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Ryszard 5. Michalski

Abstract

Human concepts, the building blocks of our knowledge, rarely have precise and
context independent meaning. In most cases, they are structures whose meaning can
be flexibly modified by the context of discourse and/or the interpreter’s
background knowledge. This paper outlines several ideas about how such
flexibility may be achieved and why it is useful

The computational method proposed postulates that the meaning of any
concept is defined by two components: the base comcept representation (BCR) and
the inferential concept interpretation (ICI). The base concept representation is a store
of assertions and facts about the concept. It may include statements describing a
general and easy-to-define meaning of the concept, its typical purpose or use,
known examples and counter-examples, as well as observed exceptions from the
typical meaning. It captures the principle or intention behind the concept when it
is defined, or taught to others.

The inferential concept interpretation dynamically assigns meaning to a
concept by conducting inference - deductive, analogical or inductive - on the BCR
using the context of discourse and the interpreter’s background knowledge. It does
this by employing methods and rules of inference relevant to the given concept or
its generalizations. This way the actual meaning of any concept can be flexibly
modified or extended to fit many different contexts and purposes.

Experiments with a simple form of such two-tiered concept representation have
revealed a surprising phenomenon, that by shifting a larger part of the concept
meaning to the inferential concept interpretation, the size of the knowledge base
representing a class of concepts can be significantly reduced, without affecting its
performance accuracy.
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Introduction

Suppose we asked someone how to get to some place in the city we were
visiting and received needed instructions in response. Clearly, we would say that
this person knew the answer, no matter whether the person knew the place
personally, or just had to figure out its location on the basis of general knowledge
of the city, ie., by conducting inference. We would say this, of course, only if the
answer was given to us in a reasonable amount of time.

The above example illustrates a general principle: one knows what one
remembers, or what one can infer from what one remembers within a certain time
constraint. Thus, our knowledge can be viewed as a combination of two
components, recorded knowledge and inferential extension, ie., knowledge that can
be created from recorded knowledge by conducting inference within a certain
time limit,

The main thesis of this paper is that individual concepts - elementary
components of our knowledge - parallel such a two-tiered nature of knowledge. We
hypothesize that processes of assigning meaning to concepts recognized in a stream
of information, or retrieving them fl:l}m memory to express an intended meaning
are intrinsically inferential, and invelve, on a smaller scale, the same types of
inference - deductive, analogical and inductive - as processes of applying and
constructing knowledge in general. This hypothesis reflects an intuition that the
meaning of most concepts cannot be, in principle, defined in a crisp and context-
independent fashion. Specifically, the concept meaning cannot be completely
defined by stating some necessary or sufficient features, defining a prototype or a
set of representative examplars. Rather, the meaning of a concept is a dynamic

structure built each time anew, in the course of an interaction between some initial



base meaning, and the context of discourse together with the interpreter’s
background knowledge.

This view leads us to the proposition that the meaning we assign to a concept
in any given situation is a result of an interplay between two parts: the base
concept representation (BCR), and the inferential concept interpretation (ICI). The
base concept representation is a structure residing in memory that records both
specific facts about the concept, and general characteristics of it. The specific
facts may include representative examples, exceptions, and counter-examples. The
general characteristics are teacher-defined, or inferred by induction from examples
or by analogy. They include the typical, easily-definable, and possibly context-
independent assertions about the concept. These characteristics tend to capturc.
the principle, the ideal or intention behind a given concept. If this principle
changes to reflect a deeper knowledge about the concept involved, the base concept
representation is redefined. To see this, consider, for example, the changes of our
understanding of concepts such as whale (from fish to mammal) or atom (from the
smallest undivisible particle to the contemporary notion of a dual wave-matter
form).

The inferential concept interpretation is a process of assigning the meaning to
a concept using the base concept representation and the context of discourse. This
process involves the interpreter's background knowledge and relevant inference
methods that allow one to recognize, extend or modify the concept meaning
according to the context. These methods are associated with the concept or its
generalizations.

The main goal of this paper is to sketch ideas and underlying principles for
constructing an adeqguate cognitive model of human concepts. It is not to define

such a model precisely nor to present specific algorithms. It is also hoped that the



proposed ideas will suggest better computational methods for representing, using,

and learning concepts in artificial intelligence systems.

Inference Allow Us to Remembver Less and Know More

This section will attempt to show that the two-tiered representation of concept
meaning, outlined above, can be justified on the basis of cognitive economy, ie.,
economy of mental resources - memory and processing power, and that it reflects
some general aspects of the organization of human memory. For a discussion of

issues concerning cognitive economy see Lenat, Hayes-Roth and Klahr, 1979,

Let us start by assuming that the primary function of our knowledge is to
interpret the present and predict the future, When one is exposed to any sensory
inputs, one needs knowledge to interpret them. The more the knowledge and the
stronger the inferential capabilities (i.e., roughly the number of production and
inference rules one possesses), the greater the amount of information one can

derive from a given input.

Interpreting observations in the context of the available knowledge makes it
possible to derive more information from the input than presented on the surface.
It also allows one to build expectations about the results of any action, and to
predict and/or influence future events. The latter is possible because events and
objects in our world are highly interrelated. If our world consisted of totally
unrelated random events, one following the other, our knowledge of the past would
be of no use for predicting the future, and this would obviate storing any

knowledge. Moreover, this would presumably obviate the need for having



intelligence, as the primary function of intelligence is to construct and use

knowledge.

On the other hand, if our world were an eternal repetition of exactly the same
scenes and events, knowledge once acquired would be applicable forever, and the
need for its extension and generalization would cease. No wonder that in old,
slow-changing traditional so::i.cticsﬁ the elderly enjoyed such high status. The
slower the rate of change in an environment, the higher the predictive value of
past specific knowledge, and the lower the need to extend and generalize
knowledge. This suggests a hypothesis that the degree to which our innate,
subconscious capabilities generalize any input information corresponds to the rates '

of change in our environment.

From the myriad sensory inputs and deluge of information received, one's
mind selects and stores only a minuscule fraction. This selection is due to the goal-
dependent filtering of inputs by our mind. The fraction actually stored contains a
spectrum of structures representing different levels of abstraction from reality,
and different beliefs in their correctness, This spectrum spans the low-level,
highly-believed facts and observations, through partial plausible abstractions and
heuristics, to high-level and highly hypothetical abstractions. The highest belief
usually is assigned to our own personal sensory experiences, and the lowest belief
to vague abstractions made by people whom we do not especially trust. These
assertions are being automatically memorized as they are received or generated by
inference. They then undergo the processes of forgetting, but cannot be consiously

erased.



The the filtering of the input information is done by conducting inference -
deductive, analogical and inductive - that engage the input information and the
goals and the knowledge of the person. The idea that a person’s knowledge is
involved in the processes of interpreting inputs is, of course, not new. An
interesting illustration of it is presented, for example, by Anderson and Ortony
(1975). They conducted experiments showing that the comprehension of a sentence
depends heavily on the person’s knowledge of the world and his/her analysis of the

context.

The ability to conduct the above-mentioned types of inference seems to come
from a naturally endowed mechanism that is automatically activated in response
to any input of information. One may ask why this is so. As our memory and
information processing powers are limited, it seems natural that the mind should
tend to minimize the amount of information stored, and maximize the use of that
which is already stored. Consequently, one may hypothesize that the inferential
processes that transfer any input information to stored knowledge are affected by

three factors:

1. what is important to one’s goals
2. what knowledge will be maximally predictive, and
3. what knowledge will allow one to infer the maximum amount of other

knowledge.

The first factor reflects the known phenomenon that facts considered very
important tend to be remembered before other facts. The second factor is
important because the predictive power of knowledge enables us to develop

expectations about the future, and thus to prevent or avoid undesirable courses of



actions, and to achieve goals. The third factor relates to cognitive economy: if we
can infer B from A without much cognitive effort then it is enough just to

remember A.

The second and third factors have interesting consequences. They suggest a
memory organization that is primarily oriented toward storing analogies and
generalizations, but facilitates the process of efficiently performing deduction on

the knowledge stored.

The above factors explain the critical role of analogical and inductive
inference in the process of transforming information received from the
environment to knowledge actually memorized. This is so because it is analogical
inference that transfers knowledge from known objects or problem solutions to
new but related objects or solutions. And it is inductive inference that produces
generalizations and causal explanations of given facts (from which one can deduce
original facts, and predict new ones). Strict deductive inference and various forms
of plausible inference (plausible deductive, analogical and inductive) are means for
extending/deriving more knowledge from our base knowledge, though such

derived knowledge may be of lesser certainty.

The relationship between different types of inference is shown in Figure L.
The types of inference are divided according to two dimensions: 1. mode of
inference: deductive vs. inductive, and 2. strength of inlerence: crisp vs. plausible.
"Crisp" deductive inference is the truth-preserving inference studied in formal
logic. "Soft" deductive inference uses approximate rules of inference, and produces

probable rather than strict consequences of given premises. This type of inference



is, for example, implemented in various expert systems that generate advice

together with an estimate of its certainty.

Inductive inference produces hypotheses (or explanations) that crisply or softly
imply original facts (premises), i.e., original facts are deductive consequences of
the hypotheses. "Crisp” inductive inference is a falsity-preserving inference. For
example, if from the premise that "all professors of the Computer Science
Department are bright" one generates an inductive hypothesis that "all professors
of the University are bright," then it is a falsity-preserving inference. (If the
premise is true, the conclusion can be true or false; but if the premise is false, the
conclusion must be false also.) "Soft" inductive inference produces hypotheses that
only plausibly imply the original facts. For example, secing a smoke one may
hypothesise that there is a fire somewhere. It is a soft inductive inference, because

a fire does not necessarily imply smoke.

Analogical inference is placed in the middle, because it can be viewed as
inductive and deductive inference combined (Michalski, 1986a). The process of
noticing analogy and performing analogical mapping between two systems is
intrinsically inductive; the process of deriving inferences from analogy, once
noticed, is deductive, This view, derived by purely theoretical speculations, seems
to be confirmed by the experimental findings of Gentner and Landers (1985). In
order to explain difficulties people have in noticing analogies, they decomposed
analogical reasoning into three parts, which they call "access”, "structure-mapping”
and "inferential power". They found that the "access" and "inferential power"” are
governed by different rules. The "access” is facilitated by literal similarity or mere
appearance, and "inferential power" i3 governed by similarity of higher-order

relations. Analogical “"access" and "structure-mapping” are inductive processes, as



they produce a structure that unifies the base and the target systems. "Inferential

power" corresponds to deduction.

The view of analogy as induction and deduction combined explains why it is
more difficult for people to notice analogy than to use it once it is observed. This
is so because inductive inference, being an underconstrained problem, typically
consumes significantly more cognitive power than deductive inference, which is a
well-constrained problem.

Figure 2 illustrates levels of knowledge derived from the base knowledge by
conducting various types of inference (the "trumpet model”). The higher the type of
inference, the more conclusions can be generated, but the certainty of conclusions
decreases. A core theory and a discussion of various aspects of human plausible
inference are described in Collins and Michalski [1986].

Let us now return to the discussion of the third factor influencing inferential
processes, i.e., what knowledge allows us to infer the maximum amount of other
knowledge. This issue, obviously, has special significance for achieving cognitive
economy. The need for cognitive economy implies that it is useful for individual
words (concepts) to carry more than one meaning, when considered without any
context and without inferential extension of their meaning. By allowing that the
meaning of words be context-dependent and inferentially extensible, one can
greatly expand the number of meanings that can be conveyed by individual
words. This context-dependence, however, cannot be unlimited again because of
cognitive economy. To be economical, context dependency should be employed only
when the context can be identified with little mental effort. Inferential extensions
also have natural limits, which are dictated by the mental power available, and

the decreasing confidence in conclusions as the levels of inference increase.
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Concept Meaning is Distributed Between Representation and Interpretation

Concepts are mental structures representing classes of entities united by some
principle, Such a principle might be a common use or goal, the same origin or
behavior, or just similar perceptual characteristics. In order to use concepts, one
must possess efficient methods for recognizing them in streams of sensory signals,

To do so, one needs to have appropriate mental representations of concepts.

The traditional work on concept representation assumes that the whole
meaning of a concept resides in a single stored structure, e.g., a semantic network
that captures all relevant properties of the concept (e.g., Collins and Quillian, 1972;
Minsky 1975; Sowa, 1984), The process of recognizing a concept involves simple
matching between the stored representation and perceived facts. Such matching
may include tracing links in a network, but has not been assumed to involve any

complex inferential processes.

In contrast, our view is that such a matching may involve a significant amount
of deductive, analogical or inductive inference that takes into consideration the
context of discourse and background knowledge of a person. Therefore, we
postulate a two-tiered representation of concept meaning, which draws a
distinction between the base concept representation and inferential concept
interpretation. The base concept representation is a stored knowledge structure
associated with the concept, It specifies the most common, typical properties of the
concept, and the principle unifying different instances of the concept. It may also
include representative examples, counter-examples, exceptions and other known
facts about the concept. The inferential concept interpretation uses methods,

relevant background knowledge and rules of inference for interpreting the base



concept representation according to various contexts. The methods incorporate
meta-knowledge about the concept, i.c., which properties of the concept are crucial
and which are not for a given situation, how they vary among instances of the
concept. They also contain procedures for matching the base concept representation
with observations. Figure 3 illustrates the two-tiered concept meaning. The
rectangular area denotes the scope of a concept as defined by the base concept
representation. The shaded area depicts the changes in the concept meaning due to
the inferential concept interpretation. For example, the rectangular area may
represent all animals sharing typical physical characteristics of fish, and the
dotted-line area may represent animals that can be considered fish in wvarious

contexts.

It is easy to see that to recognize an object, i.e., to assign it to a concept, one
may need to match only a small portion of properties observed in the object with
properties stated in the base representation, The properties that need to be matched
depend on the context in which the recognition process occurs.

For example, one may recognize a given person just by some of this person's
face features, the silhouette, voice, handwriting, medical record, or by one of a
host of other characteristics. Thus, if the concept recognition process were based
on a direct match of a fixed number of features of the target concept with
properties of an observed object, then one would need to store representations for
all these possibilities. Such a method would be hopelessly memory-taxing and
inefficient. It is practical only in simple cases, such as those considered in most of

the current expert systems.

In the proposed theory, the process of rclating the base concept representation

to observations is done by inferential concept interpretation. This process "matches”
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the base concept representation with observations by conducting inference
involving the contextual information and relevant background knowledge. This
inference determines what features are needed or sufficient to be matched in order
to recognize a concept among a context-dependent set of candidates, and what kind
of match is required. Thus, the degree of match between a concept representation,
CR, and an observed entity, OE, 1is not just a function of CR and OE, as

traditionally assumed, but rather a four argument function:”’
'Degrc.c_nl'_match{ﬁR.OE)=E[CR,OE,Cﬂnlext,Background_knuwlcdgﬁ}

The context is computed dynamically in the process of using or recognizing
concepts. Thus, the proposed view requires an efficient method for representing
and using contexts for any given concept. A simple introspection of our mental
processes appears to confirm this; we seem to have little difficulty in determining

and maintaining the context in any discourse.

There is no unique way of distributin-s the concept meaning between BCR and
ICI. We expect that the actual distribution of the concept meaning between these
two parts in our mind represents a desired tradeoff between the economy of
concept representation, and the economy of inferential concept interpretation.
Thus, - learning a concept involves not only acquiring the base concept

representation, but also the methods for inferential concept interpretation.

Let us illustrate the proposed approach by a few examples. Consider the
concept of fish. Typical and general characteristics of fish are that they live in
water and they swim. These and other typical physical properties of fish, as well

as representative examples would be stored in the base concept representation.
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Suppose someone found an animal that matches many characteristics of fish, but
which does not swim, Suppose that this animal appears to be sick. The inferential
concept interpretation would involve background knowledge that sick animals may
not be able to move, and that swimming is a form of moving. By deductive
reasoning from these facts one concludes that lack of ability to swim should not be
taken as negative evidence for the animal being a fish. To the contrary, the fact
that the animal does not swim might even add to the confidence that it is a fish,

once the animal was recognized as being sick.

Suppose that we learned the concept of fish by reading a general description,
and seeing a few examples of fish. The base concept representation consists of this
general description and the memorized examples. Suppose that we visit a zoo and
see an animal defined as fish that is of a shape never seen in the examples nor
stated in the general description, say, of a horse-like shape. We may add this
example to our base concept representation without necessarily modifying our
general notion of fish. If we see another horse-shaped fish, we may recall that
example to recognize the new instance of a fish without evoking the general
notion of fish. This explains why we postulate that the base concept representation
is not just a representation of the general, typical or essential meaning of a

concept, but includes also examples of a concept.

The rules used in the above reasoning about sick fish and horse-like shape of
fish would not be stored as the base concept representation for fish. They would be
a part of the methods for inferential concept interpretation, These methods would
be associated with the general concept of animal, rather than with the concept of

fish, because they apply to all animals. Thus, we postulate that the methods for

13



inferentially interpreting a concept c¢an be inherited from those applicable to a

more general concept.

As another example, consider the concept of sugar maple. Our prototypical
image of a sugar maple is that it is a tree with three- to five-lobed leaves that have
V-shaped clefts. Some of us may also remember that the tecth on the leaves are
coarser than those of red maple, that slender twigs turn brown, and the buds are
brown and sharp-pointed. Being a tree, a sugar maple has, of course, a trunk, roots

and branches.

Suppose now that while strolling on a nice winter day someone tells us that a
particular tree is a sugar maple. Simple introspection tells us that the fact that the
tree does not have leaves would not strike us as a contradiction of our knowledge
about sugar maples. This is surprising, because, clearly, the presence of leaves of a
particular type is deeply embedded in our typical image of a maple tree. The two-
tiered theory of concept representation explains this phénomenon simply: the
inferential concept interpretation associated with the general concept of tree
evokes a rule "in winter deciduous trees lose leaves" By deduction based on the
subset relationship between a tree and a maple tree, the rule would be applied to
the latter. The result of this inference would override the stored standard

information about maple tree, and the inconsistency would be resolved,

Suppose further that when reading a book on artificial intelligence we
encounter a drawing of an acyclic graph structure of points and straight lines
connecting them, which the author calls a tree. Again, calling such a structure a
tree does not evoke in us any strong objection, because we can see in it some

abstracted features of a tree. Here, the matching process simply involves inductive
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generalization of the base concept representation. Once such a generalized notion

of a tree is learned in the context of mathematical concepts, it will be used in this

context.

These examples clearly show that the process of relating observations with
concept representations is much more that matching features and determining a
numerical score characterizing the match, as done in various mechanized decision

processes, e.g., expert systems.

It should be noted that the distribution of the concept meaning between the
representation and interpretation parts is not fixed, but can be done in many ways.
Each way represents a tradeoff between the amount of memory for concept
storage and computational complexity of concept use. At one extreme, all the
meaning can be expressed by the representation. In this case the representation
explicitly defines all properties of a concept, including any concept variations,
exceptions and irregularities. It states directly the meaning of the concept in every
possible context. It stores all known examples of the concept. This results in a very
complex, memory-taxing concept representation. The concept interpretation process
would, however, be relatively simple. It would involve a straightforward matching
of the properties of the unknown object with information in the concept

description.

At the other extreme, the concept is explicitly represented only by the most
simple description characterizing its idealized form. The process of matching a
concept description with observations might be in this case significantly more

complex.
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As far as memory representation of concepts is concerned, we assume that
their base concept representations are stored as a collection of assertions and facts.
These collections are organized into part or type hierarchies with inheritance
properties. The methods used by inferential concept interpretation are also
arranged into hierarchies. For example, the rule that a sick fish may not swim is
not stored with the 1CI methods associated with the concept of fish, but rather

with the concept of animal

As mentioned earlier, the process of inferential concept interpretation may
involve performing on the base concept interpretation not just truth-preserving
deductive inference, but various forms of plausible inference. In particular, it may
create an inductive generalization of the base concept representation, draw
analogies, run mental simulations, or envisioning consequences of some acts or
features. The background knowledge needed for inferential interpretation includes
information about methods for relating comcept representations to observations,
about which properties are important and which are not in various contexts,
information about typicality of features, statistical distribution of properties and
concept occurrences, etc. An inferential interpreter may produce a "yes-no" answer,
or a score representing the degree to which the base representation matches given
observations. Extending the meaning of a single concept by conducting inference
corresponds on a small scale to extending any knowledge by inference.

When an unknown entity is matched against a base concept representation, it
may satisfy it directly, or it may satisfy some of its inferential extensions. The
type of inference performed to match the description of the entity with the base
concept representation determines the type of match (Figure 4). If the description
of an entity strictly satisfies the base concept representation, i.e., matches it

directly or its specialization (in other words, falls into its deductive extension),
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then we have a strict match; if it satisfies an approximate deductive extension,
then we have an approximate match; if it matches an analogical extension, ie.,
satisfies a generalization that unifies the base concept representation with the
description of the entity, then we have an analogical match.

The above mentioned analogical match is not to be confused with the
analogical mapping discussed in structure-mapping theory of analogy by Gentner
{1983), The analogical match is related to what Gentner and Landers (1985) call
"analogical access." It involves finding semantic correspondences between attributes
and relations of the entity to be recognized, and the base knowledge representation.

As mentioned earlier, when recognizing an entity in the context of a finite set
of candidate entities, usually only a small part of the properties of the entity will
need to match the properties in the base representation of candidate concepts. This
set is defined by the discriminant concept description, which can be determined by
conducting inductive inference on the base representation of the candidate
concepts. A method for an efficient recognition of concepts in the context of
candidate concepts, called dynamic recognition, is described in Michalski (1986b).

The process of inferential concept interpretation can be viewed as a wvehicle
for extending the base concept meaning into a large space of variations by the use
of c.untcxt and general knowledge. This process is an important means for
achieving flexibility of concepts, and thus leads to cognitive economy. Later, in
the section describing experimental results, we present an example of an inferential

interpretation of a simple logic-style base concept representation.
Some Other Views on Concept Representation

There seems to be a universal agreement that human concepts, except for

special cases occurring predominantly in science (concepts such as a prime number,
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a triangle, a wvertebrate, etc.), are structures with flexible and/or imprecise
boundaries. They allow a varying degree of match between them and observed
instances, and have context-dependent meaning.  Flexible boundaries make it
possible to "fit" the meaning of a concept to changing situations, and to avoid
precision when it is not needed or not possible. The varying degree of match
reflects the varying representativeness of a concept by different instances.
According to the theory presented, this is accomplished by applying the inferential
concept matching which takes into consideration the context and background
knowledge of the interpreter.

Instances of a concept are rarely homogencous. Among instances of a concept
people usually distinguish a "typical instance”, a "non-typical instance", or,
generally, they rank instances according to their typicality. By the use of context,
the meaning of almost any concept can be expanded in a multitude of directions
that cannot be predicted in advance. An interesting illustration of this is given by
Hofstadter (1985; ch.24), who shows how a seemingly well-defined concept, such as
"First Lady," can express a great variety of meanings depending on the context in
which it is applied. For example, it might even include the husband of Margaret
Thatcher.

Despite wvarious efforts, the issue of how to represent concepts in such a rich
and context-dependent sense is not resolved. Smith and Medin (1981) distinguish
between three approaches: the classical view, the probabilistic view, and the exemplar
view. The classical view assumes that concepts are representable by features that
are singly necessary and jointly sufficient to define a concept. This view seems to
apply only to very simple cases. The probabilistic view represents concepts as
weighted, additive combinations of features. It postulates that concepts should
correspond to linearly separable subareas in a feature space. Experiments indicate,

however, that this view is also not adequate (Smith and Medin, 1981; Wattenmaker
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et al, 1986). The exemplar view represents concepts by one or more typical
exemplars, rather than by generalized descriptions. While it is easy to demonstrate
that we do store and use concept exemplars for some particular purposes, it seems
clear that we also store certain abstract concept representations. Many important
novel ideas on concept representation and organization from the computational
viewpoint are in (Minsky, 1980; Sowa, 1984; and Lenat, Prakash and Shepherd,
1986).

The notion of typicality can be captured by a measure, called family
resemblance (Rosch and Mervis, 1975). This measure represents a combination of
frequencies with which different features occur in different subsets of a
superordinate concept, such as furniture, vehicle, etc. The individual subsets are
represented by typical members, Non-typical members are viewed as corruptions of
the typical, differing from them in various small aspects, as children differ from
the parents (¢.g., Wittgenstein, 1921; Rosch and Mervis, 1975).

Another approach uses the notion of a fuzzy set as a formal model of a
concept (Zadeh, 1976). Members of such a set are characterized by a gradual
numerical set membership function, rather than by the in/out function seen in the
classical notion of a set. This set-membership function is defined by people
describing the concept, and thus is subjective. This approach allows one to express
the varying degree of membership of entities in a concept, but does not have
appropriate mechanisms for expressing and handling the context- and background
knowledge-dependence of the concept meaning. It does not explain what are the
computational processes that determine the set membership functions,

The idea of two-tiered representation of concept meaning, described here,
first appeared in a simple form in the experiments conducted by Michalski and
Chilausky (1980) on inductive knowledge acquisition. In these experiments, two-

valued logic-based decision rules were learned by induction form examples. These
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rules, however, were tested on new facts by interpreting them not as two-valued
logic expressions, but by applying to them various many-valued logic evaluation
schemes. For example, the logical disjunction was interpreted either as the
maximum function and as the probabilistic sum. The logical conjunction was
interpreted as the minimum function, the average or the probabilistic product. The
experiments showed that such modifications of rule interprctation can lead to an
improvement of the rule performance.

A more advanced inferential matching was proposed in the mcthcd-uf
conceptual clustering described by Michalski and Stepp (1983). The method utilized
the idea of comncepiual cohesiveness. Suppose that a given observed object does not
match any concept description precisely. There are, however, several concepts that
are candidates for an imprecise, or, generally, an inferential match. The proposed
solution is to generalize each concept so that it includes the object under
consideration. The resulting generalized concepts are then evaluated from the
viewpoint of conceptual cohesiveness. Such a measure attempts to minimize the
degree of generalization that the concept represents over the known facts, and
maximize the simplicity of the obtained description of the enlarged set. The
concept that receives the highest score after being generalized to include the
unknown object is viewed as the right "home" for the object. The concept of

conceptual cohesiveness is graphically illustrated in Figure 5.

Most related to our ideas is the work by Murphy and Medin (1985), and
Barsalou and Medin (1986). Computational techniques of wusing knowledge for
interpreting observations via deductive inference are presented in the work by
DeJong (1986), Delong and Mooney (1986), and Mitchell (1986). Collins and
Gentner (1986) present an illustration of some of the issues involved in processes of

creating a mental representation of concepts.
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Next section describes our recent experimental study investigating a simple
form of two-tiered concept representation done in the context of learning decision

rules from examples in the area of medicine,

The Two-Tiered Representation Can Reduce Memory Needed:

An Experiment

We will describe here the results of an experiment investigating a simple form
of two-tiered concept representation. Concepts under consideration were four
different types of Ilymphography. In the experiments the base concept
representation is a disjunction of conjunctive expressions called a cover. Individual
conjunctive expressions are called complexes; each complex is a conjunction of
relational statements, called selectors. The selectors characterize some aspect of the
described entity by stating a value or a set of values that an attribute takes on for
a set of entities representing a concept. For example, here are two examples of
relational statements (selectors):

[Blood type = A or B]

(Read: The blood type is A or B.)

[Diastolic blood pressure = 65 .. 90]

(Read: The diastolic blood pressure is between 65 and 90.)

Each complex (a conjunction of selectors) in the representation {(cover) is
associated with a pair of weights: t and u, representing respectively the tofal
number of known cases that it covers or explains, and the number of cases that it
COVEers uniquely. Thus, statements with  high t-weight may be viewed as
characterizing typical cases of a concept, and statements with low u-weight can be

viewed as characterizing rare, exceptional cases, or errors.
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Complexes in the disjunction (serving as the base concept representation) were
ordered according to the decreasing values of t-weights. The distribution of the
concept meaning between the base concept represcntation and inferential concept
interpretation was varied by applying the so called TRUNC method. First, the
lightest complexes were cut off (i.e., complexes with the smallest t-weight), then
next lightest, etc., until only one, termed the best complex, remained in the base
concept representation (Figure 6). Each so truncated cover was used to diagnose a
number of mew cases of the disease it describes, and the performance score was
determined. The diagnosis was determined by simple inferential matching (called
“flexible matching”) of the cover with a disease case, which took into consideration
which properties were matched completely, which were not matched, what was the
relative range of values of a property in the base concept representation with
regard to the possible range, and the t-weights of the complexes to be matched
(that serve as prior probability estimates). Technical details on the matching
function and the method are in [Michalski et al., 1986].

A summary of results are shown in Figure 7. Only three cases of cover
reduction are presented:

*  "np" {no cover reduction) - when the base concept representation included
all complexes that were nceded to represent all known cases of the given disease,
ie., the complete description.

* . "unique > 1" - when the cover included only complexes with the u-weight
greater than 1,

. "best cpx" - when the base concept representation was reduced to the
single complex with the highest t-weight (the "heaviest").

The system's performance was evaluated by counting the percentage of the

correct diagnoses (defined the diagnosis that receives the highest degree of match

and is considered correct by an expert - see column "Accuracy Ist choice"). For
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comparison, the columns "human experts" and "random choice” show the estimated
performance of human experts, and the performance representing random choice.

As shown in Figure 7, the best performance (82%) was obtained surprisingly
when the base concept representation consisted of only one comjunctive statement
{complex) per concept ("best cpx"). This representation was also, of course, the
simplest, as it required approximately one-forth the memory of the complete
description.

These results show that by using a very simple concept representation (here, a
single conjunction), and only a slightly more complex concept interpreétation (as
compared to the one that would strictly match the complete concept description),
one may significantly reduce the amount of storage required without affecting the
.performance accuracy of the concept description. Further details and more results
from this experiment are described in [Michalski, et al, 1986]. Amoung
interesting topics for further research are to study and experiment with more
advanced methods for base concept representation and inferential matching, and to

test whether similar results can be obtained in other domains of application.

Summary

The two-tiered concept representation postulates that the total concept
meaning is distributed between a base concept representation and an inferential
concept interpretation. The base representation covers the typical, easily
explainable concept meaning, and contains a store of facts about the concept. The
inferential concept interpretation is a vehicle for using concepts flexibly and
adapting their meaning to different contexts. This is done by conducting inference
for matching the base concept representation against observations. This inference
process involves contextual information and relevant background knowledge. It can

involve all types of inference, from truth-preserving deductive inference, through
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approximate deductive and analogical inference, to falsity-preserving inductive
inference.

Experiments testing some of the ideas on a simple medical example showed
that distributing concept meaning more toward inferential concept interpretation
than toward the base concept representation (as compared with a complete concept
representation and simple, direct matching) was quite beneficial. It has lead to a
significant reduction of the neceded size of memory f[or storing concept

descriptions without decreasing the diagnostic performance.
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