
.DEYELOP A PUBLISH-AND-SUBSCRIBE SYSTEM FOR PUBLICIZING EARTH
SCIENCE INFORMATION AND SERVICES

by

Chunming Peng

A Thesis

Submitted to the

Graduate Faculty

of

George Mason University

in Partial Fulfillment of

The Requirements for the Degree

of

Master of Science

Earth Systems and Geoinformation Sciences

committee:?///e'~ /. p~~~~
./	 /

~;/' ~	 Dr. Wenli Yang,
Thesis Director !z .--","" ?:~ 7, ---;;;r

;L;~//"~---Y	 Dr. Ruixin Yang, .»: ,:;:.'

t:»	 Committee Member

Dr. Liping Di,
Committee Member

Dr. Peggy Agouris,
Department Chairperson

Dr. Richard Diecchio, Associate
Dean for Academic and Student
Affairs, College of Science

~/, /1/1 /
. ..j I L~ ~-L.c2~.-<..A...J- Dr. Vikas Chandhoke, Dean,

College of Science

Date: 07 27. ?-;lID	 Summer Semester 2010
George Mason University
Fairfax, VA

A Publish-and-Subscribe System for Publicizing Earth Science Information and Services

A thesis submitted in partial fulfillment of the requirements for the degree of Master of

Science at George Mason University

By

Chunming Peng

Bachelor of Engineering

Zhejiang University, 2008

Director: Wenli Yang, Assistant Professor

Department of Geography and Geoinformation Science

Summer Semester 2010

George Mason University

Fairfax, VA

Table of Contents

Table of Contents ... iii

List of Figures ...ii

List of Tables ... iii

1. Introduction ... 1

2. Literature Review ... 3

2.1 What is Web Syndication? ... 4

2.2 What is an information feed?... 5

2.3 Structuring the RSS and ATOM Feeds ... 8

2.4 RSS vs. ATOM ... 9

2.5 DataCasting Feed ... 10

2.6 ServiceCasting Feed ... 12

3. Data ... 15

4. Methods ... 18

4.1 Publish and Subscribe .. 18

4.2 Information Polling .. 20

4.3 Feed generator .. 21

4.4 Feed reader/aggregator ... 25

5. Results ... 28

5.1 Namespace Created .. 28

5.2 Sample ServiceCasting Feeds Created .. 29

5.3 Pub/Sub System Testing .. 30

6. Discussion ... 33

7. Conclusions and Future Work .. 35

List of Reference ... 38

ii

List of Figures

 Page

Figure 1 -- Creating a simple information feed using FeedForAll 6

Figure 2 -- Google Reader displaying subscribed feed.. 7

Figure 3 -- SOA VS. REST ... 14

Figure 4 – OGC WMS Demo from GeoBrain Web Site. .. 15

Figure 5 -- OGC WCS service hosted by GeoBrain. ... 16

Figure 6 -- Three Stages in Publish & Subscribe System. ... 19

Figure 7 -- A history record of the feed is kept by the feed reader. 21

Figure 8 -- Scenario for publishing DataCasting Feed. ... 22

Figure 9 -- Scenario for SAX method of producing feed. ... 24

Figure 10 -- Web blog made with PHP codes. ... 25

Figure 11 -- Overview of Aggregation initialization. .. 27

Figure 12 -- Overview of the Pub/Sub System... 30

Figure 13 -- GeoBrain Information feed. .. 31

Figure 14 -- GeoBrain feed displayed in RSSOwl. .. 32

iii

List of Tables

 Page

Table 1 - An example using ―georss:where‖ to specify locations....................................... 40

Table 2 - Elements in ―dcast‖ namespace... 40

Table 3 – Elements in ―scast‖ namespace .. 41

Table 4 -- An actual feature to be updated using GeoRSS GML. 41

Table 5 -- Another actual feature to be updated using GeoRSS GML. 42

Table 6 -- Created ServiceCasting Feed for GeoBrain WMS ... 44

Table 7 -- Created ServiceCasting Feed for DEM WCS. .. 45

Abstract

A Publish-and-Subscribe System for Publicizing Earth Science Information and Services

Chunming Peng, M.S.

George Mason University, 2010

Thesis Director: Dr. Wenli Yang

Dozens of terabytes of Earth observation data and their derived science products are

generated each day. For the tremendous and precious Earth science data and information

to be fully explored and utilized, it is required that advanced technologies be developed

and deployed for data providers to easily publish and deliver their products and data

consumers to easily find and obtain needed data, preferably in customized forms. The

purpose of this thesis research is to develop a service- and data-casting architecture for

publication and subscription of Earth science data, information, and services. The

architecture will not only enable generation of feeds for any updates and changes

occurring to Earth Science data and Web Services from a particular provider but also

allow aggregation of feeds from other data and service providers, thus significantly

enhancing the visibility of available data and services and easing the searching and access

of data. A prototypical system based on the architecture has been developed and deployed

to publish the data and services provided by GeoBrain, a distributed interoperable web-

based geospatial information system. The terms "serviceCasting" and "dataCasting" were

coined because of their similarities with the "Podcasting" concept; they all describe the

delivery of metadata over the Internet by information feeds based on Really Simple

Syndication (RSS) or ATOM standard. GeoBrain data and services are published via

ATOM feeds to the cloud and to be syndicated in the to-be-created geographic feed

reader. In order to satisfy the special needs of geographers, two namespaces and

additional elements are added to enhance geographic features descriptions. The

prototypical system demonstrates that syndication and aggregation of feeds can

decentralize the repository of earth science data and make information more discoverable

and accessible.

1

1. Introduction

Publish/Subscribe (or pub/sub) is a messaging paradigm where an application in an

integration architecture only sends messages to those applications interested in receiving

the messages without knowing the identities of the receivers (MSDN, 2008). With this

architecture being used for publicizing Earth Science data and services, users subscribe to

timely updates from favored websites – for example, NASA GOES data provider – and

later aggregate feeds from many sites into one place. Here a web feed is a data format

providing users with frequently updated content from a specific website. Among all

formats for feeds, Really Simple Syndication (RSS) and ATOM are two most common

syndication standards. The primary goal of this thesis is to investigate how pub/sub

system can help publicizing the Earth Science data and Web Services, thus facilitating

users’ accessing to and obtaining of customized data and information.

Among all concepts advocating geographical representation of feeds, two inspired this

study the most - ―DataCasting‖ and ―ServiceCasting‖. The former describes the delivery

of geographic data over the Internet using XML feeds (Bingham, 2009) while the latter

refers to the publication of Web services (for inquiring or retrieving geographic data)

through the network using RSS or ATOM feeds (Wilson, 2008). However, the standards

can only support dataCasting via RSS, or dataCasting via extended ATOM standard. In

this thesis research, we create a unique and complete Feed Publishing Standard that

2

satisfies all dataCasting and serviceCasting needs. We also enable and extend ATOM’s

geospatial capability by integrating the Atom publishing standard with GeoRSS tags to

describe a geographic feature with its shape, spatial co-ordinate values, and other

properties.

In order to achieve the primary research goal, three specific objectives need to be

accomplished. First, we have to establish a list of elements (under different namespaces)

with which dataCasting (see Appendix for Table 2) and serviceCasting feeds can be

denoted. Second, we need to create an application that can generate ATOM feeds for any

ingested data and services automatically, and a new type of feed reader which aggregates

the geographically tagged ATOM feeds. And thirdly, the feed publishing and aggregation

tools need to be test-run in order to prove operability of the pub/sub system. With this

system working properly from generating feeds, publishing feeds, aggregating feeds to

displaying feeds, we will then be able to introduce this server-side tool to other Earth

Science data and Web services providers. During this thesis research, a prototypical

system is developed to publish the data and Web service available from GeoBrain – an

open, web-based interoperable, distributed geospatial information system developed in

the Center for Spatial Information Science and Systems (CSISS), George Mason

University (Di et al., 2009; Han et al., 2008).

3

2. Literature Review

The World Wide Web (WWW) is rich soil for revolutions to take place. In the beginning,

there was e-mail. E-mail provides users an exciting new way to communicate with others,

and has become an absolutely necessary tool for people to interact at work. The next

revolutionary change the WWW represented was Web browsers. With Web sites and

browsers, the individuals and companies can put information on the Web for anyone to

see on demand, mostly for free. However, both of these technologies have their

weaknesses (Ayers & Watt, 2005). Indiscriminately e-mail systems suffer from

spamming, that nearly 85% of all the email in the world has once had a problem with

spam. And while surfing on the Internet is an incredible experience, the flooding of

information on the WWW requires users to spend quite some time searching for what

they want instead of having the data come to users. Syndication of feeds can be a good

remedy for the two problems. An information feed is the XML format metadata of web

contents updated regularly, widely used in Web logging and news sites to keep readers

informed of what has just happened. Some radio stations and other multi-media providers

took a step further to include a download URL in the published feed so that subscribers

can get to the viewing or downloading page by a single click when reading the feed. This

current trend is called ―Podcasting‖ (Ayers & Watt, 2005).

4

Compared to receiving frequently published advertisements via emails, web feeds ensure

users privacy, safety and convenience since users are not required of their email address

when subscribing to a feed and need not send an unsubscribe request in order to stop

news. One can stay informed easily by retrieving automatically sorted or filtered feed

items in their feed aggregators. From the data provider’s perspective, publishing feeds is

an effective way to publicize their products and attract potential customers.

The following literature reviews attempt to demonstrate the emergence of feeds, the

difference between RSS and ATOM feeds, the different designs of geographic extensions

used by dataCasting and serviceCasting, and the insufficiencies of these studies.

2.1 What is Web Syndication?

As a form of syndication in which Web content is made available to multiple other sites,

Web Syndication most commonly refers to making web feeds available from one site in

order to provide other people with a summary of the website’s recently added or changed

content. The syndicated content, or feed, can be anything from just headlines and links to

stories, to the entire content of the site with its layout stripped off. The technology to this

ranges from RDF or RSS 1.* branch, which includes RSS 0.90, RSS 1.0, and RSS 1.1, to

RSS 2.* branch including RSS 0.91 through RSS 0.94 and RSS 2.0.1, and all the way to

the ―well-formed‖ ATOM standards which covers ATOM 0.3 through ATOM 1.0

(Libby, 1999; RSS, 2008, 2009, 2010; Nottingham and Sayer, 2005; Gregorio and de

hOra, 2007). Web Syndication allows users to experience a site on multiple devices and

5

be notified of updates over a variety of services, ranging from a simple list of links sent

from site to site, to the complicated Semantic Web.

The advantage of receiving other websites’ feeds are obvious -- Web syndication is an

effective way of adding greater depth and immediacy of information to our own Web

pages, and thus attracting more users. But what about supplying feeds of your own? Ben

Hammerseley (2003) gives us at least eight reasons in his book ―Content Syndication

with RSS‖. Some of the reasons are listed below.

 It increases traffic to your site.

 It builds brand awareness for your site.

 It can help with search engine rankings.

 It improves the site/user relationship.

 It makes the Internet an altogether richer place pushing semantic technology

along.

Although the format of syndication feeds can be anything transportable over HTTP, such

as HTML or JavaScript, a more commonly adopted format is XML (eXtensible Markup

Language). Within the XML families of Web Syndication formats, RSS and ATOM

standards have the largest market shares nowadays. Some more details about these two

syndication formats are discussed in the following paragraphs.

2.2 What is an information feed?

6

According to RSS Specifications, RSS or ATOM, is ―a defined standard based on XML

with specific purpose of delivering updates to web-based content‖, which can be used by

webmasters to ―provide headlines and fresh content in a succinct manner‖. Thus,

consumers use feed readers or news aggregators to ―collect and monitor their favorite

feeds in one centralized program or location‖. The content consumers view in the feed

reader is known as information feed. There are three easy ways to create information

feeds for one’s website -- using desktop software, simple text editor, or online feed

creation tools. Figure 1 shows an extremely easy feed creation tool, FeedForAll, that

allows webmasters to create, edit and publish RSS or ATOM feeds.

Figure 1 -- Creating a simple information feed using FeedForAll .

7

After a feed has been created, the webmaster has to submit the feed to other major

websites such as Syndic8, Feedster, or professional websites. The webmaster is

responsible to provide a discovery-enabled portal for web page browsers to access the

feed URL, so that browsers can locate the URL address of the Web feed that they wish to

subscribe and add it to their subscription list of their feed reader.

Normally people view their subscribed feeds in three different places – desktop

aggregators, online feed readers (i.e. Google Reader) and web browsers such as Firefox

Mozilla. Figure 2 shows a Google Reader that displays multiple entries from a single feed

hosted by USGS Earthquake Center.

Figure 2 -- Google Reader displaying subscribed feed.

8

2.3 Structuring the RSS and ATOM Feeds

A simplest RSS feed consists of a channel, with its own attributes, an image, and a

number of items contained within the channel, each with their own individual attributes,

such as this:

 Channel (title, description, URL, creation date, etc.)

 Image (usually a RSS icon linking to the feed URL)

o Item (title, description, URL, etc.)

o Item (title, description, URL, etc.)

o Item (title, description, URL, etc.)

These items inside an RSS feed are just links to other resources, with customized

description associated with each item.

An ATOM feed has a similar XML-tree structure, except that ―channel‖ and ―item‖

elements are substituted by ―feed‖ and ―entry‖ elements. A simple ATOM feed looks like

this:

 Feed (title, subtitle, link, updated, etc.)

o Entry (title, summary, link, etc.)

o Entry (title, summary, link, etc.)

o Entry (title, summary, link, etc.)

Because of their similar structures when only the required elements are used, a basic

transformation between these kinds of RSS and ATOM feeds are easily realized.

However, with four major differences between RSS and ATOM – content model, date

9

format, internationalization, and modularity, RSS and ATOM feeds are in many cases not

convertible, especially when most of their optional elements are put to use.

2.4 RSS vs. ATOM

The result of the syndication standard battle between RSS 2.0 (RSS Advisory Board,

2009) and ATOM 1.0 (Nottingham and Sayre, 2005) is notoriously to tell. ATOM

advocates believe ―that RSS has limitations and flaws – such as lack of on-going

innovations and its necessity to remain backward compatible‖ (Wiki, 2008). On the other

hand, some insist that ―RSS outgrows its usefulness‖. Some popular applications

encourage people to share location information with each other, an increasing need there

exists to describe locations in an interoperable manner so that applications can request,

aggregate, and map geographically tagged feeds. Of which the two syndication standards

can be a better choice, in the sense of extending the existing feeds with geographic

information, remains an open debate.

Back in July, 2005, RSS 2.0 was widely deployed while ATOM 1.0 only by a few early

adopters. In January, 2006, ATOM 1.0 was widely supported in its basic forms though

many aggregators failed on feeds that did not conform to RSS standards closely. Four

months later, major consumer feed-reading applications supported ATOM 1.0 except

Bloglines. Another month passed, Bloglines rolled out its new ATOM 1.0 parser. By that

time, ATOM 1.0 finally won the ticket to battle with RSS 2.0 (ATOM Wiki, 2008).

ATOM 1.0 defines 21 elements, 9 missing from 30 elements defined by RSS 2.0. Those

missing elements are either never widely implemented in practice, or whose capabilities

10

are provided in other ways. For instance, ATOM 1.0 uses XML’s built-in ―xml:lang‖

attribute while RSS 2.0 has its own <language> element for identification of the language

used in feeds. Besides, RSS 2.0 has <enclosure> or <source> elements, which are

replaced by <link rel=‖enclosure‖> and <link rel=‖via‖> in ATOM 1.0 (ATOM Wiki,

2008). Speaking of ATOM’s extensible family of ―rel‖ values used after ―link‖ element,

Wilson (2008) took advantage of the extensibility and thus created different means of

interface for web services under namespace ―scast‖ (see Table 3 in Appendix).

The struggle between RSS and ATOM feeds has hindered the progress of an online

syndication standard (RSS specifications, 2010). While there are issues in dealing with

dual standards, this thesis explore the advantages of both syndication standards to better

serve the needs for Earth science data and service publications.

2.5 DataCasting Feed

According to Bingham et al. (2009), data providers such as NASA, are responsible for

collecting and publishing vast quantities of instrument data related to the state of the

Earth on a daily and real-time basis. This information is presented through the Internet in

various forms—eyewitness news reports, in situ measurements, scientific analysis

(created manually or automatically), photographs and web-cams, predictions and

forecasts, and personal blogs. Take the satellite data as an example. Satellites monitoring

the Earth collect vast quantities of data on a daily, often real-time basis, which would be

made available on the Internet by numerous data providers. Note that the NASA EOS

11

missions alone have collected over 4.3 petabytes (1 PB = 1,000 TB) of data to year 2008

(Bingham, et al., 2009). The use of feeds can save user’s trouble of checking on each

website to see whether a change has taken place since last visit, and of visiting numerous

data provider websites to cross-reference or supplement. Bingham et al. (2008) described

that DataCasting solution would empower Earth Science data consumers with the ability

to acquire data based on a pre-defined need. They took the concept of RSS feeds, for

delivering regularly changing web content, and extending this to represent a stream of

data granules and deliver regularly changing Earth Science data content. ―Datacasting‖

was coined in this paper (Bingham et al., 2009) because of its similarities with

―Podcasting‖ concept, whose mission was to add extensions to RSS usage that will then

enable data consumers to download data granules from Earth Science data providers as

soon as the data is made available.

Datacasting is built upon a subscribe-publish architecture, similar to ordinary RSS feeds,

where a data consumer subscribes to a HTTP-served XML (eXtensible Markup

Language) feed so that whenever a data provider broadcasts the availability of new data

files (i.e. data granules) via an XML feed (i.e. RSS) the data consumer can learn about

the recently updated products simultaneously. The authors then take a step further by

suggesting a solution for filtering on the metadata of a feed in order to identify granules

of interest based on user-defined criteria. In this way, the feed reader only needs to

initiate data pull for those metadata satisfying some criteria, which would save users from

reading all incoming feeds and directly lead their focus to the objects of interest.

12

Current commercial feeds, written with RSS or the ATOMPub standards, are not capable

of displaying temporal and spatial attributes of a certain geographic feature in the first

place. Without looking further into the text description or even linking to the original web

page, users cannot grasp where and when the geographic event is. The same thing is true

in searching and filtering feeds by the temporal and spatial parameters. Only when the

geographic feature is expressed by primary tags of a feed will it be convenient enough for

the feed reader to perform simple search on points, lines and polygons. Bingham et al.

(2009) created a namespace ―dcast‖ for dataCasting. Some elements associated with

namespace ―dcast‖ can be seen in the Appendix Table 2.

Also in Bingham et al. (2009) extensions from the GeoRSS namespace were used to add

specific geographic details to the Earth Science data. The ―georss:where‖ element is used

to describe the location of the bounding region of the data granule. This element can be

applied to arbitrary polygon-shaped regions as well as rectangles. An example using

―georss:where‖ can be seen in Table 1.

2.6 ServiceCasting Feed

The dataCasting architecture and scheme described in Bingham et al. (2009) seems

suitable to Earth science data’s subscribe-and-publish paradigm, the difficult in attaching

multiple enclosures and providing multiple service interfaces in RSS makes RSS a less

than desired option for serviceCasting.

13

By gathering serviceCasts from many other providers, in which links pointed to callable

interface (WSDL or WADL), server endpoint, and human-readable documents are

included, the Publish-and-Subscribe system is capable to offer users the routinely or

periodically updated advertisements that they desire to keep up with (Wilson, 2008).

Table 3 illustrates the diverse interfaces ATOM formats support under namespace ―scast‖

(for serviceCasting). While research and some degree of implementation have been

reported for dataCasting and serviceCasting, the operational deployment of such publish-

and-subscribe systems for both Earth science data and services are rare.

In this thesis research, we investigate the feasibility of defining geographic elements in

ATOM standard, and deploying the publish-and-subscribe system in an operational

geospatial information and service system, namely the Geobrain system.

2.7 From SOA to ROA

Service Orientated Architecture (SOA) is an architectural style of providing processes as

services, which does not limit the use of verbs and nouns, or say, what you do and whom

you do it to. On the other hand, Representational State Transfer (REST) defines a

uniform interface and hence limits the use of verbs, so that one can only use POST, GET,

PUT and DELETE with REST.

In principle, REST is often more about nouns since it limits the number of verbs, whereas

SOA is equally about verbs and nouns. And the Pub/Sub system is a different type of

SOA, called Resource Oriented Architecture (ROA), which uses a REST approach. The

relationship between these three can be seen in Figure 3.

14

Figure 3 -- SOA VS. REST

How do we know that Pub/Sub is not just SOA? That’s because, according to ATOM

Publishing Protocol, a feed publisher only uses POST, PUT, and DELETE commands to

manage entries in the feed. The command POST is for creating new entries, by sending

requests to the collection. The command PUT is to update existing entries, or to overwrite

the existing ones. And a publisher can use DELETE command to delete entries from the

collection. These three simple commands can be powerful tools to maintain a routinely or

periodically changed feed and to provide the public the most synchronous news. Hence,

we can tell that at least the ATOM Protocol is using a RESTful approach.

15

 3. Data

In order to test run the feed generator and the feed reader, two kinds of data are required

for basic input as we generate RSS and ATOM feeds for GeoBrain website – geographic

data (e.g. satellite data) and Web service interfaces. Since OGC WMS, WCS, and WFS

are widely used for retrieving Earth Science Data and information, they are also an

important test indicator in our research. In Figure 4 and 5, the demonstrations of WMS

and WCS Web services are provided by GeoBrain. Representing these OGC Web

services via ATOM feeds and later aggregate these feeds become the first goal of our

research.

Figure 4 – OGC WMS Demo from GeoBrain Web Site.

16

Figure 5 -- OGC WCS service hosted by GeoBrain.

In this thesis, the overall mechanism for implementing the architecture uses a message

format known as ATOM+GeoRSS, which extends the popular ATOM specification (for

encoding timely event information) to support simple geographic features with GeoRSS.

GeoRSS is a logical step forward with a few tags added to RSS that hold spatial data,

which may save a user much trouble if he/she is considering creating feeds for a weather

forecast (e.g. the temperature in Fairfax, VA will be 84 degrees with partly cloudy skies).

With GeoRSS, the user could include that temperature information and the coordinates of

Fairfax, VA in a standard form.

Nowadays, this combined feed content has been popularized by Google News and can be

easily overlaid on a map using Google Maps. There are two encodings of GeoRSS:

17

GeoRSS Simple and GeoRSS GML. Both encodings support the encoding of basic

geometries – point, line, polygons and box. It falls out of our expectation that GeoRSS

Simple geometries may only support one coordinate reference system – WGS-84

latitude/longitude in decimal degrees. In this case, GeoRSS GML is a better option since

it is a formal GML Application Profile, and allows the coordinate reference system to be

specified with any GML feature (see Table 4 and Table 5). Both formats are designed for

use with ATOM 1.0, RSS 2.0 and RSS 1.0 (OGC 08-001).

18

4. Methods

Aiming to install an operational publish-and-subscribe feed system on GeoBrain server,

we use a feed reader made up of Python scripts and a feed aggregator implemented by

Java codes. Details are listed below.

4.1 Publish and Subscribe

Franklin P. Jones once said, ―The trouble with being punctual is that there’s nobody there

to appreciate it.‖ The same situation comes to pulling feeds from the publisher’s

websites; there is always going to be a balance between the need to be up-to-date and the

need to refrain from the publisher’ server by requesting the feed every few seconds.

Hammersley (2003) mentioned in his book ―Content Syndication with RSS‖ that, there

were three stages of work for the whole publish and subscribe approach to take place.

Before anything happens, the user shall subscribe to a system that watches the feed

continuously. This system has been publishing notifications to all users when the feed

changes. The users are then able to update their copies of the feed, ordinarily by

requesting it from the server. So basically there are three characters to watch between the

scenes: the user, the feed, and the Publish and Subscribe system (better known as the

cloud).

19

The process of Publish and Subscribe within RSS 0.92 and 2.0 is comprised of several

steps as shown in Figure 6 (Hammersley, 2003). First, a message via XML-RPC, SOAP,

or HTTP-POST, is sent to the cloud from the user’s system to subscribe. Second, the

cloud returns true if the registration is successful; or else, the registration is failed. After

registration, the cloud will detect or be informed of a change in the feed at some time.

The cloud will send message to the user using the protocol requested, giving the URL of

the changed feed. In the fifth step, the user requests the freshly updated feed from its

server and does whatever can be done with feeds (i.e. to view the feed via feed reader, or

to update the relevant content in CSW).

Figure 6 -- Three Stages in Publish & Subscribe System.

An important feature of RSS 0.92 Publish and Subscribe system is that subscriptions

expire after 25 hours, forcing users to renew subscriptions on these feeds every day. This

weakness will not be seen in the operations of ATOM feeds. The RSS 0.92 Publish and

Subscribe system is just like other web services, except that the user’s system not only

20

passes a message and waits for a reply, but also continually listens for the cloud and/or

the server trying to talk to it.

4.2 Information Polling

How does a client application know when new data is available? It’s certainly possible

for a server to notify clients when new information is available, broadcasting it as an

event to any system that happens to be listening. But this event-driven approach does not

fit well with the HTTP Web, where clients initiate the communication and the server

providing data is relatively inactive until a client comes along. So the approach adopted

by the syndication clients is to determine periodically whether a particular information

source has changed.

It is easy to see the inefficiency of checking continuously onto a long list of feed

addresses, since the client would devote a lot of processor time and network bandwidth to

checking feeds that might only change once a week or even longer. And also, if a lot of

clients had their aggregators subscribed to a particular feed, then each of them would be

checking on a single Web address and the host of the feed would be under a barrage of

requests. So to avoid astronomical service bills for the server, or collapsing of the service

system under strain, aggregators generally pull the address of interest only occasionally.

There is a loose agreement among developers that the minimum time to wait between

requests is one hour. The aggregator or feed reader is responsible to keep track of the

time elapsed since it last looked at the feed. For example, suppose a feed was last

checked at 2:30 pm, and within the feed there were items A, B, C. Having the delay set to

21

be an hour, another HTTP Get request is sent to the feed’s host at 3:30 pm. Now the feed,

say, contains items B, C, D. Then what the users are viewing in feed readers would be

items A, B, C, and D for the last two hours (See Figure 7). Usually the aggregator will

record the contents of the feed, in other words its data model will have a state

corresponding to the XML feed polled last time (Hammersley, 2003).

Figure 7 -- A history record of the feed is kept by the feed reader.

4.3 Feed generator

The key of choosing the best practice for producing feed data is to go along with the

manner in which one is already managing the data. After all, the syndication with RSS or

ATOM feeds has its root in content management, and the technologies involved are

intimately related. DOM (Document Object Model) and SAX (Simple API for XML) are

two common approaches dealing with XML content. The former allows users to access

the information stored in the XML document as a hierarchical object model (or say,

interacting with all tree nodes) while the latter chooses to access XML document as a

sequence of events instead of creating an object model on top of all XML documents. In

22

this research, I experiment with two methods – one with DOM inclination (I) and the

other with SAX inclination (II). Overview of method (I) can be seen in Figure 8.

Figure 8 -- Scenario for publishing DataCasting Feed.

There are five major steps for method (I) – Data Ingest, MetaData Output, MetaData

Ingest, Feed Generator and Feed Publish. Step four, the Feed Generator, is the most

important of all since raw data contents are converted into RSS or ATOM standard XML

files via a Python script named PyATOM. It is a set of classes that automatically manage

the XML tree structure for the user. The top level of an ATOM feed is an XML ―Feed‖

23

element with a ―<feed>‖ tag; the Feed element has other elements nested inside it that

describe the feed, and then it has zero or more Entry elements, each of which has

elements that describe the entry.

To create an XML document with a feed in it, the user does this:

xmldoc = XMLDoc()

feed = Feed()

xmldoc.root_element = feed

To assign an entry to a feed, the user just does this:

feed.entries.append(entry)

This adds ―entry‖ to the internal list that keeps track of entries. ―entry‖ is now nested

inside ―feed‖, which is nested inside ―xmldoc‖. Later, when the user wants to save the

XML in a file, the user can just do this:

f = open(“ATOM.xml”,”w”)

s = str(xmldoc)

f.write(s)

To make the string from xmldoc, the XMLDoc class walks through the XML elements

nested inside xmldoc, asking each one to return its string. Each element that has other

elements nested inside does the same thing. The whole tree is recursively walked, and the

tags all return strings that are indented properly for their level in the tree.

Method (II) is to produce information feeds from a simple content management system

(CMS), whose data store will be a SQL database with management logic built in using

any programming language (see Figure 9 for its scenario). There are three primary

interfaces built in HTTP protocol, one for the system administrators, another for content

providers, and a third for the target audience. And here I use PHP (Hypertext

Preprocessor) as the CMS platform and embed these codes in HTML.

24

Figure 9 -- Scenario for SAX method of producing feed.

Basically a module in this CMS system can just run a few SQL queries and formats the

result into an HTML page. For instance, embedding the following codes:

$dispalyDate = convertDateW3CtoRFC2822($row[“date”]);

$content = $row[“content”];

$title = $row[“title”];

…

yields to a fashioned web blog (see Figure 10).

25

Figure 10 -- Web blog made with PHP codes.

4.4 Feed reader/aggregator

An ordinary feed reader or aggregator can be used in many ways. First, a user can

identify a feed of interest and enter the feed’s URL into the feed reader. The feed reader

then subscribes to the feed, stores its information and metadata on the local machine.

That accomplishes the initial downloads of the feed. Its second functionality is to

periodically update the feed with the remote server and show the user any newly updated

items. The frequency for re-downloads of the feed from any publisher is determined by

the feed reader, typically once every fifteen minutes. Sometimes the feed might not be

subjected to any changes in days, so users can customize the updating speed of this

specific feed in their feed reader, or to set the download mode to be automatic and

scalable. Now the user can subscribe to multiple feeds regardless of their providers or

26

sources, and will be notified of any new data products or Web services automatically,

thereby reducing users’ efforts of checking each provider websites individually for

updates. Third, a feed reader shall allow display, filtering, and other user actions to be

performed on the XML tags. Yet, commercial aggregator is not effective for feeds

carrying Earth Science data since traditionally only title, author, date and text

descriptions get to be loaded into a feed reader. In our aggregator, the parser application

recognizes geographic extended elements and extracts the coordinates for later displays

of the feed.

What’s worth mentioning here is the approach to fetch dataCasting or serviceCasting

feeds from provider websites. As we know, feed is published on the Web, and getting

hold of data from the Web is generally carried out by one operation – the HTTP GET

method. However, the requirements of XML being delivered over HTTP and the

additional demand made by subscribers when they poll servers for data make the simple

GET method complicated. We shall pay extra attention to syndication so as to ensure our

aggregators are on their best behavior in public. To become a reasonably client, we

perform conditional GET, which is to check if the subscribed feed has changed since the

last visit and quit with only the header downloaded when unchanged.

The aggregation starts with the HTTPConnector class – used to get feed data from the

Web (top-left of Figure 11). Then this general-purpose client is greeted by a more

syndication-oriented interface, FeedFetcher. Every individual feed will have its own

HTTPConnector, FeedFetcher, and an Interpreter. Their purpose is more to simplify the

communications rather than carry data themselves. After a new feed is fetched over, the

27

feed data is passed to its Interpreter instance which will parse or process the data. Then

the DownloadInterpreter continues to save the feed data as a file. The last step of this

cycle is to run refreshAll(), which will call every FeedFetcher instance in turn to ask them

to refresh themselves.

Figure 11 -- Overview of Aggregation initialization.

28

5. Results

5.1 Namespace Created

One of the primary motivations for defining an XML namespace is to avoid naming

conflicts when using or re-using multiple vocabularies. In order to distinguish between

duplicate element types and attribute names dataCasting and serviceCasting feeds/entries

might have, we create two namespace – ―dcast‖ and ―scast‖ declared as:

<feed xmlns= “http://www.w3.org/2005/ATOM”

xml:lang= “en”

xmlns:scast= “http://lester.arl.noaa.gov/2010v1/scast”

xmlns:dcast= “http://lester.arl.noaa.gov/2010v1/dcast”>

The URI references used here, as XML namespace names, are not guaranteed to point to

schemas, metadata of the namespace or anything else – they are just identifiers that we do

not have any reason to resolve them.

Traditional feed elements are far from enough in the sense of representing dataCasting

items. Subscribers may need to see the instrument or platform with which the data was

collected, or the start time and end time of the data acquisition. With the flexibility of

ATOM feeds, we expanded the list of elements for our dataCasting feeds (see Table 3).

Among all ―dcast‖ elements, only ―dcast:UID‖ is required for each feed since it is a

unique identifier used in forming directory name for data storage; others are only

optional.

29

Before we dive into the definition of ―scast‖, it is necessary to determine the types of web

services GeoBrain provides and the description languages of the corresponding web

services. Basically there are two main categories of Web Services – REST and SOAP.

Representational State Transfer or REST means that each URL represents some object

that one might get its contents using an HTTP GET, or use a POST, PUT or DELETE to

modify the object. On the other hand, SOAP (Simple Object Access Protocol) is a solid

solution in situations when data needs to be securely transferred that parameters cannot

be sent via URIs, or there are large amounts of data waiting for transfer that may even go

out of bound within a URI. Hence, the best practice of keeping applications simple and

accessible is to try REST first and resort to SOAP only when necessary. As a language

describing Web Services in conjunction with SOAP 1.1, HTTP POST and GET, and

MIME, WSDL (Web Services Description Language) 1.1 is a standard used by SOAP

applications since 2001. In the next few years, W3C issued WSDL 1.2, and 2.0 along

with the rise of RESTful web services. However, another specification fills this need in

an arguably better way: WADL (Web Application Description Language). Thus, we

define ―serviceProtocol‖ and ―interfaceDescription‖ elements under ―scast‖ namespace in

order to distinguish between SOAP/WSDL, REST/WADL and other web services (see

Table 3).

5.2 Sample ServiceCasting Feeds Created

30

In order to event-trigger the entire test process of the Pub/Sub system, we have to first

insert some metadata of the Web services that GeoBrain supports into the syndication

database ―syn_db‖. The two demonstrations for OGC WMS and WCS will be the first

two test cases. The new ingestion of these two groups of metadata triggers the feed

creation process, and the next step directly goes to the output of feed content (see

Appendix for Table 6 & 7).

5.3 Pub/Sub System Testing

Figure 12 -- Overview of the Pub/Sub System

31

The advantage of having the feed generator and the feed aggregator on the same server is

that feeds generated randomly from any web services or data provided on the server can

be ingested into the aggregator directly avoiding to be processed via the cloud. This

process can be a primary step in testing whether the feed generator and aggregator are

working stably and effectively. Only if the feed aggregator can read the newly-generated

feeds into fine formats will these two applications prove to be workable.

Now we have the information feed of GeoBrain websites ready (see figure below).

Figure 13 -- GeoBrain Information feed.

The final step is to subscribe to this feed and see if entries are displayed properly in the

aggregator. Here for the sake of visibility in graphic interface, I show the result via an

open-source desktop aggregator – RssOwl (see Figure 14).

32

Figure 14 -- GeoBrain feed displayed in RSSOwl.

33

6. Discussion

Today users and organizations are collaborating over the creation and on-going

maintenance of geospatial data sets and web services, so it is of critical importance for all

partners to be able to share geographic information in real time, and make the costs

associated with sharing negligible, both in labor and IT resources (OGC 08-001). Some

may say that this requirement can be approached from the database perspective,

collaborating organizations using database replication technology for their geographic

data sharing needs. Yet this strategy cannot work mostly because every organization

needs to work with a different information model.

The adoption of the Publish-and-Subscribe system will reduce many efforts a service

provider used to put on advertising its products, decentralize repository with auto

aggregation and enable auto-invocation with different typed links. The aggregation and

display of feeds are so simple, since there are already various free feed readers in the

market. The best part of this system is that user, service provider and broker are taking a

partial responsibility here. A service provider should provide feed for its newly updated

or changed web contents and place the feed in the cloud. A user should subscribe to a

feed via the feed reader at first, and then every time the feed reader is opened, the user

shall be able to see updated feed synchronously. The broker, or the cloud, is responsible

34

for notifying feed readers, which are listening the whole time, that there is a new feed

from their subscribed website.

Since there are currently no uniformed standards when publishing feeds for Earth Science

data and Web services, our own feed creation and aggregation system, which is able to

handle dataCasting and serviceCasting at the same time, based on GeoRSS extended

ATOM standards, will doubtlessly provide an easy way out for those feed publishers and

consumers who are troubled by how to represent and display Earth Science data and

services.

The proposed architecture follows the SOA model in a loosely coupled environment

(OGC 08-001). The service allows data/services providers to publicize changes to their

geographic databases in a machine-readable manner, enabling geo-synchronization

clients to automatically perform synchronization activities.

35

7. Conclusions and Future Work

In this thesis research, we investigated the syndication and aggregation of geospatial

metadata for Earth science data, information, and services and designed and developed a

publish-and-subscribe (syndication/aggregation) system in connection with the

operational Geobrain system. The publish-and-subscribe makes Web-accessible

geospatial data and the services be more easily discoverable, accessible, and usable by

increased user communities. The enhancement to the Geobrain system with the publish-

and-subscribe system takes advantages of both SOA (service oriented architecture) and

ROA (resource oriented architecture). The ATOMPub is places a RESTful protocol on

top of the usage of ATOM feeds. With this feed generator and aggregator deployed on

GeoBrain, users can subscribe to and receive updates from the GeoBrain system,

including both data/information products and Web services. The results from this thesis

research show that the publish-and-subscribe system is feasible in an operational

geospatial data, information, and service system. Some additional enhancements are

identified, among which two could be achieved in the near term. First, subscribing to

other sites’ information feeds can be a great way to synchronize our own data store with

the external sources yet some sites with no published feeds will be ignored. It might be

integrate the web scraping with the feed aggregation process so that our server can get the

newest updates from the web sites that do not actively push (i.e., feed) their contents.

36

Second, our feed aggregator is capable of consuming and parsing feeds and later

transforming them into HTML codes but we currently do not provide GUI (Graphic User

Interface) for public viewers. We will enhance our aggregator to provide more

visualization capabilities with GUI and to integrate the GUI with other Geobrain Web

service GUIs. Ultimately we will develop an online Earth science data/information

visualization and analysis system that will allow users to use the data and services hosted

by Geobrain but also by any other systems whose contents can be harvested by our

aggregator.

37

List of Reference

38

List of Reference

ATOM Wiki, (2008) ―ATOM 1.0 and RSS 2.0 Compared‖, http://intertwingly.net/,

(accessed on July 6, 2010)

Ayers, D., & Watt, A., (2005) ―Beginning RSS and ATOM Programming‖, Wiley

Publishing, Inc.

Bingham, A., et al., (2009) ―Earth Science Datacasting: Informed Pull and Information

Integration‖, IEEE Transactions on Geoscience and Remote Sensing, 47(10): 3570- 3580

Di, L., P. Zhao, W. Han, X. Li, M. Deng, 2009. The Implementation of Geospatial Web

Services and Workflows in GeoBrain. In Proceedings of 2009 IEEE International

Geoscience and Remote Sensing Symposium, July 12-17, 2009, Cape Town, South

Africa.(Extended abstract).

Gregorio, J., and de hOra, B, (2007) ―The Atom Publishing Protocol,

http://tools.ietf.org/html/rfc5023‖ (accessed on April 13, 2010)

Libby, D., 1999, RSS 0.91 Spec, revision 3,

http://web.archive.org/web/20001204093600/my.netscape.com/publish/formats/rss-spec-

0.91.html, (accessed on July 6, 2010)

Hammersley, B., (2003) ―Content Syndication with RSS‖, O’Reilly & Associates, 1- 15

Han, W. , L. Di, P. Zhao, Y. Wei, X. Li, 2008: Design and Implementation of GeoBrain

Online Analysis System (GeOnAS), In Proceedings of 8th International Symposium on

Web and Wireless Geographical Information System, Michela Bertolotto, Cyril Ray,

Xiang Li (Eds):Lecture Notes in Computer Science (LNCS), 5373, pp. 27-36.

MSDN, (2010) ―Messaging Patterns in Service Oriented Architecture‖,

http://msdn.microsoft.com/en-us/library/aa480027.aspx, (accessed on July 6, 2010)

Nottingham, M., and Sayer, R., (2005) ―The Atom Syndication Format,

http://tools.ietf.org/html/rfc4287‖, (accessed on April 13, 2010)

OGC 08-001, (2008) ―Loosely Coupled Synchronization of Geographic Database‖, Open

Geospatial Consortium, Inc.

http://intertwingly.net/
http://tools.ietf.org/html/rfc5023
http://web.archive.org/web/20001204093600/my.netscape.com/publish/formats/rss-spec-0.91.html
http://web.archive.org/web/20001204093600/my.netscape.com/publish/formats/rss-spec-0.91.html
http://msdn.microsoft.com/en-us/library/aa480027.aspx
http://tools.ietf.org/html/rfc4287

39

RFC 5023, (2007) ―The ATOM Publishing Protocol‖, http://tools.ietf.org/html/rfc5023,

(accessed on July 6, 2010)

RSS Specifications, (2010) ―RSS won the syndication standards battle‖, http://www.rss-

specifications.com/rss-won.htm, (accessed on April 13, 2010)

RSS-DEV Working Group, (2008) ―RDF Site Summary (RSS) 1.0‖,

http://web.resource.org/rss/1.0/spec, (accessed on July 6, 2010)

RSS Advisory Board, (2009) ―RSS 2.0 Specification‖, http://www.rssboard.org/rss-

specification, (accessed on May 12, 2010)

Wikipedia, (2010) ―Atom (standard)‖, http://en.wikipedia.org/wiki/Atom_(standard)

(accessed on April 13, 2010)

Wilson, B., (2008) ―Service Casting: A Proposal for Advertising Web Services‖,

http://esdswg.eosdis.nasa.gov/WG/TIppt/ESDSWG_M7S4_Service_Casting.ppt

(accessed on April 13, 2010).

http://tools.ietf.org/html/rfc5023
http://www.rss-specifications.com/rss-won.htm
http://www.rss-specifications.com/rss-won.htm
http://web.resource.org/rss/1.0/spec
http://www.rssboard.org/rss-specification
http://www.rssboard.org/rss-specification
http://en.wikipedia.org/wiki/Atom_(standard
http://esdswg.eosdis.nasa.gov/WG/TIppt/ESDSWG_M7S4_Service_Casting.ppt
http://esdswg.eosdis.nasa.gov/WG/TIppt/ESDSWG_M7S4_Service_Casting.ppt

40

Appendix

Table 1 - An example using “georss:where” to specify locations

<georss:where>

 <gml:Envelop>

 <gml:lowerCorner> 3.100000 6.900000</gml:lowerCorner>

 <gml:upperCorner> 63.100000 106.900000</gml:upperCorner>

 </gml:Envelop>

</georss:where>

Table 2 - Elements in “dcast” namespace

Element Description Example

dcast:UID A string which uniquely

identifies the data

stream and is used in

forming the data store

directory name.

< dcast:UID>AVHRR-night-airquality-4KM</
dcast:UID>

dcast:dataSource A string indicating the

name of the instrument

or platform, with which

the data was collected

and processed.

< dcast:dataSource >
AVHRR

</ dcast:dataSource>

dcast:fileName A filename the feed

reader will use when

downloading and saving

the enclosure.

< dcast:filename>foo-bar-20090801.nc

</ dcast:filename>

dcast:startTime Date and time of the

data granule collection
starts at the instrument.

< dcast:startTime>Tue, 20 Apr 2010 13:58:01
GMT</ dcast:startTime>

dcast:endTime Date and time of the

data granule collection

ends at the instrument.

< dcast:endTime>Tue, 20 Apr 2010 19:30:59
GMT</ dcast:endTime>

dcast:preview The URL of a

thumbnail image in

JPG, PNG or GIF

formats.

< dcast:preview>
http://geobrain.laits.gmu.edu/.../s0456789-
sst.jpg</ dcast:preview>

dcast:format The data file format in

ESML.
< dcast:format>HDF-EOS</ dcast:format>

dcast:analyst The email address of an

analyst who is capable

to add custom elements

to the feed.

< dcast:analyst>cpeng1@gmu.edu

</ dcast:analyst>

dcast:customEltDef Used to declare any

custom metadata items.
<dcast:customEltDef name=‖rainDepth‖
type=‖float‖ units=‖cm‖ />

mailto:cpeng1@gmu.edu

41

dcast:customElement Any tags associated

with a previously

declared datacasting

customEltDef above.

<dcast:customElement name=‖rainDepth‖

value= ―8.12‖ />

Table 3 – Elements in “scast” namespace

Element

usage

example

scast:InterfaceDescr

iption

The URL is pointing to
WSDL, WADL, or OGC
WXC GetCapabilities Call.

<link rel=
―scast:InterfaceDescription‖ href=
―http://phrase1/phrase2/phrase3‖ />

scast:ServiceEndpoi

nt

The URL is pointing to where
the service can be called.

<link rel= ―scast:ServiceEndpoint‖
href=

―http://phrase1/phrase2/phrase3‖ />

scast:ServiceDocu

mentation

The URL is pointing to the
human-readable
documentation

<link rel=
―scast:ServiceDocumentation‖
href=
―http://phrase1/phrase2/phrase3‖ />

scast:serviceSemant

ics

Possible service semantic
types – OGC.WXS, AdHoc,
Simple, Human, OpenSearch

<scast:serviceSemantics>
OGC.WMS
</scast:serviceSemantics>

scast:serviceProtoc

ol

Possible service protocols –
SOAP, HTTP, HTTPPOST,
REST, AJAX, etc.

< scast:serviceProtocol>
HTTP
</ scast:serviceProtocol>

Table 4 -- An actual feature to be updated using GeoRSS GML.

<georss:where>

 <gml:Point srsName="urn:ogc:def:crs:EPSG:6.11.2:4326">

 <gml:pos>43.928958 -78.933283</gml:pos>

 </gml:Point>

</georss:where>

<georss:featureOfInterest>

 <gml:FeatureCollection

 xmlns:gb="http://www.geobase.ca/interop-pilot-2007">

 <gml:boundedBy>

 <gml:boundedBy>

 <gml:Envelope

 srsName="urn:ogc:def:crs:EPSG:6.11.2:4326">

 <gml:lowerCorner>43.92566 -78.93541</gml:lowerCorner>

 <gml:upperCorner>43.92895 -78.93328</gml:upperCorner>

 </gml:Envelope>

 </gml:boundedBy>

42

 </gml:boundedBy>

 <gml:featureMember>

 <gb:RoadSegment>

 <gb:cgdiId>urn:uuid:cebc5f9b-8bcb-47d6-a51c-

0753d5170475</gb:cgdiId>

 <gb:planimetricDataAccuracy>0

 </gb:planimetricDataAccuracy>

 <gb:acquisitionTechnique>n.a.

 </gb:acquisitionTechnique>

 <gb:acquisitionProvider>n.a.</gb:acquisitionProvider>

 <gb:acquisitionOrRevisionDate>2007-11-06-05:00

 </gb:acquisitionOrRevisionDate>

 <gb:nationalRoadClass>Arterial</gb:nationalRoadClass>

 <gb:numberOfLanes>0</gb:numberOfLanes>

 <gb:pavementStatus>n.a.</gb:pavementStatus>

 <gb:pavedRoadSurfaceType>n.a.</gb:pavedRoadSurfaceType>

 <gb:unpavedRoadSurfaceType>n.a.</gb:unpavedRoadSurfaceType>

 <gb:roadSegmentID>cebc5f9b-8bcb-47d6-a51c-0753d5170475

 </gb:roadSegmentID>

 <gb:segment>

 <gml:LineString srsName="urn:x-

ogc:def:crs:EPSG:6.11.2:4326">

 <gml:posList>43.927222 -78.93475 43.928612 -78.935393

… etc …

 43.926257 -78.9333834 43.9259504 -78.9332889

 </gml:posList>

 </gml:LineString>

 </gb:segment>

 </gb:RoadSegment>

</gml:featureMember>

… etc …

 </gml:FeatureCollection>

</georss:featureOfInterest>

Table 5 -- Another actual feature to be updated using GeoRSS GML.
<georss:where>

 <gml:Point srsName="urn:ogc:def:crs:EPSG:6.11.2:4326">

 <gml:pos>50.74993437116105 -100.6120574479606</gml:pos>

 </gml:Point>

</georss:where>

<georss:featureOfInterest>

 <gml:FeatureCollection xmlns:wfs="http://www.opengis.net/wfs"

43

xmlns="urn:oasis:names:tc:emergency:cap:1.1"

xmlns:gml="http://www.opengis.net/gml">

<gml:boundedBy>

 <gml:Envelope srsName="urn:ogc:def:crs:EPSG:6.11.2:4326">

 <gml:lowerCorner>50.06164 -101.18588</gml:lowerCorner>

 <gml:upperCorner>51.01049 -99.71660</gml:upperCorner>

 </gml:Envelope>

</gml:boundedBy>

<gml:featureMember>

 <PlumeAffectedArea fid="PT1"> <id>1</id>

 <elapsedHours>1</elapsedHours>

 <areaAffected>

 <gml:Polygon srsName="urn:ogc:def:crs:EPSG:6.11.2:4326">

 <gml:exterior>

 <gml:LinearRing>

 <gml:posList> 50.73637 -100.796 50.79564 -100.726

50.80338 -100.656 50.79447 -100.610 50.77536 -100.572 50.74900 -100.549

50.71873 -100.542 50.68659 -100.555 50.66018 -100.586 50.64414 -100.632

50.64092 -100.683 50.65117 -100.733 50.67305 -100.772 50.70323 -100.794

50.73637 -100.796

 </gml:posList>

 </gml:LinearRing>

 </gml:exterior>

 </gml:Polygon>

 </areaAffected>

 </PlumeAffectedArea>

</gml:featureMember>

<gml:featureMember>

 <PlumeAffectedArea fid="PT2"> <id>2</id>

 <elapsedHours>2</elapsedHours>

 <areaAffected>

 <gml:Polygon srsName="urn:ogc:def:crs:EPSG:6.11.2:4326">

 <gml:exterior>

 <gml:LinearRing>

 <gml:posList> 50.78288 -100.803 50.84021 -100.716

50.84655 -100.696 50.85718 -100.623 50.85131 -100.549 50.82967 -100.482

50.79489 -100.431 50.75121 -100.402 50.70389 -100.399 50.67471 -100.410

50.64772 -100.430 50.62421 -100.459 50.60528 -100.495 50.59181 -100.537

50.58445 -100.582 50.58911 -100.674 50.60091 -100.717 50.61839 -100.755

50.64072 -100.787 50.66686 -100.810 50.69557 -100.823 50.72549 -100.827

50.75518 -100.820 50.78288 -100.803

 </gml:posList>

 </gml:LinearRing>

 </gml:exterior>

 </gml:Polygon>

 </areaAffected>

 </PlumeAffectedArea>

</gml:featureMember>

 </gml:FeatureCollection>

</georss:featureOfInterest>

44

Table 6 -- Created ServiceCasting Feed for GeoBrain WMS

<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/ATOM"
 xml:lang="en"
 xmlns:scast="http://lester.arl.noaa.gov/2010v1/scast">
 <title>WMS DEMO</title>
 <link rel="self" href="http://lester.arl.noaa.gov/WMS_DEMO.xml"/>
 <updated>2010-06-27T19:33:59.368863</updated>

 <author>
 <name>Chunming Peng</name>
 <email>cpeng1@gmu.edu</email>
 </author>
 <id>uri:http://laits.gmu.edu/cgi-bin/NWGISS/wms</id>

 <entry>

 <title>WMS DEMO</title>
 <id>uri:http://laits.gmu.edu/cgi-bin/NWGISS/wms</id>
 <updated>2010-06-22T19:33:59.368863</updated>
 <summary>Demonstrating how to launch OGC WMS Web service at GeoBrain.</summary>
 <scast:serviceSemantics>OGC.WMS</scast:serviceSemantics>
 <scast:serviceProtocol>HTTP</scast:serviceProtocol>

<category schema="scast" term="WMS DEMO" />

 <georss:where>
 <gml:Envelop>
 <gml:lowerCorner> -123.100000 37.990000</gml:lowerCorner>
 <gml:upperCorner> -120.100000 39.900000</gml:upperCorner>
 </gml:Envelop>
 </georss:where>
 <link type="application/xml"
 title="Server endpoint"

 href="http://laits.gmu.edu/cgi-bin/NWGISS/wms" />
 <link rel="scast:serviceInterface" type="application/xml"
 title="Service interface description"
 href="http://laits.gmu.edu/cgi-bin/NWGISS/wms?service=WMS&version=1.1.1
&request=GETCAPABILITIES" />
 <link rel="scast:serviceEndpoint" type="application/xml"
 title="Server endpoint"

 href="http://laits.gmu.edu/cgi-bin/NWGISS/wms" />
 <link rel="scast:serviceDocumentation" type="text/html" xml:lang="en-us"
 title="Service documentation"
 href="http://geobrain.laits.gmu.edu/products.htm" />
 <link rel="alternate" type="text/html" xml:lang="en-us"
 title="Service documentation"
 href="http://geobrain.laits.gmu.edu/products.htm" />

 <content type="xhtml">
 <div xmlns="http://www.w3.org/1999/xhtml">
 <p>

45

 Example Call (http://laits.gmu.edu/cgi-bin/NWGISS/wms)

 </p>
 <p>
<![CDATA[
http://laits.gmu.edu/cgi-bin/NWGISS/wms?service=WMS&version=1.1.1&request=getMap
&layers=%2Fexport%2Fhome2%2FNGA_DATA%2Fhdfeosdata%2F03sec%2FSRTM_u03
_n038w123%2FSRTM_u03_n038w123.hdf%3AGrid%3ALandset0%3ABandn0%3A1
&styles=linear%3ABlack-White&srs=EPSG%3A4326&bbox=-123.0004%2C37.9996%2C-
121.9996%2C39.0004&format=image%2Fgif&width=300&height=300&transparent=TRUE

]]>
 </p>
</div>
 </content>
 </entry>
</feed>

Table 7 -- Created ServiceCasting Feed for DEM WCS.

<?xml version="1.0" encoding="utf-8"?>

<feed xmlns="http://www.w3.org/2005/ATOM"
 xml:lang="en"
 xmlns:scast="http://lester.arl.noaa.gov/2010v1/scast ">
 <title>GeoBrain WCS for DEM</title>
 <link rel="self" href=" http://lester.arl.noaa.gov/DEM_WCS.xml "/>
 <updated>2010-04-01T16:25:16.368863</updated>
 <author>

 <name>Chunming Peng</name>
 <email>cpeng1@gmu.edu</email>
 </author>
 <id>uri:http://geobrain.laits.gmu.edu/cgi-bin/gbwcs-dem</id>

 <entry>
 <title>DEM WCS (SRTM 90m, SRTM 30m, GTOPO30arc)</title>
 <id>uri:http://geobrain.laits.gmu.edu/cgi-bin/gbwcs-dem</id>

 <updated>2010-04-01T16:50:50.368863</updated>
<summary>Get DEM data (SRTM 90m, SRTM 30m, GTOPO30arc) through OGC WCS

requests.
GetCapabilities, DescribeCoverage, GetCoverage

 </summary>
 <scast:serviceSemantics>OGC.WCS</scast:serviceSemantics>
 <scast:serviceProtocol>HTTP</scast:serviceProtocol>

<category schema="scast" term="DEM WCS" />
 <georss:where>
 <gml:Envelop>
 <gml:lowerCorner> -90.000000 38.000000</gml:lowerCorner>
 <gml:upperCorner> -89.000000 39.000000</gml:upperCorner>
 </gml:Envelop>
 </georss:where>

46

 <link type="application/xml"

 title="Server endpoint"
 href="http://geobrain.laits.gmu.edu/cgi-bin/gbwcs-
dem?service=wcs&version=1.0.0&request=describecoverage&coverage=SRTM_90m_Global,
SRTM_30m_USA,GTOPO_30arc_Global" />
 <link rel="scast:serviceInterface" type="application/xml"
 title="Service interface description"
 href="http://geobrain.laits.gmu.edu/cgi-bin/gbwcs-
dem?service=wcs&version=1.0.0&request=getcapabilities" />

 <link rel="scast:serviceEndpoint" type="application/xml"
 title="Server endpoint"
 href="http://geobrain.laits.gmu.edu/cgi-bin/gbwcs-
dem?service=wcs&version=1.0.0&request=getcoverage&coverage=SRTM_90m_Global
&bbox=-90,38,-89,39&crs=epsg:4326&format=GTiff&store=true" />
 <link rel="scast:serviceDocumentation" type="text/html" xml:lang="en-us"
 title="Service documentation"

 href="http://geobrain.laits.gmu.edu/products.htm" />
 <link rel="alternate" type="text/html" xml:lang="en-us"
 title="Service documentation"
 href="http://geobrain.laits.gmu.edu/products.htm" />
 <content type="xhtml">
 <div xmlns="http://www.w3.org/1999/xhtml">
 <p>

 Example Call (SRTM_90m)
 </p>
 <p>
<![CDATA[
http://geobrain.laits.gmu.edu/cgi-bin/gbwcs-
dem?service=wcs&version=1.0.0&request=getcoverage&coverage=SRTM_90m_Global
&bbox=-90,38,-89,39&crs=epsg:4326&format=GTiff&store=true
]]>

 </p>
</div>
 </content>
 </entry>
</feed>

47

CURRICULUM VITAE

Chunming Peng received her Bachelor of Engineering from Zhejiang University

(Hangzhou, China) in 2008. She is later enrolled into PhD program in Earth System and

Geographic Sciences and now expected to get her Master of Science (secondary degree)

in Geography and Geoinformation Science from George Mason University in Aug, 2010.

48

