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ABSTRACT 

USING APPROXIMATE DYNAMIC PROGRAMMING TO ADAPT A MILITARY 

FORCE MIX 

Jason Alan Southerland, Ph.D. 

George Mason University, 2017 

Dissertation Director: Dr. Andrew Loerch 

 

Adaptation, “the ability to bring about timely and effective adjustment or change in 

response to the surrounding environment” (Defense Science Board, 2010), is critical to 

maintaining system performance in dynamic environments. The global security 

environment is one such dynamic environment and military forces must adapt to the 

evolving global security environment to remain relevant. 

 Military force adaptation can occur at several levels. A few examples include: 

militaries may improve the performance of existing systems or acquire new systems; 

militaries may change the mix of personnel or equipment in the designs of particular unit 

types; or they may opt to change the overall mix of units within a military force. We 

focus on the latter: the mix of units within a military force. We refer to this mix as a force 

structure or force mix. Though others may refer to the mix of personnel and equipment in 
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a particular unit type as force structure (Loerch, 2007), for clarity we refer to this as unit 

design. 

 In the United States military, the Secretary of Defense publishes strategic 

guidance which is then enacted by multiple entities: per Title 10, United States Code 

(United States Government, 2016), the military departments prepare and provide forces 

to the Combatant Commands who execute military missions. In enacting the Secretary’s 

strategic guidance, there is a natural tension between meeting current and near-term 

mission requirements on one hand, and maintaining sufficient uncommitted forces to be 

able to respond to unforeseen crises, up to and including major contingencies. 

 As the dynamic security environment evolves, adversary capabilities improve. In 

response, strategic guidance may change, and in turn, Combatant Command mission 

requirements may increase or decrease. Despite these changes, the military departments 

must maintain their ability to provide relevant forces. One way to maintain this ability is 

to periodically review force structure in order to identify necessary changes in force mix. 

 Each year, the Department of the Army (hereafter referred to as the Army), 

conducts a comprehensive review of its force structure known as Total Army Analysis 

(United States Army, 1995). The goal of any TAA is to identify changes, within total 

personnel constraints mandated by Congress, to the existing force structure which 

maintain or improve the Army’s ability to meet Combatant Command mission 

requirements while maintaining the ability to respond to unforeseen crises.  

 Analyzing the Army’s force structure is no trivial task. In a typical TAA, the 

Army considers changes to the inventories of 150-200 unit types across three components 
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(Loerch, 2007). To manage this complexity, the Army divides its overall force structure 

into logical groupings of unit types, such as logistics or intelligence, and considers each 

logical grouping separately in what is known as a resourcing panel. Each resourcing 

panel is given guidance with respect to a total personnel change that panel must identify. 

The total of the guidance across the panels equates to the overall Congressionally-

authorized change in personnel from the existing personnel total. 

 In this article, we describe an approximate dynamic programming (ADP) 

methodology that can be applied to support resourcing panel deliberations. Our 

methodology identifies valuable force structure changes within given constraints by using 

a simulation that models the occurrence of military missions; readiness requirements; and 

the management of Army units to meet both mission and readiness requirements.  

 Our approximate dynamic program applies a diffusion wavelet transform (DWT) 

value function approximation (VFA). We provide computational results that demonstrate 

performance superior to the application of a myopic heuristic and we examine the effect 

of approximation size, a critical DWT parameter, on simulation outcomes. 
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CHAPTER ONE: INTRODUCTION 

1.1 Flexibility, Adaptability, and Robustness 
Robustness is the ability of a system to sustain key capabilities irrespective of the 

environment [Deshmukh et. al, 2010]. This definition has two key components—the first 

being the ability of a system to sustain key capabilities and the other being “irrespective 

of the environment.” An equivalent statement of the first portion of the definition of 

robustness would be “the ability of a system to operate as designed.” The second portion 

of the definition, “irrespective of environment,” implies designing a system to operate in 

many environments. Thus, if a system is operating as intended in one environment the 

system should still be able to perform as designed if the environment changes [Downey 

et. al, 2003].  

If designing a system for robust performance requires ensuring the system can 

perform in a variety of environments, the design process must determine how changes in 

the environment affect system performance. By identifying how changes in the 

environment affect system performance, system designers can build in hedges to 

environmental change and thus ensure continued system performance. Designing for 

robust system performance thus requires two things—planning for changes in the 

environment and hedging against those changes. These two considerations motivate two 

key aspects of system design, adaptability and flexibility. 
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Adaptability is “the ability to bring about timely and effective adjustment or 

change in response to the surrounding environment [Defense Science Board, 2010]. Thus, 

adaptation is about changing a system in order to ensure continued performance of that 

system. Enabling adaptation through system design entails anticipating the possibility 

that changing the system might be necessary and preparing for that change as conditions 

warrant [Defense Science Board, 2010].  

Roughly speaking, flexibility is the number of possible configurations of a system 

(adapted from [Gerwin, 1993]). In discussing adaptation, we highlighted the importance 

of change to maintain system performance. Flexibility, by providing a menu of possible 

changes to a system, enables response to changes in the environment. Thus, flexibility 

enables adaptation.  

In this research we examined the ability of a military force to simultaneously 

satisfy stochastic mission requirements and maintain prescribed readiness levels to 

respond to crises by altering the mix of units in its inventory. In other words, we 

examined the ability of the military force to adapt to some unknown, and possibly 

changing, future mission set by implementing changes to its configuration. To achieve 

this we leverage the state-based decision learning of approximate dynamic programming. 

1.2 Value Function Approximation with a Diffusion Wavelet Transform  
To solve the military force mix problem with approximate dynamic programming, 

we used a diffusion wavelet transform (DWT) value function approximation (VFA). 

Compared to other VFA approaches, there is relatively little research on the properties of 



3 

 

DWT. The parameters of a VFA influence two factors: approximation convergence and 

solution quality. 

Any number of VFA factors can influence convergence and solution quality, for 

example, length of exploration phase and method of exploration; alpha decay; and 

approximation method. One critical factor to DWT VFA, size of approximation, has not 

been researched with respect to convergence and solution quality. In this dissertation, we 

research the relationship between solution space size, approximation size, and the 

resultant approximation convergence and solution quality. 

1.3 Summary 
This research makes two contributions to the literature, one related to the 

application of our methodology to a challenging problem that receives little attention in 

the literature and the other related to the computational aspects of the solution. We 

developed a novel solution to the military force mix problem, and we investigated the 

relationship between solution space size and solution quality with application of the 

diffusion wavelet transform value function approximation. 

This dissertation has seven chapters. Chapter two describes defense planning and 

programming. In chapter three we review the military force structure and fleet planning 

literature. Chapter four reviews approximate dynamic programming. Chapter five defines 

our methodology and chapter six describes our experimentation. Chapter seven concludes 

this dissertation. 
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CHAPTER TWO: THE MILITARY FORCE MIX PROBLEM IN CONTEXT 

Determining the best mix of military forces is a complex problem whose solution 

must consider, among other things, a wide range of possible missions; fiscal and 

personnel availability constraints; and the time and resources necessary to prepare units 

to execute missions. In determining its force mix, the Army must decide how to manage 

the readiness of its units by determining the possible nature and timing of future 

contingencies. In other words, the Army must answer three key questions: “of what,” “for 

what,” and “for when” [Betts, 1995]. In this chapter, we discuss the laws defining roles 

and responsibilities of the Combatant Commands and the military departments, of which 

the Army is one; and how each plans for and executes those responsibilities. We 

conclude this chapter by discussing analyses of defense planning and their relation to our 

research. 

2.1 Title 10, United States Code: Roles and Responsibilities 
Title 10, United States Code [United States Government, 2012] establishes the 

laws of the United States concerning the performance of military mission. We summarize 

below the key organizations and the roles and responsibilities thereof that are relevant to 

our research. 

The President of the United States is responsible for establishing combatant 

commands, both unified and specified. Unified combatant commands are military 
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commands which have “broad, continuing missions and are composed of forces from two 

or more military departments.” These combatant commands are responsible for the 

performance of military missions (emphasis added).  

The secretaries of the military departments assign forces to the combatant 

commands to perform missions directed by the Secretary of Defense. The Secretary of 

Defense both directs the conduct of missions and approves the assignment of forces. 

More colloquially, the combatant commands first request forces, and the Secretary of 

Defense then directs the military departments to provide forces. The roles of the 

combatant commands as force requestors and mission performers and the role of the 

military departments as force providers are critical for our research. 

In order for the military departments to provide forces, they must carry out other 

responsibilities as prescribed in Title 10—organizing, equipping, and training forces 

among others. The Army in particular is responsible for “the preparation of land forces 

necessary for the effective prosecution of war except as otherwise assigned and…for the 

expansion of the peacetime components of the Army to meet the needs of war.” Thus, the 

Army organizes, trains, and equips forces in order to provide those forces to the 

combatant commands for the performance of military missions.  

2.2 Combatant Command Demand 
Combatant commanders use two processes for submission of requests for forces 

(RFFs)—annual RFFs and emergent RFFs [United States Army, 2011]. Annual RFFs are 

submitted once each year and include requirements for operations and other military 

activities the Combatant Commander plans to execute in the coming year. Emergent 
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RFFs are submitted outside of this annual process and are used to request forces for uses 

unanticipated during submission of annual RFFs. Combatant commanders submit 

emergent RFFs as needs arise.  

This request for forces process is not a rigid request-then-provide system. While 

the combatant commanders make requests for particular sorts of units, the military 

departments have a say in the types of units that they actually provide for use by the 

combatant commanders. The process contains a fair amount of flexibility in that the 

departments are able to recommend substitute unit types. Typically, the departments will 

recommend substitution based on a combination of factors, including availability of 

preferred units and the availability of suitable substitutes as measured by the ability of 

other units to perform the mission, and the degree of risk assumed by providing a 

potentially less capable unit type.  

For example, a combatant commander may request a brigade combat team for an 

area security task as part of a larger stabilization operation. The Army might recommend 

an artillery unit to perform this task based on non-availability of brigade combat teams 

and the assessment that the field artillery unit can perform the task with minimal risk to 

the overall mission.  

In addition to the RFF process, the Combatant Commands provide guidance to 

each military department, consolidated by the Secretary of Defense, to maintain a certain 

aggregate level of readiness within its forces. These readiness guidelines coupled with the 

forecast and emergent requests for forces represent aggregate demand for forces. 
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2.3 Army Force Structure and Unit Readiness 
In this section, we discuss the units the Army prepares for provision to the 

combatant commands and the process through which the Army manages the preparation 

those units.  

2.3.1 Force Structure 
Force structure can refer to entities at varying resolutions. At the lowest level, 

force structure refers to the detailed makeup of personnel and equipment within a specific 

type of military unit [Loerch, 2007]. These specific types of military units, also known 

identified by standard requirements codes (SRCs), are the building blocks of the more 

aggregated force structure. Title 10 defines forces structure as “the set of units and 

organizations that exist” [United States Government, 2012] within the Army. From the 

Army’s perspective, force structure is the portfolio of the various quantities of each SRC 

that exist within the Army. This portfolio details the units the Army prepares for 

provision to the combatant commands.  

The tasks for which various units of force structure are designed range along a 

spectrum of specificity from highly specific to highly general. Some unit types, chemical 

response teams, for example, are designed to perform highly specified tasks. Other units, 

brigade combat teams, for example, are designed to perform myriad tasks. Unit types 

designed to perform a wide range of tasks can be more flexibly employed than units 

designed to perform fewer tasks. 

2.3.2 Readiness and Deployment Management 
In the United States military, readiness is the ability of forces to fight and meet 

the demands of the national military strategy. Readiness is derived from unit readiness 
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and joint readiness. Unit readiness is the ability of military units to deliver the outputs for 

which they are designed [The Joint Staff, 2012c]. Unlike joint readiness, ensuring unit 

readiness is the responsibility of the military departments. 

Ensuring unit readiness entails preparing units for the missions they will perform 

under combatant command leadership. Preparing forces for the execution of military 

missions is a complex process of ensuring personnel and equipment are in the right place 

at the right time, and that a series of increasingly complex training exercises is 

successfully completed. The details of preparing units for mission execution are beyond 

the scope of this research. Some of the tasks required for this preparation are listed 

below.  

The Army has defined varying degrees of preparation, known as readiness levels. 

Each readiness level corresponds to the achievement of various milestones with respect to 

manning, equipping, and training units. In reality, readiness progresses over time through 

discrete levels. The graph of a unit’s readiness over time would resemble a step function. 

For our purposes, the readiness levels correspond roughly to the amount of time 

remaining until a unit is fully prepared for the mission assigned to it. At any given point 

in time, each unit in the Army has some level of readiness.  

2.3.2.1 Static Readiness Management 
In static readiness, units maintain a fixed level of readiness prior to preparations 

for deployment. This readiness model entails assessing two key variables—how long 

from mission notification will a unit take to be ready for mission execution; and to what 

extent should a unit prepare for a specific mission. In general, though there are 
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exceptions, units maintained at lower readiness take longer to prepare for mission 

execution with the ability to prepare for a broad set of missions upon notification while 

units maintained at higher readiness prepare faster for more specific missions.  

In a resource-unconstrained world, all units would maintain the highest level of 

readiness. In reality, maintaining a total force at highest readiness is prohibitively 

expensive [George, 1999]. Maintaining units at lower readiness is less expensive than 

maintaining units at higher readiness. Thus, in general, static readiness management 

entails determining which units would prepare for specific missions and be ready to 

respond quickly to those missions and which units would be maintained at lower 

readiness with the flexibility to prepare, on notification, for any of an assortment of 

missions. 

The following example demonstrates a static readiness management model— in 

response to fiscal pressures in the post-Cold War era, Senator John McCain proposed a 

readiness model known as “tiered readiness.” Under tiered readiness, forces would be 

maintained, statically, at one of three levels of readiness. The levels corresponded to how 

early in a major war-fight units would be required to perform missions— forward-

deployed and crisis response forces would respond earliest in campaigns; force buildup 

units would respond next; and conflict resolution forces would see campaigns through to 

their end [McCain, 1996].  

2.3.2.2 Progressive Readiness Management 
This discussion highlights two key variables that complicate the preparation of 

forces for mission execution—the nature of the missions for which the Army prepares 
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forces and the duration of those missions. Specifically, as relates to the nature of 

missions, suppose under the static model that units in high readiness prepared for a 

mission other than that for which it operated. That unit might still be able to deploy for 

this other mission, though in doing so, the combatant commander might inherit some risk 

associated with diminished proficiency. And as relates to mission duration, suppose the 

mission lasted longer than anticipated. As units spend more time deployed, their skills 

might atrophy, again saddling the combatant commander with unforeseen risk. 

Determining the nature and duration of potential missions is critically important, as the 

following example demonstrates. 

In 2004, the Army realized that its static readiness management model was not 

well suited to the continued provision of forces for operations in Iraq and Afghanistan. 

The Army had been operating in Afghanistan for three years and the nature of operations 

in Iraq had evolved from major combat operations to post-hostility stabilization 

operations. The Army had not prepared its force to execute post-hostility stabilization 

operations and the requirement to do so was taking longer than expected. Given these 

realities the Army needed to devise a readiness model that would allow it to prepare 

forces for a diverse collection of missions over a long period of time with the resources 

currently in its inventory. 

In response to this realization, the Army developed a readiness model known as 

Army Force Generation, or ARFORGEN [United States Army, 2011]. Rather than the 

static model through which the Army prepared units for specific missions, ARFORGEN, 

through a progressive readiness approach, provided the Army the flexibility to prepare 
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units for diverse missions as well as a mechanism for meeting the demands of sustained, 

long-duration operations. 

In this progressive readiness model, units progress through three phases, thus the 

name progressive readiness. These phases— reset, train/ready, and available, correspond 

to varying levels of readiness, in increasing order. A broad overview of the ARFORGEN 

model is provided below.  

In this model, units train during the train/ready phase initially on a broad range of 

general skills. At some point during the train/ready phase, typically not to exceed 90 days 

prior to entering the available phase, a unit will either receive a specific mission and be 

designated as a deployment expeditionary force (DEF) or will be designated as a 

contingency expeditionary force (CEF). In either case, after this designation, units then 

prepare for their assigned or contingency mission. Note here that preparing for this 

mission requires more specific training than the general training during the early portions 

of the train/ready phase. This process enables the Army to prepare units first for a broad 

range of potential missions, then to focus unit training on specific missions as their 

scheduled deployment (in the case of DEF units) or entry into the available pool (in the 

case of CEF units) approaches. In the event that demand for forces exceeds the number of 

units in the available phase of their cycle, the Army can deploy units in their train/ready 

phase. 
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Figure 1: Army Force Generation Model [United States Army, 2011] 

 

This ability to deploy units in their train/ready phase provides the Army with 

flexibility to meet unforeseen or, to use the language of combatant command requests for 

forces, emergent requirements. Another key flexibility under ARFORGEN is the periodic 

review of deployment lengths. The Army has, in the past, changed its maximum 

deployment length to meet forecasted requests for forces (see, for example, [McIlvaine, 

2012]). This ability to review deployment policy helps ensure the Army is able to 
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continue to meet its Title 10 responsibilities as a preparer of forces within the force 

structure at its disposal. 

2.4 From Strategy to Resources: Defense Planning and Programming 
The system through which the Department of Defense determines how to allocate 

its finite resources is known as the Defense Planning, Programming, Budgeting, and 

Execution System (PPBES). Each component of PPBES encompasses a different time 

horizon, from the present to some point in the future, in decreasing order of duration. 

That is, planning includes deliberation from the present further into the future than 

programming, programming considers further out than budgeting, and so on. Budgeting 

and execution only concern decisions in the short term. We will not discuss budgeting 

and execution further.  

 

 
Figure 2: Components of Planning, Programming, and Budgeting [United States Army Force Management 

School, 2010] 
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2.4.1 Planning 
The Department of Defense (DOD) conducts strategic planning to examine the 

military posture as it relates to national security objectives and resource constraints 

[United States Army, 1994]. DOD uses strategic planning to develop the National 

Military Strategy and determines the resources required to execute that strategy. Defense 

strategic planning produces many documents which serve the purpose of advising DOD 

senior leadership and providing direction to the services for planning.  

One of the many documents DOD produces during its strategic planning efforts is 

the Defense Planning Guidance (DPG). The DPG is the primary means of providing 

planning direction to the services. The DPG presents the Secretary of Defense’s plan for 

developing and employing future forces and reflects long-range plans and priorities for 

the Department of Defense [United States Army, 1994]. 

2.4.2 Programming 
Every year, each military department submits to the Office of the Secretary of 

Defense (OSD) a program objective memorandum (POM), also known as a program. 

OSD then reviews these inputs, directs changes to the departments, and submits a final 

DOD program to the Congress.  

The program translates planning decisions, programming guidance, and 

congressional guidance into a comprehensive allocation of forces, manpower, and funds 

[United States Army, 1994]. This program submission contains a proposed resource 

allocation for the next year, known as a budget estimate, and the four subsequent years. 
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Note here that the program contains a proposed allocation of forces. We discuss in the 

next section the analytical construct, known as an integrated security construct, used to 

determine this allocation of forces. 

2.4.3 Bridging the Gap from Planning to Programming: The Integrated 
Security Construct 

During the planning phase, based on the defense strategy and other senior leader 

priorities, planners and analysts develop a collection of scenarios, each of which 

represents a likely or significant challenge the military might face in the future. Examples 

of scenarios include—a major stabilization operation; extending support to civil 

authorities in response to a catastrophic event in the United States; and deterring and 

defeating regional aggressors [Department of Defense, 2010]. Typically, the resources 

required to succeed in a scenario and the duration of those resource requirements are 

determined during scenario development and carried forward as static inputs for follow-

on analyses. These scenarios provide the foundation for analysis during the programming 

phase. 

In older planning efforts planners would typically only develop scenarios to 

analyze major combat operations. The implicit assumption in this approach was the belief 

that if the military could meet the requirements of a collection of major regional conflicts, 

the ability to succeed in other operations was “lesser-included.” With the end of the Cold 

War and the necessary evolution in defense planning post-Cold War, the “lesser 

included” assumption was subjected to scrutiny and abandoned for the purposes of 

defense planning. Thus, post-Cold war defense planning began to include detailed 
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analysis of operations other than major regional conflicts or major combat operations 

[DuBois, 1999]. 

The current paradigm for identifying scenarios for defense planning is the 

spectrum of conflict. The spectrum of conflict characterizes military conflict based on an 

ascending scale of violence in which military forces operate, from stable peace on one 

end to general war on the other [United States Army, 2011]. In any point along the 

spectrum of conflict, military forces conduct operations to reduce violence and establish 

conditions that advance national strategic goals [United States Army, 2011]. 

A useful refinement of the spectrum of conflict, operational themes, describes the 

nature of the dominant type of operations military forces conduct to reduce violence and 

achieve national strategic objectives [United States Army 2011]. For defense planning 

purposes, operational themes help define the types of operations that are considered for 

scenario analysis. Some types of operations and their associated operational themes are 

detailed below. 

 

 
Figure 3: Operational themes and associated types of operations [United States Army, 2011] 
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The current approach to scenario planning is the integrated security construct 

(ISC). An ISC is a combination of scenarios that represents one potential collection of 

future challenges, arrayed over a prescribed period of time in the future. An ISC 

essentially selects some number of individual scenarios and places those scenarios in 

some order of occurrence. Since the resources required for any scenario and the duration 

of each scenario is a pre-determined input, constructing an ISC provides planners and 

analysts a time series of resource requirements for further analysis. A notional ISC is 

depicted below. 

 

 
Figure 4: A notional Integrated Security Construct. Adapted from [Stoddard et. al., 2011] 

 

2.5 Total Army Analysis (TAA) 
Total Army Analysis is the Army’s analytical venue for determining its force 

structure. The objective of TAA is to determine and justify a program force structure 

consistent with Defense Planning Guidance and other Army plans [United States Army, 
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1995]. While force structure is but part of the entire Army program, determining the 

program force structure is of critical importance for other elements of the program such 

as personnel and equipment decisions. 

TAA includes activities spanning the spectrum from planning to programming. 

Many of the analyses conducted by the Army during the planning phase of TAA inform 

other DOD efforts, particularly the campaign analyses (of which, more later), which often 

form the basis for Army requirements in DOD planning documents. 

2.5.1 TAA Planning: Determining Force Structure Requirements 
Army analysts determine force structure requirements in one of two ways—by 

direct simulation or by use of allocation rules [Loerch, 2007]. In some cases, the numbers 

of large combat forces, such as brigade combat teams, required for a given mission are 

specified by the Department of Defense outside the scope of TAA. In these cases, the 

Army will still conduct direct simulation to inform the analysis of forces determined 

through allocation rules. 

Given the large number of types of units, analysts use direct simulation to 

determine requirements for only a limited subset of unit types. These directly determined 

unit types are typically combat forces, such as brigade combat teams. The remainder of 

unit types are then determined via allocation rules, which we discuss in more detail later. 

Direct simulation takes on one of two forms—subject matter expert-informed, 

tabletop exercises; and computational, theater combat modeling. The form of simulation 

is a function of the availability of higher resolution computer models. In general, 

computer simulation models are only available for high intensity conflict and in recent 
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years, for stability operations. In either case, analysts iterate through numerous instances 

of the simulation until they determine a combat force that can achieve specified 

objectives and within specified parameters such as timelines and casualty thresholds. 

During the conduct of these simulations, analysts ensure that results used to 

inform allocation rules are recorded. These results include, but are not limited to, 

ammunition expenditure, geographic areas of responsibility, combat organization, and 

casualties [Crain, 2007].  

Forces not determined through direct combat simulation are determined using 

rules of allocation, of which there are two types—existence rules and workload rules. 

Existence rules specify that for every unit of type X in existence, some number of units of 

type Y are required. Workload rules specify requirements such as the ratio of units 

required to handle various volumes of ammunition expenditure [Loerch, 2007]. 

Taken together, the forces determined through direct combat simulation and by 

means of allocation rules constitute the force requirements for a single engagement. TAA 

then takes these requirements from engagements specified by the Department of Defense 

(as discussed in section 2.4.3) to create a time-series of force requirements over some 

specified period of time. Often this force structure requirement exceeds Congressionally-

mandated ceiling on personnel and other resources [Loerch, 2007]. In these cases, it is 

necessary to select a portfolio of units that minimizes the risk incurred over the specified 

planning scenario within these personnel and other resource constraints. In the resourcing 

phase of TAA, Army analysts perform precisely this function. 
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2.5.2 TAA Programming: Resourcing a Force Structure 
After determining the force structure requirements, TAA shifts its focus to 

determining which elements in the force structure will be funded in future years, an 

exercise known as resourcing the force structure. This resourcing process takes place 

over several weeks and involves groups of individuals, typically colonels and their 

civilian equivalents, performing qualitative analysis of the required force structure 

[Loerch and Coblentz, 2002] and [United States Army, 1995]. This analysis includes 

assessments of force affordability, supportability, and executability [United States Army, 

1995]. This phase of qualitative analysis may take under advisement quantitative analyses 

that consider risks and trade-offs across competing force structure options (see for 

example [Helms, 2012]), though this type of input is neither mandatory nor habitual. 

The final result of TAA is a force structure recommendation for each year of the 

program objective memorandum. 

2.6 Limitations in Defense Planning  
Perhaps the greatest limiting factor in any force provision analysis is the 

construction of demand functions which drive force structure requirements and readiness 

policy decisions. We discussed in section 2.4.3 the current method for constructing 

demand functions, the integrated security construct. Critiques of such an approach focus 

on two distinct, but interrelated dimensions of the ISC approach—the process for 

constructing a single ISC and the number of futures considered for analysis. As we will 

discuss further, addressing issues related to ISC construction can ameliorate the 

limitations related to the number of futures considered for analysis. 
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We discussed in section 2.4.3 the process used to construct an ISC. There are four 

key variables which drive the development of an ISC demand function—the nature of 

events which will occur; the duration of these events; the timing of the events; and which 

resources are required to succeed in these events. Recall from our previous discussion 

that these inputs are pre-determined.  

Such a process, which uses pre-determined scenarios, drawn from a small set of 

possible scenarios is subject to bias, placing undue attention on specific events, such as 

conflict with a particular adversary (at the expense of others) [Lempert et. al., 2003]. 

Frequently, this attention to specific events focuses analysis on the performance of 

desired (emphasis added) strategies.  

The manner in which these ISCs focus on specific adversaries is relevant to the 

discussion of the theme of our research, robustness. By specifying not only the 

adversaries to be faced in the future, but also the timing of the interventions against those 

adversaries, policy makers can limit the effect of these interventions on force structure 

decisions, a criticism leveled by Davis [2002] among others. 

For example, consider a planning construct that specifies adversaries X and Y. By 

constructing an ISC that ensures that interventions against these adversaries do not 

overlap, policy makers thus ensure that force structure requirements (to the extent that 

such a thing exists) are less than would be indicated if those interventions overlapped. 

Since we do not have a crystal ball, we cannot know for sure if those interventions would 

overlap or even if they would occur, but ignoring the possibility of simultaneous 

intervention limits the range of potential scenarios to which the force could intervene, 
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thus limiting a priori the robustness of potential responses. Now, it may be that based on 

some value judgment, responding to both events would not be desirable, but the current 

approach to constructing futures (and specifying strategies) does not support making such 

an assertion. 

Limiting the scenarios used for analysis and specifying the timing of those 

scenarios necessarily limits the generalizability of any claims concerning the military’s 

ability to execute the strategy. In particular, this prescriptive approach to analysis 

precludes discussion of robustness. Since robustness concerns the ability of a system to 

operate in any (though for practical purposes many) scenario, and the current analytic 

paradigm considers only one scenario, analysts cannot presently make statements about 

the military’s ability to execute the strategy beyond the single scenario under 

consideration.  

This criticism of narrowly focused analysis was put forth by Davis [2002] among 

others, and in recent years, DoD has taken steps to address this criticism. For example, 

the 2010 Quadrennial Defense Review [Department of Defense, 2010] considers three 

potential futures. While this is a positive step, it does not go far enough. While no method 

can possibly simulate and subject to analysis all possible futures which could confront the 

DoD, any method that seeks to make generalizable statements about the ability to execute 

the defense strategy must consider many possible futures. While the magic number of 

potential futures is likely beyond our grasp, given the present state of computing power 

available, it is certainly possible to analyze a great many more timelines of scenarios than 

currently under consideration.  
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2.7 Summary 
In this chapter we described the roles and responsibilities of the Combatant 

Commands and military departments. As a force provider, the Army has a responsibility 

to determine the future composition of its force. Defense PPBE provides a venue for the 

Army to plan for its future force. However, current defense planning provides only 

limited ways to consider uncertainty in the nature and timing of potential future 

operations. 

In the next chapter we review military force planning literature. Given the relative 

paucity of the force planning literature, we also review private sector fleet planning 

literature. 
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CHAPTER THREE: LITERATURE REVIEW: MILITARY FORCE MIX AND 

RELATED PROBLEMS 

In the previous chapter we discussed the system by which combatant commanders 

request forces as well as the process by which the Army manages the resources it 

provides to those combatant commanders. We also discussed the planning processes in 

use to support the execution of this supply and demand system. In this chapter we discuss 

the current state of methods the Army and the Joint Staff use to support force structure 

decisions, methods used to analyze smaller scale force structure problems, and methods 

used to study a useful, nearly-analogous problem: the fleet size and mix vehicle routing 

problem. 

3.1 Military Force Structure Analyses 
As noted by [Carter et. al., 1997] (among others), and as we discussed in section 

2.4.3 the Cold War and indeed post-Gulf War force structure analysis paradigm was to 

size and shape the armed forces to conduct some specified number of major regional 

conflicts and assume that the capabilities required to execute other types of operations 

were a lesser-included subset of those needed to succeed on these major regional 

conflicts.  

In a series of planning exercises in 1996 and 1997, known as Dynamic 

Commitment, the defense analytic community began to relax the lesser-included 

assumption and considered the force size and force structure implications of so-called 
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“small-scale contingencies.” Carter et. al. [1997] describe in detail the Dynamic 

Commitment series of planning exercises. We summarize this discussion below.  

Dynamic Commitment began by noting that post-Gulf War military commitments 

were placing a significant demand on U.S. military forces, though none of these 

commitments was for a major regional conflict. Continuing with the assumption that the 

nature of operations in the near-future would reflect the nature of those in the recent past, 

planners developed a series of planning vignettes and associated force lists. The force 

structure analysis proceeded by randomly distributing this collection of vignettes over 

some notional future timeline and determining via seminar the response to each event in 

sequence. 

In order to investigate the sensitivity of like results to the assumption that the 

near-future will look much like the recent past, the Center for Army analysis conducted a 

series of analyses to look at both the nature of smaller scale contingencies and the force 

structure required to succeed in those smaller scale contingencies. 

The first of these studies, Stochastic Analysis for Deployments and Excursions 

(SADE) [DuBois and Kastner, 2000] sought to apply queuing theory to the stochastic 

modeling of the occurrence of smaller-scale contingencies. The methodology determined 

the inter-arrival times for all events and the event-type and duration distributions for six 

types of operations then simulated the occurrence of operations using these distributions 

to determine the distribution over time of the number and nature of simultaneous 

operations. 
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The second of these studies, Stochastic Analysis of Resources for Deployments 

and Excursions (SARDE) [DuBois, 1999] built on the SADE analysis to examine the 

force structure implications of a future in which the Army would be involved in 

numerous, simultaneous smaller-scale contingencies. In SARDE, analysts determined for 

each type of operation a mission, task-organized force (MTOF), a list of force structure 

elements required to succeed in each type of operation modeled in SADE. By applying 

the MTOF to the SADE simulations, analysts were then able to determine, for each 

resource type, a probability distribution of the number of each unit type used 

simultaneously. 

[Loerch and Coblentz, 2002] built on the SADE/SARDE suite of analyses to 

develop a method for analyzing force structure decisions in the context of both major 

regional conflicts and smaller-scale contingencies. Their analysis proposed a two-stage, 

recourse stochastic program. The first stage considered force structure decisions with 

respect to the deterministic requirements of major regional conflicts; the second stage 

assigns units to tasks in the smaller-scale contingencies. The first stage of the model is 

used to determine an end-strength-constrained feasible solution while the second stage 

minimizes the expected value of the risk associated with an optimal allocation of the 

feasible force structure to the tasks in the SSCs. 

The Army developed Marathon in response to the realization that readiness 

policies influence the resources needed to meet anticipated demands. Marathon has two 

methods of analyzing force structure: capacity analysis and requirements analysis.  
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Capacity analysis provides descriptive demand satisfaction and unit utilization 

data given a specified structure, fixed demands, and a pre-determined readiness policy. 

Marathon requirements analysis determines the force structure required to meet some 

single collection of demands based on three inputs— a time series list of demands by 

resource type; a time-based readiness policy; and a matrix of component proportions for 

each resource type. 

The logic by which Marathon generates a force structure based on these inputs is 

described below. For further information on Marathon functionality see [Spoon, 2012] 

and [Spoon, 2011]. 

The Randomly Generated Requirements Informed by Past Operational 

Deployments (RANGER IPOD) [Helms, 2012] methodology was designed to address the 

single-future limitation in current Army force structure analysis. Essentially, RANGER 

IPOD creates many demand profiles using data-informed stochastic processes and 

identifies one “ideal” force structure for each demand profile using the Marathon 

requirements routine. The methodology then compares the performance of these 

numerous force structures against another set of stochastic process-based demand profiles 

to determine which of the generated force structures is likely to be most effective across a 

range of potential demand profiles. In other words, RANGER IPOD searches for a force 

structure that will enable the Army to have a robust ability to provide forces.  
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Figure 5: Marathon Requirements Analysis Logic 

 

 

The Joint Staff uses a suite of tools to analyze Joint Force sufficiency. The 

Capabilities to Forces Integration Tool (CFIT) [The Joint Staff, 2012a] is a mechanism 

for representing combatant command requests for forces for individual events. The CFIT 

Force Management Tool (CFORM) [The Joint Staff, 2012b] contains force structure 

demand data, force management actions, and readiness policy attributes for US forces on 

a future of specified events over a prescribed timeline. The functionality in the Mitigation 

Options Selection Tool (MOST) [The Joint Staff, 2012d] allows service force structure 

planners and analysts to determine how to supply forces to prescribed demands given 

constrained resource inventory.  

[Southerland and Loerch, 2014] developed an integer program to determine how 

to reduce inventories in Army force structure to meet some directed overall personnel 
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reduction target. The data for the optimization are derived from multiple instances of 

Marathon with varied inventories. 

[Checco, 2015] describes a “multi-stage optimization model to determine 

dynamic force size…while accounting for uncertainty of future demand.” The 

optimization allows for the overall size of the force to change in response to conditions, 

and considers multiple classes of manpower. Most other methods treat overall force size 

as a fixed constraint, and focus on only military manpower. 

3.2 Other Military Force Structure Analyses 
[Wojtaszek and Wesolkowski, 2012] surveys the military fleet composition 

literature and describes three classes of fleet composition problems—finding the best 

fleet; determining how well a particular fleet will perform ; and determining the best 

schedule for retiring and acquiring fleet platforms. In this section, we review their 

findings with respect to two of these problems—finding the best fleet and determining 

the best schedule for retiring and acquiring fleet platforms. 

3.2.1 Finding an Optimal Fleet 
Approaches to finding a single, optimal mix of resources to accomplish some 

mission have generally focused on finding a mix of vehicles, for example armored 

vehicles in the British Army or tactical vehicles in the Canadian Armed Forces. The 

methods used to find these fleets are generally static, in that they consider a fixed 

collection of scenarios to identify a static set of requirements. We discuss here some 

linear and non-linear programming approaches as well as heuristic search methods to 

identifying optimal vehicle fleet mixes. 
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[Walmsley and Hearn, 2004] describe a mixed integer linear program approach to 

informing an armored vehicle fleet mix decision. The approach first determines total fleet 

requirements by mapping platforms to roles, roles operational units, and operational units 

to deployment types. Each platform is rated as either compliant or insufficient with 

respect to these three requirements for various scenarios. The MILPs either determine (1) 

a feasible fleet that complies with all requirements or (2) a fleet that maximizes 

compliance given some cost constraint. 

[Ghanmi et. al., 2010], like [Walmsley and Hearn, 2004], uses a requirements-

based approach to optimizing a vehicle mix. A MILP is used to determine minimum cost 

fleets that meet all requirements and a mixed integer non-linear program is used to find a 

maximally effective mix that meets cost constraints.  

[Stuive at. al., 2010] describe an evolutionary algorithm, the non-dominated 

sorted genetic algorithm II (NSGA II), in a multi-objective optimization framework to 

find a Pareto curve describing the cost and performance characteristics of candidate 

vehicle fleets. Other problems solved using evolutionary algorithms are discussed in 

[Mazurek and Wesolkowski, 2009] and [Whitacre at. al., 2007]. 

3.2.2. Finding an Optimal Fleet Adaptation Schedule 
The literature contains discussions of two broad approaches to determining how 

best to adapt a fleet over time. The first approach is to determine which changes are 

feasible over some given time frame and from these feasible changes, adapt the fleet as 

well as possible given some constraining factors such as budget. The other approach is to 

identify a single, target fleet and determine how to achieve this target over time. 
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[Barlow et. al., 2007] discusses a methodology for minimizing a risk metric over 

time while changing the configuration of a particular force for some scenario or future. 

The constraints are “discretized into a fixed number of changes per time period,” and the 

set of all possible changes are then enumerated, creating a directed graph. The outcome 

of each possible change is determined through simulation and the optimal solution found 

by finding the shortest path, representing the minimum risk, through the directed graph.  

[Brown et. al., 1991] describes a U.S. Army helicopter fleet modernization model. 

Fleet modernization occurs via new production, modifying parameters of existing 

production, upgrading platforms currently in the fleet, and retiring old platforms. The 

modernization model uses a mixed-integer linear program to determine a fleet mix for 

each year of a 20 to 30 year planning horizon. For each year in that planning horizon, the 

fleet must adhere to specified performance standards, such as fleet age and proportion of 

platforms at various levels of technology, without violating budgetary constraints.  

[Wesolkowski et. al., 2009] uses a Non-dominated Sorting Genetic Algorithm II 

to identify potential aircraft fleet mixes. Multiple scenarios are generated using the 

Stochastic Fleet Estimation (SaFE) methodology [Wesolkowski and Billyard, 2008]. 

Fleets are then generated for each scenario using the genetic algorithm. Candidate fleets 

are evaluated for their robustness, in terms of the number of generated scenarios that can 

be completely satisfied by each fleet, and their adaptability, in terms of the number of 

other scenarios that can be fully satisfied by adapting the fleet within specified budgetary 

or other constraints. 



32 

 

In SaFE-Robust (SaFER), [Wesolkowski and Wojtaszek, 2012a] search for task 

start times that minimize the total fleet cost required to meet all tasks. SaFE for Steady-

State Tasking (SaFESST) [Wesolkowski and Wojtaszek, 2012b] uses an evolutionary 

fleet scheduling model to determine the performance of a specified fleet given specified 

platform to task matching. 

[Wojtaszek and Wesolkowski, 2011] describes a method to search for Pareto-

optimal platform to task assignment that can meet all requirements in a number of 

stochastically generated scenarios. Solutions are evaluated in a multi-objective 

optimization framework. Three objectives are proposed—minimal fleet cost; minimal 

total task duration; and maximum flexibility in accomplishing tasks within specified time 

windows. Here, flexibility is defined as the number of “subsets of platforms contained in 

a fleet that can accomplish the task within the time window.” Thus, fleets with more 

ways to service tasks are more flexible than fleets with fewer task-servicing options. 

Rather than specify a single heuristic to generate solutions to the fleet mix 

problem, [Shaffi et al, 2011] relates a method to find good heuristics. A learning 

classifier system (LCS) applies heuristics to scenarios. By extracting scenario features 

and evaluating the goodness of the heuristics the LCS learns the conditions under which 

various heuristics perform well by relating heuristic performance with the extracted 

scenario features. 

 [Abbas et. al., 2008] describes a simulation-based methodology for determining 

how to adapt a fleet of platforms. The Resource Planning under Time Constraints (RPTC) 

model identifies for a series of scenarios, a list of non-dominated solutions, where each 
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solution lists some portfolio of platforms necessary to meet all requirements in a scenario. 

These solutions are then clustered and these clusters are further clustered and ordered 

based on the maximum number of platforms in any solution within the first set of 

clusters. This ordering then informs candidate fleet adaptations, referred to as the 

“capability evolution network.” 

3.3 Fleet Mix Studies 
In this section, we discuss literature concerning the fleet size and mix vehicle 

routing problem (FSMVRP). Generally speaking, the FSMVRP is concerned with the 

numbers and varieties of platforms in a vehicle fleet and managing that fleet of 

heterogeneous resources to meet some demand for those resources. 

While not directly related to force structure analysis, the FSMVRP provides a 

useful analogy for identifying approaches to improving military force structure analysis. 

As we discussed in chapter two, the problem of finding good force structures involves 

three factors—supply, demand, and policy. The problem of sizing and shaping a fleet of 

resources is, at its most basic, no different. Some collection of customers (demand) need 

to be serviced by some collection of resources (supply) and rules (policies) exist, such as 

in laws limiting the number of hours a truck can stay on the road at any given time (see, 

for example, [Kok, et al, 2010]. Given these similarities it is prudent to review 

approaches to finding optimal fleets. 

[Golden et al, 1984] was the first to fully describe the FSMVRP. The objective of 

the problem is to minimize some cost function, typically composed of both fixed and 

variable costs, by determining not only how many of each of numerous types of vehicles 
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to purchase, but also how to route said vehicle in order to meet some known demand. The 

fixed costs are generally associated with fleet acquisition while the variable costs are 

generally associated with routing vehicles to meet customer demand. 

[Jabali et al, 2012] suggests a useful delineation of approaches to the problem as 

either operational or strategic. In operational studies, the goal is to find some mix of 

vehicles that can meet current, day-to-day customer demand. This demand is generally 

fixed and known. Strategic fleet mix studies, on the other hand, are focused on longer-

term shaping of a vehicle fleet to meet a range of potential future demands. Unlike 

operational studies, strategic studies do not assume a fixed, known collection of 

customers that require service. 

Our research is focused on a strategic analysis of Army force structure. As such, 

strategic fleet mix studies are most relevant to our research, but are less prevalent in the 

literature than operational fleet mix studies [Jabali et al, 2012]. Approaches to solving 

fleet mix problems at the operational level are nonetheless informative. In the following 

sections we first review approaches to solving operational fleet mix problems, discussing 

later the few strategic fleet mix studies we uncovered in our review of the literature. 

3.3.1 Operational FSMVRP Formulations and Solution Methods 
Solution methods to the operational FSMVRP can be summarized as following 

one of three approaches— heuristic search and combinations thereof; heuristic search 

augmented by a search-controlling metaheuristic; and various sorts of inequality and 

column generation approaches within an integer programming framework. We discuss 
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below several unique methods for each of the three general classes of solution 

methodology. 

 [Golden et al, 1984] describes a series of heuristics for solving the FSMVRP as 

well as methods for determining a lower bound on the solution and an underestimate of 

the optimal solution. The heuristic methods include several savings heuristics, several 

giant tour algorithms, as well as an improvement algorithm. The savings algorithms begin 

by identifying some feasible set of routing sub-tours and determining the savings of 

combining sub-tours with overlapping demands [Clarke and Wright, 1964]. The giant 

tour algorithms create a solution in two phases—the first phase creates a single (giant) 

tour that satisfies all customer demands and the second phase partitions the giant tour into 

smaller tours satisfying the problem constraints. The improvement algorithm uses an 

initial tour solution and tries to improve the tours by exchanging edges between tours 

[Golden et al, 1980]. 

[Ulusoy, 1985] describes a variant on the giant tour approach to find a minimal 

cost fleet and routing of said fleet. A giant tour is constructed and from this giant tour is 

constructed a network with nodes corresponding to arcs on the giant tour and arcs 

corresponding to single-vehicle feasible sub-tours. This network is then used to find a 

shortest path collection of sub-tours, which is then subjected to a no-cost arc, tour-cost 

improvement algorithm. 

[Bookbinder and Reece, 1988] describe a non-linear, mixed integer program with 

Benders decomposition for solving the FSMVRP. The fleet size and mix is determined 
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via an assignment problem in the context of multiple depot distribution. By assigning 

customers to depots, a fleet is determined for each depot. 

[Salhi and Rand, 1993] uses a heuristic search method to iteratively improve the 

utilization of vehicles and thus potentially reduce the number of vehicles required to 

service some demand. The algorithm uses a combination of reallocating customers within 

vehicle routes, combining routes for a single thus reducing the number of required 

vehicles, or by splitting routes.  

Building on this work and the savings heuristics in [Golden et al, 1984], [Liu and 

Shen, 1999] describe a heuristic approach to solving the FSMVRP with time windows. 

Specifically, an insertion heuristic is used and the savings heuristic applied to determine 

the cost savings of inserting customers into already existing routes while maintaining 

time window and other constraint feasibility. 

[Braysy et al, 2009] uses a three-phase, heuristic-based approach. In the first 

phase, an initial solution is found using a savings heuristic. The second phase tries to 

improve on the initial solution using a route elimination heuristic. And the third phase 

uses a general local search to improve further the second phase solutions. 

[Osman and Salhi, 1996] describe a tabu search metaheuristic used to search for a 

near-optimal solution. Neighborhoods around an initial solution are determined using 

customer re-allocation techniques, defined as shift and interchange. The best changes in a 

neighborhood are then identified and compared to the initial solution. This process 

continues until some pre-defined number of iterations passes without improving on the 

then best solution. Other metaheuristic methods include [Liu et al, 2008] (genetic 
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algorithm), [Brandao, 2009] (tabu search), and [Repoussis and Tarantilis, 2010] (tabu 

search augmented by adaptive memory programming). 

[Taillard, 1999] uses a heuristic column generation approach to solving the 

problem for a heterogeneous fleet of vehicles. The method begins by solving a series of 

homogeneous vehicle routing problems using an adaptive memory process driven by a 

tabu search [Taillard, 1993]. The set of solutions is then used to generate columns in a 

matrix identifying which customers are served by which vehicles. This matrix is then 

used to solve a Boolean linear program, the decision variables of which determine which 

tours for each vehicle type to select as part of the final solution. 

[Choi and Tcha, 2007] extend the column generation approach to solve exactly a 

linear programming relaxation of an integer program. Columns are generated by way of 

dynamic programming techniques for the vehicle routes. This approach is the first we can 

find to use any sort of dynamic programming approach to generate potential solutions to 

the FSMVRP. 

[Yaman, 2006] identifies a difficulty in evaluating heuristic solutions to the 

FCMVRP due to the “huge gap” in lower bound solutions. The proposed solution to this 

problem is to formulate a number of valid inequalities with lifting of those inequalities 

within an IP framework. [Pessoa et al, 2007] describes a branch, cut, and price algorithm, 

also within an IP framework. 

[Simao, 2009] determines the value of various trucking resources from an 

approximate dynamic programming (ADP) model. The ADP manages the servicing of 
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uncertain demands. Outputs from this model are then used to determine the marginal 

value of drivers. These marginal values were then used to inform fleet mix decisions. 

3.3.2 Strategic FSMVRP Formulations and Solution Methods 
 [List et al, 2006] details a robust, stochastic optimization methodology for 

determining how invest in radioactive waste disposal equipment given uncertainty. 

Uncertainty arises from variation in the timing and magnitude of waste disposal demands 

as well as in readiness of vehicles to dispose of that waste. These uncertainties manifest 

in the constraints of the formulation.  

The goal in [Alvarez et al, 2011] is to find a solution that remains near-optimal 

when the problem parameters are subjected to changes. To achieve this, a mixed integer 

program is used to find solutions and then subjected to parameter variation based on the 

robust optimization method of [Bertsemas and Sim, 2003]. 

[Cambini and Riccardi, 2009] defines three factors that contribute to a fleet mix 

decisions—the ability to meet demand surges; the time to complete service tasks; and 

capability hierarchy. In this framework capability hierarchy refers to the possibility that 

some candidate platforms in the fleet can perform platform-unique tasks as well as tasks 

performed by other platforms. This definition is consistent with our definition of 

flexibility. Typically, the more flexible platforms are more expensive than less flexible 

vehicles. The solution to this problem is solved using a recursive optimization 

formulation.  

[Cortes et al, 2011] optimizes the daily dispatch of operators within a simulation 

framework. The results of the simulation are then used to adjust fleet performance curves. 
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These performance turns are then used in off-line decision making to develop long-term 

policies. 

Describing research by [Francis and Smilowitz, 2006], [Jabali et al, 2012] 

discusses a continuous approximation method to solving the strategic fleet mix problem. 

A notional demand scenario is modeled as a circle which has to be partitioned into rings 

and those rings partitioned into routes. Each ring can only be serviced by one type of 

vehicle while each route within a ring must be served by a single vehicle. Thus, the fleet 

size and mix is determined by finding an optimal, or near-optimal, partitioning of the 

circle into rings and routes by means of a mixed integer, non-linear program.  

[Cheon et al, 2012] model a railcar fleet mix problem as a “long-term capacity 

expansion problem.” The solution to this problem is determined over three stages. The 

first stage determines likely requirements for railcars over some time frame. The second 

part models the servicing of these requirements. The third, and final, stage of the model 

then determines a fleet management plan to include procurement decisions and other 

managerial tools such as railcar modification and transfer. All three stages of the model 

are integrated into a mixed integer linear program. 

3.4 Discussion 
The current approach to analyzing force structure has limitations. The primary 

limitation in force structure analysis arises from the fixed-future, fixed-force structure 

approach to analysis. That is, not only does the approach we have discussed assume a 

fixed future, the mix of units available to respond to that future is also fixed over the 

duration of the future. 
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This fixed-force structure approach runs counter to several realities inherent in 

defense planning and programming as well as counter to robust response to an uncertain 

environment—the final product of the programming phase of PPBE, the program 

objective memorandum, details a force structure for each year of the Future Years 

Defense Program [United States Army, 2011]; the military, and in particular the Army, 

adapts the mix of units in its force structure to respond to current and potential future 

challenges ; and theoretically fixing force structure limits the ability to utilize one 

dimension of flexible response to uncertainty, thus inhibiting modeling of adaptation to 

ensure robust system performance.  

While it is important to note for the sake of completeness that a program force 

structure is actually one force structure per year over many years, it is more instructive to 

focus on the implications of modeling a single force structure over some planning 

horizon.  

The theme of our research is ensuring robust response in an uncertain future 

through flexibility-enabled adaptation. So a natural question to pose is, “To what extent 

can the current approach to modeling consider robust response?” The answer, in short, is 

only in a limited manner. Much like in our discussion of the limitations in representing 

readiness management, assuming a fixed force structure over the planning horizon cannot 

consider how changing the force structure over time in response to changing conditions 

ensures an ability to provide forces when requested in support of the defense strategy. 

This suggests that a failure to capture force mix adaptation is another critical limitation of 

the current approach to analysis. 
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In this section we described literature on both military and civilian fleet sizing 

problems. While the dynamics in the problems facing those sizing civilian fleets are 

different than the dynamics facing military decision makers the methods used to model 

civilian systems and solutions to their problems are nonetheless informative.  

Some of the system models we described here take a short-term, deterministic 

approach to solving for appropriate fleets. Others take longer term or stochastic 

approaches to solving this problem. The literature is richest for the short-term, 

deterministic models (operational models in the parlance of [Jabali et al, 2012]). 

In either case, many of the solutions to fleet sizing problems involve heuristics, 

meta-heuristics, and in one case, hyper-heuristics. Heuristic approaches include 

algorithms for constructing solutions and approaches used to inform optimization models. 

Meta-heuristic methods build on these heuristics and utilize, among others, variations on 

the tabu search and genetic algorithms. 

While the literature is richest for operational fleet sizing, there does exist a broad 

array of methods and models for strategic sizing and shaping of fleets. Many of these 

methods use an optimization framework, such as integer programs both linear and non-

linear, and stochastic programs. Other solution methods include the use of simulations to 

determine fleet component value. 

3.5 Summary 
We have been thus far unable to identify any methods that use a combination of 

simulation and dynamic programming to determine how to adapt a fleet over time in the 

face of uncertain demand for fleet resources. This approach to fleet sizing and shaping is 
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the focus of our research. In the next chapter we describe our models for fleet demand, 

fleet deployment management, and fleet mix over time. Our overarching approach is an 

approximate dynamic programming model informed by a fleet deployment management 

simulation given uncertain resource demand modeled by a collection of stochastic 

processes. We discuss the methodology in chapter 5, but we first discuss approximate 

dynamic programming. 
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CHAPTER FOUR: APPROXIMATE DYNAMIC PROGRAMMING AND THE 

DIFFUSION WAVELET TRANSFORM 

In this chapter we discuss the approach underpinning our methodology—

approximate dynamic programming (ADP) with value function approximation (VFA). 

We review the ADP literature and describe the diffusion wavelet transform (DWT) VFA. 

We conclude the chapter with a discussion of the current state of DWT research, 

including present limitations in that research. 

4.1 Dynamic Programming Overview 
We define and describe here the field of approximate dynamic programming. This 

discussion is adapted from [Powell, 2011], [Balakrishna, 2009] and [Gosavi, 2003]. Other 

useful references include [Denardo, 2003], [Bellman, 2003], and [Busoniu, 2010] among 

others. 

4.1.1 Dynamic Programming 
Dynamic programming is a collection of techniques used to solve sequential 

decision making problems, often under conditions of uncertainty. Unlike mathematical 

programming approaches, which solve all periods in multi-period decision models 

simultaneously, dynamic programming solves these problems using a recursive 

formulation (Balakrishna, 2009). This recursive formulation is characterized by a 

statement of Bellman’s Equation suitably modified to the needs of the problem at hand 

[Powell, 2011]— 
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Equation 1 

𝑉𝑡(𝑆𝑡) = max
𝑥𝑡∈𝑋𝑡

(𝐶𝑡(𝑆𝑡, 𝑥𝑡) + 𝛾𝐸{𝑉𝑡+1(𝑆𝑡+1)|𝑆𝑡}) 

 

  

In the above equation, variables are indexed by time t, S is the state, V is the 

value, x is the decision variable, C is the one-step contribution, and γ is a discount factor.  

Dynamic programs are defined by state variables; decision variables; a state 

transition function; an objective function; and, optionally, exogenous information 

processes. State variables describe the information upon which any decision is to be 

made, the information that must be known to make a ‘good’ decision. The goodness of 

any decision is determined by the objective function. The transition function describes 

how the state changes given any decision and any relevant exogenous processes. 

Dynamic programming models with discrete states and decisions belong to a class of 

models known as Markov Decision Processes. 

Dynamic programs may seek to identify optimal decision over either a finite or an 

infinite horizon. State transitions may be either deterministic, in which case there is no 

exogenous process acting on the state transition, or stochastic. In any case the goal of a 

dynamic programming is to associate with any state the optimal decision to make in that 

state. Through its recursive formulation, a dynamic program finds an optimal decision 

given a current state by considering both the immediate contribution of making any 

decision and the potential future contributions that arise from having made that decision. 
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4.1.2 Markov Decision Processes 
Dynamic programming is one solution method to a class of problems known as 

Markov or semi-Markov decision process (MDP and SMDP). MDP and SMDP are 

related to Markov and semi-Markov processes, the distinction being state transitions in 

the decision processes are influenced by decisions (often in a system control context) in 

some system whereas state transitions in the non-decision processes are not influenced by 

external control mechanisms.  

Markov processes and MDP are characterized by three properties—the jump 

property, that is transitions between states occur regularly; the memoryless property, that 

is the transition from any state depends only on the current state, and does not depend on 

the states visited prior to the current state, depending; and the unit time property, that is 

all state transitions occur after unit time [Gosavi, 2003]. The semi-Markov process and 

SMDP are a more general class of problem than the MP and MDP in that the unit time 

property is relaxed. Specifically, the transition times are generally distributed random 

variables [Gosavi, 2003]. 

4.1.3 The Curses of Dimensionality and Modeling 
As we discussed in the previous section Bellman’s equation provides a compact, 

recursive solution to dynamic programs. In order to solve a dynamic program using 

Bellman’s equation transition probability and transition reward matrices [Gosavi, 2003] 

must be specified. In the case of the transition probability matrix, the probability of 

transitioning from each state to every other state must be specified for every possible 

decision. To specify a transition reward matrix, a value must be specified for each state 

transition/action pair. 
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In either case, specifying the data needed to solve a dynamic program exactly 

using Bellman’s equation is infeasible and the challenges therein, known as the curses of 

modeling and dimensionality, have been widely acknowledged in the literature (see for 

example, [Gosavi, 2003] and [Powell, 2011]). 

The curse of modeling arises from the difficulty of modeling the relevant 

dynamics of the system in question. In dynamic programming parlance, specifying the 

state transitions, transition rewards, and transition times, given various decisions is 

subject to the curse of modeling. In complex, stochastic systems, specifying a model of 

that system is a challenging task [Gosavi, 2003].  

A related challenge to the curse of modeling is the curses of dimensionality. 

Whereas the curse of modeling relates to the ability to specify a model, the curses of 

dimensionality relate to the computational feasibility of solving exactly a dynamic 

program. The computational burden of solving a dynamic program is related to three 

factors—the size of the state space; the size of the outcome space; and the size of the 

decision space [Powell, 2011]. For example, consider a system with 1,000 states, each of 

which is reachable from any other state via any one of ten decisions. In order to fully 

specify the transition function, a transition probability for 1 million potential transitions 

would have to be specified. In many practical cases, storing and recursing through the 

matrices necessary to solve exactly a dynamic program outstrips a computer’s capacity to 

store and process such information. 
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4.2 Approximate dynamic programming 
Research into working through the challenges posed by the curses of modeling 

and dimensionality has led to the development of approximate dynamic programming 

techniques. Unlike dynamic programming, which through Bellman’s equation guarantees 

optimality, approximate dynamic programming techniques can provide only nearly-

optimal solutions [Gosavi, 2003]. In this section we will discuss the approximate 

dynamic programming techniques most relevant to our methodology and how those 

techniques address the curses we discussed in the previous section. 

4.2.1 Solutions to the curses of modeling and dimensionality 
As we discussed in the section on dynamic programming, in order to find an exact 

solution using Bellman’s equation a complete model, including transition probability 

matrices and transition reward matrices, is required. Research into solutions to the non-

availability of explicit models has led to the development of so-called “model-free” 

methods. Model-free methods do not require an analytical form of the objective function, 

instead relying simply on the values of the objective function [Gosavi, 2003]. One 

particular model-free method is of interest to our research—simulation-based 

optimization. In simulation-based optimization, state transitions are generated through a 

simulation. Note here that we have mentioned the use of optimization to mitigate the 

need to explicitly represent state transitions, and acknowledge that model-free methods 

do not explicitly represent the objective function, but we have not yet discussed how to 

integrate this simulation into some value-based representation of the objective function. 

The solutions of most relevance to our research bridge the gap between solving the curses 

of modeling and dimensionality. 
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In general, there are three classes of solutions to the curses of dimensionality—

state-space reduction via aggregation; function fitting; and function interpolation [Gosavi, 

2003] [Balakrishna, 2009]. Aggregation reduces the complexity of a dynamic 

programming problem by combining multiple states into a single state. Frequently, this 

aggregation allows for exact DP solutions, which can then be disaggregated to obtain 

approximate solutions to the original problem [Powell, 2011]. Function fitting reduces 

the dimensionality of the problem by fitting model parameters to state space variables to 

generate an objective function. Function fitting methods include regression, among others 

[Balakrishna, 2009]. Function interpolation methods also reduce dimensionality by 

storing only a small number of representative value functions and interpolating to 

determine all others [Balakrishna, 2009]. Together, function fitting and interpolation 

reduce the dimensionality and provide a value-based representation of the objective 

function. Thus, function fitting and interpolation address both the curses of modeling and 

dimensionality. For more information on approximate methods, see [Busoniu et al, 2010]. 

4.2.2 The post-decision state variable 
Before we discuss methods for approximating the value function it is important to 

first discuss a subtlety in the expression of Bellman’s equation. Note in equation 5.1that 

this version of Bellman’s equation requires evaluating the decision x that maximizes the 

expectation of some other value. In order to find this optimal decision, we would need to 

explicitly calculate this expectation for each decision. Calculating this expectation is 

frequently intractable [Powell, 2011], due in part to the curse of modeling. The solution 
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to this challenge lies in re-expressing Bellman’s equation in terms of a post-decision state 

variable.  

To understand what constitutes a post-decision state variable, consider the state 

transition from one decision cycle to the next. Two factors influence this transition—the 

decision made in the initial state, and any exogenous processes. The logic behind the 

post-decision state is to separate these two factors and apply only the influence of the 

decision on the current state, thus the “post-decision” state. In this modeling framework, 

the system operates just like any other MDP (or SMDP) except that observations are 

made after each decision. The state transition equations are expressed as follows: 

 

Equation 2 

𝑆𝑡
𝑥 = 𝑆𝑀,𝑥(𝑆𝑡,𝑥𝑡) 

 

Equation 3 

𝑺𝒕+𝟏 = 𝑺𝑴,𝑾(𝑺𝒕
𝒙, 𝑾𝒕+𝟏) 

 

In the above equations, 𝑆𝑡
𝑥 is the post-decision state at time t given decision x and 

𝑆𝑡+1 is the pre-decision state at time t+1 given post-decision state 𝑆𝑡
𝑥 and exogenous 

information 𝑊𝑡+1. 

Given this discussion, we can express the relationship between the value of the 

pre-decision and post-decision states as follows [Powell, 2011]: 
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Equation 4 

𝑉𝑡−1
𝑥 (𝑆𝑡−1

𝑥 ) = 𝐸{𝑉𝑡(𝑆𝑡)|𝑆𝑡−1
𝑥 } 

 

Equation 5 

𝑉𝑡(𝑆𝑡) = max
𝑥𝑡∈𝑋𝑡

(𝐶𝑡(𝑆𝑡,𝑥𝑡) + 𝛾𝑉𝑡
𝑥(𝑆𝑡

𝑥)) 

 

Equation 6 

𝑉𝑡−1
𝑥 (𝑆𝑡−1

𝑥 ) =  𝐸{max
𝑥𝑡∈𝑋𝑡

(𝐶𝑡(𝑆𝑡,𝑥𝑡) + 𝛾𝑉𝑡
𝑥(𝑆𝑡

𝑥))|𝑆𝑡−1
𝑥 } 

 

With this form of Bellman’s equation we now have the expectation of a 

deterministic quantity. 

4.2.3 Value function approximation methods 
Consider a hypothetical situation in which all state transitions are known and 

deterministic. Computational feasibility aside, we could simply enumerate every possible 

path forward in a network and determine with certainty the value of being in any state at 

any time. Now consider a situation in which the state transitions are stochastic. If we 

were to use a simulation to drive our ADP, each iteration through the simulation would 

contain a different path forward through the states. From any given state, any number of 

paths forward would be possible, and we could estimate the value of being in that state 

for any of these paths. Each of these estimates would likely differ. The challenge we 

would then face would be how best to incorporate the collection of sample value function 

estimates. ADP uses an iterative value updating process driven by these sample value 

estimates. The iterative update process is described by the equation below— 
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Equation 7 

𝑉𝑛(𝑆𝑛) = (1 − 𝛼𝑛) ∗ 𝑉𝑛−1(𝑆𝑛) + 𝛼𝑛𝑣𝑛 
 

In this equation the estimated value at iteration n of being in state S, denoted by 

𝑉𝑛(𝑆𝑛), is the weighted sum of two quantities—the previous estimated value of being in 

state S, denoted by 𝑉𝑛−1(𝑆𝑛); and the estimated value from the current iteration, denoted 

by 𝑣𝑛. The choice of the weighting parameter, 𝛼𝑛, is of critical importance to ensuring 

the quality of any value function approximation. For further research on the selection of 

this parameter, see [George, 2006].  

Given this iterative update method, it is important to discuss how to determine the 

within iteration estimates, the 𝑣𝑛. The first step in this determination is to decide on a 

functional form, such as a linear or non-linear function. Once this form is specified, the 

parameters that define the function over the state-space or, in the case of function 

interpolation, the relevant portion of the state-space must be specified. This specification 

can come from regression or any other function fitting routine. One such routine, the 

diffusion wavelet transform, and its associated functional form are of particular interest to 

our research. The discussion that follows is adapted from [Balakrishna, 2009]. 

The diffusion wavelet transform represents a function by identifying “the best 

scaling and orthogonal basis functions.” The functional form of this transform, in the 

context of value function approximation, is as follows— 
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Equation 8 

�̅�(𝑆|𝜃) = ∑ 𝑐(𝑗0,𝑘)𝜙(𝑗0,𝑘)(𝑆) + ∑ ∑ 𝑑(𝑗,𝑘)𝑤(𝑗,𝑘)(𝑆)

∞

𝑘=−∞

∞

𝑗=𝑗0

∞

𝑘=−∞

 

 

 

where 𝜙(𝑗0,𝑘) is the scaling function, 𝑤(𝑗,𝑘) are the wavelet functions, and  

 

Equation 9 

𝑐(𝑗0,𝑘) =
1

𝑚
∑ �̅�𝑖(𝑆)

𝑚

𝑖=1

𝜙(𝑗0,𝑘)(𝑆) 

 

Equation 10 

𝑑(𝑗,𝑘) =
1

𝑚
∑ �̅�𝑖(𝑆)

𝑚

𝑖=1

𝑤(𝑗,𝑘)(𝑆) 

 

Given this functional form, the following algorithm can be used to approximate 

the value function in an ADP framework (from [Balakrishna, 2009]). 

Step 0: Initialization 

0a: Initialize 𝑉(𝑆0), 𝑆0, and set n=0. 

0b: Set a limit 𝑁𝑠, on the initial number of states to visit in order to initiate the 

function approximation scheme 

Step 1: Obtain a sample path 𝜔𝑛. 

Step 2: Update 𝑆𝑛if n > 0. 

Step 3: If 𝑁𝑠 distinct states have not yet been visited, go to step 3e. 
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3a: If 𝑁𝑠 distinct states are being visited for the first time, denote this set of states 

by 𝑆𝑁𝑠
, and go to step 3b, else go to step 3c. 

3b: Obtain the basis functions and the corresponding coefficients for the sample 

of 𝑁𝑠 states. Go to step 3d. 

3c: Obtain 𝑉𝑛−1(𝑆𝑛), the approximate value of being in current state 𝑆𝑛. 

3d: Determine the next state, 𝑆𝑛+1 = 𝑆𝑀(𝑆𝑛, 𝑥, 𝜔𝑛). If 𝑆𝑛+1 ∈ 𝑆𝑛 then read 

�̅�𝑛−1(𝑆𝑛+1) from the stored sample. Set 𝑉𝑛−1(𝑆𝑛+1) = �̅�𝑛−1(𝑆𝑛+1). Set 𝜙𝑛 = 𝜙𝑛−1 and 

𝜓𝑛 = 𝜓𝑛−1. Go to step 3e. Else add 𝑆𝑛+1 to the set 𝑆𝑁𝑠
, as the last element and remove 

the first element of the set 𝑆𝑁𝑠
. Using the updated state space sample, determine the basis 

functions, 𝜙𝑛and 𝜓𝑛, and update the coefficients, 𝑐(𝑗0 ,𝑘)
𝑛  and 𝑑(𝑗,𝑘)

𝑛 . Obtain �̅�𝑛−1(𝑆𝑛+1) 

and set 𝑉𝑛−1(𝑆𝑛+1) = �̅�𝑛−1(𝑆𝑛+1). Go to step 3e. 

3e: Solve  

 

Equation 11 

𝑣𝑛 =  min
𝑥∈𝑋

(𝐶(𝑆𝑛, 𝑥) + 𝛾𝑉𝑛−1(𝑆𝑀(𝑆𝑛, 𝑥, 𝜔𝑛))) 

 

and let 𝑥𝑛 be the value of 𝑥 that solves this equation. 

3f: Update the value function. 

 

Equation 12 

𝑉𝑛(𝑆𝑛) = (1 − 𝛼𝑛) ∗ 𝑉𝑛−1(𝑆𝑛) + 𝛼𝑛𝑣𝑛 
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Step 4: Find the next state, 𝑆𝑛+1 = 𝑆𝑀(𝑆𝑛, 𝑥, 𝜔𝑛). 

Step 5: Set n=n+1. If n < N, go to step 1. 

4.3 Discussion 
Note that in step 3e of the preceding algorithm, we are told to solve an equation 

by finding the action, x, that minimizes the equation’s value. However, step 3e does not 

specify how to solve the equation. This raises a critical question—“How should we solve 

the equation to find the optimal action?” To solve the equation, we must be able to 

estimate the value, 𝑉𝑛−1(𝑆𝑀(𝑆𝑛, 𝑥, 𝜔𝑛)), for some set of actions, X. One possible 

solution is to estimate the value for all possible 𝑥 ∈ 𝑋. However, given the curse of 

dimensionality, estimating the value for all possible decisions is likely computationally 

intractable for most problems. 

[DeGregory, 2014] solves equation 11 by solving for only a subset of the decision 

space. The method describes a pre-process that fixes values for some of the decision 

variables. After setting these values, [DeGregory, 2014] uses information from the state 

variable to develop a small number of candidate solutions. The solution carried forward 

in the approximation is the best solution among this smaller list of candidates. 

The solution-space reduction method seems a practical approach for solving 

problems without running afoul of the dimensionality curses. However, many questions 

remain about this approach, and particularly with respect to the DWT VFA. In particular, 

in the course of our research we identified two questions that warrant further 

investigation—“For how many decisions should the value be approximated?” and “How 
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does this number of candidate solutions relate to the size, 𝑁𝑠 (from step 3, above), of the 

approximation?” These two questions provide the motivation for the computational 

aspect of this dissertation. 

4.4 Summary 
In this chapter we reviewed the literature associated with our computational 

approach to solving the problem described in chapter 2. We identified two unanswered 

questions relating to the diffusion wavelet transform approach to approximating value 

functions. These two questions provide the basis for the computational aspect of our 

research. In chapter six we discuss the experimentation that provided us with insight 

regarding these questions. In the next chapter we describe our methodology for applying 

DWT DVA to solve the military force mix problem. 
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CHAPTER FIVE: METHODOLOGY 

Recall that our problem is to determine how best to sequentially adapt the mix of 

capabilities in the Army’s force structure. To solve this problem, we developed an 

approximate dynamic programming formulation. We executed the formulation using a 

Python-based simulation with a value function approximation. In this chapter, we 

describe the simulation and its relationship to the DP formulation and value function 

approximation. 

5.1 Simulation 
To model the force structure adaptation problem we developed a supply and 

demand model in Python. In this model, as military missions occur, demand for forces 

increases; military units represent the supply; and force generation policies represent the 

rules by which units of supply are matched to demands.  

5.1.1 Representing Military Units as Supply 
Units of supply represent individual deployable elements of a given unit type. 

Each unit is represented by a supply object in the simulation. Each object is characterized 

by a collection of data, some of which are static and others dynamic. Static data include 

the unit type and the unit name. Dynamic data include location, which can include 

“Home” or a specific mission; status, which include “Non-Deployable”, “Deployable”, 

and “Deployed”; and cycle time. We update these three dynamic parameters for each unit 
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at the beginning of every time step. We discuss these dynamic data in further detail later, 

in our discussion of policies. 

5.1.2 Representing Military Missions 
In this methodology, military missions are divided into classes. Examples of 

classes of military missions include humanitarian assistance, peace enforcement, and 

homeland defense. Each class of mission is represented by a force list. Each force list, l, 

is characterized by a deterministic duration parameter, 𝑑𝑙 which may be deterministic or 

stochastic; a frequency parameter, 𝜆𝑙; and a list of unit types with associated required 

quantities. Each mission type has one, deterministic list of required quantities. An 

example force list is depicted below. 

 

Table 1: Example Force List 

Mission Enforce Peace 

Frequency 14 

Duration 3 

    

Unit type Quantity 

Tanks 2 

Infantry 3 

Logistics 1 

 

The occurrence of each type of mission, l, is modeled as a Poisson process with 

parameter 𝜆𝑙. By simulating the Poisson process for each mission type, we generate a list 
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of starting times for each mission. Coupling these starting times with the associated 

frequency parameters allows us to visualize the missions over time. Adding the quantities 

demanded for the various unit types allows us to create a demand vector for each unit 

type for each time step in the simulation.  

5.1.3 Governing Supply with Policies 
Policies govern two aspects of supply behavior—the progression through various 

states of readiness for each unit; and rules governing the assignment of units of supply to 

missions. 

Readiness policies are specified through three parameters-- “Not Deployable”; 

“Cycle Max”; and “Deployment.” “Not Deployable” specifies the amount of time a unit 

remains in “Non-Deployable” status before entering “Deployable” status. “Cycle Max” 

describes how long a unit may remain at home before reverting to “Non-Deployable” 

status and is the sum of the amounts of time a unit may be in either a “Non-Deployable” 

or “Deployable” status. For example, if a unit has a “Cycle Max” of 24 months and a 

“Not Deployable” parameter of 9 months, that unit may remain in “Deployable” status 

for fifteen months before returning to “Non-Deployable” status. 

The “Deployment” parameter dictates for how long a unit may be assigned to a 

mission before returning to the “Home” location and to a “Non-Deployable” status. In 

cases where a unit is assigned to a mission that ends before the unit’s remaining 

“Deployment” time reaches zero, that unit will return to the “Home” location and enter 

“Non-Deployable” status 



59 

 

While is it feasible and reasonable to specify different policies for different unit 

types, in practice this is rarely done for units managed on a rotational policy. Thus, for 

the purposes of this research, we allowed for the specification of a single readiness 

policy. 

The rules for assigning units of supply to mission take account of the unit types 

required, the priority of the mission, and the relative cycle time of all deployable units of 

supply. The assignment of units to demands follows a myopic, greedy heuristic. Thus, for 

each given unit type, missions are sorted in priority order, deployable units of supply are 

ordered descending by cycle time, and the two lists are matched until either all mission 

requirements have been satisfied or no deployable units of supply remain. 

5.1.4 Putting the pieces together 
A single iteration of the simulation can be described by its demand, supply, and 

policies. At the beginning of any iteration, supply and demand are initialized.  

Demand initialization executes, for each mission class, the Poisson process. The 

result is a data structure detailing the unit requirements for every unit type, for every time 

step in the simulation. As the simulation progresses, we track mission requirement 

satisfaction. This tracking is discussed in greater detail in section 6.2.  
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Figure 6: Simulation Overview 

 

Supply initialization takes as input an initial supply portfolio which details the 

initial quantities of units for each unit type. For each unit type, the created units’ 

readiness cycle times are evenly distributed across the readiness cycle. For example, if 

the “Cycle Max” parameter is 24 months, and a unit type has three units, the units’ 

readiness will be 0, 8, and 16 months into the 24 month cycle. To ensure sufficiently 

realistic starting conditions for performance measurement, we specify a burn-in period 

during which no performance data are recorded. We describe these performance data in 

greater detail in section 5.2.4.  

After initialization, the simulation executes the same procedure for every time 

step. The total number of time steps and the length of each time step are specified as 
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parameters. At the start of each time step, we update each unit of supply and update 

demands. 

To update supply, we advance the cycle time of each unit by the specified time 

step parameter. Given this advance, we then update the status of each unit, as dictated by 

the policy parameters discussed in section 5.1.3. Finally, we determine which units of 

supply are eligible to be assigned to demands. 

After updating the supply based on the specified policy parameters, we then 

update mission requirements. Missions that begin during the time step are activated. We 

then calculate the total number of units of supply assigned to each active mission. We use 

this calculation to determine the list of unsatisfied demands.  

Finally, we assign deployable units of supply to demand, using the myopic, 

greedy heuristic as described in section 5.1.3. 

5.2 Dynamic Programming Formulation 
In the language of dynamic programming, the simulation, with one additional 

piece of functionality, the decision function, provides us a representation of the transition 

function. Recall from chapter 4 that the transition function defines transitions between 

states given exogenous processes and the decision function (see equations 4.2 and 4.3). In 

the simulation, missions and policies represent exogenous processes. We next describe 

the decision function and then describe the data collected in the simulation and their 

relationship to the state variable and the objective function. 
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5.2.1 Decision Function 
As the simulation progresses from time-step to time-step, assigning ready units of 

supply to unsatisfied mission requirements, we developed a decision variable, 𝑋𝑡, to 

make, at regular intervals, changes to the portfolio of units types in the inventory. We 

define this interval via a decision interval parameter. Typically, as is the case with this 

research, the supply-demand interval is one month and the portfolio decision occurs 

every twelve months.  

At each portfolio decision interval, we decide, for each unit type, the number of 

units to add or remove from the inventory, including the possibility of no changes to the 

inventory. We denote the decision for each unit type, u, as 𝑋𝑡𝑢. Within the simulation, we 

defined a heuristic to apply the force structure decisions at each decision interval. For 

added units, we simply create a new supply object, and initialize the readiness cycle time 

of each unit to zero. For unit types that need to shrink their inventory, we find the least 

ready units with a “Home” location and set the status of the appropriate number of these 

units to “Inactivated.” 

This decision function, coupled with the functionality we discussed in section 5.1, 

provide a method for modeling changes to the system state variable. We next discuss our 

definition of the system state variable. 

5.2.2 Decision Variable Constraints 
The force structure portfolio decisions must meet a number of constraints. 

Specifically, three classes of constraint define the feasible region for the (annual) force 

structure decision— 
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1) Total change in personnel strength must not exceed some net change 

parameter, 

2) Total new structure must not exceed an annual feasibility parameter, 

3) and the range of potential changes for any unit are limited to that which can 

execute for a unit of its size class. 

The third class of constraint provides us a way of representing a bit of reality in 

our methodology. At their most basic, these constraints ensure we do not grow too many 

large units, as defined by their echelon (company, battalion, brigade, in ascending order 

of size) beyond that which the Army can feasibly execute. In general, larger units are 

composed of a number of smaller units. This collection of smaller units may cover a wide 

range of capabilities, thus making these larger units more complex to build. For example, 

an armor brigade combat team is composed of five different types of battalions, each with 

different classes of personnel, and is thus much more difficult to build than an infantry 

company, which is composed overwhelmingly of infantry personnel.  

5.2.3 State Variable 
Within the simulation, we needed to identify a collection of variables that would 

change between force structure decision intervals and whose association with some 

notion of value would allow us to discriminate among potential force structure decisions. 

Ultimately, we decided to model the system state as a vector. This vector contains one 

entry for each unit type and describes the ability of each unit types to meet both readiness 

requirements and forecast mission requirements. The value for each unit type consists of 

three components: the fixed, pre-specified readiness requirements; a relation between 
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forecast and current mission requirements; and a relation between the current and 

theoretical maximum number of deployable units. 

To define the state variable we define the components as follows: 

1. Readiness requirements for unit type u: 𝑅𝑢 

2. Mission requirements: 𝑄𝑢𝑡 

3. Maximum deployable units: 𝑌𝑢 ,where 

𝑌𝑢=
𝐶𝑦𝑐𝑙𝑒𝑀𝑎𝑥−𝑀𝑖𝑛𝐷𝑒𝑝𝑙𝑜𝑦𝑎𝑏𝑙𝑒

𝐶𝑦𝑐𝑙𝑒𝑀𝑎𝑥
∗ (𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑢,𝑇−1 + 𝑋𝑇𝑢)  

4. Currently deployed units: 𝐶𝑢 

Then, 𝑆𝑢 = 𝑅𝑢 + max𝑡∈[𝑇,𝑇+𝑤) 𝑄𝑢𝑡  − 𝑄𝑢𝑇 − (𝑌𝑢 − 𝐶𝑢) and S=(𝑆𝑢). In this 

equation, max𝑡∈[𝑇,𝑇+𝑤) 𝑄𝑢𝑡  − 𝑄𝑢𝑇 accounts for changes in mission requirements in some 

window while 𝑌𝑢 − 𝐶𝑢 accounts for forecast changes in deployments in that same 

window. Taken as a whole, the system state is a forecast for each unit type of its ability to 

satisfy readiness and forecast mission requirements. 

5.2.4 Objective Function 
As is typical of a dynamic program, our objective function is defined as a 

recursive relationship, namely the value of any given state given some decision is the 

sum of the immediate contribution of the decisions given the current state and the value 

of the subsequent state given the decision (see equation 4.1). 

Given this recursive formulation, the contribution function given the current state 

and the decision function is thus the critical element of the objective function. Our 

contribution function is the weighted sum of two elements, demand satisfaction and force 
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readiness relative to some specified requirement, 𝐶𝑇 = 𝑤𝑟 ∗ 𝑟𝑇 + 𝑤𝑑 ∗ 𝑑𝑇, where 

𝑤𝑟 + 𝑤𝑑 = 1. 

Demand satisfaction is the first of two components in the contribution function. 

At the end of every time step in the simulation, we record the total number of units of 

each type assigned to each mission demand and weight both this satisfaction and the 

requirement by the total number of personnel in the relevant unit type. As the simulation 

progresses from decision epoch to decision epoch, we are thus able to calculate the total 

satisfaction across all missions in the decision interval. This total satisfaction is expressed 

as— 

𝑇𝑜𝑡𝑎𝑙 𝑃𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙 𝑀𝑜𝑛𝑡ℎ𝑠 𝑆𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑃𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙 𝑀𝑜𝑛𝑡ℎ𝑠 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑
. 

For example, if a mission requires three 20-person units for three months, the total 

requirement would by 180 person-months; if two-thirds of this demand is met, demand 

satisfaction is 120 person-months.  

At each force structure decision epoch, the mission requirement satisfaction 

component of the contribution is 𝑑𝑇 =
∑ 𝑆𝑎𝑡𝑚𝑚

∑ 𝑅𝑒𝑞𝑚𝑚
, where m is the set of all missions that 

were active at any point in the decision interval. 

The second component of the contribution function is readiness. At each mission 

assignment interval in the simulation we record the number of units that would be 

deployable within some window. For each unit type, we compare this number to a 

specified readiness requirement, specified as a number of units of each type that must be 

deployable within that same window. Thus, for each time step, we are able to calculate 



66 

 

the total force readiness relative to a requirement—𝑟𝑡 =
∑ min(𝑅𝑒𝑎𝑑𝑦𝑢𝑡,𝑅𝑢)∗𝑆𝑖𝑧𝑒𝑢𝑢

∑ 𝑅𝑢∗𝑆𝑖𝑧𝑒𝑢𝑢
, where u 

is the set of unit types and 𝑆𝑖𝑧𝑒𝑢 is the number of personnel in a single unit of type u. The 

readiness component of the contribution is the minimum readiness over the period 

between the current and subsequent force structure decision, 𝑟𝑇 = min𝑡∈(𝑇,𝑇+1] 𝑟𝑡. 

5.2.5 Exogenous Information Processes 
The exogenous information in our formulation affects two components of our 

system state as described in section 5.2.3. The mission simulation affects component 2 of 

the system state, or mission requirements. The overall application of the simulation, 

advancing unit cycles and assigning units to missions, affects component 4 of the system 

state, or the number of units currently deployed at the time a unit inventory decision is 

made.  

5.3 Value Function Approximation Overview 
The goal of an approximate dynamic program is to find an optimal, or near-

optimal, mapping of decisions to states. In this research, we use the Diffusion Wavelet 

value function approximation to determine this mapping. The details of the Diffusion 

Wavelet scheme are given in section 4.2.3 and we will not repeat those details here. 

Instead, we describe the process by which we initialize and leverage simulation data for 

the approximation. 

5.3.1 Iteration and Convergence 
Within the approximation scheme, we endeavor to reach a point at which 

successive approximations do not vary greatly and of which we are reasonably satisfied 

that solutions to Bellman’s equation arising from the approximation are near-optimal. In 
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practical terms, we address each of these considerations with separate mechanisms within 

our methodology. 

We use equation 4.7 to update our value function approximation. This equation 

determines the current approximated value as the weighted sum of the value estimate 

from the current iteration and the estimate from the most recent iteration. The weighting 

factor, α, is critical in reaching a convergent approximation. If we are careless with how 

we select this factor, we may experience a phenomenon known as apparent convergence 

[Powell, 2011]. In apparent convergence, the approximation may reach a period of stable 

approximations which mimic convergence but are merely locally stable. In these 

situations, the approximation is likely to break out of this period of stability to better 

approximations. One potential cause of this is a weighting factor that decreases too 

quickly and thus exerts an unwanted influence on the approximation.  

The other obstacle to reaching a convergent, near-optimal approximation is 

sufficiently searching the state space to provide us confidence the solutions arising from 

our approximation are, in fact, near-optimal. In the next section, we discuss how we 

overcome this obstacle. 

5.4 Implementation of Dynamic Programming 
As we discussed above, to find a near-optimal policy we proceed through a 

number of simulation iterations. This iteration progresses through two phases—an 

exploration phase and an exploitation phase. The goal of the exploration phase is to 

search the decision space to provide a foundation of data for the exploitation phase. 



68 

 

In the exploration phase, force structure decisions are made by one of two 

mechanisms—an exploratory mechanism and function approximation-based mechanism. 

In the exploratory mechanism, a random, feasible (as described in section 5.2.2) decision 

is taken. As the simulation progresses, we track the decisions taken and the realizations of 

the contributions. At the end of the iteration, we use these contributions to estimate, post-

hoc, the value of taking the various decisions in the relevant states. The random decisions 

during the exploration phase ensure we have searched the decision space.  

With the function approximation-based mechanism, we use the current value 

function approximation to make a force structure decision. Specifically, we use the value 

function approximation to determine which decision maximizes Bellman’s equation.  

The exploration phase occurs over some pre-defined number of iterations. An 

iteration uses the exploratory mechanism with probability, p, where p is determined from 

a decreasing function whose value is close to 1 early in the exploration phase and reaches 

0 at the end of the exploration phase. Within a single iteration, the decision mechanism is 

constant.  

The exploitation phase uses the same mechanics as the exploration phase with one 

key modification—the probability of taking a random decision, i.e., exploring, is zero. 

The exploitation phase continues for a fixed number of iterations or until the value 

function approximation converges. 

5.5 Summary 
In this chapter, we described our methodology and model formulation for solving 

the Army force structure adaptation problem. In the next chapter, we describe a case 



69 

 

study through which we demonstrate the feasibility of the methodology for solving the 

problem. 
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CHAPTER SIX: EXPERIMENTATION 

Recall the two objectives of this research: to demonstrate the feasibility of the 

approximate dynamic programming approach to solving the force structure adaptation 

problem and to examine the effect of value function approximation size on solution 

quality. Our base hypothesis is that, within the range we tested, larger approximations 

will yield better solutions. In this chapter, we describe the experimentation we conducted 

to achieve these objectives, and test and refine the base hypothesis.  

6.1 Experimentation Overview 
Before we could test the solution quality of the DWT VFA, we first had to train 

the VFA. Thus, the each experiment occurred over three distinct phases—an exploration 

phase, in which we initiated the value function approximation; a learning phase, in which 

we trained the value function approximation; and a “learnt” phase in which we assessed 

the solution quality of the VFA by applying the approximation in an approximate 

dynamic programming context against a number of test scenarios. 

6.1.1 Exploration and a Decision Heuristic 
One challenge we had to overcome in this research was the sheer size of the 

decision space. As we describe below, we simulated a force with twenty different unit 

types. Based on this and application of the decision space constraints, our decision space 
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had 804,651 possible decisions. This number of potential decisions would far outstrip the 

computational ability of our system to estimate the value of every post-decision state. 

To overcome this decision space challenge, we developed a heuristic to drastically 

reduce the number of decisions we evaluated. To develop our reduced decision space, we 

used the state space, which indicates relative surplus or shortage of inventory, to rank 

order the 20 unit types. We then selected the five unit types with the greatest projected 

surplus and five unit types with the greatest projected shortage as our candidates for 

reduction or growth respectively.  

Decision space constraints limited the total growth or reduction of each unit type 

to one unit per decision, and our total number of new unit could not exceed three. 

Applying these constraints to our two candidate populations reduced our decision space 

to 226 decisions to be evaluated.  

During exploration simulations, we selected randomly from this list of 226 

decisions. For exploitation simulations, we evaluated these decisions using the diffusion 

wavelet transform value function approximation (DWT VFA) and chose the decision that 

took us to the most valuable post-decision state. Given the approximation sizes we 

describe below, we were able to evaluate all candidate decisions with one single 

application of the DWT VFA. 

6.1.2 Learning Phase Description 
Before we describe the details of the learning phase, we begin with some 

terminology. When we use the word “scenario,” we mean an arraying over time of the 

simulated mission occurrences with their associated force requirements. A simulation 
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dynamically applies specified force generation parameters to the inventory of unit, 

assigns units to the scenario missions, and adjusts unit inventories by applying the 

appropriate decision function. A single iteration, also called a state visit, is the application 

of a single force structure inventory decision at a state. Thus, each simulation is 

composed of one or more iterations. 

Each simulation is defined by four major factors-- the scenario; the inventory of 

units; force generation parameters; and a decision function. We created each scenario by 

simulating the occurrence of eight mission types. The Poisson parameter and force 

requirements for each mission type are described below. We started each simulation with 

the same initial inventory, across 20 unit types of the same size, which is described 

below. We applied a 24 month force generation cycle: each unit was deployable 6 months 

after the beginning of a cycle and deployments were capped at 9 months. Decisions in the 

simulation were random, as described above, or derived from the VFA-based 

optimization described in chapter 5. 
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Table 2:Mission Requirements 

 
 

The learning phase had three distinct sub-phases—an initialization phase, 

intended to initialize the VFA by visiting many states with random decisions; a transition 

phase, during which we slowly transitioned from random decisions to VFA-based 

decisions; and an exploitation phase, during which we used VFA exclusively to make 

inventory decisions. 

 

Unit Type Mission 1 Mission 2 Mission 3 Mission 4 Mission 5 Mission 6 Mission 7 Mission 8

A 3 1 3 3

B 2 1 2 2

C 2 2 6 2 1 6 6

D 1 3 1 1 3 3

E 1 3 1 3 3

F

G 1 2 3 1 1 1 3 3

H 1 2 3 1 1 3 3

I 1 1 3 1 1 1 3 3

J 1 1 2 1 1 2 2

K 1 1 3 2 1 1 4 4

L 1 1 1

M 4 4 4 4

N 2 1 2 2

O

P

Q 3 1 3 3

R 1 2 2

S 3 1 3 3

T 1 3 1 1 1

Frequency 27 90 110 162 60 90 45 27

Duration 6 36 12 15 6 18 1 2
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Table 3: Inventories and Readiness Requirements 

 
 

In the process of determining exactly how to structure the learning phase (beyond 

the three phases and the application of decision functions therein), we identified two 

potential options. Each option lent itself to studying different aspects of the problem and 

each option had the potential to run afoul of the curse of dimensionality. The first option, 

to specify phase transition criteria and run simulations until all transition/termination 

criteria had been met would have allowed us to study the convergence properties of the 

value function approximation in greater detail, at the potential cost of having to run 

orders of magnitude more simulations than time would permit. The second option, to 

Unit Type Initial Inventory Alt Inventory 1 Alt Inventory 2 Readiness Requirement

A 9 8 2 6

B 8 0 5 3

C 9 0 13 7

D 6 14 16 3

E 9 0 16 3

F 5 4 12 10

G 10 5 12 3

H 10 18 1 3

I 9 5 11 3

J 12 5 12 2

K 10 18 6 5

L 5 7 11 1

M 11 16 3 2

N 8 12 2 3

O 5 9 12 2

P 5 5 12 3

Q 7 15 4 3

R 8 1 8 3

S 10 7 3 6

T 7 14 2 1
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specify phase lengths a priori and run for a fixed number of simulations would allow us 

to assess solution quality with reasonable controls and within manageable time. 

After much consideration and informal experimentation, we opted to specify 

phase lengths a priori. All results discussed in this dissertation are based on an 

initialization phase of 5 million iterations, a transition phase of 2 million iterations, and 

an exploitation phase of up to 5 million iterations (though in all cases we ran only 2 

million iterations).  

In each case, we observed the mean squared error of the gradient and monitored 

this MSE for signs of convergence. [DeGregory, 2014] describes convergence within a 

band. We applied the convergence with band approach to identify our stopping 

conditions. For each measurement of the squared error of the gradient, we calculated a 

mean (MSE) and plus-or-minus one standard deviation band, using the previous 500 

observations of the squared error. We then counted the number of consecutive MSE 

measurements that fell within its band. 

6.1.3 Assessing the Impact of Approximation Size on Solution Quality 
To assess the impact of approximation size we needed some way to compare 

outcomes against some common feature. Tc achieve this, we generated 1,000 scenarios 

using the Poisson processes described above. We then simulated each scenario applying 

the base force structure and force generation rules described above, applying the DWT 

value function approximations that resulted from the learning phase of each test case. 

This simulation allowed us to compare solution quality within the DWT VFA.  
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However, to truly demonstrate goodness of the DWT VFA approach, we needed 

to compare not only within variations on the DWT VFA, but with other approximate 

dynamic program solution methods within the literature. To determine the potential 

goodness of a VFA approach, [Powell, 2011] suggested asking, “Does a value function 

add value?” In this context, he makes repeated reference to a myopic policy. Given this 

discussion, we decided that comparing outcomes with our DWT VFA approach to 

outcomes applying a myopic heuristic would be useful in establishing the goodness, or 

added value, or our DWT VFA approach. Put another way, the myopic policy would 

serve as an external control on statements of solution quality. 

Having devised a way to establish the added value of our approach, we then 

needed to determine a way to mitigate the possibility that any added value we identified 

was an artifact of the setup of our study. In considering this need, we identified two 

critical factors that might lead to misrepresenting the goodness of our approach—each of 

the 1,000 scenarios we simulated started with the same inventory; and stated preferences 

for outcomes measured in the objective function were fixed. In other words, we needed to 

ensure that our statements of goodness were robust to varying initial conditions and to 

changes in decision-maker preferences.  

To investigate the robustness to initial conditions, we randomly generated two 

additional force structures, listed above as “Alternate 1” and “Alternate 2”, each with the 

same total number of units as the structure listed as “Initial.” We then performed the 

simulation of the same 1,000 scenarios, substituting the initial structure with each 

alternative. We did not re-learn a value function approximation because the initial state of 
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the simulation would be captured by the state space representation that resulted from the 

learning phase. 

To investigate the robustness we decided to reverse the weights. Since state 

values are determined by the objective function, which is a function of the weights, we 

needed to relearn the value function approximation using the new weights. Thus, we re-

executed the learning phase of our model for multiple approximation sizes. We then re-

simulated the 1,000 test scenarios for each combination of approximation and initial 

inventory. In total, we learned 10 value function approximations, which are summarized 

below. 

 

Table 4: Approximations Learned 

 
 

6.1.4 Computational Time 
The first consideration we examined during our experimentation was 

computational time. As we simulated the 1,000 scenarios for each approximation, we 

noted the amount of time needed to simulate the scenarios to completion. We ran the 

simulations on a PC running 64-bit Windows 7 with 32 gigabytes of RAM and a 3GHz 

Intel Xeon 5760 processor. Although the processor had a dual core, we did not use any 

Experiment wd wr 250 375 500 625

1 0.7 0.3 x x x x

2 0.3 0.7 x x

3 0.1 0.9 x x

4 0.9 0.1 x x
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multi-threading to reduce computational time. The average simulation times for each of 

the four approximations across the 1,000 scenarios are listed below.  

 

Table 5: Average Simulation Time Over 1,000 Simulations 

Size Avg. Simulation Time (sec) 

250 5.4 

375 9.1 

500 14.6 

625 22.5 

 

 

It is clear from the data above that approximation size is a critical factor in 

determining computational time. During development of the program, our speed 

benchmarks indicated that about 80% of the computational time for any simulation was 

due to QR factorizations required to calculate basis and scaling functions in the diffusion 

wavelet transform.  

We should note here that with the diffusion wavelet transfer, the simulations 

times are a function of the approximation size and not a function of the length of the state 

space vector. In our case, the state space vector had 20 entries. A single simulation for a 

problem with 40, 50, or any arbitrarily larger (or smaller) number of entries would take 

the same amount of time. This independence from problem size is part of the appeal of 

the DWT VFA. 
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However, computational resources are finite, so we should choose an 

approximation size that balances computational burden with solution quality. At the 

speeds listed above, running the 100,000 simulations with a 625 state approximation for 

the third sub-phase of our learning phase took about 26 days while the same number of 

simulations with a 250 state approximation took less than one week. So, when 

considering practical application of this methodology, we need to assess to what extent, if 

any, the additional computational time improves simulation outcomes. The remainder of 

this chapter presents our analysis of simulation outcomes. 

6.2 Learnt Phase: First Experiment 
Our first experiment utilized an objective function weighted 70% for satisfying 

current mission requirements and 30% maintaining readiness for future contingencies. As 

discussed above, we first learned four value function approximations. We then executed 

the learnt phase for each value function approximation and compared the quality of 

decisions applying these approximations to the quality of decisions applying a myopic 

heuristic. 

6.2.1 Solution Quality  
To assess solution quality, we tracked two data point from each scenario: total 

mission requirements satisfied over the 20 year simulation and average readiness over the 

same period. Initial inspection of these data indicated that for each o each of the four 

DWT value function approximations outperformed the myopic heuristic in all scenarios 

for both data points. Given this finding, we decided to use the ratios of mission 
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satisfaction and readiness relative to the myopic heuristic as our modeling metrics. We 

thus tracked percent increase of mission requirement satisfaction and readiness. 

Given the experimental setup described in section 6.1, we decided to treat our 

experiment like a fixed-effect model with a complete block design. In this setup, each of 

the four DWT VFAs (denoted by i below) was a treatment and each of the 1,000 

scenarios (denoted by j below) was a block. With this setup, we modeled each 

observation as: 𝑦𝑖𝑗 = 𝜇 + 𝜏𝑖 + 𝛽𝑗 + 𝜖𝑖𝑗, where µ is the overall mean, 𝜏𝑖is the mean for 

treatment i, 𝛽𝑗 is the mean for block j, and 𝜖𝑖𝑗is an error term.  

We first set out to determine to what extent approximation size contributes to 

better satisfaction of mission requirements. We needed to determine if the treatment 

means were different. To this end, we proposed the following hypothesis:  

𝐻0: 𝜏250 = 𝜏375 = 𝜏500 = 𝜏625 

𝐻1: 𝜏𝑘 ≠ 𝜏𝑙 for some k,l ∈ 250, 375, 500, 625 

To test this hypothesis we conducted an analysis of variance. With an F-statistic 

of 405 and 3 degrees of freedom, the ANOVA results indicated that we could reject our 

null hypothesis at the α=.01 level of significance.  

Since we rejected the null hypothesis of equal treatment means, we then needed to 

determine which treatment means differed significantly. We performed Duncan’s 

multiple range test. This test allowed us to differentiate between individual treatment 

means. The results of this test indicated that each of the four treatment means was 

significantly different from the other means. Further, the results indicated the following 
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order, from best to worst, of the four treatments: 625, 500, 250, 375. The individual 

treatment means from Duncan’s multiple range test are detailed in below.  

 

Table 6: Experiment One, Mission Requirement Improvement Relative to a Myopic Heuristic 

Approximation 

Base 

Inventory 

Alt Inventory 

1 

Alt Inventory 

2 

250 1.8% 4.3% 3.9% 

375 1.6% 3.4% 3.9% 

500 2.1% 7.7% 3.1% 

625 3.2% 13.3% 4.8% 

 

 

We then repeated the experiment for each of the two alternate initial inventories. 

For alternate inventory 1, we were able to reject the null hypothesis of equal treatment 

means at the α=.01 level of significance (F=2,613 and df=3). Duncan’s multiple range 

test indicated all treatment means being significantly different from other treatment 

means with the same order as with the base inventory. Similarly, for alternate inventory 

2, we were able to reject the null hypothesis of equal treatment means at the α=.01 level 

of significance (F=158 and df=3). However, Duncan’s multiple range test indicated that 

approximations with 250 and 375 states did not produce significantly different 

improvements in mission requirement satisfaction and the approximation with 500 states 

produced the worst improvements in mission requirement satisfaction of all treatments. 

The order of means was 625, 250 and 375, 500.  
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We conducted the same statistical tests to determine if the treatment means for 

improved readiness were significantly different. For each inventory, we were able to 

reject the null hypothesis of equal treatment means. The ANOVA for treatment means for 

the base inventory had an F statistic of 1,497; for the first alternate inventory 2,172; and 

for the second alternate inventory 2,801. Duncan’s test indicated significant differences 

between all means. The mean readiness improvement data for each of the three 

inventories and four approximations are listed below. 

 

Table 7: Experiment One, Readiness Improvement Relative to a Myopic Heuristic 

Approximation 

Base 

Inventory 

Alt Inventory 

1 

Alt Inventory 

2 

250 13.6% 12.6% 13.0% 

375 12.8% 12.1% 12.0% 

500 9.8% 7.6% 7.8% 

625 16.9% 15.1% 16.7% 

 

 

6.2.2 Discussion 
Our results indicate that for both metrics, improved mission requirement 

satisfaction and readiness, the size of the approximation has a statistically significant 

effect on those improvements. For both metrics, the largest approximation outperformed 

the other approximations. However, the results are less clear for the other three 

approximation sizes. The smallest approximation yielded the second best improvements 

in readiness for all three inventories. The smallest approximation also outperformed 
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larger approximations with respect to meeting mission requirement for one of the 

inventories. Given the computational cost of larger approximations, this ambiguity 

indicates that it might be computationally prudent to rely on the smallest approximation 

we tested, 250 states. For the analyses we discuss in the next section, we compared only 

the approximations using 250 and 625 states.  

6.3 Learnt Phase, Experiment 2: Assessing the Robustness of Findings to 
Alternative Preferences 

To examine the robustness of our findings to alternative preferences, we decided 

to reverse the weights in the objective function: the weight for readiness changed to .7 

and the weight for meeting mission requirements changed to .3. We conducted the same 

statistical tests with the same null hypotheses, namely equal treatment means. For each of 

the three inventories we tested, we were able to reject the null hypothesis of equal 

treatment means for both the readiness and mission requirements metrics. The relevant 

ANOVA test statistics are depicted below. 

 

Table 8: Experiment Two, F-Statistics for Comparing Equality of Means 

Inventory 

Mission 

Requirement Readiness 

Base 27 4,492 

Alt 1 12.5 5,728 

Alt 2 101.5 5,809 
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Closer inspection of the data revealed an interesting finding. For both metrics, the 

smaller approximation yielded better outcomes. The mean outcomes for both metrics are 

listed below. 

 

Table 9: Experiment Two, Performance Improvements Relative to a Myopic Heuristic 

Mission requirements 

Approximation Base Inventory Alt Inventory 1 Alt Inventory 2 

250 3.5% 14.9% 5.1% 

625 3.2% 14.4% 4.3% 

    Readiness 

Approximation Base Inventory Alt Inventory 1 Alt Inventory 2 

250 19.7% 17.3% 19.0% 

625 14.4% 12.2% 13.8% 

 

 

This result was rather unexpected. However, a few factors may bear on this 

observation. First, the readiness requirements are deterministic. And in general, readiness 

requirements are greater than mission requirements. It may be the case that weighting the 

generally larger, deterministic factor more heavily than stochastic factors greatly 

simplifies the structure of the state space to value space mapping. Plus, in our 

methodology, we use a simplifying heuristic to assign units to missions. A method that 

attempts to optimize both structure and assignment of units might benefit from a larger 

approximation. However, such a method is beyond the scope of this research.  
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6.4 Learnt Phase, Experiments 3 and 4: Further testing with more 
extreme weights 

Based on the above observations, we hypothesized that the reversal of 

performance should hold for other alternate weights. To test the hypothesis, we 

conducted two additional experiments with more extreme weights on the two factors: 

weights .9 for readiness, .1 for mission requirements and .1 for readiness, .9 for mission 

requirements. 

 

Table 10: Experiment Three, F-Statistics Comparing Equality of Means 

Inventory 

Mission 

Requirement Readiness 

Base 56 695 

Alt 1 190 603 

Alt 2 7.9 749 

 

 

Table 11: Experiment Three, Performance Improvement Relative to a Myopic Heuristic 

Mission requirements 

Approximation 

Base 

Inventory 

Alt Inventory 

1 

Alt Inventory 

2 

250 3.8% 15.7% 5.4% 

625 3.3% 13.9% 5.1% 

        

Readiness 

Approximation 

Base 

Inventory 

Alt Inventory 

1 

Alt Inventory 

2 

250 19.6% 17.2% 19.0% 
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625 17.4% 15.4% 17.1% 

 

 

The results, detailed below, were somewhat surprising. As expected, and 

consistent with our new hypothesis, the experiment that weighted readiness, the 

deterministic factor, more heavily, had better results with the smaller (250 state) 

approximation. However, the other experiment, which weighted mission requirements 

more heavily, also had better results with the 250 state approximation. 

 

Table 12: Experiment Four, F Statistics for testing equality of treatment means 

Inventory 

Mission 

Requirement Readiness 

Base 76 864 

Alt 1 1,012 1,332 

Alt 2 0.03 738 

 

Table 13: Experiment Four, Performance Improvement Relative to a Myopic Heuristic 

Mission requirements 

Approximation 

Base 

Inventory 

Alt Inventory 

1 

Alt Inventory 

2 

250 3.2% 13.9% 5.1% 

625 2.8% 9.5% 5.1% 

        

Readiness 

Approximation 

Base 

Inventory 

Alt Inventory 

1 

Alt Inventory 

2 
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250 19.9% 18.0% 19.0% 

625 17.4% 15.4% 17.1% 

 

 

6.5 Discussion 
We began the discussion of our results by highlighting the computational burden 

associated with different approximation sizes. Within the range we tested, we observed 

run times of up to 26 days to complete 2 million state visits over 100,000 simulations. 

This run time is significant. Our problem size, 20 unit types, is comparable to many of 

the problems the Army might face in shaping its force structure. For example, a problem 

of the sort we modeled in this research could be applied to many of the branch-specific 

resourcing decisions encountered in a typical Total Army Analysis. And a brigade mix 

problem would also have in the neighborhood of 20 unit types. So our method should be 

applicable to many interesting force structure problems.  

However, overall problem size is multiplicative in the number of unit types. To 

apply this method to the entirety of the Army would require significant additional 

research. We did not investigate different approaches to exploring and exploiting the state 

space. There may be significant dependencies between either of these and solution 

quality associated with the DWT VFA. We noted that the computation of the DWT VFA 

is a function of only approximation size and not the length of the state space vector. But, 

for larger problems, we may need to explore for longer to ensure sampling of the state 

space; we cannot know without more research for how many additional simulations we 
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might need to explore or exploit the state space. Due to this uncertainty, we must still be 

mindful of computational time. 

Our results indicate that for 3 of the 4 experiments we conducted, the smallest 

approximation yields the best results for both mission requirement satisfaction and future 

readiness. It may be the case that for approximations larger than we tested we might see 

an improvement in these two metrics. However, the design of our experiments, fixed 

effects, does not allow us to infer anything about the performance of approximations 

whose sizes lie outside the values we tested. Had we randomly selected approximation 

sizes and learned many more approximations, we might have been able to infer 

performance for some arbitrary approximation size. But given our earlier discussion 

about computing time, such a design would be impractical. We might be able to mitigate 

some of the computational burden through multiple computing threads. Multi-threading 

might make larger approximations more feasible for testing, though any gains in 

computational power are linear in the number of processors, so multi-threading is likely 

not a computational cure-all. 
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CHAPTER 7: CONCLUSION 

[Powell, 2011] tells us that the future of ADP is likely a “collection of fairly 

specific problem classes with well-defined structures.” This point serves as a reminder 

that we probably should not paint too broadly any findings arising from an ADP solution. 

Rather, we might be prudent to extend our findings only to problems with similar 

structures. After all, ADP exists as a field to find computationally tractable, yet 

demonstrably better solutions to massive problems with unique structures.  

In this chapter we discuss the contributions of this research from both a 

methodological and application perspective as well as areas for further research. 

7.1 Application contributions 
The primary objective of our research was to demonstrate the application of 

approximate dynamic programming to the military force mix adaptation problem. We 

accomplished this objective by developing a simulation-based, sequential decision 

making model where decision in the model were determined by applying the diffusion 

wavelet transform as a value function approximation in an approximate dynamic 

programming formulation. 

The United States Army annually revises its force structure. Despite the 

computational challenges we discussed earlier, the methodology we developed is capable 

of prescribing alternative decisions within the annual decision cycle. With sufficient lead 
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time, our methodology can also support numerous sensitivity analyses. All of these are 

possible without any recourse to parallel processing. Any effort to expand this 

methodology to include parallel processing would allow for analysis of sensitivity to 

more parameters and possibly to provide alternative force structure recommendations 

more rapidly, as decisions are being made.  

There is a relative lack of research on military force mix problems. The most 

frequent approach we identified in the literature applies heuristic search of the decision 

space (for example, [Mazurek and Wesolkowski, 2009] and [Helms, 2012]). Fully 

stochastic approaches include some two-stage stochastic programs, [Loerch and 

Coblentz, 2002] and [Checco, 2015] among them. This dissertation is the first instance 

we have identified that applies ADP to solve the military force mix problem. This 

approach extends the problem by identifying the conditions that necessitate changing the 

fore mix, as expressed through the ADP state variable, and selecting a good set of 

changes to make to the mix, as expressed through the ADP decision variable. We now 

refer to the military force mix problem as the military force mix adaptation problem. 

One demonstrated strength of the DWT VFA is its scalability to larger problems. 

We demonstrated our methodology on a sample problem of non-trivial size. With a 

methodology that can apply to force mix problems of up to 20 unit types, we can use this 

methodology for a wide array of problems: brigade mix problems; branch resourcing 

problems within the United States Army’s Total Army Analysis; and likely force mix 

problems for many nations’ armed forces. With further development and research, we 

might be able to develop ADP solutions to the full force mix adaptation problem. 
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7.2 Methodological contributions 
The methodological objective of our research was to investigate the effect of the 

size of the diffusion wavelet transform value function approximation on solution quality. 

This research advanced the field in three critical ways: we examined approximation size 

as relates to solution quality; we established superior performance of the DWT VFA 

relative to a myopic heuristic; and applied our DWT VFA research to the largest problem 

yet investigated in the literature. 

We examined for the first time the effect of approximation size on solution 

quality and established superior performance of the DWT VFA to a myopic heuristic. 

Two previous efforts, [Balakrishna, 2009] and [DeGregory, 2014], studied solution 

quality with application of the DWT VFA. Both established the superiority of VFA 

solutions to a myopic heuristic, but neither addressed approximation size as a variable.  

In this dissertation, we examined four discrete approximation sizes in four distinct 

experiments. Each experiment consisted of simulating 1,000 twenty-year scenarios for 

each of three different starting conditions. In each experiment, VFA identified more 

valuable decisions than the myopic heuristic for every scenario. The myopic heuristic 

never outperformed the value function approximation. 

As we began this research, we expected to find that, within the range of 

approximation sizes we tested, solution quality would monotonically increase with 

approximation size. This proved not to be the case. Our first experiment showed the 

largest approximation, using 625 states, provided the greatest improvement in 

performance relative to the myopic heuristic. However, the smallest approximation, using 

250 states, did not perform much worse. Given the added computational needed to apply 
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a DWT VFA with 625 states, we completed the next three experiments comparing only 

the 250-state and 625-state approximations. In each of these experiments, the 250-state 

approximation identified better solutions than the 625-state approximation, excepting one 

starting condition in one experiment in which the performances did not show a 

statistically significant difference.  

7.3 Areas for future research 
The first area we would pursue to improve this methodology would be to 

incorporate the ability to parallel process multiple simulations simultaneously. Doing so 

would provide immediate additional scalability to our methodology, though this 

scalability would not be a silver bullet. Parallel processing is linear in the number of 

processes while problem complexity is exponential in the number of unit types under 

consideration. However, parallel processing is critical to enabling other areas of potential 

research. 

In addition to parallel processing, we identified three additional areas that warrant 

further study within the existing methodology: examining the effect of larger 

approximations on solution quality, which would be aided by parallel processing; 

examining the effect of imperfect knowledge or varying look-ahead on solution quality; 

and examining the effect on outcomes of changing the learning phase. 
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APPENDIX A: PYTHON CODE 

Our program used ten modules to execute the functionality described in the main 

body of this dissertation. In this appendix we provide the code for the nine of the ten 

modules comprising our program. The tenth module was a general purpose controller 

which we modified frequently to execute our experiments in manageable chunks. We 

thus do not include the controller code in this appendix 

A.1 Simulation 
import Params as Par 

import SupplyClass as SC 

import DemandClass as DC 

import StochDemand as SD 

import MatchingFunctions as MF 

import Initialize as Init 

import ADP 

import random 

import time 

import os 

import pickle 

import thread 
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import DW 

 

errorcount=0 

ObjectiveList=[] 

 

def Simulation(SimLength, BurnIn, 

DecisionInterval,Explore,alpha,SRCData,SupplyList,DemandList,ReadReq,ReadHist): 

    #create lists of states and values if in exploration mode 

    #these will be used throughout the exploration phase to initialize the state 

tracker 

    #for use in value function approximation during exploitation phase 

    global errorcount 

 

    StateTrack=[] 

    ContTrack=[] 

    StateValue=[] 

    decIntervalSat=[] 

    Deactivating=[] 

    ValueList=[] 

    bigV=[] 
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    for T in range(SimLength+1): 

 

        #Update all supply 

        SC.UpdateAllSupply(SupplyList) 

        #Update all demands 

        

DemandList,Deactivating=MF.UpdateAllDemand(T,DemandList,SupplyList) 

        #Update units of supply assigned to deactiving demands 

        SupplyList=SC.UpdateSupplyDeact(SupplyList,Deactivating) 

        #Assign deployable supply to unfilled demands 

        

DemandList,SupplyList=MF.AssignSupplyDemand(DemandList,SupplyList) 

 

        if T%(int(DecisionInterval))==0: 

            if not T>=BurnIn: 

                

s=MF.getSystemState(DemandList,ReadReq,SupplyList,SRCData,T,Par.lookAhead) 

            if not len(StateTrack)==0 and Explore=='Yes': 

                c=calcContribution(SRCData,decIntervalSat,ReadHist,ReadReq) 

                ContTrack.append(float(c)) 

                #clear decision interval satisfaction record after determining 

                #contribution 
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                decIntervalSat[:]=[] 

            if T>=BurnIn: 

                

SupplyList,SRCData,maxval=structureDecision(Explore,T,SupplyList,SRCData,s,ReadR

eq,decIntervalSat,Par.gamma) 

                if not Explore=='Yes': 

                    ValueList.append(float(maxval)) 

                #post-decision state 

                

s=MF.getSystemState(DemandList,ReadReq,SupplyList,SRCData,T,Par.lookAhead) 

                StateTrack.append(s) 

 

        ReadHist=SC.UpdateReadinessHistory(SRCData,SupplyList,ReadHist) 

        

decIntervalSat=DC.trackRecentDemand(SRCData,DemandList,decIntervalSat) 

 

    #after running through a single iteration of the simulation in exploration mode 

    #add the state data to the state tracker for use in exploitation phase 

    if Explore=='Yes': 

        ValueList=CalcTotalCont(ContTrack,Par.gamma) 

        StateValue=list(zip(StateTrack,ValueList)) 

        StateValue=StateValue[:Par.Observations] 
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    bigV=SC.calcBigV(StateTrack,Par.DWInitial) 

    SC.UpdateErrorList(bigV[:Par.Observations],ValueList[:Par.Observations+1]) 

    SC.UpdateStateTracker(StateValue,alpha) 

 

    if len(SC.ErrorList)>=10000: 

        SC.saveErrorList(errorcount,500) 

        errorcount+=1 

 

def 

structureDecision(explore,Time,SupplyList,SRCData,State,ReadReq,decIntervalSat,disco

unt): 

    #Find new structure,place result in variable y 

    if explore=='Yes': 

        #changed function call to RandDec from makeRandomDecision 

        y=ADP.RandDec(SRCData,5,State) 

        maxval=0 

    else: 

        

y,maxval=ADP.makeGoodDecision(State,SRCData,SupplyList,ReadReq,decIntervalSat,

discount) 

    #Apply structure changes 

    SupplyList,SRCData=SC.applyDecision(y,Time,SupplyList,SRCData) 
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    return SupplyList,SRCData,maxval 

 

def calcContribution(SRCData,decIntervalSat,ReadHist,ReadReq): 

    #Get demand satisfaction data over previous decision interval 

    #Then calculate readiness contribution and roll them both up... 

    z=DC.getSatHistory(SRCData,decIntervalSat,'Full') 

    b=SC.getReadinessCont(ReadHist,ReadReq,SRCData) 

    a=100*MF.CalcCont(b,z) 

 

 

    return a 

 

def RecurseValues(elist,discount): 

    if not elist: 

        return 0 

    else: 

        return elist[0]+discount*RecurseValues(elist[1:],discount) 

 

def CalcTotalCont(elist,discount): 

    ContList=[] 

    for i in range(len(elist)): 

        ContList.append(RecurseValues(elist[i:],discount)) 
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    return ContList 

 

def writedatatofile(path): 

    myfile=open(path+'\\perf.txt','w') 

    for item in ObjectiveList: 

        myfile.write(str(item)+'\n') 

    myfile.close() 

 

def storeObjTracker(path): 

    name=path+'//Obj.pkl' 

    F=open(name,'wb') 

    pickle.dump(ObjectiveList,F) 

    F.close() 

 

def LearntExperiment(Type, SimLength, BurnIn, 

DecisionInterval,SupplyList,SRCData,DemandList,ReadHist,ReadReq): 

 

    ContTrack=[] 

    decIntervalSat=[] 

    Deactivating=[] 

    ValueList=[] 
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    for T in range(SimLength+1): 

 

        #Update all supply 

        SC.UpdateAllSupply(SupplyList) 

        #Update all demands 

        

DemandList,Deactivating=MF.UpdateAllDemand(T,DemandList,SupplyList) 

        #Update units of supply assigned to deactiving demands 

        SupplyList=SC.UpdateSupplyDeact(SupplyList,Deactivating) 

        #Assign deployable supply to unfilled demands 

        

DemandList,SupplyList=MF.AssignSupplyDemand(DemandList,SupplyList) 

 

        if T%(int(DecisionInterval))==0 and T>=BurnIn: 

            if not T>=BurnIn+1: 

                

s=MF.getSystemState(DemandList,ReadReq,SupplyList,SRCData,T,Par.lookAhead) 

            if T>=BurnIn+1: 

                c=calcContribution(SRCData,decIntervalSat,ReadHist,ReadReq) 

                ContTrack.append(float(c)) 
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            if T>=BurnIn: 

                #Force structure decision 

                

SupplyList,SRCData=LearntDecision(Type,T,SupplyList,SRCData,s,ReadReq,decInterv

alSat) 

                #post-decision state 

                

s=MF.getSystemState(DemandList,ReadReq,SupplyList,SRCData,T,Par.lookAhead) 

            #clear decision interval satisfaction record after determining contribution 

and making decision 

            decIntervalSat[:]=[] 

 

        ReadHist=SC.UpdateReadinessHistory(SRCData,SupplyList,ReadHist) 

        

decIntervalSat=DC.trackRecentDemand(SRCData,DemandList,decIntervalSat) 

 

    ValueList=CalcTotalCont(ContTrack,Par.gamma) 

    Objective=ValueList[0] 

 

    return Objective 

 

def LearntDecision(Type,T,SupplyList,SRCData,s,ReadReq,decIntervalSat): 
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    if Type=='VFA': 

        

y,maxval=ADP.makeGoodDecision(s,SRCData,SupplyList,ReadReq,decIntervalSat,Par.

gamma) 

    elif Type=='Myopic': 

        #Need to make a myopic decision function 

        y=ADP.MyopicDecision(s,SRCData,SupplyList,ReadReq,decIntervalSat) 

    SupplyList,SRCData=SC.applyDecision(y,T,SupplyList,SRCData) 

    return SupplyList,SRCData 

 

def ValidationExperiment(Type,path,count,SimLength,BurnIn,DecisionInterval): 

    #initialize input data for a simulation 

    fname=path+'Validate//dem_'+str(count)+'.pkl' 

    

SupplyList,SRCData,DemandList,ReadHist,ReadReqt=Init.InitializeValidation(path,fna

me) 

 

    if Type=='VFA': 

        g='StateSpace_Final.pkl' 

        Init.InitializeApprox(path,g,Par.LenStateTrack) 

 

    #run a simulation with the relevant inputs 
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    obj=LearntExperiment(Type, SimLength, BurnIn, 

DecisionInterval,SupplyList,SRCData,DemandList,ReadHist,ReadReqt) 

    #append the simulation data to the relevant data structure 

    ObjectiveList.append(obj) 

 

def InitIterations(numiters): 

 

    InitialComplete=False 

    iteration=1 

    alpha=.95 

 

    while iteration<=numiters and not InitialComplete==True: 

        #Clear simulation inputs from previous iteration 

        SupplyList=[] 

        SRCData={} 

        DemandList=[] 

        ReadReq={} 

        ReadHist={} 

        #initialize supply structures for this iteration 

        SupplyList,SRCData=SC.InitSupply('.//SupplyRecords.txt') 

        #initialize demand structures for this iteration 

        DemandList=SD.processDemandDirectory('.//DemFiles') 
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        #initialize readiness structures for this iteration 

        ReadReq,ReadHist=SC.InitReadReqt('.//Readiness.txt') 

        

Simulation(Par.SimLength,Par.BurnInPd,Par.DecInterval,'Yes',alpha,SRCData,SupplyLis

t,DemandList,ReadReq,ReadHist) 

        if iteration%500==0: 

            SC.TrimTracker() 

            print 'Tracker',len(SC.StateTracker) 

            SC.storeStateTracker('.//','19Init') 

            print iteration, time.clock(),alpha 

        iteration+=1 

        alpha=alpha-.000001 

    SC.StateTracker.sort(key=lambda k: (k['Value']),reverse=True) 

    SC.storeStateTracker('.//','19Init') 

 

def TransitionIterations(numiters,numstates): 

 

    iteration=1 

    alpha=.7 

    p=.8 

    p0=.8 

 



105 

 

    Init.InitializeApprox('.//','StateSpace_73Init.pkl',numstates) 

 

    while iteration<=numiters: 

        SupplyList=[] 

        SRCData={} 

        DemandList=[] 

        ReadReq={} 

        ReadHist={} 

        explorechance=random.random() 

        #initialize supply structures for this iteration 

        SupplyList,SRCData=SC.InitSupply('.//SupplyRecords.txt') 

        #initialize demand structures for this iteration 

        DemandList=SD.processDemandDirectory('.//DemFiles') 

        #initialize readiness structures for this iteration 

        ReadReq,ReadHist=SC.InitReadReqt('.//Readiness.txt') 

        if explorechance<=p: 

            

Simulation(Par.SimLength,Par.BurnInPd,Par.DecInterval,'Yes',alpha,SRCData,SupplyLis

t,DemandList,ReadReq,ReadHist) 

        else: 
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Simulation(Par.SimLength,Par.BurnInPd,Par.DecInterval,'No',alpha,SRCData,SupplyList

,DemandList,ReadReq,ReadHist) 

        if iteration%500==0: 

            print iteration, time.clock() 

        iteration+=1 

        alpha=alpha-.15/float(numiters) 

        p=p-p0/float(numiters) 

 

def ExploitIterations(numiters,numstates): 

 

    iteration=1 

    alpha=.55 

 

    Init.InitializeApprox('.//','StateSpace_TransAW19.pkl',numstates) 

 

    while iteration<=numiters: 

        SupplyList=[] 

        SRCData={} 

        DemandList=[] 

        ReadReq={} 

        ReadHist={} 
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        #initialize supply structures for this iteration 

        SupplyList,SRCData=SC.InitSupply('.//SupplyRecords.txt') 

        #initialize demand structures for this iteration 

        DemandList=SD.processDemandDirectory('.//DemFiles') 

        #initialize readiness structures for this iteration 

        ReadReq,ReadHist=SC.InitReadReqt('.//Readiness.txt') 

        

Simulation(Par.SimLength,Par.BurnInPd,Par.DecInterval,'No',alpha,SRCData,SupplyList

,DemandList,ReadReq,ReadHist) 

        if iteration%500==0: 

            print iteration, time.clock() 

            SC.storeStateTracker('.//','Final') 

        iteration+=1 

        alpha=alpha-.45/float(250000) 

 

A.2 Matching Functions 
import SupplyClass as SC 

import DemandClass as DC 

import Params 

import time 

 

RecentPerf=[] 
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def UpdateDemandFill(DemandList,SupplyList): 

    #make list of active demands 

 

    ActiveDemandList=[obj for obj in DemandList if obj.status=='Active'] 

 

    for obj in ActiveDemandList: 

        #make list of units assigned to current demand in the loop 

        Units=[x for x in SupplyList if x.location==obj.name] 

        #Number of units assigned 

        count=len(Units) 

        if count>=obj.qty+1: 

            print 'More assigned than needed' 

        obj.UpdateAssigned(count) 

        #increment the total number of unit months satisfied 

        obj.UpdateTotSat(obj.assigned) 

 

    return DemandList 

 

 

def UpdateAllDemand(Time,DemandList,SupplyList): 

    #Deactivate Demands with finish = "Now"-1 
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    #Activate Demand with start = "Now" 

    DemandList,Deactivating=DC.UpdateDemandStatus(Time,DemandList) 

    #Update number of units assigned to each demand 

    DemandList=UpdateDemandFill(DemandList,SupplyList) 

 

    return DemandList,Deactivating 

 

def AssignSupplyDemand(DemandList,SupplyList): 

    #Find unfilled, active demands 

    DList=DC.FindUnfilledDemand(DemandList) 

 

    #Find deployable supply 

    SList=SC.FindDeployableSupply(SupplyList) 

 

    #make list of SRCs with at least one unfilled demand 

    q=DC.getUnfilledSRC(DList) 

    #iterate through the list of SRCs 

    for entry in q: 

        #Make a list of deployable supply with the SRC, ordered by CycleTime, 

descending 

        Supp=[x for x in SList if x.SRC==entry] 

        #Make a list of  unfilled demands with the SRC, ordered by priority 
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        Dem=[y for y in DList if y.SRC==entry] 

        #for each entry in the Dem list 

        for demand in Dem: 

            #if supply list is not empty 

            if Supp: 

                #determine number of units to assign 

                n=min(len(Supp),demand.qty-demand.assigned) 

                #assign units to demand 

                for q in range(n): 

                    Supp[q].AssignSupply(demand.name) 

               #delete the assigned units of supply from the supply list 

                Supp[0:n]=[] 

 

    return DemandList,SupplyList 

 

def CalcCont(Ready,Fill): 

    

Cont=Ready*Params.MetricWeight['Ready']+Fill*Params.MetricWeight['Now'] 

    return Cont 

 

def getSystemState(DemandList,readReq,SupplyList,SRCData,t,window): 

    #system state: combination of window-length demand forecast, readiness 
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    #requirements, and current readiness 

    #1) Calculate max and current demand by SRC 

    #2) Calculate max deployable and currently deployed supply 

    #3) Calculate forecast surplus,shortage=readReq+maxDem-CurrDem-

(MaxDep-CurrDep) 

 

    f=[] 

    SRClist=[obj for obj in SRCData.keys()] 

 

    maxDem=DC.getDemandLookAhead(t,window,DemandList,SRCData) 

    currDem=DC.getDemandLookAhead(t,0,DemandList,SRCData) 

 

    maxDep=SC.getMaxDeployable(SRCData) 

    currDep=SC.getCurrDep(SupplyList,SRCData) 

 

    for entry in SRClist: 

        p=round(readReq[entry]+maxDem[entry]-currDem[entry]-(maxDep[entry]-

currDep[entry]),0) 

        f.append((entry,p)) 

    f.sort() 

 

    return f 
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def TopBottom(length,Forecast): 

    Recent=sorted(Forecast,key=lambda x:x[1],reverse=True) 

    t=Recent[:length] 

    b=Recent[len(Forecast)-length:] 

 

    top=[(item[0],1) for item in t] 

    bottom=[(item[0],-1) for item in b] 

 

 

    return top,bottom 

A.3 Supply Class 
import Params as Par 

import DemandClass as DC 

import ADP 

import numpy as NP 

import time 

import pickle 

import DW 

 

StateTracker=[] 

ErrorList=[] 
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densitycheck=[] 

mu=0 

sigma=0 

mulist=[] 

sigmalist=[] 

 

maxNewStruct=3 #constrains the total new personnel in any year 

EchelonMax={'Bde':1, 'Bn':2, 'Co':3} # lists the max any single SRC at this 

echelon can grow 

TotalUnitGrowth=10 

MaxPAXDelta=1200 #allows for some deviation from 0 end-strength growth 

 

class Supply: 

    def __init__(self, SRC, name, cycletime, location='Home'): 

        self.SRC=SRC 

        self.name=name 

        self.cycletime=cycletime % Par.policy['CycleMax'] 

        self.location=location 

        if self.cycletime<=Par.policy['NotDep']: 

            self.status='NotDeployable' 

        elif self.cycletime> Par.policy['NotDep'] and self.cycletime <= 

Par.policy['CycleMax']: 
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            self.status='Deployable' 

    def UpdateStatus(self): 

        if self.location == 'Home': 

            if self.status == 'Deployable' and self.cycletime>Par.policy['CycleMax']: 

                self.cycletime=0 

                self.status='NotDeployable' 

            elif self.status=='NotDeployable' and self.cycletime>Par.policy['NotDep']: 

                self.status='Deployable' 

        elif self.status=='Deployed' and self.cycletime>Par.policy['Deploy']: 

            self.cycletime =0 

            self.status='NotDeployable' 

            self.location='Home' 

    def UpdateDeact(self,Deactivating): 

        if self.location in Deactivating: 

            self.cycletime =0 

            self.status='NotDeployable' 

            self.location='Home' 

    def AdvanceCycle(self): 

        self.cycletime=int(self.cycletime+1) 

    def AssignSupply(self,name): 

        self.location=name 

        self.status='Deployed' 
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        self.cycletime=0 

    def DeactivateUnit(self): 

        self.status='Inactive' 

        self.location='None' 

 

def InitSupply(filename): 

    #local list and dictionary for use within a single simulation 

    SupplyList=[] 

    SRCData={} 

    SupIn = [line.split() for line in open(filename)] 

 

    for i in range(len(SupIn)): 

        #make dictionary of SRCs: inventory and associated unit sizes, echelon from 

input file 

        SRCData[SupIn[i][0]]=[int(SupIn[i][1]),int(SupIn[i][2]),SupIn[i][3]] 

        #create supply objects and populate a list with these objects 

        for j in range(int(SupIn[i-1][1])): 

            SupplyList.append(Supply(str(SupIn[i-1][0]),str(SupIn[i-

1][0])+'_'+str(j+1),j*Par.policy['CycleMax']/int(SupIn[i-1][1]),)) 

 

    return SupplyList, SRCData 
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def UpdateAllSupply(SupplyList): 

    for Obj in SupplyList: 

        Obj.AdvanceCycle() 

        Obj.UpdateStatus() 

def UpdateSupplyDeact(SupplyList,Deactivating): 

    for obj in SupplyList: 

        obj.UpdateDeact(Deactivating) 

    return SupplyList 

 

def FindDeployableSupply(SupplyList): 

    SupplyDep=[] 

 

    SupplyDep=[x for x in SupplyList if x.status=='Deployable'] 

    SupplyDep=sorted(SupplyDep, key=lambda k: (k.cycletime)) 

 

    return SupplyDep 

 

def createNewSupply(SRC,number,time,SupplyList): 

 

    for i in range(int(number)): 

        #create new units and append to SupplyList 

        SupplyList.append(Supply(SRC,SRC+'_'+str(number)+'_'+str(time),0,)) 



117 

 

    return SupplyList 

 

def InactivateUnits(SRC,number,SupplyList): 

    #make sorted list of names by cycletime for SRC 

    dList=[x for x in SupplyList if x.SRC==SRC] 

    dList=sorted(dList,key=lambda k: (k.cycletime)) 

    dList=dList[0:abs(int(number))-1] 

 

    for obj in dList: 

        #deactivate unit, then remove from SupplyList 

        obj.DeactivateUnit() 

        SupplyList.remove(obj) 

    return SupplyList 

 

def ApplyStructChanges(SRC,quantity,time,SupplyList): 

    if quantity>=1: 

        SupplyList=createNewSupply(SRC,quantity,time,SupplyList) 

    elif quantity<=-1: 

        SupplyList=InactivateUnits(SRC,quantity,SupplyList) 

    else: 

        return 

    return SupplyList 
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def modSRCInventory(SRC,delta,SRCData): 

    SRCData[SRC][0]=SRCData[SRC][0]+delta 

    return SRCData 

 

def InitReadReqt(filename): 

    ReadReq={} 

    ReadHist={} 

 

    Input = [line.split() for line in open(filename)] 

 

    for i in range(len(Input)): 

        ReadReq[Input[i][0]]=int(Input[i][1]) 

        ReadHist[Input[i][0]]=[] 

 

    return ReadReq,ReadHist 

 

def getCurrentReadiness(SRCData,SupplyList): 

    readCurr=[] 

 

    #count number of units of each SRC ready to deploy within 'DepWindow' 

months 
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    for SRC in SRCData: 

        List=[x for x in SupplyList if x.SRC==SRC and x.location=='Home' and 

x.cycletime>=(Par.policy['Deploy']-Par.DepWindow)] 

        c=len(List) 

        T=(SRC,c) 

        readCurr.append(T) 

 

    readCurr.sort() 

 

    return readCurr 

 

def UpdateReadinessHistory(SRCData,SupplyList,ReadHist): 

    #Make variable with current readiness stats for update 

 

    c=getCurrentReadiness(SRCData,SupplyList) 

 

    for entry in c: 

        if len(ReadHist[entry[0]])<=(Par.DecInterval-1): 

            #Grow the list for each SRC until it is DecInterval long 

            ReadHist[entry[0]].append(entry[1]) 

        else: 
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            #once the list is DecInterval long, pop the oldest record, append the new 

one 

            ReadHist[entry[0]].pop(0) 

            ReadHist[entry[0]].append(entry[1]) 

    return ReadHist 

 

def UpdateTotReady(olddata,newdata): 

    #get list of keys (SRCs) from newdata 

    SRClist=[obj for obj in olddata.keys()] 

 

    #for each key, update value list with list items from newdata 

    for item in SRClist: 

        for entry in newdata[item]: 

            olddata[item].append(entry) 

 

    return olddata 

 

def initTotReady(SRCData): 

    datadict={} 

    SRClist=[obj for obj in SRCData.keys()] 

 

    for item in SRClist: 
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        datadict[item]=[] 

 

    return datadict 

 

def getReadinessCont(ReadHist,ReadReq,SRCData): 

    ReadCont=[] 

    Req=0 

 

    #calculate the total personnel ready at each sample 

    for i in range(Par.DecInterval): 

        c=0 

        for SRC in ReadHist: 

            #take the minimum of required and ready, then weight by unit size 

            c+=min(ReadHist[SRC][i],ReadReq[SRC])*SRCData[SRC][1] 

        #once the total personnel is calculated,append to the list 

        ReadCont.append(c) 

 

    #calculate the total personnel required 

    for SRC in ReadReq: 

        Req+=ReadReq[SRC]*SRCData[SRC][1] 

 

    d=min(ReadCont) 
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    #return ratio of ready to required 

    return d/float(Req) 

 

def getSystemState(SRCData,SupplyList): 

    s=getCurrentReadiness(SRCData,SupplyList) 

 

    return s 

 

def UpdateStateTracker(StateStruct,alpha): 

     l=len(StateTracker) 

    tl=[] 

    #Boolean to determine if state tracker has been updated with new data, only 

applies after initializing the DW 

    update=False 

 

    #make list of states in state tracker for searching 

    st=[item['State'] for item in StateTracker] 

 

    for item in StateStruct: 

        #either the state is in the tracker, so retrieve its value, or populate a list of 

states to estimate 
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        if item[0] in st: 

 

            #find where in the list the state resides 

            dex=st.index(item[0]) 

            #retrieve the state's value from the state tracker 

            lastValue=float(StateTracker[dex]['Value']) 

            #use the Bellman update equation to determine the state's new value 

            nextValue=float((1-alpha)*(lastValue)+alpha*item[1]) 

            #update the state tracker with the state's new value 

            StateTracker[dex]['Value']=nextValue 

            StateTracker[dex]['Visits']+=1 

            update=True 

        else: #make a list of states to estimate value 

            tl=[] 

            p={} 

            p['State']=item[0] 

            p['Value']=item[1] #little v hat 

            p['Visits']=1 

            tl.append(p) 

    if not(len(tl))==0: 

        if Par.DWInitial=='Yes': 

            Estimates=ADP.estStateValue(tl,Par.LenStateTrack) 



124 

 

            estStates=[item['State'] for item in Estimates] 

            for item in tl: 

                p={} 

                p['State']=item['State'] 

                dex=estStates.index(item['State']) 

                lastValue=float(Estimates[dex]['Value']) 

                p['Value']=float((1-alpha)*(lastValue)+alpha*item['Value']) 

                p['Visits']=1 

               #if the value is greater than the last entry in the StateTracker, add the 

new state to the list 

                StateTracker.append(p) 

            StateTracker.sort(key=lambda k: (k['Value']),reverse=True) 

            StateTracker[Par.LenStateTrack:]=[] 

            update=True 

        else: 

            for item in tl: 

                p={} 

                p['State']=item['State'] 

                p['Value']=float(alpha*item['Value']) 

                p['Visits']=1 

                StateTracker.append(p) 
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def applyDecision(decVector,Time,SupplyList,SRCData): 

 

    for i in range(len(decVector)): 

        if not decVector[i][1]==0: 

                        

SupplyList=ApplyStructChanges(decVector[i][0],decVector[i][1],Time,SupplyList) 

            SRCData=modSRCInventory(decVector[i][0],decVector[i][1],SRCData) 

        else: 

            next 

    return SupplyList,SRCData 

def convergenceCheck(stability): 

    #determine number of iterations that are within bounds 

    numiters=0 

    YesList=[] 

    YesList=[ErrorList[i] for i in range(len(ErrorList)-stability,len(ErrorList)) if 

(ErrorList[i]>=mu-sigma and ErrorList[i]<=mu+sigma)] 

    numiters=len(YesList) 

    if numiters==stability: 

        convergence='Yes' 

    else: 

        convergence='No' 
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    return convergence 

 

def CalcReadReq(SRCData,ReadReq): 

    Req=0 

    for SRC in ReadReq: 

        Req+=ReadReq[SRC]*SRCData[SRC][1] 

    return Req 

 

def TrackReadiness(SRCData,SupplyList,ReadReq): 

    ready=0 

    req=CalcReadReq() 

 

    c=getCurrentReadiness(SRCData,SupplyList) 

 

    for entry in c: 

        ready+=SRCData[entry[0]][1]*min(entry[1],ReadReq[entry[0]]) 

    return ready/float(req) 

 

def storeStateTracker(path,size): 

    if not type(size)==str: 

        name=path+'//StateSpace_'+str(size)+'.pkl' 

    else: 
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        name=path+'//StateSpace_'+size+'.pkl' 

    F=open(name,'wb') 

    pickle.dump(StateTracker,F) 

    F.close() 

 

 

def estReadinessCont(Candidates,ReadReq,SRCData): 

    ReadCont=[] 

    Req=0 

 

    #calculate the total personnel required 

    for SRC in ReadReq: 

        Req+=ReadReq[SRC]*SRCData[SRC][1] 

 

    #calculate the total personnel ready at each sample 

    for entry in Candidates: 

        c=0 

        r=0 

        for i in range(len(entry['State'])): 

            #take the minimum of required and ready, then weight by unit size 
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c+=min(entry['State'][i][1],ReadReq[entry['State'][i][0]])*SRCData[entry['State'][i][0]][1

] 

        #once the total personnel is calculated,determine proportion for candidate 

        r=(c/float(Req))*Par.MetricWeight['Ready'] 

        ReadCont.append([entry,r]) 

 

    return ReadCont 

 

 

def storeErrorTracker(path): 

    name=path+'//ErrorTrack.pkl' 

    F=open(name,'wb') 

    pickle.dump(ErrorList,F) 

    F.close() 

 

def UpdateVFA(): 

    TempState=[] 

    Tracker=[] 

 

    TempState.append(StateTracker[Par.LenStateTrack-1]['State']) 
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    #sort the state tracker and trim it down to size 

    StateTracker.sort(key=lambda k: (k['Value']),reverse=True) 

    for i in range(Par.LenStateTrack): 

        Tracker.append(StateTracker[i]) 

 

    StateTracker[Par.LenStateTrack:]=[] 

 

    #if the last entry in the newly trimmed tracker is different than before, 

    #new items have been added to the list, so update the DW coefficients 

    if not StateTracker[Par.LenStateTrack-1]['State']==TempState[0]: 

        ADP.initDWdata(Tracker,.5) 

 

def calcMSE(Square): 

    Errors=[] 

    l=len(ErrorList) 

 

    for i in range(l): 

        Errors.append(ErrorList[i]['Square']) 

 

    #calculate MSE 

    squaresum=sum(Errors)+Square 

    MSE=squaresum/float(l+1) 
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    return MSE 

 

def sortedTracker(keep,freq,number): 

    Tracker=[] 

    StateTracker.sort(key=lambda k: (k['Value']),reverse=True) 

    for i in range(keep): 

        Tracker.append(StateTracker[i]) 

 

    return Tracker 

 

def checkVisitSaturation(keep,percent,number): 

    #determine number of frequently visited states 

    if Par.freqVisSaturation=='No': 

        numHighVis=calcVisSet(number) 

        #compare to percentFreqVis=.5 

        if numHighVis>=keep*percent: 

            Par.freqVisSaturation='Yes' 

            StateTracker[keep:]=[] 

 

def calcVisSet(number): 

    templist=[i for i in StateTracker if i['Visits']>=number] 
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    lenlist=len(templist) 

    return lenlist 

 

def getMaxDeployable(SRCData): 

    MaxDep={} 

 

    #theoretical max percentage of units depoyable 

    percentage=(Par.policy['CycleMax']-

Par.policy['NotDep'])/float(Par.policy['CycleMax']) 

    for item in SRCData: 

        Inventory=item[0] 

        Dep=int(int(Inventory)*percentage) 

        MaxDep[item]=Dep 

 

    return MaxDep 

 

def getCurrDep(SupplyList,SRCData): 

    CurrDep={} 

    SRClist=[obj for obj in SRCData.keys()] 

 

    for item in SRClist: 
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        Dep=[entry for entry in SupplyList if entry.SRC==item and 

entry.status=='Deployed'] 

        if Dep: 

            num=len(Dep) 

        else: 

            num=0 

        CurrDep[item]=num 

 

    return CurrDep 

 

def TrimTracker(): 

 

    for item in StateTracker: 

        if item['Visits']==1: 

            StateTracker.remove(item) 

    print 'StateTracker',len(StateTracker) 

 

def checkInitConditions(length,freqvis,density): 

    #check to see if StateTracker has enough high valued, frequently visited states 

    num=0 

    StateTracker.sort(key=lambda k: (k['Value']),reverse=True) 

    for i in range(length): 
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        if StateTracker[i]['Visits']>=freqvis: 

            num+=1 

    densitycheck.append(num/float(length)) 

    if num/float(length)>=density: 

        print 'StateSpace conditions met!' 

        return True 

    else: 

        return False 

 

 

def calcBigV(states,DWInitial): 

    bigV=[] 

    appList=[] 

    StateList=[item['State'] for item in StateTracker] 

    for item in states: 

        d={} 

        d['State']=item 

        d['Value']=0 

        if item in StateList: 

            #if the state is in the tracker, retrieve its value 

            dex=StateList.index(item) 

            d['Value']=StateTracker[dex]['Value'] 
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        elif DWInitial=='Yes': 

            #if the DW has been initialized, append to list for value approximation 

            appList.append(d) 

        else: 

            #if estimating the value is not possible, set to zero 

            d['Value']=0 

        bigV.append(d) 

 

    #approximate value of states in appList, if it exists 

    if not len(appList)==0: 

        Est=ADP.estStateValue(appList,Par.LenStateTrack) 

 

        #create list of states in bigV tracker 

        bigVStates=[p['State'] for p in bigV] 

 

        for entry in Est: 

            #find the location in bigV list of state, update value key 

            dex=bigVStates.index(entry['State']) 

            bigV[dex]['Value']=entry['Value'] 

    bigV.sort(key=lambda k:k['Value'],reverse=True) 

    return bigV 
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def UpdateErrorList(bigV,littleV): 

 

 

    for i in range(len(bigV)): 

 

        diff=bigV[i]['Value']-littleV[i+1] 

        ErrorList.append(diff**2) 

 

def saveErrorList(Type,errorcount,bandcalc): 

    global ErrorList 

    #Save ErrorList to directory 

    if not type(errorcount)==str: 

        name='.//ErrorDumps//Error_'+str(Type)+str(errorcount)+'.pkl' 

    else: 

        name='.//ErrorDumps//Error_'+str(Type)+errorcount+'.pkl' 

    F=open(name,'wb') 

    pickle.dump(ErrorList,F) 

    F.close() 

    l=len(ErrorList) 

    #calculate the mean and error for error band calculation 

    mu=NP.mean(ErrorList[(l-bandcalc):]) 
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    mulist.append(mu) 

    sigma=NP.std(ErrorList[(l-bandcalc):]) 

    sigmalist.append(sigma) 

    #clearErrorList 

    ErrorList[:]=[] 

 

def saveMuSigma(mu,sigma): 

    muname='.//ErrorDumps//Mu.pkl' 

    sigmaname='.//ErrorDumps//Sigma.pkl' 

    F=open(muname,'wb') 

    pickle.dump(mu,F) 

    F.close() 

 

    G=open(sigmaname,'wb') 

    pickle.dump(sigma,G) 

    G.close() 

 

def writeMuSigma(): 

    muname='.//ErrorDumps//Mu.pkl' 

    sigmaname='.//ErrorDumps//Sigma.pkl' 

 

    F=open(muname,'rb') 
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    m=pickle.load(F) 

    F.close() 

 

    G=open(sigmaname,'rb') 

    s=pickle.load(G) 

    G.close() 

 

    mufile=open('.//mu.txt','w') 

    for item in m: 

        mufile.write(str(item)+'\n') 

    mufile.close() 

 

    sigmafile=open('.//sigma.txt','w') 

    for item in s: 

        sigmafile.write(str(item)+'\n') 

    sigmafile.close() 

 

def calcRealReady(ReadyData,SRCData,ReadReq): 

    Ready={} 

    readsum=0 

    reqsum=0 

    SRCList=[obj for obj in SRCData.keys()] 
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    #calculate average readiness by SRC 

    for item in ReadyData: 

        Ready[item]=sum(ReadyData[item])/len(ReadyData[item]) 

    #calculate weighted Average readiness 

    for entry in SRCList: 

        readsum+=SRCData[entry][1]*Ready[entry] 

    #calculate weighted Readiness required 

    for entry in SRCList: 

        reqsum+=SRCData[entry][1]*ReadReq[entry] 

    #calculate weighted average readiness percent 

    r=readsum/float(reqsum) 

 

    return r 

A.4 Demand Class 
import operator 

import SupplyClass as SC 

import Params 

class Demand: 

    def __init__(self, scenario, SRC, name, start, duration, qty, priority, 

status='Inactive'): 

        self.scenario=scenario 

        self.SRC=SRC 
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        self.start=int(start) 

        self.finish=int(start)+int(duration)-1 

        self.qty=int(qty) 

        self.name=name 

        self.assigned=0 

        self.priority=int(priority) 

        self.status=status 

        self.TotReqd=int(qty)*int(duration) 

        self.TotSat=0 

    def UpdateAssigned(self,count): 

        self.assigned=count 

    def UpdateTotSat(self,count): 

        self.TotSat+=count 

 

 

def FindUnfilledDemand(DemandList): 

    DemandUnfilled=[] 

 

    DemandUnfilled=[x for x in DemandList if x.status=='Active' and x.assigned 

<= (x.qty-1)] 

    DemandUnfilled=sorted(DemandUnfilled, key=lambda k: (k.SRC, k.priority)) 
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    return DemandUnfilled 

 

def getUnfilledSRC(List): 

 

    UnfilledSRC=[] 

    seen=set() 

    for obj in List: 

        if obj.SRC not in seen: 

            UnfilledSRC.append(obj.SRC) 

            seen.add(obj.SRC) 

 

    return UnfilledSRC 

 

def UpdateDemandStatus(Time,DemandList): 

    #list of deactivating demands 

    Deactivating=[] 

 

    for x in DemandList: 

        if x.start==Time: 

            x.status='Active' 

        elif x.finish==Time-1: 

            x.status='Inactive' 
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            #add name of demand to both current deactivating and archive thereof 

            Deactivating.append(x.name) 

    return DemandList,Deactivating 

 

def clearHistDeact(): 

    HistDeact[:]=[] 

 

def getSatHistory(SRCData,decIntervalSat,Type): 

    TotalSat=0 

    TotalReqd=0 

 

    if Type=='Full': 

        #if type is full, calculate over full decision interval 

        for item in decIntervalSat: 

            for obj in item.keys(): 

                #TotalSat is weighted by SRC size 

                TotalSat+=int(item[obj][0])*int(SRCData[obj][1]) 

                TotalReqd+=int(item[obj][1])*int(SRCData[obj][1]) 

    elif Type=='Est': 

        #if type is estimate, calculate only for the latest entry into decIntervalSat 

        l=len(decIntervalSat) 

        item=decIntervalSat[l-1] 
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        for obj in item.keys(): 

            #TotalSat is weighted by SRC size 

            TotalSat+=int(item[obj][0])*int(SRCData[obj][1]) 

            TotalReqd+=int(item[obj][1])*int(SRCData[obj][1]) 

 

    if not TotalReqd==0: 

        z=TotalSat/float(TotalReqd) 

    else: 

        z=1 

    #Return size weighted percentage of demand satisfaction 

 

    return z 

 

def TrackFill(): 

    Sat=0 

    Req=0 

 

    for obj in DemandList: 

        Sat+=obj.TotSat*SC.SRCData[obj.SRC][1] 

        if obj.finish>=(Params.SimLength+1) and obj.start<=Params.SimLength: 

            Req+=(Params.SimLength-obj.start+1)*obj.qty*SC.SRCData[obj.SRC][1] 

        else: 
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            Req+=obj.TotReqd*SC.SRCData[obj.SRC][1] 

    return Sat/float(Req) 

 

 

def initRecDem(SRCData): 

    recDem={} 

 

    SRClist=[obj for obj in SRCData.keys()] 

 

    for entry in SRClist: 

        recDem[entry]=() 

 

    return recDem 

 

def trackRecentDemand(SRCData,DemandList,decIntervalSat): 

    recDem={} 

    SRClist=[obj for obj in SRCData.keys()] 

 

    for entry in SRClist: 

        sat=[Demand.assigned for Demand in DemandList if Demand.SRC==entry 

and Demand.status=='Active'] 
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        req=[Demand.qty for Demand in DemandList if Demand.SRC==entry and 

Demand.status=='Active'] 

        recDem[entry]=() 

        if req: 

            a=reduce(lambda x,y:x+y,sat) 

            b=reduce(lambda x,y:x+y,req) 

            recDem[entry]=(a,b) 

        else: 

            recDem[entry]=(0,0) 

    #append by SRC demand satisfaction data to the decision interval history for 

use in calculating contribution 

    decIntervalSat.append(recDem) 

 

    return decIntervalSat 

 

def updateFillHistory(SRCData,decIntervalSat,fillHistory): 

    d={} 

    SRClist=[obj for obj in SRCData.keys()] 

 

    for entry in SRClist: 

        d[entry]=(0,0) 
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    for item in decIntervalSat: 

        for obj in item.keys(): 

            d[obj]=tuple(map(lambda x,y:x+y,d[obj],item[obj])) 

 

    fillHistory.append(d) 

 

    return fillHistory 

 

def getDemandLookAhead(T,Window,DemandList,SRCData): 

    DemForecast={} 

    SRClist=[obj for obj in SRCData.keys()] 

 

    for entry in SRClist: 

        maxi=0 

        for i in range(T,T+Window): 

            Dem=[Demand.qty for Demand in DemandList if Demand.SRC==entry 

and Demand.start<=i and Demand.finish>=i] 

            if Dem: 

                a=reduce(lambda x,y:x+y,Dem) 

            else: 

                a=0 

            if a>=maxi: 
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                maxi=a 

        DemForecast[entry]=maxi 

 

    return DemForecast 

 

def calcSat(satDict,reqDict,SRCData): 

    satWeight=0 

    reqWeight=0 

 

    for key in SRCData.keys(): 

        satWeight+=satDict[key]*SRCData[key][1] 

        reqWeight+=reqDict[key]*SRCData[key][1] 

 

    s=satWeight/float(reqWeight) 

 

    return s 

A.5 ADP 
import random 

import SupplyClass as SC 

import DemandClass as DC 

import numpy as np 

import DW 
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import Simulation as Sim 

import operator 

import Params as Par 

import math 

import time 

import itertools as it 

import MatchingFunctions as MF 

from copy import deepcopy 

 

def makeRandomDecision(SRCData): 

    declist=[] 

    slist=[SRC for SRC,data in SRCData.items() if data[0]>=1] 

    #determine number of unit types to ad inventory 

    num=random.randint(0,SC.maxNewStruct) 

    #find random set of num unit types to add inventory 

    add=random_combination(slist,num) 

    for entry in add: 

        declist.append((entry,1)) 

    #remove this list from total SRC list 

    slist=list(set(slist)-set(add)) 

    #create random list of num unit types to reduce inventory 

    red=random_combination(slist,num) 
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    for entry in red: 

        declist.append((entry,-1)) 

 

    return declist 

 

def RandDec(SRCData,length,state): 

    #limit decision space to best and worst forecast SRCs 

    t,b=MF.TopBottom(length,state) 

    #make list of SRCs that can shrink 

    slist=[SRC for SRC,data in SRCData.items() if data[0]>=1] 

    #pare the list of reduction candidates to only those with non-zero inventory 

    reduction=[item for item in b if item[0] in slist] 

    #make the list of candidate solutions 

    l=min(len(t),len(reduction)) 

    DecSpace=makeGoodDecSpace(t,reduction,3) 

    #create random num to choose decision from DecSpace 

    num=random.randint(0,len(DecSpace)-1) 

 

    sol=DecSpace[num] 

 

    return sol 
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def 

makeGoodDecision(state,SRCData,SupplyList,ReadReq,decIntervalSat,discount): 

 

    Candidates=[] 

    estCont=[] 

 

    #generate the list of candidate solutions 

    Candidates=generateGoodDec(5,3,state) 

 

    #Estimate the post decision state for each candidate solution 

    CandStates=estPostDecState(Candidates,state) 

    #estimate the value of the next state for each candidate decision 

    est=estStateValue(CandStates,Par.LenStateTrack) 

    estContList=SC.estReadinessCont(CandStates,ReadReq,SRCData) 

    fill=Par.MetricWeight['Now']*DC.getSatHistory(SRCData,decIntervalSat,'Est') 

    for item in estContList: 

        item[1]=100*(Par.MetricWeight['Ready']*item[1]+fill) 

        v=(item[0],item[1]) 

        estCont.append(v) 

 

    #pick the candidate solution with the greatest total value 

    y,maxval=findMaxEstimate(est,estCont,discount) 
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    #return this best candidate solution 

    choice=Candidates[y] 

 

    return choice,maxval 

 

def MyopicDecision(state,SRCData,SupplyList,ReadReq,decIntervalSat): 

    Candidates=[] 

    estCont=[] 

 

    #generate the list of candidate solutions 

    Candidates=generateGoodDec(5,3,state) 

    #Estimate the post decision state for each candidate solution 

    CandStates=estPostDecState(Candidates,state) 

    #Estimate contribution for candidate states 

    estContList=SC.estReadinessCont(CandStates,ReadReq,SRCData) 

    fill=Par.MetricWeight['Now']*DC.getSatHistory(SRCData,decIntervalSat,'Est') 

    for item in estContList: 

        item[1]=100*(Par.MetricWeight['Ready']*item[1]+fill) 

        v=(item[0],item[1]) 

        estCont.append(v) 

    #pick the candidate solution with the greatest total value 

    y,maxval=findMyopicEstimate(estCont) 
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    #return this best candidate solution 

    choice=Candidates[y] 

 

    return choice 

 

def estPostDecState(DecList,CurrState): 

    Cand=[] 

    perc=(Par.policy['CycleMax']-

Par.policy['NotDep'])/float(Par.policy['CycleMax']) 

    #Loop over entries in DecList 

    for state in DecList: 

        d={} 

        a=[] 

        #list of SRCs with changing inventory 

        changelist=[entry[0] for entry in state] 

        for j in range(len(CurrState)): 

            #if SRC in list of changing SRCs 

            if CurrState[j][0] in changelist: 

                #location in list of SRC 

                dex=changelist.index(CurrState[j][0]) 

                b=(CurrState[j][0],round(CurrState[j][1]+perc*state[dex][1],0)) 

            else: 
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                    b=(CurrState[j][0],CurrState[j][1]) 

            a.append(b) 

        #append the list to the list of candidate states 

        d['State']=a 

        d['Value']=0 

        d['Visits']=1 

        Cand.append(d) 

    return Cand 

 

def estStateValue(StateList,keep): 

 

    #copy the state tracker to a temp variable, replace the last entries with the 

candidate states 

    SC.StateTracker.sort(key=lambda k: (k['Value']),reverse=True) 

    Temp=[] 

    Temp=deepcopy(SC.StateTracker) 

 

 

    #delete the last l entries from Temp and add the l entries from StateList 

    l=len(StateList) 

    Diff=len(Temp)-l 

    Temp[Diff:]=[] 
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    for item in StateList: 

        Temp.append(deepcopy(item)) 

 

    #run the DW procedure to estimate the state values of all states in the Temp 

Tracker 

    stateMat=StateToMat(Temp) 

    phi,psi=DW.computeDW(stateMat,.5) 

    values=DW.estimateValue(DW.cee,DW.dee,phi,psi) 

    #associate the estimated values to their respective states 

    for i in range(len(Temp)): 

        #traverse the Temp list and replace the realization at the value key for each 

state in the list 

        Temp[i]['Value']=float(values[i]) 

    #trim the Temp Tracker to only contain candidate states 

    del Temp[:Diff] 

    #Temp.sort(key=operator.itemgetter('Value')) 

 

    return Temp 

 

def StateToMat(StateStruct): 
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    Mat=[] 

 

    #iterate over each entry in the state list 

    for entry in StateStruct: 

        #iterate over each element in the state for each entry 

        for i in range(len(entry['State'])): 

            #add the data from the state variable to the list 

            Mat.append(entry['State'][i][1]) 

 

    #calculate the number or rows for later reshaping of the array 

    rows=len(StateStruct) 

    #calculate total length of the array of data 

    TotalLength=len(Mat) 

 

    Mat=np.array(Mat).reshape((rows,TotalLength/rows)) 

 

    #dimensions are rows,columns where columns=totallength/rows 

    return Mat 

 

def ValuetoArray(StateStruct): 

    #converts the entries in the State dictinary at 'Value' key into an array 

    Val=[] 
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    for entry in StateStruct: 

        #append each 'Value' into the Val list 

        Val.append(entry['Value']) 

 

    rows=len(StateStruct) 

 

    #convert the list to an array and reshape it to be rows by 1 in dimension 

    Val=np.array(Val).reshape((rows,1)) 

 

    return Val 

 

def initDWdata(StateData,delta): 

 

    matrix=StateToMat(StateData) 

    values=ValuetoArray(StateData) 

 

    phi,psi=DW.computeDW(matrix,delta) 

 

    DW.cee,DW.dee=DW.permDWcoeff(phi,psi,values) 
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def findMaxEstimate(StateStructure,ContEst,discount): 

    maxim=-10000000 

    index=-1 

 

    for i in range(len(StateStructure)): 

        val=discount*StateStructure[i]['Value']+ContEst[i][1] 

        if val>maxim: 

            index=i 

            maxim=val 

 

    return index,maxim 

 

def findMyopicEstimate(ContEst): 

    maxim=-10000000 

    index=-1 

 

    for i in range(len(ContEst)): 

 

        if ContEst[i][1]>maxim: 

            index=i 

            maxim=ContEst[i][1] 
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    return index,maxim 

 

def alphadecay(iteration): 

 

    #attributed to DeGregory, alpha decay based on logistic curve 

    decayparam=Par.alpha-(Par.alpha/(1+math.exp(5-10*iteration/Par.decayiters))) 

 

    return decayparam 

 

def random_combination(iterable, r): 

    "Random selection from itertools.combinations(iterable, r)" 

    pool = tuple(iterable) 

    n = len(pool) 

    indices = sorted(random.sample(range(n), r)) 

    return tuple(pool[i] for i in indices) 

 

def makeGoodDecSpace(top,bottom,maxlen): 

    #list of decisions space items 

    space=[] 

    data=[] 

    #loop over integers between 1 and maxlen 
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    for i in range(maxlen+1): 

        t=it.combinations(top,i) 

        b=it.combinations(bottom,i) 

        sp=it.product(t,b) 

        space.extend(list(sp)) 

 

    for i in space: 

        temp=[] 

        for j in i: 

            for k in j: 

                temp.append(k) 

        data.append(temp) 

 

    return data 

 

def generateGoodDec(maxitems,maxlen,state): 

    top,bottom=MF.TopBottom(maxitems,state) 

    DecSpace=makeGoodDecSpace(top,bottom,maxlen) 

 

    return DecSpace 

A.6 DW 
import numpy as np 
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import numpy.linalg as LA 

import math 

import scipy.linalg as spla 

import time 

import scipy 

from scipy.spatial.distance import pdist, squareform 

 

dee=np.array([]) 

DWInitial='' 

 

 

def computeWeight(matrix,delta): 

    #computes a symmetric weight matrix 

    W=np.zeros((np.shape(matrix)[0],np.shape(matrix)[0])) 

    for i in range(np.shape(matrix)[0]): 

        for j in range(i,np.shape(matrix)[0],1): 

            q=matrix[i]-matrix[j] 

            y=-LA.norm(q)/delta 

            W[i][j]=math.exp(y) 

            if j>i: 

                W[j][i]=W[i][j] 
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    return W 

 

def computeDmatrix(WMatrix): 

    D=np.zeros((np.shape(WMatrix)[0],np.shape(WMatrix)[0])) 

 

    d=np.sum(WMatrix,axis=1) 

    for t in range(np.shape(d)[0]): 

        D[t][t]=d[t] 

 

    return D 

 

def sqrtDiag(DMatrix): 

    sD=np.zeros((np.shape(DMatrix)[0],np.shape(DMatrix)[0])) 

 

    for t in range(np.shape(DMatrix)[0]): 

        sD[t][t]=DMatrix[t][t]**.5 

 

    return sD 

 

def computePmatrix(D,W): 

    P=np.dot(LA.inv(D),W) 
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    return P 

 

def computeDW(matrix,delta): 

    #initialize lists that will hold scaling (phi) and wavelet(psi) matrices 

    phi=[] 

    psi=[] 

 

    #generate state-space graph matrices for input matrix(weight, diffusion, random 

walk) 

    W=Kernel(matrix,1) 

    D=computeDmatrix(W) 

    P=computePmatrix(D,W) 

 

    #create indentity matrix for phi0 and add to phi list 

    phimat=np.eye(np.shape(P)[0]) 

     

    #compute T matrix 

    a=LA.inv(D) 

    b=sqrtDiag(a) 

    T=np.dot(np.dot(b,W),b) 

    Q,R=np.linalg.qr(T) 

    #columns of Q are DW scaling functions 
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    c=phimat-np.dot(Q,np.matrix.conjugate(Q)) 

    Qp,Rp=np.linalg.qr(c) 

     return Q, Qp 

 

def computeDWcoeff(phi,psi,values): 

    #initialize list for coefficients. Each list entry will correspond to one level in the 

DW decomposition 

    c=[] 

    d=[] 

    c=np.dot(values.T,phi) 

    d=np.dot(values.T,psi) 

    return c,d 

 

def estimateValue(c,d,phi,psi): 

 

    ValVect=(np.dot(phi,c.T)+np.dot(psi,d.T))/2 

 

    return ValVect 

 

def permDWcoeff(phi,psi,values): 

    cee,dee=computeDWcoeff(phi,psi,values) 
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    return cee,dee 

 

def Gaussian(x,z,sigma,axis): 

    return scipy.exp((-LA.norm(x-z,axis=axis))**2/2*sigma**2) 

 

def Kernel(X,s): 

    pairwise_sq_dists = squareform(pdist(X, 'sqeuclidean')) 

    K = scipy.exp(-pairwise_sq_dists / s**2) 

    return K 

A.7 StochDemand 
import numpy as np 

import DemandClass as DC 

import os 

import Params 

import math 

import pickle 

 

def GenerateEvents(expparam, maxT): 

 

    LastSample = 0 

    interval = 0 

    EventList=[] 
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    while LastSample <=maxT: 

        #generate exponential random variable for interval between events 

        interval=(np.random.exponential(scale=expparam, size=1)) 

        LastSample=LastSample+interval 

        EventList.append(LastSample) 

 

    return EventList 

 

def ReadDemData(filename): 

 

    DemData=[] 

    DemData = [line.split() for line in open(filename)] 

 

    FP=float("".join(DemData[0])) 

    DemData = DemData[1:] 

 

    return DemData,FP 

    #First line contains frequency parameter data 

 

def processDemandDirectory(path): 

    DemandList=[] 
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    dirs=os.listdir(path) #create a list of all files in the path 

 

    p=str(path)+'//' 

    for file in dirs: #loop over each file in the directory 

        DemData,FreqParam=ReadDemData(p+file) #read in the demand records 

        EventList=GenerateEvents(FreqParam,Params.SimLength) 

 

        for t in range(len(EventList)):#loop over each event instance 

            for i in range(len(DemData)): #loop over each demand record from the file 

                #create the Demand objects 

                

DemandList.append(DC.Demand(DemData[i][0],DemData[i][1],DemData[i][1]+'_'+De

mData[i][0]+str(EventList[t]),EventList[t],DemData[i][2],DemData[i][3],DemData[i][4],

)) 

 

    return DemandList 

 

def CreateTestDemands(path,SimLength,count): 

    DemandList=[] 

    dirs=os.listdir(path) #create a list of all files in the path 

 

    p=str(path)+'//' 
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    for file in dirs: #loop over each file in the directory 

        d={} 

        d['filename']=file 

 

        DemData,FreqParam=ReadDemData(p+file) #read in the demand records 

 

        d['Events']=GenerateEvents(FreqParam,SimLength) 

        DemandList.append(d) 

 

    name=p+'..//Validate//dem_'+str(count)+'.pkl' 

    F=open(name,'wb') 

    pickle.dump(DemandList,F) 

    F.close() 

 

def InitValDemand(path,filename): 

    DemandList=[] 

    F=open(filename,'rb') 

    E=pickle.load(F) 

    F.close() 

    DemandList=GenerateValDemand(path,E) 

 

    return DemandList 
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def GenerateValDemand(path,structure): 

    DemandList=[] 

    p=path+'DemFiles//' 

 

    for item in structure: 

        #determine which file to read 

        name=p+item['filename'] 

        #determine which demands to create 

        OccurList=item['Events'] 

 

        data=[line.split() for line in open(name)] 

        data=data[1:] 

 

        for t in range(len(OccurList)):#loop over each event instance 

            for i in range(len(data)): #loop over each demand record from the file 

                #create the Demand objects 

                

DemandList.append(DC.Demand(data[i][0],data[i][1],data[i][1]+'_'+data[i][0]+str(Occur

List[t]),OccurList[t],data[i][2],data[i][3],data[i][4],)) 

 

    return DemandList 



168 

 

A.8 Initialize 
import SupplyClass as SC 

import StochDemand as sd 

import ADP 

import pickle 

import Params 

 

def Initialize(): 

    SC.InitSupply('//SupplyRecords.txt') 

    sd.processDemandDirectory(' //DemFiles') 

    SC.InitReadReqt('//Readiness.txt') 

 

def InitializeValidation(path, filename,supplyname): 

    

SupplyList,SRCData=SC.InitSupply(path+'SupplyRecords_'+supplyname+'.txt') 

    DemandList=sd.InitValDemand(path,filename) 

    ReadReqt,ReadHist=SC.InitReadReqt(path+'Readiness.txt') 

 

    return SupplyList,SRCData,DemandList,ReadHist,ReadReqt 

 

def InitializeApprox(path,filename,numstates): 

    F=open(path+filename,'rb') 

    SC.StateTracker=pickle.load(F) 
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    F.close() 

    #sort the StateTracker by values 

    SC.StateTracker.sort(key=lambda k: (k['Value']),reverse=True) 

    #Trim the state tracker to its apprporiate size 

    SC.StateTracker[numstates:]=[] 

    #initialize the DW approximation 

    ADP.initDWdata(SC.StateTracker,.5) 

    Params.DWInitial='Yes' 

A.9 Params 
policy = {'NotDep': 6, 'CycleMax': 24, 'Deploy': 9} 

SimLength=288 

#number of data point to put into state tracker for each explore iteration 

Observations=20 

#number of months between decisions (set to one year) 

DecInterval=12 

#number of months used to evaluate readiness 

DepWindow=6 

MetricWeight={'Now':.7,'Ready':.3} 

#length of the state tracker for DW approximation purposes 

LenStateTrack=625 

#length to run simulation without making decisions to ensure some supply 

#is assigned to demands at start of decision making functionality 



170 

 

BurnInPd=24 

#initial value of the stepsize parameter for value function updates 

alpha=.95 

#number of iterations over which to gradually reduce the alpha stepsize parameter 

decayiters=50000 

#number of iterations for exploration phase 

exploreiters=250000 

#discount parameter for Bellman's equation 

gamma=.97 

#param to set how far back to calculate MSE 

lookbackiters=100 

#param to set number of consecutive error measurements within bounds to 

achieve convergence 

stable=100 

#Number of validation runs to complete 

validations=100 

#maximum end-strength violation for decision optimization 

maxvio=100 

#parameter to control periodic reduction of state tracker by size 

maxtracker=1500 

DWInitial='No' 

#number of parallel simulations to run 
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numthreads=1 

freqVis=10 

percentFreqVis=1 

freqVisSaturation='No' 

lookAhead=24 
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