
A COMPREHENSIVE PROCESS FOR SPATIOTEMPORAL ANALYSIS OF
NETWORK-BASED PHENOMENA

by

David C. Eckley

A Thesis

Submitted to the

Graduate Faculty

of

George Mason University

in Partial Fulfillment of

The Requirements for the Degree

of

Master of Science

Geographic and Cartographic Sciences

Committee: ~. M /
~f.;1 .J / I. Cc..4--t I'\.--v Dr. Kevin Curtin, Chair

Dr. Nigel Waters, Committee
Member

Dr. Andrew Loerch, Committee
Member

Dr. Peggy Agouris,
Department Chairperson

Dr. Richard Diecchio, Associate
Dean for Academic and Student
Affairs, College of Science

Dr. Vikas Chandhoke, Dean,
College of Science

Fall Semester 2010 Date:
George Mason University
Fairfax, VA

A Comprehensive Process for Spatiotemporal Analysis of Network-Based Phenomena

A thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science in Geographic and Cartographic Sciences at George Mason University

By

David C. Eckley
Bachelor of Science

United States Military Academy, 2000

Director: Dr. Kevin Curtin, Associate Professor
Department of Geography and Geoinformation Science

Fall Semester 2010
George Mason University

Fairfax, VA

ii

Copyright: 2010 David C. Eckley
All Rights Reserved

iii

Dedication

This work is dedicated to the American Soldier. The research enclosed is focused on
developing methods that can identify and defeat the network-based attacks of our
adversary.

iv

Acknowledgements

“Whatever you do, work at it with all your heart, as working for the Lord, not for men.”
Colossians 3:23

This work is for Him.

Cathryn, what a tremendous sacrifice you have made these past months, and what grace
you have demonstrated managing our home, caring for our boys, battling morning
sickness, and loving me. None of these words would be on paper without you. I love
you.

Ezra, Micaiah, and John, you will never know how much your welcome home greetings
mean to me.

Dad and Mom, the discipline and independence you instilled in me continue to drive my
pursuit of excellence in the work I’m given to do. Dad, I greatly admire your mastery of
the English language and appreciate your help in editing this manuscript.

Dr. Curtin, your mentorship and subtle encouragement helped me set the bar very high in
this academic pursuit. Your passion for geography and GIS is contagious and has
motivated me to do my best work.

Dr. Waters, Dr. Loerch, thank you for your expertise and validation of this research.

JIEDDO Research Team, your work has amazed and inspired me to pursue this thesis.
Thank you for your dedication to the American Service Member.

Nancy, your kindness and professionalism are admirable. Thank you for introducing me
to the power of Python.

Dr. Leslie, Adobe Illustrator has opened up a whole new world of opportunities for me.

Several network-based analyses implemented in this study utilized the SANET toolbox
developed by Dr. Okabe, Dr. Okunuki and Dr. Shiode. The author is grateful for their
provision of these tools and their continuing contributions to network-based analysis.

v

Table of Contents

 Page

List of Tables .. vii

List of Figures .. viii

List of Abbreviations/Symbols ... x

Abstract .. xi

Forward ... 1

Introduction ... 4

What Is a Spatiotemporal Cluster? .. 4
Why Conduct Spatiotemporal Cluster Analysis? .. 5
The Issue of Spatial and Temporal Measures .. 5
Global vs. Local Statistics ... 7
The Origin of Spatiotemporal Cluster Analysis .. 8
The Development of Spatiotemporal Clustering Methods and Current Applications ... 10
GIS Applications ... 11
Significance of this Research .. 12
Thesis Structure ... 13

PART 1 A Process for Investigating Spatiotemporal Clustering of Network-Based
Phenomena .. 14

Introduction ... 14
Step 1: Define a Research Problem and Analytical Approach 16
Step 2: Acquire and Evaluate the Data .. 17
Step 3: Pre-process the Data .. 19

Format and Map the Data .. 19
Examine the Data ... 22

Step 4: Test for Spatial Clustering ... 26
Continuous Space Tests .. 27
Network Space Tests... 30

Step 5: Test for Temporal Clustering .. 36
Step 6: Test for Spatiotemporal Clustering ... 40

vi

Step 7: Explain the Results .. 45
Conclusions ... 47

PART 2 An Examination of Significance Tests and Critical Parameters for Network-
Based Spatiotemporal Cluster Analysis .. 48

Introduction ... 48
Study Areas and Datasets .. 50
Significance Tests for the Knox Method ... 52

Chi-square and Poisson Distributions ... 52
Normal Distribution ... 55
Monte Carlo Simulations ... 56
Multiple Testing .. 58

Knox Method Critical Parameters ... 60
Conclusions ... 63

PART 3 SCAn: A Spatiotemporal Analysis Tool for Networks 64

Introduction ... 64
Program Requirements .. 65
Tool 1: ST Cluster Basic ... 66
Tool 2: ST Cluster Automatic ... 68
Tool 3: ST Cluster Table ... 71
Tool 4: ST Cluster Monte Carlo .. 73
Tool 5: ST Cluster Range Detector ... 75
Program Limitations .. 76
Future Program Developments .. 77

Recommendations for Future Research .. 78

APPENDIX SCAn Python Scripts .. 81

Tool 1: ST Cluster Basic ... 81
Tool 2: ST Cluster Automatic ... 94
Tool 3: ST Cluster Table ... 110
Tool 4: ST Cluster Monte Carlo .. 117
Tool 5: ST Cluster Range Detector ... 125

References ... 132

vii

List of Tables

Table Page
Table 1- 1. Redundancy of attribute labels in traffic collision data for Franklin

County, OH, January-March 2009. ... 22
Table 1- 2. Continuous and network average nearest neighbor test results for

traffic collisions in Franklin County, OH, January-March 2009. 35
Table 1- 3. Temporal interval analysis for traffic collisions in Franklin County,

OH, January-March, 2009... 38
Table 1- 4. Results for two linear nearest neighbor statistics given traffic fatalities

in Fairfax County, VA, 2004-2008. .. 39
Table 1- 5. Spatiotemporal clusters, Knox R, for the given spatial and temporal

critical distance ranges and associated statistical significance for traffic
collisions in Franklin County, OH, January-March, 2009. Highlighted
values are significant where 𝑄 ≤ the Bonferroni correction for 𝛼 = 0.05. 43

Table 1- 6. Selected attribute values for traffic collisions contributing to
spatiotemporal clusters in Figure 1-9. Weather attribute was derived from
www.wunderground.com(2009). .. 45

Table 2- 1. Characteristics of datasets used in Part 2 of this study. 52
Table 2- 2. Comparison of probabilities for the observed Knox statistic given, the

chi-square distribution, the normal distribution, and those distributions
depicted in Figures 2-3 and 2-4. *The space shuffled distribution is
recommended and used in the tool described in Part 3. .. 58

Table 2- 3. Spatiotemporal clusters, Knox R, for the given spatial and temporal
critical distance ranges and associated statistical significance for traffic
collisions in Franklin County, OH, January-March, 2009. Highlighted
values are significant where 𝑄 ≤ the Bonferroni correction for 𝛼 = 0.05. 59

Table 2- 4. Results of nearest neighbor distance cluster analysis for both the
spatial and temporal dimensions of the given datasets. .. 61

Table 2- 5. Comparison of the Knox statistic and associated probabilities
calculated using the minimum nearest neighbor distance in space and time
as the critical parameters. Highlighted values indicate 𝑄 ≤ 𝛼 = 0.05. 62

Table 2- 6. Comparison of the Knox statistic and associated probabilities
calculated using the average nearest neighbor distance in space and time
as the critical parameters. Highlighted values indicate 𝑄 ≤ 𝛼 = 0.05. 62

Table 2- 7. Comparison of the Knox statistic and associated probabilities
calculated using the maximum nearest neighbor distance in space and time
as the critical parameters. Highlighted values indicate 𝑄 ≤ 𝛼 = 0.05. 62

viii

List of Figures

Figure Page
Figure 1. Graphical representation of the distance measurement differences

between two points measured in continous and network space. 7
Figure 1- 1. Map of 586 injury-causing traffic collisions on major roads in

Franklin County, OH from January to March 2009. ... 21
Figure 1- 2. Distribution of spatial distance between pairs of traffic collisions in

Franklin County, OH, January-March 2009. .. 23
Figure 1- 3. Distribution of temporal distance in days between pairs of traffic

collisions in Franklin County, OH, January-March 2009. 24
Figure 1- 4. Distribution of temporal distance in hours between pairs of traffic

collisions in Franklin County, OH, January-March 2009. 24
Figure 1- 5. Number of traffic collisions occurring by day of the week in

Franklin County, OH, January-March 2009. .. 25
Figure 1- 6. Number of traffic collisions occurring by day in Franklin County,

OH, January-March 2009.. 25
Figure 1- 7. Number of traffic collisions occurring by hour of the day in Franklin

County, OH, January-March 2009. ... 26
Figure 1- 8. SANET’s Network Nearest Neighbor Distance Tool results. 34
Figure 1- 9. Map of traffic collisions contributing to spatiotemporal clusters

defined by a spatial critical distance of 400 meters and a temporal critical
distance of 0 hours (occurred during the same hour) in Franklin County,
OH, January-March, 2009... 44

Figure 2- 1. Fatality-causing traffic collisions on major roads in Fairfax County,
Virginia, 2004-2008. ... 51

Figure 2- 2. Comparison of the reference distribution generated by 1000 Monte
Carlo simulations of spatiotemporal clusters in traffic collisions in
Franklin County, OH, January-March 2009, where δ = 400 meters and τ =
2 hours. The Poisson distribution is generated from the reference
distribution mean of 4.24. ... 54

Figure 2- 3. Difference in reference distributions and probabilities generated by
1000 Monte Carlo simulations of the Knox statistic for traffic collisions in
Franklin County, OH, January-March 2009, where δ = 400 meters, τ = 2
hours, and R = 8. ... 57

Figure 2- 4. Difference in reference distributions and probabilities generated by
10,000 Monte Carlo simulations of the Knox statistic for traffic collisions

ix

in E. Fairfax County, VA, 2004-2008 where δ = 1214 meters, τ = 7 days,
and R = 1. .. 57

Figure 3- 1. User input screen for SCAn’s ST Cluster Basic. .. 67
Figure 3- 2. The output dialogue screen for SCAn’s ST Cluster Basic. 68
Figure 3- 3. The user input screen for SCAn’s ST Cluster Automatic. 69
Figure 3- 4. Output dialogue for SCAn’s ST Cluster Automatic. 70
Figure 3- 5. Input screen for SCAn’s ST Cluster Table. .. 71
Figure 3- 6. Output dialogue for SCAn’s ST Cluster Table. ... 72
Figure 3- 7. Input screen for SCAn’s ST Cluster Monte Carlo. 73
Figure 3- 8. Output dialogue for SCAn’s ST Cluster Monte Carlo. 74
Figure 3- 9. User input screen for SCAn’s ST Cluster Range Detector 75
Figure 3- 10. Output dialogue for SCAn’s ST Cluster Range Detector. 76

x

List of Abbreviations/Symbols

α Probability level at which a statistic is considered significant
δ Critical spatial distance used in determining the Knox statistic
EDA Exploratory Data Analysis
ESDA Exploratory Spatial Data Analysis
GIS Geographic Information System
GIScience Geographic Information Science
GUI Graphic User Interface
IED Improvised Explosive Device
Q Probability of observing a statistic according to the normal

 distribution
𝑅 Knox statistic
𝑅𝑙 Linear average nearest-neighbor statistic
𝑅𝑝 Continuous space average nearest-neighbor statistic
SCAn Spatiotemporal Cluster Analysis on a network
SANET Spatial Analysis on a Network
ST Spatiotemporal
τ Critical temporal distance used in determining the Knox statistic

Abstract

A Comprehensive Process for Spatiotemporal Analysis of Network-Based Phenomena

David C. Eckley, M.S.

George Mason University, 2010

Thesis Director: Dr. Kevin Curtin

This thesis describes an efficient and effective process for conducting spatiotemporal

cluster analysis of network-based phenomena. While various methods are published

which describe spatiotemporal analysis of phenomena in continuous space, the literature

is lacking for the application of these methods in network space. Through a step by step

process, Part 1 of this thesis establishes the validity of a network application for the

spatiotemporal clustering method proposed by Knox (1964). Further, it presents an

intuitive technique for determining the critical parameters in space and time for the

spatiotemporal test, by examination of minimum and average nearest neighbor distances

in both dimensions independently. Through examples, Part 2 explores the significance

tests used by the described spatiotemporal clustering methodology and expounds upon

the critical parameter determination mentioned in Part 1. Part 3 presents a GIS-based

toolbox, SCAn (Spatiotemporal Cluster Analysis on a network) designed to perform

spatiotemporal cluster analysis of network-based phenomena using the methods

presented in Part 1 and Part 2.

1

Forward

 “The greatest value of a picture is when it forces us to notice what
we never expected to see.” (Tukey 1977)

It is not normally the practice of the U.S. Army to offer incentives to its officer

corps for the purpose of retention, but for a period of time between 2007-2009 such an

exception was made for company grade officers. Of various incentives offered, the

opportunity to attend graduate school full-time for 18 months seemed an especially

generous option. With the war-time operational tempo requiring frequent deployments,

an exclusively education-focused assignment would afford an officer not only a chance to

meet higher educational goals, but also a brief period of stability with focused family

time. The author is especially grateful to have been afforded this great privilege and has

purposed to make this temporary assignment worth every penny invested by the Army on

behalf of the U.S. tax payer.

And so, as a research topic was considered for the subject of this thesis, at the

forefront of the author’s mind was how to turn this educational opportunity into a

contribution for the ongoing war effort. With a background and interest in Geographic

Information Systems (GIS) and Geographic Information Science (GIScience), a

geographically-based problem was of particular interest. Working with a Department of

Defense (DoD) sponsored research team at the university, the author’s interests were

further focused on problems arising from the effort to counter the adversary’s use of

2

Improvised Explosive Devices (IEDs) in Iraq and Afghanistan. Recognizing that IEDs

are generally restricted in space to the transportation network upon which they occur, and

that IED incidents have both a spatial and temporal component, a geographic research

question began to emerge. Since IED incidents are not the result of a random process,

but rather are caused by the agents who use them as weapons against coalition forces,

defense research has demonstrated that clustering of these events occur in both space and

time, functions of both where and when the adversary is operating; or equally as likely,

where and when coalition forces use the road network. Understanding the above, the

following specific research question seemed plausible: “What can be learned about the

adversary from the analysis of the spatiotemporal clustering of IED incidents?” If spatial

clusters reveal operational areas, and temporal clusters reveal operational periods, could

spatiotemporal clusters reveal a correlation between the two which could be exploited?

While these were intriguing questions, it quickly became evident that the data

required for such research could not be openly published. Therefore, either notional data

would need to be derived to replicate the phenomena of IED occurrence or data for

phenomena with similar characteristics could be explored. Not wanting to deal with the

security concerns involved in accomplishing the former, the author decided to pursue the

latter option, recognizing too, that the significance of research lies not only in solving

specific problems, but in developing methods that can be repeatedly used to solve many

similar problems like the question of interest.

Determining that the research data should represent static events with both a

spatial and temporal component and that the events should be restricted to network space,

3

the author chose to use traffic collision data as the subject of this thesis. The data were

easy to obtain given that the body of research on the study topic of traffic collisions is

enormous. While the causality of IED incidents and traffic collisions cannot be

compared, there were potential factors such as weather, construction, or poor road

management that could theoretically lead to significant spatiotemporal clustering of

traffic collisions.

It was from these ideas that the following thesis became a reality. While this

research will not specifically address any applications for the IED problem discussed

above, it does describe and explain a methodology for conducting spatiotemporal analysis

of similar network-based phenomena, in a straight-forward, comprehensive way, and

presents a GIS-based tool with which to do so.

If this picture helps anyone discover what they didn’t expect to see, this effort has

been worthwhile.

4

Introduction

What Is a Spatiotemporal Cluster?

 While the term “cluster” can be used to describe patterns represented by various

types of phenomena, this research is concerned with those patterns created by individual

events limited to finite points in geographic space. In this context, an event has both a

spatial and temporal component. More specifically then, a spatial cluster, is a geographic

point pattern that is represented by an excess number of events relative to the expected

pattern, such as a local aggregation of cancer cases, pockets of crime in blighted urban

areas, or high collision rates at congested intersections. Likewise, a temporal cluster is

represented by the occurrence of a greater number of events than that expected during a

particular portion of a specified time period, such as excess flu cases during the month of

April, increased incidents of rape during hours of darkness, or many traffic accidents

during a rainstorm following an extended period of dryness. A spatiotemporal cluster

exists when an excess number of events that occur within some geographic space are also

unexpectedly close in time, such as a significant population of students in a given

classroom contracting an infectious disease during the same week, a spike in purse

snatching on the National Mall during a holiday weekend, or excessive fender benders

during rush hour traffic.

5

Why Conduct Spatiotemporal Cluster Analysis?

From a purely theoretical standpoint, spatiotemporal cluster analysis is one of

many techniques utilized in Exploratory Spatial Data Analysis (ESDA) for geographic

pattern recognition (Jacquez 2008). Once spatial patterns have been identified and

defined through ESDA, hypotheses may be developed to specify real and testable

explanations for the observed patterns (Jacquez 2008). Recognition of these patterns is

important as they illuminate underlying space-time processes which are the focus of

many geographic studies.

Practically speaking, while spatial and temporal clusters may exist independently,

spatiotemporal clusters indicate a correlation between the spatial and temporal dimension

for the given phenomenon. Identifying and determining a correlation in spatiotemporal

clusters may provide valuable insight beyond the determination of exclusively spatial or

temporal clusters. In epidemiology, spatiotemporal clusters may reveal the relationship

between origin and onset of disease; in criminology, the relationship between the location

and recurrence of a particular criminal activity; in transportation research, the highest risk

periods of travel within given portions of the network.

The Issue of Spatial and Temporal Measures

As cluster analysis depends upon a measure of separation between events,

choosing an appropriate distance measure and resolution or granularity for the

phenomenon under study is important. Using identical distance measures to study

differing phenomena may result in misleading conclusions or a loss of information.

6

When exploring temporal clustering, the granularity of the temporal scale should be

considered. If examining traffic collisions during peak traffic periods, more information

will likely be gained from considering the number of collisions which occurred by hour

as opposed to the number which occurred each week. If peak traffic periods occur daily

at specific hours, then knowing the frequency of collisions by week will not help the

researcher determine whether temporal clustering of traffic collisions corresponds to

daily peak traffic hours. If traffic collisions were measured by hour, then this analysis

could be conducted. Similarly, since vehicles are restricted to the network space within

which they travel, analyzing clusters of traffic collisions using Euclidean measures could

lead to a false discovery of clustering not related to the same spatial process. Consider

Figure 1. While a Euclidean measurement might place the two points in a cluster defined

by a distance threshold equal to their depicted separation in Figure 1, the same points

would not produce a cluster when considering their separation using a network distance

measurement. Yamada and Thill (2004) illustrate the pitfall of conducting analysis of

network-based phenomena with continuous space measurements in the place of network

measures with traffic data from Buffalo, NY. Extensive research such as that just

mentioned has demonstrated the validity of using network measures to analyze network-

based phenomena and numerous continous space statistical methods have been extended

network space (Okabe et al. 1988; Black 1991; Miller 1999; Okunuki and Okabe 2002;

Okabe and Satoh 2006; Yamada and Thill 2007; Yamada and Thill 2010; Shiode 2008;

Shiode and Shiode 2009; Okabe, Yomono, and Kitamura 1995). One of the goals of this

research is to contribute to this work of extending continuous space statistics to network

7

space by adapting the Knox test to conduct spatiotemporal analysis of network-based

phenomena.

Figure 1. Graphical representation of the distance measurement differences between two points
measured in continous and network space.

Global vs. Local Statistics

 A common differentiation between spatial statistical tests is the scale at which a

given test is sensitive. In the case of tests for spatial clustering, a global statistic is one

that provides a summarized spatial structure for the entire study area without identifying

where the specific clusters are located, while local statistics define clustering within small

areas which together comprise the larger study area (Jacquez 2008). Many local statistics

8

like Local Indicators of Spatial Autocorrelation (LISA) (Anselin 1995; Ord and Getis

1995) have global counterparts such as Moran’s I (1950).

 The Knox test, which is the focus of this research, is unique in that while it is a

global statistical test, it is possible to display the pairs of events which contribute to the

global spatiotemporal clustering. While it is possible to visualize the cluster(s) defined

by the global test, the statistical significance of the test can only be determined for the

global case, and not each individual event pair.

The Origin of Spatiotemporal Cluster Analysis

Academic research traces the origin of spatiotemporal clustering techniques to the

work of Knox (1964) who was interested in the epidemiology of various cancers. Knox’s

method involved the comparison of distances between all pairwise cases of disease in

both space and time, with the statistic equal to the number of pairs which were both close

in space and time, based on some specified measure of closeness. Knox supposed that

related cases would be closer together in space and time, while unrelated cases would

tend to have a larger separation. A difficulty with his statistic was the determination of

significance, as the same case could be used multiple times in determining the

adjacencies in space and time. Knox conjectured that his statistic followed a Poisson

distribution. David and Barton (1966), proved Knox’s conjecture that his statistic was

Poisson. Further, they provided the mean and variance of the statistic. Mantel (1967)

provided the permutation variance of the Knox statistic, describing how to apply Monte

Carlo methods to determine the statistic’s significance.

9

Knox’s statistic is both simple and efficient, and remains the most common

spatiotemporal clustering method in epidemiology today. However, a major complaint

with the statistic is the need to define arbitrary critical parameters measuring closeness in

space and time. Many researchers have suggested techniques to improve this perceived

shortfall. David and Barton (1966) proposed their own statistic which compares spatial

clusters within subsets of time defined by the average time interval between events.

Mantel (1967) proposed the use of reciprocal transformations for the actual space and

time labels of cases. Klauber (1971) defined a two-sample spatiotemporal clustering test.

These and other similar tests are described in William’s (1984) thorough review of

continous space spatiotemporal clustering. Later techniques specific to epidemiology

include Baker’s (1996) modification of Knox’s method, where spatiotemporal clusters

were detected within a range of acceptable space and time critical parameters, Jacquez

(1996) k-nearest neighbor method, which specified spatiotemporal clusters based on

which points were neighbor in space and time, and a variety of other researchers who

developed scan statistics to enable the detection of emerging spatiotemporal clusters

(Kulldorff and Hjalmars 1999; Rogerson 2001; Assuncao and Correa 2009; Mirghani et

al. 2010).

Similar to the efforts of those aforementioned, this research introduces another

technique by which to determine appropriate spatial and temporal critical distances for

defining spatiotemporal clusters when appropriate critical parameters are unknown. It

involves a preliminary examination of nearest neighbor distances in both space and time

10

and uses the test results to define a range of critical spatial and temporal distances which

are used as parameters for a Knox-based spatiotemporal analysis.

The Development of Spatiotemporal Clustering Methods and Current
Applications

As computer and satellite technology has improved over the past two decades, so

has the variety and complexity of geographic spatiotemporal clustering techniques.

While the origins of spatiotemporal cluster investigation lie almost exclusively in

epidemiology, other applications of the statistic have now been explored. Black (1991)

extended spatiotemporal cluster analysis to traffic accidents on a linear stretch of

highway. Jacquez (1996) developed a spatiotemporal cluster test which he used to

expose the spatiotemporal clustering of forest fires in Canada. Criminal activity-based

spatiotemporal clusters have been investigated by Assuncao et al. (2007) and Nakaya and

Yano (2010). Lesniak and Isakow (2009) applied spatiotemporal clustering analysis to

seismic activity and further spatiotemporal analysis has been conducted with traffic

collision data by Mountrakis and Gunson (2009) and Khan et al. (2009).

The most recent spatiotemporal methodological advances include a windowed

nearest neighbor approach (Pei et al. 2010), multi-dimensional map algebra (Mennis

2010), visualizing clusters in a space-time cube (Nakaya and Yano 2010), the use of

bivariate kernel density estimators (Mountrakis and Gunson 2009), cross k-function

analysis (Khan et al. 2009), and stack-based spatiotemporal clustering (Chang, Zeng, and

Chen 2008).

11

With the exception of Black (1991), Mountrakis and Gunson (2009), and Khan et

al. (2009), all of the original spatiotemporal clustering techniques and their most recent

counterparts rely on Euclidean distance measures. In accordance with the preceding

discussion of distance measures, this research will apply this general method to network-

based phenomena using network spatial measures.

GIS Applications

 Originally designed in the 1960s, Geographic Information Systems (GIS) are the

primary tools for the collection, storage, management, query, analysis, and display of

spatial data today. The unique data structures employed by GIS technology allows for

the statistical analysis of large spatial datasets, a capability which has greatly advanced

the ability to perform ESDA and design new spatial statistical techniques. While there

are numerous GIS designed for specific applications, such as TransCAD, used by the

transportation industry, arguably the most universally employed GIS software today is

ESRI’s ArcGIS. ArcGIS’s Spatial Analyst, Tracking Analyst, and Network Analyst

provide statistical tools for assessing spatial, temporal, and network-based data

respectively. ArcGIS lacks the capability to perform the spatiotemporal analyses

described thus far.

 That is not to say that GIS software does not exist to perform spatiotemporal

clustering analysis. Many of these applications are stand-alone tools designed for very

specific analyses. SaTScan, developed by Martin Kulldorff (2006), searches for spatial,

temporal, and spatiotemporal clusters in data but does not have a graphical interface nor

12

is it integrated with any specific GIS program (Block 2007). Similar to SaTScan,

GeoSurveillance provides both retrospective and prospective tests for spatiotemporal

clustering. GeoSurveillance improves upon SaTScan as a stand-alone system by

incorporating a Graphic User Interface (GUI), but like SaTScan, is not integrated with

any mainstream GIS programs (Yamada, Rogerson, and Lee 2009). Another stand-alone

GIS, TerraSeer offers various spatiotemporal analysis packages and shares compatibility

with files used by ESRI, MapInfo, and ENVI programs (Jacquez 2008).

 Unlike these tools described above, but similar to the SANET toolset developed

by Okabe and his team (2009), the spatiotemporal cluster analysis toolbox described in

this research, called SCAn (Spatiotemporal Cluster Analysis on a network), integrates

directly into ArcGIS ArcMap software and can be run through the ArcToolbox menu

display. This tool is free and simple to use and provides a currently non-existent

capability in ArcGIS to conduct spatiotemporal cluster analysis using network distance

measures.

Significance of this Research

 Unlike works preceding this effort, the following thesis presents a step-by-step

comprehensive process for investigating the global spatiotemporal clustering of network-

based phenomena. A new technique is described for determining an appropriate range of

values for the critical distance parameters in space and time when appropriate values are

unknown. The determination of statistical significance for these tests is examined and a

caution is cited in generating reference distributions from Monte Carlo simulations.

13

Finally, a user-friendly ArcGIS-based tool (which can perform the analyses described) is

presented.

Thesis Structure

This thesis begins in Part 1 with a technical methodology for conducting a

spatiotemporal cluster analysis of network-based phenomena, using traffic collision data

as the test case. Part 2 explores the statistical relevance and significance of the

methodology set forth in Part 1 and provides various illustrations as expository aides.

Finally, Part 3 describes the GIS-based tool designed to implement the statistical tests

described in Parts 1 and 2 and is intended to serve as a general user’s guide for the

application.

14

PART 1
A Process for Investigating Spatiotemporal Clustering of Network-

Based Phenomena

Introduction

 The specific analysis to be addressed in this study is the spatiotemporal clustering

of events occurring on a network. Unlike continuous space, network space is one-

dimensional and the events which occur on it are restricted to it. There are many

network-based phenomena that are regularly researched, such as pipeline leaks, power

failures, carjacking, or as discussed previously, IED attacks and traffic collisions. While

it is not unusual to perform spatial or temporal cluster analysis of such network-based

phenomena, spatiotemporal analyses are much less common. Temporal cluster analysis

has long been performed by the transportation research community, and the temporal

characteristics of traffic studies are well known (Lord and Mannering 2010). Spatial

clustering, in the continuous case, dates to the early 1900’s (Clements 1905; Voronoi

1907), but adaptation of popular continuous space statistics to network space has only

begun within the past two decades (Okabe et al. 1988; Black 1991; Miller 1999). In

contrast, although continous space spatiotemporal cluster analysis has been thoroughly

investigated in epidemiology (Knox and Bartlett 1964; Smith et al. 1976; Meighan and

Knox 1965; Lloyd and Roberts 1973; Roberts, Laurence, and Lloyd 1975; Glass and

Mantel 1969), the analytical extension to the network-based case remains uncommon.

15

The intent of this work is to describe a comprehensive process for conducting

spatiotemporal cluster analysis of network-based phenomena where one does not

currently exist. The underlying spatiotemporal method employed in this process is the

Knox test, and a common critique of this method is the need to designate arbitrary critical

spatial and temporal distances as clustering parameters. Original to this research, a

simple technique is suggested for determining an acceptable range of critical spatial and

temporal distances when they are unknown, which are obtained through the results of

spatial and temporal cluster analysis using the average nearest neighbor distance test.

The range of acceptable values is then used to search for spatiotemporal clusters using the

GIS tool provided here, SCAn.

 In order to demonstrate this process, the network-based phenomenon of traffic

collisions will be examined. Traffic collisions provide a good case study for

spatiotemporal cluster analysis as the data are easy to obtain and reporting standards

require very specific attribute information about each event, including precise locations

(often with at least 10 meter resolution) and precise times (often with minute granularity).

In addition to these key attributes, traffic collision reports compiled by law enforcement

officials typically contain extensive details about the physical and human conditions

present at the time and place of collision. If associated with the traffic collision data

table, this information may help explain a discovery of spatiotemporal clustering.

The organization of the proposed comprehensive process is as follows: Step 1

involves defining the spatiotemporal problem of interest; Step 2 addresses concerns for

16

acquiring and evaluating the data to be analyzed; Step 3 discusses the requirements for

pre-processing the data subjected to analysis and presents possible ways to spatially and

temporally examine the data; Step 4 assesses the spatial clustering of the data through an

examination of nearest neighbors in order to determine an acceptable range of critical

spatial distances in determining spatiotemporal clusters; Step 5 tests for temporal

clustering in the data for the same purpose; Step 6 evaluates the findings of Steps 4 and 5

by testing for spatiotemporal clusters; Step 7 seeks to explain the results of the preceding

steps.

Step 1: Define a Research Problem and Analytical Approach

 Fundamental to any scientific research is the need for defining a problem. As

described above, the interest here is to answer questions concerning a problem that fits

within the specific constraints required for the conduct of network-based spatiotemporal

analysis. First, the problem must be geographically limited to network space, and

second, the problem must have finite and quantifiable spatial and temporal measures.

While there are many problems that fit within this scope, the problem to be addressed as

an example here is that of traffic collisions.

 Once the problem is defined, there are two primary ways to approach the data

comprising the problem. First, confirmatory data analysis may be pursued. This

deductive approach is widely accepted, and involves the generation of hypotheses in

order to seek definite answers to specific research questions. Inferential statistics are

utilized which rely on probability models and confidence interval estimations. A

17

significant drawback of this approach is that it can create a misleading perception of

precision, which is especially true when dealing with the complexities of geographic

processes that rarely conform to any type of true randomness (Jacquez 2008). The other

option is to pursue exploratory data analysis. An inductive approach, exploratory data

analysis or as previously described, ESDA, uses descriptive statistics to let the data

propose questions and develop hypotheses. ESDA attempts to evaluate the validity of

assumptions and relies heavily on graphical displays to support conclusions. The

drawback with this analytic technique is that it usually does not provide definitive

answers and can generate subjective results (Michaelsen 2007).

 Although this research presents a specific process by which to conduct

spatiotemporal cluster analysis, the data analysis approach taken here is primarily

exploratory. Before any hypotheses are generated for spatiotemporal clustering, the data

will first be collected, pre-processed, and then analyzed for purely spatial and temporal

clustering. In so doing, information learned from spatial and temporal clustering in the

data should inform the researcher how to define the variables for the spatiotemporal tests.

Without knowledge of the underlying spatial and temporal distributions, a spatiotemporal

analysis may not be as meaningful.

Step 2: Acquire and Evaluate the Data

While event-based spatiotemporal datasets have not always been easy to generate

or analyze, the advent of powerful computers and GPS technology has made their

existence and utility prevalent. Where traffic collisions were once recorded based on

18

their proximity to a specific intersection or highway mile-marker, today their locations

are usually recorded precisely with geographic coordinates. Improved emergency

response times and traffic cameras have made it possible to record more accurate time

stamps for these events as well. In the case of traffic collisions, many local, county, and

state governments publicly provide access to such data.

Because this research is specifically concerned with network-based phenomena,

in addition to an event-based spatiotemporal dataset, a network dataset is required, which

defines the network space within which the events of interest occur. Again, in the case of

traffic collisions, most related road network data is publically available at the local or

regional level, but if it is not, U.S. Census Bureau’s TIGER files may be utilized for U.S.

specific research (www.census.gov).

Prior to utilizing such data for research, however, it is important to evaluate the

data for accuracy and completeness so as not to compromise the analytic results. Data

quality may be assessed by reviewing the associated metadata or if there is any question,

by contacting the publisher directly.

For the test case, traffic collisions along major roadways in Franklin County,

Ohio, from January to March, 2009 are considered. Traffic collision data were obtained

through the Ohio Department of Public Safety’s crash request portal (Kennedy 2010) and

the road data through OpenStreetMap (2010). See Figure 1-1 for a map of the data

following the pre-processing of Step 3.

http://www.census.gov/�

19

Step 3: Pre-process the Data

Format and Map the Data

If the data is assessed to be of acceptable quality and coverage, a key first step in

formatting the data is to ensure there are no duplicate entries or entries that are missing

either the spatial or temporal attribute. This is important for cluster analysis as duplicate

entries could cause false clustering in the data, while missing spatial or temporal

attributes could cause automated calculations to fail or report inaccurate results. That is

not to say that multiple events may occur at the exact same location but at different times,

or alternatively at the same time but at different locations. Depending on the purpose of

the study, such spatial or temporal attribute redundancy is acceptable but should be noted

as it may lead to unique or unexpected results.

Once duplicate and incomplete entries have been removed, additional formatting

may be required. Both the spatial and temporal attribute fields should be audited. Spatial

formatting will likely require the transformation of the geographic events and the network

dataset onto an acceptable map projection and coordinate system. The selected

projection should be appropriate for the analysis conducted. Because network-based

spatiotemporal cluster analysis examines distances between point pairs of the

phenomenon, a map projection which preserves distance is preferred, although a

compromise projection may be suitable, especially for large scale study areas. Similarly,

temporal attributes may need to be formatted into a date/time format that can be read by

the GIS performing the analysis.

20

Next, the number of events and extent of the study area (network) must be

considered. While technology has greatly enhanced many geographic analyses, trying to

compute certain statistical methods with large datasets may take an excessive amount of

time or exhaust computer memory. If a large dataset must be subdivided for time-saving

reasons, the division of data should be undertaken carefully as it may bias the results of

cluster analysis.

Finally, before analysis may be conducted in network space, the line segment

dataset must be converted into a network dataset and the event data must be located

within the network space. This is a critical pre-analysis step, but because procedures vary

between GIS programs, the process will not be described here.

For the Franklin County traffic collision data, the event and network datasets were

transformed onto the Lambert Conformal Conic projection with the Southern Ohio State

Plane coordinate system. While not preserved, this projection reduces distance and area

distortions across the study area. Additionally, the temporal attribute was reformatted

from a date-time format into a format which listed the date, weekday, hour, and minute

values in separate fields. This was done in order to facilitate temporal analyses of

varying granularity.

For this particular study, only a subset of the total collisions and a subset of the

road infrastructure are considered. This was done in order to work with a manageable set

of data small enough not to require excessive time for computational analyses and large

enough to provide meaningful statistical results. From the complete Franklin County

collision dataset for 2009, only those collisions involving injuries during the months of

21

January through March are considered. From the network dataset, only primary roads

and highways inside Franklin County were considered. Based on these selections, this

reduced the dataset for the study from 29,129 collision events to 586 and from 29,357

road segments to 2034 representing 930 linear kilometers of roadway. See Figure 1-1 for

a map of the study area and data.

Figure 1- 1. Map of 586 injury-causing traffic collisions on major roads in Franklin County, OH
from January to March 2009.

22

Examine the Data

It is important to become familiar with the test data before performing specific

analyses. Understanding the spatial and temporal characteristics of the data under study

can help formulate specific research questions and hypotheses, as well as help explain the

results obtained from the cluster analysis.

Table 1- 1. Redundancy of attribute labels in traffic collision data for Franklin County, OH,
January-March 2009.

 Spatial Attribute Temporal Attribute
Total Events 586 586
Unique Events 474 581
 Attribute shared by 2 Events 50 5
 Attribute shared by 3 Events 11 0
 Attribute shared by 4 Events 8 0
 Attribute shared by 5 Events 1 0
 Attribute shared by 11 Events 1 0

As mentioned in the previous section, identifying the existence of duplicate

spatial or temporal attributes is of particular interest to cluster analysis. For the Franklin

County traffic collision data used in this study, the existence of such duplicates is

prevalent, especially in the spatial attribute (see Table 1-1). The spatial duplicates can be

explained by the practice of using a street intersection as a point of reference for a traffic

collision instead of locating the exact position of the collision. In the data used for this

study, of the 586 events, 474 unique locations, and 581 unique time stamps are

represented. The effect of the spatial duplicates will be noted later in Step 4.

23

Because this research is interested in investigating continuous and network

distance measures and various temporal granularities in the context of spatiotemporal

cluster analysis, several figures are presented here. Figures 1-2 through 1-4 present the

distribution of spatial and temporal distances between pairs. For the spatial distribution

(Figure 1-2), the minimum distance between collision pairs is 0 meters, the maximum

distance is 58,018 meters, and the mean is 16,208 meters. For the temporal distribution

in days (Figure 1-3), the minimum distance between collision pairs is 0 days (events

Figure 1- 2. Distribution of spatial distance between pairs of traffic collisions in Franklin
County, OH, January-March 2009.

occurred on the same day), the maximum is 89 days, and the mean is 30 days. The

temporal distribution in hours (Figure 1-4) is bounded by a minimum of 0 hours (events

occurred during the same hour), a maximum of 2149 hours, with a mean of 718 hours.

Figures 1-5 through 1-7 show the frequency distributions for various temporal

granularities of the data. In Figure 1-5, depicting day of week frequencies, the minimum

0
100
200
300
400
500
600
700
800
900

1000

0
19

00
38

00
57

00
76

00
95

00
11

40
0

13
30

0
15

20
0

17
10

0
19

00
0

20
90

0
22

80
0

24
70

0
26

60
0

28
50

0
30

40
0

32
30

0
34

20
0

36
10

0
38

00
0

39
90

0
41

80
0

43
70

0
45

60
0

47
50

0
49

40
0

51
30

0
53

20
0

55
10

0
57

00
0N

um
be

r
of

 C
ol

lis
io

n
Pa

ir
s

Spatial Distance between Collision Pairs (meters)

24

Figure 1- 3. Distribution of temporal distance in days between pairs of traffic collisions in
Franklin County, OH, January-March 2009.

Figure 1- 4. Distribution of temporal distance in hours between pairs of traffic collisions in
Franklin County, OH, January-March 2009.

number of collisions occurred on Saturdays, with 45, the maximum on Fridays, with 105,

and the average weekday occurrence was 84 collisions. Looking at collisions by day

(Figure 1-6), the minimum tally was 0 events on March 2nd, and the maximum number

was 19 on January 16th, with a daily average of 6.5 collisions. Finally, in collisions by

hour of the day (Figure 1-7), the minimum number of events occurred at 0400, with 3,

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90

N
um

be
r

of
 C

ol
lis

io
n

Pa
ir

s

Temporal Distance between Collision Pairs (days)

0

50

100

150

200

250

300

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00N

um
be

r
of

 C
ol

lis
io

n
Pa

ir
s

Temporal Distance between Collision Pairs (hours)

25

Figure 1- 5. Number of traffic collisions occurring by day of the week in Franklin County, OH,
January-March 2009.

Figure 1- 6. Number of traffic collisions occurring by day in Franklin County, OH, January-
March 2009.

0
20
40
60
80

100
120

Su
nd

ay

M
on

da
y

Tu
es

da
y

W
ed

ne
sd

ay

Th
ur

sd
ay

Fr
id

ay

Sa
tu

rd
ayN

um
be

r
of

 C
ol

lis
io

ns

Day of Week

0

5

10

15

20

1-
Ja

n-
09

8-
Ja

n-
09

15
-J

an
-0

9

22
-J

an
-0

9

29
-J

an
-0

9

5-
Fe

b-
09

12
-F

eb
-0

9

19
-F

eb
-0

9

26
-F

eb
-0

9

5-
M

ar
-0

9

12
-M

ar
-0

9

19
-M

ar
-0

9

26
-M

ar
-0

9

N
um

be
r

of
 C

ol
lis

io
ns

Dateline by Day

26

Figure 1- 7. Number of traffic collisions occurring by hour of the day in Franklin County, OH,
January-March 2009.

the maximum at 1700, with 49, and an average number of collisions by hour of the day

at 24.4.

 While these figures and values are not necessarily meaningful at this point in the

spatiotemporal analysis process, they may provide insight for results from Steps 4

through 7.

Step 4: Test for Spatial Clustering

 In review, a spatial cluster is a geographic point pattern that is represented by an

excess number of points relative to the expected pattern. While the focus of this research

is the investigation of spatiotemporal clusters, examination of the underlying spatial

distribution should not be overlooked. Understanding the spatial pattern of the

phenomenon under study may help formulate questions and hypotheses about possible

spatiotemporal correlation.

0
10
20
30
40
50
60

00
00

01
00

02
00

03
00

04
00

05
00

06
00

07
00

08
00

09
00

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

N
um

be
r

of
 C

ol
lis

io
ns

Hour of Day

27

 Another reason to first investigate the spatial distribution is to determine an

appropriate resolution at which to search for spatiotemporal clusters in the geographic

space. If the events studied have an average separation in kilometers, then it probably

does not make sense to search for clusters at a resolution of 1 meter.

 As previously discussed, this research is concerned primarily with network-based

phenomena, however, in order to compare and contrast the differences between

continuous and network tests for spatial clustering, both are presented here.

Continuous Space Tests

 There are a variety of continuous space spatial clustering tests used to describe

point distributions. While there are both global and local spatial clustering tests, only the

global variety are considered here. Some of the more popular tests include quadrat

analysis (Clements 1905), Voronoi diagrams (Voronoi 1907), Moran’s I (Moran 1950),

average nearest neighbor (Clark and Evans 1954), kernel density analysis (Parzen 1962),

and Ripley’s K (Ripley 1981). Perhaps the most commonly used of those above is the

average nearest neighbor test. Because this test will provide a sense of the spatial scale at

which points are distributed, it is a good choice for this step.

 The average nearest neighbor distance test proposed by Clark and Evans (1954)

examines the distance between each point in a distribution and its nearest neighbor. The

distance between each point and its closest neighbor is summed and the average is taken.

In the following equation quantifying this method, 𝑑̅𝑂 is the observed average distance, 𝑛

is the number of points in the distribution, and 𝑀𝑖𝑛�𝑑𝑖𝑗� is the shortest distance between

28

point 𝑖 and its neighbor point 𝑗 in continuous space:

𝑑̅𝑂 =
∑ 𝑀𝑖𝑛(𝑑𝑖𝑗𝑛
𝑖=1)

𝑛
 (1.1)

In order to determine whether the observed point distribution is clustered or not,

the average nearest neighbor distance is compared to the expected value of the average

nearest neighbor when points are distributed according to the Poisson point process. The

expected average nearest neighbor distance is given by the equation:

𝑑̅𝐸 =
0.5
�𝑛/𝐴

 (1.2)

where 𝑑̅𝐸 is the expected value of the average nearest neighbor distance, 𝑛 is the number

of points in the distribution, and 𝐴 is the geographic area bounding the points in the

distribution. It should be noted that this is the basic formula for the test and it does not

take into consideration irregularly shaped areas or boundary edge effects. Formally, the

average nearest neighbor statistic is annotated:

𝑅𝑃 =
𝑑̅𝑂
𝑑̅𝐸

 (1.3)

29

 If 𝑅𝑃 is greater than 1, meaning that the observed average nearest neighbor

distance is greater than the expected nearest neighbor distance for a random distribution,

then the observed distribution is dispersed. If 𝑅𝑃 is less than 1, the observed distribution

is clustered. In order to test for the significance of 𝑅𝑃, a formula for the z-score is

provided:

𝑧 =
𝑑̅𝑂 − 𝑑̅𝐸
𝑆𝐸

 (1.4)

where 𝑆𝐸 is the standard error of the variance given by:

𝑆𝐸 =
0.26136
�𝑛2/𝐴

 (1.5)

An important assumption made by the calculations for the average nearest

neighbor distance statistic and its associated test for significance is that for the expected

random distribution, points are free to locate anywhere within the area described by the

numerical value given. In the case of network-based phenomena, this assumption is

invalid, as point distributions are constrained to network space. This is not an appropriate

test to use for network-based phenomena, but it is provided here as a means for

comparison.

For the test case of traffic collisions in Franklin County, measured in continuous

space, the minimum nearest neighbor distance between all the given points in the 586-

30

point distribution is 0 meters, while the maximum nearest neighbor distance is 7470

meters. Based on the formulae given above, the observed average nearest neighbor

distance is 187 meters, the expected distance is 748 meters, and the average nearest

neighbor statistic is 0.25. Because the statistic value is less than 1, the point distribution

in the test case is clustered. For significance testing, a statistic is typically considered

significant if the probability of its value occurring is less than 5% given the expected

distribution of the statistic under the case of spatial randomness. For a normal

distribution, a probability of 5% is equivalent to a z-score of +/-1.96. In order to be

significant, the z-score of the observed statistic should be greater than 1.96 or less than -

1.96. The z-score for the test case is -34.74 indicating that the observed clustering is

significant.

Network Space Tests

Because this research is focused on network-based phenomena, it is important to

consider spatial clustering tests which deal specifically with network space. Over the

past twenty years, all of the popular continuous space statistics described in the preceding

section have been extended to network space: network quadrat (Shiode 2008), network

Voronoi diagrams (Okabe et al. 2000), network Moran’s I (Black 1992), network average

nearest neighbor (Okabe, Yomono, and Kitamura 1995), network kernel density analysis

(Flahaut et al. 2003), and network Ripley’s K (Okabe and Yamada 2001). For the sake of

comparison with the above section, the network average nearest neighbor distance test

will be discussed here.

31

Conceptually, the network and continuous average nearest neighbor distance

statistics are the same. The difference lies in how the distance to the nearest neighbor is

measured and how the distribution of the expected nearest neighbor distances is derived.

The formulas described in equations 1.6 through 1.11 can be found the work by Okabe et

al. (1995). The network average nearest neighbor distance is:

𝑡𝑂̅ =
∑ 𝑀𝑖𝑛(𝑡𝑖𝑗𝑛
𝑖=1)

𝑛
 (1.6)

where 𝑡𝑂̅ is the value of the observed average nearest neighbor distance, 𝑛 is the number

of points in the distribution, and 𝑀𝑖𝑛�𝑡𝑖𝑗� is the shortest path distance between point 𝑖

and its neighbor point 𝑗 in network space.

 In the case where the “network” within which the point distribution exists is

represented by a single line, the equation for the expected value of the average nearest

neighbor distance is:

𝑡𝐸̅ =
(𝑛 + 2)𝑙

2𝑛(𝑛 + 1)
 (1.7)

where 𝑡𝐸̅ is the value of the expected average nearest neighbor distance when points are

distributed on the line according to the Poisson point process, 𝑛 is the number of points in

the distribution, and 𝑙 is the length of the line. In the case where the network is made up

32

of multiple line segments, the expected distance is given by a probability distribution

function:

𝐹(𝑡̅) = �
𝑙𝑗
𝑙𝑇
𝐹𝑗(

𝑚

𝑗=1

𝑡̅) (1.8)

where 𝑙𝑗/𝑙𝑇 is the probability of a point being placed line segment 𝑗 in network 𝑇, and

𝐹𝑗(𝑡̅) is the probability distribution function of the average nearest neighbor distance on

line segment 𝑗. The derivations for both of these equations are complex and can be found

in Okabe et al. (1995).

 The network average nearest neighbor statistic is now defined as:

𝑅𝐿 =
𝑡𝑂̅
𝑡𝐸̅

 (1.9)

 The expected value of 𝑅𝐿 given a Poisson point process on a line is

 𝐸(𝑅𝐿) = 1. Similar to the continuous test, if 𝑅𝐿 is greater than 1, meaning that the

observed network average nearest neighbor distance is greater than the expected network

average nearest neighbor distance for a random point distribution on a line, then the

observed distribution is dispersed. If 𝑅𝐿 is less than 1, the observed distribution is

clustered. When testing for significance in the case of points distributed across a single

33

line, the z-value can be found by:

𝑧 =
𝑅𝐿 − 𝐸(𝑅𝐿)
�𝑉𝑎𝑟(𝑅𝐿)

 (1.10)

where 𝑉𝑎𝑟(𝑅𝐿) = 𝑉𝑎𝑟(𝑡̅)/𝑛 with the variance of 𝑡̅ given by:

𝑉𝑎𝑟(𝑡̅) =
(𝑛3 + 8𝑛2 − 8)𝑙2

4𝑛2(𝑛 + 1)2(𝑛 + 2)
 (1.11)

In order to test for significance in the case of a network comprised of many line

segments, Monte Carlo methods are employed using Okabe et al.’s SANET software

(2009).

 In the test case of 586 traffic collisions distributed across the major road network

of Franklin County, by network space measures, the minimum shortest path distance

between any two neighbors is 0 meters while the maximum nearest neighbor distance is

7470 meters. While uncommon, the identical maximum distance between nearest

neighbors in both continuous and network space for this dataset can be explained by the

fact that these two events are located on a unidirectional segment of road. Based on the

equations above, the network average nearest neighbor distance is 399 meters. This

result is more than double the value obtained when calculating the average nearest

neighbor distance in continuous space of 187 meters, indicating that the density of points

is greater in continuous space than network space.

34

In order to calculate the actual network average nearest neighbor statistic, the

SANET toolbox for ArcGIS was implemented (Okabe, Okunuki, and SANET Team

2009). Figure 1-8 displays the results which can be interpreted in similar fashion to

Ripley’s K-function graph (1981). The first observation to note in the results is that the

cumulative points do not add up to the expected value of 586. This is because SANET

does not account for the redundancy of the spatial attribute in the dataset. Events

occurring at identical locations are considered to be the same point. In the chart, the

expected point distribution and the distributions for significant clustering and dispersion

at the 1% and 5% confidence intervals were derived through 10,000 Monte Carlo

simulations of the probability distribution function given previously. While Figure 1-8

does not give a specific value for the network average nearest neighbor statistic, it can be

determined that significant clustering occurs for those events whose nearest neighbor is

located within 1300 meters.

Figure 1- 8. SANET’s Network Nearest Neighbor Distance Tool results.

0
50

100
150
200
250
300
350
400
450
500

10
0

40
0

70
0

10
00

13
00

16
00

19
00

22
00

25
00

28
00

31
00

34
00

37
00

40
00

43
00

46
00

49
00

52
00

55
00

58
00

61
00

64
00

67
00

70
00

73
00

C
um

ul
at

iv
e

N
um

be
r

of
 P

oi
nt

s

Shortest Path Distance to Nearest Neighbor (meters)

Clustering Significant at 1% Confidence Interval
Clustering Significant at 5% Confidence Interval
Dispersion Significant at 5% Confidence Interval
Dispersion Significant at 1% Confidence Interval
Expected Points
Observed Points

35

 This spatial clustering analysis offers several insights into the nature of the spatial

distribution under study (see Table 1-2). The first observation is that the continuous and

network distribution of traffic fatalities in Franklin County are quite different. While the

minimum, maximum, and range of nearest neighbor distance values are identical for both

continuous and network measures (this is rare), the difference in the averages is

considerable. Based on the tests performed above, significant global clustering does

occur in both continuous and network space, but the z-value of the continuous test, when

compared to the output of the network test, suggests that the clustering observed in

continuous space is rarer than that observed in network space. These differences

illustrate the importance of using appropriate spatial measures for the phenomenon under

study. It is clear that using Euclidean measures for traffic collisions restricted to network

space may lead to false conclusions when attempting to explain their distribution.

Network measures should be used for network-based phenomena.

Table 1- 2. Continuous and network average nearest neighbor test results for traffic collisions in
Franklin County, OH, January-March 2009.

Average Nearest Neighbor Test Results Continuous Space Network Space
Minimum Nearest Neighbor Distance 0 m 0 m
Maximum Nearest Neighbor Distance 7470 m 7470 m
Nearest Neighbor Distance Range 7470 m 7470 m
Average Nearest Neighbor Distance 187 m 399 m
Expected Nearest Neighbor Distance 748 m See Figure 1-8
Average Nearest Neighbor Statistic 0.25 See Figure 1-8
Clustered/Random/Dispersed Clustered Clustered
z-score -34.74 N/A
Probability (Q) 0 See Figure 1-8

36

 Secondly, it is now possible to determine a sense for the scale at which the 586

traffic collisions are spatially dispersed within the Franklin County major road network.

The closest neighbors are collocated, the most distant neighbors are 7470 meters apart,

and the average distance between nearest neighbors is 399 meters within the network.

Overall, the spatial distribution of traffic collisions in the study area demonstrates

significant clustering. These findings now provide basis for making decisions about

appropriate spatial critical distances when testing for spatiotemporal clusters. Since we

know some collisions are collocated and that significant clustering exists up to 1300

meters, an acceptable range of appropriate spatial critical distances might exist between 0

and 1300 meters. A somewhat more conservative range is represented between the

minimum nearest neighbor distance and the mean, or in this case, 0 and 399 meters. The

latter range will be tested in Step 6.

Step 5: Test for Temporal Clustering

A temporal cluster is represented by the occurrence of a greater number of events

than that expected during a particular portion of a specified time period. A simple way to

test for clustering in time is by considering the time period as a single line in space, and

then performing a linear (or network) nearest neighbor distance test according to a

specified unit interval. Various linear nearest neighbor tests have been proposed,

including those by von Neumann (1941), Pinder and Witherick (1973), Young (1982),

and Okabe et al. (1995). For ease of evaluation, Young’s statistic is chosen here, and the

37

results will be compared with those from Okabe et al.’s statistic above (Equations 1-6

through 1-11).

Young’s statistic is given by:

𝑀 =
∑ 𝑀𝑖
𝑛
𝑖=1

𝐿
 (1.12)

For points 𝑋1, … ,𝑋𝑛 along a line of length 𝐿, where 𝐷1 = 𝑋1 and

𝐷𝑖 = 𝑋𝑖 − 𝑋𝑖−1, and where 𝑀𝑖 is the minimum value of 𝐷𝑖 , 𝐷𝑖+1. A value of 𝑀 close to

0 indicates clustering of the data points, while a value of 𝑀 close to 𝑛/(𝑛 + 1) indicates

dispersion of the data points.

The expected value and variance of 𝑀 follow:

𝐸(𝑀) =
𝑛

2(𝑛 + 1)
, 𝑉𝑎𝑟(𝑀) =

2𝑛 − 1
12(𝑛 + 1)2

 (1.13, 1.14)

The z-value can be calculated:

𝑧 =
𝑀 − 𝐸(𝑀)
�𝑉𝑎𝑟(𝑀)

 (1.15)

Before performing the linear nearest neighbor test to assess temporal clustering

within the test data, an appropriate temporal interval must be chosen. A simple technique

38

to determine a meaningful interval is to divide the total number of events in the dataset by

the sum of the possible temporal intervals in the study period. This is demonstrated in

Table 1-3. Redundancy of events within a temporal interval may cause a loss of

information when searching for temporal clustering, while choosing an excessively small

temporal interval may not add any information. Based on the results of Table 1-3, hours

will be used as the temporal interval for this study.

Table 1- 3. Temporal interval analysis for traffic collisions in Franklin County, OH, January-
March, 2009.

Time Interval

Number of Intervals
in Study Period

(January-March 2009)

Number of Events
per Interval

(586 Collisions)
Month 3 195.33
Week 12.9 45.43
Day 90 6.51
Hour 2160 0.27
Minute 129600 0.005

A comparison of results for Young and Okabe et al.’s statistic for the test case are

given in Table 1-4. While the two tests use different standardization techniques, the

results are nearly identical. Young’s test standardizes the statistic by the time period of

study, in this case 2160 hours (90 days), while Okabe et al.’s statistic uses the total

number of points in the test distribution, 586. Consequently, the derivations of the first

two moments differ for each test. Both tests, however, suggest that the temporal

distribution of traffic collisions in Franklin County between January and March 2009 is

39

slightly more clustered than the expected random temporal distribution and statistically

significant.

While the tests do provide very similar results, the benefit of using Okabe et al.’s

statistic is the ability to observe the average and expected nearest neighbor distance as a

function of the temporal interval. As was done in Step 4, from the results here, a basis

can be established from which to determine an appropriate range of temporal critical

distance values when testing for spatiotemporal clusters in Step 6. Again, using the

smallest nearest neighbor distance between traffic collisions as a minimum, and the

average nearest neighbor distance as the maximum, an acceptable range of temporal

critical distance values is between 0 and 1.65 hours. This range will be tested in the next

step.

Table 1- 4. Results for two linear nearest neighbor statistics given traffic fatalities in Fairfax
County, VA, 2004-2008.

Linear Nearest Neighbor Test Okabe et al.'s Test Young's Test
Minimum Nearest Neighbor Distance 0 hours 0 hours
Maximum Nearest Neighbor Distance 13 hours 13 hours
Nearest Neighbor Distance Range 13 hours 13 hours
Average Nearest Neighbor Distance 1.65 hours N/A
Expected Nearest Neighbor Distance 1.87 hours N/A
Average Nearest Neighbor Statistic 0.88 0.44
Clustered/Random/Dispersed Clustered Clustered
z-value -1.46 -3.4
Probability (Q) 0.072 0.0003

40

Step 6: Test for Spatiotemporal Clustering

The object of this penultimate step is to test for spatiotemporal clustering in the

phenomena under study, that is whether or not there are an excess number of events

occurring within some geographic space that are also unexpectedly close in time. While

the literature discusses a variety of spatiotemporal clustering methods (as shown above),

the Knox method is still perhaps the most straight-forward and widely used today, a

network-based application which is the focus of this study. A detailed explanation of the

general method can be found in Cliff and Ord (1981) and with examples in Upton and

Fingleton (1985). The derivations for the expected value and variance of the statistic

were first described in David and Barton’s (1966) assessment of Knox’s work and are

provided here for reference as well.

The Knox method involves the construction of two event proximity matrices with

the dimensions of 𝑛 × 𝑛 for 𝑛 events. The first matrix defines spatial proximity where a

1 is included in some cell 𝑋𝑖𝑗 if event 𝑖 occurred within some critical spatial distance δ of

event 𝑗 and 0 otherwise. The second matrix defines temporal proximity where a 1 is

included in some cell 𝑌𝑖𝑗 if event 𝑖 occurred within some critical temporal distance τ of

event 𝑗 and 0 otherwise. For both matrices, if 𝑖 = 𝑗, then the entry is 0. The Knox

statistic is then obtained by the cross-product:

𝑅𝛿𝜏 = ��𝑋𝑖𝑗𝑌𝑖𝑗
𝑗<𝑖

𝑛

𝑖=1

 (1.16)

41

If the events are completely independent spatially and temporally, then there is no space-

time interaction and 𝑅𝛿𝜏 = 0. For rendering simplicity, 𝑅𝛿𝜏 is hereafter written as 𝑅.

The expected value for 𝑅 can be found by:

𝐸(𝑅) =
𝑆0𝑇0

𝑛(𝑛 − 1) (1.17)

where 𝑆0 = ∑ ∑ 𝑋𝑖𝑗𝑗𝑖 (𝑖 ≠ 𝑗), 𝑇0 = ∑ ∑ 𝑌𝑖𝑗𝑗𝑖 (𝑖 ≠ 𝑗), and 𝑛 is the number of events.

The variance of 𝑅 is:

𝑉𝑎𝑟(𝑅) =
𝑆1𝑇1
2𝑛(2) +

(𝑆2 − 2𝑆1)(𝑇2 − 2𝑇1)
4𝑛(3)

+
(𝑆02 + 𝑆1 − 𝑆2)(𝑇02 + 𝑇1 − 𝑇2)

𝑛(4) − {𝐸(𝑅)}2 (1.18)

where 𝑆1 = 1
2
∑ ∑ (𝑋𝑖𝑗𝑗 + 𝑋𝑗𝑖)2𝑖 (𝑖 ≠ 𝑗); 𝑆2 = ∑ (𝑋𝑖0 + 𝑋0𝑖)2𝑖 ; 𝑋𝑖0 = ∑ 𝑋𝑖𝑗𝑗

𝑋0𝑖 = ∑ 𝑋𝑗𝑖𝑗 ; 𝑛(2) = 𝑛(𝑛 − 1); 𝑛(3) = 𝑛(𝑛 − 1)(𝑛 − 2);

𝑛(4) = 𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3).

where the formulae for 𝑇0, 𝑇1, 𝑇2 are identical in form to those for 𝑆0, 𝑆1, 𝑆2 with the

exception that X is replaced by Y wherever it occurs in the formulae.

42

When the number of events is large (greater than 30), the normal approximation

may be assumed, however studies by Mielke (1978) and Siemiatycki (1978) identify

potential exceptions which emphasize the approximate nature of this assumption.

In order to calculate the value of the test statistic for a normal approximation,

follow:

𝑧 =
|𝑅 − 𝐸(𝑅)| − 1
�𝑉𝑎𝑟(𝑅)

 (1.19)

 In order to implement this method for the data under study, the critical parameters

defining the spatiotemporal clusters for the test must be determined. Unlike

spatiotemporal studies in epidemiology, where critical parameters can be defined by the

known etiology of disease, for the case of traffic collisions, critical parameters are

difficult to discern and relative to the spatial and temporal processes involved at the area

and time of study. Instead of methodically implementing every possible combination of

spatial and temporal critical distances for the study data, a technique for determining an

acceptable range of critical spatial and temporal distances has been presented in Steps 4

and 5 of this process. Based on Step 4, a conservative range of acceptable spatial critical

distances was defined between 0 and 399 meters. Likewise, in Step 5, a range of

acceptable temporal critical distances was defined between 0 and 1.65 hours. The results

of testing for spatiotemporal clusters using the GIS tool, SCAn (the focus of Part 3 of this

43

research), are presented in Table 1-5, where the spatial critical distance range was tested

at 100 meter intervals and the temporal critical distance range at 1 hour intervals.

While it is commonly accepted that a statistic is significant when its probability of

occurrence is less than 5%, or 𝛼 = 0.05, in this case a Bonferroni correction is

implemented because multiple tests (hypotheses) are being performed on the same

statistic. The adjusted Bonferroni correction used here was suggested by Simes (1986)

and the procedure is described further in Part 2 of this work. For Table 1-5, only the

highlighted Knox R values meet the significance criteria of 𝑄 ≤ the Bonferroni

correction for 𝛼 = 0.05.

Table 1- 5. Spatiotemporal clusters, Knox R, for the given spatial and temporal critical distance
ranges and associated statistical significance for traffic collisions in Franklin County, OH,
January-March, 2009. Highlighted values are significant where 𝑄 ≤ the Bonferroni correction
for 𝛼 = 0.05.

Critical Spatial
Distance
(meters)

Critical Temporal
Distance
(hours)

Knox-R
Value Probability (Q)

Bonferroni
Correction for

α = 0.05
0 0 0 0.233 0.020

1 1 0.498 0.050

2 2 0.216 0.013

100 0 1 0.408 0.030

1 2 0.291 0.023

2 3 0.222 0.017

200 0 1 0.483 0.043

1 2 0.413 0.033

2 3 0.368 0.027

300 0 1 0.473 0.040

1 2 0.489 0.047

2 3 0.464 0.037

400 0 5 0.000003 0.003

1 6 0.004 0.007

2 8 0.005 0.010

44

 Using the GIS tool SCAn, presented in Part 3 of this thesis, it is possible to map

the spatiotemporal clusters that contribute to the observed Knox R values. In order to

illustrate this capability, the traffic collisions contributing to the significant

spatiotemporal clustering at a critical spatial distance of 400 meters and a critical

temporal distance of 0 hours (meaning the events occurred within the same hour) are

presented in Figure 1-9. The attributes associated with the mapped traffic collisions

representing spatiotemporal clusters in Figure 1-9 are presented in Table 1-6.

Figure 1- 9. Map of traffic collisions contributing to spatiotemporal clusters defined by a spatial
critical distance of 400 meters and a temporal critical distance of 0 hours (occurred during the
same hour) in Franklin County, OH, January-March, 2009.

45

Table 1- 6. Selected attribute values for traffic collisions contributing to spatiotemporal clusters
in Figure 1-9. Weather attribute was derived from www.wunderground.com(2009).

ID Date Day of Week Time Weather
1 1/16/2009 Friday 4:35:00 PM Record low temp (-14 degrees)
2 1/16/2009 Friday 4:15:00 PM Record low temp (-14 degrees)
3 1/20/2009 Tuesday 9:00:00 AM Record low temp (-1 degree)
4 1/20/2009 Tuesday 9:05:00 AM Record low temp (-1 degree)
5 1/26/2009 Monday 12:06:00 PM Snow
6 1/26/2009 Monday 12:27:00 PM Snow
7 1/30/2009 Friday 6:44:00 PM Snow
8 1/30/2009 Friday 6:44:00 PM Snow
9 2/26/2009 Thursday 6:45:00 PM Rain (0.05 inches)
10 2/26/2009 Thursday 6:13:00 PM Rain (0.05 inches)

An examination of Figure 1-9 and Table 1-6 reveals likely spatial and temporal

processes contributing to the existence of the observed spatiotemporal clusters. In the

case of Figure 1-9, the spatiotemporal clusters depicted on the map are located in the

vicinity of major intersections or access/exit ramps to multi-lane highways or freeways,

locations where vehicles are abruptly changing travel speed and/or lanes. Table 1-6

indicates that the spatiotemporal clusters occurred during periods of extreme weather in

every case, and during weekday rush hour traffic in four out of five clusters.

Step 7: Explain the Results

 An important final step of this comprehensive process involves using any

available resources to explain the results observed in the preceding steps. There may be

obvious conclusions to be made or new questions may emerge requiring further

investigation.

46

 In the test case presented here, the fact that significant clustering was observed in

both the spatial and temporal dimensions indicates that there are underlying spatial and

temporal processes effecting the distribution of traffic collisions both in the network

space and during the temporal period of study. A further examination of clustering in the

spatial dimension should reveal the general areas or specific locations on the network

where the greatest number of collisions have occurred, possible factors being restricted

traffic flow, an intersection of traffic lanes, or poor surface maintenance. Similarly, a

further investigation into the strictly temporal clustering observed in the test data will

reveal the temporal periods with the greatest number of traffic collisions, likely the result

of peak traffic flow, reduced visibility, or temporally-based environmental changes, such

as extreme weather. The added level of analysis provided by testing for spatiotemporal

clusters reveals those specific locations where traffic collisions occur in rapid succession.

The results presented above suggest that periods of extreme weather create conditions

within specific portions of the network where traffic collisions are prone to happen,

which in this study are areas at which traffic merges or intersects. This result may not be

surprising, but it illuminates a risk that can be further investigated. While the temporal

aspect of extreme weather cannot be controlled, the contributing spatial factors can be

examined and may lead to spatial solutions that can mitigate the temporal risk, such as

improving the road surface, erecting signage, or reducing traffic flow to the area. It is

apparent from these findings that a spatiotemporal cluster analysis of traffic collisions

could be implemented as a tool in prioritizing research, maintenance, and development on

a given transportation network. Conversely, a spatiotemporal cluster analysis may be

47

useful in assessing the relative safety of a transportation network by observing an absence

of overall spatiotemporal clustering or by observing those portions of the network where

clustering has not been exhibited.

Conclusions

 This research has presented a comprehensive process for the spatiotemporal

clustering analysis of network-based phenomena. A thorough implementation of the

process described will provide a greater understanding of the spatial, temporal, and

spatiotemporal distribution of the phenomenon under study. While the determination of

spatial and temporal critical distance parameters for the Knox test may be intuitive in

some studies, when it is not, an effective technique has been described here that identifies

spatiotemporal clustering based on a range of nearest neighbor distance values in both

space and time. This process did not address the statistical theory of the methods

described, however the ensuing Part 2 will highlight a few specific concerns. Neither did

this process describe the GIS tools used to implement the process described. These

details are addressed in Part 3. Through the example of the traffic collision phenomenon

examined here, a compelling case for the usefulness of a network-based extension of

Knox method has been presented, and the potential benefit of such spatiotemporal

analysis has been explained.

48

PART 2
An Examination of Significance Tests and Critical Parameters for

Network-Based Spatiotemporal Cluster Analysis

Introduction

 In statistical testing, perhaps the most important element and greatest challenge is

determining the significance of the statistical finding. Generally speaking, statistical

significance is based on how closely the observed result compares to the distribution of

the expected result. If the observed result is uncommon when compared to the expected

distribution, it is said to be significant. The distribution of the expected result typically

follows some type of stochastic model describing the process under examination. Often,

the normal distribution is used as the sampling distribution, although it is not always an

appropriate assumption, especially when sample sizes are very small.

 This challenge of determining significance is relevant to the Knox method used in

this study. While significance tests for the Knox method have been developed for the

chi-square distribution, the normal distribution, and Monte Carlo methods, the normal

distribution has been primarily used for this research partly based on the assumption that

GIS users often work with large sample sizes. Large samples sizes tend to conform to the

normal distribution, making a significance test that conforms to a normal approximation

acceptable here. While Monte Carlo simulations may create the best reference

distribution for significance testing, because the assumption of large sample sizes is

49

made, the generation of Monte Carlo simulations can become quite time consuming, and

are therefore not used as the primary significance test in this study. For a reference

purpose, however, each significance test is described here, and the results of all three

tests are presented for comparison (see Table 2-2). The ability to perform each test is

provided within the SCAn tool described in Part 3 of this work, so that a decision on

which significance test to be implemented can be based on the desired accuracy and time

available for performing the test. Regardless of the significance test selected for the

Knox method, if multiple iterations of the test are performed on the same dataset, then the

probability levels determining significance should be adjusted. This is commonly

accomplished through Bonferroni methods which will be discussed here.

 Additionally, as part of the comprehensive process described in Part 1 of this

research, a technique was presented for determining spatial and temporal critical

distances in the execution of spatiotemporal testing. Provided here are the significance

test results for multiple ranges of critical parameters derived from the nearest neighbor

distance test in space and time. These findings determined the recommendation to use a

range of critical parameter values between the minimum and the average nearest neighbor

distance for both the spatial and temporal domains.

 The organization of Part 2 follows: first, the datasets used as a basis for

comparison in this part of the study are described; next, three significance testing

methods used for the Knox test are presented, with a discussion on adjusting significance

levels when performing multiple tests; finally, an examination of the process for

50

determining a range of critical parameters for spatiotemporal cluster testing using nearest

neighbor distance values is provided.

Study Areas and Datasets

 For the purposes of comparing the varying results of the statistical significance

tests described hereafter, multiple datasets are examined. There are a total of seven

datasets representing two different study areas used in this portion of the thesis. The two

study areas represented are the major road network of Franklin County, Ohio, depicted

previously in Figure 1-1, and the major road network of Eastern Fairfax County, Virginia,

depicted in Figure 2-1. Within the Franklin County study area, four datasets

representing actual injury-causing traffic collisions are examined, one for each successive

three-month period during the year of 2009. An additional randomly generated dataset is

presented for this study area, created using SANET’s random point generator tool

(Okabe, Okunuki, and SANET Team 2009) to define the event locations on the network,

and a random number generator to define event time stamps.

Within the Fairfax County study area, two datasets are presented. One contains

the fatality-causing traffic collisions during the five-year period between 2004 and 2008

and one contains randomly generated values within the same spatial and temporal

constraints as the observed data. Table 2-1 lists characteristics of each dataset

successively. Note the difference in point density between the two study areas.

51

Figure 2- 1. Fatality-causing traffic collisions on major roads in Fairfax County, Virginia, 2004-
2008.

52

Table 2- 1. Characteristics of datasets used in Part 2 of this study.

Minimum Nearest Neighbor Distance

Network
Distance

(km)

Temporal
Period
(days)

Number
of

Events
Spatial/Temporal

Event Density
Franklin Co. Collisions (Jan-Mar '09) 930 90 586 0.63 / 6.51
Franklin Co. Collisions (Apr-Jun '09) 930 91 671 0.72 / 7.37
Franklin Co. Collisions (Jul-Sep '09) 930 92 653 0.70 / 7.10
Franklin Co. Collisions (Oct-Dec '09) 930 92 698 0.75 / 7.59
Random Set (Franklin Co. Network) 930 90 698 0.75 / 7.76
E. Fairfax Co. Fatalities ('04-'08) 950 1827 125 0.13 / 0.07
Random Set (E. Fairfax Co. Network) 950 1827 125 0.13 / 0.07

Significance Tests for the Knox Method

Chi-square and Poisson Distributions

 Because the pairings derived through the Knox method can be summarized in a

two by two contingency table, the chi-square test has been suggested as a means of

testing for the significance of the statistic (Knox 1964; Jacquez 1996). The contingency

table is established such that:

 Space
 ≤ 𝛿 > 𝛿

Time ≤ 𝜏 a b
> 𝜏 c d

where δ is the critical spatial distance, τ is the critical temporal distance, a is the value of

spatiotemporal pairs, b is the value of temporal pairs, c is the value of spatial pairs, and d

53

is the value of all other pairs. In the contingency table above, the value of a is the Knox

statistic, 𝑅.

 Chi-square (𝜒2) is then calculated by:

𝜒2 = ��
(𝑂𝑖𝑗 − 𝐸𝑖𝑗)2

𝐸𝑖𝑗𝑗𝑖

 (2.1)

where 𝑂𝑖𝑗 is the observed value in cells a through d of the contingency table and 𝐸𝑖𝑗 is:

𝐸𝑖𝑗 =
𝑅𝑖 × 𝐶𝑗
𝑁

 (2.2)

with 𝑅𝑖 the row sum for the observed value 𝑂𝑖𝑗, 𝐶𝑗 the column sum for the observed value

𝑂𝑖𝑗, and 𝑁 the grand total number of observations, a + b + c + d.

 In this instance the probability of 𝜒2 may be determined from a chi-square

distribution table with one degree of freedom. Generally speaking, the higher the 𝜒2

value, the more rare the result. A large 𝜒2 value indicates that somewhere in the

contingency table, the observed frequencies for a given cell differ markedly from the

expected values, although the 𝜒2 value does not indicate which cell (or cells) are

contribute to the observed effect (Anon. 2010a). Baker (1996) notes that because a

majority of the terms in the 𝜒2 contingency table will result from the squared differences

54

between observed and predicted numbers of close pairs over distances much larger than

the specified critical distances, the power of the 𝜒2 test is reduced.

Figure 2- 2. Comparison of the reference distribution generated by 1000 Monte Carlo simulations
of spatiotemporal clusters in traffic collisions in Franklin County, OH, January-March 2009,
where δ = 400 meters and τ = 2 hours. The Poisson distribution is generated from the reference
distribution mean of 4.24.

If the value of a, or the Knox statistic, 𝑅, is very small, then it has been

demonstrated that the significance of the value may be directly calculated using a single-

tailed Poisson distribution where the mean is equal to 𝐸𝑖𝑗 above (Knox and Gilman 1992;

David and Barton 1966). The Poisson tendency of the Knox statistic distribution is

characterized by the data of this study as well (see Figure 2-2). Table 2-2 shows how the

probability of the Knox statistic based on the 𝜒2 distribution, and the Poisson distribution

compare to the other significance tests presented in this study. It should be noted that

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
um

be
r

of
 O

bs
er

va
tio

ns

Knox R

Monte Carlo
Distribution

Poisson Distribution

55

although the Poisson distribution and the Monte Carlo distribution generated in Figure 2-

2 are nearly identical, the derived probabilities of the observed Knox statistic based on

these distributions is different, as reported in Table 2-2. This unexpected difference is

due to how the probabilities are calculated in each case.

Normal Distribution

 Developed for the Knox test initially by David and Barton (1966), the formulae

for significance testing according to a normal approximation have been previously

presented in Equations 1.17 – 1.19. Details of these calculations are also provided in

Upton and Fingleton (1985). When sample sizes are large (generally greater than 60

events) then this is an appropriate distribution for significance testing. The probability of

observing the Knox statistic according to this normal approximation (Q) is used

throughout this study. As previously mentioned, comparison of the probabilities of the

Knox statistic based on the various distributions discussed here can be found in Table 2-

2. From this table, it is apparent that the Knox statistic probability based on the normal

approximation most closely resembles the probability based on the Monte Carlo

generated reference distribution (where space labels are shuffled). As the Monte Carlo

distribution provides the best representation of possible Knox values for a given test, the

fact that the normal and Monte Carlo probabilities are similar is further evidence in

support of using the normal approximation when an expedient significance test is

required.

56

Monte Carlo Simulations

 While originally suggested by Knox (1964), Mantel (1967) provided details for

generating a reference distribution for the Knox statistic using Monte Carlo simulations.

The process involves the repeated randomization of event labels, while calculating the

Knox statistic for each iteration, until enough values have been generated to build an

empiric distribution adequate for significance testing purposes. While there is no

standard number of iterations required to create an “adequate” reference distribution, the

literature suggests anywhere between 1000 to 10,000 repetitions to be sufficient (Mantel

1967; Baker 1996). In order to determine the probability value of the observed Knox

statistic, the proportion of the right hand tail of the reference distribution whose simulated

Knox values are equal to or greater than the original statistic is calculated.

 In the execution of Monte Carlo simulations for the Knox test, the literature

suggests that which labels are shuffled is immaterial (Mantel 1967; Baker 1996; Jacquez

1996). Through the examination of this technique using the data under study, it is

apparent that shuffling the time labels while the space labels remain fixed, or shuffling

the space labels while the time labels remain fixed, provide very similar results.

However, if both time and space labels are shuffled concurrently, a very different

reference distribution is generated which increases the probability of the observed

statistic (see Figures 2-3 and 2-4). The theoretical explanation for this effect will not be

explained here and is a subject for future research. For the GIS tool described in Part 3,

the Monte Carlo test implemented there holds the time labels constant while shuffling the

space labels.

57

Figure 2- 3. Difference in reference distributions and probabilities generated by 1000 Monte
Carlo simulations of the Knox statistic for traffic collisions in Franklin County, OH, January-
March 2009, where δ = 400 meters, τ = 2 hours, and R = 8.

Figure 2- 4. Difference in reference distributions and probabilities generated by 10,000 Monte
Carlo simulations of the Knox statistic for traffic collisions in E. Fairfax County, VA, 2004-2008
where δ = 1214 meters, τ = 7 days, and R = 1.

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
um

be
r

of
 O

bs
er

va
tio

ns

Knox R

Space and Time Shuffle
[Prob(R=8): 0.253]

Space Shuffle
[Prob(R=8): 0.057]

Time Shuffle
[Prob(R=8): 0.072]

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5 6 7 8 9 10 11

N
um

be
r

of
 O

bs
er

va
tio

ns

Knox R

Space and Time Shuffle
[Prob(R=1): 0.889]
Space Shuffle
[Prob(R=1): 0.676]
Time Shuffle
[Prob(R=1): 0.705]

58

Table 2- 2. Comparison of probabilities for the observed Knox statistic given, the chi-square
distribution, the normal distribution, and those distributions depicted in Figures 2-3 and 2-4.
*The space shuffled distribution is recommended and used in the tool described in Part 3.

 Franklin Co. (Jan-Mar '09) E. Fairfax Co. ('04-'08)
Distribution δ = 399 m, τ = 2 hours; R = 8 δ = 1214 m, τ = 7 days; R = 1

Chi-square 0.022 0.254
Chi-square (Poisson) 0.147 0.331

Normal 0.030 0.444
Space Shuffled 0.057 0.676
Time Shuffled 0.072 0.705

Space and Time Shuffled 0.253 0.889

Multiple Testing

 In order to maintain statistical rigor in the query for significant test results

performed as described by the methodology in Part 1, methods for adjusting the level at

which the observed statistic is determined significant should be considered. In the case

of ESDA, Jacquez (2008) suggests that Bonferroni (Sidak 1967; Simes 1986), Holmes

(Holland and Copenhave 1987) or Hochberg (1988) methods may be implemented. This

research deals with the Bonferroni techniques. While the traditional Bonferroni

adjustment involves dividing the desired 𝛼 by the number of tests performed, or 𝛼/𝑛, this

correction can be seen as excessively conservative and improved methods have been

suggested. Simes (1986) provides justification for a Bonferroni modification where the

probability values of all iterations of the performed test are ordered, 𝑃(1), … ,𝑃(𝑛). The

59

null hypothesis for a given iteration is rejected if:

𝑃(𝑗) ≤
𝑗𝛼
𝑛

 (2.3)

where 𝑗 = 1, … ,𝑛.

This method was employed in Table 1-5 of Part 1 which is reprinted here in Table

2-3 so that the traditional and improved Bonferroni adjustments can be compared. The

strictness of the traditional Bonferroni adjustment is readily apparent when compared to

the results of the modified adjustment.

Table 2- 3. Spatiotemporal clusters, Knox R, for the given spatial and temporal critical distance
ranges and associated statistical significance for traffic collisions in Franklin County, OH,
January-March, 2009. Highlighted values are significant where 𝑄 ≤ the Bonferroni correction
for 𝛼 = 0.05.

Critical
Spatial

Distance
(meters)

Critical
Temporal
Distance
(hours)

Knox-R
Value

Probability
(Q)

Modified
Bonferroni
Correction
for α = 0.05

Traditional
Bonferroni
Correction
for α = 0.05

0 0 0 0.233 0.020 0.003

1 1 0.498 0.050 0.003

2 2 0.216 0.013 0.003

100 0 1 0.408 0.030 0.003

1 2 0.291 0.023 0.003

2 3 0.222 0.017 0.003

200 0 1 0.483 0.043 0.003

1 2 0.413 0.033 0.003

2 3 0.368 0.027 0.003

300 0 1 0.473 0.040 0.003

1 2 0.489 0.047 0.003

2 3 0.464 0.037 0.003

400 0 5 0.000003 0.003 0.003

1 6 0.004 0.007 0.003

2 8 0.005 0.010 0.003

60

Knox Method Critical Parameters

An assumption made in network-based spatiotemporal clustering, is that the

closer events are together in space and time, the more meaningful their relationship. It is

therefore desirable to identify the smallest critical parameters possible that reveal a

significant result. In order to accomplish this in an objective manner, the distribution of

events in relationship to their nearest neighbors is considered. Since the Knox method

employed is concerned with the distance between points in space and time, considering

critical parameters for space and time based on an examination of nearest neighbor

distances in space and time seems logical, especially when acceptable critical parameters

for the spatiotemporal test are unknown. The objective here is not to determine a specific

individual value for the critical parameters in space and time, but rather to determine an

acceptable range of critical parameters to apply to the spatiotemporal test. While

methods have been published for identifying the most significant result within a given

range of spatiotemporal parameters (Baker 1996), methods for determining an acceptable

range of values when they are unknown have not.

In order to evaluate this methodology, nearest neighbor distance calculations were

performed on the spatial and temporal attributes of the datasets under study. The lower

bound for the parameter range is intuitively the minimum nearest neighbor distance, as no

pair of events can be closer together than this distance. The value in question, however,

is the upper bound. Both the average nearest neighbor distance and the maximum nearest

neighbor distance are considered. Since the eventual spatiotemporal testing will involve

multiple tests requiring a Bonferroni adjustment, it is desirable for the critical parameter

61

range to remain as small as possible in order to reduce the total number of tests

performed.

Table 2-4 reveals the results of tests for clustering in the spatial and temporal

dimensions as described in Step 4 and Step 5 of Part 1. Tables 2-5 through 2-7 show the

results of spatiotemporal tests where the minimum, average, and maximum nearest

neighbor distances were used as critical parameters for both space and time. In almost

every case, when the average nearest neighbor distance was used as the critical parameter

for space and time, the spatiotemporal statistic was significant (Table 2-5). Therefore, it

seems appropriate to use the range of values between the minimum and average nearest

neighbor distances as an initial range of inputs for spatiotemporal critical parameters,

based on the assumption that if the upper bound of the range is significant, then it is

possible that values below it will be significant as well. If this range does not produce a

significant test result, then the next logical range to consider is between the average

nearest neighbor distance (lower bound) and maximum nearest neighbor distance (upper

bound). In this way, the impact of the Bonferroni correction is minimized.

Table 2- 4. Results of nearest neighbor distance cluster analysis for both the spatial and temporal
dimensions of the given datasets.

Nearest Neighbor Distance Results
Spatial

Dimension
Temporal

Dimension
Franklin County Collisions (Jan-Mar '09) Clustered Clustered
Franklin County Collisions (Apr-Jun '09) Clustered Clustered
Franklin County Collisions (Jul-Sep '09) Clustered Clustered
Franklin County Collisions (Oct-Dec '09) Clustered Clustered
Random Set (Franklin County Network) Random Random
Eastern Fairfax County Fatalities (‘04-‘08) Clustered Random
Random Set (Fairfax County Network) Random Random

62

Table 2- 5. Comparison of the Knox statistic and associated probabilities calculated using the
minimum nearest neighbor distance in space and time as the critical parameters. Highlighted
values indicate 𝑄 ≤ 𝛼 = 0.05.

Minimum Nearest Neighbor Distance
Spatial

Measure
Temporal
Measure

Knox
R

Probability
(Q)

Franklin County Collisions (Jan-Mar '09) 0 m 0 h 0 −
Franklin County Collisions (Apr-Jun '09) 0 m 0 h 0 −
Franklin County Collisions (Jul-Sep '09) 0 m 0 h 2 0.000
Franklin County Collisions (Oct-Dec '09) 0 m 0 h 2 0.012
Random Set (Franklin County Network) 12 m 0 h 0 −
Eastern Fairfax County Fatalities (’04-‘08) 12 m 0 d 0 −
Random Set (Fairfax County Network) 112 m 0 d 0 −

Table 2- 6. Comparison of the Knox statistic and associated probabilities calculated using the
average nearest neighbor distance in space and time as the critical parameters. Highlighted
values indicate 𝑄 ≤ 𝛼 = 0.05.

Average Nearest Neighbor Distance
Spatial

Measure
Temporal
Measure

Knox
R

Probability
(Q)

Franklin County Collisions (Jan-Mar '09) 399 m 1.65 h 7 0.030
Franklin County Collisions (Apr-Jun '09) 354 m 1.44 h 12 0.000
Franklin County Collisions (Jul-Sep '09) 344 m 1.47 h 9 0.005
Franklin County Collisions (Oct-Dec '09) 320 m 1.34 h 11 0.000
Random Set (Franklin County Network) 495 m 1.56 h 0 −
Eastern Fairfax County Fatalities (’04-‘08) 1214 m 7 d 1 0.444
Random Set (Fairfax County Network) 1318 m 7.27 d 0 −

Table 2- 7. Comparison of the Knox statistic and associated probabilities calculated using the
maximum nearest neighbor distance in space and time as the critical parameters. Highlighted
values indicate 𝑄 ≤ 𝛼 = 0.05.

Maximum Nearest Neighbor Distance
Spatial

Measure
Temporal
Measure

Knox
R

Probability
(Q)

Franklin County Collisions (Jan-Mar '09) 7470 m 13 h 449 0.062
Franklin County Collisions (Apr-Jun '09) 5516 m 15 h 408 0.192
Franklin County Collisions (Jul-Sep '09) 5396 m 21 h 551 0.311
Franklin County Collisions (Oct-Dec '09) 5224 m 20 h 749 0.001
Random Set (Franklin County Network) 3236 m 16 h 96 0.285
Eastern Fairfax County Fatalities (’04-‘08) 8447 m 40 d 83 0.048
Random Set (Fairfax County Network) 8685 m 29 d 55 0.359

63

Note that, as expected, the randomly generated datasets do not demonstrate spatial

or temporal clustering in Table 2-4. Nor do they demonstrate any significant

spatiotemporal clustering in Tables 2-5 through 2-7. While this may be obvious, it is

worth noting and reinforces the supposition that independent clustering in space and time

is related to spatiotemporal clustering. This also seems to reinforce the importance of

testing for clustering in space and time independently prior to proceeding with a

spatiotemporal analysis. Although significant spatiotemporal clusters may exist when

spatial and temporal clusters do not, a researcher may not wish to invest the time in a

spatiotemporal cluster analysis if there is an absence of clustering in both space and time.

Conclusions

 This statistical discussion has described various possibilities for significance

testing of the Knox statistic. The Knox statistic probabilities based on these tests have

been compared for two datasets in Table 2-2. While the Monte Carlo method provides

the most accurate reference distribution, it becomes exceedingly time consuming for

large datasets, and therefore the normal approximation seems to be an acceptable default.

In generating a reference distribution from Monte Carlo simulations, it has been

demonstrated that only the space labels or only the time labels should be shuffled, but not

both simultaneously. Finally, further explanation has been provided for the

determination of an appropriate range of critical parameters for network-based

spatiotemporal cluster analysis. If clustering is present in the spatial and temporal

dimensions of the dataset, using a range of critical parameters based on the minimum and

average nearest neighbor distance for both space and time seems acceptable.

64

PART 3
SCAn: A Spatiotemporal Analysis Tool for Networks

Introduction

 This portion of the thesis outlines the tools of a GIS-based toolbox called SCAn

(Spatiotemporal Cluster Analysis on a network) designed to perform spatiotemporal

cluster analysis of network-based phenomena using the methods presented in Part 1 and

Part 2. While other programs have been designed to analyze spatiotemporal clustering,

few interface directly with ArcGIS and none employ network-based analyses. The intent

of SCAn is to provide a simple network-based spatiotemporal cluster analysis tool that

can be easily used by ArcGIS ArcMap users.

While SCAn is still under development, it currently provides the following tools:

Tool 1: ST Cluster Basic

Tool 2: ST Cluster Automatic

Tool 3: ST Cluster Table

Tool 4: ST Cluster Monte Carlo

Tool 5: ST Cluster Range Detector

65

 The order of Part 3 follows: first, the basic requirements for using nbSTAT will be

discussed; next, each tool will be described in turn; finally, program limitations and

future developments will be addressed.

Program Requirements

 The scripting language used to develop SCAn is Python 2.5. While most of the

programming uses the ArcObject 9 geoprocessor and internal Python modules, there are

two external Python modules utilized by SCAn tools and that must be downloaded to the

user’s desktop or server in order for the tools to function properly. These modules are

numpy and scipy and both can be downloaded for free from the internet.

 SCAn is designed for compatibility with ArcGIS 9 versions and higher. While

SCAn will work with any license, it does depend on the Network Analyst extension

which should be activated prior to using any of the described tools. A basic working

knowledge of ArcGIS is required in order to make use of SCAn. All of the provided tools

are accessed and run from within ArcToolbox. In order to utilize any of the tools

described, four basic steps are required:

1) In ArcCatalog, create a personal geodatabase.

2) Within the geodatabase, create a feature dataset.

3) Within the feature dataset, create a network dataset from the shapefile(s)

representing the network to be analyzed.

4) Within the feature dataset, create a feature class from the event data to be

analyzed which must be located on the network. The feature class must have a

field of type “date” which holds the dates of the features. If an hourly analysis is

66

desired, then a field must also be created within the feature class which holds a

one or two digit value in 24-hour format pertaining to the event described (e.g. if

the event occurred at 7:19 AM, then field should only include a “7”; if the event

occurred at 7:19 PM, then the field should read “19”.)

Tool 1: ST Cluster Basic

 ST Cluster Basic performs a spatiotemporal cluster analysis using the Knox

method described in Part 1 (see Figure 3-1). It requires the following user inputs:

1) The network dataset upon which analysis will occur.

2) The impedence attribute of the network. This is a user-defined attribute when

creating a network dataset and can be found in the network dataset’s

properties dialogue.

3) The feature class containing events to be analyzed.

4) The temporal granularity desired for the analysis (day or hour).

5) A selection of the feature class fields containing the date and hour

information.

6) Critical spatial parameter as an integer in the units of the network dataset.

7) Critical temporal parameter as an integer in either days or hours.

8) The workspace in which to store the output feature class containing the events

contributing to observed spatiotemporal clustering.

67

Figure 3- 1. User input screen for SCAn’s ST Cluster Basic.

Using the above inputs, ST Cluster Basic computes the Knox statistic, determines

its probability according a chi squared and normal distribution, and prints all of the

contributing spatiotemporal clusters as coordinate pairs based on the feature class Object

ID (OID) to the tool’s dialogue screen (see Figure 3-2). This screen can subsequently be

copied and pasted into a text or other file for future reference. Additionally, the events

contributing to the observed clustering are saved in a feature class with the name

“PointsInCluster_x_y,” where “x” is the given spatial parameter value and “y” is the

given temporal parameter value. The feature class may subsequently be added to an

ArcMap display for viewing or used for additional analyses.

68

Figure 3- 2. The output dialogue screen for SCAn’s ST Cluster Basic.

Tool 2: ST Cluster Automatic

 ST Cluster Automatic does not require the user specification of critical parameters

(see Figure 3-3). This tool does require the following inputs:

1) The network dataset upon which analysis will occur.

2) The impedence attribute of the network. This is a user-defined attribute when

creating a network dataset and can be found in the network dataset’s

properties dialogue.

3) The feature class containing events to be analyzed.

4) The temporal granularity desired for the analysis (day or hour).

5) A selection of the feature class fields containing the date and hour

information.

69

6) The desired significance level, α, by which to select a significant

spatiotemporal cluster during the analysis.

Figure 3- 3. The user input screen for SCAn’s ST Cluster Automatic.

Using these inputs, ST Cluster Automatic performs nearest neighbor distance

analysis on both the spatial and temporal dimension of the dataset to determine a range of

critical parameters. It then evaluates the determined range and reports the Knox statistic

and associated critical parameters for the result which returned the lowest probability of

occurrence taking into consideration a Bonferroni correction based on the user provided

significance level. The results are printed to the tool’s output screen (see Figure 3-4).

70

Figure 3- 4. Output dialogue for SCAn’s ST Cluster Automatic.

71

Figure 3- 5. Input screen for SCAn’s ST Cluster Table.

Tool 3: ST Cluster Table

 ST Cluster Table evaluates the Knox statistic for a range of user-defined critical

parameters and prints out a table with the results according to the spatial and temporal

intervals specified (see Figure 3-5). It requires the following:

1) The network dataset upon which analysis will occur.

2) The impedence attribute of the network. This is a user-defined attribute when

creating a network dataset and can be found in the network dataset’s

properties dialogue.

3) The feature class containing events to be analyzed.

4) The temporal granularity desired for the analysis (day or hour).

72

5) A selection of the feature class fields containing the date and hour

information.

6) Maximum, minimum, and incrementing interval for the critical spatial

parameters in integer format according to the units of the network dataset.

7) Maximum, minimum, and incrementing interval for the critical temporal

parameters as an integer in either days or hours.

The results are printed to the tool’s output dialogue which may be copied to a text

file or spreadsheet program for further analysis (see Figure 3-6).

Figure 3- 6. Output dialogue for SCAn’s ST Cluster Table.

73

Figure 3- 7. Input screen for SCAn’s ST Cluster Monte Carlo.

Tool 4: ST Cluster Monte Carlo

 ST Cluster Monte Carlo evaluates the Knox test and determines the statistical

significance based a specified number of Monte Carlo simulations (see Figure 3-7). It

requires the following:

1) The network dataset upon which analysis will occur.

2) The impedence attribute of the network. This is a user-defined attribute when

creating a network dataset and can be found in the network dataset’s

properties dialogue.

3) The feature class containing events to be analyzed.

4) The temporal granularity desired for the analysis (day or hour).

74

5) A selection of the feature class fields containing the date and hour

information.

6) Critical spatial parameter as an integer in the units of the network dataset.

7) Critical temporal parameter as an integer in either days or hours.

8) Desired number of Monte Carlo simulations.

In addition to the information provided in the output screen by Tools 1 and 2, ST

Cluster Monte Carlo’s output (see Figure 3-8) also provides details on the generated

reference distribution which can be imported into a spreadsheet program to generate

graphs if desired (Figures 2-3 and 2-4 were generated in this manner).

Figure 3- 8. Output dialogue for SCAn’s ST Cluster Monte Carlo.

75

Figure 3- 9. User input screen for SCAn’s ST Cluster Range Detector

Tool 5: ST Cluster Range Detector

 ST Cluster Range Detector conducts a nearest neighbor distance analysis of the

spatial and temporal dimensions and reports a recommended range of spatiotemporal test

critical parameters (see Figures 3-9 and 3-10). The user must provide:

1) The network dataset upon which analysis will occur.

2) The impedence attribute of the network. This is a user-defined attribute when

creating a network dataset and can be found in the network dataset’s

properties dialogue.

3) The feature class containing events to be analyzed.

4) The temporal granularity desired for the analysis (day or hour).

5) A selection of the feature class fields containing the date and hour

information.

76

Figure 3- 10. Output dialogue for SCAn’s ST Cluster Range Detector.

Program Limitations

While the program requirements described above are not complicated, they do

demand some familiarity with ArcGIS and the Network Analyst extension. This may be

seen as a limitation for some, but it can easily be overcome using the ArcGIS help menu.

 Perhaps the greatest limitation of the SCAn toolset is the lengthy amount of time

required to execute some tools when large feature classes are analyzed. A detailed

analysis defining the time required for the execution of each tool based on the number of

events in the analyzed feature class has not been conducted. However, a general

observation is that for the Fairfax County dataset, consisting of 125 features, no tool took

more than 10 minutes to complete. In fact, for the 125-feature dataset, every SCAn tool

with the exception of Tool 4 executed in well under 5 minutes. The Franklin County

77

dataset with almost 600 features required much more time to execute. While Tool 1 and

Tool 5 were executed in under 5 minutes, Tool 2 took 15 minutes and Tools 3 and 4

could take much longer depending on the parameters set.

Finally, the need to generate an OD Matrix Layer is in and of itself a limitation

when large datasets need to be analyzed. This function is performed internally for each

tool, and the SCAn tools have not been tested with feature datasets greater than 750

events. From past experience with ArcGIS version 9.3, system memory ran out when

attempting to generate an OD Matrix Layer with more than 2000 events.

Future Program Developments

 In addition to the capabilities described above, work continues to improve the tool

outputs. Ideally, text files, feature classes or other GUI output will be optional outputs

for each tool. Progress is also being made on continuous space versions of the tools

mentioned here.

SCAn may be obtained from the author free of charge.

78

Recommendations for Future Research

Spatiotemporal analysis and network-based statistics continue to be areas of

growing research. While there are numerous topics within this context that could benefit

from focused attention, a few of particular interest to the network-based case of

spatiotemporal cluster analysis are addressed here.

One of the improvements observed in continuous-based spatiotemporal cluster

analysis is the result of work on the problem created by population shift bias (Mantel

1967; Klauber and Mustacchi 1970; Kulldorff and Hjalmars 1999). In the case of disease

studies, when a population shift bias occurs, observed spatiotemporal clustering is likely

the result of a change in the underlying geographic population distribution and not the

result of some etiological process. A continuous-based solution provided by Kulldorff

and Hjalmars (1999) involves linearly interpolating the annual observed population count

for smallest sub-regions possible of the given study area and then randomly assigning

cases proportionally to each sub-region. Monte Carlo methods are then used to generate

an unbiased reference distribution of Knox statistic values for the randomized study area.

This unbiased reference distribution is used to determine the significance of the observed

Knox statistic.

It may be apparent that the network-based equivalent of population shift bias is a

traffic flow bias. Traffic flow across the network has not been considered for this study,

79

but it seems like it could have a real effect on the significance of observed spatiotemporal

clustering, especially in congested urban areas where traffic flow fluctuates at regular

temporal intervals. With accurate traffic flow data or models based on real data, it should

not be too complicated to extend continuous-based methods that account for population

shift bias to the network flow case. This could improve the reliability of network-based

spatiotemporal cluster significance testing, and seems worthy of further research.

As described in the introduction, this network extension of the Knox test is a

global test, meaning it describes the distribution of points throughout the entire study

area, without addressing the significance of local clusters. There are various global

continuous space statistics, like Moran’s I (1950), that have local counterparts (e.g.,

Local Indicators of Spatial Autocorrelation (LISA) (Anselin 1995; Ord and Getis 1995)).

Local network spatial statistics have also been developed by Yamada and Thill (2007)

and Shiode and Shiode (2009). Extension of a local statistic to network-based

spatiotemporal cluster analysis appears to be a research area yet to be addressed, but

could provide valuable insight for the traffic collision phenomenon when spatiotemporal

clustering on congested portions of the network are of interest.

In various continuous space studies, spatiotemporal scan statistics have become

popular, which implement a search surface in continuous space, while at the same time

extending a vertical search through temporal space, in effect moving a three dimensional

space-time search window throughout the study area to identify spatiotemporal clustering

at varying scales (Rogerson 2001; Kuldorff 2001, 2006; Block 2007; Chang, Zeng, and

Chen 2008; Assuncao and Correa 2009; Mirghani et al. 2010; Nakaya and Yano 2010;

80

Pei et al. 2010). Significance testing is conducted by implementing Monte Carlo

methods. Not only can these techniques identify clusters regardless of predefined critical

parameters, they have also been shown to identify clusters spatially as they emerge

temporally (Jacquez 2008; Assuncao and Correa 2009). While there may not be intuitive

applications for a network-based spatiotemporal scan statistic in traffic collision analysis,

such an analysis might be especially beneficial in the study of such phenomena as IED

incidence. In the combat zones of Iraq and Afghanistan, insurgents who emplace IEDs

are known to relocate their operational areas or adjust their attack windows based on the

effectiveness of coalition countermeasures, and a spatiotemporal scan statistic might be

able to identify the spatial and temporal position of an insurgent relocation. Again, a

network-based spatiotemporal scan statistic appears to be an area wide open to future

research.

Finally, while a methodology was presented for determining an acceptable range

for spatiotemporal cluster test critical parameters in space and time using nearest

neighbor distance values derived from each dimension, a theoretical basis for this

technique was not established. Exploring whether or not there is an objective relationship

between the distances to nearest neighbors in space and time, and the observation of

spatiotemporal clusters might be another informative area of research for spatiotemporal

analysis.

81

APPENDIX
SCAn Python Scripts

Tool 1: ST Cluster Basic

#--
#Name: SCAn Tool 1 - ST Cluster Basic
#Created by: David Eckley
#Date created: 20101201
#Purpose: ST Cluster Basic computes the Knox statistic, determines its
#probability, and lists all of the contributing spatiotemporal clusters
#as coordinate pairs based on the feature class Object ID (OID). A
#feature class is generated with the points contributing to the
#identified cluster which is also stored within a user defined
#workspace.
#--

#==
#IMPORT MODULES
#==
import os, sys, string, arcgisscripting, math, numpy, scipy
from sets import Set
from time import*
from numpy import*
from scipy import*
from scipy import stats
from knoxStats import chiKnox, normalKnox

#==
#INITIATE GEOPROCESSOR
#==
gp = arcgisscripting.create(9.3)

#Overwrite any identical outputs
gp.overwriteoutput = 1

#==
#DEFINE VARIABLES PROVIDED BY USER
#==

#Network dataset
netDataset = gp.GetParameter(0)

#Impedence/cost attribute for the network dataset
impedence = gp.GetParameterAsText(1)

#Feature class with event details
tempFC = gp.GetParameter(2)

82

#Type of temporal analysis (boolean variable).If True, hour
#analysis. If False, day analysis.
timeType = gp.GetParameter(3)

#Label used for temporal column in results table
if timeType == 0:
 tempLabel = "Days"
else:
 tempLabel = "Hours"

#Feature class field containing dates of events
dateFld = gp.GetParameterastext(4)

#Feature class field containing hour event occurred in 24-hour HH
#format (e.g. 7AM is 7; 7PM is 19)
hourFld = gp.GetParameterastext(5)

#Ensure that hour data field was provided if hourly analysis was
#selected above. Otherwise, exit program.
if timeType > 0 and hourFld == "":
 gp.addmessage("")
 gp.addmessage("In order to conduct hourly analysis, a field\
containing hour data in a 24-hour HH format must be provided.")
 gp.addmessage("")
 sys.exit()
else:
 pass

#Critical spatial distance in meters. Convert to integer.
critDist = int(gp.GetParameter(6))

#Critical temporal distance in format described by boolean variable
#above.
critTime = int(gp.GetParameter(7))

#Workspace for the geodatabase in which to store the output feature
#class
outputGDB = gp.GetParameterAsText(8)

#Name given to output feature class
outputF = "PointsInCluster_"+str(critDist)+"_"+str(critTime)
#==
#BUILD OD COST MATRIX LINES LAYER
#==

gp.addmessage("")
gp.addmessage("Building Origin-Destination Cost Matrix Layer...")

th1 = clock()

#Using variables above and ArcToolBox tools
odLayer = "ODCostMatrix"

83

lineLyr = "ODCostMatrix\\Lines"
odLineLyr = "ODRoute_Layer"
gp.MakeODCostMatrixLayer_na(netDataset, odLayer, impedence, "", "",\
 "","ALLOW_UTURNS", "", "NO_HIERARCHY",\
 "","STRAIGHT_LINES")
gp.AddLocations_na(odLayer, "Origins", tempFC, "", "5000 Meters", "",\
 "", "MATCH_TO_CLOSEST", "APPEND", "SNAP", "5\
Meters")
gp.AddLocations_na(odLayer, "Destinations", tempFC, "", "5000 Meters",\
 "", "", "MATCH_TO_CLOSEST", "APPEND", "SNAP",\
 "5 Meters")
gp.Solve_na(odLayer, "SKIP")
gp.SelectData_management(odLayer, "Lines")
gp.MakeFeatureLayer_management(lineLyr, odLineLyr, "", "", "")

#Create variable from the OD Cost Matrix Lines Layer
spaceFC = odLineLyr

#Create variable from the Origin ID Field within the OD Cost Matrix
#Lines Layer
desc2 = gp.Describe(odLineLyr)
fldinfo2 = desc2.FieldInfo
spaceOrigIDfield = fldinfo2.GetFieldName(1)

#Create variable from the Destination ID Field within the OD Cost
#Matrix Lines Layer
spaceDestIDfield = fldinfo2.GetFieldName(2)

#Create variable from the Total Distance/Length Field within the OD
#Cost Matrix Lines Layer
spaceDistfield = fldinfo2.GetFieldName(4)

th2 = clock()

pt1 = th2-th1
pt1int = int(pt1)
pt1min = int(pt1/60)
pt1sec = int(pt1int-(pt1min*60))

gp.addmessage("Origin-Destination Cost Matrix Layer complete. Process\
time: " + str(pt1min) + " minute(s) and " + str(pt1sec) + " seconds.")
gp.addmessage("")

#===
#BUILD TEMPORAL MATRIX
#===

gp.addmessage("Creating temporal matrix...")

th3 = clock()

#Define variable that will become the field name for timeline field
calcFld = "CALC_TIME"

84

#VB expression that will be used in the calculate field operation in
#hour analysis is conducted
expnHour = "["+str(dateFld)+"]*24+["+str(hourFld)+"]"

#VB expression that will be used in the calculate field operation in
#day analysis is conducted
expnDay = "["+str(dateFld)+"]*1"

#Local variables that will be used in the "make feature layer"
#operation; a prerequisite to calculating the temporal fields.
Output_Layer = "tempFC_L"
Output_Layer2 = "tempFC_L2"

#Assign boolean variable from user inputs as an integer
bool = int(timeType)

#Conduct calculate field operation if the user selects an hourly
#analysis
x = 1
if bool == x:

 # Make feature layer
 gp.MakeFeatureLayer_management(tempFC, Output_Layer)

 # Add timeline field and calculate timeline field value
 gp.AddField_management(Output_Layer, calcFld, "DOUBLE", "", "",\
 "", "", "NULLABLE", "NON_REQUIRED", "")
 gp.CalculateField_management(Output_Layer, calcFld, expnHour,\
"VB","")

 #Assign variable to feature layer that will be used for temporal
 #analysis and matrix generation
 timeNN = Output_Layer

#Conduct calculate field operation if the user selects a day analysis
else:

 # Make feature layer
 gp.MakeFeatureLayer_management(tempFC, Output_Layer2)

 # Add timeline field and calculate timeline field value
 gp.AddField_management(Output_Layer2, calcFld, "DOUBLE", "", "",\
"","", "NULLABLE", "NON_REQUIRED", "")
 gp.CalculateField_management(Output_Layer2, calcFld, expnDay,\
"VB","")

 #Assign variable to feature layer that will be used for temporal
 #analysis and matrix generation
 timeNN = Output_Layer2

#Rename variable assigned to feature layer
inputTimeFC = timeNN

85

#Assign variable to Object ID Field within feature layer
desc = gp.Describe(timeNN)
timeIDfield = desc.OIDFieldName

#Rename variable assigned to timeline field name
timeLinefield = calcFld

#Initiate the python dictionary which stores the featureclass "ID"
#field as a key and the corresponding timeline value
dctTime = {}

#Set a list variable to hold the first "ID" value in the feature class.
#This value will be used to standardize the sequential ordering of
#events to start at a value of "1"
adjustTimeID = []

#Initiate the geoprocessor cursor to extract the first value from the
#user-defined "ID" field and place it in the list variable initiated
#above
cur = gp.SearchCursor(inputTimeFC)
row = cur.Next()
firstTimeID = int(row.GetValue(timeIDfield))
adjustTimeID = [firstTimeID]

#Re-initiate geoprocessor cursor to search all rows in the feature
#layer containing temporal data
cur = gp.SearchCursor(inputTimeFC)
row = cur.Next()

#Store the user-defined temporal ID field and timeline field values
#into the initiated python dictionary
while row:
 #The dictionary key is set to the integer value in the "ID" field
 #of the row; this value is adjusted
 #to start at "1"
 key = (int(row.GetValue(timeIDfield)) - adjustTimeID[0]) + 1
 #Variable is given to the integer value in the field containing the
 #timeline information
 timelineDay = row.GetValue(timeLinefield)
 #The key is set to the respective timeline value for each row
 dctTime[key] = timelineDay
 #Cursor moves to next row in feature layer
 row = cur.Next()

#Initiate the python dictionary which stores the calculated time
#distances between every possible pair of events within the temporal
#feature layer. The key is an "ID" field coordinate pair, i.e. (12,55)
#and the corresponding calculated difference between the timeline
#distance of the coordinate pair is registered in the dictionary as
#the associated value

#STATISTICAL NOTE:
#In order to test the resulting Knox statistic for significance, the
#count of all possible combinations of pairings is necessary. While

86

#the Knox statistic is the count of all spatiotemporal pairs that fall
#inside the user-defined critical distances, it is also necessary to
#determine the number of spatiotemporal pairs that are inside the
#temporal distance but outside the spatial distance; inside the spatial
#distance but outside the temporal distance; and both outside the
#temporal and spatial distance. In order to determine these
#spatiotemporal pairings, dictionaries are established to capture those
#pairs that fall both inside and outside the temporal distance and both
#inside and outside the spatial distance.

#Initiate dictionary to capture those temporal pairs which are less
#than(LT) the user-defined critical distance
dctTimeLT = {}

#Initiate dictionary to capture those temporal pairs that are greater
#than (GT) the user-defined critical distance
dctTimeGT = {}

#STATISTICAL NOTE:
#In order to calculate the z statistic, it is necessary to know for a
#given critical temporal distance how many pairs each point has. For
#example, if point 101 is a pair with points 5, 18 and 24 for a given
#critical temporal distance, then point 101 would have a tally of 3.
#The following lists are initiated in order to record this tally for
#every point in the temporal data set.
timeKeyAlist = []
timeKeyAlistTally = []

#This variable is defined to register the count of the total number
#of point events being analyzed and to determine the stopping point for
#the subsequent loop operation
numEvents = len(dctTime)

#Incrementing variables are initiated at "1" because the temporal ID
#sequence was initiated to that value above. The x and y variables will
#be used to number the subsequent "ID" pairs generated by this loop.
x = 1
y = 1

#The loop will continue until the count of all analyzed points is
#reached. This loop calculates the interpoint temporal distance
#between every possible point combination.
while x <= numEvents:
 for key in dctTime:
 if key <= numEvents:
 #The temporal distance between the two values is calculated
 timeDif = abs(dctTime[y] - dctTime[x])
 #The temporal pair IDs are set to the current value of x
 #and y
 keyA = x
 keyB = y
 #Those pairs which fall inside the user defined critical
 #temporal distance are stored in the "LT" dictionary.
 #To ensure no duplicate pairings are in the dictionary,

87

 #i.e. (23,42) and (42,23), the condition of keyA < keyB is
 #set
 if timeDif <= critTime and keyA < keyB:
 dctTimeLT[keyA, keyB] = timeDif
 #All keyA points are recorded in a list to facilite
 #a tally of all keyA's
 timeKeyAlist.append(keyA)
 #Those pairs which fall outside the user-defined critical
 #temporal distance are stored in the "GT" dictionary
 else:
 if timeDif > critTime and keyA < keyB:
 dctTimeGT[keyA, keyB] = timeDif
 else:
 pass
 y = y + 1
 x = x + 1
 y = 1

#The following loop tallies the total number of pairs each point has
#at a given critical temporal distance as well as performing some math
#which will be used by the KnoxStat module to calculate the z
#statistic.
x = 0
while x <= numEvents:
 #For the given x value, the tally of occurrence of that value in
 #the keyA list is assigned to a variable
 occurX = timeKeyAlist.count(x)
 #In accordance with the statistical formula for calculated z for
 #Knox, the following multiplication is calculated
 occurXx2 = occurX * 2
 occurXx2squared = occurXx2 ** 2
 #Each resulting value is stored in another list to be subsequently
 #summed for use in the calculation of z
 timeKeyAlistTally.append(occurXx2squared)
 x = x + 1
#The sum of all values in the list is assigned to variable used in the
#calculation of the z statistic
t2 = sum(timeKeyAlistTally)

#Count of time pairs which fall within the user-defined critical
#distance
numCritTimePairs = len(dctTimeLT)
#Count of time pairs which fall outside the user-defined critical
#distance
numNotCritTimePairs = len(dctTimeGT)

th4 = clock()
pt2 = th4-th3
pt2int = int(pt2)
pt2min = int(pt2/60)
pt2sec = int(pt2int-(pt2min*60))

88

gp.addmessage("Temporal matrix complete. Process time: " +\
str(pt2min) + " minute(s) and " + str(pt2sec) + " seconds.")
gp.addmessage("")

#==
#BUILD SPATIAL MATRIX
#==

gp.addmessage("Creating spatial matrix...")

th5 = clock()

#Initiate the python dictionaries which stores the OriginID and
#DestinationID as a key and the corresponding network distance as the
#associated value from the OD Matrix Lines layer

#Stores all spatial pairs which fall inside user-defined spatial
#distance
dctSpaceLT = {}
#Stores all spatial pairs which fall outside user-defined spatial
#distance
dctSpaceGT = {}

#Set list variables to hold the first value in the OriginID and
#DestinationID fields of the OD Matrix "Lines" layer.
#These values will be used to standardize the sequential ordering
#of events to start at a value of "1"
adjustOrigID = []
adjustDestID = []

#Initiate the geoprocessor cursor to extract the first value in the
#OriginID and DestinationID fields of the OD Matrix "Lines" layer
#and place it in the list variables initiated above
cur = gp.SearchCursor(spaceFC)
row = cur.Next()
firstOrigID = int(row.GetValue(spaceOrigIDfield))
firstDestID = int(row.GetValue(spaceDestIDfield))
adjustOrigID = [firstOrigID]
adjustDestID = [firstDestID]

#STATISTICAL NOTE:
#In order to calculate the z statistic, it is necessary to know for a
#given critical spatial distance how many pairs each point has. For
#example, if point 101 is a pair with points 5, 18 and 24 for a given
#spatial distance,then point 101 would have a tally of 3. The
#following lists are initiated in order to record this tally for every
#point in the spatial data set.
spaceKeyAlist = []
spaceKeyAlistTally = []

#Initiate geoprocessor cursor to search the Lines Layer containing the
#spatial data of points being analyzed
cur = gp.SearchCursor(spaceFC)
row = cur.Next()

89

while row:
 #The dictionary key is set to the integer value in the respective
 #"ID" field of the row; these value are adjusted to start at "1"
 keyA = (int(row.GetValue(spaceOrigIDfield)) - adjustOrigID[0]) + 1
 keyB = (int(row.GetValue(spaceDestIDfield)) - adjustDestID[0]) + 1
 #Extract the associated value for the spatial distance between the
 #two points spaceDif = row.GetValue(spaceDistfield)Those spatial
 #pairs which meet the user-defined critical distance are entered
 #into the "LT" dictionary to ensure no duplicate pairings are in
 #the dictionary, i.e. (23,42) and (42,23), the condition of
 #keyA < keyB is set
 if spaceDif >= 0 and spaceDif <= critDist and keyA < keyB:
 dctSpaceLT[keyA, keyB] = spaceDif
 #All keyA points are recorded in a list to facilite a tally of
 #all keyA's
 spaceKeyAlist.append(keyA)
 #Those spatial pairs that do not meet the user-defined critical
 #distance are entered into the "GT" dictionary
 else:
 if spaceDif > critDist and keyA < keyB:
 dctSpaceGT[keyA, keyB] = spaceDif
 else:
 pass
 row = cur.Next()

#The following loop tallies the total number of pairs each point has at
#a given critical temporal distance as well as performing some math
#which will be used by the KnoxStat module to calculate the z
#statistic.
x = 0
while x <= numEvents:
 #For the given x value, the tally of occurrence of that value in
the
 #keyA list is assigned to a variable
 occurX = spaceKeyAlist.count(x)
 #In accordance with the statistical formula for calculated z for
 #Knox, the following multiplication is calculated
 occurXx2 = occurX * 2
 occurXx2squared = occurXx2 ** 2
 #Each resulting value is stored in another list to be subsequently
 #summed for use in the calculation of z
 spaceKeyAlistTally.append(occurXx2squared)
 x = x + 1
#The sum of all values in the list is assigned to variable used in the
#calculation of the z statistic
s2 = sum(spaceKeyAlistTally)

#Count of spatial pairs which fall within the user-defined critical
#distance
numCritSpacePairs = len(dctSpaceLT)

#Count of spatial pairs which fall outside the user-defined critical
#distance

90

numNotCritSpacePairs = len(dctSpaceGT)

th6 = clock()

pt3 = th6-th5
pt3int = int(pt3)
pt3min = int(pt3/60)
pt3sec = int(pt3int-(pt3min*60))

gp.AddMessage("Spatial matrix complete. Process time: " + str(pt3min)\
 + " minute(s) and " + str(pt3sec) + " seconds.")
gp.AddMessage("")
gp.AddMessage("")

#==
#CONDUCT SPATIOTEMPORAL ANALYSIS
#==

#Compare TimeLT and SpaceLT Dictionaries. If a pair is in both
#dictionaries, count the pair as a spatiotemporal pair. This is the
#Knox Statistic
x = 0
for key in dctSpaceLT:
 if dctTimeLT.has_key(key) == True:
 x = x + 1
#Count of spatiotemporal pairs which fall within the user-defined
#critical distances
knoxAPairs = x

#Compare TimeGT and SpaceLT. If a pair is in both dictionaries,
#count the pair as a spatiotemporal pair
x = 0
for key in dctTimeGT:
 if dctSpaceLT.has_key(key) == True:
 x = x + 1
#Count of spatiotemporal pairs which fall within critical spatial
#distance but outside critical temporal distance
knoxBPairs = x

#Compare TimeLT and SpaceGT. If a pair is in both dictionaries,
#count the pair as a spatiotemporal pair
x = 0
for key in dctSpaceGT:
 if dctTimeLT.has_key(key) == True:
 x = x + 1
#Count of spatiotemporal pairs which fall within critical temporal
#distance but outside critical spatial distance
knoxCPairs = x

#Compare TimeGT and SpaceGT Dictionaries. If a pair is in both
#dictionaries, count the pair as a spatiotemporal pair
x = 0
for key in dctSpaceGT:
 if dctTimeGT.has_key(key) == True:

91

 x = x + 1
#Count of spatiotemporal pairs which fall outside the user-defined
#critical distances
knoxDPairs = x

#STATISTICAL OUTPUTS:
#Set the variable to carry the chi squared value for the Knox
Statistic.
#Chi square is calculated according to "chiKnox" which is defined in
the
#knoxStats module.
knoxChiSig = chiKnox(knoxAPairs, knoxBPairs, knoxCPairs, knoxDPairs,\
 numEvents)
#Probability of knoxChiSig
chiProb = round(scipy.stats.chisqprob(knoxChiSig, 1),5)

#Set the variable to carry the z value for the Knox Statistic. The z
#statistic is calculated according to "normalKnox" which is defined in
#the knoxStats module.
knoxZ = normalKnox(knoxAPairs, numCritSpacePairs, numCritTimePairs,\
s2, t2, numEvents)

#Probability of knoxZ
if knoxZ > 0:
 zProb = round((1 - scipy.stats.zprob(knoxZ)),5)
else:
 zProb = round((scipy.stats.zprob(knoxZ)),5)

#==
#REPORT RESULTS
#==

gp.AddMessage("===\
==")
gp.AddMessage("")
gp.AddMessage("Meters" + "\t" + tempLabel + "\t" + " KnoxR" + " \
chiVal" + " chiProb" + "\t" + " zVal" + "\t" + " zProb")
gp.AddMessage("---\
--")
gp.AddMessage(" %-8d %-5d %-5d %-+0.3f %-12s %-+0.3f %-12s"\
 % (critDist, critTime, knoxAPairs, knoxChiSig, chiProb,\
 knoxZ, zProb))
gp.Addmessage("")
gp.AddMessage("--\
---")
gp.AddMessage("")
gp.AddMessage("Referenced by ID number and in no particular order,\
the spatiotemporal pairs contributing")
gp.AddMessage("to the cluster are as follows:")
gp.AddMessage("")

#Print to the dialouge screen all spatiotemporal pairs which fall
#within the user-defined critical distances (the Knox Statistic pairs)

92

clusterIDs = []

for key in dctSpaceLT:
 if dctTimeLT.has_key(key) == True:
 gp.AddMessage("" + str(key) + "")
 clusterIDs.append(key)

gp.AddMessage("")
gp.AddMessage("===\
==")

#==
#CREATE OUTPUT FEATURE CLASS
#==

clusterEvents = []

#If there is no spatiotemporal clustering, write message to the screen
if len(clusterIDs) == 0:
 gp.addmessage("")
 gp.addmessage("Knox R = 0, therefore there are no points to export\
to a cluster feature class.")
 gp.addmessage("")
else:
 pass

#Write ObjectIDs contributing to cluster to a list
i = 0
while i < len(clusterIDs):
 clusterEvents.append(clusterIDs[i][0])
 clusterEvents.append(clusterIDs[i][1])
 i = i + 1

#Remove duplicate IDs
clusterEventsSetA = set(clusterEvents)
clusterEventsSetB = set(clusterEvents)
uniqueEvents = clusterEventsSetA|clusterEventsSetB
uniqueEventsList = list(uniqueEvents)

#Generate a SQL statement to be used in the "select by attribute"
#function which will create the output feature class
sqlList = []
i = 0
while i < len(uniqueEventsList):
 statement = '"'+str(timeIDfield)+'" = ' + str(uniqueEventsList[i])
 sqlList.append(statement)
 i=i+1

glue = " OR "
clusterSql = glue.join(sqlList)

#From the feature layer, select out only those points which are members
#of the spatiotemporal cluster
gp.SelectLayerByAttribute_management(inputTimeFC, "NEW_SELECTION",\

93

 clusterSql)
#Create a new feature class from the selected points and save to user
#designated workspace
gp.FeatureClassToFeatureClass_conversion(inputTimeFC, outputGDB,\
 outputF)

gp.addmessage("")
gp.addmessage("A feature class file named '" + outputF + "' has been\
saved in the workspace at:")
gp.addmessage("'" + outputGDB + "' which contains the points\
contributing to the spatiotemporal cluster above.")
gp.addmessage("")

#Delete variables
del dctSpaceLT, dctSpaceGT, dctTime, dctTimeLT, dctTimeGT,\
 numCritTimePairs, numNotCritTimePairs, critTime, numEvents
del t2, s2, timeKeyAlist, timeKeyAlistTally, spaceKeyAlist,\
 spaceKeyAlistTally, knoxZ, knoxChiSig,
del knoxAPairs, knoxBPairs, knoxCPairs, knoxDPairs, numCritSpacePairs,\
 numNotCritSpacePairs, adjustOrigID, adjustDestID

94

Tool 2: ST Cluster Automatic

#--
#Name: SCAn Tool 2 - ST Cluster Automatic
#Created by: David Eckley
#Date created: 20101130
#Purpose: ST Cluster Automatic performs nearest neighbor distance
#analysis on both the spatial and temporal dimension of the dataset to
#determine a range of critical parameters. It then evaluates the
#determined range and reports the Knox statistic and associated
#critical parameters for the result which returned the lowest
probability of occurrence.
#--

#==
#IMPORT MODULES
#==
import os, sys, string, arcgisscripting, math, numpy, scipy
from time import*
from numpy import*
from scipy import*
from scipy import stats
from knoxStats import chiKnox, normalKnox

#==
#INITIATE GEOPROCESSOR
#==
gp = arcgisscripting.create(9.3)

gp.addmessage("")
gp.addmessage("Executing spatial and temporal critical range\
analysis...")
gp.addmessage("")

th1 = clock()

#==
#DEFINE VARIABLES PROVIDED BY USER
#==

#Network dataset
netDataset = gp.GetParameter(0)

#Impedence/cost attribute for the network dataset
impedence = gp.GetParameterAsText(1)

#Feature class with event details
tempFC = gp.GetParameter(2)

#Type of temporal analysis (boolean variable).If True, hour analysis.
#If False, day analysis.
timeType = gp.GetParameter(3)

95

#Label used for temporal column in results table
if timeType == 0:
 tempLabel = "Days"
else:
 tempLabel = "Hours"

#Feature class field containing dates of events
dateFld = gp.GetParameterastext(4)

#Feature class field containing hour event occurred in 24-hour HH
#format (e.g. 7AM is 7; 7PM is 19)
hourFld = gp.GetParameterastext(5)

#Ensure that hour data field was provided if hourly analysis was
#selected above. Otherwise, exit program.
if timeType > 0 and hourFld == "":
 gp.addmessage("")
 gp.addmessage("In order to conduct hourly analysis, a field\
containing hour data in a 24-hour HH format must be provided.")
 gp.addmessage("")
 sys.exit()
else:
 pass

#Variable defining user-defined statistical significance level. Will
#be used to calculate Bonferroni correction.
alpha = gp.GetParameter(6)

#Define list variable to hold the Knox R results for each interval of
#critical parameter pairings
rangeResultsList = []

#===
#CONDUCT SPATIAL NEAREST NEIGHBOR RANGE ANALYSIS
#===

Define local variables used in the Make Closest Facility Layer
#analysis.
CFLayer = "ClosestFacilityLayer"
RouteLayer = "ClosestFacilityLayer\\Routes"
CFRouteLayer = "CFRoutes_Layer"

Make Closest Facility Layer. This analysis searches for the closest
#and second closest spatial neighbors between two point feature layers;
#in this case both layers are the same.
gp.MakeClosestFacilityLayer_na(netDataset, CFLayer, impedence,\
"TRAVEL_TO", "", "2", "", "ALLOW_UTURNS", "", "NO_HIERARCHY", "",\
"TRUE_LINES_WITH_MEASURES")
gp.AddLocations_na(CFLayer, "Facilities", tempFC, "CurbApproach #\
0;Attr_Length # 0", "5000 Meters", "OBJECTID", "", "MATCH_TO_CLOSEST",\
"APPEND", "SNAP", "5 Meters")
gp.AddLocations_na(CFLayer, "Incidents", tempFC, "CurbApproach #\
0;Attr_Length # 0", "5000 Meters", "OBJECTID", "", "MATCH_TO_CLOSEST",\
"APPEND", "SNAP", "5 Meters")

96

gp.Solve_na(CFLayer, "HALT")

Select only the second nearest neighbors. The first nearest neighbor
#is the point itself since this analysis is looking at two identical
#point layers.
gp.SelectData_management(CFLayer, "Routes")

Make a feature layer from the selected events above.
gp.MakeFeatureLayer_management(RouteLayer, CFRouteLayer,\
"\"FacilityRank\" = 2", "", "FacilityID FacilityID VISIBLE\
NONE;FacilityRank FacilityRank VISIBLE NONE;Name Name VISIBLE\
NONE;IncidentCurbApproach IncidentCurbApproach VISIBLE\
NONE;FacilityCurbApproach FacilityCurbApproach VISIBLE NONE;IncidentID\
IncidentID VISIBLE NONE;Total_Length Total_Distance VISIBLE NONE")

#Rename variable storing feature layer
netNN = CFRouteLayer

#Initiate a list to store the spatial nearest neighbor distance values
nDistList = []

#Initiate the geoprocessor cursor to extract the spatial nearest
#neighbor distance value for each event
cur = gp.SearchCursor(netNN)
row = cur.Next()
while row:
 nDist = int(row.GetValue("Total_Distance"))
 nDistList.append(nDist)
 row = cur.Next()

#Count the values in the list
nNcount = len(nDistList)
#Assign the minimum Spatial Nearest Neighbor Distance to a variable
nNmin = min(nDistList)
#Assign the maximum Spatial Nearest Neighbor Distance to a variable
nNmax = max(nDistList)
#Assign the avg NN spatial dist to a variable
nNavg = sum(nDistList) / nNcount

#Round avg nearest neighbor distance value to the next highest multiple
#of 100, unless the value is exactly a multiple of 100
nNavgRound = round(nNavg / 10)
roundStr = str(nNavgRound)
roundVal = int(roundStr[-3])
if roundVal > 0:
 spaceCritMax = ((10 - float(roundVal)) + nNavgRound)*10
else:
 spaceCritMax = nNavgRound * 10

#Round min nearest neighbor distance value to the next lowest multiple
#of 100, unless the value is exactly a multiple of 100
if nNmin > 0:
 nNminRound = round(nNmin / 10)
 roundStr = str(nNminRound)

97

 roundVal = int(roundStr[-3])
 if roundVal > 0:
 spaceCritMin = (nNminRound - roundVal)*100
 else:
 spaceCritMin = nNminRound * 100
else:
 spaceCritMin = 0

gp.addmessage("")
gp.addmessage("Minimum Network Nearest Neighbor Distance: " +\
str(nNmin) + " meters.")
gp.addmessage("Maximum Network Nearest Neighbor Distance: " +\
str(nNmax) + " meters.")
gp.addmessage("Average Network Nearest Neighbor Distance: " +\
str(nNavg) + " meters.")
gp.addmessage("Spatial Range input for ST Cluster Automatic will be\
from " + str(spaceCritMin) + " to " + str(spaceCritMax) + " meters.")

#==
#CONDUCT SPATIAL NEAREST NEIGHBOR RANGE ANALYSIS
#==

#Define a variable for the feature layer field that will hold the
#calculated timeline value
calcFld = "CALC_TIME"

#Create SQL statement for the field calculation if hourly analysis is
#selected
expnHour = "["+str(dateFld)+"]*24+["+str(hourFld)+"]"
#Create SQL statement for the field calculation if day analysis is
#selected
expnDay = "["+str(dateFld)+"]*1"

#Local variables used in the calculate field process below
Output_Layer = "tempFC_L"
Output_Layer2 = "tempFC_L2"

#Define variable to hold boolean value
bool = int(timeType)

#If hourly analysis is selected, perform this section of code
x = 1
if bool == x:
 gp.addmessage("")
 gp.addmessage("Temporal Analysis Type: Hour")

 # Add and calculate timeline field to feature layer
 gp.MakeFeatureLayer_management(tempFC, Output_Layer)
 gp.AddField_management(Output_Layer, calcFld, "DOUBLE", "", "",\
"", "", "NULLABLE", "NON_REQUIRED", "")
 gp.CalculateField_management(Output_Layer, calcFld, expnHour,\
"VB", "")

98

 #Assign variable to output layer
 timeNN = Output_Layer

 #Assign variable to list holding the timeline values
 timeList = []

 #Search through feature layer and extract out the timeline values
 cur = gp.SearchCursor(timeNN)
 row = cur.Next()
 while row:
 time = row.GetValue(calcFld)
 timeList.append(time)
 row = cur.Next()

 #Sort list so that values are ascending
 timeList.sort()

 #Assign variable to number of items in list
 numTimes = len(timeList)

#Search through the list of timeline values and calculate the
#neighbor distance between each event; store in list

 nList = []
 maxList = max(timeList)
 x=1
 y=0
 while x < numTimes:
 nList.append(timeList[x]-timeList[y])
 x=x+1
 y=y+1

 #Search through list of neighbor distances and select the nearest
 #neighbor distance for each event
 numDist = len(nList)
 nDistList = []
 x=1
 y=0
 while x < numDist:
 n=[nList[y],nList[x]]
 nn=min(n)
 nDistList.append(nn)
 x=x+1
 y=y+1

 #Count number of values in list
 nNcount = len(nDistList)
 #Calculate sum of values in list
 nNsum = float(sum(nDistList))
 #Determine minimum value in list
 nNmin = min(nDistList)
 #Determine maximum value in list
 nNmax = max(nDistList)
 #Determine average value in list
 nNavg = float(nNsum / nNcount)

99

 #Round avg nearest neighbor distance value to the next highest
 #multiple of 1, unless the value is exactly a multiple of 1
 nNavgRound = round(nNavg)
 roundStr = str(nNavgRound)
 roundVal = int(roundStr[-1])
 if roundVal > 0:
 timeCritMax = (10 - float(roundVal)) + nNavgRound
 else:
 timeCritMax = nNavgRound

 #Round min nearest neighbor distance value to the next lowest
 #multiple of 1, unless the value is exactly a multiple of 1
 if nNmin > 0:
 nNminRound = round(nNmin)
 roundStr = str(nNminRound)
 roundVal = int(roundStr[-1])
 if roundVal > 0:
 timeCritMin = nNminRound - roundVal
 else:
 timeCritMin = nNminRound
 else:
 timeCritMin = 0

 gp.addmessage("Minimum Temporal Nearest Neighbor Distance: " +\
str(nNmin) + " hours.")
 gp.addmessage("Maximum Temporal Nearest Neighbor Distance: " +\
str(nNmax) + " hours.")
 gp.addmessage("Average Temporal Nearest Neighbor Distance: " +\
"%0.1f" % (nNavg) + " hours.")
 gp.addmessage("Temporal Range input for ST Cluster Automatic will\
be from " + str(timeCritMin) + " to " + str(timeCritMax) + " hours.")
 gp.addmessage("")

#All of the code annotation above is the same for the loop below. The
#following loop performs the same functions for a day analysis instead
#of hourly.
else:
 gp.addmessage("")
 gp.addmessage("Temporal Analysis Type: Day")

 gp.MakeFeatureLayer_management(tempFC, Output_Layer2)
 gp.AddField_management(Output_Layer2, calcFld, "DOUBLE", "", "",\
"", "", "NULLABLE", "NON_REQUIRED", "")
 gp.CalculateField_management(Output_Layer2, calcFld, expnDay,\
"VB", "")

 timeNN = Output_Layer2
 timeList = []
 cur = gp.SearchCursor(timeNN)
 row = cur.Next()
 while row:
 time = int(row.GetValue(calcFld))

100

 timeList.append(time)
 row = cur.Next()

 timeList.sort()

 numTimes = len(timeList)

 nList = []
 maxList = max(timeList)
 x=1
 y=0
 while x < numTimes:
 nList.append(timeList[x]-timeList[y])
 x=x+1
 y=y+1

 numDist = len(nList)
 nDistList = []
 x=1
 y=0
 while x < numDist:
 n=[nList[y],nList[x]]
 nn=min(n)
 nDistList.append(nn)
 x=x+1
 y=y+1

 nNcount = len(nDistList)
 nNsum = float(sum(nDistList))
 nNmin = min(nDistList)
 nNmax = max(nDistList)
 nNavg = float(nNsum / nNcount)

 nNavgRound = round(nNavg)
 roundStr = str(nNavgRound)
 roundVal = int(roundStr[-1])
 if roundVal > 0:
 timeCritMax = (10 - float(roundVal)) + nNavgRound
 else:
 timeCritMax = nNavgRound

 if nNmin > 0:
 nNminRound = round(nNmin)
 roundStr = str(nNminRound)
 roundVal = int(roundStr[-1])
 if roundVal > 0:
 timeCritMin = nNminRound - roundVal
 else:
 timeCritMin = nNminRound
 else:
 timeCritMin = 0

 gp.addmessage("Minimum Temporal Nearest Neighbor Distance: " +\
str(nNmin) + " days.")

101

 gp.addmessage("Maximum Temporal Nearest Neighbor Distance: " +\
str(nNmax) + " days.")
 gp.addmessage("Average Temporal Nearest Neighbor Distance: " +\
"%0.1f" % (nNavg) + " days.")
 gp.addmessage("Temporal Range input for ST Cluster Automatic will\
be from " + str(timeCritMin) + " to " + str(timeCritMax) + " days.")
 gp.addmessage("")

th2 = clock()

pt1 = th2-th1
pt1int = int(pt1)
pt1min = int(pt1/60)
pt1sec = int(pt1int-(pt1min*60))

gp.addmessage("")
gp.addmessage("Spatial and temporal critical range analysis complete.\
Process time: " + str(pt1min) + " minute(s) and " + str(pt1sec) + "\
seconds.")
gp.addmessage("")
gp.addmessage("Creating origin-destination matrix layer...")

th3 = clock()

#==
#CONDUCT SPATIOTEMPORAL ANALYSIS FOR EACH PAIRING OF
#SPATIAL AND TEMPORAL CRITICAL VALUES DETERMINED ABOVE
#==

#The annotation for the following portion of code is the same as 'ST
#Cluster Basic'. Refer to that script for explanation.

critTime = int(timeCritMin)

critTimeMax = int(timeCritMax)

critTimeRange = critTimeMax - critTime

if critTimeRange >= 2:
 critTimeMultiple = round(critTimeRange/2)
else:
 if critTimeRange < 2:
 critTimeMultiple = 1

inputTimeFC = timeNN

desc = gp.Describe(timeNN)
timeIDfield = desc.OIDFieldName

timeLinefield = calcFld

odLayer = "ODCostMatrix"
lineLyr = "ODCostMatrix\\Lines"

102

odLineLyr = "ODRoute_Layer"
gp.MakeODCostMatrixLayer_na(netDataset, odLayer, impedence, "", "",\
"", "ALLOW_UTURNS", "", "NO_HIERARCHY", "", "STRAIGHT_LINES")
gp.AddLocations_na(odLayer, "Origins", tempFC, "", "5000 Meters", "",\
"", "MATCH_TO_CLOSEST", "APPEND", "SNAP", "5 Meters")
gp.AddLocations_na(odLayer, "Destinations", tempFC, "", "5000 Meters",\
"", "", "MATCH_TO_CLOSEST", "APPEND", "SNAP", "5 Meters")
gp.Solve_na(odLayer, "SKIP")
gp.SelectData_management(odLayer, "Lines")
gp.MakeFeatureLayer_management(lineLyr, odLineLyr, "", "", "")

spaceFC = odLineLyr

desc2 = gp.Describe(odLineLyr)
fldinfo2 = desc2.FieldInfo
spaceOrigIDfield = fldinfo2.GetFieldName(1)

spaceDestIDfield = fldinfo2.GetFieldName(2)

spaceDistfield = fldinfo2.GetFieldName(4)

critDist = int(spaceCritMin)

critDistMax = int(spaceCritMax)

critDistRange = critDistMax - critDist

critDistMultiple = critDistRange/2

th4 = clock()
pt2 = th4-th3
pt2int = int(pt2)
pt2min = int(pt2/60)
pt2sec = int(pt2int-(pt2min*60))

gp.addmessage("Origin-destination matrix layer complete. Process\
time: " + str(pt2min) + " minute(s) and " + str(pt2sec) + " seconds.")
gp.addmessage("")

gp.addmessage("Conducting spatiotemporal analysis...")
gp.addmessage("")

th5 = clock()

gp.AddMessage("===\
===========================")
gp.AddMessage("")
gp.AddMessage("Meters" + "\t" + tempLabel + "\t" + " KnoxR" + "\
chiVal" + " chiProb" + "\t" + " zVal" + "\t" + " zProb")
gp.AddMessage("--\
----------------------------")

103

#Define the number of iterations for which the Knox analysis will be
#conducted based on the spatial and temporal range of values
critDistRuns = (int(critDistRange) / int(critDistMultiple)) + 2
critTimeRuns = (int(critTimeRange) / int(critTimeMultiple)) + 2
critTimeiter = critTime

#Initiate counters
distRun = 0
timeRun = 0
results = 0

#Begin Knox test loop
while distRun < critDistRuns:
 while timeRun < critTimeRuns:

 dctTime = {}

 adjustTimeID = []

 cur = gp.SearchCursor(inputTimeFC)
 row = cur.Next()
 firstTimeID = int(row.GetValue(timeIDfield))
 adjustTimeID = [firstTimeID]

 cur = gp.SearchCursor(inputTimeFC)
 row = cur.Next()

 while row:
 key = (int(row.GetValue(timeIDfield)) - adjustTimeID[0]) +\
1
 timelineDay = row.GetValue(timeLinefield)
 dctTime[key] = timelineDay
 row = cur.Next()

 dctTimeLT = {}
 dctTimeGT = {}

 timeKeyAlist = []
 timeKeyAlistTally = []

 numEvents = len(dctTime)

 x = 1
 y = 1
 while x <= numEvents:
 for key in dctTime:
 if key <= numEvents:
 timeDif = abs(dctTime[y] - dctTime[x])
 keyA = x
 keyB = y
 if timeDif <= critTime and keyA < keyB:
 dctTimeLT[keyA, keyB] = timeDif
 timeKeyAlist.append(keyA)

104

 else:
 if timeDif > critTime and keyA < keyB:
 dctTimeGT[keyA, keyB] = timeDif
 else:
 pass
 y = y + 1
 x = x + 1
 y = 1

 x = 0
 while x <= numEvents:
 occurX = timeKeyAlist.count(x)
 occurXx2 = occurX * 2
 occurXx2squared = occurXx2 ** 2
 timeKeyAlistTally.append(occurXx2squared)
 x = x + 1

 t2 = sum(timeKeyAlistTally)

 numCritTimePairs = len(dctTimeLT)
 numNotCritTimePairs = len(dctTimeGT)

 dctSpaceLT = {}
 dctSpaceGT = {}

 adjustOrigID = []
 adjustDestID = []

 cur = gp.SearchCursor(spaceFC)
 row = cur.Next()
 firstOrigID = int(row.GetValue(spaceOrigIDfield))
 firstDestID = int(row.GetValue(spaceDestIDfield))
 adjustOrigID = [firstOrigID]
 adjustDestID = [firstDestID]

 spaceKeyAlist = []
 spaceKeyAlistTally = []

 cur = gp.SearchCursor(spaceFC)
 row = cur.Next()

 while row:
 keyA = (int(row.GetValue(spaceOrigIDfield)) -
adjustOrigID[0]) + 1
 keyB = (int(row.GetValue(spaceDestIDfield)) -
adjustDestID[0]) + 1
 spaceDif = row.GetValue(spaceDistfield)
 if spaceDif >= 0 and spaceDif <= critDist and keyA < keyB:
 dctSpaceLT[keyA, keyB] = spaceDif
 spaceKeyAlist.append(keyA)
 else:
 if spaceDif > critDist and keyA < keyB:
 dctSpaceGT[keyA, keyB] = spaceDif
 else:

105

 pass
 row = cur.Next()
 x = 0
 while x <= numEvents:
 occurX = spaceKeyAlist.count(x)
 occurXx2 = occurX * 2
 occurXx2squared = occurXx2 ** 2
 spaceKeyAlistTally.append(occurXx2squared)
 x = x + 1
 s2 = sum(spaceKeyAlistTally)
 numCritSpacePairs = len(dctSpaceLT)
 numNotCritSpacePairs = len(dctSpaceGT)

 x = 0
 for key in dctSpaceLT:
 if dctTimeLT.has_key(key) == True:
 x = x + 1

 knoxAPairs = x

 x = 0
 for key in dctTimeGT:
 if dctSpaceLT.has_key(key) == True:
 x = x + 1

 knoxBPairs = x

 x = 0
 for key in dctSpaceGT:
 if dctTimeLT.has_key(key) == True:
 x = x + 1

 knoxCPairs = x

 x = 0
 for key in dctSpaceGT:
 if dctTimeGT.has_key(key) == True:
 x = x + 1

 knoxDPairs = x

 knoxChiSig = chiKnox(knoxAPairs, knoxBPairs, knoxCPairs,\
knoxDPairs, numEvents)
 chiProb = round(scipy.stats.chisqprob(knoxChiSig, 1),5)
 knoxZ = normalKnox(knoxAPairs, numCritSpacePairs,\
numCritTimePairs, s2, t2, numEvents)
 if knoxZ > 0:
 zProb = round((1 - scipy.stats.zprob(knoxZ)),5)
 else:
 zProb = round((scipy.stats.zprob(knoxZ)),5)
 gp.AddMessage(" %-8d %-5d %-5d %-+0.3f %-12s %-+0.3f\
%-12s" % (critDist, critTime, knoxAPairs, knoxChiSig, chiProb, knoxZ,\
zProb))

106

 #Add resulting statistics from this iteration of the loop into
 #a list. Append the list to a list of all the result lists for
 #all iterations. This list is used to determine the most
 #significant spatiotemporal cluster further down in the script.
 rangeResult = [critDist, critTime, knoxAPairs, knoxChiSig,\
chiProb, knoxZ, zProb]
 rangeResultsList.append(rangeResult)

 critTime = critTime + critTimeMultiple
 timeRun = timeRun + 1
 results = results + 1

 critDist = critDist + critDistMultiple
 critTime = critTimeiter
 distRun = distRun + 1
 timeRun = 0

gp.AddMessage("")
gp.AddMessage("==\
============================")
gp.AddMessage("")

th6 = clock()

pt3 = th6-th5
pt3int = int(pt3)
pt3min = int(pt3/60)
pt3sec = int(pt3int-(pt3min*60))

gp.AddMessage("Spatiotemporal analysis complete. Process time: " +\
str(pt3min) + " minute(s) and " + str(pt3sec) + " seconds.")

#==
#DETERMINE THE MOST SIGNIFICANT SPATIOTEMPORAL VALUE
#==

#Define variables used in the determination of the most significant
#spatiotemporal cluster value
rrl = rangeResultsList
rrlRandZscoresList = []
rrlZscoresList = []
nonzeroRZscoresList = []
rrlbonfc = []
rrlbonfcSig = []

#From the list of results obtained above, select out all the Knox R
#values and associated Z probabilities.
i = 0
x = len(rrl)
while i < x:
 rrlRandZscores = [rrl[i][2], rrl[i][6]]
 rrlRandZscoresList.append(rrlRandZscores)
 rrlZscoresList.append(rrl[i][6])
 if rrlRandZscoresList[i][0] > 0:

107

 nonzeroRZscoresList.append(rrlRandZscoresList[i][1])
 else:
 pass
 i = i + 1

#Sort the list with the z probabilities in ascending order
rrlZscoresList.sort()

#Calculate the Bonferroni correction given the user defined alpha and
#add it to a list which contains the associate Knox R and z Prob
#values.
i = 0
y = 0
x = 1
while i < len(rrlZscoresList):
 if rrlZscoresList[i] == rrlRandZscoresList[y][1]:
 bonfcalc = (alpha*x)/(len(rrl))
 bonfcandz = [rrlRandZscoresList[y][0], rrlZscoresList[i],\
bonfcalc]
 rrlbonfc.append(bonfcandz)
 y = 0
 i = i + 1
 x = x + 1
 else:
 y = y + 1

#If the Knox R's associated z Prob value is equal to or less than the
#Bonferroni correction, store it in a new list
i = 0
while i < len(rrlbonfc):
 if rrlbonfc[i][0] > 0 and rrlbonfc[i][1] <= rrlbonfc[i][2]:
 rrlbonfcSig.append(rrlbonfc[i][1])
 else:
 pass
 i = i + 1

#If no Knox R values are returned from the range searched, print
#message to screen
if len(nonzeroRZscoresList) == 0:
 gp.addmessage("Knox R = 0 for all combinations of spatial and\
temporal critical distances examined.")
 gp.addmessage("")

#Otherwise, continue analysis. If Knox R values were determined from
#the range search, but none were significant given the Bonferroni
#correction then report the Knox R value that had the lowest z Prob not
#within the constraints of the Bonferroni correction
else:
 if len(rrlbonfcSig) == 0:
 minZ = min(nonzeroRZscoresList)
 i = 0
 x = len(rrl)
 while i < x:
 if rrl[i][6] == minZ:

108

 bestKnox = rrl[i]
 else:
 pass
 i = i+1
 gp.addmessage("")
 gp.addmessage("There are no Knox R values that meet the\
desired significance level of " + str(alpha) + " considering a\
Bonferroni correction factor")
 gp.addmessage("for multiple tests. Of the range of spatial and\
temporal critical distances searched, below is the most significant\
value:")
 gp.addmessage("")
 gp.AddMessage("Meters" + "\t" + tempLabel + "\t" + " KnoxR" +\
" chiVal" + " chiProb" + "\t" + " zVal" + "\t" + " zProb")
 gp.AddMessage("--\
------------------------------------")
 gp.AddMessage(" %-8d %-5d %-5d %-+0.3f %-12s %-+0.3f\
%-12s" % (bestKnox[0], bestKnox[1], bestKnox[2], bestKnox[3],\
bestKnox[4], bestKnox[5], bestKnox[6]))
 gp.AddMessage("")
 gp.addmessage("The spatial and temporal critical distances\
displayed here may be entered as parameters for 'ST Cluster Basic' in\
order to generate a feature class containing the points contributing\
to the spatiotemporal cluster.")
 gp.addmessage("")

#If there are Knox R values that are significant given the Bonferroni
#correction, then of those values that were significant, print the one
#which had the lowest z Prob
 else:
 minZ = min(rrlbonfcSig)
 i = 0
 x = len(rrl)
 while i < x:
 if rrl[i][6] == minZ:
 bestKnox = rrl[i]
 else:
 pass
 i = i+1
 gp.addmessage("")
 gp.addmessage("Taking into consideration a Bonferroni\
correction factor for multiple tests, below is the most significant\
Knox Value")
 gp.addmessage("given the range of spatial and temporal\
critical distances searched:")
 gp.addmessage("")
 gp.AddMessage("Meters" + "\t" + tempLabel + "\t" + " KnoxR" +\
" chiVal" + " chiProb" + "\t" + " zVal" + "\t" + " zProb")
 gp.AddMessage("--\
------------------------------------")
 gp.AddMessage(" %-8d %-5d %-5d %-+0.3f %-12s %-+0.3f\
%-12s" % (bestKnox[0], bestKnox[1], bestKnox[2], bestKnox[3],\
bestKnox[4], bestKnox[5], bestKnox[6]))
 gp.AddMessage("")

109

 gp.addmessage("The spatial and temporal critical distances\
displayed here may be entered as parameters for 'ST Cluster Basic' in\
order to generate a feature class containing the points contributing\
to the spatiotemporal cluster.")
 gp.addmessage("")

#Delete variables
del dctSpaceLT, dctSpaceGT, dctTime, dctTimeLT, dctTimeGT,\
numCritTimePairs, numNotCritTimePairs, critTime, numEvents
del t2, s2, timeKeyAlist, timeKeyAlistTally, spaceKeyAlist,\
spaceKeyAlistTally, knoxZ, knoxChiSig
del knoxAPairs, knoxBPairs, knoxCPairs, knoxDPairs, numCritSpacePairs,\
numNotCritSpacePairs, adjustTimeID, adjustOrigID, adjustDestID

110

Tool 3: ST Cluster Table

#--
#Name: SCAn Tool 3 - ST Cluster Table
#Created by: David Eckley
#Date created: 20101201
#Purpose: ST Cluster Table evaluates the Knox statistic for a range of
#user-defined critical parameters and prints out a table with the
#results according to the spatial and temporal intervals specified.
#--

#==
#IMPORT MODULES
#==
import os, sys, string, arcgisscripting, math, numpy, scipy
from time import*
from numpy import*
from scipy import*
from scipy import stats
from knoxStats import chiKnox, normalKnox

#==
#INITIATE GEOPROCESSOR
#==
gp = arcgisscripting.create(9.3)

#==
#DEFINE VARIABLES PROVIDED BY USER
#==

#Network dataset
netDataset = gp.GetParameter(0)

#Impedence/cost attribute for the network dataset
impedence = gp.GetParameterAsText(1)

#Feature class with event details
tempFC = gp.GetParameter(2)

#Type of temporal analysis (boolean variable).If True, hour analysis.
#If False, day analysis.
timeType = gp.GetParameter(3)

#Label used for temporal column in results table
if timeType == 0:
 tempLabel = "Days"
else:
 tempLabel = "Hours"

#Feature class field containing dates of events
dateFld = gp.GetParameterastext(4)

111

#Feature class field containing hour event occurred in 24-hour HH
#format (e.g. 7AM is 7; 7PM is 19)
hourFld = gp.GetParameterastext(5)

#Ensure that hour data field was provided if hourly analysis was
#selected above. Otherwise, exit program.
if timeType > 0 and hourFld == "":
 gp.addmessage("")
 gp.addmessage("In order to conduct hourly analysis, a field\
containing hour data in a 24-hour HH format must be provided.")
 gp.addmessage("")
 sys.exit()
else:
 pass

#Minimum critical spatial distance in meters. Convert to integer.
critDist = int(gp.GetParameter(6))

#Maximum critical spatial distance in meters. Convert to integer.
critDistMax = int(gp.GetParameter(7))

#Increment interval for spatial distance range. Convert to integer.
critDistMultiple = int(gp.GetParameter(8))

#Minimum critical temporal distance in units appropriate for desired
#analysis (hours or days). Convert to integer.
critTime = int(gp.GetParameter(9))

#Maximum critical temporal distance in units appropriate for desired
#analysis (hours or days). Convert to integer.
critTimeMax = int(gp.GetParameter(10))

#Increment interval for temporal distance range. Convert to integer.
critTimeMultiple = int(gp.GetParameter(11))

#==
#CONDUCT SPATIOTEMPORAL ANALYSIS
#==

#The script annotation for the following code is the same as that
#provided with 'Tool 1: ST Cluster Basic' and'Tool 2: ST Cluster
#Automatic'. Refer to these tools for explanation.

calcFld = "CALC_TIME"

expnHour = "["+str(dateFld)+"]*24+["+str(hourFld)+"]"

expnDay = "["+str(dateFld)+"]*1"

Output_Layer = "tempFC_L"
Output_Layer2 = "tempFC_L2"

bool = int(timeType)

112

x = 1
if bool == x:
 gp.addmessage("")
 gp.addmessage("Temporal Analysis Type: Hour")

 gp.MakeFeatureLayer_management(tempFC, Output_Layer)
 gp.AddField_management(Output_Layer, calcFld, "DOUBLE", "", "",\
"", "", "NULLABLE", "NON_REQUIRED", "")
 gp.CalculateField_management(Output_Layer, calcFld, expnHour,\
"VB", "")

 timeNN = Output_Layer

else:
 gp.addmessage("")
 gp.addmessage("Temporal Analysis Type: Day")

 gp.MakeFeatureLayer_management(tempFC, Output_Layer2)
 gp.AddField_management(Output_Layer2, calcFld, "DOUBLE", "", "",\
"", "", "NULLABLE", "NON_REQUIRED", "")
 gp.CalculateField_management(Output_Layer2, calcFld, expnDay,\
"VB", "")

 timeNN = Output_Layer2

gp.addmessage("")
gp.addmessage("Creating origin-destination matrix layer...")
gp.addmessage("")

th3 = clock()

inputTimeFC = timeNN

desc = gp.Describe(timeNN)
timeIDfield = desc.OIDFieldName

timeLinefield = calcFld

odLayer = "ODCostMatrix"
lineLyr = "ODCostMatrix\\Lines"
odLineLyr = "ODRoute_Layer"
gp.MakeODCostMatrixLayer_na(netDataset, odLayer, impedence, "", "",\
"", "ALLOW_UTURNS", "", "NO_HIERARCHY", "", "STRAIGHT_LINES")
gp.AddLocations_na(odLayer, "Origins", tempFC, "", "5000 Meters", "",\
"", "MATCH_TO_CLOSEST", "APPEND", "SNAP", "5 Meters")
gp.AddLocations_na(odLayer, "Destinations", tempFC, "", "5000 Meters",\
"", "", "MATCH_TO_CLOSEST", "APPEND", "SNAP", "5 Meters")
gp.Solve_na(odLayer, "SKIP")
gp.SelectData_management(odLayer, "Lines")
gp.MakeFeatureLayer_management(lineLyr, odLineLyr, "", "", "")

spaceFC = odLineLyr

th4 = clock()

113

pt2 = th4-th3
pt2int = int(pt2)
pt2min = int(pt2/60)
pt2sec = int(pt2int-(pt2min*60))

gp.addmessage("Origin-destination matrix layer complete. Process\
time: " + str(pt2min) + " minute(s) and " + str(pt2sec) + " seconds.")
gp.addmessage("")

gp.addmessage("Conducting spatiotemporal analysis...")
gp.addmessage("")

th5 = clock()

desc2 = gp.Describe(odLineLyr)
fldinfo2 = desc2.FieldInfo
spaceOrigIDfield = fldinfo2.GetFieldName(1)

spaceDestIDfield = fldinfo2.GetFieldName(2)

spaceDistfield = fldinfo2.GetFieldName(4)

gp.AddMessage("==\
============================")
gp.AddMessage("")
gp.AddMessage("Meters" + "\t" + tempLabel + "\t" + " KnoxR" + "\
chiVal" + " chiProb" + "\t" + " zVal" + "\t" + " zProb")
gp.AddMessage("--\
----------------------------")

critDistRange = critDistMax - critDist
critDistRuns = (critDistRange / critDistMultiple) + 1

critTimeRange = critTimeMax - critTime
critTimeRuns = (critTimeRange / critTimeMultiple) + 1

distRun = 0
timeRun = 0

while distRun < critDistRuns:
 while timeRun < critTimeRuns:
 dctTime = {}
 adjustTimeID = []
 cur = gp.SearchCursor(inputTimeFC)
 row = cur.Next()
 firstTimeID = int(row.GetValue(timeIDfield))
 adjustTimeID = [firstTimeID]
 cur = gp.SearchCursor(inputTimeFC)
 row = cur.Next()

 while row:
 key = (int(row.GetValue(timeIDfield)) - adjustTimeID[0])\
 + 1

114

 timelineDay = row.GetValue(timeLinefield)
 dctTime[key] = timelineDay
 row = cur.Next()

 dctTimeLT = {}
 dctTimeGT = {}

 timeKeyAlist = []
 timeKeyAlistTally = []

 numEvents = len(dctTime)

 x = 1
 y = 1

 while x <= numEvents:
 for key in dctTime:
 if key <= numEvents:
 timeDif = abs(dctTime[y] - dctTime[x])
 keyA = x
 keyB = y
 if timeDif <= critTime and keyA < keyB:
 dctTimeLT[keyA, keyB] = timeDif
 timeKeyAlist.append(keyA)
 else:
 if timeDif > critTime and keyA < keyB:
 dctTimeGT[keyA, keyB] = timeDif
 else:
 pass
 y = y + 1
 x = x + 1
 y = 1

 x = 0
 while x <= numEvents:
 occurX = timeKeyAlist.count(x)
 occurXx2 = occurX * 2
 occurXx2squared = occurXx2 ** 2
 timeKeyAlistTally.append(occurXx2squared)
 x = x + 1
 t2 = sum(timeKeyAlistTally)

 numCritTimePairs = len(dctTimeLT)
 numNotCritTimePairs = len(dctTimeGT)

 dctSpaceLT = {}
 dctSpaceGT = {}

 adjustOrigID = []
 adjustDestID = []

 cur = gp.SearchCursor(spaceFC)
 row = cur.Next()
 firstOrigID = int(row.GetValue(spaceOrigIDfield))

115

 firstDestID = int(row.GetValue(spaceDestIDfield))
 adjustOrigID = [firstOrigID]
 adjustDestID = [firstDestID]

 spaceKeyAlist = []
 spaceKeyAlistTally = []

 cur = gp.SearchCursor(spaceFC)
 row = cur.Next()

 while row:
 keyA = (int(row.GetValue(spaceOrigIDfield)) -
adjustOrigID[0]) + 1
 keyB = (int(row.GetValue(spaceDestIDfield)) -
adjustDestID[0]) + 1
 spaceDif = row.GetValue(spaceDistfield)
 if spaceDif >= 0 and spaceDif <= critDist and keyA < keyB:
 dctSpaceLT[keyA, keyB] = spaceDif
 spaceKeyAlist.append(keyA)
 else:
 if spaceDif > critDist and keyA < keyB:
 dctSpaceGT[keyA, keyB] = spaceDif
 else:
 pass
 row = cur.Next()
 x = 0
 while x <= numEvents:
 occurX = spaceKeyAlist.count(x)
 occurXx2 = occurX * 2
 occurXx2squared = occurXx2 ** 2
 spaceKeyAlistTally.append(occurXx2squared)
 x = x + 1
 s2 = sum(spaceKeyAlistTally)
 numCritSpacePairs = len(dctSpaceLT)
 numNotCritSpacePairs = len(dctSpaceGT)

 x = 0
 for key in dctSpaceLT:
 if dctTimeLT.has_key(key) == True:
 x = x + 1
 knoxAPairs = x

 x = 0
 for key in dctTimeGT:
 if dctSpaceLT.has_key(key) == True:
 x = x + 1
 knoxBPairs = x

 x = 0
 for key in dctSpaceGT:
 if dctTimeLT.has_key(key) == True:
 x = x + 1
 knoxCPairs = x

116

 x = 0
 for key in dctSpaceGT:
 if dctTimeGT.has_key(key) == True:
 x = x + 1
 knoxDPairs = x

 knoxChiSig = chiKnox(knoxAPairs, knoxBPairs, knoxCPairs,\
knoxDPairs, numEvents)
 chiProb = round(scipy.stats.chisqprob(knoxChiSig, 1),5)
 knoxZ = normalKnox(knoxAPairs, numCritSpacePairs,\
numCritTimePairs, s2, t2, numEvents)

 if knoxZ > 0:
 zProb = round((1 - scipy.stats.zprob(knoxZ)),5)
 else:
 zProb = round((scipy.stats.zprob(knoxZ)),5)

 gp.AddMessage(" %-8d %-5d %-5d %-+0.3f %-12s %-+0.3f\
%-12s" % (critDist, critTime, knoxAPairs, knoxChiSig, chiProb, knoxZ,\
zProb))

 critTime = critTime + critTimeMultiple
 timeRun = timeRun + 1

 critDist = critDist + critDistMultiple
 critTime = critTime - (critTimeRange + critTimeMultiple)
 distRun = distRun + 1
 timeRun = 0

gp.AddMessage("")
gp.AddMessage("==\
============================")
gp.AddMessage("")

th6 = clock()

pt3 = th6-th5
pt3int = int(pt3)
pt3min = int(pt3/60)
pt3sec = int(pt3int-(pt3min*60))

gp.AddMessage("Spatiotemporal analysis complete. Process time: " +\
str(pt3min) + " minute(s) and " + str(pt3sec) + " seconds.")
gp.Addmessage("")

#Delete variables
del dctSpaceLT, dctSpaceGT, dctTime, dctTimeLT, dctTimeGT,\
numCritTimePairs, numNotCritTimePairs, critTime, numEvents
del t2, s2, timeKeyAlist, timeKeyAlistTally, spaceKeyAlist,\
spaceKeyAlistTally, knoxZ, knoxChiSig,
del knoxAPairs, knoxBPairs, knoxCPairs, knoxDPairs, numCritSpacePairs,\
numNotCritSpacePairs, adjustTimeID, adjustOrigID, adjustDestID

117

Tool 4: ST Cluster Monte Carlo

#--
#Name: SCAn Tool 4: ST Cluster Monte Carlo
#Created by: David Eckley
#Date created: 20101201
#Purpose: ST Cluster Monte Carlo evaluates the Knox test and determines
#the statistical significance based a specified number of Monte Carlo
#simulations. In addition to the information provided in the output
#file by Tools 1 and 2, ST Cluster Monte Carlo also provides details on
#the generated reference distribution which can be imported into a
#spreadsheet program to generate graphs if desired.
#--

#==
#IMPORT MODULES
#==
import os, sys, string, arcgisscripting, math, numpy, scipy
from random import*
from stats import*
from time import*
from numpy import*
from scipy import*
from scipy import stats
from knoxStats import chiKnox, normalKnox

#==
#INITIATE GEOPROCESSOR
#==
gp = arcgisscripting.create(9.3)

#==
#DEFINE VARIABLES PROVIDED BY USER
#==

#Network dataset
netDataset = gp.GetParameter(0)

#Impedence/cost attribute for the network dataset
impedence = gp.GetParameterAsText(1)

#Feature class with event details
tempFC = gp.GetParameter(2)

#Type of temporal analysis (boolean variable).If True, hour analysis.
#If False, day analysis.
timeType = gp.GetParameter(3)

#Label used for temporal column in results table
if timeType == 0:
 tempLabel = "Days"
else:
 tempLabel = "Hours"

118

#Feature class field containing dates of events
dateFld = gp.GetParameterastext(4)

#Feature class field containing hour event occurred in 24-hour HH
#format (e.g. 7AM is 7; 7PM is 19)
hourFld = gp.GetParameterastext(5)

#Ensure that hour data field was provided if hourly analysis was
#selected above. Otherwise, exit program.
if timeType > 0 and hourFld == "":
 gp.addmessage("")
 gp.addmessage("In order to conduct hourly analysis, a field\
containing hour data in a 24-hour HH format must be provided.")
 gp.addmessage("")
 sys.exit()
else:
 pass

#Critical spatial distance in meters. Convert to integer.
critDist = int(gp.GetParameter(6))

#Critical temporal distance in format described by boolean variable
#above.
critTime = int(gp.GetParameter(7))

#Have user define the number of Monte Carlo simulations to run
monteC = int(gp.GetParameter(8))

#===
#CONDUCT SPATIOTEMPORAL ANALYSIS
#===

#Where not specifically annotated, refer to Tools 1 through 3 for
#explanation.

gp.addmessage("")
gp.addmessage("Building Origin-Destination Cost Matrix Layer...")

th1 = clock()

#Using variables above and ArcToolBox tools
odLayer = "ODCostMatrix"
lineLyr = "ODCostMatrix\\Lines"
odLineLyr = "ODRoute_Layer"
gp.MakeODCostMatrixLayer_na(netDataset, odLayer, impedence, "", "",\
"", "ALLOW_UTURNS", "", "NO_HIERARCHY", "", "STRAIGHT_LINES")
gp.AddLocations_na(odLayer, "Origins", tempFC, "", "5000 Meters", "",\
"", "MATCH_TO_CLOSEST", "APPEND", "SNAP", "5 Meters")
gp.AddLocations_na(odLayer, "Destinations", tempFC, "",\
 "5000 Meters", "", "", "MATCH_TO_CLOSEST", "APPEND", "SNAP", "5\
Meters")
gp.Solve_na(odLayer, "SKIP")

119

gp.SelectData_management(odLayer, "Lines")
gp.MakeFeatureLayer_management(lineLyr, odLineLyr, "", "", "")

#Create variable from the OD Cost Matrix Lines Layer
spaceFC = odLineLyr

#Create variable from the Origin ID Field within the OD Cost Matrix
#Lines Layer
desc2 = gp.Describe(odLineLyr)
fldinfo2 = desc2.FieldInfo
spaceOrigIDfield = fldinfo2.GetFieldName(1)

#Create variable from the Destination ID Field within the OD Cost
#Matrix Lines Layer
spaceDestIDfield = fldinfo2.GetFieldName(2)

#Create variable from the Total Distance/Length Field within the OD
#Cost Matrix Lines Layer
spaceDistfield = fldinfo2.GetFieldName(4)

th2 = clock()

pt1 = th2-th1
pt1int = int(pt1)
pt1min = int(pt1/60)
pt1sec = int(pt1int-(pt1min*60))

gp.addmessage("Origin-Destination Cost Matrix Layer complete. Process\
time: " + str(pt1min) + " minute(s) and " + str(pt1sec) + " seconds.")
gp.addmessage("")

#Define variable that will become the field name for timeline field
calcFld = "CALC_TIME"

#VB expression that will be used in the calculate field operation in
#hour analysis is conducted
expnHour = "["+str(dateFld)+"]*24+["+str(hourFld)+"]"

#VB expression that will be used in the calculate field operation in
#day analysis is conducted
expnDay = "["+str(dateFld)+"]*1"

#Local variables that will be used in the "make feature layer"
#operation; a prerequisite to calculating the temporal fields.
Output_Layer = "tempFC_L"
Output_Layer2 = "tempFC_L2"

#Assign boolean variable from user inputs as an integer
bool = int(timeType)

#Conduct calculate field operation if the user selects an hourly
#analysis
x = 1
if bool == x:

120

 # Make feature layer
 gp.MakeFeatureLayer_management(tempFC, Output_Layer)

 # Add timeline field and calculate timeline field value
 gp.AddField_management(Output_Layer, calcFld, "DOUBLE", "", "",\
"", "", "NULLABLE", "NON_REQUIRED", "")
 gp.CalculateField_management(Output_Layer, calcFld, expnHour,\
"VB", "")

 #Assign variable to feature layer that will be used for temporal
#analysis and matrix generation
 timeNN = Output_Layer

#Conduct calculate field operation if the user selects a day analysis
else:

 # Make feature layer
 gp.MakeFeatureLayer_management(tempFC, Output_Layer2)

 # Add timeline field and calculate timeline field value
 gp.AddField_management(Output_Layer2, calcFld, "DOUBLE", "",\
 "", "", "", "NULLABLE", "NON_REQUIRED", "")
 gp.CalculateField_management(Output_Layer2, calcFld, expnDay,\
"VB", "")

 #Assign variable to feature layer that will be used for temporal
#analysis and matrix generation
 timeNN = Output_Layer2

#Rename variable assigned to feature layer
inputTimeFC = timeNN

#Assign variable to Object ID Field within feature layer
desc = gp.Describe(timeNN)
timeIDfield = desc.OIDFieldName

#Rename variable assigned to timeline field name
timeLinefield = calcFld

dctTime = {}

adjustTimeID = []

cur = gp.SearchCursor(inputTimeFC)
row = cur.Next()
firstTimeID = int(row.GetValue(timeIDfield))
adjustTimeID = [firstTimeID]

cur = gp.SearchCursor(inputTimeFC)
row = cur.Next()

while row:
 key = (int(row.GetValue(timeIDfield)) - adjustTimeID[0]) + 1

121

 timelineDay = row.GetValue(timeLinefield)
 dctTime[key] = timelineDay
 row = cur.Next()

dctTimeLT = {}
numEvents = len(dctTime)
timeShuffleList = []

x = 1
y = 1
while x <= numEvents:
 for key in dctTime:
 if key <= numEvents:
 timeA = dctTime[x]
 timeB = dctTime[y]
 timeDif = abs(dctTime[y] - dctTime[x])
 #Load all the temporal distance between pairs values into a
#list to be used for Monte Carlo simulations below
 timeShuffleList.append(timeDif)
 keyA = x
 keyB = y
 if timeDif <= critTime and keyA < keyB:
 dctTimeLT[keyA, keyB] = timeDif
 else:
 pass
 y = y + 1
 x = x + 1
 y = 1

numCritTimePairs = len(dctTimeLT)

gp.AddMessage("===\
==")
gp.AddMessage("")
gp.AddMessage("Given a critical spatial distance of " +\ str(critDist)
+ " meters and a critical temporal distance of " + str(critTime) + " "\
+ tempLabel + ":")
gp.AddMessage("")

dctSpaceLT = {}
spaceShuffleList = []

adjustOrigID = []
adjustDestID = []

cur = gp.SearchCursor(spaceFC)
row = cur.Next()
firstOrigID = int(row.GetValue(spaceOrigIDfield))
firstDestID = int(row.GetValue(spaceDestIDfield))
adjustOrigID = [firstOrigID]
adjustDestID = [firstDestID]

cur = gp.SearchCursor(spaceFC)
row = cur.Next()

122

while row:
 keyA = (int(row.GetValue(spaceOrigIDfield)) - adjustOrigID[0]) + 1
 keyB = (int(row.GetValue(spaceDestIDfield)) - adjustDestID[0]) + 1
 spaceDif = row.GetValue(spaceDistfield)
 #Load all the spatial distance between pairs values into a list to
#be used for Monte Carlo simulations below
 spaceShuffleList.append(spaceDif)
 if spaceDif >= 0 and spaceDif <= critDist and keyA < keyB:
 dctSpaceLT[keyA, keyB] = spaceDif

 else:
 pass
 row = cur.Next()

del spaceFC

numCritSpacePairs = len(dctSpaceLT)

x = 0
for key in dctSpaceLT:
 if dctTimeLT.has_key(key) == True:
 x = x + 1

knoxAPairs = x

gp.AddMessage("--\
---")
gp.AddMessage("Knox Statistic (R) = " + str(knoxAPairs))

spaceShuffleListLength = len(spaceShuffleList)
timeShuffleListLength = len(timeShuffleList)
dctSpaceLength = len(dctSpaceLT)

gp.AddMessage("Knox(R) Frequency Prob CumProb")
gp.AddMessage("----------------------------------")

start6 = clock()

mcKnoxlist = []
randrangeTimeShuffle = int(timeShuffleListLength)

#Initiate loop that will perform the individual Monte Carlo simulations
#of the Knox Test
m = 1
while m <= monteC:
 #Clear the list holding the spatial distance between pairs values
#that met the critical spatial distance parameter
 dctSpaceLT.clear()
 #Shuffle the list containing all the spatial distances between
#pairs
 shuffle(spaceShuffleList)

 #Conduct the spatiotemporal analysis

123

 x = 1
 y = 1
 s = 0
 while x <=numEvents:
 for key in dctTime:
 if key <= numEvents:
 spaceDif = spaceShuffleList[s]
 keyA = x
 keyB = y
 if spaceDif >= 0 and spaceDif <= critDist and keyA <\
keyB:
 dctSpaceLT[keyA, keyB] = spaceDif
 else:
 pass
 y = y + 1
 s = s + 1
 x = x + 1
 y = 1

 k = 0
 for key in dctSpaceLT:
 if dctTimeLT.has_key(key) == True:
 k = k + 1
 knoxR = k
 #Append resulting Knox R to a list of all Knox R values created by
#each iteration
 mcKnoxlist.append(knoxR)
 m = m + 1

stop6 = clock()
timePassed6 = round((stop6 - start6),2)
perSim = timePassed6 / monteC

start7 = clock()

#From list of Knox R values generated during the simulation above,
#select the max
maxKnox = max(mcKnoxlist)
#From list of Knox R values generated during the simulation above,
#select the min
minKnox = min(mcKnoxlist)

#Initiate dictionary to store the calculated Knox R probability values
mcKnoxprobDict = {}
smallestProb = 1 / float(monteC)

x = minKnox
cumProb = float(0)

#Calculate the probability for each Knox R value based on its
#occurrence during within the simulations generated
while x <= maxKnox:
 key = x
 countKnox = mcKnoxlist.count(x)

124

 countKnoxprob = float(countKnox) / float(monteC)
 mcKnoxprobDict[key] = countKnoxprob
 cumProb = cumProb + countKnoxprob
 gp.AddMessage(" %-6d %-6d %0.3f %0.3f" % (x, countKnox,\
countKnoxprob, cumProb))
 x = x + 1

knoxP = 0
for item in mcKnoxlist:
 if item >= knoxAPairs:
 knoxP = knoxP + 1

if knoxP == 0:
 probKnox = ("< " + str(smallestProb))
else:
 probKnox = float(knoxP)/float(monteC)

#Calculate the mean and variance of the Knox R values occuring in the
#simulation
avgKnox = round(lmean(mcKnoxlist),2)
varKnox = round(lvar(mcKnoxlist),2)

gp.addmessage("")
gp.AddMessage("--\
---")
gp.AddMessage("")
gp.AddMessage("Given the simulation, the probability of Knox (R) = " +\
str(knoxAPairs) + " is " + str(probKnox))
gp.AddMessage("The simulation mean is " + str(avgKnox))
gp.AddMessage("The simulation variance is " + str(varKnox))

stop7 = clock()
timePassed7 = round((stop7 - start7),2)

gp.AddMessage("")

gp.AddMessage("Monte Carlo test run time: " + str(timePassed6) + \
" seconds.")
gp.AddMessage("Monte Carlo per sim time: " + str(perSim) + " seconds.")

gp.AddMessage("")

#Delete variables
del dctSpaceLT, dctTime, dctTimeLT, numCritTimePairs, critTime,\
numEvents, smallestProb, spaceShuffleList
del timeShuffleList, avgKnox, varKnox, maxKnox, minKnox, mcKnoxlist,\
probKnox, mcKnoxprobDict, spaceShuffleListLength, timeShuffleListLength
del knoxAPairs, numCritSpacePairs, adjustTimeID, adjustOrigID,\
adjustDestID

125

Tool 5: ST Cluster Range Detector

#--
#Name: SCAn Tool 5 - ST Cluster Range Detector
#Created by: David Eckley
#Date created: 20101128
#Purpose: ST Cluster Range Detector conducts a nearest neighbor
#distance analysis of the spatial and temporal dimensions and reports a
#recommended range of spatio-temporal test critical parameters.
#--

#==
#IMPORT MODULES
#==
import sys, string, os, arcgisscripting, math

#==
#INITIATE GEOPROCESSOR
#==
gp = arcgisscripting.create(9.3)

#==
#DEFINE VARIABLES PROVIDED BY USER
#==

#Network dataset
netDataset = gp.GetParameter(0)

#Impedence/cost attribute for the network dataset
impedence = gp.GetParameterAsText(1)

#Feature class with event details
tempFC = gp.GetParameter(2)

#Type of temporal analysis (boolean variable).If True, hour analysis.
#If False, day analysis.
timeType = gp.GetParameter(3)

#Feature class field containing dates of events
dateFld = gp.GetParameterastext(4)

#Feature class field containing hour event occurred in 24-hour HH
#format (e.g. 7AM is 7; 7PM is 19)
hourFld = gp.GetParameterastext(5)

#Ensure that hour data field was provided if hourly analysis was
#selected above. Otherwise, exit program.
if timeType > 0 and hourFld == "":
 gp.addmessage("")
 gp.addmessage("In order to conduct hourly analysis, a field\
containing hour data in a 24-hour HH format must be provided.")
 gp.addmessage("")

126

 sys.exit()
else:
 pass

#==
#CONDUCT SPATIAL NEAREST NEIGHBOR RANGE ANALYSIS
#==

Define local variables used in the Make Closest Facility Layer
#analysis.
CFLayer = "ClosestFacilityLayer"
RouteLayer = "ClosestFacilityLayer\\Routes"
CFRouteLayer = "CFRoutes_Layer"

Make Closest Facility Layer. This analysis searches for the closest
#and second closest spatial neighbors between two point feature layers;
#in this case both layers are the same.
gp.MakeClosestFacilityLayer_na(netDataset, CFLayer, impedence,\
"TRAVEL_TO", "", "2", "", "ALLOW_UTURNS", "", "NO_HIERARCHY", "",\
"TRUE_LINES_WITH_MEASURES")
gp.AddLocations_na(CFLayer, "Facilities", tempFC, "CurbApproach #\
0;Attr_Length # 0", "5000 Meters", "OBJECTID", "", "MATCH_TO_CLOSEST",\
"APPEND", "SNAP", "5 Meters")
gp.AddLocations_na(CFLayer, "Incidents", tempFC, "CurbApproach #\
0;Attr_Length # 0", "5000 Meters", "OBJECTID", "", "MATCH_TO_CLOSEST",\
"APPEND", "SNAP", "5 Meters")
gp.Solve_na(CFLayer, "HALT")

Select only the second nearest neighbors. The first nearest neighbor
#is the point itself since this analysis is looking at two identical
#point layers.
gp.SelectData_management(CFLayer, "Routes")

Make a feature layer from the selected events above.
gp.MakeFeatureLayer_management(RouteLayer, CFRouteLayer,\
"\"FacilityRank\" = 2", "", "FacilityID FacilityID VISIBLE\
NONE;FacilityRank FacilityRank VISIBLE NONE;Name Name VISIBLE\
NONE;IncidentCurbApproach IncidentCurbApproach VISIBLE\
NONE;FacilityCurbApproach FacilityCurbApproach VISIBLE NONE;IncidentID\
IncidentID VISIBLE NONE;Total_Length Total_Distance VISIBLE NONE")

#Rename variable storing feature layer
netNN = CFRouteLayer

#Initiate a list to store the spatial nearest neighbor distance values
nDistList = []

#Initiate the geoprocessor cursor to extract the spatial nearest
#neighbor distance value for each event
cur = gp.SearchCursor(netNN)
row = cur.Next()
while row:
 nDist = int(row.GetValue("Total_Distance"))
 nDistList.append(nDist)

127

 row = cur.Next()

#Count the values in the list
nNcount = len(nDistList)
#Assign the minimum Spatial Nearest Neighbor Distance to a variable
nNmin = min(nDistList)
#Assign the maximum Spatial Nearest Neighbor Distance to a variable
nNmax = max(nDistList)
#Assign the avg NN spatial dist to a variable
nNavg = sum(nDistList) / nNcount

#Round avg nearest neighbor distance value to the next highest multiple
#of 100, unless the value is exactly a multiple of 100
nNavgRound = round(nNavg / 10)
roundStr = str(nNavgRound)
roundVal = int(roundStr[-3])
if roundVal > 0:
 spaceCritMax = ((10 - float(roundVal)) + nNavgRound)*10
else:
 spaceCritMax = nNavgRound * 10

#Round min nearest neighbor distance value to the next lowest multiple
#of 100, unless the value is exactly a multiple of 100
if nNmin > 0:
 nNminRound = round(nNmin / 10)
 roundStr = str(nNminRound)
 roundVal = int(roundStr[-3])
 if roundVal > 0:
 spaceCritMin = (nNminRound - roundVal)*100
 else:
 spaceCritMin = nNminRound * 100
else:
 spaceCritMin = 0

gp.addmessage("")
gp.addmessage("Minimum Network Nearest Neighbor Distance: " +\
str(nNmin) + " meters.")
gp.addmessage("Maximum Network Nearest Neighbor Distance: " +\
str(nNmax) + " meters.")
gp.addmessage("Average Network Nearest Neighbor Distance: " +\
str(nNavg) + " meters.")
gp.addmessage("Based on the nearest neighbor distance analysis, a\
recommended range of spatial critical distances is between " +\
str(spaceCritMin) + " and " + str(spaceCritMax) + " meters.")

#==
#CONDUCT SPATIAL NEAREST NEIGHBOR RANGE ANALYSIS
#==

#Define a variable for the feature layer field that will hold the
#calculated timeline value
calcFld = "CALC_TIME"

128

#Create SQL statement for the field calculation if hourly analysis is
#selected
expnHour = "["+str(dateFld)+"]*24+["+str(hourFld)+"]"
#Create SQL statement for the field calculation if day analysis is
#selected
expnDay = "["+str(dateFld)+"]*1"

#Local variables used in the calculate field process below
Output_Layer = "tempFC_L"
Output_Layer2 = "tempFC_L2"

#Define variable to hold boolean value
bool = int(timeType)

#If hourly analysis is selected, perform this section of code
x = 1
if bool == x:
 gp.addmessage("")
 gp.addmessage("Temporal Analysis Type: Hour")

 # Add and calculate timeline field to feature layer
 gp.MakeFeatureLayer_management(tempFC, Output_Layer)
 gp.AddField_management(Output_Layer, calcFld, "DOUBLE", "", "",\
"", "", "NULLABLE", "NON_REQUIRED", "")
 gp.CalculateField_management(Output_Layer, calcFld, expnHour,\
"VB", "")

 #Assign variable to output layer
 timeNN = Output_Layer

 #Assign variable to list holding the timeline values
 timeList = []

 #Search through feature layer and extract out the timeline values
 cur = gp.SearchCursor(timeNN)
 row = cur.Next()
 while row:
 time = row.GetValue(calcFld)
 timeList.append(time)
 row = cur.Next()

 #Sort list so that values are ascending
 timeList.sort()

 #Assign variable to number of items in list
 numTimes = len(timeList)

 #Search through the list of timeline values and calculate the
#neighbor distance between each event; store in list
 nList = []
 maxList = max(timeList)
 x=1
 y=0
 while x < numTimes:

129

 nList.append(timeList[x]-timeList[y])
 x=x+1
 y=y+1

 #Search through list of neighbor distances and select the nearest
#neighbor distance for each event
 numDist = len(nList)
 nDistList = []
 x=1
 y=0
 while x < numDist:
 n=[nList[y],nList[x]]
 nn=min(n)
 nDistList.append(nn)
 x=x+1
 y=y+1

 #Count number of values in list
 nNcount = len(nDistList)
 #Calculate sum of values in list
 nNsum = float(sum(nDistList))
 #Determine minimum value in list
 nNmin = min(nDistList)
 #Determine maximum value in list
 nNmax = max(nDistList)
 #Determine average value in list
 nNavg = float(nNsum / nNcount)

 #Round avg nearest neighbor distance value to the next highest
#multiple of 1, unless the value is exactly a multiple of 1
 nNavgRound = round(nNavg)
 roundStr = str(nNavgRound)
 roundVal = int(roundStr[-1])
 if roundVal > 0:
 timeCritMax = (10 - float(roundVal)) + nNavgRound
 else:
 timeCritMax = nNavgRound

 #Round min nearest neighbor distance value to the next lowest
#multiple of 1, unless the value is exactly a multiple of 1
 if nNmin > 0:
 nNminRound = round(nNmin)
 roundStr = str(nNminRound)
 roundVal = int(roundStr[-1])
 if roundVal > 0:
 timeCritMin = nNminRound - roundVal
 else:
 timeCritMin = nNminRound
 else:
 timeCritMin = 0

 gp.addmessage("Minimum Temporal Nearest Neighbor Distance: " +\
str(nNmin) + " hours.")

130

 gp.addmessage("Maximum Temporal Nearest Neighbor Distance: " +\
str(nNmax) + " hours.")
 gp.addmessage("Average Temporal Nearest Neighbor Distance: " +\
"%0.1f" % (nNavg) + " hours.")
 gp.addmessage("Based on the nearest neighbor distance analysis, a\
recommended range of temporal critical distances is between " +\
str(timeCritMin) + " and " + str(timeCritMax) + " hours.")
 gp.addmessage("")

 del expnHour, expnDay, nNcount, nNsum, nNmin, nNmax, nNavg,\
numDist, nDistList, nList, numTimes, timeNN

#All of the code annotation above is the same for the loop below. The
#following loop performs the same functions for a day analysis instead
#of hourly.
else:
 gp.addmessage("")
 gp.addmessage("Temporal Analysis Type: Day")

 gp.MakeFeatureLayer_management(tempFC, Output_Layer2)
 gp.AddField_management(Output_Layer2, calcFld, "DOUBLE", "", "",\
"", "", "NULLABLE", "NON_REQUIRED", "")
 gp.CalculateField_management(Output_Layer2, calcFld, expnDay,\
"VB", "")

 timeNN = Output_Layer2
 timeList = []

 cur = gp.SearchCursor(timeNN)
 row = cur.Next()
 while row:
 time = int(row.GetValue(calcFld))
 timeList.append(time)
 row = cur.Next()

 timeList.sort()
 numTimes = len(timeList)

 nList = []
 maxList = max(timeList)
 x=1
 y=0
 while x < numTimes:
 nList.append(timeList[x]-timeList[y])
 x=x+1
 y=y+1

 numDist = len(nList)
 nDistList = []
 x=1
 y=0
 while x < numDist:
 n=[nList[y],nList[x]]
 nn=min(n)

131

 nDistList.append(nn)
 x=x+1
 y=y+1

 nNcount = len(nDistList)
 nNsum = float(sum(nDistList))
 nNmin = min(nDistList)
 nNmax = max(nDistList)
 nNavg = float(nNsum / nNcount)

 nNavgRound = round(nNavg)
 roundStr = str(nNavgRound)
 roundVal = int(roundStr[-1])
 if roundVal > 0:
 timeCritMax = (10 - float(roundVal)) + nNavgRound
 else:
 timeCritMax = nNavgRound

 if nNmin > 0:
 nNminRound = round(nNmin)
 roundStr = str(nNminRound)
 roundVal = int(roundStr[-1])
 if roundVal > 0:
 timeCritMin = nNminRound - roundVal
 else:
 timeCritMin = nNminRound
 else:
 timeCritMin = 0

 gp.addmessage("Minimum Temporal Nearest Neighbor Distance: " +\
str(nNmin) + " days.")
 gp.addmessage("Maximum Temporal Nearest Neighbor Distance: " +\
str(nNmax) + " days.")
 gp.addmessage("Average Temporal Nearest Neighbor Distance: " +\
"%0.1f" % (nNavg) + " days.")
 gp.addmessage("Based on the nearest neighbor distance analysis, a\
recommended range of temporal critical distances is between " +\
str(timeCritMin) + " and " + str(timeCritMax) + " days.")
 gp.addmessage("")

 del expnHour, expnDay, nNcount, nNsum, nNmin, nNmax, nNavg,\
numDist, nDistList, nList, numTimes, timeNN

132

References

133

References

Anon.2009. Weather Underground. Weather History for Columbus, OH. March.

http://www.wunderground.com/.

Anon.2010a. Significance Tests for Counts. The Statistics Calculator.

http://www.statpac.com/statistics-calculator/counts.htm.

Anon.2010b. Ohio Highway Shapefile from OpenStreetMap (www.openstreetmap.com).

www.mapcruzin.com. 7. http://www.mapcruzin.com/free-united-states-
shapefiles/free-ohio-arcgis-maps-shapefiles.htm.

Anselin, L. 1995. Local indicators of spatial association: LISA. Geographical Analysis

27: 93-115.

Assuncao, R, and T Correa. 2009. Surveillance to detect emerging space-time clusters.

Computational Statistics and Data Analysis 53, no. 8 (June 15): 2817-2830.

Assuncao, R, A Tavares, T Correa, and M Kulldorff. 2007. Space-time cluster

identification in point processes. The Canadian Journal of Statistics 35, no. 1: 9-
25.

Baker, R. 1996. Testing for space-time clusters of unknown size. Journal of Applied

Statistics 23, no. 5 (10): 543-554.

Black, W. 1991. Highway accidents: a spatial and temporal analysis. Transportation

Research Record, no. 1318: 75-82.

———. 1992. Network autocorrelation in transport network and flow systems.

Geographical Analysis 24, no. 3: 207-222.

Block, R. 2007. Scanning for clusters in space and time - A tutorial review of SaTScan.

Social Science Computer Review 25, no. 2: 272-278.

Chang, W, D Zeng, and H Chen. 2008. A stack-based prospective spatio-temporal data

analysis approach. Decision Support Systems 45, no. 4 (November): 697-713.

134

Clark, P, and F Evans. 1954. Distance to Nearest Neighbor as a Measure of Spatial
Relationships in Populations. Ecology 35, no. 4 (10): 445.

Clements, F. 1905. Research Methods in Ecology. Lincoln, NE: University Publishing

Company.

Cliff, A, and J Ord. 1981. Spatial Processes: Models & Applications. London: Pion.

David, F, and D Barton. 1966. Two Space-Time Interaction Tests for Epidemicity.

British Journal of Preventive and Social Medicine 20, no. 1 (January): 44-48.

Flahaut, B, M Mouchart, E Martin, and I Thomas. 2003. The local spatial autocorrelation

and the kernel method for identifying black zones a comparative approach.
Accident Analysis & Prevention 35: 991-1004.

Glass, A, and N Mantel. 1969. Lack of Time-Space Clustering of Childhood Leukemia in

Los Angeles County, 1960–1964. Cancer Research 29, no. 11 (November): 1995-
2001.

Hochberg, Y. 1988. A sharper Bonferroni procedure for multiple test of significance.

Biometrica 75: 800-802.

Holland, B, and M Copenhave. 1987. An improved sequentially rejective Bonferroni test

procedure. Biometrics 43: 417-423.

Jacquez, G. 1996. A k-nearest neighbour test for space-time interaction. Statistics in

Medicine 15, no. 18 (9): 1935-1949.

———. 2008. Spatial Cluster Analysis. In The Handbook of Geographic Information

Science, ed. S Fotheringham and J Wilson, 395-416. Blackwell Publishing.

Kennedy, E. 2010. ODPS Crash Extracts. Ohio Traffic Safety Office. 7.

http://www.dps.state.oh.us/CrashRequests/extract.aspx.

Khan, G, K Santiago-Chaparro, X Qin, and D Noyce. 2009. Application and Integration

of Lattice Data Analysis, Network K-Functions, and Geographic Information
System Software to Study Ice-Related Crashes. Transportation Research Record,
no. 2136: 67-76.

Klauber, M. 1971. Two-Sample Randomization Tests for Space-Time Clustering.

Biometrics 27, no. 1 (March): 129-142.

Klauber, M, and P Mustacchi. 1970. Space-time clustering of childhood leukemia in San

Francisco. Cancer Research 30: 1969-1973.

135

Knox, E, and M Bartlett. 1964. The Detection of Space-Time Interactions. Journal of the
Royal Statistical Society. Series C (Applied Statistics) 13, no. 1: 25-30.

Knox, E, and E Gilman. 1992. Leukaemia clusters in Great Britain. 1. Space-time

interactions. Journal of Epidemiology and Community Health 46, no. 6
(December): 566-572.

Kuldorff, M. 2001. Prospective time periodic geographical disease surveillance using a

scan statistic. Journal of the Royal Statistical Society A 164, no. 1: 61-72.

Kulldorff, M. 2006. SaTScan user guide. August. http://www.satscan.org.

Kulldorff, M, and U Hjalmars. 1999. The Knox method and other tests for space-time

interaction. Biometrics 55, no. 2 (June): 544-552.

Lesniak, A, and Z Isakow. 2009. Space-time clustering of seismic events and hazard

assessment in the Zabrze-Bielszowice coal mine, Poland. International Journal of
Rock Mechanics and Mining Sciences 46, no. 5 (July): 918-928.

Lloyd, S, and C Roberts. 1973. A Test for Space Clustering and Its Application to

Congenital Limb Defects in Cardiff. British Journal of Preventive and Social
Medicine 27, no. 3: 188-191.

Lord, D, and F Mannering. 2010. The statistical analysis of crash-frequency data: A

review and assessment of methodological alternatives. Transportation Research
Part A: Policy and Practice 44, no. 5 (June): 291-305.

Mantel, N. 1967. The Detection of Disease Clustering and a Generalized Regression

Approach. Cancer Research 27, no. 2 (February): 209-220.

Meighan, S, and G Knox. 1965. Leukemia in childhood.Epidemiology in oregon. Cancer

18, no. 7 (7): 811-814.

Mennis, D. 2010. Multidimensional Map Algebra: Design and Implementation of a

Spatio-Temporal GIS Processing Language. Transactions in GIS 14, no. 1 (2): 1-
21.

Michaelsen, J. 2007. Confirmatory vs Exploratory Data Analysis January 8, University of

California Santa Barbara.
http://www.geog.ucsb.edu/~joel/g210_w07/lecture_notes/lect01/oh07_01_2.html.

Mielke, P. 1978. Clarification and Appropriate Inferences for Mantel and Valand's

Nonparametric Multivariate Analysis Technique. Biometrics 34, no. 2: 277-282.

136

Miller, H. 1999. Measuring space-time accessibility benefits within transportation
networks: basic theory and computational procedures. Geographical Analysis 31:
187-212.

Mirghani, S, B Nour, S Bushra, I Elhassan, R Snow, and A Noor. 2010. The spatial-

temporal clustering of Plasmodium falciparum infection over eleven years in
Gezira State, The Sudan. Malaria Journal 9.

Moran, P. 1950. Notes on continuous stochastic phenomena. Biometrika 37: 17-23.

Mountrakis, G, and K Gunson. 2009. Multi-scale spatiotemporal analyses of moose-

vehicle collisions: a case study in northern Vermont. International Journal of
Geographical Information Science 23, no. 11: 1389-1412.

Nakaya, T, and K Yano. 2010. Visualising Crime Clusters in a Space-time Cube: An

Exploratory Data-analysis Approach Using Space-time Kernel Density Estimation
and Scan Statistics. Transactions in GIS 14, no. 3 (6): 223-239.

von Neumann, J. 1941. Distribution of the Ratio of the Mean Square Successive

Difference to the Variance. The Annals of Mathematical Statistics 12, no. 4
(December): 367-395.

Okabe, A, B Boots, K Sugihara, and S Chui. 2000. Spatial Tessellations - Concepts and

Applications of Voronoi Diagrams. John Wiley.

Okabe, A, K Okunuki, and SANET Team. 2009. SANET: A Spatial Analysis on

Networks. Tokyo, Japan. http://sanet.csis.u-tokyo.ac.jp/.

Okabe, A, and T Satoh. 2006. Uniform network transformation for points pattern analysis

on a non-uniform network. Journal of Geographical Systems 8: 25-37.

Okabe, A, and I Yamada. 2001. The k-function method on a network and its

computational implementation. Geographical Analysis 33, no. 3: 271-290.

Okabe, A, H Yomono, and M Kitamura. 1995. Statistical Analysis of the Distribution of

Points on a Network. Geographical Analysis 27, no. 2: 152-175.

Okabe, A, T Yoshikawa, A Fujii, and K Oikawa. 1988. The statistical analysis of a

distribution of activity points in relation to surface-like elements. Environment
and Planning A 20, no. 5: 609 – 620.

Okunuki, K, and A Okabe. 2002. Solving the Huff-based competitive location model on a

network with link-based demand. Annals of Operations Research 111: 239-252.

137

Ord, J, and A Getis. 1995. Local spatial autocorrelation statistics: distributional issues
and an application. Geographical Analysis 27: 286-306.

Parzen, E. 1962. On estimation of a probability density function and mode. Annals of

Mathematical Statistics 33: 1065-1076.

Pei, T, C Zhou, A Zhu, B Li, and C Qin. 2010. Windowed nearest neighbour method for

mining spatio-temporal clusters in the presence of noise. International Journal of
Geographical Information Science 24, no. 6: 925-948.

Pinder, D, and M Witherick. 1973. Nearest-neighbour analysis of linear point patterns.

Tijdschrift voor Economische en Sociale Geografie 64: 160-163.

Ripley, D. 1981. Spatial Statistics. Chichester: Wiley.

Roberts, C, K Laurence, and S Lloyd. 1975. An Investigation of Space and Space-Time

Clustering in a Large Sample of Infants with Neural Tube Defects Born in
Cardiff. British Journal of Preventive and Social Medicine 29, no. 3: 202-204.

Rogerson, P. 2001. Monitoring point patterns for the development of space-time clusters.

Journal of the Royal Statistical Society Series A - Statistics in Society 164: 87-96.

Shiode, S. 2008. Analysis of a distribution of point events using the network-based

quadrat method. Geographical Analysis 40: 380-400.

Shiode, S, and N Shiode. 2009. Detection of multi-scale clusters in network space.

International Journal of Geographical Information Science 23, no. 1: 75-92.

Sidak, Z. 1967. Rectangular confidence regions for the means of multivariate normal

distributions. Journal of the American Statistical Association 62: 626-633.

Siemiatycki, J. 1978. Mantel's space-time clustering statistic: computing higher moments

and a comparison of various data transforms. Journal of Statistical Computation
and Simulation 7, no. 1: 13-31.

Simes, R. 1986. An Improved Bonferroni Procedure for Multiple Tests of Significance.

Biometrika 73, no. 3 (December): 751-754.

Smith, P, M Pike, M Till, and R Hardisty. 1976. Epidemiology of childhood leukaemia in

greater london: A search for evidence of transmission assuming a possibly long
latent period. British Journal of Cancer 33, no. 1: 1-8.

Tukey, J. 1977. Exploratory Data Analysis. Philippines: Addison-Wesley.

138

Upton, G. 1985. Spatial Data Analysis by Example. Chichester: Wiley.

Voronoi, G. 1907. Nouvelles applications des paramètres continus à la théorie des formes

quadratiques. Journal für die Reine und Angewandte Mathematik 133: 97-178.

Williams, G. 1984. Time-space clustering of disease. In Statistical Methods for Cancer

Studies, ed. R Cornell, 479. New York: Marcel Dekker, Inc.

Yamada, I, P Rogerson, and G Lee. 2009. GeoSurveillance: a GIS-based system for the

detection and monitoring of spatial clusters. Journal of Geographical Systems 11,
no. 2: 155-173.

Yamada, I, and J Thill. 2004. Comparison of planar and network k-functions in traffic

accident analysis. Journal of Transport Geography 12: 149-158.

———. 2007. Local Indicators of Network-Constrained Clusters in Spatial Point

Patterns. Geographical Analysis 39, no. 3: 268-292.

———. 2010. Local Indicators of Network-Constrained Clusters in Spatial Patterns

Represented by a Link Attribute. Annals of the Association of American
Geographers 100, no. 2: 269-285.

Young, D. 1982. The Linear Nearest Neighbour Statistic. Biometrika 69, no. 2: 477-480.

139

Curriculum Vitae

David C. Eckley graduated from West Valley High School, Cottonwood, California, in
1996. He received his Bachelor of Science in Mapping, Charting, and Geodesy from the
United States Military Academy, West Point, New York in 2000. He has served as an
officer in the United States Army for the past ten years and received his Master of
Science in Geographic and Cartographic Science from George Mason University in 2011.

	List of Tables
	List of Figures
	List of Abbreviations/Symbols
	Abstract
	Forward
	Introduction
	What Is a Spatiotemporal Cluster?
	Why Conduct Spatiotemporal Cluster Analysis?
	The Issue of Spatial and Temporal Measures
	Global vs. Local Statistics
	The Origin of Spatiotemporal Cluster Analysis
	The Development of Spatiotemporal Clustering Methods and Current Applications
	GIS Applications
	Significance of this Research
	Thesis Structure

	PART 1 A Process for Investigating Spatiotemporal Clustering of Network-Based Phenomena
	Introduction
	Step 1: Define a Research Problem and Analytical Approach
	Step 2: Acquire and Evaluate the Data
	Step 3: Pre-process the Data
	Format and Map the Data
	Examine the Data

	Step 4: Test for Spatial Clustering
	Continuous Space Tests
	Network Space Tests

	Step 5: Test for Temporal Clustering
	Step 6: Test for Spatiotemporal Clustering
	Step 7: Explain the Results
	Conclusions

	PART 2 An Examination of Significance Tests and Critical Parameters for Network-Based Spatiotemporal Cluster Analysis
	Introduction
	Study Areas and Datasets
	Significance Tests for the Knox Method
	Chi-square and Poisson Distributions
	Normal Distribution
	Monte Carlo Simulations
	Multiple Testing

	Knox Method Critical Parameters
	Conclusions

	PART 3 SCAn: A Spatiotemporal Analysis Tool for Networks
	Introduction
	Program Requirements
	Tool 1: ST Cluster Basic
	Tool 2: ST Cluster Automatic
	Tool 3: ST Cluster Table
	Tool 4: ST Cluster Monte Carlo
	Tool 5: ST Cluster Range Detector
	Program Limitations
	Future Program Developments

	Recommendations for Future Research
	APPENDIX SCAn Python Scripts
	Tool 1: ST Cluster Basic
	Tool 2: ST Cluster Automatic
	Tool 3: ST Cluster Table
	Tool 4: ST Cluster Monte Carlo
	Tool 5: ST Cluster Range Detector

	References

