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Machine learning algorithms increasingly support decision-making systems in contexts

where outcomes have long-term implications on the subject’s well-being. At issue is whether

an algorithm’s outcomes are unfair and depend on demographic characteristics – race, age,

gender, religious or political beliefs – that are irrelevant to the task. Empirical evidence

indicate that a wide range of applications do not deliver the same experience depending on

demographic characteristics of the client.

This study focuses on two types of approaches to mitigate potentially unfair outcomes of

a classifier while making no assumption on the classifier itself: (i) pre-processing to remove

encoded biases in the data; and, (ii) post-processing to audit whether a classifier’s outcomes

meet a given fairness criteria.

In fair pre-processing, we focus on methods in unsupervised fair representation learn-

ing that extract from a data its underlying latent factors, while removing dependencies

between latent variables and sensitive attributes. We make four contributions to the fair

representation research. First, we recast fair representation learning as a rate-distortion

problem and show that an encoder that filters out information redundancies would also

remove dependencies between sensitive attributes and representations.



This insight motivates FBC, Fairness By Compression, a compression-based approach

to unsupervised fair representation learning that achieves state-of-the-art performance in

terms of fairness-information trade-off.

Second, we implement a single shot fair representation learning method, SoFaiR, that

allows the user to explore the entire unfairness-distortion curve at test time with one single

trained model. SoFaiR adjusts the fairness/information properties of a representation at

test time by masking bits in the tail of the bitstream. This reduces computational costs

compared to existing methods in fair representation learning that require the user to re-train

a model to explore different points on the fairness-information plane.

Third, we posit that for image data, sensitive attributes like gender or race are likely to

be abstract concepts. At the same time, a high quality reconstruction of images requires to

encode high resolution details. Therefore, a rate-distortion approach to fair representation

learning needs to model low and high resolution latent variables. To test this hypothesis, we

encode images into a hierarchy of quantized latent variables. Empirically, we find that only

deep hierarchies, independently of model capacity, can generate representations orthogonal

to the sensitive attributes, while maintaining low and high resolution information about the

images.

Fourth, we derive necessary and sufficient conditions for a representation learned from

a finite sample to offer fairness guarantees that generalize to any downstream user and to

the infinite sample regime. The condition requires that for any distribution over the feature

space, the encoder induces a distribution over the representation space such that the χ2

mutual information between features and representation is finite.

Lastly, for both fairness pre-processing and auditing, it is reasonable to assume that

classifiers that use the data are black-boxes that neither auditors nor data controllers can

access to. In this context, we develop an auditing approach, mdfa (Multi-Differential

Fairness auditor), that verifies whether a classifier is nearly mean-independent of sensitive

attributes within any subset of the feature space that can be computationally identifiable

from a finite sample.



Chapter 1: Introduction

1.1 Rationale for Thesis

Machine learning algorithms are increasingly used to support decisions that could impose

adverse consequences on an individual’s life: for example, the criminal justice system uses

machine learning algorithms to assess whether a criminal offender is likely to recommit

crimes; or banks to determine whether a potential borrower is at risk of defaulting. At issue

is whether these algorithms are fair. Although fairness can mean different and sometimes

contradictory things, there is a growing social consensus that demographic characteristics

like race or gender are exogenous irrelevant characteristics [4] to most machine learning

tasks and should not affect outcomes.

Unfortunately, abundant examples show that for a wide range of applications, clients’

experience varies with their demographic characteristics. A growing body of evidence has

raised fairness concerns across a wide range of applications, including judicial decisions [5],

face recognition [6], degree completion [7], medical treatment [8] or crime predictions [9].

Root causes of unfairness in machine learning include biases encoded in the data gener-

ating/collection process and direct or indirect use of sensitive attributes within the machine

learning pipeline. This thesis addresses both causes, while making no assumption on the

classifier itself. In the data science pipeline, we focus on two types of fairness interventions

that are tailored toward classification tasks: (i) pre-processing to remove encoded biases in

the data before it is used by the classifier; and, (ii) post-processing to audit whether the

classifier’s outcomes meet a given fairness criteria.

On one hand, fair pre-processing is an attractive solution to organizations dealing with

data, since they are increasingly held accountable for the collection, use and disposal of the

data. The European Union General Data Protection Regulation designates organizations
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that collect data as data controllers 1 and makes explicit their responsibility to mitigate the

discriminatory use of the data on the basis of sensitive attributes, including racial or ethnic

origin, sexual orientation or political beliefs2.

On the other hand, auditing aims at establishing contestability if a downstream applica-

tion or data processor3 generates outcomes that depend on sensitive attributes. Tools that

provide evidence of disparate treatment are all the more valuable as a precedent in United

States case law places the burden on the plaintiff to demonstrate disparate treatment – to

establish that characteristics irrelevant to the task affect the algorithm’s outcomes (Loomis

vs. the State of Wisconsin [10]). Identifying the definitive characteristics of a classifier’s

discrimination empowers the victims of such discrimination. Moreover, a classifier’s user

needs warnings for individual instances in which severe profiling/discrimination has been

detected.

For both fairness pre-processing and auditing, it is reasonable to assume that classifiers

that use the data are black-boxes that neither auditors nor data controllers can access to.

First, many assessment tools are proprietary and usually not transparent. Second, data

controllers cannot always anticipate and control how downstream applications will process

the data. Arms-length contracts between data controllers and third parties accessing the

data are likely to be incomplete and leave out details related to the structure of the machine

algorithm used by the data processor.

1.2 Research Questions

This thesis answers two research questions related to the development of methods to miti-

gate potential unfairness in machine learning algorithms without access to the algorithms

themselves.

1. Pre-processing: How to pre-process data so that any future use of the data would not
1GDPR, Article 4
2GDPR, Recital 71
3GDPR, Article 4

2

https://gdpr-info.eu/art-4-gdpr/
https://gdpr-info.eu/recitals/no-71/
https://gdpr-info.eu/art-4-gdpr/


discriminate against some demographic groups?

2. Auditing: How to audit black box classifiers to verify whether their outcomes meet a

pre-defined fairness criteria?

1.3 Challenges and Solutions

1.3.1 Pre-processing: Fair Representation Learning

Organizations that collect and sell data, henceafter data controllers, are increasingly liable if

future downstream uses of the data are biased against protected demographic groups. One

of their challenges is to anticipate and control how the data will be processed by downstream

users.

Unsupervised fair representation learning approaches ([11–13]) offers a flexible fairness

solution to this challenge. A typical architecture (see Figure 1.1) in fair representation

learning includes an encoder that maps the data into a representation and a decoder that

reconstructs the data from its representation. The objective of the architecture is to extract

from a dataX the underlying latent factors Z that correlate with unobserved and potentially

diverse task labels, while remaining independent of sensitive factors S. The idea has gained

traction in the machine learning community since it is flexible in terms of the data science

pipeline: it is independent of the modeling algorithm and can be integrated with data

releases and publishing mechanisms.

Fair Information Bottleneck

Chapter 3 asks whether an encoder that filters out information redundancies would also re-

move dependencies between sensitive attributes and representations. Intuitively, if sensitive

attributes S are direct inputs to the decoder, an encoder that aims for conciseness would

not waste code length to encode information related to S in the latent factors Z. We show

that in an information bottleneck framework [14], this intuition is theoretically founded:
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X

Encoder F (X) Z

Users h

Decoder G(Z,S)

S X̂

Figure 1.1: Unsupervised fair representation learning. Variables are: data X; sensitive
attribute S; representation Z; reconstructed data X̂. The standard fair representation
protocol includes an encoder F that maps X to its representation Z; a decoder G that
reconstructs X from Z and S.

constraining the information flowing from the data X to the representation Z forces the en-

coder to control the dependencies between sensitive attributes S and representations Z. It

is sufficient to constraint the mutual information I(Z,X) between Z and X in order to min-

imize the mutual information I(Z, S) between Z and S. This result contrasts with existing

methods in fair representation learning that devote most of their effort to constraining the

mutual information I(Z, S) between representations Z and sensitive attributes S either via

penalties measuring the statistical distance between the distributions of Z across sensitive

attributes(e.g. [15]); or via an adversarial auditor that predicts sensitive attributes from Z

(e.g [16,17]).

Therefore, instead of directly penalizing I(Z, S), we recast fair representation learning

as a rate distortion problem that controls explicitly the bit rate I(Z,X) encoded in the

latent factors Z. We model the representation Z as a binary bit stream, which allows us to

monitor the bit rate more effectively than floating point representations that may maintain

redundant bit patterns. We estimate the entropy of the code Z with an auxiliary auto-

regressive network that predicts each bit in the latent code Z conditional on previous bits

in the code. One advantage of the method is that the auxiliary network collaborates with

the encoder to minimize the cross-entropy of the code.
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Empirically, we demonstrate that the resulting method, Fairness by Binary Compres-

sion (henceforth, FBC) is competitive with state-of-the art methods in fair representation

learning. Our contributions are as follows:

1. We show that controlling for the mutual information I(Z,X) is an effective way to re-

move dependencies between sensitive attributes and latent factors Z, while preserving

in Z, the information useful for downstream tasks.

2. We find that compressing the data into a binary code as in FBC generates a better

accuracy-fairness trade-off than limiting the information channel capacity by adding

noise (as in variants of β-VAE, [18]).

3. We show that increasing the value of the coefficient on the bit rate constraint I(Z,X)

in our information bottleneck framework allows to move smoothly along both rate-

distortion and rate-fairness curves.

Single Shot Fair Representation Learning

All methods in fair representation learning generate a fairness-information trade-off (e.g

[16]). A likely reason for this trade-off is that the unobserved mixing mechanism between Z

and S may hide some confounding variable such that Z is not independent of S. In many

social contexts, it is reasonable to assume complex mixing mechanisms where sensitive

attributes cannot be factored out in the representation space. Moreover, even if the true

generating process factorizes sensitive attributes out, such factorization may be difficult to

obtain in a finite sample regime and the dimension of the representations space may be

constrained to be lower than the dimension of the data manifold [19].

Current approaches in fair representation learning are flexible with respect to down-

stream tasks [11, 12, 16, 20]; partially to sensitive attributes [21]; but are inflexible with

respect to their fairness-accuracy trade-off. A single learned representation can provide

fairness for many downstream tasks, but the fairness-information trade-off is set at training

time. This lack of flexibility with respect to the fairness-information trade-off is a limitation
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to deployment of fair representation learning approaches. A data controller would like to

adjust how much information about sensitive attributes it leaks depending on its client. For

example, in some medical applications, information related to age, race or gender is a neces-

sary diagnosis feature; in some applications, a partial release of information related to age,

race or gender is sufficient; in others, it is completely inappropriate. With existing methods

in fair representation learning, a data owner would have to re-train a fair encoder-decoder to

meet each request. At issue are the computational cost and the lack of consistency between

released representations. A data controller would not be able to explain easily the relation

between each data product it releases, since they are generated by different models and the

mapping between them is not easily explainable.

Chapter 4 introduces SoFaiR, Single Shot Fair Representation, a method to generate a

unfairness-distortion curve with one single trained model. We first expand our results from

Chapter 3 and show that we can derive unfairness-distortion curves from rate-distortion

curves. We can control for the mutual information I(Z, S) between representation and

sensitive attribute by encoding X into a bitstream and by controlling for its entropy. We

then construct a gated architecture that masks partially the bitstream conditional on the

value of the Lagrangian multiplier in the rate-distortion optimization problem. The mask

adapts to the fairness-information trade-off targeted by the user who can explore at test

time the entire unfairness-distortion curve by increasingly umasking bits.

Besides saving on computational costs, SoFaiR allows users to interpret what type of

information is affected by movement along unfairness-distortion curves. Moving upward

along unfairness-distortion curves unmasks bits in the tail of the bitstream and thus, in-

creases the resolution of the representation encoded in a binary basis. By correlating these

unmasked bits with data features, the practitioner has at hand a simple method to ex-

plore what information related to the features is added to the representation as its fairness

properties degrade.

Empirically, we demonstrate on three datasets that at a cost constant with the number

of points on the curve, SoFaiR constructs unfairness-distortion curves that are comparable
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to the ones produced by existing multi-shot approaches whose cost increases linearly with

the number of points. On the benchmark Adults dataset, we find that increasingly removing

information related to gender degrades first how the representation encodes working hours;

then, relationship status and type of professional occupations; finally, marital status.

The contributions of Chapter 4 are as follows:

1. We formalize fairness-information trade-offs in unsupervised fair representation learn-

ing with unfairness-distortion curves and show a tractable connection with rate-

distortion curves.

2. We propose a single shot fair representation learning method to control fairness-

information trade-off at test time, while training a single model.

3. Moreover, we offer a method to interpret how improving or degrading the fairness

properties of the resulting representation affects the type of information it encodes.

Hierarchical Fair Representation Learning

In Chapter 3 and 4, our framework is unsupervised since the data controller does not

access any task label that future downstream data processors will predict. Therefore, data

controllers can only monitor the information content of a representation by measuring the

distortion incurred when reconstructing a data point from its representation. In Chapter

5, we explore how to generate fair representation of images while producing high quality

reconstruction of the original data.

Images are challenging to fair representation learning because sensitive attributes (e.g.

race, gender) are likely to be abstract and global concepts while high quality reconstruction

requires capturing localized details. In Chapter 5, we propose to encode the data into a hi-

erarchy of features, where low-resolution latent variables capture global features and higher

resolution latent variables are conditionally dependent on lower resolution ones. In this

hierarchy, global features correlated with the sensitive attribute are redundant information

if sensitive attributes are provided directly to the decoder. This intuition, consistent with
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our theoretical and empirical results in chapters 3 and 4, allows us to solve unsupervised

fair representation learning problem via hierarchical quantization.

We leverage recent contributions in deep variational auto-encoders (e.g. [22, 23]) and

multi-resolution image compression [24,25] to reconstruct high quality images while filtering

out sensitive attributes from a hierarchical representation of the data. The rationale is that

if we were compressing images of faces to few bits, we would encode information related to

abstract concepts like identity, gender, race. At that level of compression, the encoder would

learn that some of these abstracts concepts related to sensitive attributes are redundant since

sensitive attributes are directly provided to the decoder. However, the reconstruction of the

images from these few bits will miss important properties of the image like hair color, pose,

etc. Additional bits to encode the image would capture higher resolution details, but these

details are likely to be entangled with sensitive attributes, which makes it challenging for

the encoder to filter out sensitive attributes themselves. We propose to solve this paradox

by learning a hierarchy of latent variables.

The contributions of chapter 5 are as follows:

• We verify empirically that depth independent of model capacity is critical to solve fair

representation learning problems for images data.

• We find that depth is only beneficial to compression-based methods in fair represen-

tation learning and does not improve performances for adversary-based techniques.

Statistical Robustness of Fair Representations

Unsupervised fair representation learning approaches like FBC or SoFaiR use a finite

sample to obtain representations whose fairness properties need to generalize to unseen data

and unknown downstream data processors. However, to date, there is no study on what

characteristics the representation must have to statistically guarantee this generalization.

Chapter 6 explores conditions on the encoder to generate representation distributions with

fairness guarantees that hold for any data processor.
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Figure 1.2: Robust fair representation learning. In addition to the encoder-decoder struc-
ture of Figure 1.1, an auditor a evaluates the statistical dependence between Z and S.
An additive Gaussian white noise (AGWN) channel ε ensures that finite sample fairness
guarantees can be established for all downstream data processors h1,...., hN using Z.

We show that for fairness guarantees derived from finite samples to generalize to all

downstream data processors, it is necessary that a measure of information – the χ2 mutual

information – between feature and representation is finite. Moreover, we prove that a

finite χ2 mutual information between feature and representation is a sufficient condition on

representation mappings to guarantee a O(n−1/2) approximate rate of empirical certificates.

In practice, it is challenging to control whether the χ2 mutual information is finite for

unknown distributions over X . However, we show that an additive Gaussian white noise

(AGWN) channel placed after any representation mapping will bound the χ2 mutual infor-

mation once the representations have passed through the channel. The channel smoothes

the representation distribution by transforming it into a mixture of Gaussian distributions

that can be estimated by Monte Carlo integration ([26]). Therefore, a plug-in fairness

auditor that relies on estimating the class conditional density functions over the representa-

tion space achieves a convergence rate of O(n−1/2) and thus delivers meaningful empirical

certificates of fairness.

We empirically find on various synthetic and fair learning benchmark datasets that

an AGWN channel in fair representation learning is sufficient for empirical certificates to

upper bound the demographic parity of multiple downstream users that attempts to predict

sensitive attributes from samples of the representation distribution. An AGWN channel
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improves upon existing approaches in adversarial fair representation learning whose fairness

guarantees do not extend beyond a set of specific downstream users. Moreover, we did

not find strong evidence that obtaining good approximation rates for empirical certificates

comes at the cost of significantly degrading the accuracy-fairness trade-off of downstream

predictive tasks.

The contribution of Chapter 6 are as follows:

1. We prove a necessary and sufficient condition for fair representations to be stamped

with finite sample demographic parity certificates that generalize to the infinite sample

regime.

2. We prove that adding a noisy channel allows to obtain an estimator of demographic

parity certificates that converges at a O(n−1/2) rate to the true demographic parity

certificate of the data representation.

1.3.2 Auditing

While fair pre-processing is concerned with controlling the input to black box classifiers,

auditing for fairness is concerned with investigating their output. Of particular interest

is to establish whether a classifier’s outcomes would change depending on demographic

characteristics of the individual. This auditing task is a first and necessary task to identify

disparate treatment, which characterizes classification for which sensitive attributes affect

the algorithm’s outcomes. Auditing for disparate treatment of a black box classifier faces

at least two challenges:

(i) Average lack of disparate treatment does not necessarily imply that some individuals

would not experience different outcomes, had their demographics characteristics been

different;

(ii) The auditor does not observe the counterfactual outcome if their demographics char-

acteristics of individual had been different.
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Challenge (i) relates to limitations of aggregate definition of fairness, since it can only

offers guarantees for an average representative of each demographic group, but not for

a specific individual nor for a structured sub-group. [27] provide anecdotal evidence for

what they coin subset targeting. [28] and [29] provide further empirical evidence that

aggregate notion of disparate treatment do not protect in practice subgroups defined by

complex intersections of many sensitive attributes. The influence of sensitive attributes

on a classifier’s outcomes could be complex, non-linear and could affect only a subset of

individuals.

Challenge (ii) is akin to the classical problem of potential outcomes [30], [31], where each

individual in the dataset possesses two outcomes: an observed outcome that corresponds to

the classifier’s prediction; a counterfactual outcome that would be the classifier’s prediction,

had the individual’s sensitive attributes been different. At issue is that the auditor does not

observe the counterfactual outcome. Moreover, in many real-world situations, the data is

unbalanced across demographic groups: the distributions conditioned on sensitive attributes

differ, which makes the auditing problem even harder.

Computationally Identifiable Disparate Treatment

In Chapter 6, we address challenge (i) by introducing the notion of multi-differential fairness

to guarantee that the classifier is nearly mean-independent of sensitive attributes within any

subset of the feature space.

We represent subset or sub-population as collection of membership indicators. The richer

the collection of indicators, the stronger the fairness guarantees. However, the granularity

of our fairness guarantees is bounded below by the fact any auditing tool can only identify

a sub-population via a finite sample drawn from the features distribution. We reduce

searching for violations of multi-differential fairness to agnostic learning of the collection

of membership indicators. We show that violations of differential fairness is a problem of

finding correlations between sensitive attributes and classifier’s outcomes. Searching for

instances of violation of multi-differential fairness is akin to predicting where in the features
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space the binary values of sensitive attributes and classifier’s outcomes coincide. Therefore,

multi-differential fairness controls for disparate treatment among all sub-population that

can be computationally identifiable.

We propose an auditing tool, mdfa, to search for the worst-case violations of multi-

differential fairness on re-balanced data. Applied to a case study of recidivism risk assess-

ment in Broward County, Florida, mdfa identifies a sub-population of African-American

defendants who are three times more likely to be considered at high risk of violent recidivism

than similar individuals of other races. Moreover, when applied to three additional datasets

related to crime, income and credit predictions, mdfa finds heterogeneous treatment among

sub-group of individuals, even after adjusting the outcome of a black box classifier to meet

group-level fairness criteria.

1.4 Outline

This proposal is organized in eight chapters.

• Chapter 1 provides an introduction to fairness in machine learning and presents a

rationale for studying pre-processing and post-auditing methods.

• Chapter 2 introduces notations, different notions of fairness in machine learning and

reviews the literature on fair representation learning and post-auditing.

• Chapter 3 demonstrates that data quantization is an effective method to filter out

sensitive attributes. The method and results are published in [20].

• Chapter 4 demonstrates that we can compute unfairness-distortion functions from

rate-distortion functions and uses this insight to propose a single-shot fair represen-

tation learning method. This work leads to a submission at IJCAI 2022.

• Chapter 5 proposes hierarchical quantization as a method to learn fair representations

for images dataset.
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• Chapter 6 proves necessary and sufficient conditions for the fairness guarantees of

a representation obtained from a finite sample to generalize to the infinite sample

regime. Theoretical and empirical results from this chapter are published in [13].

• Chapter 7 introduces mdfa, an auditing tool that searches for subsets of the features

space where the classifier’s outcomes differ significantly across demographic groups.

This work is published at [32].

• Chapter 8 discuss the ethical implications and limitations of this thesis and proposes

avenues for future work. Moreover, it briefly introduces additional contributions that

complement this thesis, including auditing tools for education data mining published

at [33]; and, for allocation of scarce resources submitted at FAccT 2022 [34].

The code related to each chapter can be find here.
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Chapter 2: Notations and Literature Review

2.1 Preliminaries and Notations

2.1.1 General Setting

Consider a population of individuals represented by features X ∈ X ⊂ [0, 1]dx , sensitive

attributes in S ∈ S ⊂ {0, 1}ds and outcomes Y ∈ Y ⊂ {0, 1}dy .

A representation Z of the features X is a code or latent factors that encodes the data

in a lower dimension space Z ⊂ [0, 1]dz , with dz > 0.

A classification task consists of a mapping f that predicts outcomes Y given features X

and possibly sensitive attributes S. We will also encounter in this thesis classification tasks

that predict Y from a representation Z of the data instead of the data itself.

2.1.2 Mutual Information and Entropy

To measure the dependencies between two variables X1 and X2, we will extensively use the

notion of mutual information I(X1, X2)1 defined as

I(X1, X2) =
∑
x1

∑
x2

p(x1, x2) log
(
p(x1, p(x2)
p(x1)p(x2)

)
. (2.1)

By definition, the mutual information is equal to the Kullblack Leibler divergence between

the joint distribution p(X1, X2) and the product of the marginal distributions p(X1) and

p(X2). I(X1, X2) is non-negative and measures the price of encoding X1 and X2 as inde-

pendent variables if they are not. The smaller is I(X1, X2) the more independent are X1

1In Chapter 6, we will call it Shannot mutual information to distinguish it from the χ2− mutual infor-
mation.
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and X2. Of particular interest in this thesis is the mutual information I(Z, S) between a

representation Z of the data and the sensitive attribute S.

The entropy H(X) of a random variable X measures the amount of uncertainty about

its possible outcomes. Formally, it is defined as

H(X) =
∑
x

−p(x) log p(x). (2.2)

The mutual information between X1 and X2 compares the entropy of X1 before and after

observing X2 or vice-versa:

I(X1, X2) = H(X1)−H(X1|X2) = H(X2)−H(X2|X1). (2.3)

Table 2.1: Notations common across the thesis

Symbol Meaning

X Features
S Sensitive Attribute
Y Ground truth label
Z Representation
X Feature space
S Sensitive attribute space
Z Representation space
dx Dimension of the feature space
ds Dimension of the sensitive attribute space

f : X → Y Classifier using data X
F : X → Z Encoder/Representation mapping

G : X × S → X Decoder
I(X,Z) Mutual information between X and representation Z
I(S,Z) Mutual information between sensitive attribute S and representation Z

H(X|Z, S) Entropy of X conditional on Z and S
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2.2 What is Fairness in Machine Learning?

2.2.1 Unfairness Encoded in the Data

A classifier f can generate unfair outcomes for at least three reasons. First, f may use sen-

sitive attributes directly in its predictions, i.e. f is a mapping from X ×S to Y. Therefore,

the classifier f may predict different outcomes for two individuals with the same features

X but different sensitive attributes S. Differential treatment, i.e. the direct use of sensitive

attributes in a prediction task, is, at least in the United States, considered a source of illegal

discriminatory behavior. However, protection against machine learning differential treat-

ment may be difficult to enforce because (i) there are legal precedents that place the burden

on the plaintiff to establish that sensitive attributes affect a classifier’s predictions (Loomis

vs. State of Wisconsin); and, (ii) many assessment tools are proprietary and challenging to

audit. However, preventing the collection of sensitive attributes could alleviate the issue.

A more subtle cause of unfair classification is that the classifier f may not remove exist-

ing social biases that are encoded in the data generating process. For example, data features

X might result from subtle and intricate channels through which past racial segregation and

gender discrimination affect current socio-economic status. The distribution over outcomes

p(Y |X) might then depend on sensitive attributes. Therefore, a classifier trained for ac-

curacy tries to learn the distribution p(Y |X) and thus, generates outcomes dependent on

sensitive attributes. For example, if f predicts the recidivism risk of an inmate, it will skew

higher risks toward individuals self-identified as African American, since the prediction re-

lies on who is arrested for a crime, not on who committed a crime and historically, arrest

rates have been higher for African American [35]. Encoded biases exist also in the distri-

bution p(X) of features. Unobserved characteristics that affect both sensitive attributes S

and features X generate statistical dependence between X and S: encoding are redundant,

i.e. p(X|S) 6= p(X) [27,36]. Therefore, obfuscating S would not remove its effect on f . For

example, the absence of variables related to race in a loan application would not preclude

its influence on mortgage costs if the loan application includes zipcode – a strong proxy for
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race in segregated societies and a necessary input in mortgage application.

Encoded biases can be exacerbated by a data collection process that dynamically relies

on past predictions to collect additional samples. Feedback loops can exacerbate existing

biases. If a model f is used to predict crime rates and to decide which neighborhood police

should patrol, those neighborhoods will be over-represented in future samples collected to

train the model [37].

2.2.2 Definition of Fairness

Even if the root causes of fairness in machine learning were well understood, it would not

be clear what fairness for a classifier f means. The literature has focused on two types of

notions, statistical or individual, both of them with advantages and limitations.

Statistical Fairness.

Statistical definitions of fairness guarantee that a pre-specified statistics does not vary across

groups that differ by a small set of sensitive attributes S = {s1, ..., sK}. Popular statistics

are demographic parity, equality of odds and equality of opportunities. Demographic parity

[27] defines fairness as parity of positive classification rates across groups:

Definition 2.2.1. Demographic parity Consider a distribution µ over X × {s1, ..., sK}.

A classifier f : X → {0, 1} satisfies δ− Demographic Parity on µ if and only if for k, k′ =

1, ..,K,

∆DP (f, k, k′) , |Ex∼µ[f(x)|S = sk]− Ex∼µ[f(x)|S = sk′ ]| ≤ δ (2.4)

Demographic parity is a strong definition of fairness since it requires statistical indepen-

dence of f(X) and S, unconditional on the outcomes Y . Equality of odds and opportunities

relax demographic parity by only requiring statistical independence conditional on outcomes

Y [38].

Definition 2.2.2. Equality of Opportunities Consider a distribution µ over X×{s1, ..., sK}.

A classifier f : X → {0, 1} satisfies δ− equality of opportunity on µ if and only if for
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k, k
′ = 1, ..,K,

∆EO(f, k, k′) , |Ex∼µ[f(x)|S = sk, Y = 1]− Ex∼µ[f(x)|S = sk′ |Y = 1]| ≤ δ (2.5)

Definition 2.2.3. Equality of Odds Consider a distribution µ over X × {s1, ..., sK}. A

classifier f : X → {0, 1} satisfies δ− equality of odds on µ if and only if for k, k′ = 1, ..,K

and y ∈ {0, 1}

∆EOD(f, k, k′) , |Ex∼µ[f(x)|S = sk, Y = y]− Ex∼[f(x)|S = sk′ |Y = y]| ≤ δ (2.6)

The appeal of statistical notions of fairness is that for a fixed classifier f , these criteria

can be estimated from a sample Dn at a convergence rate of O(1/n) and that ∆n converges

in distribution toward a normal distribution. For a classifier f and a sample Dn, we can

obtain confidence intervals of the population ∆DP ,∆EO,∆EOD [39].

The main limitation of statistical notions of fairness is that it only provides guarantees

for an average representative of each group but not for a specific individual nor for a

structured sub-group. Suppose for example, that S is a binary variable and that both

demographic groups have the same size: p(S = 1) = p(S = 0). Suppose further that X is

also a binary variable X ∈ {0, 1} and that p(X = x|S = 0) = p(X = x|S = 1) = 1/2 for

x ∈ {0, 1}. A classifier f that predicts Y according to X in the first group (f(X) = X if

S = 0) and Y according 1 − X in the second group (f(X) = 1 − X if S = 1) will satisfy

demographic parity, but is clearly problematic from a fairness point of view. [27] provide

further anecdotal evidence of what they call subset targeting. Moreover, [29], [28] and [32]

show further empirical evidence that statistical notions of fairness do not protect subgroups

defined by a complex intersection of many sensitive attributes [28,29] or a structured slicing

of the features space [32].
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Individual Fairness.

Individual fairness addresses the limitations of statistical notions of fairness and constrains

that for each pair of individuals, the classifier treats them similarly if they have similar

features [27]. Features similarity is measured by a metric distance d : X × X → R:

Definition 2.2.4. Individual Fairness A classifier f : X → {0, 1} satisfies (d, δ) indi-

vidual fairness if and only if for all x, x′ ∈ X ,

|f(x)− f(x′)| ≤ δd(x, x′). (2.7)

The definition of individual fairness in (2.7) is intuitive and protects individuals against

many unfairness evils, including redlining and subset targeting (see [27]). However, unlike

with statistical definitions of fairness, there is no guarantee that the individual fairness con-

straint generalizes to out-of-sample individual x /∈ Dn. Moreover, a definition of individual

fairness as in (2.7) requires to agree upon a similarity metric d, which raises non-trivial

fairness issues. In fact, advocates of affirmative actions would argue that fairness can be

achieved only by differentiating the meaning of features between demographic groups. For

example, it is debatable whether SAT scores should be interpreted similarly across demo-

graphic groups, given that historically, some minority populations have had systematically

lower access to educational opportunities.

Not all at Once.

A natural question is how statistical and individual notions of fairness compose with each

other. [40] show an impossibility result: unless the classification task is trivial, false negative

rate P (f(X) = 0|Y = 1), false positive rate P (f(X) = 1|Y = 0) and positive classification

rate P (f(X) = 1) cannot be simultaneously equalized across demographic groups.

On the relation between demographic parity and individual fairness, [27] show that

individual fairness implies that if S = {0, 1}, ∆DP is bounded above by the Wasserstein
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distance between the distributions p(X|S = 0) and p(X|S = 1). However, as shown earlier

in this chapter, there is no converse result: demographic parity has no implication on

individual fairness as defined in (2.7).

Recent contributions explore the possibility to give a statistical meaning to definitions

of individual fairness by comparing a classifier’s outcomes between structured subgroups of

individuals instead of pairs of individuals. [41], [29], [42] or [32] define notions of statistical

fairness across an infinite number of subgroups, whose membership is controlled by a class

of functions with bounded complexity. It generates a more granular notion of statistical

fairness without the necessity to define a similarity metric. On one hand, it avoids some

of the statistical pitfalls of individual-based definitions of fairness by defining fairness on

average. On the other hand, it is a stronger notion of fairness than aggregate definition, since

it imposes average fairness constraints to hold not just over coarsely defined demographic

groups, but also over very finely defined sub-populations.

However, sub-group definitions of fairness raise issues of their own. It is not clear how to

choose the class of functions that define the sub-population membership and how to choose

which features to input in these functions [43]. For example, shall we include SAT scores

or high school GPA as inputs of sub-population membership since they correlate with race

and gender?

On the Choice of a ‘Right’ Definition of Fairness?

Our review of definitions of fairness in machine learning shows that (i) the literature proposes

many, at time incompatible, fairness criteria; (ii) there is little guidance of which notions

should be preferred. The latter conclusion is not necessarily a limitation of fairness in

machine learning, but is more a reflection of social, ethical and philosophical debates that

run throughout our societies. For example, questions related to the choice of a similarity

metric [27] or features used to condition parity [44] are reminiscent of discussions related to

affirmative action: how do we choose whether an individual is ‘qualified’ for a given position;

what are irrelevant characteristics for a given task; how do we compensate for complex social
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and historical mechanisms that systematically disfavor some demographic groups and make

them look ‘less qualified’?

One of the contributions of fairness in machine learning is (i) to bring questions at

the heart of theories of distributive justice [45] to algorithmic design; (ii) to offer tools for

outcomes to meet a pre-specified fairness criteria [4]; and, (iii) to verify ex-post whether

this criteria has been met.

2.3 Fair Representation Learning

Existing pre-processing methods to remove biases encoded in the data include sampling

and reweighting (e.g. [46, 47]), optimization procedures to learn a data transformation

that both preserve utility and limit discrimination (e.g. [48]), and representation learning

(e.g. [11]). Representation learning seeks to encode the data while removing correlations

between features and sensitive attributes. The idea has gained traction in the machine

learning community since it is flexible in terms of the data science pipeline: it is indepen-

dent of the modeling algorithms and can be integrated in the knowledge discovery and data

mining framework. Moreover, fair representation learning benefits from recent advances in

representation learning [49] that map with little or no supervision high-dimensional observa-

tions to low dimension latent space such that the original observations can be approximately

decoded from their lower-dimensional representations.

Many contributions use a supervised setting where the downstream task label is known

while training the encoder-decoder architecture (e.g [16, 17, 50–52]). However, [11], [12]

and [53] argue that in practice, an organization that collects data cannot anticipate what

the downstream use of the data will be. Therefore, in this thesis, we explore theoreti-

cal properties and practical implementations of unsupervised fair representation learning:

data controllers do not access downstream task labels when encoding the data into a fair

representation.
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Table 2.2: Methods in unsupervised fair representation learning organized by whether the
fairness properties of the learned representations is obtained by minimizing the mutual
information between sensitive attributes S and representations Z; or by minimizing the
mutual information between data X and representations Z; and whether Z is modelled as
a binary bit stream or is convolved with Gaussian noise.

Methods Fairness by controlling: Examples Unsupervised
I(Z, S) I(Z,X) 7

Adversarial Minimizing auditor’s [16], [17], 7

cross-entropy [21]
MMD Mimizing maximum 7 [55], [15] 7

mean discrepancy
β− VAE 7 Noisy Z [18], Chapter 3, 5 X

FBC, SoFair 7 Binary Z Chapter 3,4 X

2.3.1 Removing Dependencies between Sensitive Attributes and Repre-

sentations

In this unsupervised setting, data controllers can control for the mutual information between

the representation and the sensitive attribute. Since in most setting the mutual information

is intractable, we resort to proxies for the mutual information between representations and

sensitive attributes to control for the fairness of the learned representations. Proxies can

be either (i) a maximum mean discrepancy penalty [54] that extends a deterministic [55] or

variational [15] auto-encoder; or, (ii) the cross-entropy of an adversarial auditor that predicts

sensitive attributes from the representations [16,17,56,57] (see Table 2.2). Note that in the

current literature, all these proxies for I(Z, S) are used in the context of supervised setting

(see Table 2.2, but can be readily adapted to the unsupervised setting.

Adversarial fair representation learning has benefited from recent developments in ad-

versarial learning for generative modeling (see [58] for a survey) or domain adaptation (e.g.

[59]). A data encoder generates a representation of the data and fools a neural network that

attempts to predict sensitive attributes from samples of the representation distribution.

Our approach in chapter 3 to 5 – FBC, SoFaiR – contrasts with existing work since it

does not control directly for the leakage between sensitive attributes and representations.
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FBC obtains fair representations only by controlling its bit rate. In a supervised setting,

[52] show that nuisance factors can be removed from a representation by over-compressing

it. We extend their insights to unsupervised settings and show the superiority of bit stream

representations over noisy ones to remove nuisance factors. Our insights could offer an

effective alternative to methods that learn representations invariant to nuisance factors

(e.g. [60–62]).

In chapter 4, we demonstrate theoretically how to derive unfairness-distortion curves

from rate-distortion curves. On one hand, rate distortion functions [14, 63] characterize

the minimum average number of bits R(D) used to represent X by a code Z while the

expected distortion incurred to reconstruct X from the code is less than D. On the other

hand, unfairness-distortion functions measure the minimum mutual information between

code Z and sensitive attribute S that a data controller has to tolerate for the distortion to

be less than D. We show that both functions differ only by the entropy H(X|S) of the data

conditional on the sensitive attribute, provided that distortion is measured by H(X|Z, S),

i.e. the entropy of the reconstructed data conditional on the code Z and the sensitive

attribute S.

By re-casting unsupervised fair representation learning as a rate-distortion problem,

we can borrow techniques from end-to-end learning of compressible representation, includ-

ing quantization and variable rate compression. We use soft-quantization techniques when

backpropagating through the model [64] and hard quantization techniques during the for-

ward pass [65]. In chapter 3, we estimate the entropy of the code as in [65] by computing

the distribution P (Z) of Z as an auto-regressive product of conditional distributions, and

by modeling the auto-regressive structure with a PixelCNN architecture [66,67].

In chapter 4, we apply approaches in rate-distortion that learn adaptive encoder and

vary the compression rate at test time (e.g. [68,69]). Our adaptive mask relates to the gain

function in [70] that selects channels depending on the targeted bit rate. We rely on suc-

cessive refinement methods from information theory (e.g [71]) that use a common encoder

for all points on the unfairness-distortion curve and add new information by appending bits
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to a initially coarse representation. To our knowledge, chapter 4 is the first contribution to

implement a deep learning multi-resolution quantization and apply it to the problem of fair

representation learning.

2.3.2 Robustness to Unknown Downstream Users

State-of-the-art techniques in fair representation learning offer only fairness guarantees for

some downstream users, but not for all of them [43]. Because of the Pinsker’s inequality,

methods minimizing a proxy for the mutual information between representations and sen-

sitive attributes minimize an upper bound of the demographic disparity of the learned rep-

resentation. However, the fairness guarantees apply only to classifiers that have a bounded

norm in a reproducing kernel Hilbert space [15]; or that belong to the same class as the

auditing adversary [16].

[72], [73] show empirically that those fairness guarantees do not generalize well to new

downstream classifiers that use fresh samples from the representation distribution. It is a

limitation since the main motivation for the fair representation learning agenda is to be an

upstream step in the data mining pipeline that protects data controllers against all future

discriminatory uses of the data.

In chapter 6, we explore conditions so that the learned representation offers fairness

guarantees against adversaries that do not necessarily belong to the same class as the

auditor used during the training of the encoder. [16] and [74] explore empirically whether

representations that achieve demographic parity for a specific downstream task generalize to

new tasks in terms of accuracy and fairness. We extend their work by showing theoretically

and empirically that introducing an AGWN channel in fair representation learning offers

generalization guarantees to all future tasks. Moreover, introducing an AGWN channel

avoids the need for an adversarial auditor, since it allows approximating the empirical

fairness certificate with a differentiable loss that can be computed by Monte Carlo sampling.

Similar to our approach, the differential privacy literature relies on noise injection to

guarantee that two neighboring datasets are indistinguishable [75]. However, in the context
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of differential privacy, indistinguishability is only obtained by adding Gaussian/Laplacian

noise. In our fairness context, for a finite sample, statistical hiding comes from learning

representations subject to a demographic parity constraint; the injection of Gaussian noise

is only a means to generalize the statistical hiding property to the infinite sample regime.

2.3.3 Flexible Fair Representations

One advantage of fair representation learning as a pre-processing method is that it is flex-

ible with respect to downstream tasks. A single learned representation tailored a specific

task can transfer at test time to new downstream tasks [11, 16]. Moreover, recent contri-

butions [21, 52] allow to adapt a single representation to multiple conjunctions of sensitive

attributes, by randomly flipping the bits that correspond to the demographic groups that

need protection for a given downstream task. Chapter 4 extends these efforts by allowing

the data owner at test time to adapt not only which demographic groups need to be pro-

tected, but also how much information about these protected groups and about the data

itself is released.

An application of flexible fair representation learning is its deployment to many sources

of data, where downstream tasks occur in massively distributed networks. Most work

related to fairness in a federated framework [55] focus on constraining directly downstream

applications by adding local or global constraints [76, 77]. In our unsupervised setting

where no downstream tasks is known at training time, [78] proposes a method to learn fair

representations locally on edge devices. However, their approach does not allow a user to

adjust the fairness-information trade-off at test time without re-training local copies of a

central model. In Chapter 4, distributed data owners can vary at test time the length of

the code that represents their data depending on the downstream application they share

their data with.
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2.4 Auditing Black Box Classifiers

Chapter 7, as in [41,42,79] provides a definition of fairness that protects group of individuals

as small as computationally possible. This is a step in the right direction since empirical

observations in [27, 79] show that aggregate level fairness cannot protect sub-populations

against severe discrimination.

Prior contributions on algorithmic disparate treatment (e.g. [80]) have focused on

whether sensitive attributes are used directly to train a classifier. This is a limitation

when dealing with classifiers with unknown inputs. Multi-differential fairness addresses

this limitation at the cost of a relaxation of disparate treatment compared to [81]. Our

definition marginalizes the classifier’s outcome over sub-population characteristics instead

of marginalizing over individual characteristics. Although leading to a non causal notion

of fairness, we show that our relaxation is necessary to efficiently find whether a black-box

classifier violates differential fairness.

Multi-differential fairness borrows from the literature in differential privacy [75]. Rein-

terpretations of fairness as a privacy problem can be found in [82,83], but those contributions

marginalize only over sensitive attributes.

The relaxation of differential fairness to sub-population requires rebalancing the distri-

bution of features across sensitive attributes. Our kernel matching technique borrows from

domain adaptation (see e.g. [84]) and counterfactual analysis (e.g. [85]). Because mdfa

balances the features across sensitive classes, its outcome cannot be explained by disparate

impact (as in [36]). In fact, empirical results in section 4 show that even after removing

disparate impacts, mdfa still detects violations of multi-differential fairness.
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Chapter 3: Fairness by Compression

In this chapter, we demonstrate that in an unsupervised framework, a simple encoder that

filters out information redundancies removes also dependencies between representations Z

and sensitive attributes S, provided that the sensitive attributes are direct inputs to the

decoder. We show that in an information bottleneck, learning concise encoding of the data

forces the encoder to control the information flow between Z and S. Therefore, for learning

fair representation compression of the data is sufficient.

This simple result offers an alternative, fairness-by-compression FBC, to existing fair

representation learning approaches that rely on additional penalties – maximum mean dis-

crepancy, cross-entropy of adversarial auditors – to disentangle sensitive attributes from

representations. Empirically, we find across four datasets that FBC maps data into repre-

sentations that are state-of-the-art in terms of the fairness-accuracy trade-off they generate.

The work presented in this chapter have been published in [20].

3.1 Fair Information Bottleneck

Consider a population of individuals represented by features X ∈ X ⊂ [0, 1]dx and sensitive

attributes in S ∈ S ⊂ {0, 1}ds , where dx is the dimension of the feature space and ds is the

dimension of the sensitive attributes space. In this chapter, we do not restrict ourselves to

binary sensitive attributes and we allow ds > 1. The objective of fair representation learning

is to map the features space X into a m−dimensional representation space Z ⊂ [0, 1]m, such

that (i) Z maximizes the information related toX, but (ii) minimizes the information related

to sensitive attributes S. We can express this as

max
Z

I(X, {Z, S})− γI(Z, S) (3.1)
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where I(X,S) and I(X, {Z, S}) denote the mutual information between Z and S and be-

tween X and (Z, S), respectively; and γ ≥ 0 controls the fairness penalty I(Z, S).

Existing methods focus on solving directly the problem (3.1) by approximating the

mutual information I(Z, S) between Z and S via the cross-entropy of an adversarial auditor

that predicts S from Z ([16], [17], [12]) or via the maximum mean discrepancy between Z

and S ([15]).

In this chapter, we instead reduce the fair representation learning program (3.1) to an

information bottleneck problem that consists of encoding X into a parsimonious code Z,

while ensuring that this code Z along with a side channel S allows a good reconstruction

of X. The mutual information between X and S can be written as

I(Z, S) (a)= I(Z, {X,S})− I(Z,X|S)

(b)= I(Z,X) + I(Z, S|X)− I(Z,X|S)

(c)= I(Z,X)− I(Z,X|S)

(d)= I(Z,X)− I(X, {Z, S}) + I(X,S).

where (a), (b) and (d) use the chain rule for mutual information; and, (c) uses the fact that

Z is only encoded from X, so I(Z, S|X) = 0. Since the mutual information between X and

S does not depend on the code Z, the fair representation learning (3.1) is equivalent to the

following fair information bottleneck:

max
Z

(1 + γ)I(X, {Z, S})− γI(Z,X). (3.2)

Intuitively, compressing information about X forces the code Z to avoid information redun-

dancy, particularly redundancy related to the sensitive attribute S, since the decoder has

direct access to S. Note that there is no explicit constraint in (3.2) to impose independence
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between Z and S.

If the representation Z is obtained by a deterministic function of the data X, the mutual

information I(Z,X) is equal to the entropy H(Z) of the representation Z. Since the entropy

of the data X does not depend on the representation Z, we can replace I(X, {Z, S}) by

Ez,s,x log(P (x|z, s) in the information bottleneck (3.2):

min
Z
Ex,z,s[− log(P (X|Z, S)] + βH(Z), (3.3)

where β = γ/(γ + 1). Therefore, the fair representation problem, in its information bot-

tleneck interpretation, can be recast as a rate-distortion trade-off. A lossy compression of

the data into a representation Z forces the independence between sensitive attribute and

representation but increases the distortion cost measured by the negative log-likelihood of

the reconstructed data Ex,z,s[− log(P (X|Z, S)]. The parameter β in equation (3.3) controls

the competitive objectives of low distortion and fairness-by-compression: the larger β, the

fewer the dependencies between Z and S.

3.2 Proposed Method

There are two avenues to control for I(Z,X) in the information bottleneck (3.2) (see Figure

3.1): (i) adding noise to Z to control the capacity of the information channel between X

and Z; or, (ii) storing Z as a bit stream whose entropy is explicitly controlled.

The noisy avenue (i) is a variant of variational autoencoders, so called β−VAE [18], that

models the posterior distribution P (Z|X) of Z as Gaussian distributions (see Figure 3.1a).

The channel capacity and thus the mutual information between X and Z is constrained by

minimizing the Kullback divergence between these posterior distributions and an isotropic

Gaussian prior ([86]). Formally, the standard β−VAE ([18]) assumes that the distribution

Q(z|x) is Gaussian with mean µ(x) and standard deviation σ(x), and solves for the following

minimization problem:
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X

Encoder F (X) µ, σ

Z ∼ N (µ, σ2) Z Decoder G(Z,S)

S

(a) β−VAE

X

Encoder F (X) e

Binarizer B(e) Z Decoder G(Z,S)

S

(b) FBC

Figure 3.1: Unsupervised methods to obtain fair representations z by compression. Vari-
ables are: features X; sensitive attribute S; representation Z. β−VAE generates noisy
representations with mean µ and variance σ2. FBC generates binary representations.

min
q
Ex,z∼q(z|x)[− log(P (x|z)] + βKL(Q(z|x)||P (z)), (3.4)

where P (z) is a isotropic Gaussian prior and KL(Q(z|x)||P (z)) is the Kullback-Keibler

divergence between Q(z|x) and the prior P (z). [18] show that increasing the value of

coefficient β leads to factorized representation Z. In the context of fair representation

learning, [15] and [21] use variants of β−VAE, but do not focus on how limiting the channel

capacity I(Z,X) could lead to fair representations. Instead, they add further constraints

on I(Z, S).

We implement the binary avenue with a method –FBC (see Figure 3.1b) – that consists

of an encoder F : X → Rm, a binarizer B : Rm → {0, 1}m and a decoder G : {0, 1}m×S →

X . The encoder F maps each data point x into a latent variable e = G(x). The binarizer B

binarizes the latent variable e into a bit stream z of length m. The decoder G reconstructs

a data point x̂ = G(z, s) from the bitstream z and the sensitive attribute s. We model

encoder and decoder as neural networks whose architecture varies with the type of data at

hand.
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The binarization layer controls explicitly the bit allowance of the learned representation

and thus forces the encoder to strip redundancies – including sensitive attributes. Bina-

rization is a two step process: (i) mapping the latent variable e into [0, 1]m; (ii) converting

real values into 0-1 bit. We achieve the first step by applying a neural network layer with

an activation function z = (tanh(e) + 1)/2. We achieve the second step by rounding z to

the closest integer 0 or 1. One issue with this approach is that the resulting binarizer B is

not differentiable with respect to z. To sidestep the issue, we follows [65] or [68] and rely

on soft binarization during backward passes through the neural network. Formally, during

a backward pass we replace z by a soft-binary variable ż:

ż = exp(−σ||z − 1||22)
exp(−σ||z − 1||22) + exp(−σ||z||22)

,

where σ is an hyperparameter that controls the soft-binarization. During the forward pass,

we use the binary variable z instead of its soft-binary counterpart ż to control the bitrate

of the binary representation Z 1.

To estimate the entropy H(z), we factorize the distribution P (z) over {0, 1}m by writing

z = (z1, ..., zm) ([65]) and by computing P (z) as the product of conditional distributions:

P (z) =
m∏
i=1

p(zi|zi−1, zi−2, ..., z1) ,
m∏
i=1

p(zi|z.<i), (3.5)

where z.<i = (z1, z2, ..., zi−1). The order of the bits z1, ..., zm is arbitrary, but consistent

across all data points. We model P with a neural network Q that predicts the value of each

bit zi given the previous values zi−1, zi−2, ..., z1. With the factorization (3.5), the entropy
1In Pytorch, the binarizer returns (z − ż).detach() + ż.
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H(z) is given by

H(z) = Ez

[
m∑
i=1
− log(Q(zi|z.<i))

]
−KL(P ||Q)

≤ CE(P,Q),

(3.6)

where CE(P,Q) is the cross entropy between P and Q. Therefore, minimizing the cross-

entropy loss of the neural network Q minimizes an upper bound of the entropy of the code

z. The encoder F and the entropy estimator Q cooperate. The lower the cross-entropy of

Q is, the lower is the estimate of the bit rate H(z). Therefore, the encoder has incentives

to make the bit stream easy to predict for the neural network Q. Designing a powerful

predictor for the bit stream z does not necessary complicate the loss landscape, unlike what

could happen with adversarial methods ([87]).

Since the prediction of Q for the ith bit depends on the values of the previous bits zi−1,

..., z1, the factorization of P (z) imposes a causality relation, where the (i + 1)th, ..., mth

bits should not influence the prediction for zi. We could enforce this causality constraint by

using an iterative method that would first compute P (z2|z1), then P (z3|z1, z2),..., and lastly,

P (zm|z1, ..., zm−1). However, it will require O(m) operations that cannot be parallelized.

Instead, we follow [65] and enforce the causality constraint by using an architecture for Q

similar to PixelCNN ([67], [66]). We model z as a 2D
√
m ×

√
m matrix and convolve it

with one-zero masks, which are equal to one only from their leftmost/top position to the

center of the filter. Intuitively, the ith output from this convolution depends only on the

bits located to the left and above the bit zi. The advantage of using a PixelCNN structure,

as noted in [65], is to enforce the causality constraint and compute P (zi|z.<i) for all bits zi

in parallel, instead of computing P (zi|z.<i) sequentially from i = 1 to i = m.
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3.3 Experiments

3.3.1 Comparative Methods

The objective of this experimental section is to demonstrate that Fairness by Binary Com-

pression – FBC – can achieve state-of-the art performance compared to four benchmarks

in fair representations learning: β-VAE, Adv, MMD and VFAE.

(i) β-VAE ([18]) solves the information bottleneck by variational inference and gener-

ates fair representations by adding Gaussian noise which upper-bounds the mutual

information between Z and X;

(ii) MMD ([55]) uses a deterministic auto-encoder and enforces fairness by minimizing

the maximum mean discrepancy ([54]) between the distribution of latent factors Z

conditioned on sensitive attributes S;

(iii) VFAE ([15]) extends β-VAE by adding a maximum mean discrepancy penalty;

(iv) Adv ([17]) uses a deterministic auto-encoder as for MMD, but enforces the fairness

constraint by maximizing the cross-entropy of an adversarial auditor that predicts

sensitive attributes S from representations Z.

Although FBC shares the deterministic nature of Adv and MMD, it is more closely

related to β−VAE, since β−VAE obtains fairness without explicit constraint on the mutual

information of I(Z, S). The main difference between our approach FBC and β−VAE is

that FBC controls the entropy of a binary coding of the data, while β−VAE generates

noisy representations and approximates the mutual information I(Z,X) with the Kullback

divergence between Q(z|x) and a Gaussian prior P (z). Note that the use of a vanilla

β−VAE in a fairness context is novel: only its cousin VFAE with an additional MMD

penalty has been proposed as a fair representation method.

3.3.2 Experimental Protocol

The overall experimental procedure consists of:
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(i) Training an encoder-decoder architecture (F,B,G) along with an estimator of the

code entropy Q;

(ii) Freezing its parameters;

(iii) Training an auditing network Aud : Z → S that predicts sensitive attributes from Z.

(iv) Training a task network T : Z → Y that predicts a task label Y from Z.

The encoder-decoder does not access the task labels during training: our representation

learning approach is unsupervised with respect to downstream task labels. Datasets are

split into a training set used to trained the encoder-decoder architecture; two test sets, one

to train both task and auditing networks on samples not seen by the encoder-decoder; one

to evaluate their respective performances.

Pareto fronts.

To compare systematically performances across methods, we rely on Pareto fronts that

estimates the maximum information that can be attained by a method for a given level of

fairness. We approximate information content as the accuracy Ay of the task network T

when predicting the downstream label Y . The larger Ay, the more useful is the learned

representation for downstream task labels.

We measure how much a representation Z leaks information related to sensitive at-

tributes S by the best accuracy As among a set of auditing classifiers Aud : Z → S that

predict S from Z. The intuition is that if the distributions p(Z|S = s) of Z conditioned

on S do not depend on s, the accuracy of any classifier predicting S from Z would remain

near chance level. In the binary case S = {0, 1}, comparing As to chance level accuracy

is a statistical test of independence with good theoretical properties ([88]). If the sensitive

classes are furthermore balanced (P (S = 0) = P (S = 1)) and the task labels are binary

(Y = {0, 1}), As estimates the worst demographic disparity that can be obtained by a down-

stream task classifier T that uses Z as an input ([12]). In the general case S = {0, 1}ds , the

lower As compared to chance level, the more independent Z and S are.
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To sweep the plan (Ay, As) and generate the Pareto fronts, we vary the parameter that

controls fairness in each of the competitive methods and for each parameter value, we repeat

the experimental protocol 50 times. We then bin the resulting values of As and compute

the 75%− quantile of Ay attained within each bin.

Rate distortion curves.

To demonstrate further our theoretical insights from section 3.1, we study both rate-

distortion and rate-fairness curves of compressing methods FBC and β−VAE.

The rate-distortion function RD(D) of an encoder-decoder is measured as the minimum

bitrate (in nats) necessary for the distortion Ex,z,s[− log(p(X|Z, S)] to be less than D ([14]):

RD(D) = min I(Z,X) s.t. Ex,z,s[− log(p(X|Z, S)] ≤ D. (3.7)

We introduce a new concept, rate-fairness function RF (∆), and define it as the max-

imum bit rate allowed for the accuracy As of the auditing classifier to remain less than

∆

RF (∆) = max I(Z,X) s.t. As ≤ ∆. (3.8)

The rate-fairness function captures the maximum information Z can contain while keep-

ing As under a given threshold. To obtain both rate-distortion and rate-fairness curves for

either our binary compression –FBC – or variational –β-VAE and VFAE – approaches ,

we vary the value of the parameter β controlling the rate-distortion trade-off and for each

value of β, we train the model 50 times with different seeds. For our binary compression

method, FBC, the bit rate is approximated by the cross-entropy of the entropy estimator

Q in (3.6); for variational-based methods, the bit rate is approximated by the Kullback

divergence between Q(z|x) and a Gaussian prior. In both cases, the approximation is an

upper bound to the true bit-rate (in nats) of Z. We estimate the distortion generated by

the encoder-decoder procedure as the l2 loss between reconstructed data X̂ = G(B(F (X)))

and observed data X.
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Robustness to Fairness Metrics

The fair information bottleneck (3.1) aims at controlling the flow of information between

Z and S without a prior knowledge of specific downstream task labels Y . Therefore, (3.1)

is not designed to control for fairness criteria that rely on labels Y (e.g. equality of odds

or opportunites, [38]) or on a specific classifier (e.g. individual fairness, [27]). However, in

our experiments, we explore whether the representations generated by FBC is empirically

robust to different fairness metrics, even though it is not optimized for these metrics to be

met.

In particular, we explore whether FBC reduces differences ∆FP (T ) in true positive

rates of the downstream task network T across demographic groups, where

∆FP (T ) =
∑
s∈S
|P (T (x) = 1|Y = 0, S = s)− P (T (x) = 1|Y = 0, S 6= s)|. (3.9)

3.3.3 Datasets

First, we apply our experimental protocol to a synthetic dataset – DSprites Unfair, [89]

– that contains 64 by 64 black and white images of various shapes (heart, square, circle).

Images in the DSprites dataset are constructed from six independent factors of variation:

color (black or white); shape (square, heart, ellipse), scales (6 values), orientation (40

angles in [0, 2π]); x- and y- positions (32 values each). The dataset results in 700K unique

combinations of factor of variations. We modify the sampling to generate a source of

potential unfairness. In our experiment, the sensitive attribute is quarternary and encodes

which quadrant of the circle the orientation angle belongs to: [0, π/2], [π/2, π], [π, 3/2π]

and [3/2π, 2π]. All factors of variation but shapes are uniformly drawn. When sampling

shapes, we assign to each possible combination of attributes a weight proportional to 1 +

10
[(

iorientation
40 )

)3
+
(
ishape

3

)3
]

, where ishape ∈ {0, 1, 2} and iorientation = {0, 1, ..., 39}. Since

shapes and orientation are correlated, a downstream task predicting shapes could risk to
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discriminate against some orientation.

Then, we extend our experimental protocol to three benchmark datasets in fair machine

learning: Adults, Compas and Heritage. The Adults dataset 2 contains 49K individ-

uals and includes information on 10 features related to professional occupation, education

attainment, race, capital gains, hours worked and marital status. Sensitive attributes is

made of 10 categories that intersect gender and race to which individuals self-identify to.

The downstream task label Y correspond to whether an individual earns more than 50K

per year.

The Compas data 3 contains 7K individuals with information related to their criminal

history, misdemeanors, gender, age and race. Sensitive attributes intersect self-reported race

and gender and result in four categories. The downstream task label Y assesses whether an

individual presents a high risk of recidivism.

The Health Heritage dataset 4 contains 220K individuals with 66 features related to

age, clinical diagnoses and procedure, lab results, drug prescriptions and claims payment

aggregated over 3 years. Sensitive attributes are 18 categories that intersect the gender

which individuals self-identify to and their reported age. The downstream task label Y

relates to whether an individual has a positive Charlson comorbidity Index.

3.3.4 Architectures and Hyperparameters

Encoder-decoders.

For the DSprites dataset, the autoencoder architecture – taken directly from [21] – includes

4 convolutional layers and 4 deconvolutional layers and uses ReLU activations. For the three

real world datasets, the encoder and decoder are made of fully connected layers with ReLU

activations. Table 3.1 shows more architectural details for each dataset. For all dataset,

the hyperparameter σ used for soft-quantization is set to 1. Other hyperparameter values

are in Table 3.2.
2https://archive.ics.uci.edu/ml/datasets/adult
3https://github.com/propublica/compas-analysis/
4https://foreverdata.org/1015/index.html
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Table 3.1: Architecture details. Conv2d(i, o, k, s) represents a 2D-convolutional layer with
input channels i, output channels o, kernel size k and stride s. ConvT2d(i, o, k, s) represents
a 2D-deconvolutional layer with input channels i, output channels o, kernel size k and
stride s. Linear(i, o) represents a fully connected layer with input dimension i and output
dimension o.

Dataset Encoder Decoder Activation

DSprites Conv(1, 32, 4, 2) Linear(28, 128) ReLU
Conv(32, 32, 4, 2) Linear(128, 1024) ReLU
Conv(32, 64, 4, 2) ConvT2d(64, 64, 4, 2),
Conv(64, 64, 4, 2) ConvT2d(64, 32, 4, 2)
Linear(1024, 128) ConvT2d(32, 32, 4, 2)
Linear(1024, 128) ConvT2d(32, 61, 4, 2)

Adults Linear(9, 64), Linear(64, 10) Linear(20, 10) ReLU
Linear(10, 64), Linear(64,9)

Compas Linear(6, 16), Linear(16, 8) Linear(12, 8) ReLU
Linear(8, 16), Linear(16,6)

Heritage Linear(65, 128), Linear(128, 24) Linear(42, 24) ReLU
Linear(24, 128), Linear(128,65)

Auditor and task classifiers.

Downstream classifiers and fairness auditors are multi-layer perceptrons with varying width

(64 to 256 neurons) and depth (2 to 3 hidden layers).

Entropy estimator

The objective of our entropy estimator Q is to predict the i − th bit of the code Z given

the values of the previous bits z1, ..., zi−1. We organize the representation into a 2D vector,

where the order is arbitrary but consistent across data points. Only the bits before the ith

bit (shaded in Figure 3.2) are to be used to estimate P (zi|z.<i). To do so, we convolve the

representations with c× c filters as in Figure 3.2: top filter for the first convolution; bottom

filter for the subsequent convolutions. By repeating these convolutions, we are guaranteed

that the resulting feature maps (i) satisfy the causality constraint (zi, ..., zm do not affect

the ith entry in the feature maps); and (ii) all previous bits z1, ..., zi−1 influence the ith entry
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Table 3.2: Hyperparameter values for FBC.

Dataset Number of iterations Learning rate
DSprites 270K 10−4

Adults 55K 10−3

Compas 22K 10−3

Heritage 55K 0.5× 10−4

zi

1 1 1
1 0 0
0 0 0

1 1 1
1 1 0
0 0 0

Figure 3.2: Masks for PixelCNN entropy estimator. Left: binary representations organized
into a

√
m ×

√
m− 2D structure. Strided cells indicate potential padding with zeros. Top

right: filter used in the first layer of our PixelCNN entropy estimator. Bottom right: filter
used in the subsequent layers of our PixelCNN entropy estimator.

of the feature maps.

In practice, we stack four convolutions with 0−1 filters as in Figure 3.2. Each convolution

layer is followed by batch normalization and ReLU activation. The resulting feature maps

are then passed through a traditional convolution layer with a learnable filter and a sigmoid

activation function.

3.4 Results and Discussion

3.4.1 Pareto fronts

Figure 3.3 shows the Pareto fronts across five comparative methods for the DSprites and

real-world datasets, respectively. Across all dataset, the higher and more leftward the Pareto
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Figure 3.3: Pareto Front for fair representation learning approaches for DSprites and three
benchmark datasets. This shows an accuracy-fairness trade-off by comparing the accuracy
As of auditors that predict sensitive attributes S from representations Z to the accuracy of
predicting a task label Y from Z. The dashed horizontal line represents the chancel level of
predicting Y . The dashed vertical line represents the chance level of predicting S. Ranges
of x− and y− axes varies across datasets.

front, the higher is the task accuracy Ay for a given auditor accuracy As and the better is

the accuracy-fairness trade-off. From these Pareto fronts, we can draw three conclusions.

First, on all datasets, controlling for the mutual information between Z and X – as in

FBC and β−VAE – is sufficient to reduce the accuracy As of the auditor Aud. This result

is consistent with our theoretical observation that minimizing proxies for the information

rate I(Z,X) is sufficient to minimize I(Z, S), provided that a side-channel provides the

sensitive attributes S to the decoder.

Second, an explicit control of the bit stream encoded in Z achieves a better accuracy-

fairness trade-off than floating point approaches. In the (As, Ay)− plan, our method, FBC

achieves either similar (Adults, Heritage) or better (DSprites, Compas) accuracy-fairness

trade-off than the variational method β−VAE that controls I(Z,X) by adding noise to the

information channel between X and Z. Across all experiments, the Pareto fronts obtained

from FBC are at least as upward and leftward as for β−VAE.

Third, FBC offers a better accuracy-fairness for Compas and DSprites than MMD,

VFAE and Adv and is competitive for Adults and Heritage. This is true although Adv,

VFAE and MMD control directly the mutual information between Z and S, while FBC
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controls only I(Z,X). For the Compas dataset, FBC shows vast improvement over existing

methods since it obtains a representation for which the auditor’s accuracy As is limited

to chance level, while the accuracy Ay of the downstream task is near its level when no

fairness constraint is imposed to the encoder-decoder. The adversarial methods do not

manage to generate representations with low As for the DSprites dataset, possibly because

in this higher dimensional problem, the optimization gets stuck in local minima where the

adversary has no predictive power, regardless of the encoded representation.

3.4.2 Rate-distortion and rate-fairness

Figure 3.4: Rate distortion/fairness curves. Each dot corresponds to one simulation of
FBC. Distortion is measured as the l2 loss between reconstructed and observed data.

Figure 3.5: Effect of β. This shows the effect of increasing the coefficient β for the code
entropy in (3.3) on the bit rate and the auditor’s accuracy As of representations generated
by FBC. Changes in β allows to move smoothly along the rate-fairness curve.
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Figure 3.6: Effect of β on the fairness of representation generated by β−VAE. Increasing
the coefficient β for the Kullback Leibler divergence in (3.4) reduces the bit rate and the
auditor’s accuracy As of representations generated by β−VAE. Changes in β allows to
move smoothly along the rate-fairness curve.

Figure 3.4 confirms that for FBC, a lower bit rate estimated by the cross entropy

CE(p, q) corresponds to a lower accuracy for the auditing classifier Aud. Both rate-

distortion (R,D) and rate-fairness (R,∆) curves show the same monotonic behavior: as

distortion moves up along the rate-distortion curves, lack of fairness as measured by As

moves down. However, for real-word datasets, particularly for Adults and Compas, we

observe more variance in the auditor accuracy’s As given a representation bit rate. We at-

tribute this higher variance to a smaller sample size – 617 for Compas and 3, 256 for Adult

on the test set.

Figure 3.5 shows that controlling for the level of compression by increasing the value of

β in (3.3) allows moving smoothly along the rate-fairness curve. This is true whether the

mutual information I(Z,X) between data and representation is controlled by the bitstream

entropy as in FBC (Figure 3.5) or by adding a noisy channel as in β−VAE (Figure 3.6).

However, binary compression allows a tighter control of the fairness of the representation

Z than variational-based methods since in Figure 3.3, for a given auditor’s accuracy As,

FBC allows the downstream classifier to achieve a higher accuracy Ay while predicting Y

from Z.
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Figure 3.7: Adults – t-SNE visualizations colored with gender (S) and income level (Y ) of
the representations obtained by FBC for different values of the parameter β controlling the
compression rate of FBC.

3.4.3 Representation Embeddings

Figure 3.7 shows the t−SNE visualizations ([90]) of the representations generated by FBC

for different values of the parameter β that controls the rate-distortion trade-of in (3.3) for

the Adults dataset. Without control of the representation bit rate – β = 0 – the t− SNE

plot shows a cluster of Females that are isolated from males and thus, are easily detected

by an auditor that predicts S from Z.

With enough compression – β = 0.35 – the representation not only looks more parsi-

monious, but also does not separate Females from Males as much as without compression

(β = 0). In the embeddings space, Females plots are either within clusters of Males or

on the edges of these clusters. Moreover, the t − SNE visualizations separate individuals

by income level regardless of the compression level, which confirms that the representa-

tions generated by FBC are useful for classification tasks that predict income level from Z.

t− SNE plots for Compas and Heritage are in the technical appendix.

To quantitatively assess the local homogeneity of the sensitive attribute in the embedding
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space (Figure 3.7, top), we compute the average distance of females to their top-10 male

neighbors and normalize it by the average distance between all individuals. We find that

our homogeneity measure decreases by 30% when compressing the data (from left to right

plot). But, a similar measure of homogeneity for outcomes (bottom row) decreases only

by 8%. This result confirms the visual perception that compression decreases the local

homogeneity of sensitive attributes more than the homogeneity of downstream task labels.

Figure 3.8 and 3.9 show t− SNE visualizations for Compas and Heritage, respectively.

For both datasets, as β increases, representations not only become more concise, but also

hide better the protected group which is made of individuals self-identified as African Amer-

ican for Compas (Figure 3.8, right) or individuals of age 60 and older (Figure 3.9, right) for

Heritage.

Figure 3.8: Compas – t-SNE visualizations labelled race (S, top) and recidivism risk (Y ,
bottom) of the representations obtained by FBC for different values of the parameter β
controlling the compression rate of FBC.
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Figure 3.9: Heritage – t-SNE visualizations labelled by age category (S, top) and comor-
bidity index (Y , bottom) of the representations obtained by FBC for different values of the
parameter β controlling the compression rate of FBC.

3.4.4 Differences in False Positive Rates

Figure 3.10 extends the pareto fronts of Figure 3.3 to additional fairness criteria. Instead

of estimating the mutual information between Z and S via As, we use differences in false

positive rates ∆FP (T ) of the downstream task network T as a fairness criteria. Figure 3.10

plots the median accuracy of T for a given value of ∆FP (T ).

First, all the methods tested – Adv, β−VAE and FBC – reduce differences of false

positive rates across demographic groups on Adult and Compas datasets. This result il-

lustrates, at least on these examples, the ability of fair representation learning to transfer

its fairness properties to fairness criteria that models have not been specifically trained to

meet. This transfer is all the more remarkable for ∆FP (T ) since this fairness criteria relies

on downstream task labels Y that are not observed by fair auto-encoder during its training.

Second, for a given value of ∆FP (T ), FBC reaches higher task accuracy Ay than

adversarial (Adv) and variational (β−VAE) methods. That is, FBC appears to generate

representations that offer to the task network a better trade-off between similar false rates
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across demographic groups (low ∆FP (T )) and accuracy.

Figure 3.10: Pareto front for representation learning approaches when using difference in
false positive rates as a fairness criteria. This plots the median of the accuracy Ay of
downstream task networks T for a given value of ∆FP (T ). The dashed horizontal line
represents the chancel level of predicting Y . MLP represents the accuracy and ∆FP (T )
obtained by a mutli-layer perceptron trained on the data X instead of its representation Z.
Shaded areas represent the range between the 25th and 75th quantiles of accuracy attained
by various task networks T for a given value of ∆FP (T ). Ranges of x− and y− axes vary
across datasets.

3.5 Conclusion

This chapter introduces a new method – Fairness by Binary Compression (FBC) – to map

data into a latent space, while guaranteeing that the latent variables are independent of

sensitive attributes. Our method is motivated by the observation that in an information

bottleneck framework, controlling for the mutual information between representation and

data is sufficient to remove unwanted factors, provided that these unwanted factors are

direct inputs to the decoder.

Our empirical findings confirm our theoretical intuition: FBC offers a state-of-the-

art accuracy-fairness trade-off across four benchmark datasets. Moreover, we observe that

encoding the representation into a binary stream allows a tighter control of the fairness-

accuracy trade-off than limiting the information channel capacity by adding noise. Our

results suggest further research into encoder-decoder whose architecture allows a tighter
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control of the representation’s bit rate and thus, of its fairness.
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Chapter 4: Single Shot Fair Representation Learning

In chapter 3, FBC generates a fairness-information trade-off that can only be discovered by

training many models. To achieve different points on the fairness-information plane, one

must train different models. In this chapter, we first demonstrate that fairness-information

trade-offs are fully characterized by rate-distortion trade-offs. Then, we use this key result

and propose SoFaiR, a single shot fair representation learning method that generates with

one trained model many points on the fairness-information plane.

Our approach relies on a conditional gated mechanism that masks/unmasks represen-

tation features at test time depending on the desired fairness / distortion properties. For

example, in medical applications, at no additional computational cost, the practitioner can

mask/unmask bits depending on whether age or gender are appropriate features for the

downstream task at play.

Besides its computational saving, our single-shot approach is, to the extent of our knowl-

edge, the first fair representation learning method that explains what information is affected

by changes in the fairness / distortion properties of the representation. Empirically, we find

on three datasets that SoFaiR achieves similar fairness-information trade-offs as its multi-

shot counterparts.

4.1 Problem Statement

4.1.1 Preliminaries.

Consider a population of individuals represented by features X ∈ X ⊂ Rdx and sensitive

attributes in S ∈ S ⊂ {0, 1}ds , where dx is the dimension of the feature space and ds ≥ 1 is

the dimension of the sensitive attributes space.
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The objective of unsupervised fair representation learning is to map features X ∈ X into

a d−dimensional representation Z ∈ Z such that (i) Z maximizes the information related

to X, but (ii) minimizes the information related to sensitive attributes S. We control for

the fairness properties of the representation Z via its mutual information I(Z, S) with S.

I(Z, S) is an upper bound to the demographic disparity of any classifier using Z as input

[91]. We control for the information contained in Z by constraining a distortion d(X, {Z, S})

that measures how much information is lost when using a data reconstructed from Z and

S instead of the original X. Therefore, fair representation learning is equivalent to solving

the following unfairness-distortion problem

I(D) = min
F

I(Z, S) s.t. D(X, {Z, S}) ≤ D (4.1)

where F : X → Z is an encoder, either stochastic or deterministic. The unfairness-distortion

function I(D) defines the minimum mutual information between Z and S a user can expect

when encoding the data with a distortion less or equal to D. The unfairness-distortion prob-

lem (4.1) implies a fairness-information trade-off: lower values of the distortion constraint

D degrade the fairness properties of Z by increasing I(D).

Definition 4.1.1. The unfairness distortion function I(D) is the infimum of mutual in-

formation between the representation Z and sensitive attribute S such that the distortion is

less than D.

The objective of this chapter is given a data X to obtain the unfairness-distortion func-

tion I(D) with a single encoder-decoder architecture.

4.1.2 Unfairness Distortion Curves.

Rate distortion theory characterizes the minimum average number of bits R(D) used to rep-

resent X by a code Z while restricting the expected distortion incurred when reconstructed

X from the code to be less than D.We show how to derive unfairness-distortion functions

I(D) from rate distortion functions R(D).
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Theorem 4.1.1. Suppose that the distortion is given by D(X, {Z, S}) = E[− log(p(x|z, s)].

Then, the unfairness distortion function I(D) is equal to R(D) +D−C if ∂R
∂D ≤ −1 and 0

otherwise. C = H(X|S) is a constant that does not depend on D, but only on the data X.

Moreover, I(D) is a non-increasing convex function.

Phase Diagram. The proof of Theorem 4.1.1 is in the appendix. Figure 4.1 shows a

graphical interpretation of Theorem 4.1.1 in a (D,R) plane. (D∗, R∗) denotes the point

on the rate-distortion curve where ∂R
∂D = −1. For D ≤ D∗, we can show that the rate

distortion curve is above the line defined by R + D = H(X|S) and that the difference

between both curves is equal to I(Z, S). For D > D∗, the rate-distortion curve is exactly

the line R + D = H(X|S) and the unfairness-distortion curve is the horizontal axis. We

call the regime D∗ ≤ D ≤ H(X|S) the fair-encoding limit where the distortion is less than

its upper limit, but Z is independent of sensitive attribute S. The existence and size of

a fair-encoding limit characterizes the possibility to perfectly decorrelate Z from S while

representing some information present in the data (R > 0).

Information bottleneck. Theorem 4.1.1 implies that fairness-distortion trade-offs are

fully characterized by rate-distortion trade-offs. A fundamental result in rate distortion

theory ([14, 63]) shows that the rate-distortion function is the solution of the following

information bottleneck

R(D) = min
F

I(X,Z) s.t D(X, {Z, S}) ≤ D. (4.2)

By solving this information bottleneck with D(X, {Z, S}) = H(X|Z, S) and then, invoking

Theorem 4.1.1, we can recover the unfairness-distortion I(D). [20] provide an intuition

for this result. Controlling for the mutual information I(Z,X) allows to control for I(Z, S)

because an encoder would not waste code length to represent information related to sensitive

attributes, since sensitive attributes are provided directly as an input to the decoder. We
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can write the information bottleneck in its Lagrangian form as

min
F

βI(Z,X) + E[− log p(x|z, s)] (4.3)

The coefficient β relates to the inverse of the slope of the rate-distortion curve: ∂R
∂D = −1/β.

Each value of β generates a different point along the rate-distortion curve and thus, by

Theorem 4.1.1 a different point along the unfairness-distortion curve. Higher values of β

lead to representations with lower bit rate and lower mutual information with S. To explore

a unfairness-distortion curve, existing multi-shot strategies are prohibitively expensive as

they learn a new encoder F for each value of β. This is computationally expensive as the

practitioner needs to train a new model for each point on the unfairness-distortion curve,

which limits its ability to explore the entire curve. Moreover, there is no straightforward

explanation on how changes in β affect the representation generated by the encoder.

4.2 Method: Single-Shot Unfairness-Distortion Curves.

We propose a single-shot method, SoFaiR, to generate with one model as many points as

desired on the unfairness-distortion curve.

An encoder F : X → {0, 1}d×r common to all values of β encodes the data into a d

dimensional latent variable e ∈ [0, 1]d. We quantize each dimension ej of the d−dimensional

latent variable with a resolution rj(β): we transform ej into a quantized representation

zj(β) = [e ∗ r(β)]/r(β), where [.] denotes the rounding-up operation and r(.) is a decreasing

function of β.

4.2.1 Interpretability

To maintain an interpretable relation between z(β) and z(β′) for β′ < β, we write rj(β) =

2aj(β), where aj(.) is a decreasing function of β for j = 1, ..., d. Each dimension zj(β) of

the quantized representation is then encoded into aj(β) bits. Moreover, for β′ < β, each
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Figure 4.1: Unfairness-distortion curves I(D) vs. rate-distortion curve R(D). The unfair-
ness distortion I(D) can be deduced from the rate-distortion R(D) curve by a downward
shift equal to D −H(X|S) if the distortion is less than D∗.
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dimension j of the representation z(β′) is made of the same aj(β) bits as zj(β), followed

by aj(β
′)− aj(β) additional bits. Each dimension zj(β) of the quantized representation is

encoded into aj(β) bits bj,1, bj,2, ..., bj,a(β), where bj,l ∈ {0, 1} for l = 1, ..., aj(β). For β′ < β

and for j = 1, ..., d, we have

zj(β
′) = zj(β) +

aj(β
′ )∑

l=aj(β)
bj,l2−l. (4.4)

Therefore, we have a tractable and interpretable relation between zj(β
′) and zj(β).

This construction allows relaxing fairness constraints and decreasing distortion by un-

masking additional bits for each dimension of the representation. Figure 4.2 shows an

example for a 2-dimensional representation. A user who has released z1 with high dis-

tortion and low mutual information I(Z, S) reduces distortion at the cost of fairness by

unmasking one bit for the first dimension and two bits for the second and by generating z2.

4.2.2 Quantization

We assign a maximum number of bits A > 0 to encode each dimension of the representation.

We apply a function he to map the d−dimensional latent variable e into [0, 1]d×A and then,

apply a rounding-up operator [he(e)] to generate a d × A matrix, each row encoding a

dimension of the representation with A bits (see Figure 4.2 with A = 3). For each dimension

j, we implement aj(.) by applying a function ha to map e into a d−dimensional vector of

R+d and by computing

aj(β) = A [1− tanh(ha(e)jβ))]. (4.5)

For each value of β and each row of the matrix [he(e)], we mask all the entries in position

l > aj(β): for each row j and each column l, we compute a soft mask

mj,l(β) = σ (aj(β)− l) , (4.6)

53



Figure 4.2: SoFaiR generates interpretable shifts along the unfairness-distortion curve. For
a point z1, SoFair learns a mask m1 that hides bits on the tails of each dimension of the
representation. By relaxing the mask to first m2 then m3, the number of bits used to
represent the data increases from a1 to a2 and then a3; and, the representation moves to
z2 then z3, which reduces the distortion at the expenses of degraded fairness properties.
z1, z2 and z3 only differ by their masked bits (black squares).
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where σ denotes a sigmoid activation; and then, we apply a rounding operator [mj,l(β)] to

our soft mask.

The binarization caused by the rounding operation [.] is not differentiable. We follow [68]

and use a gradient-through approach that replaces [.] by the identity during the backward

pass of back-propagation, while keeping the rounding operation during the forward pass.

4.2.3 Entropy estimation.

To estimate the entropy of the representation Z, we use an auto-regressive factorization to

write the discrete distribution P (z|β) over the representation Z

P (z|β) =
d∏
j=1

P (zj |z.<j , β), (4.7)

where the order of the dimension j = 1, ..., d is arbitrary and z.<j denotes the dimension

between 1 and i − 1. This is similar to the entropy estimation in [20]. However, unlike

[20] who model P as a discrete distribution, we follow a more standard approach in rate-

distortion [68, 69] and approximate the discrete distribution p(zj |z.<j , β) by a continuous

distribution q(zj |z.<j , β) such that the probability mass of q on the interval [zj−1/2aj(β), zj+

1/2aj(β)] is equal to p(zj |z.<j , β). Therefore,

H(z|β) = −
d∑
j=1

E [log p(zj |z.<j , β)]

= −
d∑
j=1

E

[
log

(∫ 1/2aj(β)

−1/2aj(β)
q(zj + u|z.<j , β)du

)]

+KL

(
p||
∫ 1/2aj(β)

−1/2aj(β)
q(zj + u|z.<j , β)du

)

(a)
≤ −

d∑
j=1

E

[
log

(∫ 1/2aj(β)

−1/2aj(β)
q(zj + u|z.<j , β)du

)]
,

(4.8)
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where (a) uses the non-negativity of the Kullback-Leibler divergence KL between the true

distribution p(z|β) and its approximation q(z|β) once convolved with a uniform distribution

over [−1/2aj(β), 1/2aj(β)].

We follow [92] and for each j = 1, ..., d we model q(.|z.<j , β) as a mixture of K logistic

distributions with means µj,k(β), scales γj,k(β) and mixtures probability πj,k(β), which

allows to compute exactly the integral term in (4.8). Specifically, we compute

µj,k = µ0
j,k(β) + wµj,k(β)Γj � zj , (4.9)

and

log(γj,k) = γ0
j,k(β) + wγj,k(β)Γj � zj , (4.10)

where µ0
j,k(.), γ0

j,k() are functions from [0, 1] to R; wµjk() and wγj,k() are functions from [0, 1]

to Rd; and, Γj = (1, 1, .., 1, 0, ...0) is a d− dimensional vector equal to one for entry before

j and zero otherwise. Γj guarantees that the distribution q(.|z.<j) is conditioned only on

z.<j only and not on any zj′ for j′ ≥ j.

The use of logistic distribution allows to compute the upper bound in (4.8) as Hq(z|β)

where Hq(z|β) is given by

−
d∑
j=1

E

[
log

(
K∑
k=1

πj,kσ

(
zj + µj,k(β)
γj,k(β) + 1

2aj(β)

)

−σ
(
zj + µj,k(β)
γj,k(β) − 1

2aj(β)

))]
.

(4.11)

The adaptive information bottleckneck can be written as:

min
G,he,ha,µ,γ,w,π

E[− log p(x|G(z, s, β)) + βHq(z|β)]. (4.12)
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4.3 Experiments

We design our experiments to answer the following research questions: (RQ1) Does SoFaiR

generate in a single-shot unfairness-distortion curves comparable to the ones generated by

multi-shot models? (RQ2) Do representations learned by SoFaiR offer to downstream tasks

a fairness-accuracy trade-off on par with state-of-the-art multi-shots techniques in unsu-

pervised fair representation learning? (RQ3) What information is present in the additional

bits that are unmasked as we move up the unfairness-distortion curve?

4.3.1 Datasets

We validate our single-shot approach with three benchmark datasets in fair machine learn-

ing: DSprite-Unfair, Adults and Heritage.

DSprite Unfair is a variant of the DSprites data 1, a synthetic dataset that contains

64 by 64 black and white images of various shapes (heart, square, circle). Images in the

DSprites dataset are constructed from six independent factors of variation: color (black or

white); shape (square, heart, ellipse), scales (6 values), orientation (40 angles in [0, 2π]); x-

and y- positions (32 values each). We modify the sampling to generate a source of potential

unfairness and use as sensitive attribute a variable that encodes whether the shape has an

orientation within [0, π/2), [π/2, π), [π, 3/2π) or [3/2π, 2π).

The Adults dataset 2 contains 49K individuals with information to professional occu-

pation, education attainment, capital gains, hours worked, race and marital status. We

consider two variants of the Adults dataset: Adults-Gender and Adults-Gender-Race.

In Adults-Gender we define as sensitive attributes the gender to which each individual self-

identifies to. In Adults-Gender-Race, we define as sensitive attribute an intersection of the

gender and race an individual self-identifies to. For both Adults-Gender and Adults-Gender-

Race, the downstream task label Y correspond to whether individual income exceeds 50K

per year.
1https://github.com/deepmind/dsprites-dataset/
2https://archive.ics.uci.edu/ml/datasets/adult
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The Health Heritage dataset 3 contains 95K individuals with 65 features related

to clinical diagnoses and procedure, lab results, drug prescriptions and claims payment

aggregated over 3 years (2011-2013). We define as sensitive attributes a 18− dimensional

variable that intersects the gender which individuals self-identify to and their reported age.

The downstream task label Y relates to whether an individual has a non-zero Charlson

comorbidity Index, which is an indicator of a patient’s 10-year survival rate.

4.3.2 Unfairness-distortion curves.

To plot unfairness-distortion curves, we estimate the distortion as the l2− loss between

reconstructed and observed data, which is equal to Ex,z,s[− log p(x|z, s)] (up to a constant)

if the distribution of p(X|Z, S) X is an isotropic Gaussian. Moreover, l2− loss is a common

measure of distortion in the rate-distortion literature.

We also approximate the mutual information I(Z, S) with an adversarial lower bound.

For any approximation q(s|Z) of p(s|Z), we have

I(Z, S) = H(S)−H(S|Z)

= H(S)− Es,z[− log q(s|z)] +KL(p(s|z)||p(s|z)

≥ H(S)− Es,z[− log q(s|z)],

(4.13)

where the inequality comes from the non-negativity of the Kullback-Leibler divergence

KL(p|q). Therefore, we lower bound I(Z, S) with

H(S)−min
q
Es,z[− log q(s|z)], (4.14)

where the minimum is taken over classifiers that predict S from Z. This lower bound leads

to train adversary-based autoencoder in fair representation learning (e.g. [16,17,93]). In this
3https://foreverdata.org/1015/index.html
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chapter, we only use the lower bound for a post mortem evaluation of the fairness-distortion

trade-off generated by SoFaiR.

In practice, we train a set of 5 classifiers c : Z → S modeled as fully connected neural

networks and use their average cross-entropy to estimate the right hand side of (4.13).

4.3.3 Area under unfairness-distortion curves.

We compare the performance of different fair representation learning methods in terms of

unfairness-distortion curves. Besides visual inspection of unfairness-distortion curves, we

propose to compute the area under unfair-distortion curve, AUFDC, to allow for quan-

titative comparison between fair representation methods. A model that achieves a lower

AUFDC generates representations that achieve lower I(Z, S) for a given level of distortion.

We compute the area under unfair-distortion curve, AUFDC, as follows:

• Since we only generate a finite number of points, empirical fairness-distortion curves

do not have to exhibit a perfectly decreasing and smooth behavior. Therefore, to

compute our AUFDC metric, we first filter out the points on the curve that have

higher distortion than points with higher I(Z, S). That is, for any point (D, I), we

remove all points (D′ , I ′) for which D
′
> D and I

′
> I.

• We estimate the largest obtainable mutual information Imax between Z and S as

H(S)−min
c
Es,x[− log c(s|x)], (4.15)

where c : X → S are classifiers that predict S from the data X. That is, we use

an adversarial estimate of I(X,S) and use this estimate as Imax, since by the data

processing inequality [63], I(Z, S) ≤ I(X,S).

• For models that do not reach I(Z, S) = 0, we compute the distortion Dmax obtained

by generating random representations; and then, we add to the AUFDC score, the

area Imin×(Dmax−Dmin) where (Dmin, Imin) is the point the furthest on the bottom
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right of the unfairness-distiortion curve achieved by the model.

• To allow comparison across datasets, we normalize the value of AUFD by the area of

the rectangle [0, Dmax]× [0, Imax].

4.3.4 Comparative Methods.

Most methods in fair representation learning are supervised since they are tailored toward

a specific downstream classification task. We follow [20] and re-purpose each comparative

method to an unsupervised setting where we replace the cross-entropy of the downstream

classification task by our measure of distortion E[− log p(x|Z, s)].

We compare SoFaiR with the following fair representation methods:

• LATFR ([16, 17]) controls the mutual information I(Z, S) via the cross-entropy of

an adversary that predicts S from Z. LATFR controls the fairness properties of the

representation Z with a single parameter in {0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.5, 2.0, 3.0, 4.}

as prescribed in the original paper.

• MaxEnt-ARL [94] is a variant of LATFR that replaces the cross-entropy of the

adversary with the entropy of is prediction. The fairness properties of Z are controlled

by a single parameter that we vary between 0 and 1 in steps of 0.1, between 1 and 10

in steps of 1 and then between 10 and 100 in steps of 10.

• β − V AE[18, 20] controls for I(Z, S) by controlling the Kullback-Leibler divergence

between p(z) and an isotropic Gaussian prior. The fairness properties of the represen-

tations are controlled via the coefficient β on the Kullback-Leibler divergence term:

larger values of β force Z be more noisy, reduce the capacity of the channel between

the data and the representation and thus, the mutual information I(Z,X). We vary

the value of β between 0 and 1 in steps of 0.05.

• CVIB [95] controls for I(Z, S) via both the Kullback-Leibler divergence between
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p(z) and an isotropic Gaussian prior (as in β-VAE) and an information-theory up-

per bound. The first term is controlled by a parameter β that takes values in

{0.001, 0.01, 0.1}; the second is controlled by a parameter λ that vary between 0.01

to 0.1 in steps of 0.01 and 0.1 to 1.0 in steps of 0.1 [91].

• MSFaiR reproduces SoFaiR, but solves the rate-distortion problem (4.12) separately

for different values of β ∈ [0, 1].

4.3.5 Pareto Fronts

We construct Pareto fronts that compare the unfairness properties of the representation to

the accuracy Ay of a downstream task classifier that predicts a downstream label Y from Z.

Critically in our unsupervised setting, we do not provide the labels Y to encoder-decoders.

To match existing benchmarks, we measure the unfairness properties of the representation

with the average accuracy As of auditing classifiers that predict S from Z. The higher Ay

for a given As, the better is the fair representation method.

To generate Pareto fronts, we implement the following protocol:

• Train an encoder-decoder architecture and freeze its parameters;

• Train an auditing classifier c : Z → S to predict S from Z;

• Train a downstream task classifier T : Z → Y to predict a task Y from Z.

The encoder-decoder does not access the task labels during training and our representation

learning framework remains unsupervised with respect to downstream task labels. Critically

in our unsupervised setting, we do not provide the labels Y to encoder-decoders. All

comparative methods share the same encoder-decoder architecture and differ only by how

they control the mutual information between Z and S.

Pareto fronts differ from unfairness-distortion curves by how tailored they are to a spe-

cific downstream task. In unsupervised fair representation learning, unfairness-distortion
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curves is a general purpose method that allows the practitioner to estimate the fairness-

information trade-off without any particular downstream task –either classification or re-

gression – in mind.

4.3.6 Architectures

Table 4.1: Architecture details. Conv2d(i, o, k, s) represents a 2D-convolutional layer with
input channels i, output channels o, kernel size k and stride s. ConvT2d(i, o, k, s) represents
a 2D-deconvolutional layer with input channels i, output channels o, kernel size k and
stride s. Linear(i, o) represents a fully connected layer with input dimension i and output
dimension o. Activations are not applied on the last layer of the decoder.

Dataset Encoder Decoder Activation

DSprites Conv(1, 32, 4, 2), Linear(28, 128), ReLU
Conv(32, 32, 4, 2) Linear(128, 1024) ReLU
Conv(32, 64, 4, 2) ConvT2d(64, 64, 4, 2), ReLU
Conv(64, 64, 4, 2) ConvT2d(64, 32, 4, 2) ReLU
Linear(1024, 128) ConvT2d(32, 32, 4, 2), ReLU

ConvT2d(32, 1, 4, 2)

Adults Linear(9, 128), Linear(8, 128), ReLU
Linear(128, 128), Linear(128, 128), ReLU
Linear(128, 8) Linear(128, 9),

Heritage Linear(65, 256), Linear(12, 256), ReLU
Linear(256, 256), Linear(256, 256), ReLU
Linear(256, 12) Linear(256, 65),

Table 4.2: Hyperparameter values for SoFaiR / MSFaiR.

Dataset Number of iterations Learning rate

DSprites 546K 0.3× 10−4

Adults 27K 0.3× 10−4

Heritage 74K 0.3× 10−4
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Figure 4.3: Unfairness-Distortion curves for a) DSprites, b) Adults-Gender, c) Adults-Race-
Gender(left) and d) Heritage.

Encoder-decoders. For the DSprites dataset, the autoencoder architecture – taken di-

rectly from [21] – includes 4 convolutional layers and 4 deconvolutional layers and uses

ReLU activations. For Adults and Heritage, the encoder and decoder are made of fully

connected layers with ReLU activations. Table 4.1 shows more architectural details for

each dataset. Moreover, means µ, scales γ and mixture probabilities π are modeled as fully

connected linear layers with input dimension 1 and output dimension d, i.e. the dimension

of the latent space. We choose K = 5 logistic distributions in the mixture. We also set the

maximum number of bits per dimension, A, to be equal to 8. Other hyperparameter values

are in Table 4.2.

Auditor and task classifiers. Downstream classifiers and fairness auditors are multi-

layer perceptrons with 2 hidden layers of 256 neurons each. Learning rates for both auditing

and downstream tasks are set to 0.001

4.4 Results

4.4.1 Single Shot Fairness-Distortion Curves.

4.4.2 RQ1: Single Shot Fairness-Distortion Curves.

Figure 4.3 shows SoFaiR’s unfairness-distortion curves for DSprites (left), Adults-Gender

(middle left), Adults-Gender-Race (middle right) and Heritage (right). By increasing at
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test time the value of β, the user can smoothly move down the unfairness-distortion curve:

values of β close to zero lead to low distortion - high I(Z, S) points; values of β close to

one lead to higher distortion - low I(Z, S) points. Figure 4.3 demonstrates that a solution

to the adaptive bottleneck (4.12) allows one single model to capture different points on the

unfairness-distortion curve. This result is consistent with Theorem 4.1.1 and illustrates that

controlling for the bit rate of Z via its entropy H(Z) is sufficient to control for I(Z, S).

Table 4.3: Area under the unfairness-distortion curve of single-shot (SoFaiR) versus multi-
shot (MSFaiR) fair representation learning methods. Lower (↓) is better. This shows that
SoFaiR provides unfairness-distortion curves with similar AUFDC.

Dataset Model AUFDC (↓)
DSprites-UnfaiR SoFaiR 0.21

SoFaiR-NOS 0.25
MSFaiR 0.14

Adults-Gender SoFaiR 0.32
SoFaiR-NOS 0.58

MSFaiR 0.35
Adults-Gender-Race SoFaiR 0.30

SoFaiR-NOS 0.53
MSFaiR 0.36

Heritage SoFaiR 0.62
SoFaiR-NOS 0.73

MSFaiR 0.56

Ablation study. UFDC scores in Table 4.3 show that SoFaiR is competitive with its

multi-shot counterpart: SoFaiR outperforms MSFaiR for Adults-Gender and Adults-Gen-

der-Race (lower AUFDC), but is slightly outperformed for Heritage and DSprites-Unfair

(higher AUFDC).

On the other hand, SoFaiR unambigously outperforms SoFaiR-NOS, a model similar

to SoFaiR but with a decoder that does not use the sensitive attribute S as side-channel.

The relation between unfairness-distortion and rate-distortion curves in Theorem 4.1.1 is

tractable only if we use E[− log(p(x|z, s)] as a measure of distortion and does not hold if
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Figure 4.4: Ablation study for a) DSprites, b) Adults-Gender, c) Adults-Race-Gender(left)
and d) Heritage. This compares unfairness-distortion curves generates by our single shot
approach SoFaiR to the ones generated by its multi-shot counterpart MSFaiR; and, to the
ones generated by SoFaiR-NOS, which is similar to SoFaiR but for the decoder that does
not receive the sensitive attribute S as an input.

we use E[− log(p(x|z)] instead and the decoder does not receive S as side channel.

In Figure 4.4, we plot the unfairness-distortion curves that correspond to the AUFDC

that we report in Table 4.3 of the main text. We report the median value of distortion

for a given level of mutual information I(Z, S), where the median is taken over 10 similar

models trained with different seeds. The lower is the distortion for a given value of I(Z, S),

the better the fair representation learning method. Conclusions from Figure 4.4 are similar

to the ones from Table 4.3. SoFaiR outperforms MSFaiR for Adults-Gender and Adults-

Race-Gender at all values of I(Z, S), while it is outperformed by MSFaiR for Heritage at

low values of I(Z, S). Moreover, for all datasets, SoFaiR outperforms SoFaiR-NOS, which

confirms that rate-distortion solutions to fair representation learning need the decoder to

receive the sensitive attribute as a side channel.

Computational costs. Table 4.4 compares the computational costs of SoFaiR and MS-

FaiR. We average the cpu and gpu times of a training step over 10 profiling cycles and the

number of training epochs. We perform the experiment on a AMD Ryzen Threadripper

2950X 16-Core Processor CPU and a NVIDIA GV102 GPU. The average computing cost

of a training step is similar for SoFaiR and MSFaiR since both methods rely on similar

architecture. However, SoFaiR’s computational costs remain constant as the number of
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points on the unfairness-distortion curve increases, while MSFaiR’s costs increase linearly.

For example, 16 points for the DSprites-Unfair require about 137 hours of running time

with MSFaiR and only 8 hours with SoFaiR.

Table 4.4: Area under the unfairness-distortion curve and computational costs of single-
shot (SoFaiR) versus multi-shot (MSFaiR) fair representation learning methods. Lower
(↓) is better. This shows that SoFaiR provides unfairness-distortion curves with similar
AUFDC as MSFaiR, but at much lower computational costs.

Dataset Model Average per step Total time (106 ms): CPU/GPU (↓)
CPU/GPU (ms) 4 points 8 points 16 points

DSprites-UnfaiR SoFaiR 79± 1.2 / 55± 0.2 18.5/13.0 18.5/13.0 18.5/13.0
MSFaiR 76± 3.2 / 55± 0.3 71.4/52.1 142.9/104.2 285.8/208.0

Adults-Gender SoFaiR 91± 3.3/6± 0.0 2.3/0.1 2.3/0.1 2.3/0.1
MSFaiR 92± 1.0/6± 0.0 9.4/0.6 18.9/1.1 37.7/2.3

Adults-Gender-Race SoFaiR 92± 4.3/6± 0.0 2.4/0.1 2.4/0.1 2.4/0.1
MSFaiR 90± 4.0/6± 0.0 9.1/0.6 18.3/1.1 36.6/2.3

Heritage SoFaiR 125± 3.0/8.6± 1.6 3.7/0.3 3.7/0.3 3.7/0.3
MSFaiR 123± 3.1/10± 0.8 14.7/1.2 29.4/2.3 58.7/4.8

4.4.3 RQ2: Pareto Fronts

In this section, we investigate the fairness and accuracy of downstream classifiers that use

representations generated by SoFaiR as inputs to predict a task label Y . IIn Figure 4.5, the

larger the downstream classifier’s accuracy Ay for a given value of the auditor’s accuracy

As, the better the Pareto front. First, SoFaiR and MSFaiR’s Pareto fronts are either as

good or better than the ones generated by LATFR, CV IB, Maxent−ARL and β−V AE.

Exceptions to this observations include Adults-Gender-Race for low values of As where

LATFR outperforms SoFaiR/MSFaiR. Rate distortion approaches are competitive, which

confirms the tight connection between rate-distortion and unfairness-distortion as presented

in Theorem 4.1.1. Both SoFaiR and MSFaiR offer more consistent performances than

LATFR or Maxent−ARL whose representations keep leaking information related to S for

Adults-Gender regardless of the constraints placed on the adversary. And, β−V AE exhibits

non-monotonic behavior for Adults-Gender. Second, Figure 4.5 shows that SoFaiR’s Pareto
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Figure 4.5: Pareto fronts for a) DSprites, b) Adults-Gender, c) Adults-Race-Gender(left)
and d) Heritage. The downstream task label is whether income is larger than 50K for
Adults/Adults-Race-Gender; whether a comorbidity index is positive for Heritage; which
shape the image corresponds to for DSprites-Unfair.

fronts are similar to the ones offered by MSFaiR, its multi-shot counterpart. This result is

consistent with AUFDC scores in Table 4.4.

4.4.4 RQ3: Interpretability

Our single-shot fair representation learning approach relies on multi-refinement of Z by

adding bits to each of its dimension. This multi-refinement allows to degrade gracefully

the reconstruction of the original data as fairness constraints tighten. Conversely, loosening

fairness constraints is akin to send additional bits to the downstream applications that

needs better reconstruction / additional information. The benefit of this multi-refinement

approach is that it allows the practitioner to measure (i) how much disparity a given bit

contributes to; (ii) what type of information is added to the representation as the fairness

constraints loosen.
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Bit Disparity. We measure the disparity of each bit b as

∆(b) = max
s∈S
|P (b = 1|S = s)− P (b = 1|S 6= s)|. (4.16)

Bit disparity is the demographic disparity of a classifier that returns 1 if b = 1 and 0

otherwise. Moreover, we show in the supplementary file that maxb ∆(b) is a lower bound

of I(Z, S): a large value of ∆(b) means that the presence of bit b in the bitstream will

significantly degrade the fairness properties of Z.

In Figure 4.6, loosening the fairness constraint at test time – decreasing β – unmasks

more bits, while keeping the leftmost bits identical to ones obtained with higher values of

β. SoFaiR degrades gracefully the fairness properties of the representation by increasing its

resolution.

Figure 4.6 also shows that for Adults-Gender-Race, bits with higher disparity ∆ are less

likely to be unmasked with stringent fairness constraints – high β – and are only active

when more leakages related to sensitive attribute are tolerated – low β. Therefore, by

forcing SoFaiR to generate many points on the unfairness-distortion curve, we obtain an

information ordering that pushes to the tail of the bitstreams the bits the most correlated

with S. In Figure 4.7, we observe a similar pattern with Adults-Gender-Race.

Figure 4.6: Unmasked bits for different values of the fairness coefficient β for the Adults-
Gender-Race dataset. Each row is a dimension of Z. Each colored square is an unmasked
bit. Black squares represent masked bits. Darker bits exhibit higher bit demographic
disparity ∆(b). As β decreases, SoFaiR unmasks more bits for each dimension of Z. And,
bits with higher disparity are more likely to be the last unmasked.
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Figure 4.7: Same as Figure 4.6 but with Adults-Gender.

Fairness and information loss. Unlike alternative methods in fair representation learn-

ing, SoFaiR offers a simple tool to interpret at test time what information is lost as the

fairness constraint tightens. In Figure 4.8, we plot for Adults-Gender and Adults-Gender-

Race how additional bits unmasked as β decreases correlate with data features. As we

move up the unfairness-distortion curve for Adults-Gender, additional information first re-

lates to marital status; then, occupation type, relationship status and hours-per-week. It

means that for downstream tasks that predict marital status, a representation on the bot-

tom right of the unfairness-distortion curve (high distortion, low I(Z, S)) is sufficient to

achieve good accuracy. But, downstream tasks that need hours-per-week would find more

difficult to obtain good accuracy without moving up the unfairness-distortion curves, i.e

leaking additional information related to sensitive attribute S.

4.5 Conclusion

In this chapter, we present SoFaiR, a single-shot fair representation learning method that

allows with one trained model to explore at test time the fairness-information trade-offs

of a representation of the data. Our implementation relies on a tight connection between

rate-distortion and unfairness-distortion curves. SoFaiR is a step toward practical imple-

mentation of unsupervised fair representation learning approach, all the more as users can
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Figure 4.8: Additional information provided by refining the representation for Adults-
Gender (left) and Adults-Gender-Race (right) dataset. This shows the correlation between
data features and additional bits that SoFaiR unmasks when loosening the fairness con-
straint. Correlations are computed between the data features and the first principal com-
ponent of newly unmasked bits. Each column corresponds to a decrease of β as labeled on
the horizontal axis.

now explain what information is lost as the fairness properties of the representation improve.
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Chapter 5: Hierarchical Fair Representation Learning

In Chapter 3 and 4, we show that in an unsupervised setting, unfairness-distortion problems

can be solved as rate-distortion problems. A sufficient condition is that the decoder uses

a side channel that provides with direct access to the sensitive attribute. In this chapter,

we explore architectural choices to solve fair representation learning problems via rate-

distortion approaches in the context of images.

A challenge to generate fair representation of images is that the encoder needs to act

on high level concepts (e.g. sensitive attributes), while maintaining high resolution details

to reconstruct the input image. In this chapter, we propose a hierarchical quantization

approach, HQ-FR –Hiearchical Quantization Fair Representation – where low-resolution

variables capture global features and condition higher resolution variables.

We verify empirically that for face images, depth, independent of model capacity, is

necessary for rate-distortion based approaches to solve unsupervised fair representation

learning problems. We also find that regardless of depth, alternative approaches – e.g.

adversary-based methods – generate representations that still leak information related to

sensitive attributes.

5.1 Method

5.1.1 Preliminary

Consider a collection of images X of dimension C × H × W , where C is the number of

channels, H the height and W the width. To each image corresponds a sensitive attribute

S ∈ S ⊂ {0, 1}ds , where ds ≥ 1 is the dimension of the sensitive attributes space.

The objective of unsupervised fair representation learning is to map images X ∈ X into

a d−dimensional representation Z ∈ Z such that (i) Z maximizes the information related

71



to X, but (ii) minimizes the information related to sensitive attributes S. We control

for the fairness properties of the representation Z via its mutual information I(Z, S) with

S. In an unsupervised setting, there is no pre-specified downstream task to which the

representation needs to be tailored to. Therefore, we control for the information contained

in Z by constraining a distortion d(X, {Z, S}) that measures how much information is lost

when using a data reconstructed from Z and S instead of the original X. Fair representation

learning is then equivalent to solving the following unfairness-distortion problem

min
F

D(X, {Z, S})− λI(Z, S), (5.1)

where F : X → Z is an encoder; and λ ≥ 0 controls the trade-off between distortion and

mutual information between Z and S.

A key insight in this thesis (chapter 3 and 4) is that if we choose D(X, {Z, S}) =

H(X|Z, S), solving the unfairness-distortion trade-off (5.1) is equivalent to solving the

following information bottleneck:

min
F

(1 + λ)H(X, {Z, S})− λI(Z,X). (5.2)

By re-scaling the optimization (5.2) by 1/(1 + λ) and taking the limit λ → ∞, we obtain

the following fair representation learning problem:

min
F

H(X, {Z, S})− I(Z,X). (5.3)

The fair representation learning we propose to solve in this chapter corresponds to the

fair-encoding limit whose existence we demonstrated in chapter 4: with λ→∞, we aim to

obtain a representation for which I(Z, S) ≈ 0, while minimizing H(X, {Z, S}). Assuming a

deterministic encoder F : X → Z, the information bottleneck in its fair-encoding limit can
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Figure 5.1: Diagram of hierarchical quantization approach. Details on topdown and residual
blocks are in Figure 5.2. Pooling layers are average 2D−pooling with a stride and a kernel
of 2. Upsample uses a nearest-neighbor approach.

be written as

min
F

Ex,s[− log p(x|F (x), s)] +H(F (x)) (5.4)

5.1.2 Hierarchical Quantization

We assume that images results from a combination of high level features that capture

the global characteristics of the image; and lower level features that capture local details.

We also assume that sensitive attributes (e.g. gender or race) are abstract concepts that

are better represented by high level variables. A simple method to model a low-to-high

resolution ladder of information is a hierarchical structure of group of latent variables z(0),

z(1)..., z(K). z(0) captures low resolution information at the top of the hierarchy and z(K)

high resolution details at the bottom of the hierarchy. Each group is conditionally dependent

on the other ones.

We adapt the top-down structure of hierarchical VAE [1] to fair image quantization: the
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(a) Topdown hierarchy (b) Residual block

Figure 5.2: Topdown quantization. The topdown architecture (left) is similar to the one hi-
erarchical VAE [1], but with the addition of the sensitive attribute to the decoder. Residual
blocks are as in [2] with GeLU non-linearity [3].

encoder and the prior generates latent variables in parallel (see Figure 5.1):

p(z) = p(z(0))
K∏
k=1

p(z(k)|z(0), z(1), ..., z(k−1)) (5.5)

and

z(k) = Fk(x; z(0), z(1), ..., z(k−1)). (5.6)

A stack of feature extractors E0, E1, ..., EK map x to a stack of embedding e(0), e(1), ...,
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e(K) and the code z(k) is obtained as z(k) = Q�Rk(ek; z(0), z(1)), where Q is a differentiable

quantizer (see section 5.3.1) and Rk combines embedding from group k with quantized

representation from groups higher in the hierarchy.

5.1.3 Implementation

Quantization

Using our top-down architecture, we obtain a continuous latent variable u(k) = Rk(ek; z(0), z(1)).

We use a scalar quantization as in [24,64] to model the quantizer Q. Given integer between

0 and 2L − 1, we quantize u(k) to its nearest neighbor in {0, ..., 2L − 1} to obtain z(k):

z(k) = Q(u(k)) = argmini=0,...,2L−1||u(k) − i||. (5.7)

Since the nearest-neighbor assignment is not differential, we use the same soft-quantization

Qsoft as in chapter 3 and 4:

Qsoft(u(k)) =
2L−1∑
i=0

exp(−σ||u(k) − i||)
2L−1∑
j=1

exp(−σ||u(k) − j||)

i, (5.8)

where σ > 0 is a hyperparamater that controls for how hard the soft-quantization is.

Entropy Estimation

To estimate the entropy of the representation Z, we model p(z) as a discrete distribution

since z takes only discrete values. At each resolution k, z(k) is a feature map of quantized

values with Ck channels. We generate a hierarchy of factors h(0), h(1), ..., h(K) such that

p(z(k)|z(0), z(1), ..., z(k−1)) = p(z(k)|h(k−1)) (5.9)
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and h(k) = Gk(h(k−1), zk) (see Figure 5.2). The factor h(k) summarizes the information in

the latent variable z0, ..., zk and is used as input the inference leg and the entropy estimation

leg of the top-down ladder in Figure 5.2 . The discrete probability distribution p(z(k)|h(k−1))

is model as a mixture of M logistic distribution [92] with mean µk,m, standard deviation γk,m

and mixture weights πk,m for k = 0, 1, ...,K and m = 1, ...,M . With this parametrization,

the entropy of p(z(k)|h(k−1)) is tractable:

− log p(z(k)|h(k−1)) =

− log
(

M∑
m=1

πk,m

[
sigmoid

(
zk + µk,m
γk,m

+ 1
2

)
− sigmoid

(
zk + µk,m
γk,m

− 1
2

)])
.

(5.10)

Means µk,m, standard deviations γk,m and mixture weights πk,m have the same number of

channels as z(k) and obtained from h(k−1) via a stack of convolutional layers (see Figure

5.2).

Differences with Hierarchical VAE

Our top-down quantization has the same overall structure as state-of-the-art deep hierarchi-

cal variational autocencoder models [23] (see Figure 5.3) with three noticeable differences.

First, we introduce the sensitive attribute S into the decoder as a side channel, so that it

will be redundant to capture information related to the sensitive attribute captured in the

quantized representation Z.

Second, since we are only interested to control for I(Z,X) via the code entropy H(z),

while [22,23] learn a hierarchical prior to sample new images.

Third, state-of-the-art hierarchical VAE methods [1,22,23] collapse the decoding factor

H(k) and the entropy factor h(k). [1] show that the sharing of information and parameters

between inference and generative models leads to better generative performances. In our

implementation, we keep these factors separate to avoid passing information to the entropy
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Figure 5.3: Topdown architecture in VD-VAE. Compared to Figure 5.2, VD-VAE collapses
decoding and entropy legs into one leg.
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factor that is related to S and is encoded in the decoder factor H(k−1). However, we share

the information h(k) when predicting H(k). We also share the entropy factor h(k) between

entropy and inference legs.

Differences with Multi-Resolution Deep Compression.

Recent contributions use architectures similar to the one in Figure 5.2 (e.g [24]) to solve

rate-distortion problems with hierarchy of features extractors and decoders. However, these

architectures have only two to three levels in the hierarchy and thus are not deep enough

(see section 5) to filter out global features that correlate with the sensitive attribute S.

To manage to flow information deeper in the hierarchy, we follow recent contributions in

hierarchical VAE [1] and impose information sharing between feature extraction and entropy

estimation legs of the encoder-decoder architecture.

Loss

With our choice of parametrization, images x are reconstructed from the sensitive attribute

S and the decoding factor H(K) that summarizes all information in z(0), z(1), ..., z(K). We

follow [92] and model p(X|H(K), S) as a mixture of M ′ logistic distributions with means µm,

standard deviations γm and mixture weights πm. Means µm, standard deviations γm and

mixture weights πm have the same dimension as the input image with three RGB channels.

We assume an auto-regression over the RGB channels [24]. That is, for an input image x

the final means µ̃m of each mixture m is given by

µ̃[1]m = µ[1]m, µ̃[2]m = µ[2]m + ν[2]mx[0], and µ̃[3]m = µ[3]m + ν[3]mx[2], (5.11)

where [.] indexes channels; and, νm is a set of learnable coefficients that control the auto-

regression over the RGB channels. Finally, we can write the rate-distortion problem 5.4
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as

min
F,G,E

Ex,s

[
− log(x|H(K), s) +

K∑
k=0
− log(p(z(k)|h(k)))

]
. (5.12)

5.2 Experiments

5.2.1 Dataset

To test our hierarchical fair representation learning method, we use a standard image

dataset, CelebA 64× 64 and CelebA HQ.

CelebA face dataset [96] contains ten thousands of identities, each of them with twenty

images. There is a total of about 200K images, each of them annotated with 40 labels,

including information related to gender, pose or face attributes. CelebA 64 × 64 uses

the complete set of 200K images cropped at the center and downsampled to a 64 × 64

resolution. CelebA HQ [97] is derived from CelebA by selecting the 30K highest quality

images at 1024 × 1024 resolution after a series of pre-processing steps. We downsample

images in CelebA HQ to a 256× 256 resolution. For both CelebA 64× 64 and CelebA HQ

256× 256, we use gender as a sensitive attribute.

5.2.2 Evaluation of the Effect of Stochastic Depth

We want to show that depth, i.e the number of levels K in the hierarchy, improves per-

formances in fair representation learning independently of model capacity. We consider a

encoder-decoder architecture with K = 32 levels of latent variables. To vary the depth while

keeping the model capacity unchanged, we follow the same protocol as [23]. We group the

K levels into N groups where all variables within a group are emitted in parallel and are

independent of each other conditionally on the variables in the previous group. Therefore,

the stochastic depth of an architecture with N groups is exactly N .
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5.2.3 Comparative Methods

To the extent of our knowledge, there is no method in unsupervised fair representation

learning that has tackled the problem of de-biaising images. To benchmark our method,

we compare it to two potential alternatives: (i) Adversarial, an extension of adversarial

learning [16, 17]; (ii) VD-VAE, an extension of variational autoencoder to a hierarchy of

latent variables [23].

Adversarial Learning

Adversarial fair representation learning (e.g. [16, 17]) controls for the mutual information

between sensitive attribute S and representation Z via the cross-entropy of an auditor that

predicts S from Z. Auditor and encoder-decoder are trained simultanously and solve a

min-max optimization problem. [16,17]) tailor the learned representation to a pre-specified

downstream task. Instead, we control for the information contained in the representation

with H(X|Z, S) as in our fair information bottleneck (5.4). To benchmark adversarial

techniques to our method, we use a similar stack of feature extractors as in Figure 5.1 and

encode each feature map into a representation upon which the auditor attempts to predict

the sensitive attribute.

Hierarchical VAE

VD-VAE [23] is a state-of-the-art hierarchical variational autoencoder that learns very

deep hierarchy of latent variables. In Chapter 3 and 4, we argue that if we recast fair

representation learning as a rate-distortion, we can model the encoder as an approximate

posterior and control the mutual information between X and Z via the Kullback-Leibler

divergence between the approximate posterior and the prior distribution over the code Z

[98, 99]. In Chapter 3 and 4, we model the approximate posterior as factorized Gaussian

distributions. In this chapter, we explore whether we can turn VD-VAE as fair encoder-

decoder by providing the sensitive attribute S as a side channel to the decoder (see Figure

5.3).
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5.2.4 Fairness-Information Trade-off

To evaluate the performance of a unsupervised fair representation learning approach, we

train an encoder-decoder architecture; freeze its parameter; and, compare the accuracy As

of an auditing classifier that predicts S from Z to the accuracy Ay of a downstream classifier

that predicts a task label Y from Z. The higher Ay and the lower As the better is the fair

representation method.

Since all comparative methods we study in this chapter generate representation as a

hierarchy of feature maps, we first upsample them to a common dimension H
′ ×W ′ and

stack them into a cube of dimension C ′ ×H ′ ×W ′ , where C ′ =
∑
k Ck is the total number

of channels. We then use a AlexNET type architecture [100] adapted to the dimension of

the inputs.

5.3 Results and Discussion

5.3.1 Statistical Depth Improves Unfairness-Distortion Trade-off

Table 5.1: Accuracy of predicting sensitive attribute S and downstream task labels Y from
representation Z with different configurations of stochastic layers on Celeba64. Convolu-
tional networks with equal number of layers but increasing stochastic depth lead to lower
distortion (↓ is better); lower accuracy of auditing networks that predict sensitive attribute
from representation (↓ is better), while maintaining the same accuracy for downstream tasks
(↑ is better).

Depth Parameters Distortion Accuracy
(↓) Gender (↓) Smile (↑) Black Hair (↑) Cheek bone (↑)

4 4.5M 2.32 0.93 0.90 0.91 0.86
8 4.5M 2.11 0.92 0.91 0.90 0.85
16 4.5M 1.94 0.77 0.91 0.90 0.87
32 4.5M 1.91 0.57 0.89 0.92 0.85

We test on CelebaA 64× 64 whether stochastic depth improves the fairness-information

properties of the learned representation. In Table 5.1, we train networks with hierarchical
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quantization, similar capacity but various stochastic depth (4, 8, 16, 32). First, stochastic

depth improves the model performance in terms of distortion, which is consistent with re-

sults in [23]. Second, only deeper models (K = 16, 32) reduce the ability of the auditing

classifier to predict the sensitive attribute with high accuracy. At K = 32, the auditing

classifier achieves an accuracy of 0.57, which is equal to the accuracy of a classifier that

randomly predicts the gender associated with each image. Third, regardless of stochastic

depth, all methods achieve similar performance with respect to downstream tasks. There-

fore, results in Table 5.1 are evidence that on one hand, with enough depth, a compression

approach can filter out sensitive attributes. On the other hand, compression models that are

too shallow to separate global concepts from local details fail to generate fair representations

of face images.

5.3.2 Comparative Methods

Table 5.2: Same as in Table 5.1 but with differents method in fair representation learning.

Method Distortion Accuracy
(↓) Gender (↓) Smile (↑) Black Hair (↑) Cheek bone (↑)

Adversarial 0.9 0.98 0.90 0.92 0.88
VD-VAE[23] 1.88 0.92 0.91 0.90 0.85

HQ-FR (Ours) 1.91 0.57 0.89 0.92 0.85

We test whether we can obtain fair representations of images with adversarial or state-

of-the-art hierarchical variational autoencoder. In Table 5.2, we find that Adversarial

achieves lower distortion than HQ-FR, but does not provide any fairness guarantees. The

solution of the min-max optimization is likely to converge to an encoder that fools the au-

diting adversary during training, but this hiding of sensitive attribute does not generalize

to new auditors during a post-mortem evaluation of the fairness properties of the represen-

tation. This observation is consistent with findings in [13, 20] and will be expanded upon

in Chapter 6.
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Moreover, among rate-distortion approach to fair representation learning, we find that a

state-of-the-art variational autoencoder VD-VAE does not filter out the sensitive attribute.

By design, we pass the sensitive attribute S to each level of the decoding leg and this

information is shared with the inference leg at lower level of the hierarchy, which leaks

information about S into the latent variables.

5.4 Conclusion

This chapter demonstrates that with a carefully designed hierarchy of latent variables,

rate-distortion approaches to unsupervised fair representation learning can filter out sen-

sitive attributes while maintaining useful information related to the data. We argue that

deeper hierarchies should perform better for image data, propose a deep hierarchical quan-

tization approach and show that its fairness-information trade-off outperforms adversarial

techniques.

We posit that in fair representation learning of images, depth improves unfairness-

distortion trade-off because (i) sensitive attributes like gender are likely to be abstract

concepts; and, (ii) latent variables higher in the hierarchy are more likely to encode abstract

concepts. We hope that our empirical results foster future research on how to measure at

which level of abstraction sensitive attributes sit in a hierarchy of quantized latent variables

and how to use this information to design architectures in fair representation learning.
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Chapter 6: Learning Smooth and Fair Representations

This chapter explores conditions on auto-encoders in unsupervised fair representation learn-

ing so that the encoder generates distributions over the representation space with fairness

guarantees that hold for any downstream task.

Our first result is to establish a necessary and sufficient condition – finite χ2 mutual

information between data and representation – for guarantees estimated from a finite sample

to generalize to all downstream tasks and to the infinite sample regime.

We ask then how to guarantee that the χ2 mutual information between data and rep-

resentation is finite while not knowing ex-ante the distribution over the feature space. We

show that introducing an additive Gaussian white noise channel – AGWN – in standard

fair representation methods bounds the χ2 mutual information once the representation has

passed through the channel, regardless of the distribution of features.

We empirically find across four datasets that an AGWN channel in fair representation

learning guarantees that empirical fairness certificates estimated on finite samples upper

bound the demographic disparity of multiple and diverse downstream users. This is an

improvement over existing methods in fair representation learning for which we find that

fairness guarantees do not extend beyond a set of specific downstream users.

The work presented in this chapter have been published in [13].

6.1 Certifying Fair Representations

6.1.1 Background

Consider a data controller who wants to release samples from a distribution µ over X×S with

features in X ⊂ [0, 1]D and sensitive attributes in S. Although our setup can be extended
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to richer spaces of sensitive attributes, we focus here on binary sensitive attributes and

assume that S = {0, 1}.

A transformation F that maps the features space X into a representations space Z ⊂ Rd

induces a distribution µF over Z × {0, 1}: µF (A) = µ ({x ∈ X |F (x) ∈ A}) for any A ⊂ Z.

The data controller’s objective is to obtain a representation mapping F that minimizes

the statistical dependence between representation Z and sensitive attribute S. Therefore,

for any test f : Z → {0, 1} that decides whether the class conditional distributions µ0
F =

P (Z|S = 0) and µ1
F = P (Z|S = 1) are identical, the data controller would like to minimize

the discrepancy

∆(f, F ) , |Ex∼µ1
F

[f(x)]− Ex∼µ0
F

[f(x)]|, (6.1)

where we make the dependence of ∆ on representation mapping F explicit. In the context

of fair machine learning, the test function f is either an auditor used by the data controller

to estimate the statistical dependence between Z and S; or, a classifier used by a data

processor (function h in Figure 1.1) and ∆(f, F )) then measures the demographic parity of

f (see [38]):

Definition 6.1.1. Demographic parity Consider a representation distribution µF in-

duced by a representation mapping F : X → Z. A classifier f : Z → {0, 1} used by a data

processor satisfies δ− Demographic Parity on µF if and only if ∆(f, F )) ≤ δ.

Since the data controller does not know ex-ante which classifier data processors will

use, she has to construct a mapping F such that all classifiers f : Z → {0, 1} satisfy δ−

demographic parity on µF for some pre-specified δ > 0. A demographic parity certificate is

therefore an upper bound on the demographic disparity of any classifiers that access samples

from the representation distribution µF .

Definition 6.1.2. Demographic Parity Certificate Let δ ≥ 0. A representation space
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(Z, µF ) can be certified with δ− demographic parity if and only if

∆∗(F ) , sup
f :Z→{0,1}

∆(f, F )) = δ. (6.2)

To construct a representation mapping certified with ∆∗(F )− demographic parity, the

data controller needs to evaluate the supremum over all test functions/auditors fn that are

constructed on the basis of a finite sample Dn = {(xi, si)}ni=1. Let Fn denote the set of all

auditors fn : Z × (Z × {0, 1})n → {0, 1} constructed from a sample of size n.

Definition 6.1.3. Empirical Demographic Parity Certificate Let n ≥ 1 and δ ≥ 0. A

representation space (Z, µF ) is certified with an empirical δ− demographic parity certificate

if and only if

∆n(F ) , sup
fn:∈Fn

∆(fn, F ) = δ. (6.3)

The question is how to choose a representation mapping F : X → Z so that empirical

certificates ∆n(F ) approximate well the true demographic parity certificate ∆∗(F ). Ap-

proximation properties of empirical certificates are important for a data controller to upper

bound the demographic disparity of any downstream processor that uses fresh samples

obtained after F has been constructed.

Since the data controller cannot constrain the data distribution over X × {0, 1}, we

are looking for distribution-free approximation rates. In general, distribution-free rates do

not exist ([101], ch. 7). But, in our setting, the data controller has some control over the

representation distribution via F . In fact, the approximation ∆∗(F ) −∆n(F ) depends on

how much information in X is encoded by F in Z. If F randomly maps X to Z, the data

controller can certify µF with 0− demographic parity, but µF is useless to downstream

data processors. The data controller trades-off representation demographic parity with

information by learning an encoder F : X → Z and a decoder function G : Z → X that

86



solves the following fair empirical representation problem

min
F,G
Lrec(g, t,Dn) subject to ∆n(F ) ≤ δ, (6.4)

where δ > 0 is a pre-specified demographic parity threshold and Lrec is a reconstruction

loss.

6.1.2 Necessary Condition

This section identifies a necessary condition on F for an empirical demographic parity

certificate to approximate ∆∗(F ) well. The necessary condition bounds the amount of

information measured by the χ2 mutual information between feature X and representation

Z:

Iχ2(X,Z) , ExEz

(
µF (z)− µF (Z|X = x)

µF (z)

)2
. (6.5)

The χ2 mutual information relies on a statistical distance, the χ2−divergence – χ2(Z,Z|X) =∫
z (dP (Z|X)/dP (Z)− 1)2 dP (Z) – to average the distance between Z and Z|X = x for

x ∈ X . It has been used in information theory to estimate the information that flows

through a neural network (see [26]). In the context of fair representation learning, we find

that empirical demographic parity certificates cannot provide good approximations of the

representation’s true demographic parity if the χ2 input-output mutual information is large:

Theorem 6.1.1. Let n ≥ 1. Consider a representation function F : X → Z. Then, for all

test function fn ∈ Fn

sup
µ
EDn |∆∗(F )−∆(fn, F )| ≥ sup

µx

(
1− 1

Iχ2(X,Z)

)n
, (6.6)

where the suppremum on the left hand side is taken over all distributions µ over X ×S and

the suppremum on the right hand side is taken over all distribution µx over X .
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Encoding more information of X in Z exposes the representation distribution µF to

mirroring distributions over X with heavy tails. Intuitively, µF is a (possibly infinite) mix-

ture of conditional distributions P (Z|X = x) for x ∈ X and Iχ2(X,Z) measures an average

distance between those conditional distributions. As Iχ2(X,Z) increases, the conditional

distributions P (Z|X = x) become far apart for a growing mass of x ∈ X . It generates a

representation distribution too complex for a finite sample to represent it and for an auditor

fn to detect all the correlations between representation and sensitive attribute.

Theorem 6.1.1 implies a trade-off between the information passed from features to rep-

resentations and the approximation rate of empirical demographic parity certificates:

Corollary 6.1.1. With the notations from Theorem 6.1.1,

• If inf
fn∈Fn

sup
µ
EDn |∆∗(F ) − ∆(fn, F )| ≤ εn, then for all distributions over the feature

space X , Iχ2(X,Z) ≤ 1
1−ε

1
n
n

.

• If there exists a distribution over X such that Iχ2(X,Z) =∞,

inf
fn∈Fn

sup
µ

∆∗(F )−∆(fn, F ) ≥ 1. (6.7)

For the approximation rate of ∆∗(F ) − ∆(fn, F ) to be O(n−s) for some s > 0, it is

necessary for the χ2 mutual information between feature and representation to be bounded

above by O(n/(s ln(n)) for all distributions over X . On the other hand, representation

functions F for which the χ2 mutual information is infinite for some distribution over

the features space, never guarantee a meaningful approximate rate between ∆∗(F ) and

∆(fn, F ).

Examples: The results in corollary 6.1.1 imply that empirical certificates of representa-

tion distributions induced by many common encoders do not have meaningful approximation

rates:
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• Suppose that F is injective from RD to Rd. Then, there exists a distribution over

X × {0, 1} such that Iχ2(X,Z) = ∞ and thus, ∆∗(F ) = 1, but ∆(fn, F ) = 0 for all

auditing functions fn.

• Suppose that |{F (x)|x ∈ X}| ≥ n/(ln(n))α, for some α < 1. Then, the approximation

rate of ∆(fn, F ) for all auditing functions fn is ω(n−s) for any s > 0.

6.1.3 Sufficient Condition

This section shows that a finite χ2 mutual information between feature and representa-

tion for all distributions over X is a sufficient condition for empirical demographic parity

certificates to converge at a O(n−1/2) rate.

Theorem 6.1.2. Let n ≥ 1. Consider a representation mapping F : X → Z. Then, for all

distribution µ over X × {0, 1} with where ns = |{i|si = s}| and for all fn ∈ Fn

EDn |∆∗(F )−∆(fn, F )| ≤ 2
∑
s=0,1

√
Iχ2(X,Z|S = s)

ns

A finite χ2 mutual information between X and Z implies that p(Z) and p(Z|X) are

close in the sense of the χ2 divergence and thus by sampling representations from P (Z|X),

we have a non-zero probability to sample all the atoms that can form the representation

distribution µF and thus to detect all the dependence between representations and sensitive

attributes.

6.1.4 Chi - versus Classic Mutual Information

Our results in Theorems 6.1.1 and 6.1.2 highlight a connection between χ2 mutual informa-

tion and approximation rate of empirical certificates. A similar result cannot be obtained

with the classic mutual information ISh(X,Z) that is based on Shannon entropy.

To demonstrate this point, we construct the following distribution µ over X × {0, 1}.
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Features are uniformly distributed over [0, 1] and F (x) = i for x ∈ [1/i, 1/(i+1)) and i > 0.

For each i > 0, the sensitive attribute is constant over [1/i, 1/(i + 1)) and equal to 1 with

probability 1/2. We show in the appendix that ISh(X,Z) < ln(2)/2+2, but Iχ2(X,Z) =∞.

Since the sensitive attribute S is a deterministic function of the representation Z = F (X),

∆∗(F ) = 1. But, for a finite sample of size n, EDn∆(fn, F ) is zero for all auditors fn,

despite ISh(X,Z) <∞.

6.2 Smooth and Fair Representations

The previous section suggests restricting the fair representation problem (6.4) to encoder

F for which the χ2−mutual information between feature and representation is finite for all

distributions over X . Here, we meet this condition by adding an additive Gaussian white

noise (AGWN) channel to the encoder. For any representation mapping F : X → Z, we

denote Fσ the convolution of F with a Gaussian noise N (0, σ2Id): Fσ(X) = F (X) + noise,

with noise ∼ N (0, σ2Id).

6.2.1 Convergence of Smoothed Empirical Certificate

The convolved representation Zσ = Z + noise generated by Fσ has a distribution denoted

µt∗σ. The convolution smoothes the representation distribution by making P (Zσ|X) a

Gaussian whose support covers the support of the representation distribution P (Zσ) and

thus, guarantees that samples from different conditional distributions P (Zσ|X = x) are not

too far away.

Theorem 6.2.1. Let σ > 0 and n ≥ 1. For all representation mapping F : X → Z and for

any distribution over X , if ||F ||∞ , supx∈X ||F (x)||2 , then for s ∈ {0, 1}

Iχ2(X,Z|S = s) ≤ exp
(
||F ||2∞
σ2

)
<∞. (6.8)
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Therefore,

inf
fn∈Fn

sup
µ
EDn [∆∗(Fσ)−∆(Fσ, fn)]

≤ 2 exp
(
||F ||2∞

2σ2

)
(n−1/2

0 + n
−1/2
1 ).

(6.9)

The upper bound in Theorem 6.2.1 does not depend on the dimensions d of the repre-

sentation space Z, but only on n−1/2 and on the ratio ||F ||∞/σ that can be interpreted as a

signal-to-noise ratio in the AGWN channel. Larger values of ||F ||∞ increase the variance of

Z and thus require larger noise σ to keep the conditional distribution P (Zσ|X) close to the

distribution P (Zσ). The bound is only meaningful if ||F ||∞ <∞, which holds, for example,

if the features space is bounded and F is a continuous mapping.

Both Theorems 6.1.2 and 6.2.1 rely on a plug-in auditor that first estimates the class-

conditional densities µ0
t∗σ and µ1

t∗σ. From a sample Dn = {(xi, si)}ni=1, we construct an

empirical estimate of µt∗σ over Z × {0, 1} as

µn,σ(z, s) = 1
n

n∑
i=1,si=s

P (z|X = xi) (6.10)

with P (.|X = xi) ∼ N (Fn(xi), σId). Our plug-in auditor fplugn compares µn,σ(z, 0) to

µn,σ(z, 1):

fplugn (z) =


0 if µn,σ(z, 0) ≥ µn,σ(z, 1)

1 otherwise.
(6.11)

Since we obtain the upper bounds in Theorems 6.1.2 and 6.2.1 with the plug-in auditor

fplugn , we can guarantee that the representation demographic parity is within O(n−1/2) of

the empirical certificate signed by fplugn .
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6.2.2 Learning Fair Representation

In practice, the representation mapping F and the decoder G are modelled by neural net-

works. An AGWN channel is added to F to learn a smoothed representation distribu-

tion µt∗σ. The data controller trades off minimizing a reconstruction loss Lrec(F,G) =

Ex[lrec(F, g, x) with minimizing demographic disparity LDP (F ) = ∆∗(Fσ). With a sample

Dn = {(xi, si)}ni=1, the data controller uses the plug-in auditor and solves the empirical

minimization problem as

min
F,G

1
n

∑
lrec(F,G, xi) + λ∆(fplugn , Fσ), (6.12)

where λ controls for the strength of the fairness constraint imposed on the representation

distribution. The minimization problem in (6.12) differs from previous work on fair repre-

sentation learning because of the noise added to Z and thus, provides theoretical guarantees

that ∆(fplugn , Fσ, ) approximates ∆∗(Fσ) at a rate O(n−1/2).

Moreover, the empirical demographic parity certificate can be computed without mod-

elling the auditor by an additional adversarial neural network. This is because we can

use our empirical estimates (6.10) of the class-conditional densities to estimate the pos-

terior distribution η(z, s) = P (S = s|Z = z) as ηn(z, s) = µn,σ(z|S = s)/µn,σ(z), where

µn,σ(z) = µn,σ(z, 1)+µn,σ(z, 0). Since ∆∗(F ) relates to the balanced error rate of predicting

the sensitive attributes (see proof of 6.1.2 or [36]), we can write ∆∗(F ) = LDP (µt,σ), where

LDP (µt,σ) = Ez∼µt,σ [|η(z, 1) − η(z, 0)|] (see [102]). Our approach relies on two results: (i)

for any finite sample of size n, LDP (µn,σ) approximates well LDP (µt∗σ); (ii) LDP (µn,σ) can

be estimated efficiently by Monte-Carlo estimation. The first observation uses the following

result, which is a consequence of Theorem 6.2.1
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Theorem 6.2.2. Let σ > 0 and n ≥ 1. For all representation mapping F : X → Z

sup
µ
EDn |LDP (µt∗σ)− LDP (µn,σ)|

≤ 2 exp
(
||F ||2∞

2σ2

)
(n−1/2

0 + n
−1/2
1 ).

(6.13)

Therefore, we can use LDP (µn,σ) as an approximation of LDP (µt∗σ). That is, in place

of µt,σ, we propose to use the distribution µn,σ, for which ηn is the posteriori probability.

Moreover, LDP (µn,σ) can be efficiently approximated by Monte Carlo integration. For a

sample Dn = {(xi, yi)}ni=1, µ0
n,σ and µ1

n,σ are mixtures of d-dimensional Gaussians. Thereby,

we approximate LDP (µn,σ) with

L̂DP (µn,σ) = 1
nm

n∑
i=1

m∑
j=1

Eε[|ηn(zij , 1)− ηn(zij , 0)|, (6.14)

where zij = F (xi) + noiseij , {noiseji} is a vector of n × m draws from a d-dimensional

Gaussian N (0, σId) and m is the number of draws per sample point. L̂DP (µn,σ) is an

unbiased approximation of LDP (µn,σ) and achieves a Mean-Squared-Error (MSE) of order

O(n−1m−1) (see proof of Theorem 4 in appendix).

To sum up, the data controller learns (F,G) by minimizing the following combined

empirical loss

min
θ,ϕ

1
n

∑
i

lrec(F,G, xi) + λL̂DP (µn,σ). (6.15)

Practical implementation. We minimize the loss (6.15) by stochastic gradient descent.

Each mini-batch is split in half: the first half is used to estimate µn,σ as in (6.10); the

second half to estimate the loss in (6.15). At the end of training, we compute a leave-

one-out balanced error rate BER(fplugn ) for the plug-in auditor on both a test and train

93



samples and infer an empirical certificate as ∆(fplugn , F ) = 1− 2BER(fplugn ) (see [36]). The

Gaussian noise σ is an hyper-parameter chosen so that empirical certificates estimated on

train and test data are similar.

6.3 Experiments

The objective of this experimental section is to demonstrate that (i) our AGWN fair rep-

resentation method, unlike competitive approaches, generates robust fairness certificates

that generalize to unseen data; and, (ii) it is competitive with existing fair representation

methods in terms of fairness-accuracy trade-off. All details related to dataset and neural

network architectures are in the appendix.

6.3.1 Datasets

6.3.2 Synthetic Datasets

We first consider two synthetic datasets. Our first synthetic data consists of two 3D Swiss

rolls: one for S = 0 and one shifted South-West for S = 1. We use 20, 000 samples

for training the autoencoder (F,G) and 10, 000 fresh samples to train the downstream

processors and 10, 000 to evaluate their demogrpahic disparity. Our second synthetic data

is a variant of the DSprites dataset ([89]) that contains 64 by 64 black and white images of

various shapes (heart, square, circle). The DSprites dataset has six independent factors of

variation: color (black or white); shape (square, heart, ellipse), scales (6 values), orientation

(40 angles in [0, 2π]); x- and y- positions (32 values each). We adapt the sampling to generate

a source of potential unfairness as in [21]. We consider shape as the sensitive attribute. We

assign to each possible combination of attributes a weight proportional to ishape
3 +

(
iX
32

)3
,

where ishape ∈ {0, 1, 2} and iX = {0, 1, ..., 21}. we sample 600, 000 combinations of latent

factors to train the encoder-decoder; 20, 000 to train the downstream processors; and, 20, 000

to evaluate the disparity of the downstream processors.
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Fairness Benchmark Dataset

We also apply our approach of fair representation learning with a AGWN channel to two

fair learning benchmarks, Adults1 and Heritage2. The Adults dataset contains 49K individ-

uals and includes information on 10 features related to professional occupation, education

attainment, race, capital gains, hours worked and marital status. The sensitive attribute is

the gender to which individuals self-identify to. The data is split into a 32K set to train the

auto-encoder; a 13K set to train the downstream processors; and, a 3K test set to evaluate

the disparity of the processors.

The Health Heritage dataset contains 220K individuals with 66 features related to age,

clinical diagnoses and procedure, lab results, drug prescriptions and claims payment aggre-

gated over 3 years. The sensitive attribute is the gender to which individuals self-identify

to. After removing individuals with missing records, we split the data into a 142K set to

train the auto-encoder; a 17K set to train the downstream processors; and, a 17K test set

to evaluate the disparity of the processors.

6.3.3 Effect of noise on certificate reliability.

We first learn an encoder-decoder mapping (F,G) with an increasing amount of Gaus-

sian noise; estimate an empirical ∆(fplugn , F )−demographic parity certificate; and then,

test whether ∆(fplugn , F ) is larger than the demographic disparity ∆(fproc, F ) of different

downstream processors fproc that predict sensitive attributes from new samples of the rep-

resentation distribution. Empirical certificates are robust if ∆(fplugn , F ) ≥ ∆(fproc, F ) for

any of the processors fproc.

All datasets are split into a train set for training the auto-encoder (F,G); two test sets

to first train downstream processors and then evaluate their accuracy.
1https://archive.ics.uci.edu/ml/datasets/adult
2https://foreverdata.org/1015/index.html
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6.3.4 Architectures

Encoder-Decoder

For the DSprites dataset, the autoencoder architecture – taken directly from [21] – includes

4 convolutional layers and 4 deconvolutional layers and uses ReLU activations. For the

Swiss Roll dataset and the two real world datasets, the encoder and decoder are made of

fully connected layers with ReLU activations. Table 6.1 shows more architectural details

for each dataset. Hyperparameter values are in Table 6.2.

Table 6.1: Architecture details. Conv2d(i, o, k, s) represents a 2D-convolutional layer with
input channels i, output channels o, kernel size k and stride s. ConvT2d(i, o, k, s) represents
a 2D-deconvolutional layer with input channels i, output channels o, kernel size k and
stride s. Linear(i, o) represents a fully connected layer with input dimension i and output
dimension o. The tanh activation is only applied to the last layer of the encoder.

Dataset Encoder Decoder Activation

Swiss Roll Linear(3, 64) Linear(3, 64), ReLU
Linear(64, 64), Linear(64, 64) Linear(64, 3)

DSprites Conv(1, 32, 4, 2), Linear(28, 128), ReLU
Conv(32, 32, 4, 2), Linear(128, 1024)
Conv(32, 64, 4, 2), ConvT2d(64, 64, 4, 2),
Conv(64, 64, 4, 2), ConvT2d(64, 32, 4, 2)
Linear(1024, 128) ConvT2d(32, 32, 4, 2)

ConvT2d(32, 61, 4, 2)
Adults Linear(10, 64) Linear(64, 10) ReLU

Linear(64, 10) Linear(64, 10) ReLU
Heritage Linear(66, 128) Linear(24, 128) ReLU

Linear(128, 24) Linear(128, 66)

Downstream Processors

The downstream test functions that probe the demographic parity of the representation

distribution are fully connected neural networks with 2 to 4 hidden layers with 32 to 128

neurons each. Each test function is trained for 400 epochs with a learning rate of 0.001. After
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Table 6.2: Hyperparameter values for training encoder-decoder networks.

Dataset Number of iterations Learning rate σ λmax
AGWN AdvCE AdvL1

Swiss Roll 4K 10−3 0.05 10 4 4
DSprites 270K 10−4 0.05 0.025 0.035 0.035
Adults 55K 10−3 0.02 2.6 2.8 2.8
Heritage 55K 0.5× 10−4 0.05 2.6 2.6 2.6

the autoencoder is trained, its weights are frozen, and fresh representations are generated by

10, 000 forward passes of the encoder on the test data. The generated fresh representations

form the inputs of the test functions.

6.3.5 Comparative Methods

We benchmark the use of an AGWN channel with comparative approaches in fair represen-

tation learning based on adversarial auditor trained with (i) a cross-entropy loss (AdvCE,

[17]); or, with (ii) a group L1 loss (AdvL1, [16]).

AdvCE.

AdvCE is a fair representation learning method from [17]. The auditor is modeled as an

adversarial neural network a that predicts sensitive attributes from samples of the repre-

sentation distribution and minimizes the following cross-entropy loss:

LCE(a) = − 1
n

n∑
i=1

si log(a(xi) + (1− si) log(1− a(xi)). (6.16)

Moreover, the autoencoder is trained to minimize a loss Lrec − λLCE(a).
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AdvL1

AdvL1 ([16]) replaces the cross-entropy loss by a group L1 loss: instead of (6.16), the

adversary minimizes

LL1 = 1
n0

∑
i,si=0

a(xi)−
1
n1

∑
i,si=1

a(xi), (6.17)

and the autoencoder minimizes Lrec − λLL1(a).

For both AdvCE and AdvL1, the adversarial auditor is modeled as a neural network

with 3 hidden layers of 64 neurons each for Adults and Swiss Roll; 3 hidden layers of 128

neurons each for Heritage; and, 3 hidden layers of 256 neurons each for DSprites.

6.4 Results and Discussion

6.4.1 Certificate reliability.

Figure 6.1: Generalization of empirical demographic parity certificates for the Swiss Roll
data. Each dot shows empirical demographic parity certificate ∆(fn, F ) for an encoder F ∈
{AGWN,AdvCE,AdvL1} against an estimate of the disparity ∆(fproc, F ) of downstream
processors predicting sensitive attributes. Dots are colored by reconstruction loss.

Figure 6.1 and Figure 6.2 show that the AGWN channel improves how empirical cer-

tificates approximate the demographic parity of the representation distribution. As the

Gaussian noise σ increases from σ = 0.005 to σ = 0.05, the ∆(fplugn , F ) empirical certificate

upper bounds the demographic disparity ∆(fproc, F ) for any of the downstream processors
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Figure 6.2: Generalization properties of empirical demographic parity certificates for
DSprites. See Figure 6.1.

we built, regardless of their complexity. Moreover, the variance of ∆(fn, F ) −∆(fproc, F )

decreases as the Gaussian noise increases. This is consistent with the upper bound in

Theorem 6.2.1, which decreases with smaller signal-to-noise ratio ||F ||∞/σ.

6.4.2 Comparative adversarial approaches.

Figure 6.1 and Figure 6.2 also show that for both comparative methods, the empirical

certificate ∆(fadv, F ) estimated by the adversarial auditor underestimates significantly the

disparity obtained by downstream processors on fresh samples from the representation dis-

tribution. For example, for the Swiss Roll dataset, 18.2% of near zero empirical certificates

(∆(fadv, F ) ≤ 0.1) do not preclude a processor’s disparity larger than 0.3.

6.4.3 Real world data.

Figure 6.3 confirms that (i) the AGWN channel is sufficient for empirical certificates to

upper-bound the demographic disparity obtained by various downstream processors; and,

(ii) that comparative methods (AdvCE, AdvL1 ) generate empirical fairness certificates that

do not bound the disparity of downstream processors.
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Figure 6.3: Generalization of empirical demographic parity certificates for Adults and Her-
itage. See Figure 6.1.
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Figure 6.4: Reconstruction loss v.s. worst disparity attained by downstream processors.

Figure 6.5: Accuracy-fairness trade-off.
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6.4.4 Accuracy-fairness trade-off.

For the Swiss Roll dataset (Figure 6.1), AGWN’s reliability appears to come at the cost

of a larger reconstruction loss for a given empirical fairness certificate. However, it is not

the case for DSprites. Moreover, a fair comparison across methods requires to measure

reconstruction loss against the worst disparity attained by a downstream processor, i.e. the

upper bound of the point clouds in Figure 6.1 and 6.2. Figure 6.4 plots the 95th quantile

of the demographic disparity of downstream processors for a given reconstruction loss. It

shows that across all datasets, for a given L2−loss, the worst demographic disparity of

downstream processors is lower when the representations are generated by AGWN than

AdvCE or AdvL1. Moreover, for Swiss Roll and Adults, larger reconstruction losses (≥ 0.5

for Swiss Roll; ≥ 0.25 for Adults) with AGWN correspond to low levels of processors’

disparity that are never reached by comparative methods.

To explore further how the AGWN channel affects the information contained in the

representation, we compare the demographic disparity and the accuracy of downstream

processors that predict a task label Y . We retrain the three fair learning methods – AdvCE,

AdvL1 and AGWN – on the Adults dataset but leave out the income feature. We map test

samples into their corresponding representations and predict whether their income is over

50K. In Figure 6.5, we sweep the parameter space for different values of the fairness

constraint λ in (6.12). Each dot compares the accuracy and the demographic disparity

of neural networks of various depth and width. The higher the accuracy of downstream

processors for a given level of disparity, the better the fairness-accuracy trade-off. We can

draw two conclusions from this experiment. First, for level of disparity between 0.10 and

0.20, AGWN offers the same fairness-accuracy trade-off as AdvL1 or AdvCE. Second, our

AGWN method is the only one for which varying the coefficient on the fairness constraint

allows to systematically reach low level of disparity (≤ 0.1). Consistent with Figure 6.4,

very few simulations of AdvCe and AdvL1 lead to the demographic disparity of downstream

processors to be less than 0.075, regardless of the strength of the fairness penalty used

during the training of the autoencoder. Although the AGWN channel limits the maximum
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amount of information that is transferred from the data to the representation (see [63]),

it also allows for a better empirical approximation of demographic parity and thus helps

guiding the representation mapping toward the correct fairness-information trade-off.

6.5 Conclusion

This chapter investigates whether a data controller could generate representations of the

data with fairness guarantees that would hold for any downstream processor using samples

from the representation distribution. We show that for demographic parity certificate to

approximate well the demographic parity of all future data processors it is necessary and

sufficient to bound the χ2 mutual information between feature and representation. To

meet this condition, we show the benefit of adding an AGWN channel while learning a fair

representation of the data.

Our work opens promising research avenues in fair representation learning. An AGWN

channel may be only one of many approaches to bound the χ2 mutual information between

feature and representation. A comparison of competitive approaches would be crucial to

improve the accuracy-fairness trade-off of learning reliably fair representations.
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Chapter 7: Multi-Differential Fairness Auditor for Black Box

Classifiers

In this chapter, we construct a tool, mdfa, that audits whether a classifier’s outcomes

depend on sensitive attributes once conditioned on a set of auditing features. First, we

introduce a notion of parity, multi-differential fairness, that checks whether for any dis-

tribution over the feature space that is balanced across demographic groups, a classifier’s

outcomes are nearly mean-independent of sensitive attributes within any subset of the fea-

ture space. Second, we show that agnostic learning reduces to auditing for multi-differential

fairness of black box classifiers and thus, we establish that in the worst-case auditing is NP-

hard. Third, we reduce auditing to a weighted learning problem, where the weights are

learned to minimize the maximum mean discrepancy between the distributions of features

conditioned on sensitive attributes.

Empirically, we apply mdfa to a recidivism risk assessment tool and identifies sub-

population of African American defendants with little to no criminal history who are three

times more likely to be considered at high risk of violent recidivism than similar individuals

of other races.

The work presented in this chapter have been published in [32].

7.1 Individual and Multi-Differential Fairness

Preliminary. An individual i is defined by a tuple ((xi, si), yi), where xi ∈ X denotes i’s

audited features; si ∈ S denotes the sensitive attributes; and yi ∈ {−1, 1} is a classifier f ’s

outcome. The auditor draws m samples {((xi, si), yi)}mi=1 from a distribution on X × S ×

{−1, 1}. Features in X are not necessarily the ones used to train f , because the auditor

may not have access to all features used to train f . Secondly, the auditor may decide to
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deliberately leave out some features used to train f because those features – e.g. small

geography identifiers – correlate strongly with sensitive attributes and that may break the

following assumption of common support.

Assumptions. In our analysis, we assume that the distributions of auditing features

conditioned on sensitive attributes have common support.

Assumption 1. For all x ∈ X , P (S|X = x) > 0.

Definition 7.1.1. (Individual Differential Fairness) For δ ≥ 0, a classifier f is δ− differ-

ential fair if ∀x ∈ X , ∀s ∈ S,∀y ∈ {−1, 1}

e−δ ≤ P (Y = y|S = s, x)
P (Y = y|S 6= s, x) ≤ e

δ (7.1)

The parameter δ controls how much the distribution of the classifier’s outcome Y de-

pends on sensitive attributes S given that auditing feature is x; larger δ implies a less

differentially fair classifier. δ− differential fairness bounds the maximum divergence be-

tween the distributions P (Y |S = s, x) and P (Y |S 6= s, x):

max
y∈Y

ln
(
P (Y |S = s, x)
P (Y |S 6= s, x)

)
≤ δ

Strong notion of individual fairness We could use other notions of distance to de-

fine our notion individual differential fairness: possible candidates are the Kullback-Leibler

divergence between P (Y |X = x, S = s) andP (Y |X = x, S 6= s)

KL = Ey ln
(
P (Y |S = s, x)
P (Y |S 6= s, x)

)
; (7.2)
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or the total variation between P (Y |X = x, S = s) andP (Y |X = x, S 6= s)

TV = max
y
|P (Y |S = s, x)− P (Y |S 6= s, x)|. (7.3)

A definition based on a max divergence is a worst-case analogue of the KL divergence.

Moreover, by the Pinsker’s inequality, TV ≤ 1
2
√
KL. Therefore, our definition of differential

individual fairness based on max divergence is stronger than counterparts based on total

variation or KL divergence.

Relation with Differential Privacy. Differential fairness re-interprets disparate treat-

ment as a differential privacy issue [75] by bounding the leakage of sensitive attributes

caused by Y given what is already leaked by the auditing features x. Formally, the fairness

condition (7.1) is equivalent to bounding the maximum divergence between the distributions

P (S|Y, x) and P (S|x) by δ.

Individual Fairness. Def. (7.1.1) is an individual level definition of fairness, since it

conditions the information leakage on auditing features x. Compared to the notion of

individual fairness [27], individual differential fairness does not require an explicit similarity

metric. This is a strength of our framework since defining a similarity metric has been the

main limitation of applying the concept of individual fairness [43].

7.1.1 Multi-Differential Fairness.

Although useful, the notion of individual differential fairness cannot be computationally

efficiently audited for. Looking for violations of individual differential fairness requires

searching over a set of 2|X | individuals. Moreover, a sample from a distribution over X ×

S × {−1, 1} has a negligible probability to have two individuals with the same auditing

features x but different sensitive attributes s.

Therefore, we relax the definition of individual differential fairness and impose differ-

ential fairness for sub-populations. Formally, C denotes a collection of subsets or group of
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individuals G in X . The collection Cα is α-strong if for G ∈ C and y ∈ {−1, 1}, P (Y =

y & x ∈ G) ≥ α. Relaxing differential fairness to sub-populations requires to audit only for

balanced dataset D where for all x ∈ X and s ∈ S, P (S = s|X = x) = P (S 6= s|X = x).

Definition 7.1.2. (Multi-Differential Fairness) Consider a α-strong collection Cα of sub-

populations of X and a balanced dataset D ⊂ X × S × {0, 1}. For 0 ≤ δ, a classifier f is

(Cα, δ)-multi differential fair with respect to D if ∀s ∈ S,∀y ∈ {−1, 1} and ∀G ∈ Cα:

e−δ ≤ P (Y = y|S = s,G)
P (Y = y|S 6= s,G) ≤ e

δ (7.4)

Multi-differential fairness guarantees that the outcome of a classifier f is nearly mean-

independent of protected attributes within any sub-population G ∈ Cα. There are two

important restrictions to the definition of multi-differential fairness. First, the fairness

condition in Eq. 7.4 applies only to α-strong collection of sub-populations with P (Y =

y,G) ≥ α for y ∈ {−1, 1}. This condition avoids trivial cases where {x ∈ G, Y = y} is a

singleton for some y, implying δ =∞.

Second, the fairness condition in Eq. 7.4 applies only to auditing dataset D that are bal-

anced with respect to sensitive attributes S. This condition avoids trivial cases where out-

comes correlate with sensitive attributes because of data imbalance. For example, suppose

that X = [0, 1], Y = 1 if and only if X ≥ 0.5, S = 1 if and only if X ≥ 0.5+ε for some small

ε > 0. Choose G = [0.4, 0.6]. Then, P [Y = 1|S = 1, G]/P [Y = 1|S = −1, G] = (ε + 0.5)/ε

can be made arbitrarily large as ε→ 0. The issue with unbalanced dataset is that the infor-

mation related to S leaked by the classifier’s outcomes is confounded with the information

leaked by membership in G since (Cα, δ) multi-differential fairness implies that :

max
s,y

ln
(
P [S = s|Y = y,G]
P [S 6= s|Y = y,G]

)
− ln

(
P [S = s|G]
P [S 6= s|G]

)
≤ δ (7.5)

On the other hand, a balanced distribution does not leak any information on whether a
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sensitive attribute is equal to s: P (S = s|x) = P (S 6= s|x).

Collection of Indicators. We represent the collection of sub-populations C as a family

of indicators: for G ∈ C, there is an indicator c : X → {−1, 1} such that c(x) = 1 if and only

if x ∈ G. The relaxation of differential fairness to a collection of groups or sub-population is

akin to [41,42,79]. Cα is the computational bound on how granular our definition of fairness

is. The richer Cα, the stronger the fairness guarantee offers by Def. 7.1.2. However, the

complexity of Cα is limited by the fact that we identify a sub-population G via random

samples drawn from a distribution over X × S × {−1, 1}.

7.2 Auditing as an Agnostic Learning Problem

We first consider the problem of finding violations of multi-differential fairness by sampling

from a balanced dataset D, that is from a dataset for which P (S = s|X = x) = P (S 6=

s|X = x). This is not a realistic assumption since in most real-world applications, the

dataset at hand will be unbalanced and would need to be re-balanced before we can audit

for multi-differential fairness. We will tackle the imbalance issue in the next section.

We use the balanced setting to demonstrate the hardness of certifying for the lack

of differential fairness. Formally, we reduce auditing for multi-differential fairness to an

agnostic learning problem. We observe that if the data distribution is balanced, finding

a violation of (Cα, δ)- multi differential fairness is equivalent to finding a sub-population

G ∈ Cα, a y ∈ {−1, 1} and s ∈ S such that

P (G, Y = y)
{
Pr(S = s|G, Y = y)− 1

2

}
≥ γ, (7.6)

with γ = α
(
eδ/(1 + eδ)− 1/2

)
. γ combines the size of the sub-population where a violation

exists and the magnitude of the violation. We call a γ− unfairness certificate any triple

(G, y, s) that satisfies Eq. (7.6). Further we postulate that f is γ−unfair if and only if such
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certificate exists. Unfairness for balanced distributions is equivalent to the existence of sub-

populations for which sensitive attributes can be predicted once the classifier’s outcomes

are observed.

Searching for γ-unfairness certificate reduces to mapping the auditing features {xi} to

the labels {siyi}.

Lemma 7.2.1. Let s ∈ S. Suppose that the data is balanced. f is γ− multi-differential

unfair for y ∈ {−1, 1} if and only there exists c ∈ Cα such that Pr(ySY = c) ≥ 1−ρ(y)+4γ,

where ρ(y) = P (S = yY ).

Lemma 7.2.1 allows us to reduce searching for a (G, y, s) unfairness certificate to pre-

dicting where sensitive attribute and outcomes of f (if y = 1) or outcomes of ¬f (if y = −1)

coincide. Since f is a black-box classifier, the function g(x, s) = sf(x) is only accessed via

a sample Dn = {xi, si, yi}ni=1. Therefore, searching for unfairness certificate is akin to learn

from a finite sample of Dn a hypothesis c ∈ C that approximates well the predictions from

g : X × S → {−1, 1}. Note that there is no guarantee that g ∈ C and thus the learning is

agnostic. The optimal membership indicator in C has an error rate minc∈C P (g(x, s) 6= c(x))

that is not necessarily zero. The next result shows a necessary and sufficient condition on C

to learn from a finite sample a sub-population c with an error rate that approximates well

the optimal one.

Theorem 7.2.2. Let ε, β > 0 and C ⊂ 2X . Let γ′ ∈ (γ− ε, γ+ ε). The following statements

are equivalent:

(i) There exists an algorithm that by using O(log(|C|), log( 1
η ), 1

ε2 ) samples {(xi, si), yi}

drawn from a balanced distribution D outputs with probability 1 − η a γ
′-unfairness

certificate if yi are outcomes from a γ−unfair classifier;

(ii) C is agnostic learnable: there exists an algorithm that with O(log(|C|, log( 1
η ), 1

ε2 ) sam-

ples {xi, si, oi} drawn from a balanced distribution D outputs with probability 1 − η,

PrD[h(xi) = oi] + ε ≥ maxc∈CPrD[c(xi) = oi].
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Our reduction to agnostic learning means that the granularity of any auditing algorithm

for differential fairness is limited by the difficulty to approximate g with concepts from the

class C while using a finite sample. Indeed, C needs an agnostic learner for the search of an

unfairness certificate to be poly-logarithmic in |C|.

Theorem 7.2.2 shows the hardness of auditing a black-box classifier for multi-differential

fairness. In the worst-case, for many classes C, agnostic learning and thus auditing is NP-

hard [103]. It means that there is a computational limit on how granular multi-differential

fairness can be: richer C – larger |C| – means that auditing searches for more complex

sub-populations, but at the cost of looser guarantees on the generalization of the error rate.

7.3 A Learning Algorithm to Audit for Multi-Differential

Fairness

Using a sample Dn from a balanced dataset D, our reduction suggests to solve the following

empirical loss minimization:

min
c∈C

1
n

n∑
i=1

1(c 6= siyi). (7.7)

In practice, we optimize over a family H from X to [0, 1] and then estimate an unfairness

certificate by using the sub-population indicator c(x) = sign(h(x)). Moreover, since the

0 − 1 loss is not differentiable, we will use a convex and differentiable proxy l for it and

minimize the empirical loss

R(h) , 1
n

n∑
i=1

l(h(xi), siyi), (7.8)

where h ∈ H.

At issue is that the auditor has only access to a sample D′n from a unbalanced dataset

D′ . Therefore, it will need first to balance the data and then, solve the empirical loss

minimization (7.7).
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7.3.1 Unbalanced Data

To extend our auditing approach to unbalanced dataset, we propose to first rebalance the

data. Assume that the minority demographic group corresponds to S = 1 and denote πs

the density P (x, S = s).

Definition 7.3.1 (Re-weigthing). A function u : X → R is a valid re-weigthing if for all

x ∈ X , π1(x) > 0 implies u(x) > 0. We denote the re-weighted density πu1 (x) = u(x)π1(x).

We would like to choose a re-weighting scheme such that πu1 (x) = π−1(x). A natural

candidate for u is to choose for w(x) = π−1(x)/π1(x). However, in practice we do not have

direct access to πs(x). One approach is to directly estimate the density P [S = s|x]. This

method is used in propensity-score matching methods [31] in the context of counterfactual

analysis. But, exact or estimated importance sampling results in large variance in finite

sample [104]. Instead, we use a kernel-based matching approach [105,106].

Given a re-weigthing function u, we denote Ru(h) the risk

Ru(h) , Ex,y∼π1 []u(x)l(h(x), y)] + Ex,y∼π−1 []l(h(x),−y)], (7.9)

and Run(h) its empirical counterpart.

Integral Probability Metric

Our approach relies on integral probability metrics (IPM) [107] to measure the distance

between two probability measures P and Q. For a family G of functions g : X → R, we

define

IPMG(P,Q) = sup
g∈G

∣∣∣∣∫
X
gdP −

∫
X
gdQ

∣∣∣∣ . (7.10)

If the family of functions is rich enough, integral probability metrics define a true metric

over the set of probability measures, i.e. IPMG(P,Q) = 0 implies P = Q. In this chapter,

we choose for G the unit ball of functions in a universal reproducing Hilbert kernel space.

111



For this choice of G, IPMG is a true metric named the maximum mean discrepancy [105]

and has an empirical estimator with a convergence rate independent of the dimension of X

[107].

Reproducing Kernel Hilbert Space

Formally, we consider a reproducing kernel Hilbert space Gk with kernel k such that ||k||∞ <

∞. G is then defined as the unit ball in this reproducing kernel Hilbert space: G = {g ∈

Gk|||g||k ≤ 1}. We choose the kernel k such that the reproducing kernel Hilbert space has

the universal approximating property:

Definition 7.3.2 (Universal kernel). A kernel k has the universal approximating property

if given any compact subset Z of X , any ε > 0 and any continuous bounded function

l : Z → R, there exists gl,ε ∈ Gk such that ||gl,ε − l||∞ ≤ ε.

Example of universal kernels are Gaussian radial-based kernels. Kernel universality

allows to control the shift in multi-differential unfairness certificate γ when the re-weigthing

u is used instead of w∗.

We measure the gap between πu1 and π−1 by measuring:

IPMG(πu1 , π−1) = sup
g∈G

∣∣∣Ex∼πu1 g(x)− Ex∼π−1g(x)
∣∣∣ (7.11)

The next result bounds the error in the fairness risk Ru(h) while using a re-weighting u

instead of w:

Lemma 7.3.1. Suppose that k is a universal kernel. Let ε > 0. For h ∈ H,

(i) If l ◦ h ∈ Gk, for any re-weighting u

|Ru(h)−Rw(h)| ≤ ||l ◦ h||kIPMG(πu1 , π−1) (7.12)

(ii) If l ◦ h is a bounded continuous function from X to R, there exists gl,ε ∈ Gk such that
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for any re-weighting u

|Ru(h)−Rw(h)| ≤ ε+ ||gl,ε||kIPMG(πu1 , π−1). (7.13)

The bound of Lemma 7.3.1 is tighter if (i) πu1 is closer to π−1 according to (7.11); (ii)

the loss l ◦h belongs to the reproducing kernel space Gk; (iii) the loss l ◦h is smooth enough

in x. Importance sampling w leads to a tight bound in expectation since πw1 = π−1, but

are not practical since P (S|x) is not observed. The norm ||g||k or ||l ◦ h||k measures the

complexity or smoothness of the loss l ◦ h. Note that ||g||k hides a dependence in ε, since

the smaller ε, the larger ||g||k is likely to be.

Using Lemma 7.3.1, we upper bound the error between the empirical risk with re-

weighting u and the risk Rw(h) if the data is re-balanced using importance sampling weights

w.

Theorem 7.3.2. Let δ > 0. Consider a sample Dn = {(xi, si, yi)}ni=1, with ns = |{i|si =

s}|. Assume that u : X × S is a re-weighting function. Assume that exists B > 0 such that

||gl,ε||k ≤ B for all ε > 0, where gl,ε ∈ Gk is defined as in 7.3.2 and Gk is the reproducing

kernel Hilbert space associated with kernel k. Assume that supg∈G |g(x)| ≤ ν, Then, for any

δ > 0 with probability at least 1− δ, for any h ∈ H

|Rw(h)−Run(h)| ≤B × IPMG(πun,1, πn,−1) + 25/4V (u)
(
dH log 2n

dH
+ log 16

δ

n

)3/8

+B

√
18ν2 log 8

δ
||k||∞

(
1
√
n1

+ 1
√
n−1

)
,

(7.14)

where πun,1, πn,−1 are the empirical estimates of πun, π−1;

V (u) = max{
√
Eπu1 [u2(x)l2(h(x)),

√
Eπun,1 [u2(x)l2(h(x))}; (7.15)
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and, dH is the pseudo-dimension of {l ◦ h|h ∈ H}.

The upper-bound in Theorem 7.3.2 makes explicit that higher variance of the term

u(x, s)l ◦ h(x) degrades the approximation of Rw(h) by Run(h). This is consistent with

results in [104]: choosing u 6= w generates a bias in Ru – larger IPMG(πu1 , π−1) – but could

lower the variance – smaller V (u).

Moreover, the upper bound in Theorem 7.3.2 depends on the pseudo-dimension dH of

the class of auditors H. The larger dH, the more granular is the fairness criteria for which

the auditor searches for fairness violations, but this granularity comes at the cost of a higher

variance of Ru(h). This is consistent with our hardness result in Theorem 7.2.2.

The term B captures the complexity of the l ◦ h.

7.3.2 Auditing Algorithm for Unbalanced Data

Motivated by our theoretical insights of Theorem 7.3.2, we propose an auditing algorithm

that given a sample Dn, (i) learns the re-weighting u by mininizing a combination of

IPMG(πu1 , π−1) and the variance of u; and, (ii) learns an unfairness certificate by mini-

mizing Run(h). The training objective of our algorithm is then

L(h, u;β, λ) = 1
n

n∑
i=1:si=1

u(xi)l ◦ h(xi) + 1
n

n∑
i=1:si=−1

l ◦ h(xi)︸ ︷︷ ︸
Run(h)

+ β IPMG(πun,1, πn,−1) + λ||u(x)l ◦ h(x)||2︸ ︷︷ ︸
Lbal(h,u;β,λ)

(7.16)

where Lbal(h, u;β, λ) includes two regularization terms, a term IPMG(πun,1, πn,−1) to penal-

ize discrepancies between πu1 and π−1; and, a term ||u(x)l ◦ h(x)||2 to penalize the variance

of the re-weighted loss. (β, λ) are hyperparameters.
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7.3.3 Worst-Case Violation

Solving the empirical minimization Eq. (7.16) allows certifying whether any black box

classifier is multi-differential fair, but the solution of Eq. (7.16) does not distinguish a large

sub-population S with low value of δ from a smaller sub-population with larger value of

δ. For example, consider two sub-populations of same size G0 and Gδ for δ > 0. Assume

that there is no violation of multi-differential fairness on G0, but a δ− violation on Gδ.

The risk minimization Eq. (7.16) will pick indifferently Gδ and Gδ ∪ G0 as unfairness

certificates, although G0 mixes the violation Gδ with a sub-population without any violation

of differential fairness.

Worst-Case Violation Algorithm (WVA). At issue in the previous example is that

for the sub-population G0, choosing c = 1 or c = −1 will lead to the same empirical risk

Eq. (7.16). To force c(x) = −1 for x ∈ G0, our approach is to add a regularization term

that penalizes large value of h and thus, forces the solution of (7.16) to assign small values

to h whenever s = y with probability 1/2. Formally, the training objective of our algorithm

is

L(h, u;β, λ) + µt
n

n∑
i=1

u(xi)h(xi) (7.17)

where µt is hyperparameter for which we choose a following annealing strategy: starting

from µ0 = 0, at each iteration t, we increase the value of µt by a step ξ. This temperature

schedule terminates whenever the resulting sub-population Gt = {x ∈ X | sign(ht(x)) = 1} is

less than α. At the second to the last iteration T , we estimate the accuracy of the classifier

cT = sign(hT ) at predicting the labels SY when sampling from the dataset re-weighted by

uT .

7.3.4 Mdfa Auditor

Putting the building blocks together allows us to design a fairness diagnostic tool mdfa

that identifies efficiently the most severe violation of multi-differential unfairness.
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Estimating the maximum mean discrepancy

For our choice of G as the unit ball of functions in a reproducing Hilbert kernel space, the

integral probability metric IPMG(πu1 , π−1) is the maximum mean discrepancy between πu1

and π−1 and its empirical estimator is available in closed form ([107])

IPMG(πun,1, πn,−1) =

√√√√ n∑
i,j=1

s̃is̃jk(xi, xj), (7.18)

where k is the kernel associated with the reproducing Hilbert kernel space; s̃1 = u(x)/n1;

˜s−1 = −1/n−1, where ns is the number of sample points with S = s. We choose a normalized

Gaussian kernel, with a scale hyperparameter σ.

Architecture

Inputs are a dataset with a classifier’s outcomes (labels ±1) along with auditing features.

mfda models h and u as neural networks, whose depth and width depends on the data

at hand. That is, mfda is made of two parallel neural networks that are combined at the

outset to compute the weighted risk Ru and the imbalance loss Lbal. We solve the empirical

loss (7.17) by stochastic gradient descent. For every τ iterations of the stochastic descent,

we increase the value of the parameter µ by a step ξ if the size of {x ∈ X | sign(ht(x)) = 1}

is larger than α.

Cross-Validation

The auditor chooses the minimum size α of the worst-case violation they would like to

identify. The advantage of our approach is that, although we do not have ground truth for

unfair treatment, we can propose heuristics to cross-validate our choice of regularization

parameters λ, β and σ used in Eq. (7.17). First, we split 70%/30% the input data into a

train and test set. Starting with µ = 0 and using a 5−fold cross-validation, mdfa is trained

on four folds and a grid search looks for regularization parameters σ, β and λ that minimize
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the imbalance loss Lbal with h = 1. Once the values for σ, β and λ are set, we minimize

the complete loss (7.17).

7.4 Experimental Results

7.4.1 Synthetic Data

A synthetic data is constructed by drawing independently two features X1 and X2 from two

normal distributions N(0, 1). We consider a binary protected attribute S = {−1, 1} drawn

from a Bernouilli distribution with S = 1 with probability w(x) = eµ∗(x1−x2))2

1+eµ∗(x1+x2))2 . µ is the

imbalance factor. µ = 0 means that the data is perfectly balanced. The data is labeled

according to the sign of (X1 + X2 + e)3, where is e is a noise drawn from N(0, 0.2). The

audited classifier f is a logistic regression classifier that is altered to generate instances of

differential unfairness. For x2
1 + x2

2 ≤ 1, if S = −1, the classifier’s outcomes Y is changed

from −1 to 1 with probability 1−ν ∈ (0, 1]; if S = 1, all Y = −1 are changed to Y = 1. For

ν = 0, the audited classifier is differentially fair; however, as ν increases, in the half circle

{(x1, x2)|x2
1 + x2

2 ≤ 1 and y = −1} there is a fraction ν of individuals with S = 1 who are

not treated similarly as individuals with S = −1.

Results

First, we test whether mdfa identifies the worst-case violation of multi-differential fairness

that occurs in the sub-space {(x1, x2)|x2
1 + x2

2 ≤ 1 and y = −1}. In Figure 7.1 (left), mdfa

is trained using a neural network with one hidden layer of 32 neurons on a unbalanced data

(µ = 0.2). The true value of δ varies from 0 to 0.7 (i.e ν varying from 0 to 0.5). Figure 7.1

compares the estimated value δ against the true one δtrue and shows that mdfa’s estimate

is unbiased, since the plots aligns wells with the 45o diagonal but at very low value of δtrue.

Increasing the sample size reduces the variance of mdfa’s estimator. In Figure 7.1, right,

we test the effect of the complexity of the auditor on the bias and variance of mdfa’s
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Figure 7.1: Performances of mdfa on synthetic data. Shaded area shows the 90% confidence
interval of δestimated that is obtained by simulating 100 synthetic data for a given value of
ν. The balancing factor µ is set to −0.2.

estimator. Models with wider hidden layers appear to have more variance.

Figure 7.2: Auditing performances for different balancing schemes. The data is colored by
the outputs of the last layer of the auditor neural network, once activated by a sigmoid
function. The gray contour represents the area identified by the auditor as violation of
multi-differential fairness. The black semi-circle represents the true region with a violation
of multi-differential fairness.

We compare our balancing approach MMD to alternative re-balancing approaches: (i)

uniform weights with u(x) = 1/n1 for all x and (ii) importance sampling with exact weights

w(x). UW applies mdfa without rebalancing. IS uses an estimate of the probabilities

P (S = s|X = x) obtained by training a neural network that predicts S from X. In Figure
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7.2, we apply a sigmoid activation to the last layer of the auditor neural network and color

the data points with these logits. Figure 7.2 shows that only mdfa is able to indentify

with higher logits the region of the feature space where the violation of multi-differential

fairness occurs. Absent of a re-weighting scheme, the auditor errs to identify the region

{(x1, x2)|x2
1 + x2

2 ≤ 1 and y = −1}. Using importance sampling weights directly does not

perform well: this confirms previous observations in the literature that in finite sample, the

variance of the importance sample weights can be detrimental to a re-balancing approach.

7.4.2 Case Study: COMPAS

We apply our method to the COMPAS algorithm, widely used to assess the likelihood of a

defendant to become a recidivist ([5]). The research question is whether without knowledge

of the design of COMPAS, mdfa can identify group of individuals that could argue for

a disparate treatment. The data collected by ProPublica in Broward County from 2013

to 2015 contains 7K individuals along with a risk score and a risk category assigned by

COMPAS. We transform the risk category into a binary variable equal to 1 for individuals

assigned in the high risk category (risk score between 8 and 10). The data provides us with

information related to the historical criminal history, misdemeanors, gender, age and race

of each individual.

Worst Violations. We run mdfa on 100 different 70/30% train/test splits and report

average value of auditing features and recidivism risk for the whole population and the

worst-case subpopulation in Table 7.1. The first two columns show that the distribution

of features in the whole population is disperse and differs between African American (AA)

and Other. This is due to the data imbalance issue (c.f. Section 3). The probability of

being classified as high risk is 0.14 for African-American, thereby 2.7 times higher than for

non-African American. However, it is unclear whether that difference could be explained

either by the distribution imbalance or by the classifier’s disparate treatment. The two

last columns in Table 7.1 show that in the sub-population “violation” extracted by mdfa,
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Table 7.1: Identifying the worst-case violation of differential fairness in the COMPAS risk
score. The sensitive attribute is whether the individual is self-identified as African American
(AA) or not (Other). ( ) indicates standard deviation.

Variable Population Violation
AA Other AA Other

Prior Felonies 4.44 2.46 0.79 0.67
(5.58) (3.76) (0.24) (0.17)

Charge Degree 0.31 0.4 0.74 0.74
(0.46) (0.49) (0.23) (0.2)

Juvenile Felonies 0.1 0.03 0.01 0.0
(0.49) (0.32) (0.02) (0.02)

Juvenile Misdemeanor 0.14 0.04 0.01 0.01
(0.61) (0.3) (0.02) (0.01)

High Risk 0.14 0.05 0.06 0.02
(0.35) (0.22) (0.04) (0.01)

the distribution of features is narrower and similar for African-American and non-African

American: the sub-population is made of individuals with little criminal and misdemeanor

history. However, African American are still three times more likely to be classified as high

risk. A policy implication of mdfa findings is that a judge using COMPAS may discount

its assessment for African-American with little criminal history.

7.4.3 Group Fairness vs. Multi-Differential Fairness

We evaluate whether previous fairness correcting approaches protect small group of in-

dividuals against violation of differential fairness. We consider two techniques: (i) [36]’s

disparate impact repair with a logistic classification (DI − LC) and (ii) [108]’s reduction

with a logistic regression (Red − LC). We use mdfa to identify sub-population G with

worst-case violations and measure sub-population disparate treatment as DTG = P (Y =

1|S = 1, G)/P (Y = 1|S = −1, G). We compare DTG to its aggregate counterpart computed

on the whole population DI = P (Y = 1|S = 1)/P (Y = 1|S = −1).

Data. The experiment is carried on three datasets from [28, 109]): Adult with 48, 840

individuals; German with 1000 individuals; and, Crimes with 1994 communities. In
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Adult the prediction task is whether an individual’s income is less than 50K and the

sensitive attribute is gender; in German, the prediction task is whether an individual has

bad credit and the sensitive attribute is gender; in Crimes, the task is to predict whether

a community is in the 70th percentile for violent crime rates and the sensitive attribute is

whether the percentage of African American is at least 20%. For each data, each repair

technique produces a prediction; then, mdfa is trained on 70% of the data and computes

estimates for disparate treatment DTG on the remaining 30% of the data. The experiment

is repeated with 100 train/test splits.

Results. In Table 7.2, even despite the fairness correction applied by DI−LC and Red−

LC, mdfa still finds sub-populations G for which DTG is significantly larger than one.

It indicates the existence of group of individuals who are similar but for their sensitive

attributes and who are treated differently by the classifier trained by either DI − LC or

Red − LC. The repair techniques reduce the aggregate disparate impact compared to the

baseline (LC), since DI is closer to one for DI − LC and Red − LC across all datasets.

However, in the Adult dataset, DTG remains between 1.44 and 1.6 after repair: mdfa

identifies a group G of Females that are 44% − 60% more likely to be classified as low-

income than Males with similar characteristics. In Crimes dataset, disparate treatment

DTG is around 5.7 for both DI − LC, R − LC: this means that there exist communities

with dense African-American populations that are six times more likely to be classified at

high risk than similar communities with lower percentages of African Americans.

7.5 Conclusion

In this chapter, we present mdfa, a tool that measures whether a classifier treats differently

individuals with similar auditing features but different sensitive attributes. We hope that

mdfa’s ability to identify sub-populations with severe violations of differential fairness

could inform decision-makers when to discount the classifier’s outcomes. It also provides

the victims with a framework to contest a classifier’s outcomes.
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Table 7.2: Worst-case violations of multi-differential fairness identified by mdfa for classi-
fiers trained with standard fairness repair techniques. ( ) indicates standard deviation.

Repair Adult German Crimes
TechniqueDTG DI DTG DT DTG DI

LC 1.88 1.08 1.26 1.07 5.76 1.0
(0.4) (0.14) (3.16)

DI-LC 1.44 0.99 1.1 1.04 5.74 1.0
(0.32) (0.08) (2.19)

Red-
LC

1.6 1.03 1.04 1.01 5.24 1.0

(0.25) (0.21) (0.89)

Avenues for future research are to investigate (i) the properties of a classifier trained

under a multi-differential fairness constraint; and, (ii) the possibility to extend our approach

to re-balance distributions in order to make counterfactual inference [85] in the context of

algorithmic fairness.
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Chapter 8: Conclusions

8.1 Summary of Findings

In this thesis, we present two types of methods to mitigate potentially unfair outcomes of

a black-box classifier: (i) unsupervised fair representation learning and (ii) auditing.

8.1.1 Unsupervised Fair Representation Learning

This thesis expands recent contributions in fear representation learning to the unsupervised

setting: the user generates a fair encoding of the data without knowledge of how the re-

sulting encoding will be used. This unsupervised setting differs from previous work in fair

representation learning that generates encoding tailored to a specific task. The advantage

of all purpose fair representations is that the transformation can be performed at the time

of collecting the data, potentially on distributed devices.

Our first step toward unsupervised fair representation learning is to make tight connec-

tions with rate-distortion problems. We show that encoding a data into a representation

that does not leak information related to a sensitive attribute is equivalent to solving a

rate-distortion problem, provided that a side channel gives the decoder direct access to the

sensitive attribute. We formalize the notion of unfairness-distortion functions as the mini-

mum mutual information between sensitive attribute and representation for a given level of

distortion. Chapter 4 proves that unfairness-distortion functions can be completely derived

from rate-distortion functions.

This result allows to solve fair information bottleneck via compression-based technique

(chapter 3); explore at test time multiple points in the fairness-information plane with one

single trained model; and, propose the first application of the fair representation paradigm

to images via hierarchical quantization (chapter 5).
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A second step toward practical deployment of fair representation models is to earn the

user’s trust. In chapter 6, we ask which statistical guarantees we can offer to the user that

the representation hides her sensitive attribute to any classifier that will use the data. The

answer is striking: there is no guarantee unless the χ2− mutual information between the

data and the representation is finite. This result leads to a simple solution toward certifying

the fairness property of a representation: we show that fair representation learning models

can offer statistical hiding guarantees by adding a Gaussian noise to the representation.

A natural question is whether our compression-based approaches to fair representation

learning can offer the same statistical hiding properties since they are aiming at minimizing

the Shannon mutual information between the data and the representation. The rationale

would be that both Shannon mutual information and χ2− mutual information controls

how much information is encoded in Z. It turns that in theory, there exist representations

with finite Shannon mutual information and infinite χ2− mutual information. However, in

practice, we find empirically (chapter 3,4 and 5) that compression-based techniques generate

representations with fairness properties that hold against diverse downstream classifiers.

8.1.2 Auditing Black Box Classifiers

The second part of this thesis looks at the other extremity of the data science pipeline, once

a black-box classifier has used some data or its representation as inputs. In chapter 7, we

propose a method, mdfa, to estimate whether there exist sub-populations or subsets of the

feature space where the classifier has exacerbated existing biases encoded in the features

themselves.

Mdfa identifies sub-populations, if any, for which a black-box classifier leaks more in-

formation about the sensitive attributes than the features themselves. Identifying these

‘fairness leakages’ is a first and important step toward empowering victims of classifier

discriminatory outcomes and allowing contestability.
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8.2 Limitations and Ethical Implications

This thesis considers classifiers as black-boxes and describe or control the fairness properties

of the black-box via its inputs – in fair representation learning – and its outputs – in auditing.

Abstracting away the inner working of the decision making system is typical in computer

science. We discuss in this section the benefits, ethical implications and limitations of this

abstraction.

A benefit of our black-box abstraction is that it is flexible with respect to the data

science pipeline. Our proposed unsupervised pre-processing methods operate as portable

plug-and-play tools that can be readily deployed across media (tabular data in chapter 3

and 4; image data in chapter 5). It opens avenues to deploy the tools on edge devices, which

is critical for practical application of fairness paradigms [78,110].

Our pre-processing – and to some extend, auditing – approaches also abstract away how

to define fairness by re-casting fairness as a privacy issue: we design systems so that we

can measure / control how much information about a sensitive attribute the release of a

data leaks (chapter 3 to 6); and, how exacerbated the privacy leakage is after the data is

ingested by a classifier (chapter 7). This formalism is inspired by differential privacy [75]

and allows to quantify how robust are the fairness guarantees offered by a system. For

example, in chapter 6, we show that with proper noise structure, organizations can offer

certifiable guarantees on how much their pre-processed data hides the sensitive attributes.

We are aware that our level of abstraction bounds the scope of our work since it does

not account much for the context surrounding the data and the data mining tasks. This

thesis does not model the social components that interact with the system. We do not

provide guidance in how to articulate and solve the socio-cultural tensions and debates

inherent to decision making systems that affect individual well-being. For example, we do

not expand on how to define sensitive attributes in the first place. Nor do we propose any

framework to analyze how social biases are encoded in a data. As discussed in [111], there

could be a debate on whether the limitations discussed here lead the proposed methods to

125



a solutionism trap. Ideally, fair machine learning needs heterogeneous engineering [112] to

build sociotechnical systems that consider how technology interacts with social actors [113].

We argue here that this thesis offers technical and mathematical guidelines on what fairness

constraints are feasible under the reasonable assumption that decision making systems are

black-boxes. To some extent, an hybrid approach to fair machine learning benefits from

understanding how a bank of diverse tools can address different social concerns.

8.3 Future Research

This thesis opens promising avenues for research in fair machine learning in the context of

black-box classifiers. In this section, we present two main themes: (i) extension of unsu-

pervised fair representation learning to distributed systems; (ii) development of additional

auditing tools to build fairness unit tests for developers and foster stakeholder engagement.

8.3.1 Federated Fair Representation Learning

Unsupervised fair representation learning offers a flexible pre-processing technique for any

data owner/controller to offer fairness guarantees without knowing the future of the data.

However, in this thesis, we assume that the data owner/controller is a central entity that

collects a sample of data to train a fair encoder-decoder and potentially deploys the trained

encoder-decoder to edge devices. However, in many applications, data owners are decen-

tralized entities that do not necessarily consent sharing their data with a central server.

One area for future research is to train the fair encoder-decoder within a federated

learning framework [110] that exchanges parameters or gradient values between decentral-

ized entities, but does allow a central server to access the data. Main challenges to federated

fair representation learning include (i) data distribution shifts across diverse clients [114];

(ii) collaboration of decentralized devices; and, (iii) privacy of the sensitive attribute. It

is an open question to understand how distribution shifts between clients would affect the

aggregate fairness properties of the learned representation; and whether each client would
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have an incentive to collaborate. Privacy of the sensitive attribute is also essential to foster

collaboration between edge devices: a user would agree to participate to a federated repre-

sentation learning framework only if sharing gradient or parameter updates does not reveal

its sensitive attribute.

8.3.2 Pre-and-Post Auditing

In the presence of black-box classifiers, we could expand upon our auditing work in Chapter

6 along three research directions: (i) individualized post-mortem auditing; (ii) auditing of

utility-based decisions making systems; and, (iii) pre-emptive auditing of a data to prevent

discriminatory outcome of classifiers using the data.

Chapter 7’s auditing tool is not individualized and remains at the aggregate level since

membership in the audited sub-group is defined by an indicator function that belongs to a

class of functions with limited dimensions. A natural follow up is to explore the possibility

of a more granular auditing tool that would estimate disparate treatment at the individual

level. In many real world, auditing for individual disparate treatment faces three challenges:

(i) we do not observe the counterfactual outcome for the same individual but with different

sensitive attributes; (ii) the distributions differ when conditioned on sensitive attributes;

and, (iii) the outcomes are binary and most of the literature on individual treatment effect

has focused on continuous outcomes.

Moreover, our definition of multi-differential fairness in Chapter 7 along with other

popular definitions (statistical parity [27], equalized odds and opportunity [38]) only applies

to binary settings and implicitly assumes that the utility of an individual is equal to one

when the algorithm’s outcome is one and equal to zero otherwise. This is a limitation since in

many societal applications of machine learning, utilities are heterogeneous across individuals

and this heterogeneity could be systematic across demographic groups [115,116]. However,

necessary trade-offs exist for fairness in the context of utility-based decision making system:

in a work adjacent to this thesis, we show that many reasonable definitions of equitable

outcomes cannot hold simultaneously except under stringent conditions [34].
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Lastly, in standard machine learning pipelines [117] users discover unfairness issues after

the models are trained, validated, and sometimes deployed [118]. This is inefficient whenever

the problem resides in the data itself and could have been diagnosed ex-ante before model

development. Unfairness in machine learning is first and foremost rooted in the data itself.

Of interest is the development of tools that would identify which data presents fairness risk

when ingested by a data pipeline.
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Appendix A: Proofs of Results in Single Shot Fair

Representation Learning

A.1 Proof of Theorem 2.1

First, we show the following identity:

Lemma A.1.1. I(Z, S) = I(Z,X) +H(X|Z, S)−H(X|S).

Proof. The proof of Lemma A.1.1 relies on multiple iterations of the chain rule for mutual

information:

I(Z, S) (a)= I(Z, {X,S})− I(Z,X|S)

(b)= I(Z,X) + I(Z, S|X)− I(Z,X|S)

(c)= I(Z,X)− I(Z,X|S)

(d)= I(Z,X)− I(X, {Z, S}) + I(X,S)

(e)= I(Z,X)−H(X) +H(X|Z, S)

+H(X)−H(X|S)

= I(Z,X) +H(X|Z, S)−H(X|S)

where (a), (b) and (d) use the chain rule for mutual information; and, (c) uses the fact

that Z is only encoded from X and from S, so H(Z|X,S) = H(Z|X) and I(Z, S|X) =

H(Z|X) − H(Z|X,S) = 0. And (e) uses the fact that I(X,S) = H(X) − H(X|S) and

I(X, {Z, S}) = H(X)−H(X|Z, S).
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Lemma A.1.1 implies that if the distortion is d(X, {Z, S}) = H(X|Z, S), the unfairness-

distortion function is given by

I(D) = min
F

I(Z,X) +H(X|Z, S)−H(X|S)

s.t. H(X, {Z, S}) ≤ D
(A.1)

Second, a fundamental theorem in rate-distortion shows that if the distortion is d(X, {Z, S}) =

H(X|Z, S) the rate-distortion function is given by

R(D) = min
F

I(X,Z) s.t H(X|Z, S) ≤ D, (A.2)

and that R(D) is a non-increasing convex function. The next Lemma shows how solution of

the minimization problem (A.2) solves the minimization problem (A.1) whenever ∂R(D)
∂D ≤

−1

Lemma A.1.2. Let D ≥ 0 be a distortion value. Assume that ∂R(D)
∂D ≤ −1. A solution F ∗

of the minimization (A.2) for D is also solution of (A.1).

Proof. At the optimum, the constraint in (A.2) is binding and thus, that Hf∗(X|Z, S) = D,

where the subs-script F ∗ reminds that the code Z depends on F ∗. Consider now a solution

g∗ of the minimization (A.1) for a distortion D. We consider two cases: case (I) the

constraint is binding for g∗ in (A.1); case (II) the constraint is not binding for g∗ in (A.1).

case (I): Hg∗(X|Z, S) = D and we have

I(D) = Ig∗(Z,X) +Hg∗(X|Z, S)−H(X|S)

= Ig∗(Z,X) +D −H(X|S)

(a)
≥ If∗(Z,X) +D −H(X|S),

(A.3)
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where (a) uses the fact that F ∗ is solution of (A.2) and that Hg∗(X|Z, S) ≤ D. Therefore,

since Hf∗(X|Z, S) ≤ D, F ∗ is also solution of (A.1).

case (II): Let denote D
′ the value of the distortion achieved by g∗. Then, D′ =

Hg∗(X|Z, S) < D. We have

I(D) = Ig∗(Z,X) +Hg∗(X|Z, S)−H(X|S)

= Ig∗(Z,X) +D
′ −H(X|S)

(a)
≥ R(D′) +D

′ −H(X|S),

(A.4)

where (a) follows from the definition of R(D′). By convexity of the rate-distortion function,

we have that

R(D′)−R(D)
(a)
≥ ∂R(D)

∂D
(D′ −D)

(b)
≥ (D −D′),

(A.5)

where (a) uses the convexity of R(D) and that D′ < D and (b) uses that ∂R(D)
∂D ≤ −1.

Hence, by combining (A.4) and (A.5), we have

I(D) ≥ R(D) +D −H(X|S) = If∗(Z,X) +D −H(X|S). (A.6)

Therefore, F ∗ is also solution of the minimization (A.1) since Hf∗(X|Z, S) ≤ D.

It follows from Lemma A.1.2 that we have by definition of F ∗, if ∂R(D)
∂D ≤ −1

I(D) = If∗(Z,X) +D −H(X|S) = R(D) +D −H(X|S), (A.7)

which proves the first part of the statement in Theorem 2.1. Moreoover, if ∂R(D)
∂D < −1,
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∂I(D)
∂D = ∂R(D)

∂D + 1 < 0, hence I(.) is decreasing for D such that ∂R(D)
∂D < −1.

To prove that if ∂R(D)
∂D ≥ −1, I(D) = 0, we first prove the following Lemma:

Lemma A.1.3. Let D∗ denote the value of D such that ∂R(D)
∂D = −1. For D∗ ≤ D,

I(D) = I(D∗).

Proof. Let D > D∗. Let g∗ be a solution of the minimization (A.1) for D. Note that a

solution of (A.1) for D∗ respects the constraint of the minimization (A.1) for D and thus,

I(D∗) ≥ I(D). Let D′ denote Hg∗(X|Z, S). Then, by definition of the rate-distortion

objective value (A.2), we have

I(D) = Ig∗(Z,X) +D
′ −H(X|S)

≥ R(D′) +D
′ −H(X|S).

(A.8)

If D′ < D∗, then we already know that I(D′) = R(D′) + D
′ −H(X|S) and that I(D′) >

I(D∗) ≥ I(D). Moreover, by inequality (A.8), I(D) ≥ I(D′), thus I(D′) > I(D) ≥ I(D′),

which is a contradiction. If D′ = D∗, we already know that I(D) ≤ I(D∗) = R(D∗) +D∗−

H(X|S) = I(D′) ≤ I(D) and thus that I(D) = I(D∗).

It remains to look at the case D′ > D∗. Consider D” ∈ [D∗, D′ ]. By convexity of R(D)

we have

R(D∗)−R(D′) ≤ ∂R(D∗)
∂D

(D∗ −D′)

(a)= D
′ −D∗,

(A.9)

where (a) comes the fact that ∂R(D∗)
∂D = −1. It results that by the inequality (A.7) I(D) ≥

R(D∗) +D∗ −H(X|S). Moreover, we already know that R(D∗) +D∗ −H(X|S) = I(D∗).

Hence I(D∗) ≥ I(D) ≥ I(D∗), which proves the equality in Lemma A.1.2.

132



Lemma A.1.4. Let D∗∗ = H(X|S). We have I(D∗∗) = 0.

Proof. Consider an encoder g that generates a random variable Z independent of X. Then

Hg(X|Z, S) = D∗∗ and Ig(Z,X) = 0. Therefore, g respect the constraint of the min-

imization (A.1) for D∗∗ and I(D∗∗) ≤ Ig(Z,X) + Hg(X|Z, S) − H(X|S) = 0. Hence,

I(D∗∗) = 0.

By combining Lemma A.1.2 and A.1.4, we can show that I(D) = 0 for D ≥ D∗∗.

A.2 Lower Bound on I(Z, S)

When constructing unfairness-distortion curves, we approximate the mutual information

I(Z, S) with an adversarial lower bound. For any approximation q(s|Z) of p(s|Z), we have

I(Z, S) = H(S)−H(S|Z)

= H(S)− Es,z[− log q(s|z)] +KL(p(s|z)||p(s|z)

≥ H(S)− Es,z[− log q(s|z)],

(A.10)

where the inequality comes from the non-negativity of the Kullback-Leibler divergence

KL(p|q). Therefore, we lower bound I(Z, S) with

H(S)−min
q
Es,z[− log q(s|z)], (A.11)

where the minimum is taken over classifiers that predict S from Z.

A.3 Bit Disparity

In the main test, we make the following claim:
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Lemma A.3.1. For S = {0, 1}, I(Z, S) ≥ g(π,∆(b)), where g is an increasing non-negative

convex function and π = P (S = 1).

Proof. The proof is based on a result from [91] applied to a classifier cb that returns 1 if

and only b = 1: the demographic disparity of cb is exactly ∆(b) and thus, by Theorem 2.1

in [91], there exists a non-negative, convex and increasing function g such that

I(Z, S) ≥ g(π,∆(b)). (A.12)
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Appendix B: Proofs of Results in Learning Smooth and Fair

Representations

B.1 Proof of Theorem 1

The proof of Theorem 1 uses the following lemma (from [36]) that links the demographic

parity of a test function f and its balanced error rate BER(f),

BER(f, F ) = P (f(Z) = 1|S = 0) + P (f(Z) = 0|S = 1)
2 , (B.1)

where we make the dependence on the representation mapping F explicit in BER(f, F ).

Lemma B.1.1. [36] A representation space (Z, µF ) satisfies an ∆∗(F )− demographic parity

certificate if and only if

BER∗() , min
f :Z→{0,1}

BER(f, F ) ≥ 1−∆
2 . (B.2)

Therefore, a representation space (Z, µF ) can be stamped with a ∆∗(F )− demographic parity

certificate with ∆∗(F ) ≡ 1− 2BER∗(F ).

To prove the result in Theorem 1, we consider a deterministic transformation F .

Lemma B.1.2. Suppose that F is a deterministic mapping from X to Z. Denote K the

size of F (X ) with K ≤ ∞. Then, for all distribution µx over the features X such that for

all z ∈ F (X ), P (F (X) = z) > 0, Iχ2(X,Z) = K − 1.

Proof. First, since F is a function, P (Z = z|X = x) is equal to one if and only if F (x) = z.
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Therefore,

Iχ2(X,Z) = Ex

(
1− 1

P (Z = F (x)

)2
P (Z = F (x))

= Ex

[ 1
P (Z = F (x)

]
− 1

=
∑

z∈F (X )

[
P (X,F (X) = z)

P (Z = z)

]
− 1

= K − 1

(B.3)

Now for a given distribution µx over X and a given transformation F , there are two

cases: Iχ2(X,Z) =∞ and Iχ2(X,Z) <∞. Let denote Iχ2(X,Z) by Iχ2 .

B.1.1 Case Iχ2 <∞

By lemma B.1.2, F (X ) is finite and F (X ) = {z1, z2, ..., zK}, with K ≤ ∞ and zk 6= zk′ for

k 6= k
′ .

For each k ∈ {1, ...,K}, we choose one xk ∈ X such that F (xk) = zk. We parametrize a

family of joint distributions µ(b) over [0, 1] × {0, 1} as follows: X is uniformly distributed

over {x1, ..., xK}; and, for b ∈ (0, 1), the sensitive attribute is given by kth binary expansion

of b, where X = xk. By Lemma B.1.2, the χ2 squared mutual information between X and

F (X) is the same for any b and equal to K − 1. Moreover, since the sensitive attribute is

a function of F (X), ∆∗b(F ) = 1, where the subscript indicates that demographic parity is

computed using the joint distribution µ(b) over (Z, S).
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Let B denote a random variable uniformly distributed on [0, 1]. For any auditor fn,

sup
b∈[0,1]

EDn(b)BER(fn, F )
(a)
≥ EBEDn(B)BER(fn, F )

= EX,BP [fn((F (X),Dn(B)) 6=

S|F (X1), ..., F (Xn), S1, ...Sn, F (X)]

(b)
≥ 1

2P (∩ni=1[F (X) 6= F (Xi)])

(c)= 1
2

(
1− 1

K

)n
(d)= 1

2

(
1− 1

Iχ2(X,Z)

)n

(B.4)

where (a) uses that the suppremum is larger than the average; (b) that for Z /∈ {Z1, ..., Zn},

the sensitive attribute has a Bernouilli distribution with probability 1/2; (c) that X and

then Z is uniformly distributed; and, (d) that Iχ2(X,Z) ≤ K by Lemma B.1.2. Since

Iχ2(X,Z) is equal for all b, it follows from Lemma B.1.1 that

sup
b∈(0,1)

∆∗ −∆(fn, F ) ≥
(

1− 1
Iχ2(Z,X)

)n
. (B.5)

Note that µ does not depend on µx. Therefore, for all auditors fn,

sup
µ
EDn |∆∗ −∆(fn, F )| ≥

(
1− 1

Iχ2

)n
. (B.6)

B.1.2 Case Iχ2 =∞

By Lemma B.1.2, if for a distribution µ over X ×{0, 1}, Iχ2(Z,X) =∞, then there exists an

infinite countable set {ak} of X such that F takes a different value at each ak. We choose

137



X to take value in {ak}k≥1 such that P (ak) = pk for k ≥ 0 where the sequence {pk}∞k=1

will be chosen later on. As in the previous case, we parametrize a family of distributions

over X × {0, 1} by b ∈ (0, 1) such that for X ∈ {a1, ...}, the sensitive attribute S is the kth

term of b′s binary expansion, where X = ak. Because S is a deterministic function of X,

∆∗(F ) = 1.

Let B denote a random variable uniformly distributed on [0, 1]. For a sample point Xi,

we denote ki such that Xi = aki . For any auditor fn,

sup
b∈[0,1]

EDn(b)BER(fn, F )
(a)
≥ EBEDn(B)BER(fn, F )

= EX,BP [fn((F (X),Dn(B)) 6=

S|F (X1), ..., F (Xn), S1, ...Sn, F (X)]

(b)
≥ 1

2P (∩ni=1[k 6= ki])

(c)= 1
2

∞∑
k=1

pk(1− pk)n

(B.7)

It remains to show that for all ε > 0, we can choose {pk} such that the right hand side

of inequality (B.7) is at least 1/2(1 − ε). Let ε > 0. We choose pk as follows. First, pick

K > 1
1−(1−ε)1/n .Then, let pk = 1/K for 1 ≤ k ≤ K and pk = 0 elsewhere. It follows that

sup
b∈[0,1]

EDn(b)BER(fn, F ) ≥ 1
2

(
1− 1

K

)n
≥ 1

2(1− ε). (B.8)

Therefore, using Lemma B.1.1, we can conclude that for all ε > 0, there exists a distri-

bution over X × {0, 1} such that for all auditors fn

∆∗(F )−∆(fn, F ) ≥ 1− ε. (B.9)
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Therefore,

sup
µ

∆∗(F )−∆(fn, F ) ≥ 1 =
(

1− 1
Iχ2

)n
. (B.10)

B.1.3 Final Step

Therefore, by combining both cases Iχ2 <∞ and Iχ2 =∞, we have that for all distribution

µx over the features X ,

sup
µ

∆∗(F )−∆(fn, F ) ≥ 1 =
(

1− 1
Iχ2

)n
, (B.11)

which implies the result in theorem 1.

B.2 Proof of Corollary 1

Suppose that inf
fn∈Fn

sup
µ
EDn |∆∗ − ∆(fn, F )| ≤ εn for some εn > 0. Let fn ∈ Fn be the

auditor that reaches the minimum.

We have, for any distribution µ over X × {0, 1},

(
1− 1

Iχ2(Z,X)

)n
≤ sup

µ

(
1− 1

Iχ2(Z,X)

)n

(a)
≤ sup

µ
EDn |∆∗ −∆(fn, F )|

≤ εn,

(B.12)

where (a) uses Theorem 1. The result follows directly from equation (B.12).
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B.3 Examples of Representation Mappings without Finite

Sample Guarantees

Injective mappings. Suppose that F is injective from [0, 1]D to Rd.

Consider X distributed over the countable and infinite set {1, 1/2, ...1/k, ....} with pk =

κ/k2 and k−1 =
∑∞
k=1 1/k2. By lemma B.1.2, Iχ2(X,Z) = ∞ and thus, by Corollary 1,

there exists a distribution such that ∆∗(F )−∆(fn, F ) = 1 for all fn.

Large F (X ). Suppose that |{F (x)|x ∈ X}| ≥ n/(ln(n))α, for some α < 1.

By Lemma B.1.2, Iχ2(X,Z) ≥ n/(ln(n))α−1 and thus, by Corollary 1, if inf
fn∈Fn

sup
µ
EDn |∆∗(F )−

∆(fn, F )| = εn, then

n

(ln(n))α − 1 ≤ Iχ2(X,Z) ≤ 1

1− ε
1
n
n

(a)
≤ n

− ln(εn) ,

(B.13)

where (a) uses that e−x ≥ 1−x. Therefore, εn ≥ e−(ln(n))α = ω(n−s) for s > 0, since α < 1.

B.4 Proof of Theorem 2

The proof Theorem 2 relies on a upper bound of ∆∗(F ) − ∆(fn, F ) that uses the total

variation distance TV (µsF , µsn) between class conditional densities and their empirical coun-

terpart:

TV (µsF , µsn) =
∫
|µsF − µsn)|dz. (B.14)

Lemma B.4.1. Consider a sample {(zi, si)}ni=1 from a representation distribution µF in-

duced by a representation rule F . Suppose that µ0
n and µ1

n are empirical density estimators

of P (Z|S = 0) and P (Z|S = 1) respectively. Denote fn the following auditing plug-in
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decision: for z ∈ Z, fn(z) = 1 if and only if µ1
n(z) > µ0

n(z). Therefore, for all n

∆(fn, F ) ≤ ∆∗(F ) ≤ ∆(fn, F ) + 2
∑
i=0,1

TV (µiF , µin). (B.15)

Proof. Let f∗ denote the auditing rule that minimzes the balance error rate. Using [101]

(ch 2), we show that for any auditing rule fn

2−
∫
ηfn(z)(z)µF (dz) = 2−

∑
i=0,1

∫
fn(z)=i

ηi(z)µF (dz)

= 2−
∑
i=0,1

∫
fn(z)=i

P (z|S = i)dz

= 2BER(fn),

(B.16)

where ηi(z) is the balanced posteriori probability ηi(z) = P (S = i|Z = z)/P (S = i).

Moreover,

2BER(f∗) = 2− P (f∗(z) = 1|S = 1]

− P (f∗(z) = 0|S = 0)

= 2−
∫
z,µ1

F>µ
0
F

µ1
F (dz)−

∫
z,µ0

F>µ
1
F

µ0
F (dz)

= 2−
∫

max
i
ηi(z)µF (dz).

(B.17)

Let denote ηn,i the empirical estimate of ηi. Using equations (B.16) and (B.17), the proof

of lemma B.4.1 relies on the fact that
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BER(fn)−BER(f∗) =
∫

max
i
ηi(z)µF (dz)

−
∫
ηfn(z)(z)µF (dz)

=
∫

(max
i
ηi(z)−max

i
ηn,i(z))µF (dz)

+
∫

(ηn,fn(z)(z)− ηfn(z)(z))µF (dz)

(a)
≤
∑
i=0,1

∫
|ηi(z)− ηn,i(z)|µF (dz)

=
∑
i=0,1

∫
|µit(z)− µin(z)|dz,

(B.18)

The inequality (a) comes from the following observation. If the maxima are attained for

the same i ∈ {0, 1}, then the right hand side integrand is equal to 0. Otherwise, suppose

without loss of generality that max ηi(z) is reached for i = 0, then the right hand side

integrand is

η0(z)− ηn,1(z) + ηn,1(z)− η1(z) = η0(z)− ηn,0(z)

+ ηn,1(z)− η1(z)

+ ηn,0(z)− ηn,1(z)

≤ |η0(z)− ηn,0(z)|

+ |η1(z)− ηn,1(z)|,

(B.19)

where the inequality follows maxi ηn,i(z) = ηn,1(z). The same argument can be applied
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when max ηi(z) = η1(z). The result in lemma B.4.1 follows from (B.18).

The second part of the proof of theorem 2 is to show that the total variation distance

between µsn and µsF is O(1/√ns) for some empirical estimate of µsF :

Lemma B.4.2. Consider a representation mapping F : X → Z and its induced distribution

µF . Assume that I2(Z,X) <∞. Then, for s = 0, 1, define µsn as

µsn(z) = 1
ns

n∑
i=1,si=s

P (z|X = xi) (B.20)

The total variation between µst and µsn can be bounded as follows:

ED∼Xn [TV (µsF , µsn)] ≤
√
I2(Z,X)

ns
.

The upper bound of the total variation distance uses a Monte Carlo integration ar-

gument. For a sample Dn = {xi}ni=1, denote φ(z, xi) the probability P (Z = z|X = xi).

Therefore, µF (z) = Ex∼X [φ(z, x)] and if µsn is defined as in (B.20), µsF (z) = EX,S=s[µsn],

where X = {xi}ni=1 ∼ X n. Denote

Es(X) =
∫ ∣∣∣∣∣∣µF (z)− 1

ns

n∑
i=1,si=s

φ(z, xi)

∣∣∣∣∣∣ dz, (B.21)
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with ns = |{i|si = s}|. We have

EX[Es(X)]
(a)
≤ EX

√∫ (µF (z)− µsn(z)
µF (z)

)2
µF (z)dz


(b)= 1

ns
EX

√√√√∫ n∑
i=1,si=s

(
µF (z)− φ(z, xi)

µF (z)

)2
µF (z)dz



(c)
≤ 1
ns

√√√√√EX

∫ n∑
i=1,si=s

(
µF (z)− φ(z, xi)

µF (z)

)2
µF (z)dz



(d)= 1
ns

√√√√ n∑
i=1,si=s

EX

[∫ (
µF (z)− φ(z, xi)

µF (z)

)2
µF (z)dz

]

(e)=
√
I2(Z,X)

ns
,

(B.22)

where (a) applies Cauchy-Schwarz inequality; (b) uses the fact that the samples are inde-

pendently drawn and that Exi [φ(z, xi)] = µF (z); (c) that the squared-root is concave; (d)

that expectation and integral can be interchange; and, (e) the definition of the chi-squared

mutual information between Z and X.

Putting lemma B.4.1 and B.4.2 together, we get the upper bound in theorem 2.

B.5 χ2 versus Classic Mutual Information

Features are uniformly distributed over [0, 1] and F (x) = i for x ∈ [1/(i + 1), 1/i)) and

i > 0. For each i > 0, the sensitive attribute is constant over [1/(i+ 1), 1/i)) and equal to

1 with probability 1/2.

Form Lemma B.1.2, it is clear that Iχ2(X,Z) = ∞. On the other hand, we can show

that the classic mutual information between X and Z, ISh(X,Z) is bounded. Since F is
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deterministic,

ISh(X,Z) =
∞∑
i=1

ln(i(i+ 1))
i(i+ 1)

≤ ln(2)
2 +

∫ ∞
1

ln(x(x+ 1))
x2 dx

(a)= ln(2)
2 + 1 +

∫ ∞
1

1
x(x+ 1)dx

(b)
≤ ln(2)

2 + 2 <∞,

(B.23)

where (a) and (b) use integration by part and (b) the fact that 1/x ≥ 1/(x+ 1).

B.6 Proof of Theorem 3

We only prove the upper bound on the χ2 mutual information since the remaining results

in Theorem 3 follow directly from Theorem 2.

Since the mapping (p, q)→ q(p/q − 1)2 is convex and since Z is an infinite mixtures of

Gaussians, we have that for x ∈ X

∫ (
µt∗σ(z|X = x)

µt∗σ(z) − 1
)2
µt∗σ(z)dz

≤
∫ ∫ (

µt∗σ(z|X = x)
µt∗σ(z|X = x′) − 1

)2
µt∗σ(z|X = x

′)dzµ(dx′)

,
(a)=
∫
χ2(z|X = x)||z|X = x

′)µ(dx′),

(B.24)

where we use Fubini Theorem to invert the summation over z and x
′ and (a) uses the

definition of the χ2 divergence between p(z|X = x) and p(z|X = x
′ . Since both p(z|X = x)

and p(z|X = x
′ are Gaussians with variance σ2 and mean F (x) and F (x′), respectively, the
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integrand in the right hand side of (B.24) can be computed analytically as

χ2(z|X = x)||z|X = x
′) =

1
2

[
exp

(
||F (x)− F (x′)||2

σ2

)
− 1

]
.

(B.25)

Therefore,

Iχ2(X,Z) ≤ 1
2Ex,x

′

[
exp

(
||F (x)− F (x′)||22

σ2

)]

≤ 1
2 exp

(
2||F ||2∞
σ2

)
.

(B.26)

B.7 Proof of Theorem 4

By [102], we know that the balanced error rate of the optimal auditor f∗ is given by

BER(f∗) = 1
2

∫
min(η(z, 0), η(z, 1))µt∗σ(dz)

= 1
4

∫
(η(z, 0) + η(z, 1))µt∗σ(dz)

− 1
4

∫
|η(z, 0)− η(z, 1)|µt∗σ(dz)

(a)= 1
2 −

1
4

∫
|η(z, 0)− η(z, 1)|µt∗σ(dz),

(B.27)

where (a) uses the definition of η(z, s) = P (Z = z|S = s)/P (z). Therefore, by Lemma

B.1.1,

LDP (µt,σ) = 1
2

∫
|µ0
t,σ(z)− µ1

t,σ(z)|dz (B.28)
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and that

LDP (µn,σ) = 1
2

∫
|µ0
n,σ(z)− µ1

n,σ(z)|dz. (B.29)

Therefore, for any F and any features distribution µ over the features X ,

|LDP (µn,σ)− LDP (µt,σ)|
(a)
≤
∫
|(µ0

t,σ(z)− µ1
t,σ(z))

−(µ0
n,σ(z)− µ1

n,σ(z))|dz

(b)
≤
∫
|(µ0

t,σ(z)− µ0
n,σ(z))|dz

+
∫
|(µ1

t,σ(z)− µ1
n,σ(z))|dz

(c)
≤ exp

(
||F ||2∞
σ2

)(√
1
n0

+
√

1
n1

)
,

(B.30)

where (a) and (b) are consequences of triangular inequalities; and (c) follows from the

definition of total variation distance, the upper bound in lemma B.4.2 and theorem 3.

B.8 Monte Carlo Approximation

Lemma B.8.1. Let m > 0 and n > 0. Consider a sample {(xi, si)} and a noise vec-

tor {noiseji} of n ×m draws from a d-dimensional Gaussian N (0, σId). Denote µn,σ the

empirical density as in (B.20) and for i = 1, ..., n and j = 1, ...,m zij = F (xi) + noiseij. If

L̂DP (µn,σ) = 1
nm

n∑
i=1

m∑
j=1
|ηn(zij , 1)− ηn(zij , 0)| (B.31)
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then L̂DP (µn,σ) is an unbiased estimator of LDP (µn,σ) and

Enoise
[
(L̂DP (µn,σ)− LDP (µn,σ))2

]
≤ 8||F ||2∞ + 4σ2

σ2
1
nm

. (B.32)

Proof. First, L̂DP (µn,σ) is an unbiased estimator of LDP (µn,σ) because

Enoise
[
L̂DP

]
= 1
nm

n∑
i=1

m∑
j=1

Enoise[|ηn(zij , 1)− ηn(zij , 0)|]

= 1
nm

n∑
i=1

m∑
j=1
LDP (µn,σ)

= LDP (µn,σ).

(B.33)

Therefore, the mean squared error can be written as

Enoise
[
(L̂DP (µn,σ)− LDP (µn,σ))2

]

= 1
n2m

n∑
i=1

varnoise [k(xi + noise)] ,
(B.34)

where k(z) = |ηn(z, 1)− ηn(z, 0)|. Moreover, by Gaussian Poincare inequality,

varnoise [k(xi + noise)]
(a)
≤ σ2Enoise||∇k(xi + noise)||22

(b)= 2σ2∑
s

Enoise
[
||∇ log(µsn,σ(z, s))||22

] (B.35)

where (a) uses the fact that the noise is Gaussian with standard deviation σ; (b) that z =

xi +noise and that ∇ηn(z, s) = ηn(z, s)∇ log(µsn,σ(z, s)) + (1− ηn(z, s)∇ log(µsn,σ(z, 1− s)).

Moreover, for s = 0, 1

148



∇ log(µsn,σ(z, s)) (a)=
n∑
i=1
∇ log(φ(z, xi))P (X = xi|z)

= − 1
2σ2

n∑
i=1

(z − F (xi))P (X = xi|z),

(B.36)

where (a) denotes the Gaussian density with mean F (x) and standard deviation σ as φ(z, x).

Therefore,

||∇ log(µsn,σ(z, s))||2 ≤
||z||2 + ||F ||∞

σ2 . (B.37)

Moreover, z ∼ µn,σ, which is a mixture of n Gaussians, each with a non-central second

moment equal to σ2 + ||F (xi)||2. Therefore,

Enoise||z||22 ≤ σ2 + ||F ||2∞. (B.38)

By combining (B.35), (B.36) (B.37) and (B.38), we obtain that

varnoise [k(xi + noise)] ≤ 42||F ||2∞ + σ2

σ2 , (B.39)

and thus that

Enoise
[
(L̂DP (µn,σ)− LDP (µn,σ))2

]
≤ 42||F ||2∞ + σ2

σ2nm
. (B.40)
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Appendix C: Proofs of Results in Multi-Differential Fairness

for Black-Box Classifiers

C.1 Lemma 7.2.1

Proof. Denote 〈x, x′〉 the average inner product between x and x
′ :

〈x, x′〉 = E[xx′ ]. (C.1)

Observe that for two variable U, V ∈ {−1, 1}, Pr[V = U ] = 1+〈U,V 〉
2 .

Suppose that there exists c ∈ Cα such that for some y and s in {−1, 1},

LHS , P [c = 1, Y = y]
(
P [S = s|C = 1, Y = y]− 1

2

)
≥ γ. (C.2)

Without loss of generality, we can assume s = 1 (otherwise consider S′ = −S instead of S).

LHS = P [Y = y, S = 1, c = 1]− 1
2P [c = 1, Y = y]

= E

[1 + c

2
yY + 1

2
S + 1

2

]
− 1

2E
[1 + c

2
yY + 1

2

]

= 1
2E

[
S
Y y + 1

2
1 + c

2

]
.

(C.3)

Therefore, the left-hand side in Eq. (7.6) can be written 1
2

〈
c+1

2 , S 1+yY
2

〉
.

Moreover, 〈S, 1〉 = 〈S, c〉 = 2Pr[S = c] − 1 = 0, since Pr[S = s|x] = Prw[S 6= s|x].

Lastly,

〈yY, S〉 = 2E
[1 + yY S

2

]
− 1

2Pr[Y = yS]− 1.

(C.4)
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Therefore,

LHS = 1
4Pr[ySY = c] + 1

4Pr[Y = yS]− 1
4 (C.5)

The result from lemma 7.2.1 follows since ρ(y) = Pr[Y = yS].

C.2 Theorem 7.2.2

Proof. (i) ⇒ (ii). Denote (xi, si, yi) a sample from a balanced distribution D over X ×

S × {−1, 1}. Denote c∗ ∈ C such that Pr[c∗(xi) = yi] = maxc∈CPr[c(xi) = yi] = opt.

Construct a function f such that for (xi, si, yi), f(xi, si) = siyi. Therefore, f(xi)si = yi

and Pr[c∗ = sif(xi)] = Pr[c∗ = yi] = opt: by lemma 7.2.1, c∗ is a γ-unfairness certificate,

with γ = opt+ρ−1
4 and ρ = Pr[yi = 1]. By (i), the certifying algorithm outputs a (γ− ε/4)−

unfairness certificate c ∈ C with probability 1 − η and O(log(|C, log( 1
η ), 1

ε2 ) sample draws.

Hence, by lemma 7.2.1, Pr[c(xi) = yi] = Pr[c(xi) = f(xi)yi] = 4(γ− ε/4) + 1− ρ = opt− ε,

which concludes (i)⇒ (ii)

(ii) ⇒ (i). Suppose that f is a γ-unfair. Denote yi = f(xi, si). Samples {(xi, si), yi}

are drawn from a balanced distribution over X ×S ×{−1, 1}. By lemma 7.2.1, there exists

c ∈ C such that Pr[c(xi) = siyi] = 4γ + 1 − ρr, with r = ±. Assume, without loss of

generality r = +. Then, maxc′ Pr[c
′(xi) = siyi] ≥ 4γ + 1 − ρ+. By (ii), there exists an

algorithm that with probability 1−η and O(log(|C, log( 1
η ), 1

ε2 ) sample draws outputs c′′ ∈ C

such that Pr[c′′(xi) = siyi] ≥ maxc′ Pr[c
′(xi) = siyi] − ε/4. Therefore Pr[c′′(xi) = siyi] ≥

4(γ − ε) + 1 − ρ+. By lemma 7.2.1, c′′ is a (γ − ε)− unfairness certificate for f , which

concludes (ii)⇒ (i).
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C.3 Lemma 7.3.1

Let ε > 0. Let h ∈ H. For a re-weighting scheme u,

|Ru(h)−Rw(h)| =
∣∣∣∣∣
∫
X×{0,1}2

l ◦ h dP u −
∫
X×{0,1}2

l ◦ h dPw
∣∣∣∣∣

(a)=
∣∣∣∣∣
∫
X×{0,1}2

l ◦ h dπu1 −
∫
X×{0,1}2

l ◦ h dπ1

∣∣∣∣∣ ,
(C.6)

where (a) comes from the fact that πu−1 = 1 = π−1.

Then, if l ◦ h ∈ Gk, then l ◦ h/||l ◦ h||k ∈ G and (i) follows from the definition of IPMG .

Suppose now that l ◦ h is a bounded continuous function from X to R. Since k is

universal, Gk is dense in the space of bounded continuous functions and there exists g ∈ Gk

such that

||gl,ε − l ◦ h||∞ ≤
ε

2πm
, (C.7)

where πm = max{E[πu1 ], E[π1]}. Therefore, using (C.6), we have

|Ru(h)−Rw(h)| ≤
∣∣∣∣∣
∫
X×{0,1}2

g dπu1 −
∫
X×{0,1}2

g dπ1

∣∣∣∣∣
+
∣∣∣∣∣
∫
X×{0,1}2

(g − l ◦ h) dπu1 −
∫
X×{0,1}2

(g − l ◦ h) dπ1

∣∣∣∣∣
(a)
≤
∣∣∣∣∣
∫
X×{0,1}2

g dπu1 −
∫
X×{0,1}2

g dπ1

∣∣∣∣∣+ ε,

(C.8)

where (a) uses the definition of g. The result (ii) follows from the fact that g/||g||k ∈ G

and from the definition of IPMG .
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C.4 Theorem 7.3.2

To prove the result in Theorem 7.3.2, we first need a result from [104] (Corollary 2) to

bound the difference between the risk Ru(h) and Run(h) for a re-weighting scheme u and

reason about the generalization of . We restate the result as follows:

Theorem C.4.1 ([104]). Consider a sample Dn = {(xi, si, yi)}ni=1. Assume that u : X × S

is a re-weighting function. Assume that dH <∞ is the pseudo-dimension of {l ◦ h|h ∈ H}.

Then, for δ > 0, with probability 1− δ, for any h ∈ H, we have:

|Ru(h)−Run(h)| ≤ 25/4V (u)
(
dH log 2n

dH
+ log 8

δ

n

)3/8

, (C.9)

where

V (u) = max{
√
Eπu1 [u2(x)l2(h(x)),

√
Eπun,1 [u2(x)l2(h(x))}; (C.10)

.

We also need a result from [107] to bound the difference between the integral metric

probability IPMG and its empirical counterpart.

Theorem C.4.2. [107] Consider a sample Dn = {(xi, si, yi)}ni=1, with ns = |{i|si = s}|.

Assume that u : X × S is a re-weighting function. Assume that supg∈G |g(x))| ≤ ν and that

||k||∞ <∞. Then, for any δ > 0, with probability at least 1− δ

|IPMG(πu1 , π−1)− IPMG(πun,1, πn,−1)| ≤
√

18ν2 log 4
δ
||k||∞

(
1
√
n1

+ 1
√
n−1

)
, (C.11)

The result in Theorem 7.3.2 follows from results C.4.1 and C.4.2 by replacing δ by δ/2
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and observing that

|Rw(h)−Run(h)| ≤ |Rw(h)−Ru(h)|+ |Run(h)−Ru(h)|

(a)
≤ |Rw(h)−Ru(h)|+ ||l ◦ h||kIPMG(πu1 , π−1)

≤ |Rw(h)−Ru(h)|+ ||l ◦ h||kIPMG(πun,1, πn,−1)

+ ‖l ◦ h||k|IPMG(πu1 , π−1)− IPMG(πun,1, πn,−1)|.

(C.12)

where (a) uses Lemma 7.3.1.
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