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The investigation and manipulation of novel magnetic textures within topological 

quantum materials is emerging as a new frontier for future spin-based electronic devices. 

Recently, transition-metal based kagome magnets have shown to provide a natural platform 

to study the interplay between complex magnetism and electronic topology. Of particular 

interest is the family of RMn6Sn6 (R = rare-earth) compounds with kagome lattices, shown 

to host complex magnetic textures and topological states, both strongly dependent on the 

choice of R atom. This master’s thesis is an experimental study on role of the rare-earth 

elements R = Y, Tb on the magnetic and magnetotransport properties within single crystals 

of RMn6Sn6 compounds using magnetometry and magnetotransport measurements 

combined with first-principles calculations. The framework of this study largely focuses 

on the magnetic rare-earth compound TbMn6Sn6 and compares the magnetic and electronic 

properties to the non-magnetic rare-earth parent compound YMn6Sn6. 



 
 

We first present the methods and review the crystal growth and characterization of 

single crystals of YMn6Sn6 and TbMn6Sn6. The Sn self-flux method was employed for 

crystal growth, yielding thick plate-like shaped single crystals of YMn6Sn6 and TbMn6Sn6. 

Once trimmed to adequate dimensions, magnetic susceptibility and electrical transport 

measurements were performed. The DC magnetic susceptibility (𝜒) of YMn6Sn6 with the 

applied field 𝐻 ⊥ 𝑐 and TbMn6Sn6 with 𝐻 ⊥ 𝑐 and 𝐻 ∥ 𝑐 reveal high ordering temperatures 

of 𝑇! ≈ 345 and 423 K, respectively, as well as distinct features consistent with 

transformations to their magnetic structure. For TbMn6Sn6, a spin-reorientation transition 

is observed at 𝑇"# ≈ 308 K where the collinear moments on Tb and Mn reorient along the 

ab-plane to the c-axis upon decreasing temperature. The electrical resistivity (𝜌$$) of 

YMn6Sn6 and TbMn6Sn6 with the electrical current perpendicular to the c-axis (𝐼 ⊥ 𝑐) 

reveal high metallicity for the samples. 

We next perform comprehensive magnetization measurements on the YMn6Sn6 and 

TbMn6Sn6 samples in combination with first-principal calculations to describe the 

microscopic nature of the role of the rare-earth element Tb within the collinear 

ferrimagnetic (FiM) structure in TbMn6Sn6. By considering a simplified description of the 

collinear configuration on magnetic anisotropy energy (𝑀𝐴𝐸), by lumping the Heisenberg 

exchange and single-site anisotropy terms, our analysis describes how the spin-

reorientation magnetic phase diagram for TbMn6Sn6 is quantitatively described by the 

temperature dependencies of magnetic moments on the Mn- and Tb-sublattices. An 

enhanced magnetic state on Tb at low temperatures leads to a strong out-of-plane 

magnetization which likely enhances the stability of the intrinsic topological Chern gap 



 
 

state previously observed by Yin et. al. [1] within TbMn6Sn6 in the presence of a modest 

out-of-plane applied magnetic field of 𝜇%𝐻 ≈ 2 T at 4.2 K. Moreover, the significance of 

the antiferromagnetic (AFM) coupling between the Mn- and Tb-sublattices is revealed 

through a comparison between the estimated ground state magnetic anisotropy energies of 

the Mn-sublattices for the magnetic rare-earth TbMn6Sn6 compound [𝑀𝐴𝐸&'(0) ≈ − 0.47 

meV per Mn] and the non-magnetic rare-earth compound YMn6Sn6 [𝑀𝐴𝐸&'(0) ≈ − 0.12 

meV per Mn].  

We then explore to what extent the magnetic state of Tb affects the electronic 

properties in TbMn6Sn6, especially near the Fermi surface, and therefore the transport 

properties, such as the anomalous Hall effect (AHE), through magnetotransport 

measurements on YMn6Sn6 and TbMn6Sn6 with 𝐼 ⊥ 𝑐 and 𝐻 ∥ 	𝑐. By comparing the 

measured magnetoresistance (𝑀𝑅) to that of YMn6Sn6 the role of the magnetic rare-earth 

Tb on the electronic properties is clearly significant low temperatures. The 𝑀𝑅 for 

TbMn6Sn6 transitions from negative to large and positive below around 100 K and is likely 

attributed to the enhanced magnetic state on Tb at low temperatures. The Hall resistivity 

(𝜌($) with 𝐻 dependence and its calculated anomalous Hall resistivity (𝜌$()*) with 𝜌$$+  

dependence for TbMn6Sn6 provides evidence of a likely dominating extrinsic contribution 

below around 100 K and a leading intrinsic contribution above 100 K that is likely not 

generated by a field-induced topological Chern gap.  

At the end, we summarize the key findings of this study and outline future work to 

expand the scope of this study. Ultimately, the goal following this project would be to 

construct a comprehensive understanding of the role of the rare-earth elements among the 



 
 

nine available RMn6Sn6 compounds to simultaneously engineer desirable magnetic and 

topological states potentially valuable for future spin-based electronic devices. 
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A Chapter 1: Introduction aa 

This master’s thesis presents a systematic experimental study on role of the rare-

earth elements R = Y, Tb on the magnetic and magnetotransport properties within the 

family of RMn6Sn6 compounds. All figures and tables were custom-made for this thesis 

unless otherwise stated. It comprises of five chapters. The first chapter contains a detailed 

introduction to the kagome quantum materials, including an overview of the family of 

RMn6Sn6 compounds, as well as previous experimental studies on Fe3Sn2, YMn6Sn6, and 

TbMn6Sn6. The second chapter details the crystal growth and characterization of single 

crystals of YMn6Sn6 and TbMn6Sn6. The third chapter describes the microscopic nature of 

the role of the rare-earth element Tb within the ferrimagnetic structure of TbMn6Sn6 and 

compares with the helimagnet YMn6Sn6. The fourth chapter presents the magnetotransport 

measurements on YMn6Sn6 and TbMn6Sn6 to describe the role of the rare-earth element 

Tb on the electronic properties near the Fermi level within TbMn6Sn6. The concluding 

chapter five summarizes the key findings from this study and discusses future work to 

expand its scope. 
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1.1 Kagome Quantum Materials 

Kagome is a traditional Japanese style of bamboo weaving consisting of the edges 

and vertices of the trihexagonal tilting [Fig 1.1(a)], although the geometric pattern is known 

to exist in many cultures [Fig. 1.1(b)]. The term was introduced in physics by Itiro Syozi 

in 1951 [2] when he realized that a two-dimensional (2D) lattice made of this pattern, a 

kagome lattice, possess the same coordination number (the number of bonds each point is 

connected to) as the square lattice and he wondered (1) if the simple ferromagnetic (FM) 

Ising model can be solved analytically for this lattice and (2) if the transition temperature, 

𝑇, , for the two cases would be similar (in the mean field approximation, it would be the 

same however). The answer was shown true on both counts although the kagome lattice 

was shown to contain increased fluctuations. Syozi later realized that the antiferromagnetic 

(AFM) kagome lattice, as shown in Fig. 1.2(a), is the most frustrated 2D magnetic system 

that one can construct. In fact, it he discovered that it never orders at any temperature, and 

it was later realized [3] that this is not just a disordered paramagnet, but a new state of 

matter, termed a “spin-liquid.” [4] For a long time, it was its’ potential for hosting a 

quantum spin liquid that drove interest in the exotic magnetism of the kagome lattice.  
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Figure A.1: Kagome lattice in the real world. (a) Traditional Japanese kagome basket [5]. 
Kagome patterns on the (b) Dome of the Rock in Jerusalem [6] and (c) in the Parisian 
Courtyard in Budapest [7]. 
 
 
 

It wasn’t until the 21st century that it was finally observed [5] that the simple tight-

binding electronic band structure of a single-orbital particle with nearest neighbor (NN) 

hopping contains several unusual features [see Appendix A1: Tight-Binding Model and 

Appendix A2: Monolayer Kagome Lattice] (the math is trivial, it is just nobody had been 

interested before), as shown in Fig. 1.2(b). One such feature is that the model reveals so-

called Dirac bands, that is, massless quasiparticles called Dirac fermions whose energy 

depends strictly linearly on their momentum close to the Dirac points (DPs) [6]. The first 

Brilluoin zone for the top Dirac band [Fig. 1.2(b)] illustrates the location of the DPs at the 

hexagon corners. Moreover, these Dirac bands are topologically protected, in the sense that 

the underlying model can be modified within some limits (e.g., longer-range, as well as 

interlayer-hopping effects [see Appendix A3: Bilayer Kagome Lattice], may be 

incorporated), and Dirac bands will remain such (their positions in the momentum-space 

are not protected, but their existence and their energies are [7]).  

Another feature of the kagome band structure is the existence of the (non-

dispersive) flat band (FB) [Fig. 1.2(b)]. This feature is not protected, so small modifications 
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of the underlying model can lead to a small, but finite dispersion of this band. However, it 

still retains its main property, a sharp peak in the density of electronic states at a particular 

energy. Consequently, electrons become localized within the hexagon of the kagome lattice 

with an infinite effective mass, leading to increased electronically correlated phenomenon. 

For example, when the FB is partially filled, fractional quantum Hall states can emerge as 

these localized electrons can mimic Landau levels, as in the case of twisted bilayer 

graphene [8]. 

 

 

 

 

 



5 
   

 
Figure A.2: Magnetic and electronic properties of the kagome lattice. (a) Illustration of an 
in-plane antiferromagnetic (AFM) non-collinear arrangement and the (b) calculated 
electronic band structure calculations using a simple tight-binding model with nearest-
neighbor (NN) hopping for the kagome lattice. The electronic band structure (left) contains 
two Dirac bands (top and bottom) touching at the Dirac points (DP) at ED = 0, with an 
additional third band which is non-dispersive, commonly referred to as the Flat band (FB). 
The two types of DPs, DP1 and DP2, are shown by the red and yellow circles, which exist 
at the K and K’ points, respectively. The energy density plot (right) for the top Dirac band 
illustrates the hexagon shape of the first Brillouin zone with the black dots denoting the K 
and K’ points. Materials with kagome lattices comprised of magnetic and metallic atoms 
can thus provide a platform to study the interplay of magnetism and electronic topology. 
 
 
 

Dirac bands, in different contexts, have been observed in numerous 2D and 3D 

magnetic materials  [9]  [10] [11] [12] . To some extent, they enjoy considerable topological 

protection [see Appendix A4: Topological Chern Gap State] (although Dirac bands in 

magnetic materials are much rarer, and in many ways more interesting). Recently there has 
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been a considerable interest on the study of three-dimensional (3D) transition-metal 

kagome quantum magnets, comprising of stacked kagome lattices made of transitional-

metal atoms, with Sn or Ge. This is because the transition-metal atoms provide the 

opportunity for the material to become both magnetic and metallic, i.e., a system to explore 

the interplay between magnetism and electronic topology. For example, a large anomalous 

Hall effect (AHE) and heavy Dirac bands were detected in the bilayer kagome ferromagnet 

Fe3Sn2 [8]. A coexistence of flat bands and Dirac cones (which are otherwise two extreme 

limits) were discovered in antiferromagnet FeSn [9]. Large AHE and magnetic Weyl 

fermions have been realized in the antiferromagnet Mn3Sn [10], and a tunable spin-orbit 

coupled state was discovered in the FM Weyl semimetal Co3Sn2S2 [11]. But the magnetism 

in these materials is quite simple (apart from the non-collinear AFM state in Mn3Sn [Fig. 

1.2(a)]), while compared to the highly frustrated purely 2D kagome magnetic system 

theoretically predicted by Syozi [2], stabilized by the interlayer coupling of the stacked 

kagome lattices combined with strong magnetic anisotropy [15]. 

 

 

 

 

 



7 
   

 
Figure A.3: Topologically protected Dirac bands of the kagome lattice. Electronic band 
structure near the Dirac point (DP) (at ED = 0) for a (a) massless and (b) massive Dirac 
fermion arising from sizeable spin-orbit effects (Kane-Mele model) in the presence of an 
out-of-plane magnetic field (broken time-reversal symmetry) [see Appendix A.4: 
Topological Chern Gap State]. This gap is topological protected as each Dirac band is 
associated with a topological invariant (Chern number) which changes when this gap is 
opened. 
 
 

RT6X6 compounds (R = rare-earth element, T = transition-metal element, and X = 

Sn or Ge) were extensively studied in the past for their structural, magnetic and transport 

properties, mostly in polycrystalline samples, but relatively untouched from topological 

point of view until recently. Now there are a few interesting reports of magnetic and 

electronic topological properties including recent work on the helimagnet YMn6Sn6 [15], 

where unconventional magnetic states and a new mechanism of "nematic spin chirality" 

responsible for the topological Hall effect have been realized. Another RT6X6 compound 

displaying interesting topological states is the ferrimagnet TbMn6Sn6, exhibiting an 

intrinsic topological Chern gap state with a modest out-of-plane magnetic field (~2 T) at 

4.2 K in the quantum-limit using scanning tunneling microcopy (STM) [1]. Theoretically, 

this intrinsic topological Chern gap state can be attributed to a spin-polarized Kane-Mele 

spin-orbit effect present on the monolayer kagome lattices within TbMn6Sn6 [see Appendix 

A.4: Topological Chern Gap State]. What makes this material unique to the previously 
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mentioned transition-metal based kagome quantum magnets is that Tb can be replaced (or 

doped) with eight alternative rare-earth elements (R = Sc, Y, Gd-Tm, Lu), comprising of 

the family of RMn6Sn6 compounds, including YMn6Sn6, to fine-tune the intrinsic 

topological state. This is significant because the various RMn6Sn6 compounds have been 

known to host complex spin textures, we will see in YMn6Sn6, driven by temperature or an 

external magnetic field, including collinear, non-collinear, and incommensurate magnetic 

structures [13, 14, 15]. 

Alternative to STM, which directly measures the local density of states at the 

surface of a material, another experimental technique to probe the intrinsic electronic 

topological states within a material is magnetotransport. By measuring the components of 

a material’s electrical conductivity tensor while perturbing its electronic states with an 

external magnetic field, magnetotransport provides information into Berry curvature 

effects connected to its intrinsic topological states [see Appendix A.5: Intrinsic Anomalous 

Hall Effects]. The next section details a recent magnetotransport study on the ferromagnet 

Fe3Sn2 [8], which predicts prominent Berry curvature effects arising from an intrinsic 

topological Chern gap state within Fe3Sn2, akin to TbMn6Sn6 [1]. 

 

1.2 Magnetotransport Study on Fe3Sn2 

The compound Fe3Sn2 forms into a hexagonal structure in the space group 𝑅𝑚G3 

with hexagonal lattice parameters 𝑎 = 5.338 Å and 𝑐 = 5.338 Å [8] as shown in Fig. 1.4(a). 

It is comprised of stacked bilayer kagome lattice made of Fe atoms, with Sn atoms filling 

the hexagons and stanene layers sandwiched between the bilayers [Fig. 1.4(b)]. Unlike the 
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monolayer kagome lattice [see Appendix A.2: Monolayer Kagome Lattice], the simple NN 

tight-binding with interlayer hopping electronic band structure for the bilayer kagome 

lattice contains two non-degenerate Dirac cones [see Appendix A.3: Bilayer Kagome 

Lattice], thereby naturally yielding separate contributions to 𝜎$(,.'/)*  when incorporating 

spin-polarized Kane-Mele spin-orbit effects [see Appendix A.5: Intrinsic Anomalous Hall 

Effects]. Although the electronic properties of the RMn6Sn6 compounds can be predicted 

in the context of its highly monolayer kagome lattices, a recent magnetotransport study on 

Fe3Sn2 by Ye et. al. [8] serves as a complementary guide for analyzing measured 

magnetotransport data for TbMn6Sn6, nevertheless. 

 

 

 
Figure A.4: Crystal structure of the Fe3Sn2. (a) Unit cell of the space group 𝑅𝑚G3 
structure of Fe3Sn2 with the Fe and Sn atoms shown by the green and gray spheres, 
respectively. (b) Illustration of the various atomic layers with the order 
[Fe3Sn][Sn][Fe3Sn] along the c-axis but successively translated along the ab-plane. Note: 
the number of atoms shown within each layer do not coincide with its formula to provide 
improved visualization of the layers. 
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Below 𝑇! = 670 K, Fe3Sn2 naturally forms into a ferromagnet with its easy 

magnetization direction along the c-axis until around 300 K, where it gradually begins to 

cant towards the ab-plane upon cooling. This low temperature behavior leads to soft FM 

behavior when 𝐻 ∥ 𝑐 as seen in the magnetization data from Ye et. al. [8] in Fig. 1.5(a). 

The Hall resistivity data [Fig. 1.5(b)] exhibits strong out-of-plane Hall response, as it 

strongly reflects the magnetization [Fig. 1.5(b)], a characteristic of the anomalous Hall 

effect (AHE) [see Chapter 4.2: Hall Measurements]. Fig. 1.5(c) shows the measured total 

Hall conductivity 𝜎$( as a function of 𝐻 for various temperatures. By extracting the 

intercept at 𝐻 = 0 using the high-field data, the temperature dependence of the anomalous 

Hall conductivity 𝜎$()* (in addition to the longitudinal conductivity 𝜎$$) is shown in Fig. 

1.5(d). As 𝜎$()* likely contains both extrinsic and intrinsic contributions, 𝜎$()* can be 

parametrized with the form 𝜎$()*(𝑇) = 𝑓(𝜎$$,%)𝜎$$+ (𝑇) + 𝜎$(,.'/)* (𝑇) [20], where 𝜎$$,% =

𝜎$$(𝑇 = 0), thereby approximating the temperature dependence of 𝜎$(,.'/)*  by plotting 𝜎$()* 

as a function of 𝜎$$+  [inset in Fig. 1.5(d)]. 𝜎$(,.'/)*  remains relatively constant with 

temperature [Fig. 1.5(d)], varying within 10% from 400 to 2 K, at which 𝜎$(,.'/)* ≈	158 

Ω01cm01 = 0.27 e2/h per kagome bilayer. This nearly temperature independent 

contribution to the intrinsic AHE is indicative of massive Dirac bands in Fe3Sn2 with a 

substantial Berry-curvature contribution, since for a spin-polarized Kane-Mele spin-orbit 

effect, 𝜎$(,.'/)*  theoretically depends only on the Fermi energy (which is generally nearly 

temperature independent) and the out-of-plane magnetization (shown nearly temperature 

independent in inset of Fig. 1.5(d)) [Eq. A.21]. The massive Dirac bands were 
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experimentally realized using angle resolved photoemission spectroscopy (ARPES) 

measurements [8], revealing the two non-degenerate Dirac cones as predicted in the NN 

tight-binding model [see Appendix A.3: Bilayer Kagome Lattice]. 

 

 

 
Figure A.5: Magnetotransport measurements on Fe3Sn2 by Ye et. al. [8]. (a) External field 
dependence of magnetization with H ∥ c. The inset shows the temperature dependence of 
saturation magnetization. (b) External field dependence of the Hall resistivity with H ∥ c 
and I ⊥ c. The inset shows the temperature dependence of the normal Hall coefficient R0 
and the anomalous Hall coefficient RS. (c) External field dependence of total anomalous 
Hall conductivity. The dashed line represents the linear line fit to the high-field data used 
to calculate the anomalous Hall conductivity.(d) The calculated anomalous Hall (left axis) 
and longitudinal (right axis) conductivities dependence on temperature where the intrinsic 
anomalous Hall conductivity with H ∥ c is shown in green, the total anomalous Hall 
conductivity with H ∥ c is shown in red, the anomalous Hall conductivity with H ⊥ c is 
shown in black, and the longitudinal conductivity is shown in blue. The inset is the 
calculated anomalous Hall conductivity dependence on the squared of the longitudinal 
conductivity.  
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1.3 RMn6Sn6 Compounds 

The RMn6Sn6 (R = rare-earth) compounds crystallize into a HfFe6Ge6 hexagonal-

type structure (space group P6/mmm) [16], as shown in Fig. 1.6(a). These compounds 

comprise of stacked crystallographically equivalent Mn monolayer kagome lattices, each 

forming a net with Sn atoms (Mn3Sn) [Fig. 1.6(b)], with the layers successively separated 

by either a three Sn blocks (Sn3) or a mixed triangular R and honeycomb Sn layer (Sn2R) 

- [Sn2R][Mn3Sn][Sn3][Mn3Sn]. The choice of the rare-earth element R leads to different 

properties of the material as presented in Table 1.1 and Fig. 1.7 [13, 14, 15, 17]. As a result 

of R3+ within ScMn6Sn6, LuMn6Sn6, and YMn6Sn6 containing zero unpaired electrons, the 

rare-earth sublattice is non-magnetic (diamagnetic) while the other RMn6Sn6 with R = Gd-

Tm are magnetic (4f-moment). Such an environment opens an entirely new avenue to study 

the interplay of magnetism, and the properties inherent to kagome magnets - topology and 

correlations. For the lanthanides (R = Lu, Gd-Tm), the ionic radius of the R3+ decreases 

with increasing atomic number [Fig. 1.7(a)] because of Lanthanide contraction as the 4f-

electrons provide poor shielding of the nuclear charge [18]. The decrease of the R3+ ion 

radius for the lanthanides leads a decrease in the hexagonal lattice parameter 𝑐 [Fig 1.7(b)]. 
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Figure A.6: Crystal structure of the RMn6Sn6 (R = rare-earth) compounds. (a) Unit cell of 
the HfFe6Ge6 hexagonal-type structure (space group P6/mmm) of RMn6Sn6 with the R, 
Mn, and Sn atoms shown by the blue, red, and gray spheres, respectively. (b) Illustration 
of the various atomic layers with the order [Sn2R][Mn3Sn][Sn3][Mn3Sn] along the c-axis. 
Note: the number of atoms shown within each layer do not coincide with its formula to 
provide improved visualization of the layers. 
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Table A.1: Properties of the RMn6Sn6 (R = rare-earth) compounds where R3+ is rare-earth 
ion, a,b,c are the lattice parameters for a hexagonal crystal system, V is the volume of the 
hexagonal unit cell, and TN is the Neel temperature [13, 14, 15, 17]. The compounds with 
non-magnetic and magnetic R3+ shown are highlighted in black and blue, respectively. 
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Figure A.7: Structural and Magnetic Properties of the RMn6Sn6 (R = rare-earth) 
compounds [13, 14, 15, 17]. (a) Rare-earth ion radius R3+ dependence on the atomic number 
for the lanthanides (R = Lu, Gd-Tm) with the non-magnetic and magnetic R3+ shown in 
black and blue, respectively. (b) Hexagonal lattice parameter 𝑐 dependence on the rare-
earth ion radius R3+ for the lanthanides (R = Lu, Gd-Tm). (c) Neel temperature TN 
dependence on the number of unpaired electrons per R3+. (d) 𝑇! dependence on the 
hexagonal lattice parameter 𝑐. 
 
 
 

By virtue of the Mermin-Wagner theorem, which states that for 2D systems at finite 

temperatures, continuous symmetries cannot be broken spontaneously with sufficient 

short-range interactions [19], the FM ordering in the Mn kagome lattice is strongly 

suppressed, causing the magnetic structure within the RMn6Sn6 to be governed by 

interplanar interactions between the Mn kagome and R triangular lattices. For the non-

magnetic rare-earth compounds (R = Sc, Y, Lu), the magnetic structure can be adequately 
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described by the exchange interaction between the Mn kagome sublattices separated by a 

Sn3 (Sn2Tb) layer with exchange constant 𝐽1 (𝐽+) and the exchange interaction between the 

second-nearest neighboring Mn kagome sublattices with exchange constant 𝐽2 [20], as 

shown in Fig. 1.8(a), resulting in an AFM coupling between the Mn kagome sublattices as 

shown in Fig. 1.8(b). The Neel temperature 𝑇! for the non-magnetic rare-earths increase 

with a decrease in 𝑐 [Fig. 1.7(c)] [13, 14, 15, 17]. For the magnetic rare-earth compounds 

(R = Gd-Tm), the exchange interaction between the adjacent Mn kagome sublattice and R 

triangular sublattice with exchange constant 𝐽&'03 [Fig. 1.8(a)] are non-negligible, 

resulting in a ferrimagnetic (FiM) coupling between the Mn kagome sublattice and R 

triangular sublattice below 𝑇!. The angle of the FiM arrangement with the c-axis in ground 

state depends on the rare-earth with R = Tb being the only compound where the moments 

are aligned along the c-axis. An increase in the number of unpaired electrons on R3+ [Fig 

1.7(c)] and 𝑐 [Fig 1.7(d)] for the magnetic rare-earth compounds is correlated with an 

increase of 𝑇!. 
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Figure A.8: Magnetic structures of the RMn6Sn6 compounds. (a) The three exchange 
constants necessary to describe the magnetic behavior of the RMn6Sn6 compound for two 
cases: (left) rare-earth ion R3+ is non-magnetic (diamagnetic) and (right) magnetic (4f-
moment). The R, Mn, and Sn atoms are shown by the blue, red, and gray spheres, 
respectively. J1 (J2) is the exchange constant between the Mn kagome sublattices separated 
by a Sn3 (Sn2R) layer, J3 is the exchange constant between the second-nearest neighboring 
Mn kagome sublattices, and JMn-R is the exchange constant between the adjacent Mn  (red) 
kagome and R (blue) triangular sublattices. (b) Illustration of the magnetic ground states 
on the Mn and R layers where the arrows represent existence and orientation of the 
magnetic moments on Mn and R. Note: the angles between moments are idealized to zero 
degrees along the c-axis to provide improved visualization of the ground state. R3+ is non-
magnetic for R = Y, Lu, and Sc yielding an antiferromagnetic (AFM) arrangement. R3+ is 
magnetic for R = Tm, Er, Gd, Dy, Ho, and Tb yielding an ferrimagnetic (FiM) arrangement. 
The asterisk (*) denotes that these magnetic moments on these R atoms emerge only in the 
presence of an external magnetic field in ground state. 
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A.1.1.1 YMn6Sn6	
 

YMn6Sn6 crystallizes with the hexagonal lattice parameters 𝑎 = 5.533 Å and 𝑐 = 

9.008 Å [13]. The two exchange interactions across the Mn kagome sublattices separated 

by Sn3 or Sn2Y described by 𝐽1 and 𝐽+ are uniquely FM and AFM [Fig. 1.8(c)], respectively. 

Because Y3+ is effectively non-magnetic (diamagnetic) within YMnSn6, 𝐽&'04 is 

negligible, causing the nearest-neighbor exchange interactions (𝐽1 and 𝐽+) to become 

parametrically frustrated by the exchange interaction across second-nearest neighboring 

Mn kagome sublattices described by 𝐽2 [Fig. 1.8(a)]. This parametric frustration along the 

c-axis leads to non-trivial magnetic phases within YMn6Sn6 which compete with 

temperature and an applied magnetic field. Below 𝑇!  ≈ 345 K, YMn6Sn6 orders into a 

commensurate collinear AFM structure [15]. An incommensurate phase quickly emerges 

upon cooling at 333 K and coexists with the commensurate phase until 300 K, below which 

only the incommensurate phase exists down to zero temperature, as revealed by Venturini 

et. al. [16] via neutron diffraction. The magnetic structure of the incommensurate phase 

contains two nearly equal wave vectors where the sum of the angles 𝛼 and 𝛽 between FM-

coupled spins across the Sn3 and Sn2Y layers [Fig. 1.6(b)], respectively, approximate to 

𝛼 + 𝛽 ≈	90°, as illustrated in Fig. 1.9. At high temperatures, one of the competing 

magnetic phases, named the transverse conical spiral (TCS) phase, gives rise to the 

topological Hall effect by a new mechanism of nematic chirality [15], an example of 

magnetic topology. Magnetic properties have been reported in several materials in this 

class and have equally interesting features as in YMn6Sn6, both in susceptibility and 

magnetization but are poorly studied.  
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Figure A.9: Illustration of the ground state incommensurate magnetic structure for 
YMn6Sn6 in zero-field. The nine rotating arrows correspond to the arrangement of the 
magnetic moments on the Mn atoms of the kagome lattice stacked along the c-axis. The 
circles correspond to the plane of the kagome lattices. The Y, Mn, and Sn atoms are shown 
by the blue, red, and gray spheres, respectively. The spiral of the incommensurate structure 
repeats after four two-kagome sublattices or eight layers as shown by the numbers on the 
left. 𝛼 between 1-2, 3-4, 5-6,7-8 represents the angle between the neighboring FM-coupled 
Mn moments within the two-kagome sublattice separated by a Sn3 layer. 𝛽 between 2-3, 
4-5, 6-7,8-1 represents the angle between the neighboring AFM-coupled Mn moments 
between the two-kagome sublattice separated by a Sn2Tb layer (𝛽 + 𝛼	 ≈ 90°).  
 
 
 
A.1.1.2 TbMn6Sn6	
 

TbMn6Sn6 crystallizes with  hexagonal lattice parameters 𝑎 = 5.530 Å and 𝑐 = 9.023 

Å [21]. Unlike in the non-magnetic rare earth cousins, YMn6Sn6, ScMn6Sn6 and 

LuMn6Sn6, 𝐽&'056 must be considered. Below 𝑇!  ≈ 421 K, the magnetic moments on Mn 
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and Tb form into a collinear (or at least close to) FiM arrangement down to 2 K as revealed 

by Idrissi et. al. [24] via neutron diffraction. At high temperatures, the magnetocrystalline 

anisotropy along the kagome planes dominates [22], resulting in the “easy-plane” type 

compound, similar to YMn6Sn6 in ground state [Fig. 1.9]. Below the spin-reorientation 

transition temperature at zero-field, 𝑇"# ≈ 308 K, the uniaxial anisotropy of the Tb-

sublattice dominates and the easy magnetization direction is along the c-axis. When an 

external field is applied along the c-axis within TbMn6Sn6 at low temperatures, an 

emergence of a variety of pronounced states distributed in energy, a signature of Landau 

quantization, with a gap energy of 34 meV, was recently experimentally observed using 

low-energy scanning tunneling microcopy (STM) on the Mn kagome surface by Yin et al. 

[1] This observation, as well as the considerable gap size, is suggestive of the existence of 

magnetized Dirac electrons within the quantum limit in TbMn6Sn6 attributed to a spin-

polarized Kane-Mele spin-orbit effect [see Appendix A.4: Topological Chern Gap State]. 

Moreover, the low-energy tunnelling spectrum at the step edge of the sample revealed that 

a prominent energy state emerges at 130 meV [1]. This effect was ascribed to the Fermi 

energy	filled to the Chern gap, i.e., only the lower Dirac band is filled, yielding a 

topological protected edge state with corresponding bulk-boundary correspondence gap.  

Magnetotransport measurements were also performed on a sample of TbMn6Sn6 by 

Yin et al. [1] to provide further evidence to the claim of the quantum-limit topological 

Chern gap state observed from STM. Fig. 1.10 shows the plotted anomalous Hall resistivity 

𝜌$()* as a function of the square of the longitudinal resistivity 𝜌$$+  from 2 to 300 with 𝐼 ⊥ 𝑐 

and 𝐻 ∥ 𝑐 [1]. By fitting a linear line [Fig. 1.10], the intrinsic anomalous Hall conductivity 
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𝜎$(,.'/)*  was estimated using 𝜌$()* ≈ 𝜎$(,.'/)* 𝜌$$+  in the limit of the small Hall angle 𝜃* =

𝜌($ 𝜌$$⁄ << 1 [see Chapter 4.2: Hall Measurements], which yields 𝜎$(,.'/)* ≈ 0.14 e2/h per 

kagome layer. This approximated value for 𝜎$(,.'/)*  was assumed to arise from Berry 

curvature correspondence of the Chern gapped Dirac fermions [see Appendix A.5: Intrinsic 

Anomalous Hall Effects], as illustrated in the bottom right of Fig. 1.10. 

 

 

 
Figure A.10: Anomalous Hall resistivity 𝜌yxAH dependence on the longitudinal resistivity 
squared 𝜌xx2 from 2 to 300 K in TbMn6Sn6 as measured by by Yin et al. [1]. The anomalous 
Hall conductivity 𝜎xy,int is approximated [𝜌yxAH ≈ 𝜎xy,int	𝜌xx2] by the slope of the curve. The 
illustration shows the Fermi energy EF assumed to be within lower of the two massive 
Dirac band, thereby producing a non-zero 𝜎xy,int. 
 
 
 

As demonstrated by Yin et al. [1], the interesting physics in TbMn6Sn6 arises from 

its out-of-plane magnetic ordering. All other RMn6Sn6 compounds have easy-plane 

magnetic ordering [Fig. 1.8(b)] (excluding DyMn6Sn6 and HoMn6Sn6, which are canted 
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ferromagnets). However, in magnetic field induced spin polarized states, all these RMn6Sn6 

compounds are expected to have behavior like that of TbMn6Sn6. In addition to the 

magnetic and magnetotransport properties within TbMn6Sn6, which are poorly understood, 

the topological properties in other compounds are not studied at all. 
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B Chapter 2: Crystal Growth and Characterization of YMn6Sn6 and TbMn6Sn6 a 

1.4 Crystal Growth 

Intermetallic compounds comprised of exclusively two or more different metal 

elements consist of atomic bonding with slightly more ionic and covalent character than 

compared to metallic compounds comprised of exclusively one metal element [23]. These 

differences in bond character among intermetallic compounds result in different behavior 

in materials. Therefore, to synthesize an intermetallic compound with starting materials of 

single element metallic compounds, one must heat the required metallic compounds to high 

temperatures to cause sufficient diffusion for a mixture to take place. In the flux method, 

another elemental metal (or a compound) is used as a solvent that can dissolve the desired 

reacting elements at temperatures much lower than their individual melting points. When 

one of the reacting metals does the job of the solvent, such a flux technique is called the 

“self flux” method. The flux method relies on the phase diagram to determine which path 

upon cooling to take to reach the desired intermetallic compound. Single crystals of 

YMn6Sn6 and TbMn6Sn6 are grown by the self-flux method using excess Sn as the flux. Y 

(Tb) pieces (Alfa Aesar, 99%), Mn pieces (Alfa Aesar, 99.95 %), and Sn shots (Alfa Aesar 

99.999%) are added to a 2 mL aluminum oxide crucible in a molar ratio of 1:1:20 (1:6:20) 

and sealed in a fused silica ampoule under vacuum, as shown in Fig. 2.1(a). The sealed 

ampule with Y (Tb) is heated in a box furnace [Fig. 2.1(b)] to 1175 °C (1150 °C) for 10
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hours, homogenized at 1075 °C (1150 °C) for 12 hours, and then cooled to 600 °C (650  

°C) at 4 °C / hour. Once the furnace reaches 600 °C (650 °C), the excess Sn-flux was 

decanted with a centrifuge [Fig. 2.1 (c)]. Single crystals of YMn6Sn6 and TbMn6Sn6 are 

shown in Fig. 2.1(d) and have thick plate-like shapes with distinct edges. The c-axis of 

YMn6Sn6 and TbMn6Sn6 naturally orients perpendicular to the plate-like surface [Fig. 

2.1(d)]. The plate area of the grown YMn6Sn6 single crystals [left of Fig. 2.1(d)] are greater 

than for TbMn6Sn6 while the TbMn6Sn6 single crystals [right of Fig. 2.1(d)] are more 

brittle. The crystal structure was verified using powder x-ray diffraction at room 

temperature using a Rigaku MiniFlex benchtop diffractometer [Fig. 2.1(e)]. A small 

amount of the crystals from each batch were ground into powder and their collected 

diffraction patterns are shown in Fig. 2.2 using Rietveld refinement [32] with FullProf 

software [33]. Hexagonal lattice parameters 𝑎 = 5.5398(5) and 5.5388(1) Å, and 𝑐 = 

9.0203(9) and 9.0329(2) Å, for YMn6Sn6 and TbMn6Sn6, respectively, are in good 

agreement with previous studies [Table 1.1] [13, 14, 15, 17]. The small peaks present in 

both YMn6Sn6 and TbMn6Sn6 patterns (as marked by the asterisks in Fig. 2.2(a) and (b), 

respectively) are identified to be Sn peaks attributed to excess Sn-flux on the surface of the 

single crystals and were omitted from the Rietveld refinement. 
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Figure B.1: Crystal growth and x-ray characterization for single crystals of YMn6Sn6 and 
TbMn6Sn6. (a) Single element metallic compounds sealed in fused silica ampoule under 
vacuum (right) to be placed into the aluminum oxide crucible (left) for flux-growth. (b) 
KSL-1200X box furnace for flux-growth capable of reaching temperatures up to 1200 °C. 
(c) Centrifuge to decant excess Sn-flux. (d) Grown single crystals of YMn6Sn6 (left) and 
TbMn6Sn6 (right). The top groups show the collection of aggregate crystals pulled directly 
out from the fused silica ampoule. The bottom groups show the individual plate-like single 
crystals with polished surfaces. (e) Rigaku MiniFlex benchtop powder X-ray 
diffractometer. 
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Figure B.2: X-ray power diffraction measurements for ground crystals of (a) YMn6Sn6 and 
(b) TbMn6Sn6. Top: Rietveld refinement powder patterns measured at room temperature. 
The blue asterisk (*) indicates the impurity peak from the Sn-flux. Bottom: Selected data 
from the Rietveld refinement. Atomic coordinates are 0, 0, 0	for Y(Tb); 12, 0, 𝑧 for Mn; 
0, 0, 𝑧 for Sn(1); 13, 23, 12 for Sn(2); and 13, 23, 0 for Sn(3). 
 
 
 
1.5 DC Magnetic Susceptibility Measurements 

To characterize the bulk magnetic behavior of single crystals of YMn6Sn6 and 

TbMn6Sn6 with an external magnetic field 𝐻, direct current (DC) magnetic susceptibility 

𝜒	 = 	𝑀 𝐻⁄  measurements are performed with varying temperature, where 𝑀 is the total 

DC magnetization of the sample. The importance of measuring 𝜒 during a continuous 

temperature sweep is that it provides a quantitative measure of the extent to which a 

material can be magnetized when placed in an applied magnetic field. The grown single 

crystal samples of YMn6Sn6 and TbMn6Sn6 are polished on all sides to remove any excess 

Sn-flux which may provide additional contributions to 𝑀. To orient 𝐻 along the 

appropriate crystallographic direction within the sample, the plate-like surface of the 
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sample is oriented above the coilset puck differently for 𝐻 ⊥ 𝑐 and 𝐻 ∥ 𝑐, as illustrated in 

Fig. 2.3(a) and (b), respectively. For 𝐻 ⊥ 𝑐 [Fig. 2.3(a)], the plate-like surface of the sample 

[Fig. 2.1(d)] is firmly positioned normal to 𝐻 using a custom-made brass holder. For 𝐻 ∥ 𝑐 

[Fig. 2.3(b)], the plate-like surface is firmly positioned parallel to 𝐻 by gluing to the sample 

holder surface with GE-varnish. The prepared sample holder and coilset puck are next 

slowly placed into the Quantum Design Dynacool Physical Property Measurement System 

(PPMS), shown in Fig. 2.4, where 𝑀 ∥ 𝐻 is measured using the direct current 

magnetization (DCM) option incorporated within the alternating current measurement 

system (ACMS) II. The basic principle of operation of the DCM option is based on 

Faraday’s law of induction where a change in magnetic field flux 𝛷 from the sample 

induces a voltage 𝑉78.9 on two counterwound coils situated just above and below the sample 

of the coilset puck given by 

𝑉78.9 =	
:;
:/
= :;

:<
:<
:/
,																																																							(2.1)                                          

where 𝑑𝑧 is change in position of the puck along the direction 𝑧 normal to the surface of 

the coilset puck. The coilset puck is placed at the end of a rod connected to the DCM linear 

motor on top of the Quantum Design Dynacool PPMS [Fig. 2.4], which sinusoidally 

oscillates the coilset puck along 𝑧 at very low frequencies 𝑓 (~ 1 Hz), modifying Eq. 2.1 

as 

𝑉78.9 = 2𝜋𝑓𝐴 𝑠𝑖𝑛(𝜔𝑡)𝜇%(𝐻 +𝑀),																																						(2.2)                                               

where 𝐴 is the amplitude of oscillation, and 𝜇% is the vacuum permeability. Hence, 𝜒	 =

	𝑀 𝐻⁄  is determined experimentally by solving Eq. 2.2 for 𝑀 at some 𝐻 and temperature 
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𝑇, where 𝐻 is provided by the superconducting magnet placed below the sample holder. 

Two techniques are commonly used when measuring 𝜒 with 𝑇, which may lead to different 

behaviors of the resulting curves: field-cooling (FC) and zero field-cooling (ZFC). For FC, 

a constant 𝐻 is applied throughout the entire cooling process. Conversely, for ZFC, the 

sample is cooled down to some 𝑇 in zero-field (𝐻 = 0), afterwards 𝐻 is applied. This is 

then repeated for each 𝑇 in the cooling process. 

 

 

  
Figure B.3: Illustration of the alignment for measuring direct current (DC) magnetic 
susceptibility 𝜒 = M / H. (a) Alignment for H ⊥ c where the edge of the plate-like sample 
is parallel to M ∥ H along z, which is perpendicular to the surface of the coilset puck. The 
small arrows with circular orbits represent magnetic moments for illustrational purposes. 
(b) Alignment for H ∥ c where the surface of the plate-like sample is parallel to M ∥ H 
along z. 
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Figure B.4: Quantum Design Dynacool Physical Property Measurement System (PPMS) 
with a 9 T magnet. The DC magnetization (DCM) linear motor is shown by the small 
cylinder placed on top of the PPMS. Below is the chamber where the sample is located at 
the end of a long rod where high magnetic fields (up to 9 T) and low temperatures (down 
to 1.8 K) can be achieved. 
 
 
 

The 𝜒 dependence on 𝑇 measured by FC with 𝐻 ∥ 𝑐 at 𝜇%𝐻 = 0.1 T is plotted in 

Fig. 2.5(a) for a single crystal of YMn6Sn6. At 345 K, a distinct peak is observed 

corresponding to 𝑇! for the grown sample of YMn6Sn6, in good agreement with previous 

studies [Table 1.1] [13, 14, 15, 17], below which, the commensurate collinear AFM 

structure forms. A small notch in 𝜒 is present at 333 K, which arises from a change in the 

magnetic structure via the emerging incommensurate phase upon cooling as previously 

revealed by Venturini et. al. [16] via neutron diffraction. The 𝜒 dependence on 𝑇 by both 

FC and ZFC with 𝐻 ⊥ 𝑐 and 𝐻 ∥ 𝑐 at 𝜇%𝐻 = 0.1 T is plotted in Fig. 2.4(b) for a single 

crystal of TbMn6Sn6. The sharp transition near 𝑇"#	 ≈ 308 K corresponds to the spin-

reorientation transition temperature. The moments align predominantly along the c-axis 

above the vicinity of 𝑇"#	[𝜒(350 K)ZFC,H ⊥ c / 𝜒(350 K)ZFC,H || c ≈ 13] and along the c-axis 
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below the vicinity of 𝑇"#	[𝜒(250 K)ZFC,H || c / 𝜒(250 K)ZFC,H ⊥ c ≈ 50]. The reduction of the 

ZFC response of 𝜒 with 𝐻 ∥ 𝑐 at low temperatures is likely due to the existence of FiM 

domains within the sample which tend to anti-align during ZFC, as noted by Guguchia et. 

al. [24]. 

 
 

 
Figure B.5: DC magnetic susceptibility data for single crystals of YMn6Sn6 and TbMn6Sn6. 
(a) Temperature dependence DC magnetic susceptibility 𝜒	= M / H measured by zero-field-
cooling (ZFC) with H ∥ c at 𝜇0H = 0.1 T for a single crystal of YMn6Sn6. The peak at TN 
≈ 333 K corresponds to the Neel temperature for YMn6Sn6 and the arrow at 333 K 
corresponds to an emerging incommensurate phase upon cooling. (b) Temperature 
dependence of 𝜒 measured by both ZFC and field-cooling (FC) with H ⊥ c and H ∥ c at 
𝜇0H = 0.1 T for a single crystal of TbMn6Sn6. The two cubic graphics illustrate the 
crystallographic orientations of the Tb and Mn magnetic moments below (along the c-axis) 
and above (perpendicular to the c-axis) the vicinity of the spin-reorientation transition 
temperature Tsr from left to right, respectively. 
 
 
 
1.6 Electrical Transport Measurements 

To characterize the zero-field electronic properties of single crystals of YMn6Sn6 

and TbMn6Sn6 along the plane of the Mn kagome lattices [Fig. 1.6], electrical transport 

measurements are performed with the electrical current 𝐼 ⊥ 𝑐. The single crystal samples 
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of YMn6Sn6 and TbMn6Sn6 are trimmed to adequate dimensions with a large surface area 

to thickness ratio where the surface is perpendicular to the c-axis. The trimmed samples 

are glued onto to a puck with GE-varnish separated by a sapphire block and five or six 25-

micron platinum wire contacts are placed using Epotek H20E silver epoxy. The Hall-bar 

geometry, shown for a polished sample of YMn6Sn6 in Fig. 2.6(a) with six contacts are 

attached, is used for the electrical transport measurement. Longitudinal voltage (𝑉$) and 

Hall voltage (or transverse voltage) (𝑉() are then measured on the same sample with a four-

probe method, as shown in Fig. 2.6(b). For both measurements, the two contacts at the long 

edges of the sample pass a current 𝐼 through the sample. While a separate set of leads 

placed longitudinally (transversely) in between measure the voltage drop 𝑉$ (𝑉() across a 

region of the sample in the 𝑥-direction (𝑦-direction). Ideally, the voltage leads should be 

arranged in-line with the current leads such that the electrical field lines remain parallel. 

The resistances between all contacts are also tested to prevent an electrical short circuit. 

The puck is next slowly placed into the PPMS [Fig. 2.4] where 𝑉$	and 𝑉(	are measured 

using the electrical transport option.  

The electrical resistance 𝑅$$ is calculated using Ohm’s law: 

𝑅$$ =	
>!
?
.																																																																(2.3) 

The electrical resistivity 𝜌$$	is then calculated by the following geometric relation: 

𝜌$$ =
)!
9	
𝑅$$ =

)!
9	∙?
𝑉$ ,																																																					(2.4)                                               
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where 𝐴$ is the cross-sectional area normal to the 𝑥-direction through which the current 𝐼 

passes and 𝑙 is the length between the closest edges of the silver epoxy which attaches the 

voltage contacts to the sample [left of Fig. 2.6(a)]. 

 

 

 
Figure 2.6: Electrical transport measurements. (a) A polished sample of YMn6Sn6 with six 
platinum wire contacts placed using Epotek H20E silver epoxy in a Hall-bar geometry for 
measuring longitudinal voltage Vx (left) and Hall voltage Vy (right) using the four-probe 
method shown in (b). 𝑙 is the distance between the closest edges of the silver epoxy which 
attaches the longitudinal contacts to the sample. 𝑤 is the width of the sample. (b) 
Illustrations of the four-probe configurations with contacts shown by the gray lines. The 
electrical current for electrons flows from I- to I+ with electrical current density Jx and Vx 
(left) and Vy (right) are measured across V- and V+. 
 
 
 

The 𝜌$$ dependence on temperature 𝑇 with 𝐼 ⊥ 𝑐 is plotted in Fig. 2.7(a) and (b), 

for single crystals of YMn6Sn6 and TbMn6Sn6, respectively. Both YMn6Sn6 and TbMn6Sn6 

are shown to have exhibit high metallicity with the residual resistivity ratio RRR = 

𝜌$$(350	𝐾) 𝜌$$(2	𝐾)⁄  ≈ 46 and 78 for YMn6Sn6 and TbMn6Sn6, respectively. The strong 
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decrease of 𝜌$$ with decreasing 𝑇 [Fig. 2.7(a) and (b)] is a well-defined signature of a 

metallic system, suggesting that relatively long-range exchange interactions likely play a 

significant role. Moreover, the large values of RRR suggest that the grown single crystal 

samples possess low impurities as the resistivity is relatively small within the low 

temperature regime where lattice vibrations become insignificant. The first derivative of 

𝜌$$ with respect to temperature for YMn6Sn6 and TbMn6Sn6 [insets of Fig. 2.7(a) and (b), 

respectively] reveals the distinct magnetic transitions at 333 K and 308 K, as previously 

revealed in Fig. 2.5(a) and (b), respectively. For YMn6Sn6, the drop in 𝑑𝜌$$ 𝑑𝑇⁄  at 333 K 

again corresponds to the temperature at which the incommensurate phase emerges upon 

cooling [Fig. 2.5(a)] for the grown sample. For TbMn6Sn6, d𝜌$$/dT displays a distinct peak 

at 𝑇"# = 308 K again denoting the spin-reorientation transition at zero-field [Fig. 2.5(b)] for 

the grown sample. 
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Figure B.6: Electrical transport data for single crystals of YMn6Sn6 and TbMn6Sn6. (a) 
Temperature dependence of electrical resistivity for YMn6Sn6 with 𝐼 ⊥ 𝑐, yielding a 
residual resistivity ratio RRR = 𝜌xx(350 K)/	𝜌xx(2 K) ≈ 46. The inset shows the temperature 
dependence of the first derivative of the electrical resistivity with respect to temperature 
where the sudden drop represents the temperature below which the incommensurate phase 
emerges. (b) Temperature dependence of electrical resistivity for YMn6Sn6 with 𝐼 ⊥ 𝑐, 
yielding a residual resistivity ratio RRR = 𝜌xx(350 K)/	𝜌xx(2 K) ≈ 78. The inset shows the 
temperature dependence of the first derivative of the electrical resistivity with respect to 
temperature where the peak represents the spin reorientation process temperature Tsr at 
zero-field. 
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C Chapter 3: Magnetic Properties of YMn6Sn6 and TbMn6Sn6 a 

1.7 Magnetization Measurements 

The 𝐻 dependence of 𝑀 with 𝐻 ⊥ 𝑐 and 𝐻 ∥ 𝑐 for a single crystal of TbMn6Sn6 at 

several temperatures is shown in Figs. 3.1(b) and (c), respectively. For 𝐻 ⊥ 𝑐 [Fig. 3.1(b)], 

the shape of the curves displays soft FM behavior above 𝑇"# via a sharp increase at low 

fields followed by saturation at higher fields. For 𝐻 ∥ 𝑐 [Fig. 3.1(c)], the curves also display 

soft FM behavior below 𝑇"#, but then quickly change to hard FM behavior near 250 K via 

the emergence of hysteresis loops containing asymmetric steps, which increase in width, 

with a large coercive field of around 𝜇%𝐻7 = 2 T at 2 K [inset of Fig. 3.1(c)]. The 

mechanism behind the asymmetry steps is unknown at present but may be related to the 

presence of FiM domains. The saturation magnetization 𝑀"A/ reaches approximately 3.9 

µB / f.u. at 2 K and increases up until around 300 K [inset of Fig. 3.1(c)]. The magnetization 

curves for 𝑇 < 𝑇"# with 𝐻 ⊥ 𝑐 [Fig. 3.1(b)] and 𝑇	 > 𝑇"# with H ∥ c [Fig. 3.1(c)] exhibit a 

dramatic jump at the field 𝐻	 = 	𝐻"# at which induces the spin-reorientation transition.
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Figure C.1: Magnetization data for single crystals of YMn6Sn6 and TbMn6Sn6. (a) External 
field dependence of magnetization for YMn6Sn6 with H ⊥ c (blue) and H ∥ c (red) at 5 K 
and 245 K*. (b) External field dependence of magnetization TbMn6Sn6 with H ⊥ c. (c) 
External field dependence of magnetization for TbMn6Sn6 with H ∥ c using our 9 T 
Quantum Design PPMS. The inset shows the temperature dependence of saturation 
magnetization and coercive field. 
 
 
 
1.8 Magnetic Phase Diagrams 

 To map the distinct competing magnetic phases dependent on 𝑇 and 𝐻, as evident 

in the magnetization data for discrete temperatures [Fig. 3.1], magnetic phase diagrams are 

now constructed for YMn6Sn6 and TbMn6Sn6. Due to the complexity of the magnetic phase 

*Magnetization measurement performed by Michael A. McGuire at the Oak Ridge 
National Laboratory using a 14 T Quantum Design PPMS. 
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transitions in YMn6Sn6 for H ⊥ c [Fig. 3.1(a)], alternating current (AC) susceptibility, 

defined as the differential response 𝜒), = 𝑑𝑀/𝑑𝐻 to 𝑀, is measured in place of the DC 

susceptibility 𝜒 using the ACMS II in the Quantum Design PPMS [Fig. 2.4]. In addition to 

the applied field supplied by the PPMS superconducting magnetic, however, a small AC 

drive magnetic field is superimposed at high values of 𝑓 (10 – 10,000 Hz) where 𝜒),  is 

then measured within a narrow frequency band using Eq. 2.2. The constructed AC 

susceptibility phase diagram for TbMn6Sn6 with 𝐻 ⊥ 𝑐 between 4 and 380 K is shown in 

Fig. 3.2(a), revealing several magnetic phase boundaries marked by the peaks in 𝜒), . 

Following the construction of Fig. 3.2(a), the structures of these distinct magnetic phases 

in YMn6Sn6 were determined [15] with H ⊥ c and are the distorted spiral (DS) (0	 < 	𝐻	 <

𝐻1), transverse conical spiral (TCS) (𝐻1 	< 	𝐻	 < 𝐻+), fan-like (FL) (𝐻+ 	< 	𝐻	 < 𝐻2), and 

polarized forced-ferromagnetic (FF) (𝐻2 	< 	𝐻), as labeled in Fig. 3.2(b) and their 

magnetic structures along the c-axis are illustrated in Fig. 3.2(b). The narrow intermediate 

phases I and II exist between the FL and FF phases and between the TCS and FF phases, 

respectively, and are likely complex mixtures of these phases. For 𝐻 ∥ 𝑐, the magnetic 

phases are more trivial: the helical spiral gradually becomes a longitudinal conical spiral 

(LCS) upon increasing 𝐻 ∥ 𝑐 [15], which is a spin-reorientation TCS-type phase but 

parallel to the c-axis, eventually saturating into a polarized FF along the c-axis at high 𝐻 

[Fig. 3.2(a)]. 
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Figure C.2: Magnetic phases in YMn6Sn6 with H ⊥ c. (a) Magnetic phase diagram 
constructed from AC susceptibility measurements. The four magnetic phases are distorted 
spiral (DS) (0 < H < H1), transverse conical spiral (TCS) (H1 < H < H2), fan-like (FL) (H2 
< H < H3), and forced-ferromagnetic (FF) (H3 < H). The narrow intermediate phases I and 
II exist between the FL and FF phases and between the TCS and FF phases. Phase I is now 
known to be a mixed phase of commensurate and incommensurate magnetic structure, the 
nature of which is yet to be determined. Phase II is known to be a canted antiferromagnet 
(CAF) state [35]. (b) Illustration of the four magnetic phases in YMn6Sn6 as determined by 
neutron scattering* and first principles calculations [15]. 
 
 
 

For TbMn6Sn6, the magnetic phase transitions with H ⊥ c and H ∥ c [Fig. 3.1(b) 

and (c)] below 𝑇! ≈ 423 K are simply the two distinct FiM phases with in-plane and out-

of-plane magnetization separated by the spin-reorientation transition 𝑇"# ≈ 308 K [Fig. 2.4] 

and the spin-reorientation transition field 𝐻"# with changing temperature. 𝑀 and 𝑑𝑀/𝑑𝐻 

dependence on 𝐻 with 𝐻 ⊥ 𝑐 and 𝐻 ∥ 𝑐 for single crystals of TbMn6Sn6 are shown in Fig. 

3.3 for various temperatures within the vicinity of 𝑇"#. At 𝐻	 = 𝐻"#, 𝑑𝑀/𝑑𝐻 reaches a 

maximum via a first order magnetization process (FOMP), allowing for the extraction of 

*Neutron scattering performed by Lekh Poudel, Rebecca Dally, and Jeffrey Lynn using a 
triple-axis neutron spectrometer BT-7 at the National Institute of Standard and Technology 
(NIST) Center for Neutron Research. 
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𝐻"# as a function of 𝑇, which leads to the magnetic phase diagram for TbMn6Sn6 shown in 

Fig. 3.4. 

 

 
Figure C.3: First Order Magnetization Process (FOMP) in TbMn6Sn6. M dependence on 
H with (a) H ⊥ c and (b) H ∥ c for various temperatures within the vicinity of the spin-
reorientation transition temperature Tsr. dM/dH dependence on H with (c) H ⊥ c and (d) H 
∥ c for various temperatures within the vicinity of Tsr. 
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Figure C.4: Constructed magnetic phase diagram from magnetization measurements [Fig. 
3.3] for TbMn6Sn6. Hsr is the field at spin-reorientation transition field and Tsr is the spin-
reorientation transition temperature. 
 
 
 
1.9 Magnetic Anisotropy: First-Principle Calculations 

 We now explore the magnetic anisotropy within YMn6Sn6 and TbMn6Sn6 using 

first-principles calculations. For YMn6Sn6, the competing magnetic phases which compete 

with 𝑇 and 𝐻 ⊥ 𝑐 [Fig. 3.2] can be quantitatively described by the interplanar exchange 

interactions 𝐽1, 𝐽+, and 𝐽2 [20]. By constructing a mean field theory at 𝑇 = 0, density 

functional theory (DFT) total energy calculations for YMn6Sn6* [15] are performed and fit 

to the Hamiltonian is given by 

ℋ"# = ∑ 𝐽$𝑛&⃗ "$,& ∙ 𝑛&⃗ "$,'&,' +∑ 𝐽(𝑛&⃗"$,& ∙ 𝑛&⃗"$,'&,' +𝑀𝐴𝐸"$ +∑ 𝜇)𝐻&&⃗ ∙ 𝜇*𝑀"$𝑛&⃗ && ,								(3.1) 

where 𝜇B is the Bohr magneton. By considering Heisenberg exchange interactions, the first 

and second sums run over the six nearest-neighbors along the c-axis and the over the three 

nearest-neighbors within the ab-plane, respectively. The third term considers magnetic 

anisotropy energy for all nearest-neighbor neighbors by lumping the Ising-type exchange 
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(moments along the c-axis) and the single-ion anisotropy terms into the single term given 

by 

𝑀𝐴𝐸!" = ∑ 𝐽𝑧𝑛𝑀𝑛,𝑖𝑧
𝑖 𝑛𝑀𝑛,𝑖+1𝑧 +𝐾𝑀𝑛𝑀𝑀𝑛

2 ∑ %𝑛𝑀𝑛,𝑖𝑧 &2𝑖 ,																												(3.2) 

where 𝐾&' is the easy-plane anisotropy coefficient for the Mn kagome sublattice. The last 

term in Eq. 3.1 is the single-site Zeeman energy. A Hubbard correlation is also considered 

by adding a DFT + U correction with 𝑈 − 𝐽 = 0.4 eV. The DFT results at 𝑇 = 0 are shown 

in Fig. 3.5 with 𝐽1 =	−50.9 meV (AFM), 𝐽+ = +18.5 meV (FM), and 𝐽2 = +8.7 meV 

(FM), which quantitatively describes the magnetic phase diagram constructed for YMn6Sn6  

for 𝐻 ⊥ 𝑐 [Fig. 3.2]. 
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Figure C.5: Reduced energies E / J1 for the magnetic phases with H ⊥ c as a function of 
reduced magnetic field H / J1 calculated using density functional theory (DFT) calculations 
using mean field theory calculations [20]. The planar phase, shown in blue, comprises of 
the distorted spiral (DS) phase (0 < H < H1), fan-like (FL) phase (H2 < H < H3) and 
polarized forced-ferromagnetic (FF) phase (H3 < H). The transverse conical spiral (TCS) 
(H1 < H < H2) is shown in green. The longitudinal conical spiral (LCS) phase, shown in 
red, exists only for H ∥ c and is a spin-reorientation TCS phase along the c-axis.  
 
 
 

At the transition between the DS and TCS phases (𝐻 = 𝐻1), the DFT calculations 

using Eq. 3.1 also calculates 𝑀𝐴𝐸&'	~ 20 meV. To solve for 𝐾&' in Eq. 3.2, we now 

approximate 𝐽< by analyzing data obtained from single crystal neutron diffraction on 

YMn6Sn6 shown in Fig. 3.6 at 100 K about (0, 0, 2 −	𝑘<,') (𝑛	 = 	1	,2) with 𝑘< being 

wavevector of the magnetic spirals along the c-axis. At 𝐻 = 𝐻1, 𝑘< is increased by ~ 2.5 

% obtained by the Gaussian fits to the data which can be explained by an increase in 𝛼 + 𝛽 

[Fig. 1.9] given by 

 𝛼 + 𝛽 ≈ 	 𝑐𝑜𝑠01 gJ"J#
KJ$#

− J#
+J"
− J"

+J#
h.																																			     (3.3)                             

*Density functional theory (DFT) total energy calculations for YMn6Sn6 performed 
by Igor I. Mazin at George Mason University. 
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By assuming that the dominant contribution of 𝐽< resides in the largest 𝐽, which is 𝐽1 (FM), 

we approximate 𝐽< ≈ 𝑑𝐽1 at 𝐻 = 𝐻1, allowing one to solve for 𝐽<: 

𝐽< :78"(MNO)
:J"

	= :
:J"

gJ"J#
KJ$#

− J#
+J"
− J"

+J#
h = J#

KJ$#
+ J#

+J"#
− 1

+J#
≈ 2.5	%.             (3.4) 

Eq. 3.4 yields 𝐽< ≈ + 0.34 meV (AFM) and when finally plugged into Eq. 3.2 yields 

𝐾&'𝑀&'
+ ≈ −	0.12 meV / Mn. The negative sign of 𝐾&' indicates that the Mn- sublattice 

favors the easy-magnetization direction along the plane which we will next use compare to 

the magnetic anisotropy for TbMn6Sn6. 

 

 

 
Figure C.6: Magnetic field dependence of incommensurate magnetic Bragg peaks (0, 0, 2 
– kz,n) (n = 1,2) at 100 K obtained from single crystal neutron diffraction on YMn6Sn6*. 
The solid black lines in the right panel are the corresponding Gaussian fits. 
 
 
 

*Neutron scattering performed by Lekh Poudel, Rebecca Dally, and Jeffrey Lynn using a 
triple-axis neutron spectrometer BT-7 at the National Institute of Standard and Technology 
(NIST) Center for Neutron Research. 
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Let us now explore the microscopic nature of the constructed magnetic phase 

diagram for TbMn6Sn6 [Fig. 3.4] by considering a simplified description of the collinear 

configuration on magnetic single-site anisotropy. By lumping the Heisenberg exchange 

and single-site anisotropy terms into a single term, the temperature dependence on 

magnetic anisotropy energy for the collinear arrangement of the moments on the Tb- and 

Mn-sublattices will be approximated by 

ℋA'."(𝑇) = 6𝑀𝐴𝐸&'(𝑇) + 𝑀𝐴𝐸56(𝑇).																																				(3.5) 

We now derive an expression for 𝑀𝐴𝐸. (𝑖 = Mn, Tb) on the classical (Langevin) level 

[35]. The standard partition function for 𝐻 ∥ 𝑧, assuming the anisotropy is a small 

correction to the Zeeman term is given by 

𝑍 = ∫ 𝑑𝜑+Q
% ∫ 𝑒0(0*&%)O 𝑠𝑖𝑛 𝜃 𝑑𝜃Q

% 																																									(3.6) 

	= 	2𝜋 ∫ 𝑒O*& 78" R 𝑠𝑖𝑛 𝜃 𝑑𝜃Q
% 																																															(3.7) 

= 2𝜋 + ".'S(O*&)
O*&

,																																																										 (3.8) 

where 𝜑 is the azimuthal angle, 𝜃 is the polar angle (angle made with the 𝑧-axis), and 𝛽 =

	𝑘B𝑇 with 𝑘B being the Boltzmann constant. 

The expectation value for the total magnetic moment in the 𝑧-direction 𝑀< = 𝑀 𝑐𝑜𝑠 𝜃 is 

then 

𝑚	 = 〈𝑀<〉 =
1
T ∫ 𝑀 𝑐𝑜𝑠 𝜃 𝑒O*&78"R 𝑠𝑖𝑛 𝜃 𝑑𝜃Q

% 																															 (3.9) 

	= 𝑀𝑐𝑜𝑡ℎ(𝛽𝐻𝑀)− 1
O*
																																																				 (3.10) 

= 𝑀𝐿(𝛼),																																																																 (3.11) 
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where 𝐿(𝛼) is the Langevin function defined by 𝐿(𝛼) = 	 𝑐𝑜𝑡ℎ(𝛼)−	1/ 𝛼 with 𝛼 = 𝛽𝐻𝑀. 

In the limit 𝐻 → ∞ or 𝑇 → 0, 𝐿(𝛼) → 1 and thus 𝑚 → 𝑀. In the other extreme, 𝐻 → 0 or 

𝑇 → ∞ , 𝐿(𝛼) → 0 and thus 𝑚 → 0. 

If 𝑐 ∥ 𝑧, then the anisotropy energy with anisotropy coefficient 𝐾 can be approximated (to 

the second order) as 

𝐸 = 𝐾𝑀<
+ = 𝐾𝑀+𝑐𝑜𝑠+𝜃.																																																		(3.12) 

For the easy axis parallel to 𝐻, the expectation value of the anisotropy energy is 

𝐸∥ =
1
T ∫ 𝑑𝜑+Q

% ∫ 𝐾𝑀+𝑐𝑜𝑠+𝜃𝑒O*& 78" R 𝑠𝑖𝑛 𝜃 𝑑𝜃Q
% 																													(3.13) 

= 	+V
(O*)#

+ 𝐾𝑀+ − 	+V&78/S(O*&)
(O*)#

																																										(3.14) 

= 𝐾𝑀+ − 	+V
O*
𝑚																																																								(3.15) 

For the easy axis perpendicular to 𝐻, the expectation value of the anisotropy energy is 

𝐸W =
1
T ∫ ∫ 𝐾𝑀+𝑠𝑖𝑛+𝜃𝑐𝑜𝑠+𝜑𝑒O*& 78" R 𝑠𝑖𝑛 𝜃 𝑑𝜑𝑑𝜃Q

%
+Q
% 																					  (3.16) 

= V&78/S(O*&)
O*

− V
(O*)#

= V
O*
𝑚.																																													(3.17) 

The effective anisotropy energy is therefore 

∆𝐸 = 𝐸∥ − 𝐸W = 𝐾𝑀+ − 2V
O*
𝑚.																																												 (3.18) 

To eliminate 𝐻, we solve the transcendental equation [Eq. 3.10] for 𝐻, by rewriting as 

𝜇 = 𝑐𝑜𝑡ℎ(𝛼) − 1
M
																																																											(3.19) 

where 𝜇 = 𝑚 𝑀⁄ . One finds solutions for 𝜇 → 0 and 𝜇 → 1 by interpolating between the 

two: 
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𝛼 = 𝜇 g2 − 𝜇 + 1
10X

h																																																							(3.20) 

𝐻 = Y
O&# g2 −

Y
&
+ &

&0Y
h																																																			(3.21) 

∆𝐸 = 𝐾𝑀+ − 3𝐾 &#

+0&'N
'

'(&

																																											      (3.22) 

= 𝐾𝑚+ &#

2&#02&YNY#																																																								 (3.23) 

Note that ∆𝐸 → 𝐾𝑚+ at 𝑇 = 0, where 𝑚 = 𝑀, and ∆𝐸 → 𝐾𝑚+ at 𝑇 = 𝑇!.  

Finally,	𝑀𝐴𝐸. can now be written as 

	𝑀𝐴𝐸.(𝑇) = 𝐾.𝑀.
+(0) &)

#(5)
2&)

#(5)02&)(5)&)(%)N&)
#(%)

,																													 (3.24) 

where 𝑀. and 𝐾. are the magnetic moments and the 2nd order anisotropy coefficients for 

the two atoms and sublattices (i = Mn, Tb), respectively. The temperature dependence for 

𝑀&' and 𝑀56 are shown in Fig. 3.7(b), produced by fitting Brillouin curves, as shown in 

Fig. 3.8, with the form 𝑎[1	 −	(𝑇 𝑇!⁄ )6]7 where 𝑇! 	=	423 K, to experimental data from 

a previous neutron powder diffraction study by Malaman et al. [14]. 

By equating ℋA'." [Eq. 3.5] using the derived expression for	𝑀𝐴𝐸. [Eq. 3.24] to 

the single-site Zeeman energy at 𝐻	 = 𝐻"# given by 

ℋ<ZZYA'(𝑇, 𝐻"#) = [𝑀56(𝑇) − 6𝑀&'(𝑇)]𝜇B𝜇%𝐻"#(𝑇),																     (3.25) 

a fitted curve for 𝐻"#(𝑇) separating the two distinct FiM phases in YMn6Sn6 is generated 

in Fig. 3.7(a) with 𝐾&' = −	8.96 x 10-2 meV /	µ[+  and 𝐾56 = 0.136 meV / µ[+ . The 

negative(positive) sign of 𝐾&'(𝐾56) indicates that the Mn-(Tb-) sublattice favors the easy-

magnetization direction along the plane (c-axis) likely due to hexagonal crystal field 

splitting on the 3d-(4f-)orbital kagome (triangular) lattice. Moreover, because Tb3+ is a 
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heavier ion, the magnitude of 𝐾56 is significantly larger than 𝐾&', thereby contributing 

greater to ℋA'." for a given 𝑀.. Therefore, the remarkable agreement of the fitted curve 

[Fig. 3.7(a)] with the experimental data reveals that the spin-reorientation magnetic phase 

diagram is quantitatively described by the temperature dependencies of 𝑀&' and 𝑀56 [Fig. 

3.7(b)]. The calculated values for 𝑀𝐴𝐸&' and 𝑀𝐴𝐸56 as functions of temperature are 

shown in Fig. 3.7(b). Akin to 𝑀&' and 𝑀56, respectively, 𝑀𝐴𝐸&'  remains relatively 

constant from around 300 K down to zero temperature whereas 𝑀𝐴𝐸56 dramatically 

increases with decreasing temperature. At 𝑇"#, 𝑀𝐴𝐸&' ≈ −	𝑀𝐴𝐸56, revealing that the spin 

reorientation transition in zero-field occurs when the two competing anisotropy energies 

of the two sublattice FiM system cancel out. In ground state, 𝑀𝐴𝐸&'(0) ≈ −	0.47 meV 

per Mn and 𝑀𝐴𝐸56(0) ≈ 10.0 meV per Tb. To understand the contributions of Heisenberg 

exchange and single-site anisotropy terms within 𝑀𝐴𝐸&', we compare with the YMn6Sn6 

compound. As previously demonstrated, the estimated magnetic anisotropy for YMn6Sn6 

in ground state was estimated to be 𝑀𝐴𝐸&'(0) ≈ − 0.12 meV per Mn atom. By assuming 

the single-site anisotropy on Mn- and Tb-sublattices coexist independently, the larger 

magnitude and sign of 𝑀𝐴𝐸&' for TbMn6Sn6 likely arises from the necessary 

𝐽&'056	component [Fig. 1.8(a)]. 
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Figure C.7: Magnetic Anisotropy Analysis for TbMn6Sn6. (a) Magnetic phase diagram for 
the spin-reorientation transition. Positive values for μ0Hsr correspond to H ⊥ c whereas 
negative values correspond to H ∥ c. The fitted curve with KMn = - 8.96 x 10-2 meV / μB2 
and KTb = 0.136 meV / μB2 is overlayed on top of the experimental values. The dashed 
vertical line represents the zero-field spin reorientation transition temperature Tsr. (b) 
Temperature dependence of the magnetic moments on Mn and Tb [MMn(0) ≈ 2.29 μB and 
MTb(0) ≈ 8.57 μB] and magnetic anisotropy energies for the Mn- and Tb-sublattices 
[MAEMn(0) ≈ - 0.47 meV per Mn and MAETb(0) ≈ 10.0 meV per Tb]. 
 
 
 

 
Figure C.8: Fit of Brillouin curves (solid lines) to experimental data (points) for the 
temperature dependence on the magnetic moments on Mn and Tb obtained from a previous 
neutron powder diffraction study by Malaman et al. [14]. 
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D Chapter 4: Magnetotransport Properties of YMn6Sn6 and TbMn6Sn6 aaa 

The electrical resistivity 𝜌 and conductivity 𝜎 for a given material are intrinsic 

properties which measure how a material resists and conducts electrical current, 

respectively. When 𝜌 in a material is dependent on direction, it can be described by the 

tensor form of Ohm’s law 𝐸y⃗ . =	𝜌.\𝐽. 	(𝑖 = 𝑥, 𝑦, 𝑧), written in matrix form as 

{
𝐸$
𝐸(
𝐸<
| = 	 }

𝜌$$ 𝜌$( 𝜌$<
𝜌($ 𝜌(( 𝜌(<
𝜌<$ 𝜌<( 𝜌<<

~ {
𝐽$
𝐽(
𝐽<
|,																																									     (4.1) 

where 𝐸y⃗ . is the electrical field vector, 𝜌.\ is the resistivity tensor, and 𝐽. is the electrical 

current density vector. 𝜎 is similarly described by 𝐽. =	𝜎.\𝐸y⃗ . (𝑖 = 𝑥, 𝑦, 𝑧), written in matrix 

form as 

{
𝐽$
𝐽(
𝐽<
| = 	 }

𝜎$$ 𝜎$( 𝜎$<
𝜎($ 𝜎(( 𝜎(<
𝜎<$ 𝜎<( 𝜎<<

~ {
𝐸$
𝐸(
𝐸<
|,																																														(4.2) 

where 𝜎.\ is the conductivity tensor. Let us assume the electrical field in the	𝑧-direction 

𝐸< = 0, which yields from Eq. 4.1 and 4.2: 

𝐸$ = 𝜌$$𝐽$ + 𝜌$(𝐽( 																																																							(4.3) 

𝐸( = 𝜌($𝐽$ + 𝜌((𝐽( 																																																							(4.4) 

𝐽< = 𝜎$$𝐸$ + 𝜎$(𝐸( 																																																					 (4.5) 

𝐽( = 𝜎($𝐸$ + 𝜎((𝐸( 																																																						(4.6) 
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Assuming an isotropic material, 𝜌$$ = 𝜌(( and 𝜌($ = −𝜌$(, which plugged into Eqs. 4.3-

4.6 yields the expressions relating 𝜌.\ 	and 𝜎.\: 

𝜎$$ 	= 	
]!!

]!!# N]*!#
																																																								       (4.7) 

𝜎$( 	= 	
]*!

]!!# N]*!#
																																																																(4.8) 

 

1.10 Magnetoresistance Measurements 

Magnetoresistance is a measure that describes a materials response to changes in 

electrical resistance in response to an externally applied field 𝐻. When the electrical current 

is along the 𝑥-direction 𝐼$ with electrical field 𝐸$ and the field is along the 𝑧-direction 𝐻<, 

magnetoresistance 𝑀𝑅 is quantitatively defined as 

𝑀𝑅(𝐻<) =
]!!(*%)0]!!(%)

]!!(*%)
× 100	%,																																									 (4.9) 

which can be calculated in a material using the experimental setup in left of Fig. 2.6(b) 

where 𝜌$$ was given by Eq. 2.4. 

The 𝐻 dependence of 𝑀𝑅 up to 9 T with H ∥ c and I ⊥ 𝑐 for YMn6Sn6 is shown in 

Fig. 4.1(a). At 300 K,	𝑀𝑅 is only negative for the entire field regime. Upon cooling to 250 

K, 𝑀𝑅 starts to become positive at low fields, where at 80 K, it becomes only positive for 

the entire field regime. At 2 K, the positive 𝑀𝑅 behavior becomes present only at low 𝐻 

while the negative 𝑀𝑅 behavior becomes very large 𝐻 (close to - 12 % at 9 T). The 𝐻 

dependence of 𝑀𝑅 up to 9 T with H ∥ c and I ⊥ 𝑐 for TbMn6Sn6 is shown in Fig. 4.1(b). 

At 100 K, 𝑀𝑅 is negative at large 𝐻, while at lower temperatures, 𝑀𝑅 becomes both large 
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and positive with a transition from negative and positive between 70 and 100 K. This large 

and positive behavior at low temperatures (close to +	70 % at 1.8 K and 9 T) is distinct 

from the non-magnetic rare-earth YMn6Sn6 compound [Fig. 4.1(a)]. 

 

 

 
Figure D.1: Magnetoresistance in YMn6Sn6 and TbMn6Sn6. External field dependence of 
magnetoresistance 𝑀𝑅 for (a) YMn6Sn6 and (b) TbMn6Sn6 with H ∥ c and I ⊥ c. The inset 
for (a) shows 𝑀𝑅 at 100 K displays a “butterfly” effect in TbMn6Sn6 up to some field Hb 
where MR is positive when the field is increasing towards Hb and negative above. 
 
 
 

To predict the underlying physics leading to the large and positive behavior in 𝑀𝑅 

in TbMn6Sn6, let’s consider how the magnetic moments on Tb and Mn atoms change with 

temperature in Fig. 3.8. The magnetic moments on the Tb atoms are greatly enhanced when 

decreasing temperature while the magnetic moments on the Mn atoms stay relatively 

constant [Fig. 3.8]. Assuming the itinerant electrons predominantly reside on the Mn-
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kagome lattices when the current is perpendicular to the c-axis [Fig. 2.6], the enhanced 

state on the Tb atoms provides a larger induced magnetic field on the Mn-sublattice. This 

increased magnetic field likely shrinks the localized wave functions of the itinerant 

electrons and increases their hopping lengths, thereby increasing electron scattering and 

generating positive	𝑀𝑅 at lower temperatures, a characteristic of a strongly metallic system 

[37]. Since the Y-sublattice in YMn6Sn6 does not provide this large induced magnetic field 

on the Mn-sublattice as the Y atoms are effectively non-magnetic, the distinctly large and 

positive behavior is nonexistent in YMn6Sn6 [Fig. 4.1(a)]. 

 

1.11 Hall Measurements 

For steady-state flow of electrons (or holes) in the 𝑥-direction, the net force on 

electrons (or holes) in the 𝑦-direction is balanced out by an induced electrical field 𝐸y⃗(, 

caused by transverse charge accumulation and the Lorentz force from 𝐵y⃗ < [26], given as 

�⃗�( = 𝑒𝐸y⃗ ( + 𝑒�⃗�$ × 𝜇%𝐻yy⃗ < 	= 	0,																																										(4.10) 

where 𝑒 is the electrical charge and �⃗�$ is the electron drift velocity in the 𝑥-direction. 

Rearranging Eq. 4.10 gives 𝐸( = 𝑣$𝜇%𝐻< . Let us now consider measuring the Hall voltage 

𝑉( [right of Fig. 2.6(b)], across a segment in the y-direction of width 𝑤. Since we know 𝐸(, 

the Hall voltage can be written as 

𝑉( = 𝑤𝐸( = 𝑤𝑣$𝜇%𝐻< .																																																	(4.11)   

Assuming a Fermi gas, the current along the x-direction 𝐼$, can also be written as  

𝐼$ = 𝑛𝐴$𝑣$(±𝑒) = 𝑛(𝑡𝑤)𝑣$(±𝑒),																																						(4.12)   
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where 𝐴$ is the cross-sectional area normal to the 𝑥-direction, 𝑛 is the number of charge 

particles per unit volume (charge carrier density), 𝑡 is the thickness of the sample along the 

𝑧-direction, and ± denotes whether the charge carriers are holes or electrons, respectively. 

Eq. 4.11 can now be rewritten as 

𝑉( = (± 1
'Z
) X+*%?!

/
= ?!

/
𝑅*𝜇%𝐻< ,																																									(4.13)      

where 𝑅* = ±1/𝑛𝑒 is known as the Hall coefficient, thereby the sign of 𝑅*, and thus the 

polarity of 𝑉(, can reveal the sign of the charge carriers. 

By virtue of Ohm’s law, the Hall resistance can be written as 

𝑅($ =
>*
?!
,																																																															(4.14) 

which can be calculated for a material using the experimental setup illustrated in Fig. 4.2.  

The Hall resistivity 𝜌($ can therefore be calculated from experiment using 

𝜌($ = 𝑡𝑅($ = 𝑡 >*
?!
,																																																				 (4.15)   

which also can be written as a function of the applied field 𝐻 by plugging in Eq. 4.13: 

𝜌($ = 𝑅*𝜇%𝐻< .																																																									(4.16)    

In FM conductors, an additional contribution to the Hall resistivity 𝜌($, termed the 

anomalous Hall resistivity 𝜌($)*, is present as a nonzero Hall voltage 𝑉( is observed in the 

absence of an applied field 𝐻<. This phenomenon is referred to as the anomalous Hall effect 

(AHE) [27]. An empirical relation established that 𝜌($)* proportional to the sample 

magnetization along the 𝑧-direction 𝑀< [39]: 

𝜌($)* = 𝑅^𝜇%𝑀< ,																																																								(4.17) 
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where 𝑅^ is the anomalous Hall coefficient. Summing Eq. 4.17 to the “normal” Hall effect 

contribution in Eq. 4.16, the total Hall resistivity can now be rewritten in total as  

𝜌($ = 𝑅*𝜇%𝐻< + 𝜌($)* = 𝑅*𝜇%𝐻< + 𝑅^𝜇%𝑀< .																										 (4.18) 

The two competing theories for the origins of the AHE are the extrinsic and intrinsic 

mechanisms [27]. The extrinsic mechanisms are termed side jump, where an impurity 

generates a lateral displacement of the electron perpendicular to its wavevector and spin, 

and skew-scattering, where an impurity causes SOC to break left-right symmetry. The 

intrinsic mechanism has been interpreted as electrons acquiring an “anomalous velocity” 

contribution to their group velocity perpendicular to an electric field [28]. This “anomalous 

velocity” depends only on the Hamiltonian of the perfect crystal and to non-zero Berry 

curvature effects [see Appendix A.5: Intrinsic Anomalous Hall Effects]. To predict these 

leading intrinsic and extrinsic contributions to the AHE, 𝜌($)* can be approximately 

separated into the following scaling relations connected to 𝜌$$ [23]: 

𝜌($)* = 𝜌($,Z$/)* + 𝜌($,.'/)* = �𝑎"_𝜌$$,% + 𝑏"\𝜌$$,%+ � +	𝜎$(,.'/)* 𝜌$$+ 														 (4.19) 

where 𝜌($,Z$/)*  and 𝜌($,.'/)*  are the extrinsic and intrinsic components of 𝜌($)*, respectively. 

For the extrinsic component in Eq. 4.19, 𝜌$$,% is the residual component of 𝜌$$ caused by 

crystal defects and 𝑎"_ and 𝑏"\ are the material-dependent scaling constants for the 

extrinsic skew-scattering and side-jump mechanisms, respectively. The intrinsic 

component in Eq. 4.19 is scaled with 𝜌$$+  by 𝜎$(,.'/)* . 

The external field 𝐻 dependence of the Hall resistivity 𝜌($ for TbMn6Sn6 is shown 

in Fig. 4.4(a) with H ∥ c and I ⊥ c. As temperature is increased, the saturated 𝜌($ is 
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exponentially increased. Below around 100 K, 𝜌($ is nearly linear with 𝐻 while between 

100 and 220 K, 𝜌($ exhibits a hysteresis curve. 𝜌($ overlayed with magnetization 𝑀 with 

𝐻 ∥ 𝑐 is shown for 2 and 100 K in Fig. 4.4(b). At 100 K, 𝜌($ closely following the 

hysteresis in 𝑀 with 𝐻 ∥ 𝑐. However, this is not the case at 2 K, as no hysteresis is present 

in 𝜌($, thereby not following M with 𝐻 ∥ 𝑐. Since the anomalous Hall resistivity 𝜌($)* is 

conventionally defined proportional to 𝑀< [Eq. 4.17], some additional mechanism is likely 

present which cancels out the intrinsic AHE, such as a possible leading negative extrinsic 

contribution.  

To investigate the separate intrinsic and extrinsic contributions in TbMn6Sn6, 𝜌($)* 

is plotted against 𝜌$$+  in Fig. 4.3(a) where 𝜌($)* is extracted from 𝜌($ using Eq. 4.18. At 

temperatures above 100 K [Fig. 4.3(a)], 𝜌($)* decreases smoothly with decreasing 𝜌$$+ , 

while at and below 100 K, 𝜌($)* deviates from this smooth behavior and remains near a 

magnitude of 10-1 Ω cm. Since extrinsic effects in materials are generally thermally 

saturated out at elevated temperatures, the transition at 100 K upon increasing temperature 

is likely a transition from a leading extrinsic to intrinsic contribution in the AHE. Using 

Eq. 4.19, 𝜎$(,.'/)*  can be approximated within the high temperature regime as 𝜌$$,% → 0 

[Fig. 4.3(b)], yielding 𝜎$(,.'/)* ≈ 96.6 Ω01 cm-1 = 0.06 e2/h per kagome layer, which is ~ 

40 % of the value calculated by Yin et al. [1]. However, as can be seen in Fig. 4.3(b), the 

high temperature regime is not truly linear and thus 𝜎$(,.'/)*  is temperature dependent. Since 

𝜎$(,.'/)*  arising from a field induced topological Chern gap (and hence 𝛥 and	𝐸`) is generally 

temperature independent in materials [see Appendix A.4: Topological Chern Gap State], 
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the leading intrinsic contribution may arise elsewhere within the electronic structure of 

TbMn6Sn6 and thus requires further investigation. 

 

 

 
Figure D.2: Hall resistivity in TbMn6Sn6. (a) External field H dependence of the Hall 
resistivity 𝜌yx with H ∥ c and I ⊥ c. (b) External field dependence of 𝜌yx overlayed with 
magnetization M with H ∥ c and I ⊥ c between for 2 and 100 K. 
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Figure D.3: Anomalous Hall Analysis in TbMn6Sn6. Square of longitudinal resistivity 
dependence of the anomalous Hall resistivity with H ∥ c and I ⊥ c for in (a) logarithm scale 
and (b) non-logarithm scale for low (< 100 K) and high (≥ 100 K) temperature regimes 
shown in blue and red, respectively.  The dashed line in (b) shows a linear fit through zero 
intercept for the high temperature regime with a slope of ≈ 96.6 Ω-1 cm-1 = 0.06 e2/h per 
kagome layer. 
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E Chapter 5: Summary and Outlook a 

In this master’s thesis project, we have explored the role of the rare-earth elements 

R = Y, Tb on the magnetic and magnetotransport properties within the RMn6Sn6 

compounds using magnetometry and magnetotransport combined with first-principles 

calculations. The framework of this study largely focused on the magnetic rare-earth 

compound TbMn6Sn6 and compared the magnetic and electronic properties to the non-

magnetic rare-earth parent compound YMn6Sn6. Using Sn-flux growth, single crystals of 

YMn6Sn6 and TbMn6Sn6 were successfully grown, exhibiting high metallicity and distinct 

features consistent with transformations to their magnetic structure revealed from 

electronic transport and magnetic susceptibility measurements. By considering a simplified 

description of the collinear configuration on magnetic anisotropy energy, by lumping the 

Heisenberg exchange and single-site anisotropy terms, we demonstrated that how the spin-

reorientation magnetic phase diagram for TbMn6Sn6 is quantitatively described by the 

temperature dependencies of magnetic moments on the Mn- and Tb-sublattices. An 

enhanced magnetic state on Tb at low temperatures leads to a strong out-of-plane 

magnetization which likely enhances the stability of the intrinsic topological Chern gap 

state previously observed by Yin et. al. [1]. To explore to what extent this above-mentioned 

magnetic state of Tb affects the electronic properties in TbMn6Sn6, especially near the 

Fermi surface, magnetotransport measurements were performed on YMn6Sn6 and   
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TbMn6Sn6 with 𝐼 ⊥ 𝑐 and 𝐻 ∥ 	𝑐. By comparing the measured 𝑀𝑅 to that of YMn6Sn6 the 

role of the magnetic rare-earth Tb on the electronic properties was clearly significant low 

temperatures. The negative to large and positive 𝑀𝑅 in TbMn6Sn6 below around 100 K 

was likely attributed to the enhanced magnetic state on Tb at low temperatures. The field 

dependence of 𝜌($ and 𝜌$$+  dependence of 𝜌$()* for TbMn6Sn6 provided evidence of a likely 

dominating extrinsic contribution below 100 K and intrinsic contribution above 100 K not 

governed by a field-induced topological Chern gap. 

Following these key findings from this experimental study on YMn6Sn6 and 

TbMn6Sn6, we now discuss future work to expand this scope to understand role of the rare-

earth elements on the magnetic and magnetotransport properties within the RMn6Sn6 

compounds. Since the RMn6Sn6 compounds are naturally predicted to host Dirac cones, a 

comprehensive ARPES study on YMn6Sn6 and TbMn6Sn6 to identify the location of these 

energy-dependent Dirac cones, as previously done for Fe3Sn2 [8], may provide further 

insight into the intrinsic electronic transport properties of these materials. To determine the 

origin of the leading intrinsic contribution to the AHE in TbMn6Sn6, which may reside 

elsewhere to the K and K’ points, density functional theory (DFT) calculations would 

provide insight into which bands in TbMn6Sn6 reside near the Fermi level and thus 

contribute most to a non-zero Berry curvature. Lastly, in the context of comparing the 

magnetic rare-earth TbMn6Sn6 compound with the non-magnetic rare-earth YMn6Sn6 

compound, doping YMn6Sn6 with Tb at various concentrations would provide further 

detail into the role of the magnetic state of Tb. A previous neutron study by Bykov et. al. 

[29] on the temperature dependence of the Bragg peaks in Y1-xTbxMn6Sn6 (x = 0, 0.2, 
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0.225, 0.25) revealed that the helimagnetic phases in YMn6Sn6 naturally mix with the 

ferrimagnetic (FiM) phases in TbMn6Sn6. Therefore, the scope of this thesis project would 

be expanded by a similar experimental study on single crystals of Y1-xTbxMn6Sn6.  

At a high-level scope, the long-term goal following this project would be to 

construct a comprehensive understanding of the role of the rare-earth elements among the 

nine available RMn6Sn6 compounds. Because of the various magnetic ground states which 

emerge naturally from the interaction between competing interplanar interactions, the other 

RMn6Sn6 compounds provide a unique opportunity to explore both emergent and 

topological properties arising from the interactions between complex magnetism and 

electronic topology. As demand for new frontiers within nanotechnology continues to 

increase over the next decade, engineering components for spin-based electronic devices 

with materials containing unique emergent and topological properties, such as in RMn6Sn6 

compounds, may provide new avenues for innovation. 
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A Appendix: Kagome Lattice Electronic Properties AaaaaaaaaA            

A.1 Tight-Binding Model 

Due to the unique geometry of the kagome lattices, these lattices naturally host 

interesting electronic states. A common approach to visualize the electronic band structure 

for a periodic crystal lattice containing atomic orbitals at its lattice sites is to use a tight-

binding model, which assumes that tightly bound electrons on the lattice can be modeled 

by a simplified quantum mechanical model [30]. Let us consider a Fourier series of Bloch 

functions describing the electronic states for a given periodic lattice with Bravais lattice 

vector 𝑅y⃗ ': 

𝜓_a⃗ ,Y(𝑟) = 	∑ 𝑒._a⃗ ∙3a⃗ ,𝜑Y(' 𝑟 − 𝑅y⃗ '),																																							(A.1) 

where 𝜑Y(A)(𝑟 − 𝑅y⃗ ') is the real space wavefunction localized at 𝑅y⃗ ' with 𝑟 being the 

electron position and 𝑚 being the band index, 𝑘y⃗  is the wavevector of the Bloch’s function, 

and the summation is over all 𝑛 atomic sites [31]. By assuming the 𝑚th band contributes 

greatest to the Bloch states closest to Fermi level, the energy dispersion relation can 

therefore be approximated with Eq. A.1. under the first approximation as 

𝐸�𝑘y⃗ � = ∫𝜓_a⃗ ,Y
∗(𝑟)ℋ(𝑟)𝜓_a⃗ ,Y

∗(𝑟)𝑑2𝑟,																																	(A.2) 

where ℋ(𝑟) is some arbitrary Hamiltonian with 𝑟 dependence. 
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A.2 Monolayer Kagome Lattice 

For a single 2D lattice, let us assume that electrons only hop between nearest-

neighbor (NN) sites, as governed by the Hamiltonian 

ℋS8d,1(�⃗�) = 	−𝑡1 ∑ �𝑐.,X
e 𝑐\,X + 𝑐\,X

e 𝑐.,X�,																																			〈.\〉,X (A.3) 

where 𝑡1	is the NN in-plane orbital hopping strength, 〈𝑖𝑗〉 indexes NN pairs, 	𝜇 is the spin 

polarization, and 𝑐.
e(𝑐\) is the electron creation (annihilation) operator with 𝑐.(𝑐\

e) being 

its Hermitian conjugate. Using ℋS8d,1 [Eq. A.3] as the Hamiltonian in Eq. A.2., the energy 

dispersion relation for the 2D honeycomb lattice [Fig. A.1] and the 2D kagome lattice [Fig. 

A.1] is approximated in Fig. A.2(a) and (b), respectively. For both models, two bands 

emerge (valence on bottom and conduction on top) at the K and K’ points in the first 

Brillouin zone, as shown in Fig. A.2(c), known as Dirac points (DP), forming a Dirac cone 

in (𝑘$,	𝑘(,	𝐸). Because we have a two-band model in the vicinity of the K and K’ points, 

the Hamiltonian in momentum-space ℋ(𝑘y⃗ ) can be approximately described by a two-by-

two Hermitian matrix in terms of the Pauli matrices �⃗�M (𝛼	 = 	𝑥, 𝑦, 𝑧), akin to spin-½ 

particles in a magnetic field, with 𝑧 perpendicular to lattice plane: 

ℋ�𝑘y⃗ � = 𝑑�𝑘y⃗ � ∙ 𝜎M = 𝑑$�𝑘y⃗ ��⃗�$ 	+ 	𝑑(�𝑘y⃗ ��⃗�( 	+ 	𝑑<�𝑘y⃗ ��⃗�<	,																						(A.4)                                           

where 𝑑(𝑘y⃗ ) defines a mapping of the 𝑘$-𝑘( plane to a Bloch unit sphere with unit vector 

𝑑��𝑘y⃗ � = 𝑑�𝑘y⃗ �/�𝑑�𝑘y⃗ ��. By expanding around the K and K’ points, ℋ(𝑘y⃗ ) for Dirac fermions 

has been shown to be described by the following Hamiltonian [32]: 

ℋ(𝑘y⃗ ) = 	𝑣`(𝑘$𝜏<𝜎$ + 𝑘(𝜎(),																																														(A.5)                                   
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where 𝑣` = √3𝑎%𝑡1/2	 is the Fermi velocity with 𝑎% being the distance between NN sites 

and 𝜏< = ± is a pseudo spin-variable denoting whether described Hamiltonian is centered 

at the K or K’ points defined at (𝑘$ , 𝑘() = (	±4𝜋/3𝑎%, 0) [Fig. A.2(c)]. The eigenvalues 

for this expression [Eq. A.5] yield a linear approximation for the dispersion relation close 

to the DP: 

 𝐸(𝑘h) ≈ 	𝐸i ± ℏ𝑣`𝑘h = ±ℏ𝑣`𝑘h,																																									(A.6)                                     

where the energy at the DP is given by 𝐸i = 𝐸 = 0 with 𝑘h = 𝐾(𝐾′) + 𝑘 being the 

wavevector approximated near the DP. The significance of the DP is that it denotes the 

point where the energy of the valence and conduction bands equal, causing electrical 

conduction at this point to be described by the movement of massless Dirac fermions [33]. 

Similarly, for the kagome lattice model [Fig. A.2(b)], the same two bands as in the 

honeycomb lattice with this DP also appear, due to the same point symmetry of the 

hexagons, but because of the additional equilateral triangles, a flat band (FB) also appears. 

The first Brillouin zone for the kagome lattice model is shown in Fig. A.2(c), illustrating 

the DPs at the hexagon corners. The mechanism behind the FB within the context of the 

NN tight-binding model is attributed to destructive quantum interference of the 

superimposed wavefunctions at the M-points in the hexagonal Brillouin zone ensuing from 

the unique geometry of the kagome lattice [34]. Consequently, electrons become localized 

within the hexagon of the kagome lattice with an infinite effective mass, leading to 

increased electronically correlated phenomenon. For example, when the FB is partially 

filled, fractional quantum Hall states can emerge as these localized electrons can mimic 

Landau levels, as in the case of twisted bilayer graphene [35]. 
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Figure A.1: Two-dimensional (2D) kagome lattice in black overlayed with the 2D 
honeycomb lattice in blue. The black dotes denote the atomic sites of the kagome lattices. 
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Figure A.2: Simple tight-binding model with nearest-neighbor hopping for a single layer 
of the honeycomb and kagome lattices with t1 = 1 (arbitrary units). (a) Honeycomb lattice 
calculated band structure. The points at which the top and bottom bands touch at ED = 0 
are the Dirac points (DP). (b) Kagome lattice calculated band structure (shifted to ED = 0). 
The additional band at the bottom is the Flat band (FB). (c) Energy density plot for the top 
band in (b). The dashed line illustrates the hexagon shape of the first Brilluion zone, and 
the black dots denote the DPs which exist at the K and K’ points. 
 
 
 
A.3 Bilayer Kagome Lattice 

For the bilayer kagome lattice, illustrated by overlaying two cryptographically 

equivalent 2D kagome lattices along the c-axis in Fig. A.3, let us assume that electrons can 

hop between NN sites within the lattices as well as between vertically displaced sites as 

governed by the Hamiltonian 

ℋ+,(,-(𝑟) = 	−𝑡1 ∑ 5𝑐.,&,𝜇
/ 𝑐.,',𝜇 + 𝑐.,',𝜇

/ 𝑐.,&,𝜇7 − 𝑡2 ∑ 5𝑐0,&,𝜇
/ 𝑐-,&,𝜇 + 𝑐-,&,𝜇

/ 𝑐0,&,𝜇7.,&,𝜇.,〈&'〉,𝜇 ,		(A.7) 

where 𝑡1 and 〈𝑖𝑗〉 are the NN orbital hopping strength and index pairs within the planes of 

the layers, repsectively, 𝑡+ is the orbital hopping strength between vertically displaced sites 
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of the layers, and	𝑚	 = 1,2 is the layer index. Using ℋS8d.+ [Eq. A.5] as the Hamiltonian 

in Eq. A.2., the energy dispersion relation can be approximated for the bilayer kagome 

lattice in Fig. A.4(a). Compared to the single layer kagome lattice model [Fig. A.2(b)], the 

band structure is now doubled and split by ±𝑡+ [Fig. A.4(a)] due to bonding-antibonding 

splitting of order	𝑡+ between NN orbitals on the vertically displaced sites, similar to the 

case of AA-stacked bilayer graphene [36]. The Dirac cones of each band structure overlap 

into a Dirac circle (DC) separated by ∆𝐸i 	= 	𝐸i,+ − 𝐸i,1 = 2𝑡+ with its midpoint at 𝐸i,  

[Fig. A.4(c)]. The lower band structure is the bonding structure centered at 	𝐸 − 𝐸i, =

𝐸i,1 [Fig. A.4(b)] and the upper band structure is the antibonding structure centered at 𝐸 −

𝐸i, = 𝐸i,+ [Fig. A.4(d)]. The energy dispersions near 𝐸i,1 and 𝐸i,+ for each Dirac cone 

can be individually approximated using Eq. A.4 with 𝐸i =	𝐸i,1 = −𝑡+ or 𝐸i = 𝐸i,+ =

+𝑡+. 

 

 

 
Figure A.3: 3D illustration of the bilayer kagome lattice where two 2D kagome lattices are 
stacked along the c-axis. The vertical dashed arrow shows hopping path between a 
vertically displaced site with orbital hopping strength t2. 
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Figure A.4: Simple tight-binding model with nearest-neighbor hopping (arbitrary units) 
for a bilayer kagome lattice with t2 = 1 and t2 = 0.15. (a) Calculated band structure where 
orange and blue represent the lower and upper bands, respectively. (b) Energy filled up to 
the lower Dirac point at E - EDC = ED,1 = -t2. (c) Energy filled up to the midpoint between 
the lower and upper Dirac points at E - EDC = 0 within the Dirac circle. (d) Energy filled 
up to the upper Dirac point at E - EDC = ED,1 = +t2. 
 
 
 
A.4 Topological Chern Gap State 

When spin-orbit interactions within a kagome lattice system become significant, a 

magnetized Dirac fermion with an out-of-plane component can induce a topological Chern 

gap at the K(K’)-points [37]. To understand this effect, we revise our simple NN tight-

binding Hamiltonian ℋS8d,1 [Eq. A.3] [38] for the case of ferromagnetism along the 𝑧-

direction, thereby breaking time-reversal symmetry:  

ℋS8d,↑(𝑟) 	= 	−𝑡1∑ 𝑐.,↑
e 𝑐\,↑〈.\〉 ,																																														(A.8) 

where ↑ denotes the spin polarization along 𝑧. We next introduce the effect of SOC by 

considering the Kane-Mele model with SOC-induced hopping between the next-nearest-
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neighbors (NNN) [39], which effectively breaks SU(2) symmetry for the spin-polarized 

case. The Hamiltonian for the Kane-Mele SOC is given by 

ℋ^m,(𝑟) = 	𝑖 ∑ 𝜆𝑣.\(𝑐.↑
e 𝑐\↑ − 𝑐.↓

e 𝑐\↓),⟨.\⟩ 																																				(A.9) 

where 𝜆 is the Kane-Mele SOC strength and 𝜆𝑣.\ = (𝐸y⃗ .\ ×	 �⃗�.\) ∙ 𝑆< =	
+q
√2
(𝑑�. × 𝑑�\) ∙ 𝑆<	 

with	𝐸y⃗ .\ being the electric field of the NNN hopping path, �⃗�.\ being the NNN hopping path 

velocity vector, 𝑆<	being the spin vector of the electron with 𝑧 polarization, and 𝑑�.(𝑑�\) 

being the unit vector at site 𝑖(𝑗). For an electron with its spin perpendicular to the kagome 

plane (𝑆< ≠ 0), ℋ^m,  therefore generates a pertubation to the original electronic band 

structure [Fig. A.2(b)]. Conversely, when the lattice magnetic moment 𝑚yy⃗  lies within the 

plane (𝑚yy⃗ ∙ �̂� = 0), ℋ^m, = 0 (since 𝑆< = 0). A conceptual illustration on the Kane-Mele 

SOC model is shown in Fig A.5. 

 

 

 
Figure A.5: Conceptualization of the Kane-Mele spin-orbit coupling (SOC) model. (a) In a 
classical picture, as an electron hops from site i to a next-nearest-neighbor (NNN) site j, it 
feels an effective electric field Eij induced by the positive charge via columbic potential on 
the nearest-neighbor (NN) site. This produces an effective magnetic field Bz in the rest 
frame of the electron which couples with the spin vector of the electron Sz via SOC. (b) 
The SOC interaction can also be written in terms of the hopping unit vectors di and dj. 
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By using ℋS8d,↑ +ℋ^m,  [Eq. A.8 and A.9] as the Hamiltonian in Eq. A2., the 

energy dispersion relations for the monolayer and bilayer kagome lattices now effectibely 

opens energy gaps at the Dirac points as shown in Fig. A.6. Because of the spin-polarized 

Kane-Mele SOC effect [Eq. A.9], this pertubation is equivalent to the relativistic Dirac 

fermions aquiring a mass term. Eq. A.5 can now be rewritten [40]: 

ℋ(𝑘y⃗ ) = 	𝑣`(𝑘$𝜏<𝜎$ + 𝑘(𝜎$) + 𝑚𝜎< ,																																				(A.10)             

The eigenvalues for this expression [Eq. A.10] yield a non-linear approximation for the 

dispersion relation close to the DP which has the form of a relavitistic particle: 

  𝐸(𝑘′) ≈ 𝐸i ± �(ℏ𝑘′𝑣`)+ + (𝑚∗𝑣`+)+,																																				(A.11)                               

where 𝑚∗ = 	2𝜆 𝑐𝑜𝑠 𝜃/√3𝑎%+𝑡1+ is the effective mass of the Dirac fermion with 𝜃 being 

the angle 𝑚yy⃗  make with the 𝑧-axis. Let ∆	= 2𝑚∗𝑣`+ 	= 	4√3𝜆 𝑐𝑜𝑠 𝜃	be the energy band gap 

associated with the aquired mass 𝑚∗ from the Kane-Mele SOC effect approximated to 

behave like a classical particle. Hence, only when 𝑚yy⃗  is out-of-plane (𝜃	 ≠ 	𝜋 2⁄ ) can the 

band gap be opened by the spin-polarized Kane Mele SOC effect. Eq. A.10 can 

alternatively be written: 

 ℋ(𝑘y⃗ ) = 	𝑣`(𝑘$𝜏<𝜎$ + 𝑘(𝜎$) + ∆𝜎<𝜏< ,																																			(A.12)                        

which yields eigenvalues of similar for to Eq. A.11: 

𝐸(𝑘′) ≈ 𝐸i ±�(ℏ𝑘′𝑣`)+ + (∆/2)+,																																							 (A.13)                        

For the case of the bilayer kagome lattice, Eq. A.11 and A.13 can be used to approximate 

near 𝐸i =	𝐸i,1 = −𝑡+ or 𝐸i = 𝐸i,+ = +𝑡′ as shown in Fig. A.6(c) and (d).  
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Figure A.6: Band structure for a Dirac fermion acquiring mass for monolayer and bilayer 
kagome lattices with t1 = 1 (arbitrary units). (a) Calculated band structure near the Dirac 
point energy ED = 0 for a massless Dirac fermion (m* = 0) in a single layer kagome lattice. 
(b) Calculated band structure near ED = 0 for a Dirac fermion with an acquired mass (m* ≠ 
0) in a single layer kagome lattice. (c) Calculated band structure near the Dirac point 
energies ED,1 = -t2 and ED,2 = +t2 for a massless Dirac fermion (m* = 0) in a bilayer kagome 
lattice where t2 = 0.15 and orange and blue represent the lower and upper bands, 
respectively. (d) Calculated band structure near ED,1 = -t2 and ED,2 = +t2 for a Dirac fermion 
with an acquired mass (m* ≠ 0) in a bilayer kagome lattice. 
 
 
 

The spin-polarized SOC-induced bandgap is also considered a Chern gap because 

it generates a topologically invariant when time-reversal symmetrty is broken called the 

Chern number 𝐶 ∈ ℤ, which characterizes a distinctive state robust against small 

pertubations [41]. Recall that we defined a vector 𝑑(𝑘y⃗ ) which maps the 𝑘$-𝑘( momentum 

plane to a Bloch unit sphere with unit vector 𝑑��𝑘y⃗ � = 𝑑�𝑘y⃗ �/�𝑑�𝑘y⃗ ��. Since we now consider 

a mass pertubation [Eq. A.10], we can use the following expression to describe the mapping 

[42]: 

𝑑#𝑘%⃗ & 	= #𝑡0∑ 𝑐𝑜𝑠(𝑘%⃗ ∙ �⃗�3)3 𝑑24 , 𝑡0∑ 𝑠𝑖𝑛(𝑘%⃗ ∙ �⃗�3)3 𝑑25 , −2𝜆𝑐𝑜𝑠𝜃 ∑ 𝑠𝑖𝑛(𝑘%⃗ ∙ 𝑏%⃗3)3 𝑑26&.		(A.14) 
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where �⃗�O 	and 𝑏y⃗O are the NN and NNN hopping vectors on the kagome lattice (𝛽 = 	1, 2, 3), 

resepectively.The topological index for this representation via Chern number is calculated 

by the number of times 𝑑��𝑘y⃗ � wraps around the mapped Bloch unit sphere over the entire 

first Brilluion zone (BZ): 

𝐶 = 	 1
sQ ∫ 𝑑𝑘� � t:

u

t_!
× t:u

t_*
� ∙ 𝑑�	

BT .																																									(A.15) 

In the abesnce of the Chern gap (𝜆 = 0 or 𝜃 = 𝜋 2⁄ ), the Chern number is calculated to be 

𝐶 = 	0 for both the lower (+𝑑�) and upper (−𝑑�) Dirac bands. When the Chern gap is present 

(𝜆 ≠ 0 and 𝜃 ≠ 𝜋 2⁄ ), however, the lower (+𝑑�) and upper (−𝑑�) Dirac bands yield 𝐶 = +1 

and −1, which therefore describes topologically invariant phase. 

 

A.5 Intrinsic Anomalous Hall Effects 

Let us consider an electron wave packet centered at 𝑟7 at a given time 𝑡. The 

“anomalous velocity” contribution to the Bloch electron group velocity �⃗�v can be expressed 

as [47] 

	�⃗�v =
1
ℏ
tx,
t_a⃗
	− :_a⃗ -

:/
× 𝛺y⃗ _% ,																																																(A.16)     

where 𝐸' is energy of the nth band of the unperturbed crystal, :_
a⃗ -
:/
=	−𝑒𝐸y⃗ ( 	− 𝑒

:#⃗-
:/
× 𝜇%𝐻yy⃗ < 

with 𝑘y⃗ 7 being the wavevector of the wave packet at 𝑟7, and 𝛺y⃗ _% is momentum-space Berry 

curvature generated which is proportional to the area in the 𝑘$-𝑘( momentum plane 

enclosed by the generated Berry phase, as conceptualized in Fig. A.7. The first term on the 

right in Eq. A.16 is the standard Bloch band group velocity calculated for the electronic 
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band structure. The second term on the right in Eq. A.16 is the “anomalous velocity”, given 

by − :_a⃗ -,*
:/

× 𝛺y⃗ _%, predicted to generate a non-zero anomalous Hall conductivity 𝜎$(,.'/)*  in 

FM conductors [28]. In the context of the quantum Hall effect for a 2D electron gas, the 

integral of 𝛺y⃗ _%over the first Brilluion zone has been shown to be proportional to 𝜎$(,.'/)*  and 

to be quantized based on the total magnetic-flux quanta per unit cell of the cyclotron orbits 

near a given Landau level [41]. This result was shown semi-classically [44] and can be 

generalized to other systems: 

𝜎$(,.'/)* = − Z#

S
∑ ∫ 𝑑𝑘y⃗ 𝛺y⃗ _%(𝑛, 𝑘y⃗ ).

	
`.99Z:' 																																		(A.17) 

Since the behavior of a material is governed by the collective ensemble of electrons, 

the summation of the Berry curvature over all filled energy bands within the first Brilliuon 

zone is only non-zero (and hence 𝜎$(,.'/)*  is non-zero [Eq. A.17]) if certain symmetries of 

are broken. Fig. A.8, for example, illustrates how breaking both time-reversal and inversion 

symmetry can generate a non-zero total Berry curvature.  
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Figure A.7: Berry curvature conceptualization. (a) A magnetic field in the z-direction Bz is 
generated within the loop enclosed by the charge of the electron traveling in the x-y plane. 
(b) A Berry curvature in the kz-direction 𝛺kz is generated within the loop enclosed by the 
electron traveling in the kx-ky plane with a non-zero Berry phase (adiabatic phase). 
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Figure A.8: Non-zero Berry curvature conceptualization example. (a) Because of the 
preserved inversion and time-reversal symmetries within the kx-ky plane for the spin-up 
(red) and spin-down (blue) electrons bands, the total summation of the Berry curvature 𝛺kz 
from each band 𝑛 is zero. (b) When an applied electric field is induced in the ky-direction 
Eky, inversion symmetry is broken within the kx-ky plane, generating greater values for 
𝛺kz(+ky) than for 𝛺kz(−ky). The total summation of 𝛺kz is still however zero as time-reversal 
symmetry is still preserved. (c) When both Eky and a magnetic field in the kz-direction Bkz	are 
applied, the inversion and time-reversal symmetries within the kx-ky plane for the spin-up 
and spin-down electrons bands are broken. The total summation of 𝛺kz is now non-zero, 
effectively yielding a non-zero intrinsic anomalous Hall conductivity. 
 
 
 

For a system containing Dirac bands, such in a monolayer kagome lattice [Fig. 

A6(a)], breaking time-reversal symmetry with the inclusion of spin-orbit effects generates 

non-zero Berry curvature when the energy bands are only partially filled up within both 

massive Dirac bands [Fig. A.6(b)]. 𝜎$(,.'/)*  for such a system can be regarded as a geometric 
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property connected to the filled energy states in a material connected to 𝑑�(𝑘y⃗ ) [Eq. A.14] 

[41]: 

𝜎$(,.'/)* 	= Z#

S
	∫ 𝑑𝑘� � t:

u

t_!
× t:u

t_*
� ∙ 𝑑�,	

`.99Z: 																																	(A.18) 

where 𝛺y⃗ _% = � t:
u

t_!
× t:u

t_*
� ∙ 𝑑�. In simple terms, 𝜎$(,.'/)*  for a single Dirac fermion can be 

conceptualized as proporitional to the area enclosed by the filled states on the surface of 

the Bloch sphere of 𝑑� . The anomalous intrinsic anomalous Hall conductivity for a 

monolayer kagome lattice 𝜎$(,.'/,1)*  can be therefore described, as illustrated in Fig. A.9, as 

𝜎$(,.'/,1)* 	= |)#0)"|
+Q

Z#

S
 ,                                              (A.19)            

where 𝐴1 and 𝐴+	are the areas enclosed by the lower and upper hemispheres of the Bloch 

unit sphere, which states 𝜎$(,.'/,1)* ≠ 	0	(𝐴+ − 𝐴1 ≠ 	0) when in the presence of the Chern 

gap. When only the lower hemisphere of the Bloch sphere is completely filled (𝐴1 = 2𝜋 

and 𝐴+ = 0), 𝜎$(,.'/,1)* 	takes on the integer 𝑒+ ℎ⁄ = |0 − 2𝜋|/2𝜋 ∙ 𝑒+ ℎ⁄ . The level of the 

filled states of the unit Bloch sphere can also be conceptually regarded as the Fermi energy 

𝐸` or the energy level of the highest occupied state within a material at zero temperature. 

Alternatively,   𝜎$(,.'/,1)* 	can be connected to 𝛥 and 𝐸` [Fig. A.9(c)] by 

𝜎$(,.'/,1)* (𝛥, 𝐸`) =
z +⁄

|x/0x0|
Z#

S
,                                        (A.20) 

for |𝐸` − 𝐸i| ≥ 𝛥 2⁄ . Similar, 𝜎$(,.'/,1)* 	thus takes on the integer 𝑒+ ℎ⁄  when 𝐸` − 𝐸i	is 

filled to the Chern gap (|𝐸` − 𝐸i| = 𝛥 2⁄ ), i.e., only the lower Dirac band is filled (𝐶 =

+1), also known as the integer quantum Hall state [45, 40]. By calculating the total 
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anomalous Hall conductivity 𝜎$()* by magnetotransport, one can therefore theoretically 

probe the intrinsic topological properties within a kagome quantum magnet. 

 

 

 
Figure A.9: Conceptual formulation of the intrinsic anomalous Hall conductivity for a 
single Dirac fermion in a single layer kagome lattice using a Bloch sphere representation 
with t1 = 1 (arbitrary units). (a) Left: Filled states up to the Fermi energy EF = 0.15 for a 
massless Dirac fermion. Right: Corresponding Bloch-sphere representation illustrating that 
the wavefunction of the massless Dirac fermion is confined to the Bloch sphere’s equator, 
yielding a zero Berry phase. (b) Left: Filled states up to EF for a massive Dirac fermion. 
Right: Corresponding Bloch-sphere representation illustrating that the wavefunction of the 
massive Dirac fermion is confined to the Bloch sphere’s topologically distinctive lower 
and upper hemispheres, yielding a non-zero Berry phase. (c) Intrinsic anomalous Hall 
conductivity dependence on EF for a massive Dirac fermion with Kane-Mele SOC strength 
𝜆 = 0.05 and 0.10 with out-of-plane magnetization (𝜃 = 0), using Eq. A.20.  
 
 
 

For a bilayer kagome lattice, the anomalous intrinsic anomalous Hall conductivity 

𝜎$(,.'/,+)*  is conceptually more non-trivial. Because the massive Dirac fermions near the K 
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and K’ points on the two layers within the bilayer lattice are related through inversion 

symmetry, both of the split Dirac cones [Fig. A.6(d)] contribute similarly to the Berry 

curvature 𝛺y⃗  [8], as shown in Fig. A.1(a) and (b). Therefore, 𝜎$(,.'/,+)* 	can be connected to 𝛥 

and 𝐸` [Fig. A8(c)], assuming 𝛥 is equal for both of the Dirac cones, by superimposing 

Eq. A.20 for both Dirac cones: 

𝜎$(,.'/,+)* (𝛥, 𝐸`) = � z +⁄
|x/0x0,"|

+ z +⁄
|x/0x0,#|

� Z
#

S
,																												(A.21) 

where 𝐸` is referenced at the midpoint of the Dirac circle at 𝐸i, . 
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Figure A.10: Conceptual formulation of the intrinsic anomalous Hall conductivity for a 
single Dirac fermion in a bilayer kagome lattice using a Bloch sphere representation with 
t1 = 1 (arbitrary units). (a) Left: Filled states up to the Fermi energy EF = 0.25 for a 
massless Dirac fermion. Right: Corresponding Bloch-sphere representation illustrating that 
the wavefunctions of the massless Dirac fermion are confined to the Bloch sphere’s 
equator, yielding a zero Berry phase. (b) Left: Filled states up to EF for a massive Dirac 
fermion. Right: Corresponding Bloch-sphere representation illustrating that the 
wavefunctions of the massive Dirac fermion are confined to the Bloch sphere’s 
topologically distinctive lower and upper hemispheres, yielding a non-zero Berry phase. 
The total wavefunction is a superposition of the wavefunctions from each Dirac cone. (c) 
Intrinsic anomalous Hall conductivity dependence on EF for a massive Dirac fermion with 
Kane-Mele SOC strength 𝜆 = 0.05, out-of-plane magnetization (𝜃 = 0), and interplanar 
hoping strength t2 = 0, 0.1, and 0.5, using Eq. A.21.  
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