritMin = 0 
 
    gp.addmessage("Minimum Temporal Nearest Neighbor Distance: " +\ 
str(nNmin) + " days.") 
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    gp.addmessage("Maximum Temporal Nearest Neighbor Distance: " +\ 
str(nNmax) + " days.") 
    gp.addmessage("Average Temporal Nearest Neighbor Distance: " +\ 
"%0.1f" % (nNavg) + " days.") 
    gp.addmessage("Temporal Range input for ST Cluster Automatic will\ 
be from " + str(timeCritMin) + " to " + str(timeCritMax) + " days.") 
    gp.addmessage("")  
 
th2 = clock() 
 
pt1 = th2-th1 
pt1int = int(pt1) 
pt1min = int(pt1/60) 
pt1sec = int(pt1int-(pt1min*60)) 
 
gp.addmessage("") 
gp.addmessage("Spatial and temporal critical range analysis complete.\ 
Process time: " + str(pt1min) + " minute(s) and " + str(pt1sec) + "\ 
seconds.") 
gp.addmessage("") 
gp.addmessage("Creating origin-destination matrix layer...") 
 
th3 = clock() 
 
#====================================================================== 
#CONDUCT SPATIOTEMPORAL ANALYSIS FOR EACH PAIRING OF 
#SPATIAL AND TEMPORAL CRITICAL VALUES DETERMINED ABOVE 
#====================================================================== 
 
#The annotation for the following portion of code is the same as 'ST 
#Cluster Basic'.  Refer to that script for explanation. 
 
 
critTime = int(timeCritMin) 
 
critTimeMax = int(timeCritMax) 
 
critTimeRange = critTimeMax - critTime 
 
if critTimeRange >= 2: 
    critTimeMultiple = round(critTimeRange/2) 
else: 
    if critTimeRange < 2: 
        critTimeMultiple = 1 
 
inputTimeFC = timeNN 
 
desc = gp.Describe(timeNN) 
timeIDfield = desc.OIDFieldName 
 
timeLinefield = calcFld 
 
odLayer = "ODCostMatrix" 
lineLyr = "ODCostMatrix\\Lines" 
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odLineLyr = "ODRoute_Layer" 
gp.MakeODCostMatrixLayer_na(netDataset, odLayer, impedence, "", "",\ 
"", "ALLOW_UTURNS", "", "NO_HIERARCHY", "", "STRAIGHT_LINES") 
gp.AddLocations_na(odLayer, "Origins", tempFC, "", "5000 Meters", "",\ 
"", "MATCH_TO_CLOSEST", "APPEND", "SNAP", "5 Meters") 
gp.AddLocations_na(odLayer, "Destinations", tempFC, "", "5000 Meters",\ 
"", "", "MATCH_TO_CLOSEST", "APPEND", "SNAP", "5 Meters") 
gp.Solve_na(odLayer, "SKIP") 
gp.SelectData_management(odLayer, "Lines") 
gp.MakeFeatureLayer_management(lineLyr, odLineLyr, "", "", "") 
 
spaceFC = odLineLyr 
 
desc2 = gp.Describe(odLineLyr) 
fldinfo2 = desc2.FieldInfo 
spaceOrigIDfield = fldinfo2.GetFieldName(1) 
 
spaceDestIDfield = fldinfo2.GetFieldName(2) 
 
spaceDistfield = fldinfo2.GetFieldName(4) 
 
critDist = int(spaceCritMin) 
 
critDistMax = int(spaceCritMax) 
 
critDistRange = critDistMax - critDist 
 
critDistMultiple = critDistRange/2 
 
 
th4 = clock() 
pt2 = th4-th3 
pt2int = int(pt2) 
pt2min = int(pt2/60) 
pt2sec = int(pt2int-(pt2min*60)) 
 
gp.addmessage("Origin-destination matrix layer complete.  Process\ 
time: " + str(pt2min) + " minute(s) and " + str(pt2sec) + " seconds.") 
gp.addmessage("") 
 
gp.addmessage("Conducting spatiotemporal analysis...") 
gp.addmessage("") 
 
th5 = clock() 
 
 
gp.AddMessage("=======================================================\
===========================") 
gp.AddMessage("") 
gp.AddMessage("Meters" + "\t" + tempLabel + "\t" + "  KnoxR" + "\     
chiVal" + "   chiProb" + "\t" + "     zVal" + "\t" + " zProb") 
gp.AddMessage("------------------------------------------------------\ 
----------------------------")    
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#Define the number of iterations for which the Knox analysis will be 
#conducted based on the spatial and temporal range of values 
critDistRuns = (int(critDistRange) / int(critDistMultiple)) + 2 
critTimeRuns = (int(critTimeRange) / int(critTimeMultiple)) + 2 
critTimeiter = critTime 
 
#Initiate counters 
distRun = 0 
timeRun = 0 
results = 0 
 
#Begin Knox test loop 
while distRun < critDistRuns: 
    while timeRun < critTimeRuns: 
             
                            
        dctTime = {} 
 
        adjustTimeID = [] 
 
        cur = gp.SearchCursor(inputTimeFC) 
        row = cur.Next() 
        firstTimeID = int(row.GetValue(timeIDfield)) 
        adjustTimeID = [firstTimeID]         
 
        cur = gp.SearchCursor(inputTimeFC) 
        row = cur.Next() 
 
        while row: 
            key = (int(row.GetValue(timeIDfield)) - adjustTimeID[0]) +\ 
1 
            timelineDay = row.GetValue(timeLinefield) 
            dctTime[key] = timelineDay 
            row = cur.Next() 
 
        dctTimeLT = {} 
        dctTimeGT = {} 
 
        timeKeyAlist = [] 
        timeKeyAlistTally = [] 
 
        numEvents = len(dctTime) 
 
        x = 1 
        y = 1 
        while x <= numEvents: 
            for key in dctTime: 
                if key <= numEvents: 
                    timeDif = abs(dctTime[y] - dctTime[x]) 
                    keyA = x 
                    keyB = y         
                    if timeDif <= critTime and keyA < keyB: 
                        dctTimeLT[keyA, keyB] = timeDif 
                        timeKeyAlist.append(keyA) 
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                    else: 
                        if timeDif > critTime and keyA < keyB: 
                            dctTimeGT[keyA, keyB] = timeDif 
                        else: 
                            pass 
                    y = y + 1 
            x = x + 1 
            y = 1 
 
        x = 0 
        while x <= numEvents: 
            occurX = timeKeyAlist.count(x) 
            occurXx2 = occurX * 2 
            occurXx2squared = occurXx2 ** 2 
            timeKeyAlistTally.append(occurXx2squared) 
            x = x + 1 
 
        t2 = sum(timeKeyAlistTally)         
                            
        numCritTimePairs = len(dctTimeLT) 
        numNotCritTimePairs = len(dctTimeGT) 
 
        dctSpaceLT = {} 
        dctSpaceGT = {} 
      
        adjustOrigID = [] 
        adjustDestID = [] 
 
        cur = gp.SearchCursor(spaceFC) 
        row = cur.Next() 
        firstOrigID = int(row.GetValue(spaceOrigIDfield)) 
        firstDestID = int(row.GetValue(spaceDestIDfield)) 
        adjustOrigID = [firstOrigID]         
        adjustDestID = [firstDestID] 
 
        spaceKeyAlist = [] 
        spaceKeyAlistTally = [] 
 
        cur = gp.SearchCursor(spaceFC) 
        row = cur.Next() 
 
        while row: 
            keyA = (int(row.GetValue(spaceOrigIDfield)) - 
adjustOrigID[0]) + 1 
            keyB = (int(row.GetValue(spaceDestIDfield)) - 
adjustDestID[0]) + 1 
            spaceDif = row.GetValue(spaceDistfield) 
            if spaceDif >= 0 and spaceDif <= critDist and keyA < keyB: 
                dctSpaceLT[keyA, keyB] = spaceDif 
                spaceKeyAlist.append(keyA) 
            else: 
                if spaceDif > critDist and keyA < keyB: 
                     dctSpaceGT[keyA, keyB] = spaceDif              
                else: 
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                    pass 
            row = cur.Next() 
        x = 0 
        while x <= numEvents: 
            occurX = spaceKeyAlist.count(x) 
            occurXx2 = occurX * 2 
            occurXx2squared = occurXx2 ** 2 
            spaceKeyAlistTally.append(occurXx2squared) 
            x = x + 1 
        s2 = sum(spaceKeyAlistTally) 
        numCritSpacePairs = len(dctSpaceLT) 
        numNotCritSpacePairs = len(dctSpaceGT) 
 
        x = 0 
        for key in dctSpaceLT: 
            if dctTimeLT.has_key(key) == True: 
                x = x + 1 
                 
        knoxAPairs = x 
        
        x = 0 
        for key in dctTimeGT: 
            if dctSpaceLT.has_key(key) == True: 
                x = x + 1 
 
        knoxBPairs = x 
 
        x = 0 
        for key in dctSpaceGT: 
            if dctTimeLT.has_key(key) == True: 
                x = x + 1 
 
        knoxCPairs = x 
 
        x = 0 
        for key in dctSpaceGT: 
            if dctTimeGT.has_key(key) == True: 
                x = x + 1 
                              
        knoxDPairs = x 
 
        knoxChiSig = chiKnox(knoxAPairs, knoxBPairs, knoxCPairs,\ 
knoxDPairs, numEvents) 
        chiProb = round(scipy.stats.chisqprob(knoxChiSig, 1),5) 
        knoxZ = normalKnox(knoxAPairs, numCritSpacePairs,\ 
numCritTimePairs, s2, t2, numEvents) 
        if knoxZ > 0: 
            zProb = round((1 - scipy.stats.zprob(knoxZ)),5) 
        else: 
            zProb = round((scipy.stats.zprob(knoxZ)),5) 
        gp.AddMessage(" %-8d   %-5d   %-5d   %-+0.3f    %-12s %-+0.3f\   
%-12s" % (critDist, critTime, knoxAPairs, knoxChiSig, chiProb, knoxZ,\ 
zProb)) 
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        #Add resulting statistics from this iteration of the loop into  
        #a list.  Append the list to a list of all the result lists for  
        #all iterations. This list is used to determine the most  
        #significant spatiotemporal cluster further down in the script. 
        rangeResult = [critDist, critTime, knoxAPairs, knoxChiSig,\ 
chiProb, knoxZ, zProb] 
        rangeResultsList.append(rangeResult) 
     
        critTime = critTime + critTimeMultiple 
        timeRun = timeRun + 1 
        results = results + 1 
 
    critDist = critDist + critDistMultiple 
    critTime = critTimeiter 
    distRun = distRun + 1 
    timeRun = 0 
 
gp.AddMessage("") 
gp.AddMessage("======================================================\ 
============================") 
gp.AddMessage("") 
 
th6 = clock() 
 
pt3 = th6-th5 
pt3int = int(pt3) 
pt3min = int(pt3/60) 
pt3sec = int(pt3int-(pt3min*60)) 
 
gp.AddMessage("Spatiotemporal analysis complete.  Process time: " +\ 
str(pt3min) + " minute(s) and " + str(pt3sec) + " seconds.") 
 
#==================================================================== 
#DETERMINE THE MOST SIGNIFICANT SPATIOTEMPORAL VALUE 
#==================================================================== 
 
#Define variables used in the determination of the most significant 
#spatiotemporal cluster value 
rrl = rangeResultsList 
rrlRandZscoresList = [] 
rrlZscoresList = [] 
nonzeroRZscoresList = [] 
rrlbonfc = [] 
rrlbonfcSig = [] 
 
#From the list of results obtained above, select out all the Knox R 
#values and associated Z probabilities. 
i = 0 
x = len(rrl) 
while i < x: 
    rrlRandZscores = [rrl[i][2], rrl[i][6]] 
    rrlRandZscoresList.append(rrlRandZscores) 
    rrlZscoresList.append(rrl[i][6]) 
    if rrlRandZscoresList[i][0] > 0: 
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        nonzeroRZscoresList.append(rrlRandZscoresList[i][1]) 
    else: 
        pass 
    i = i + 1 
 
#Sort the list with the z probabilities in ascending order 
rrlZscoresList.sort() 
 
#Calculate the Bonferroni correction given the user defined alpha and 
#add it to a list which contains the associate Knox R and z Prob 
#values. 
i = 0 
y = 0 
x = 1 
while i < len(rrlZscoresList): 
    if rrlZscoresList[i] == rrlRandZscoresList[y][1]: 
        bonfcalc = (alpha*x)/(len(rrl)) 
        bonfcandz = [rrlRandZscoresList[y][0], rrlZscoresList[i],\ 
bonfcalc] 
        rrlbonfc.append(bonfcandz) 
        y = 0 
        i = i + 1 
        x = x + 1 
    else: 
        y = y + 1 
 
#If the Knox R's associated z Prob value is equal to or less than the 
#Bonferroni correction, store it in a new list         
i = 0 
while i < len(rrlbonfc):         
    if rrlbonfc[i][0] > 0 and rrlbonfc[i][1] <= rrlbonfc[i][2]: 
        rrlbonfcSig.append(rrlbonfc[i][1]) 
    else: 
        pass 
    i = i + 1 
 
#If no Knox R values are returned from the range searched, print 
#message to screen     
if len(nonzeroRZscoresList) == 0: 
    gp.addmessage("Knox R = 0 for all combinations of spatial and\ 
temporal critical distances examined.") 
    gp.addmessage("") 
 
#Otherwise, continue analysis. If Knox R values were determined from 
#the range search, but none were significant given the Bonferroni 
#correction then report the Knox R value that had the lowest z Prob not 
#within the constraints of the Bonferroni correction 
else:         
    if len(rrlbonfcSig) == 0: 
        minZ = min(nonzeroRZscoresList) 
        i = 0 
        x = len(rrl) 
        while i < x: 
            if rrl[i][6] == minZ: 
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                bestKnox = rrl[i] 
            else: 
                pass 
            i = i+1             
        gp.addmessage("") 
        gp.addmessage("There are no Knox R values that meet the\ 
desired significance level of " + str(alpha) + " considering a\ 
Bonferroni correction factor") 
        gp.addmessage("for multiple tests. Of the range of spatial and\ 
temporal critical distances searched, below is the most significant\ 
value:") 
        gp.addmessage("") 
        gp.AddMessage("Meters" + "\t" + tempLabel + "\t" + "  KnoxR" +\ 
"     chiVal" + "   chiProb" + "\t" + "      zVal" + "\t" + " zProb") 
        gp.AddMessage("----------------------------------------------\ 
------------------------------------")    
        gp.AddMessage(" %-8d   %-5d   %-5d   %-+0.3f    %-12s %-+0.3f\   
%-12s"  % (bestKnox[0], bestKnox[1], bestKnox[2], bestKnox[3],\ 
bestKnox[4], bestKnox[5], bestKnox[6])) 
        gp.AddMessage("") 
        gp.addmessage("The spatial and temporal critical distances\ 
displayed here may be entered as parameters for 'ST Cluster Basic' in\ 
order to generate a feature class containing the points contributing\ 
to the spatiotemporal cluster.") 
        gp.addmessage("") 
 
#If there are Knox R values that are significant given the Bonferroni 
#correction, then of those values that were significant, print the one 
#which had the lowest z Prob 
    else: 
        minZ = min(rrlbonfcSig) 
        i = 0 
        x = len(rrl) 
        while i < x: 
            if rrl[i][6] == minZ: 
                bestKnox = rrl[i] 
            else: 
                pass 
            i = i+1             
        gp.addmessage("") 
        gp.addmessage("Taking into consideration a Bonferroni\ 
correction factor for multiple tests, below is the most significant\ 
Knox Value") 
        gp.addmessage("given the range of spatial and temporal\ 
critical distances searched:") 
        gp.addmessage("") 
        gp.AddMessage("Meters" + "\t" + tempLabel + "\t" + "  KnoxR" +\ 
"     chiVal" + "   chiProb" + "\t" + "      zVal" + "\t" + " zProb") 
        gp.AddMessage("----------------------------------------------\ 
------------------------------------")    
        gp.AddMessage(" %-8d   %-5d   %-5d   %-+0.3f    %-12s %-+0.3f\   
%-12s" % (bestKnox[0], bestKnox[1], bestKnox[2], bestKnox[3],\ 
bestKnox[4], bestKnox[5], bestKnox[6])) 
        gp.AddMessage("") 
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        gp.addmessage("The spatial and temporal critical distances\ 
displayed here may be entered as parameters for 'ST Cluster Basic' in\ 
order to generate a feature class containing the points contributing\ 
to the spatiotemporal cluster.") 
        gp.addmessage("") 
 
#Delete variables 
del dctSpaceLT, dctSpaceGT, dctTime, dctTimeLT, dctTimeGT,\ 
numCritTimePairs, numNotCritTimePairs, critTime, numEvents 
del t2, s2, timeKeyAlist, timeKeyAlistTally, spaceKeyAlist,\ 
spaceKeyAlistTally, knoxZ,  knoxChiSig  
del knoxAPairs, knoxBPairs, knoxCPairs, knoxDPairs, numCritSpacePairs,\ 
numNotCritSpacePairs, adjustTimeID, adjustOrigID, adjustDestID 
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Tool 3: ST Cluster Table 

#---------------------------------------------------------------------- 
#Name: SCAn Tool 3 - ST Cluster Table 
#Created by: David Eckley 
#Date created: 20101201 
#Purpose: ST Cluster Table evaluates the Knox statistic for a range of  
#user-defined critical parameters and prints out a table with the 
#results according to the spatial and temporal intervals specified.   
#---------------------------------------------------------------------- 
 
#====================================================================== 
#IMPORT MODULES 
#====================================================================== 
import os, sys, string, arcgisscripting, math, numpy, scipy 
from time import* 
from numpy import* 
from scipy import* 
from scipy import stats 
from knoxStats import chiKnox, normalKnox 
 
#====================================================================== 
#INITIATE GEOPROCESSOR 
#====================================================================== 
gp = arcgisscripting.create(9.3) 
 
#====================================================================== 
#DEFINE VARIABLES PROVIDED BY USER 
#====================================================================== 
 
#Network dataset 
netDataset = gp.GetParameter(0) 
 
#Impedence/cost attribute for the network dataset 
impedence = gp.GetParameterAsText(1) 
 
#Feature class with event details 
tempFC = gp.GetParameter(2) 
 
#Type of temporal analysis (boolean variable).If True, hour analysis.  
#If False, day analysis. 
timeType = gp.GetParameter(3) 
 
#Label used for temporal column in results table 
if timeType == 0: 
    tempLabel = "Days" 
else: 
    tempLabel = "Hours" 
 
#Feature class field containing dates of events 
dateFld = gp.GetParameterastext(4) 
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#Feature class field containing hour event occurred in 24-hour HH 
#format (e.g. 7AM is 7; 7PM is 19) 
hourFld = gp.GetParameterastext(5) 
 
#Ensure that hour data field was provided if hourly analysis was 
#selected above.  Otherwise, exit program. 
if timeType > 0 and hourFld == "": 
    gp.addmessage("") 
    gp.addmessage("In order to conduct hourly analysis, a field\ 
containing hour data in a 24-hour HH format must be provided.") 
    gp.addmessage("") 
    sys.exit() 
else: 
    pass 
 
#Minimum critical spatial distance in meters.  Convert to integer. 
critDist = int(gp.GetParameter(6)) 
 
#Maximum critical spatial distance in meters. Convert to integer. 
critDistMax = int(gp.GetParameter(7)) 
 
#Increment interval for spatial distance range.  Convert to integer. 
critDistMultiple = int(gp.GetParameter(8)) 
 
#Minimum critical temporal distance in units appropriate for desired 
#analysis (hours or days). Convert to integer. 
critTime = int(gp.GetParameter(9)) 
 
#Maximum critical temporal distance in units appropriate for desired 
#analysis (hours or days). Convert to integer. 
critTimeMax = int(gp.GetParameter(10)) 
 
#Increment interval for temporal distance range.  Convert to integer. 
critTimeMultiple = int(gp.GetParameter(11)) 
 
#====================================================================== 
#CONDUCT SPATIOTEMPORAL ANALYSIS 
#====================================================================== 
 
#The script annotation for the following code is the same as that 
#provided with 'Tool 1: ST Cluster Basic' and'Tool 2: ST Cluster 
#Automatic'. Refer to these tools for explanation. 
 
calcFld = "CALC_TIME" 
 
expnHour = "["+str(dateFld)+"]*24+["+str(hourFld)+"]" 
 
expnDay = "["+str(dateFld)+"]*1" 
 
Output_Layer = "tempFC_L" 
Output_Layer2 = "tempFC_L2" 
 
bool = int(timeType) 
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x = 1 
if bool == x: 
    gp.addmessage("") 
    gp.addmessage("Temporal Analysis Type: Hour") 
     
    gp.MakeFeatureLayer_management(tempFC, Output_Layer) 
    gp.AddField_management(Output_Layer, calcFld, "DOUBLE", "", "",\ 
"", "", "NULLABLE", "NON_REQUIRED", "") 
    gp.CalculateField_management(Output_Layer, calcFld, expnHour,\ 
"VB", "") 
     
    timeNN = Output_Layer 
             
else: 
    gp.addmessage("") 
    gp.addmessage("Temporal Analysis Type: Day") 
 
    gp.MakeFeatureLayer_management(tempFC, Output_Layer2) 
    gp.AddField_management(Output_Layer2, calcFld, "DOUBLE", "", "",\ 
"", "", "NULLABLE", "NON_REQUIRED", "") 
    gp.CalculateField_management(Output_Layer2, calcFld, expnDay,\ 
"VB", "") 
 
    timeNN = Output_Layer2 
 
gp.addmessage("") 
gp.addmessage("Creating origin-destination matrix layer...") 
gp.addmessage("") 
 
th3 = clock() 
 
inputTimeFC = timeNN 
 
desc = gp.Describe(timeNN) 
timeIDfield = desc.OIDFieldName 
 
timeLinefield = calcFld 
 
odLayer = "ODCostMatrix" 
lineLyr = "ODCostMatrix\\Lines" 
odLineLyr = "ODRoute_Layer" 
gp.MakeODCostMatrixLayer_na(netDataset, odLayer, impedence, "", "",\ 
"", "ALLOW_UTURNS", "", "NO_HIERARCHY", "", "STRAIGHT_LINES") 
gp.AddLocations_na(odLayer, "Origins", tempFC, "", "5000 Meters", "",\ 
"", "MATCH_TO_CLOSEST", "APPEND", "SNAP", "5 Meters") 
gp.AddLocations_na(odLayer, "Destinations", tempFC, "", "5000 Meters",\ 
"", "", "MATCH_TO_CLOSEST", "APPEND", "SNAP", "5 Meters") 
gp.Solve_na(odLayer, "SKIP") 
gp.SelectData_management(odLayer, "Lines") 
gp.MakeFeatureLayer_management(lineLyr, odLineLyr, "", "", "") 
 
spaceFC = odLineLyr 
 
th4 = clock() 
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pt2 = th4-th3 
pt2int = int(pt2) 
pt2min = int(pt2/60) 
pt2sec = int(pt2int-(pt2min*60)) 
 
gp.addmessage("Origin-destination matrix layer complete.  Process\ 
time: " + str(pt2min) + " minute(s) and " + str(pt2sec) + " seconds.") 
gp.addmessage("") 
 
gp.addmessage("Conducting spatiotemporal analysis...") 
gp.addmessage("") 
 
th5 = clock() 
 
desc2 = gp.Describe(odLineLyr) 
fldinfo2 = desc2.FieldInfo 
spaceOrigIDfield = fldinfo2.GetFieldName(1) 
 
spaceDestIDfield = fldinfo2.GetFieldName(2) 
 
spaceDistfield = fldinfo2.GetFieldName(4) 
 
gp.AddMessage("======================================================\ 
============================") 
gp.AddMessage("") 
gp.AddMessage("Meters" + "\t" + tempLabel + "\t" + "  KnoxR" + "\     
chiVal" + "   chiProb" + "\t" + "      zVal" + "\t" + "  zProb") 
gp.AddMessage("------------------------------------------------------\ 
----------------------------")    
 
critDistRange = critDistMax - critDist 
critDistRuns = (critDistRange / critDistMultiple) + 1 
 
critTimeRange = critTimeMax - critTime 
critTimeRuns = (critTimeRange / critTimeMultiple) + 1 
 
distRun = 0 
timeRun = 0 
 
 
while distRun < critDistRuns: 
    while timeRun < critTimeRuns:                             
        dctTime = {} 
        adjustTimeID = [] 
        cur = gp.SearchCursor(inputTimeFC) 
        row = cur.Next() 
        firstTimeID = int(row.GetValue(timeIDfield)) 
        adjustTimeID = [firstTimeID]      
        cur = gp.SearchCursor(inputTimeFC) 
        row = cur.Next() 
 
        while row: 
            key = (int(row.GetValue(timeIDfield)) - adjustTimeID[0])\ 
 + 1 
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            timelineDay = row.GetValue(timeLinefield) 
            dctTime[key] = timelineDay 
            row = cur.Next() 
   
        dctTimeLT = {} 
        dctTimeGT = {} 
 
        timeKeyAlist = [] 
        timeKeyAlistTally = [] 
 
        numEvents = len(dctTime) 
 
        x = 1 
        y = 1 
 
        while x <= numEvents: 
            for key in dctTime: 
                if key <= numEvents: 
                    timeDif = abs(dctTime[y] - dctTime[x]) 
                    keyA = x 
                    keyB = y         
                    if timeDif <= critTime and keyA < keyB: 
                        dctTimeLT[keyA, keyB] = timeDif 
                        timeKeyAlist.append(keyA) 
                    else: 
                        if timeDif > critTime and keyA < keyB: 
                            dctTimeGT[keyA, keyB] = timeDif 
                        else: 
                            pass 
                    y = y + 1 
            x = x + 1 
            y = 1 
 
        x = 0 
        while x <= numEvents: 
            occurX = timeKeyAlist.count(x) 
            occurXx2 = occurX * 2 
            occurXx2squared = occurXx2 ** 2 
            timeKeyAlistTally.append(occurXx2squared) 
            x = x + 1 
        t2 = sum(timeKeyAlistTally) 
                          
        numCritTimePairs = len(dctTimeLT) 
        numNotCritTimePairs = len(dctTimeGT) 
 
        dctSpaceLT = {} 
        dctSpaceGT = {} 
       
        adjustOrigID = [] 
        adjustDestID = [] 
 
        cur = gp.SearchCursor(spaceFC) 
        row = cur.Next() 
        firstOrigID = int(row.GetValue(spaceOrigIDfield)) 
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        firstDestID = int(row.GetValue(spaceDestIDfield)) 
        adjustOrigID = [firstOrigID]         
        adjustDestID = [firstDestID] 
 
        spaceKeyAlist = [] 
        spaceKeyAlistTally = [] 
 
        cur = gp.SearchCursor(spaceFC) 
        row = cur.Next() 
 
        while row: 
            keyA = (int(row.GetValue(spaceOrigIDfield)) - 
adjustOrigID[0]) + 1 
            keyB = (int(row.GetValue(spaceDestIDfield)) - 
adjustDestID[0]) + 1 
            spaceDif = row.GetValue(spaceDistfield) 
            if spaceDif >= 0 and spaceDif <= critDist and keyA < keyB: 
                dctSpaceLT[keyA, keyB] = spaceDif 
                spaceKeyAlist.append(keyA) 
            else: 
                if spaceDif > critDist and keyA < keyB: 
                     dctSpaceGT[keyA, keyB] = spaceDif              
                else: 
                    pass 
            row = cur.Next() 
        x = 0 
        while x <= numEvents: 
            occurX = spaceKeyAlist.count(x) 
            occurXx2 = occurX * 2 
            occurXx2squared = occurXx2 ** 2 
            spaceKeyAlistTally.append(occurXx2squared) 
            x = x + 1 
        s2 = sum(spaceKeyAlistTally) 
        numCritSpacePairs = len(dctSpaceLT) 
        numNotCritSpacePairs = len(dctSpaceGT) 
 
        x = 0 
        for key in dctSpaceLT: 
            if dctTimeLT.has_key(key) == True: 
                x = x + 1                                 
        knoxAPairs = x 
 
        x = 0 
        for key in dctTimeGT: 
            if dctSpaceLT.has_key(key) == True: 
                x = x + 1 
        knoxBPairs = x 
 
        x = 0 
        for key in dctSpaceGT: 
            if dctTimeLT.has_key(key) == True: 
                x = x + 1 
        knoxCPairs = x 
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        x = 0 
        for key in dctSpaceGT: 
            if dctTimeGT.has_key(key) == True: 
                x = x + 1                                  
        knoxDPairs = x 
 
        knoxChiSig = chiKnox(knoxAPairs, knoxBPairs, knoxCPairs,\ 
knoxDPairs, numEvents) 
        chiProb = round(scipy.stats.chisqprob(knoxChiSig, 1),5) 
        knoxZ = normalKnox(knoxAPairs, numCritSpacePairs,\ 
numCritTimePairs, s2, t2, numEvents) 
 
        if knoxZ > 0: 
            zProb = round((1 - scipy.stats.zprob(knoxZ)),5) 
        else: 
            zProb = round((scipy.stats.zprob(knoxZ)),5) 
 
        gp.AddMessage(" %-8d   %-5d   %-5d   %-+0.3f    %-12s %-+0.3f\   
%-12s" % (critDist, critTime, knoxAPairs, knoxChiSig, chiProb, knoxZ,\ 
zProb)) 
     
        critTime = critTime + critTimeMultiple 
        timeRun = timeRun + 1 
 
    critDist = critDist + critDistMultiple 
    critTime = critTime - (critTimeRange + critTimeMultiple) 
    distRun = distRun + 1 
    timeRun = 0 
 
gp.AddMessage("") 
gp.AddMessage("======================================================\ 
============================") 
gp.AddMessage("") 
 
th6 = clock() 
 
pt3 = th6-th5 
pt3int = int(pt3) 
pt3min = int(pt3/60) 
pt3sec = int(pt3int-(pt3min*60)) 
 
gp.AddMessage("Spatiotemporal analysis complete.  Process time: " +\ 
str(pt3min) + " minute(s) and " + str(pt3sec) + " seconds.") 
gp.Addmessage("") 
 
#Delete variables 
del dctSpaceLT, dctSpaceGT, dctTime, dctTimeLT, dctTimeGT,\ 
numCritTimePairs, numNotCritTimePairs, critTime, numEvents 
del t2, s2, timeKeyAlist, timeKeyAlistTally, spaceKeyAlist,\ 
spaceKeyAlistTally, knoxZ,  knoxChiSig,  
del knoxAPairs, knoxBPairs, knoxCPairs, knoxDPairs, numCritSpacePairs,\ 
numNotCritSpacePairs, adjustTimeID, adjustOrigID, adjustDestID 
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Tool 4: ST Cluster Monte Carlo 

#---------------------------------------------------------------------- 
#Name: SCAn Tool 4: ST Cluster Monte Carlo 
#Created by: David Eckley 
#Date created: 20101201 
#Purpose: ST Cluster Monte Carlo evaluates the Knox test and determines 
#the statistical significance based a specified number of Monte Carlo 
#simulations. In addition to the information provided in the output 
#file by Tools 1 and 2, ST Cluster Monte Carlo also provides details on 
#the generated reference distribution which can be imported into a 
#spreadsheet program to generate graphs if desired. 
#---------------------------------------------------------------------- 
 
#====================================================================== 
#IMPORT MODULES 
#====================================================================== 
import os, sys, string, arcgisscripting, math, numpy, scipy 
from random import* 
from stats import* 
from time import* 
from numpy import* 
from scipy import* 
from scipy import stats 
from knoxStats import chiKnox, normalKnox 
 
#====================================================================== 
#INITIATE GEOPROCESSOR 
#====================================================================== 
gp = arcgisscripting.create(9.3) 
 
#====================================================================== 
#DEFINE VARIABLES PROVIDED BY USER 
#====================================================================== 
 
#Network dataset 
netDataset = gp.GetParameter(0) 
 
#Impedence/cost attribute for the network dataset 
impedence = gp.GetParameterAsText(1) 
 
#Feature class with event details 
tempFC = gp.GetParameter(2) 
 
#Type of temporal analysis (boolean variable).If True, hour analysis.  
#If False, day analysis. 
timeType = gp.GetParameter(3) 
 
#Label used for temporal column in results table 
if timeType == 0: 
    tempLabel = "Days" 
else: 
    tempLabel = "Hours" 
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#Feature class field containing dates of events 
dateFld = gp.GetParameterastext(4) 
 
#Feature class field containing hour event occurred in 24-hour HH 
#format (e.g. 7AM is 7; 7PM is 19) 
hourFld = gp.GetParameterastext(5) 
 
#Ensure that hour data field was provided if hourly analysis was 
#selected above.  Otherwise, exit program. 
if timeType > 0 and hourFld == "": 
    gp.addmessage("") 
    gp.addmessage("In order to conduct hourly analysis, a field\ 
containing hour data in a 24-hour HH format must be provided.") 
    gp.addmessage("") 
    sys.exit() 
else: 
    pass 
 
#Critical spatial distance in meters.  Convert to integer. 
critDist = int(gp.GetParameter(6)) 
 
#Critical temporal distance in format described by boolean variable 
#above. 
critTime = int(gp.GetParameter(7)) 
 
#Have user define the number of Monte Carlo simulations to run 
monteC = int(gp.GetParameter(8)) 
 
#=================================================== 
#CONDUCT SPATIOTEMPORAL ANALYSIS 
#=================================================== 
 
#Where not specifically annotated, refer to Tools 1 through 3 for 
#explanation. 
 
gp.addmessage("") 
gp.addmessage("Building Origin-Destination Cost Matrix Layer...") 
 
 
th1 = clock() 
 
#Using variables above and ArcToolBox tools  
odLayer = "ODCostMatrix" 
lineLyr = "ODCostMatrix\\Lines" 
odLineLyr = "ODRoute_Layer" 
gp.MakeODCostMatrixLayer_na(netDataset, odLayer, impedence, "", "",\ 
"", "ALLOW_UTURNS", "", "NO_HIERARCHY", "", "STRAIGHT_LINES") 
gp.AddLocations_na(odLayer, "Origins", tempFC, "", "5000 Meters", "",\ 
"", "MATCH_TO_CLOSEST", "APPEND", "SNAP", "5 Meters") 
gp.AddLocations_na(odLayer, "Destinations", tempFC, "",\ 
 "5000 Meters", "", "", "MATCH_TO_CLOSEST", "APPEND", "SNAP", "5\ 
Meters") 
gp.Solve_na(odLayer, "SKIP") 
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gp.SelectData_management(odLayer, "Lines") 
gp.MakeFeatureLayer_management(lineLyr, odLineLyr, "", "", "") 
 
#Create variable from the OD Cost Matrix Lines Layer 
spaceFC = odLineLyr 
 
#Create variable from the Origin ID Field within the OD Cost Matrix 
#Lines Layer 
desc2 = gp.Describe(odLineLyr) 
fldinfo2 = desc2.FieldInfo 
spaceOrigIDfield = fldinfo2.GetFieldName(1) 
 
#Create variable from the Destination ID Field within the OD Cost 
#Matrix Lines Layer 
spaceDestIDfield = fldinfo2.GetFieldName(2) 
 
#Create variable from the Total Distance/Length Field within the OD 
#Cost Matrix Lines Layer 
spaceDistfield = fldinfo2.GetFieldName(4) 
 
th2 = clock() 
 
pt1 = th2-th1 
pt1int = int(pt1) 
pt1min = int(pt1/60) 
pt1sec = int(pt1int-(pt1min*60)) 
 
gp.addmessage("Origin-Destination Cost Matrix Layer complete. Process\ 
time: " + str(pt1min) + " minute(s) and " + str(pt1sec) + " seconds.") 
gp.addmessage("") 
 
#Define variable that will become the field name for timeline field 
calcFld = "CALC_TIME" 
 
#VB expression that will be used in the calculate field operation in 
#hour analysis is conducted 
expnHour = "["+str(dateFld)+"]*24+["+str(hourFld)+"]" 
 
#VB expression that will be used in the calculate field operation in 
#day analysis is conducted 
expnDay = "["+str(dateFld)+"]*1" 
 
#Local variables that will be used in the "make feature layer" 
#operation; a prerequisite to calculating the temporal fields. 
Output_Layer = "tempFC_L" 
Output_Layer2 = "tempFC_L2" 
 
#Assign boolean variable from user inputs as an integer 
bool = int(timeType) 
 
#Conduct calculate field operation if the user selects an hourly 
#analysis 
x = 1 
if bool == x: 
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    # Make feature layer 
    gp.MakeFeatureLayer_management(tempFC, Output_Layer) 
 
    # Add timeline field and calculate timeline field value 
    gp.AddField_management(Output_Layer, calcFld, "DOUBLE", "", "",\ 
"", "", "NULLABLE", "NON_REQUIRED", "") 
    gp.CalculateField_management(Output_Layer, calcFld, expnHour,\ 
"VB", "") 
 
    #Assign variable to feature layer that will be used for temporal 
#analysis and matrix generation     
    timeNN = Output_Layer 
 
#Conduct calculate field operation if the user selects a day analysis 
else: 
     
    # Make feature layer 
    gp.MakeFeatureLayer_management(tempFC, Output_Layer2) 
     
    # Add timeline field and calculate timeline field value 
    gp.AddField_management(Output_Layer2, calcFld, "DOUBLE", "",\ 
 "", "", "", "NULLABLE", "NON_REQUIRED", "") 
    gp.CalculateField_management(Output_Layer2, calcFld, expnDay,\ 
"VB", "") 
 
    #Assign variable to feature layer that will be used for temporal 
#analysis and matrix generation    
    timeNN = Output_Layer2 
 
#Rename variable assigned to feature layer 
inputTimeFC = timeNN 
 
#Assign variable to Object ID Field within feature layer 
desc = gp.Describe(timeNN) 
timeIDfield = desc.OIDFieldName 
 
#Rename variable assigned to timeline field name 
timeLinefield = calcFld 
                         
dctTime = {} 
 
adjustTimeID = [] 
 
cur = gp.SearchCursor(inputTimeFC) 
row = cur.Next() 
firstTimeID = int(row.GetValue(timeIDfield)) 
adjustTimeID = [firstTimeID]         
 
cur = gp.SearchCursor(inputTimeFC) 
row = cur.Next() 
 
while row: 
    key = (int(row.GetValue(timeIDfield)) - adjustTimeID[0]) + 1 
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    timelineDay = row.GetValue(timeLinefield) 
    dctTime[key] = timelineDay 
    row = cur.Next() 
 
dctTimeLT = {} 
numEvents = len(dctTime) 
timeShuffleList = [] 
 
x = 1 
y = 1 
while x <= numEvents: 
    for key in dctTime: 
        if key <= numEvents: 
            timeA = dctTime[x] 
            timeB = dctTime[y] 
            timeDif = abs(dctTime[y] - dctTime[x]) 
            #Load all the temporal distance between pairs values into a 
#list to be used for Monte Carlo simulations below 
            timeShuffleList.append(timeDif) 
            keyA = x 
            keyB = y        
            if timeDif <= critTime and keyA < keyB: 
                dctTimeLT[keyA, keyB] = timeDif 
            else: 
                pass 
            y = y + 1 
    x = x + 1 
    y = 1 
                           
numCritTimePairs = len(dctTimeLT) 
 
gp.AddMessage("=======================================================\
========================================================") 
gp.AddMessage("") 
gp.AddMessage("Given a critical spatial distance of " +\ str(critDist) 
+ " meters and a critical temporal distance of " + str(critTime) + " "\ 
+ tempLabel + ":") 
gp.AddMessage("") 
 
dctSpaceLT = {} 
spaceShuffleList = [] 
       
adjustOrigID = [] 
adjustDestID = [] 
 
cur = gp.SearchCursor(spaceFC) 
row = cur.Next() 
firstOrigID = int(row.GetValue(spaceOrigIDfield)) 
firstDestID = int(row.GetValue(spaceDestIDfield)) 
adjustOrigID = [firstOrigID]         
adjustDestID = [firstDestID] 
 
cur = gp.SearchCursor(spaceFC) 
row = cur.Next() 
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while row: 
    keyA = (int(row.GetValue(spaceOrigIDfield)) - adjustOrigID[0]) + 1 
    keyB = (int(row.GetValue(spaceDestIDfield)) - adjustDestID[0]) + 1 
    spaceDif = row.GetValue(spaceDistfield) 
    #Load all the spatial distance between pairs values into a list to 
#be used for Monte Carlo simulations below 
    spaceShuffleList.append(spaceDif) 
    if spaceDif >= 0 and spaceDif <= critDist and keyA < keyB: 
        dctSpaceLT[keyA, keyB] = spaceDif 
 
    else: 
        pass 
    row = cur.Next() 
 
del spaceFC 
 
numCritSpacePairs = len(dctSpaceLT) 
 
x = 0 
for key in dctSpaceLT: 
    if dctTimeLT.has_key(key) == True: 
        x = x + 1 
                                  
knoxAPairs = x 
 
gp.AddMessage("------------------------------------------------------\ 
---------------------------------------------------------") 
gp.AddMessage("Knox Statistic (R) = " + str(knoxAPairs)) 
 
spaceShuffleListLength = len(spaceShuffleList) 
timeShuffleListLength = len(timeShuffleList) 
dctSpaceLength = len(dctSpaceLT) 
 
gp.AddMessage("Knox(R) Frequency  Prob   CumProb") 
gp.AddMessage("----------------------------------") 
 
start6 = clock() 
 
mcKnoxlist = [] 
randrangeTimeShuffle = int(timeShuffleListLength) 
 
#Initiate loop that will perform the individual Monte Carlo simulations 
#of the Knox Test 
m = 1 
while m <= monteC: 
    #Clear the list holding the spatial distance between pairs values 
#that met the critical spatial distance parameter 
    dctSpaceLT.clear() 
    #Shuffle the list containing all the spatial distances between 
#pairs 
    shuffle(spaceShuffleList) 
 
    #Conduct the spatiotemporal analysis     



 

123 

    x = 1 
    y = 1 
    s = 0             
    while x <=numEvents: 
        for key in dctTime: 
            if key <= numEvents: 
                spaceDif = spaceShuffleList[s] 
                keyA = x 
                keyB = y 
                if spaceDif >= 0 and spaceDif <= critDist and keyA <\ 
keyB: 
                    dctSpaceLT[keyA, keyB] = spaceDif 
                else: 
                    pass 
                y = y + 1 
                s = s + 1 
        x = x + 1 
        y = 1        
            
    k = 0 
    for key in dctSpaceLT: 
        if dctTimeLT.has_key(key) == True: 
            k = k + 1                                
    knoxR = k 
    #Append resulting Knox R to a list of all Knox R values created by 
#each iteration 
    mcKnoxlist.append(knoxR)                 
    m = m + 1 
 
stop6 = clock() 
timePassed6 = round((stop6 - start6),2) 
perSim = timePassed6 / monteC 
 
start7 = clock() 
 
#From list of Knox R values generated during the simulation above, 
#select the max 
maxKnox = max(mcKnoxlist) 
#From list of Knox R values generated during the simulation above, 
#select the min 
minKnox = min(mcKnoxlist) 
 
#Initiate dictionary to store the calculated Knox R probability values 
mcKnoxprobDict = {} 
smallestProb = 1 / float(monteC) 
 
x = minKnox 
cumProb = float(0) 
 
#Calculate the probability for each Knox R value based on its 
#occurrence during within the simulations generated 
while x <= maxKnox: 
    key = x 
    countKnox = mcKnoxlist.count(x) 
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    countKnoxprob = float(countKnox) / float(monteC) 
    mcKnoxprobDict[key] = countKnoxprob 
    cumProb = cumProb + countKnoxprob 
    gp.AddMessage(" %-6d   %-6d   %0.3f  %0.3f" % (x, countKnox,\ 
countKnoxprob, cumProb)) 
    x = x + 1 
 
knoxP = 0 
for item in mcKnoxlist: 
    if item >= knoxAPairs: 
        knoxP = knoxP + 1 
 
if knoxP == 0: 
    probKnox = ("< " + str(smallestProb)) 
else: 
    probKnox = float(knoxP)/float(monteC)         
     
#Calculate the mean and variance of the Knox R values occuring in the 
#simulation         
avgKnox = round(lmean(mcKnoxlist),2) 
varKnox = round(lvar(mcKnoxlist),2) 
 
gp.addmessage("") 
gp.AddMessage("------------------------------------------------------\ 
---------------------------------------------------------") 
gp.AddMessage("") 
gp.AddMessage("Given the simulation, the probability of Knox (R) = " +\ 
str(knoxAPairs) + " is " + str(probKnox)) 
gp.AddMessage("The simulation mean is " + str(avgKnox)) 
gp.AddMessage("The simulation variance is " + str(varKnox)) 
 
stop7 = clock() 
timePassed7 = round((stop7 - start7),2) 
 
gp.AddMessage("") 
 
gp.AddMessage("Monte Carlo test run time: " + str(timePassed6) + \ 
" seconds.") 
gp.AddMessage("Monte Carlo per sim time: " + str(perSim) + " seconds.") 
 
gp.AddMessage("") 
 
#Delete variables 
del dctSpaceLT, dctTime, dctTimeLT, numCritTimePairs, critTime,\ 
numEvents, smallestProb, spaceShuffleList 
del timeShuffleList, avgKnox, varKnox, maxKnox, minKnox, mcKnoxlist,\ 
probKnox, mcKnoxprobDict, spaceShuffleListLength, timeShuffleListLength 
del knoxAPairs,  numCritSpacePairs, adjustTimeID, adjustOrigID,\ 
adjustDestID 
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Tool 5: ST Cluster Range Detector 

#---------------------------------------------------------------------- 
#Name: SCAn Tool 5 - ST Cluster Range Detector 
#Created by: David Eckley 
#Date created: 20101128 
#Purpose: ST Cluster Range Detector conducts a nearest neighbor 
#distance analysis of the spatial and temporal dimensions and reports a 
#recommended range of spatio-temporal test critical parameters.  
#---------------------------------------------------------------------- 
 
#====================================================================== 
#IMPORT MODULES 
#====================================================================== 
import sys, string, os, arcgisscripting, math 
 
#====================================================================== 
#INITIATE GEOPROCESSOR 
#====================================================================== 
gp = arcgisscripting.create(9.3) 
 
#====================================================================== 
#DEFINE VARIABLES PROVIDED BY USER 
#====================================================================== 
 
#Network dataset 
netDataset = gp.GetParameter(0) 
 
#Impedence/cost attribute for the network dataset 
impedence = gp.GetParameterAsText(1) 
 
#Feature class with event details 
tempFC = gp.GetParameter(2) 
 
#Type of temporal analysis (boolean variable).If True, hour analysis.  
#If False, day analysis. 
timeType = gp.GetParameter(3) 
 
#Feature class field containing dates of events 
dateFld = gp.GetParameterastext(4) 
 
#Feature class field containing hour event occurred in 24-hour HH 
#format (e.g. 7AM is 7; 7PM is 19) 
hourFld = gp.GetParameterastext(5) 
 
#Ensure that hour data field was provided if hourly analysis was 
#selected above.  Otherwise, exit program. 
if timeType > 0 and hourFld == "": 
    gp.addmessage("") 
    gp.addmessage("In order to conduct hourly analysis, a field\ 
containing hour data in a 24-hour HH format must be provided.") 
    gp.addmessage("") 
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    sys.exit() 
else: 
    pass 
 
#====================================================================== 
#CONDUCT SPATIAL NEAREST NEIGHBOR RANGE ANALYSIS 
#====================================================================== 
 
# Define local variables used in the Make Closest Facility Layer 
#analysis. 
CFLayer = "ClosestFacilityLayer" 
RouteLayer = "ClosestFacilityLayer\\Routes" 
CFRouteLayer = "CFRoutes_Layer" 
 
# Make Closest Facility Layer.  This analysis searches for the closest 
#and second closest spatial neighbors between two point feature layers; 
#in this case both layers are the same. 
gp.MakeClosestFacilityLayer_na(netDataset, CFLayer, impedence,\ 
"TRAVEL_TO", "", "2", "", "ALLOW_UTURNS", "", "NO_HIERARCHY", "",\ 
"TRUE_LINES_WITH_MEASURES") 
gp.AddLocations_na(CFLayer, "Facilities", tempFC, "CurbApproach #\ 
0;Attr_Length # 0", "5000 Meters", "OBJECTID", "", "MATCH_TO_CLOSEST",\ 
"APPEND", "SNAP", "5 Meters") 
gp.AddLocations_na(CFLayer, "Incidents", tempFC, "CurbApproach #\ 
0;Attr_Length # 0", "5000 Meters", "OBJECTID", "", "MATCH_TO_CLOSEST",\ 
"APPEND", "SNAP", "5 Meters") 
gp.Solve_na(CFLayer, "HALT") 
 
# Select only the second nearest neighbors.  The first nearest neighbor 
#is the point itself since this analysis is looking at two identical 
#point layers. 
gp.SelectData_management(CFLayer, "Routes") 
 
# Make a feature layer from the selected events above. 
gp.MakeFeatureLayer_management(RouteLayer, CFRouteLayer,\ 
"\"FacilityRank\" = 2", "", "FacilityID FacilityID VISIBLE\ 
NONE;FacilityRank FacilityRank VISIBLE NONE;Name Name VISIBLE\ 
NONE;IncidentCurbApproach IncidentCurbApproach VISIBLE\ 
NONE;FacilityCurbApproach FacilityCurbApproach VISIBLE NONE;IncidentID\ 
IncidentID VISIBLE NONE;Total_Length Total_Distance VISIBLE NONE") 
 
#Rename variable storing feature layer 
netNN = CFRouteLayer 
 
#Initiate a list to store the spatial nearest neighbor distance values 
nDistList = [] 
 
#Initiate the geoprocessor cursor to extract the spatial nearest 
#neighbor distance value for each event 
cur = gp.SearchCursor(netNN) 
row = cur.Next() 
while row: 
    nDist = int(row.GetValue("Total_Distance")) 
    nDistList.append(nDist) 
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    row = cur.Next() 
 
#Count the values in the list 
nNcount = len(nDistList) 
#Assign the minimum Spatial Nearest Neighbor Distance to a variable 
nNmin = min(nDistList) 
#Assign the maximum Spatial Nearest Neighbor Distance to a variable 
nNmax = max(nDistList) 
#Assign the avg NN spatial dist to a variable 
nNavg = sum(nDistList) / nNcount 
 
#Round avg nearest neighbor distance value to the next highest multiple 
#of 100, unless the value is exactly a multiple of 100 
nNavgRound = round(nNavg / 10) 
roundStr = str(nNavgRound) 
roundVal = int(roundStr[-3]) 
if roundVal > 0: 
    spaceCritMax = ((10 - float(roundVal)) + nNavgRound)*10 
else: 
    spaceCritMax = nNavgRound * 10 
 
#Round min nearest neighbor distance value to the next lowest multiple 
#of 100, unless the value is exactly a multiple of 100 
if nNmin > 0: 
    nNminRound = round(nNmin / 10) 
    roundStr = str(nNminRound) 
    roundVal = int(roundStr[-3]) 
    if roundVal > 0: 
        spaceCritMin = (nNminRound - roundVal)*100 
    else: 
        spaceCritMin = nNminRound * 100 
else: 
    spaceCritMin = 0 
 
gp.addmessage("") 
gp.addmessage("Minimum Network Nearest Neighbor Distance: " +\ 
str(nNmin) + " meters.") 
gp.addmessage("Maximum Network Nearest Neighbor Distance: " +\ 
str(nNmax) + " meters.") 
gp.addmessage("Average Network Nearest Neighbor Distance: " +\ 
str(nNavg) + " meters.") 
gp.addmessage("Based on the nearest neighbor distance analysis, a\ 
recommended range of spatial critical distances is between " +\ 
str(spaceCritMin) + " and " + str(spaceCritMax) + " meters.") 
 
#====================================================================== 
#CONDUCT SPATIAL NEAREST NEIGHBOR RANGE ANALYSIS 
#====================================================================== 
 
#Define a variable for the feature layer field that will hold the 
#calculated timeline value 
calcFld = "CALC_TIME" 
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#Create SQL statement for the field calculation if hourly analysis is 
#selected 
expnHour = "["+str(dateFld)+"]*24+["+str(hourFld)+"]" 
#Create SQL statement for the field calculation if day analysis is 
#selected 
expnDay = "["+str(dateFld)+"]*1" 
 
#Local variables used in the calculate field process below 
Output_Layer = "tempFC_L" 
Output_Layer2 = "tempFC_L2" 
 
#Define variable to hold boolean value 
bool = int(timeType) 
 
#If hourly analysis is selected, perform this section of code 
x = 1 
if bool == x: 
    gp.addmessage("") 
    gp.addmessage("Temporal Analysis Type: Hour") 
     
    # Add and calculate timeline field to feature layer 
    gp.MakeFeatureLayer_management(tempFC, Output_Layer) 
    gp.AddField_management(Output_Layer, calcFld, "DOUBLE", "", "",\ 
"", "", "NULLABLE", "NON_REQUIRED", "") 
    gp.CalculateField_management(Output_Layer, calcFld, expnHour,\ 
"VB", "") 
 
    #Assign variable to output layer       
    timeNN = Output_Layer 
 
    #Assign variable to list holding the timeline values       
    timeList = [] 
 
    #Search through feature layer and extract out the timeline values  
    cur = gp.SearchCursor(timeNN) 
    row = cur.Next() 
    while row: 
        time = row.GetValue(calcFld) 
        timeList.append(time) 
        row = cur.Next() 
 
    #Sort list so that values are ascending        
    timeList.sort() 
     
    #Assign variable to number of items in list  
    numTimes = len(timeList) 
 
    #Search through the list of timeline values and calculate the 
#neighbor distance between each event; store in list 
    nList = [] 
    maxList = max(timeList) 
    x=1 
    y=0 
    while x < numTimes: 
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        nList.append(timeList[x]-timeList[y]) 
        x=x+1 
        y=y+1 
        
    #Search through list of neighbor distances and select the nearest 
#neighbor distance for each event 
    numDist = len(nList) 
    nDistList = [] 
    x=1 
    y=0 
    while x < numDist: 
        n=[nList[y],nList[x]] 
        nn=min(n) 
        nDistList.append(nn) 
        x=x+1 
        y=y+1       
         
    #Count number of values in list     
    nNcount = len(nDistList) 
    #Calculate sum of values in list 
    nNsum = float(sum(nDistList)) 
    #Determine minimum value in list 
    nNmin = min(nDistList) 
    #Determine maximum value in list 
    nNmax = max(nDistList) 
    #Determine average value in list 
    nNavg = float(nNsum / nNcount) 
 
    #Round avg nearest neighbor distance value to the next highest 
#multiple of 1, unless the value is exactly a multiple of 1 
    nNavgRound = round(nNavg) 
    roundStr = str(nNavgRound) 
    roundVal = int(roundStr[-1]) 
    if roundVal > 0: 
        timeCritMax = (10 - float(roundVal)) + nNavgRound 
    else: 
        timeCritMax = nNavgRound 
 
     #Round min nearest neighbor distance value to the next lowest 
#multiple of 1, unless the value is exactly a multiple of 1 
    if nNmin > 0: 
        nNminRound = round(nNmin) 
        roundStr = str(nNminRound) 
        roundVal = int(roundStr[-1]) 
        if roundVal > 0: 
            timeCritMin = nNminRound - roundVal 
        else: 
            timeCritMin = nNminRound 
    else: 
        timeCritMin = 0 
 
    gp.addmessage("Minimum Temporal Nearest Neighbor Distance: " +\ 
str(nNmin) + " hours.") 
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    gp.addmessage("Maximum Temporal Nearest Neighbor Distance: " +\ 
str(nNmax) + " hours.") 
    gp.addmessage("Average Temporal Nearest Neighbor Distance: " +\ 
"%0.1f" % (nNavg) + " hours.") 
    gp.addmessage("Based on the nearest neighbor distance analysis, a\ 
recommended range of temporal critical distances is between " +\ 
str(timeCritMin) + " and " + str(timeCritMax) + " hours.") 
    gp.addmessage("") 
     
    del expnHour, expnDay, nNcount, nNsum, nNmin, nNmax, nNavg,\ 
numDist, nDistList, nList, numTimes, timeNN 
 
#All of the code annotation above is the same for the loop below.  The 
#following loop performs the same functions for a day analysis instead 
#of hourly.            
else: 
    gp.addmessage("") 
    gp.addmessage("Temporal Analysis Type: Day") 
 
    gp.MakeFeatureLayer_management(tempFC, Output_Layer2) 
    gp.AddField_management(Output_Layer2, calcFld, "DOUBLE", "", "",\ 
"", "", "NULLABLE", "NON_REQUIRED", "") 
    gp.CalculateField_management(Output_Layer2, calcFld, expnDay,\ 
"VB", "") 
 
    timeNN = Output_Layer2 
    timeList = [] 
 
    cur = gp.SearchCursor(timeNN) 
    row = cur.Next() 
    while row: 
        time = int(row.GetValue(calcFld)) 
        timeList.append(time) 
        row = cur.Next()         
     
    timeList.sort() 
    numTimes = len(timeList) 
 
    nList = [] 
    maxList = max(timeList) 
    x=1 
    y=0 
    while x < numTimes: 
        nList.append(timeList[x]-timeList[y]) 
        x=x+1 
        y=y+1        
 
    numDist = len(nList) 
    nDistList = [] 
    x=1 
    y=0 
    while x < numDist: 
        n=[nList[y],nList[x]] 
        nn=min(n) 
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        nDistList.append(nn) 
        x=x+1 
        y=y+1       
         
    nNcount = len(nDistList) 
    nNsum = float(sum(nDistList)) 
    nNmin = min(nDistList) 
    nNmax = max(nDistList) 
    nNavg = float(nNsum / nNcount) 
 
    nNavgRound = round(nNavg) 
    roundStr = str(nNavgRound) 
    roundVal = int(roundStr[-1]) 
    if roundVal > 0: 
        timeCritMax = (10 - float(roundVal)) + nNavgRound 
    else: 
        timeCritMax = nNavgRound 
 
    if nNmin > 0: 
        nNminRound = round(nNmin) 
        roundStr = str(nNminRound) 
        roundVal = int(roundStr[-1]) 
        if roundVal > 0: 
            timeCritMin = nNminRound - roundVal 
        else: 
            timeCritMin = nNminRound 
    else: 
        timeCritMin = 0       
 
    gp.addmessage("Minimum Temporal Nearest Neighbor Distance: " +\ 
str(nNmin) + " days.") 
    gp.addmessage("Maximum Temporal Nearest Neighbor Distance: " +\ 
str(nNmax) + " days.") 
    gp.addmessage("Average Temporal Nearest Neighbor Distance: " +\ 
"%0.1f" % (nNavg) + " days.") 
    gp.addmessage("Based on the nearest neighbor distance analysis, a\ 
recommended range of temporal critical distances is between " +\ 
str(timeCritMin) + " and " + str(timeCritMax) + " days.") 
    gp.addmessage("") 
 
    del expnHour, expnDay, nNcount, nNsum, nNmin, nNmax, nNavg,\ 
numDist, nDistList, nList, numTimes, timeNN 
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