

USING APPROXIMATE DYNAMIC PROGRAMMING TO ADAPT A MILITARY

FORCE MIX

by

Jason Alan Southerland

A Dissertation

Submitted to the

Graduate Faculty

of

George Mason University

in Partial Fulfillment of

The Requirements for the Degree

of

Doctor of Philosophy

Systems Engineering/Operations Research

Committee:

_________________________________ Dr. Andrew Loerch, Dissertation Director

_________________________________ Dr. Carlotta Domeniconi, Committee

Member

_________________________________ Dr. Rajesh Ganesan, Committee Member

_________________________________ Dr. John Shortle, Committee Member

_________________________________ Dr. Ariela Sofer, Department Chair

_________________________________ Dr. Kenneth S. Ball, Dean, Volgenau School

of Engineering

Date:_____________________________ Spring Semester 2017

 George Mason University

 Fairfax, VA

Using Approximate Dynamic Programming to Adapt a Military Force Mix

A Dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at George Mason University

by

Jason Alan Southerland

Master of Science

George Mason University, 2008

Bachelor of Arts

University of Texas at Austin, 2004

Director: Andrew Loerch, Associate Professor

Department of Systems Engineering/Operations Research

Summer Semester 2017

George Mason University

Fairfax, VA

ii

Copyright 2016 Jason Alan Southerland

All Rights Reserved

iii

DEDICATION

This is dedicated to all of my family, without whose example I would never have thought

to undertake something like this dissertation.

iv

ACKNOWLEDGEMENTS

I would like to thank the many friends, relatives, and supporters who have made this

happen. I owe special thanks to Dr. Andrew Loerch for orienting me on the right path; to

Dr. Rajesh Ganesan for his guidance and mentorship since I first enrolled at George

Mason in 2006; and to the Dr. Shortle and Dr. Domeniconi for their support and guidance

throughout the dissertation process.

v

TABLE OF CONTENTS

Page

List of Tables ... viii

List of Figures .. ix

List of Equations ... x

Abstract .. xi

Chapter One: Introduction .. 1

1.1 Flexibility, Adaptability, and Robustness ... 1

1.2 Value Function Approximation with a Diffusion Wavelet Transform 2

1.3 Summary ... 3

Chapter Two: The military force mix problem in context .. 4

2.1 Title 10, United States Code: Roles and Responsibilities ... 4

2.2 Combatant Command Demand ... 5

2.3 Army Force Structure and Unit Readiness .. 7

2.3.1 Force Structure ... 7

2.3.2 Readiness and Deployment Management ... 7

2.3.2.1 Static Readiness Management ... 8

2.3.2.2 Progressive Readiness Management ... 9

2.4 From Strategy to Resources: Defense Planning and Programming 13

2.4.1 Planning .. 14

2.4.2 Programming .. 14

2.4.3 Bridging the Gap from Planning to Programming: The Integrated Security

Construct .. 15

2.5 Total Army Analysis (TAA) ... 17

2.5.1 TAA Planning: Determining Force Structure Requirements 18

2.5.2 TAA Programming: Resourcing a Force Structure .. 20

2.6 Limitations in Defense Planning ... 20

2.7 Summary ... 23

vi

Chapter Three: Literature Review: Military Force Mix and Related Problems 24

3.1 Military Force Structure Analyses .. 24

3.2 Other Military Force Structure Analyses .. 29

3.2.1 Finding an Optimal Fleet .. 29

3.2.2. Finding an Optimal Fleet Adaptation Schedule .. 30

3.3 Fleet Mix Studies .. 33

3.3.1 Operational FSMVRP Formulations and Solution Methods 34

3.3.2 Strategic FSMVRP Formulations and Solution Methods................................. 38

3.4 Discussion ... 39

3.5 Summary ... 41

Chapter Four: Approximate Dynamic Programming and the Diffusion Wavelet

Transform .. 43

4.1 Dynamic Programming Overview .. 43

4.1.1 Dynamic Programming... 43

4.1.2 Markov Decision Processes .. 45

4.1.3 The Curses of Dimensionality and Modeling ... 45

4.2 Approximate dynamic programming .. 47

4.2.1 Solutions to the curses of modeling and dimensionality 47

4.2.2 The post-decision state variable ... 48

4.2.3 Value function approximation methods ... 50

4.3 Discussion ... 54

4.4 Summary ... 55

Chapter Five: Methodology .. 56

5.1 Simulation ... 56

5.1.1 Representing Military Units as Supply ... 56

5.1.2 Representing Military Missions.. 57

5.1.3 Governing Supply with Policies ... 58

5.1.4 Putting the pieces together .. 59

5.2 Dynamic Programming Formulation .. 61

5.2.1 Decision Function ... 62

5.2.2 Decision Variable Constraints .. 62

5.2.3 State Variable ... 63

5.2.4 Objective Function ... 64

vii

5.2.5 Exogenous Information Processes .. 66

5.3 Value Function Approximation Overview .. 66

5.3.1 Iteration and Convergence .. 66

5.4 Implementation of Dynamic Programming... 67

5.5 Summary ... 68

Chapter Six: Experimentation ... 70

6.1 Experimentation Overview ... 70

6.1.1 Exploration and a Decision Heuristic ... 70

6.1.2 Learning Phase Description .. 71

6.1.3 Assessing the Impact of Approximation Size on Solution Quality 75

6.1.4 Computational Time ... 77

6.2 Learnt Phase: First Experiment ... 79

6.2.1 Solution Quality .. 79

6.2.2 Discussion ... 82

6.3 Learnt Phase, Experiment 2: Assessing the Robustness of Findings to Alternative

Preferences .. 83

6.4 Learnt Phase, Experiments 3 and 4: Further testing with more extreme weights ... 85

6.5 Discussion ... 87

Chapter 7: Conclusion... 89

7.1 Application contributions .. 89

7.2 Methodological contributions ... 91

7.3 Areas for future research ... 92

Appendix A: Python code ... 93

References ... 172

viii

LIST OF TABLES

Table Page

Table 1: Example Force List ... 57
Table 2:Mission Requirements ... 73

Table 3: Inventories and Readiness Requirements ... 74
Table 4: Approximations Learned .. 77

Table 5: Average Simulation Time Over 1,000 Simulations .. 78
Table 6: Experiment One, Mission Requirement Improvement Relative to a Myopic

Heuristic .. 81
Table 7: Experiment One, Readiness Improvement Relative to a Myopic Heuristic 82

Table 8: Experiment Two, F-Statistics for Comparing Equality of Means 83
Table 9: Experiment Two, Peformance Improvements Relative to a Myopic Heuristic .. 84

Table 10: Experiment Three, F-Statistics Comparing Equality of Means 85
Table 11: Experiment Three, Performance Improvement Relative to a Myopic Heuristic

... 85

Table 12: Experiment Four, F Statistics for testing equality of treatment means 86
Table 13: Experiment Four, Performance Improvement Relative to a Myopic Heuristic 86

ix

LIST OF FIGURES

Figure Page

Figure 1: Army Force Generation Model [United States Army, 2011] 12
Figure 2: Components of Planning, Programming, and Budgeting [United States Army

Force Management School, 2010] .. 13
Figure 3: Operational themes and associated types of operations [United States Army,

2011] ... 16
Figure 4: A notional Integrated Security Construct. Adapted from [Stoddard et. al., 2011]

... 17
Figure 5: Marathon Requirements Analysis Logic ... 28

Figure 6: Simulation Overview ... 60

x

LIST OF EQUATIONS

Equation Page

Equation 1 ... 44
Equation 2 ... 49

Equation 3 ... 49
Equation 4 ... 50

Equation 5 ... 50
Equation 6 ... 50
Equation 7 ... 51
Equation 8 ... 52

Equation 9 ... 52
Equation 10 ... 52

Equation 11 ... 53
Equation 12 ... 53

xi

ABSTRACT

USING APPROXIMATE DYNAMIC PROGRAMMING TO ADAPT A MILITARY

FORCE MIX

Jason Alan Southerland, Ph.D.

George Mason University, 2017

Dissertation Director: Dr. Andrew Loerch

Adaptation, “the ability to bring about timely and effective adjustment or change in

response to the surrounding environment” (Defense Science Board, 2010), is critical to

maintaining system performance in dynamic environments. The global security

environment is one such dynamic environment and military forces must adapt to the

evolving global security environment to remain relevant.

 Military force adaptation can occur at several levels. A few examples include:

militaries may improve the performance of existing systems or acquire new systems;

militaries may change the mix of personnel or equipment in the designs of particular unit

types; or they may opt to change the overall mix of units within a military force. We

focus on the latter: the mix of units within a military force. We refer to this mix as a force

structure or force mix. Though others may refer to the mix of personnel and equipment in

xii

a particular unit type as force structure (Loerch, 2007), for clarity we refer to this as unit

design.

 In the United States military, the Secretary of Defense publishes strategic

guidance which is then enacted by multiple entities: per Title 10, United States Code

(United States Government, 2016), the military departments prepare and provide forces

to the Combatant Commands who execute military missions. In enacting the Secretary’s

strategic guidance, there is a natural tension between meeting current and near-term

mission requirements on one hand, and maintaining sufficient uncommitted forces to be

able to respond to unforeseen crises, up to and including major contingencies.

 As the dynamic security environment evolves, adversary capabilities improve. In

response, strategic guidance may change, and in turn, Combatant Command mission

requirements may increase or decrease. Despite these changes, the military departments

must maintain their ability to provide relevant forces. One way to maintain this ability is

to periodically review force structure in order to identify necessary changes in force mix.

 Each year, the Department of the Army (hereafter referred to as the Army),

conducts a comprehensive review of its force structure known as Total Army Analysis

(United States Army, 1995). The goal of any TAA is to identify changes, within total

personnel constraints mandated by Congress, to the existing force structure which

maintain or improve the Army’s ability to meet Combatant Command mission

requirements while maintaining the ability to respond to unforeseen crises.

 Analyzing the Army’s force structure is no trivial task. In a typical TAA, the

Army considers changes to the inventories of 150-200 unit types across three components

xiii

(Loerch, 2007). To manage this complexity, the Army divides its overall force structure

into logical groupings of unit types, such as logistics or intelligence, and considers each

logical grouping separately in what is known as a resourcing panel. Each resourcing

panel is given guidance with respect to a total personnel change that panel must identify.

The total of the guidance across the panels equates to the overall Congressionally-

authorized change in personnel from the existing personnel total.

 In this article, we describe an approximate dynamic programming (ADP)

methodology that can be applied to support resourcing panel deliberations. Our

methodology identifies valuable force structure changes within given constraints by using

a simulation that models the occurrence of military missions; readiness requirements; and

the management of Army units to meet both mission and readiness requirements.

 Our approximate dynamic program applies a diffusion wavelet transform (DWT)

value function approximation (VFA). We provide computational results that demonstrate

performance superior to the application of a myopic heuristic and we examine the effect

of approximation size, a critical DWT parameter, on simulation outcomes.

1

CHAPTER ONE: INTRODUCTION

1.1 Flexibility, Adaptability, and Robustness
Robustness is the ability of a system to sustain key capabilities irrespective of the

environment [Deshmukh et. al, 2010]. This definition has two key components—the first

being the ability of a system to sustain key capabilities and the other being “irrespective

of the environment.” An equivalent statement of the first portion of the definition of

robustness would be “the ability of a system to operate as designed.” The second portion

of the definition, “irrespective of environment,” implies designing a system to operate in

many environments. Thus, if a system is operating as intended in one environment the

system should still be able to perform as designed if the environment changes [Downey

et. al, 2003].

If designing a system for robust performance requires ensuring the system can

perform in a variety of environments, the design process must determine how changes in

the environment affect system performance. By identifying how changes in the

environment affect system performance, system designers can build in hedges to

environmental change and thus ensure continued system performance. Designing for

robust system performance thus requires two things—planning for changes in the

environment and hedging against those changes. These two considerations motivate two

key aspects of system design, adaptability and flexibility.

2

Adaptability is “the ability to bring about timely and effective adjustment or

change in response to the surrounding environment [Defense Science Board, 2010]. Thus,

adaptation is about changing a system in order to ensure continued performance of that

system. Enabling adaptation through system design entails anticipating the possibility

that changing the system might be necessary and preparing for that change as conditions

warrant [Defense Science Board, 2010].

Roughly speaking, flexibility is the number of possible configurations of a system

(adapted from [Gerwin, 1993]). In discussing adaptation, we highlighted the importance

of change to maintain system performance. Flexibility, by providing a menu of possible

changes to a system, enables response to changes in the environment. Thus, flexibility

enables adaptation.

In this research we examined the ability of a military force to simultaneously

satisfy stochastic mission requirements and maintain prescribed readiness levels to

respond to crises by altering the mix of units in its inventory. In other words, we

examined the ability of the military force to adapt to some unknown, and possibly

changing, future mission set by implementing changes to its configuration. To achieve

this we leverage the state-based decision learning of approximate dynamic programming.

1.2 Value Function Approximation with a Diffusion Wavelet Transform
To solve the military force mix problem with approximate dynamic programming,

we used a diffusion wavelet transform (DWT) value function approximation (VFA).

Compared to other VFA approaches, there is relatively little research on the properties of

3

DWT. The parameters of a VFA influence two factors: approximation convergence and

solution quality.

Any number of VFA factors can influence convergence and solution quality, for

example, length of exploration phase and method of exploration; alpha decay; and

approximation method. One critical factor to DWT VFA, size of approximation, has not

been researched with respect to convergence and solution quality. In this dissertation, we

research the relationship between solution space size, approximation size, and the

resultant approximation convergence and solution quality.

1.3 Summary
This research makes two contributions to the literature, one related to the

application of our methodology to a challenging problem that receives little attention in

the literature and the other related to the computational aspects of the solution. We

developed a novel solution to the military force mix problem, and we investigated the

relationship between solution space size and solution quality with application of the

diffusion wavelet transform value function approximation.

This dissertation has seven chapters. Chapter two describes defense planning and

programming. In chapter three we review the military force structure and fleet planning

literature. Chapter four reviews approximate dynamic programming. Chapter five defines

our methodology and chapter six describes our experimentation. Chapter seven concludes

this dissertation.

4

CHAPTER TWO: THE MILITARY FORCE MIX PROBLEM IN CONTEXT

Determining the best mix of military forces is a complex problem whose solution

must consider, among other things, a wide range of possible missions; fiscal and

personnel availability constraints; and the time and resources necessary to prepare units

to execute missions. In determining its force mix, the Army must decide how to manage

the readiness of its units by determining the possible nature and timing of future

contingencies. In other words, the Army must answer three key questions: “of what,” “for

what,” and “for when” [Betts, 1995]. In this chapter, we discuss the laws defining roles

and responsibilities of the Combatant Commands and the military departments, of which

the Army is one; and how each plans for and executes those responsibilities. We

conclude this chapter by discussing analyses of defense planning and their relation to our

research.

2.1 Title 10, United States Code: Roles and Responsibilities
Title 10, United States Code [United States Government, 2012] establishes the

laws of the United States concerning the performance of military mission. We summarize

below the key organizations and the roles and responsibilities thereof that are relevant to

our research.

The President of the United States is responsible for establishing combatant

commands, both unified and specified. Unified combatant commands are military

5

commands which have “broad, continuing missions and are composed of forces from two

or more military departments.” These combatant commands are responsible for the

performance of military missions (emphasis added).

The secretaries of the military departments assign forces to the combatant

commands to perform missions directed by the Secretary of Defense. The Secretary of

Defense both directs the conduct of missions and approves the assignment of forces.

More colloquially, the combatant commands first request forces, and the Secretary of

Defense then directs the military departments to provide forces. The roles of the

combatant commands as force requestors and mission performers and the role of the

military departments as force providers are critical for our research.

In order for the military departments to provide forces, they must carry out other

responsibilities as prescribed in Title 10—organizing, equipping, and training forces

among others. The Army in particular is responsible for “the preparation of land forces

necessary for the effective prosecution of war except as otherwise assigned and…for the

expansion of the peacetime components of the Army to meet the needs of war.” Thus, the

Army organizes, trains, and equips forces in order to provide those forces to the

combatant commands for the performance of military missions.

2.2 Combatant Command Demand
Combatant commanders use two processes for submission of requests for forces

(RFFs)—annual RFFs and emergent RFFs [United States Army, 2011]. Annual RFFs are

submitted once each year and include requirements for operations and other military

activities the Combatant Commander plans to execute in the coming year. Emergent

6

RFFs are submitted outside of this annual process and are used to request forces for uses

unanticipated during submission of annual RFFs. Combatant commanders submit

emergent RFFs as needs arise.

This request for forces process is not a rigid request-then-provide system. While

the combatant commanders make requests for particular sorts of units, the military

departments have a say in the types of units that they actually provide for use by the

combatant commanders. The process contains a fair amount of flexibility in that the

departments are able to recommend substitute unit types. Typically, the departments will

recommend substitution based on a combination of factors, including availability of

preferred units and the availability of suitable substitutes as measured by the ability of

other units to perform the mission, and the degree of risk assumed by providing a

potentially less capable unit type.

For example, a combatant commander may request a brigade combat team for an

area security task as part of a larger stabilization operation. The Army might recommend

an artillery unit to perform this task based on non-availability of brigade combat teams

and the assessment that the field artillery unit can perform the task with minimal risk to

the overall mission.

In addition to the RFF process, the Combatant Commands provide guidance to

each military department, consolidated by the Secretary of Defense, to maintain a certain

aggregate level of readiness within its forces. These readiness guidelines coupled with the

forecast and emergent requests for forces represent aggregate demand for forces.

7

2.3 Army Force Structure and Unit Readiness
In this section, we discuss the units the Army prepares for provision to the

combatant commands and the process through which the Army manages the preparation

those units.

2.3.1 Force Structure
Force structure can refer to entities at varying resolutions. At the lowest level,

force structure refers to the detailed makeup of personnel and equipment within a specific

type of military unit [Loerch, 2007]. These specific types of military units, also known

identified by standard requirements codes (SRCs), are the building blocks of the more

aggregated force structure. Title 10 defines forces structure as “the set of units and

organizations that exist” [United States Government, 2012] within the Army. From the

Army’s perspective, force structure is the portfolio of the various quantities of each SRC

that exist within the Army. This portfolio details the units the Army prepares for

provision to the combatant commands.

The tasks for which various units of force structure are designed range along a

spectrum of specificity from highly specific to highly general. Some unit types, chemical

response teams, for example, are designed to perform highly specified tasks. Other units,

brigade combat teams, for example, are designed to perform myriad tasks. Unit types

designed to perform a wide range of tasks can be more flexibly employed than units

designed to perform fewer tasks.

2.3.2 Readiness and Deployment Management
In the United States military, readiness is the ability of forces to fight and meet

the demands of the national military strategy. Readiness is derived from unit readiness

8

and joint readiness. Unit readiness is the ability of military units to deliver the outputs for

which they are designed [The Joint Staff, 2012c]. Unlike joint readiness, ensuring unit

readiness is the responsibility of the military departments.

Ensuring unit readiness entails preparing units for the missions they will perform

under combatant command leadership. Preparing forces for the execution of military

missions is a complex process of ensuring personnel and equipment are in the right place

at the right time, and that a series of increasingly complex training exercises is

successfully completed. The details of preparing units for mission execution are beyond

the scope of this research. Some of the tasks required for this preparation are listed

below.

The Army has defined varying degrees of preparation, known as readiness levels.

Each readiness level corresponds to the achievement of various milestones with respect to

manning, equipping, and training units. In reality, readiness progresses over time through

discrete levels. The graph of a unit’s readiness over time would resemble a step function.

For our purposes, the readiness levels correspond roughly to the amount of time

remaining until a unit is fully prepared for the mission assigned to it. At any given point

in time, each unit in the Army has some level of readiness.

2.3.2.1 Static Readiness Management
In static readiness, units maintain a fixed level of readiness prior to preparations

for deployment. This readiness model entails assessing two key variables—how long

from mission notification will a unit take to be ready for mission execution; and to what

extent should a unit prepare for a specific mission. In general, though there are

9

exceptions, units maintained at lower readiness take longer to prepare for mission

execution with the ability to prepare for a broad set of missions upon notification while

units maintained at higher readiness prepare faster for more specific missions.

In a resource-unconstrained world, all units would maintain the highest level of

readiness. In reality, maintaining a total force at highest readiness is prohibitively

expensive [George, 1999]. Maintaining units at lower readiness is less expensive than

maintaining units at higher readiness. Thus, in general, static readiness management

entails determining which units would prepare for specific missions and be ready to

respond quickly to those missions and which units would be maintained at lower

readiness with the flexibility to prepare, on notification, for any of an assortment of

missions.

The following example demonstrates a static readiness management model— in

response to fiscal pressures in the post-Cold War era, Senator John McCain proposed a

readiness model known as “tiered readiness.” Under tiered readiness, forces would be

maintained, statically, at one of three levels of readiness. The levels corresponded to how

early in a major war-fight units would be required to perform missions— forward-

deployed and crisis response forces would respond earliest in campaigns; force buildup

units would respond next; and conflict resolution forces would see campaigns through to

their end [McCain, 1996].

2.3.2.2 Progressive Readiness Management
This discussion highlights two key variables that complicate the preparation of

forces for mission execution—the nature of the missions for which the Army prepares

10

forces and the duration of those missions. Specifically, as relates to the nature of

missions, suppose under the static model that units in high readiness prepared for a

mission other than that for which it operated. That unit might still be able to deploy for

this other mission, though in doing so, the combatant commander might inherit some risk

associated with diminished proficiency. And as relates to mission duration, suppose the

mission lasted longer than anticipated. As units spend more time deployed, their skills

might atrophy, again saddling the combatant commander with unforeseen risk.

Determining the nature and duration of potential missions is critically important, as the

following example demonstrates.

In 2004, the Army realized that its static readiness management model was not

well suited to the continued provision of forces for operations in Iraq and Afghanistan.

The Army had been operating in Afghanistan for three years and the nature of operations

in Iraq had evolved from major combat operations to post-hostility stabilization

operations. The Army had not prepared its force to execute post-hostility stabilization

operations and the requirement to do so was taking longer than expected. Given these

realities the Army needed to devise a readiness model that would allow it to prepare

forces for a diverse collection of missions over a long period of time with the resources

currently in its inventory.

In response to this realization, the Army developed a readiness model known as

Army Force Generation, or ARFORGEN [United States Army, 2011]. Rather than the

static model through which the Army prepared units for specific missions, ARFORGEN,

through a progressive readiness approach, provided the Army the flexibility to prepare

11

units for diverse missions as well as a mechanism for meeting the demands of sustained,

long-duration operations.

In this progressive readiness model, units progress through three phases, thus the

name progressive readiness. These phases— reset, train/ready, and available, correspond

to varying levels of readiness, in increasing order. A broad overview of the ARFORGEN

model is provided below.

In this model, units train during the train/ready phase initially on a broad range of

general skills. At some point during the train/ready phase, typically not to exceed 90 days

prior to entering the available phase, a unit will either receive a specific mission and be

designated as a deployment expeditionary force (DEF) or will be designated as a

contingency expeditionary force (CEF). In either case, after this designation, units then

prepare for their assigned or contingency mission. Note here that preparing for this

mission requires more specific training than the general training during the early portions

of the train/ready phase. This process enables the Army to prepare units first for a broad

range of potential missions, then to focus unit training on specific missions as their

scheduled deployment (in the case of DEF units) or entry into the available pool (in the

case of CEF units) approaches. In the event that demand for forces exceeds the number of

units in the available phase of their cycle, the Army can deploy units in their train/ready

phase.

12

Figure 1: Army Force Generation Model [United States Army, 2011]

This ability to deploy units in their train/ready phase provides the Army with

flexibility to meet unforeseen or, to use the language of combatant command requests for

forces, emergent requirements. Another key flexibility under ARFORGEN is the periodic

review of deployment lengths. The Army has, in the past, changed its maximum

deployment length to meet forecasted requests for forces (see, for example, [McIlvaine,

2012]). This ability to review deployment policy helps ensure the Army is able to

13

continue to meet its Title 10 responsibilities as a preparer of forces within the force

structure at its disposal.

2.4 From Strategy to Resources: Defense Planning and Programming
The system through which the Department of Defense determines how to allocate

its finite resources is known as the Defense Planning, Programming, Budgeting, and

Execution System (PPBES). Each component of PPBES encompasses a different time

horizon, from the present to some point in the future, in decreasing order of duration.

That is, planning includes deliberation from the present further into the future than

programming, programming considers further out than budgeting, and so on. Budgeting

and execution only concern decisions in the short term. We will not discuss budgeting

and execution further.

Figure 2: Components of Planning, Programming, and Budgeting [United States Army Force Management

School, 2010]

PLANNING

PROGRAMMING

BUDGETING

ADVERSARY

CAPABILITY

STRATEGY

REQUIRED

CAPABILITIES

PROGRAMS

BUDGET

FUNDING

14

2.4.1 Planning
The Department of Defense (DOD) conducts strategic planning to examine the

military posture as it relates to national security objectives and resource constraints

[United States Army, 1994]. DOD uses strategic planning to develop the National

Military Strategy and determines the resources required to execute that strategy. Defense

strategic planning produces many documents which serve the purpose of advising DOD

senior leadership and providing direction to the services for planning.

One of the many documents DOD produces during its strategic planning efforts is

the Defense Planning Guidance (DPG). The DPG is the primary means of providing

planning direction to the services. The DPG presents the Secretary of Defense’s plan for

developing and employing future forces and reflects long-range plans and priorities for

the Department of Defense [United States Army, 1994].

2.4.2 Programming
Every year, each military department submits to the Office of the Secretary of

Defense (OSD) a program objective memorandum (POM), also known as a program.

OSD then reviews these inputs, directs changes to the departments, and submits a final

DOD program to the Congress.

The program translates planning decisions, programming guidance, and

congressional guidance into a comprehensive allocation of forces, manpower, and funds

[United States Army, 1994]. This program submission contains a proposed resource

allocation for the next year, known as a budget estimate, and the four subsequent years.

15

Note here that the program contains a proposed allocation of forces. We discuss in the

next section the analytical construct, known as an integrated security construct, used to

determine this allocation of forces.

2.4.3 Bridging the Gap from Planning to Programming: The Integrated
Security Construct

During the planning phase, based on the defense strategy and other senior leader

priorities, planners and analysts develop a collection of scenarios, each of which

represents a likely or significant challenge the military might face in the future. Examples

of scenarios include—a major stabilization operation; extending support to civil

authorities in response to a catastrophic event in the United States; and deterring and

defeating regional aggressors [Department of Defense, 2010]. Typically, the resources

required to succeed in a scenario and the duration of those resource requirements are

determined during scenario development and carried forward as static inputs for follow-

on analyses. These scenarios provide the foundation for analysis during the programming

phase.

In older planning efforts planners would typically only develop scenarios to

analyze major combat operations. The implicit assumption in this approach was the belief

that if the military could meet the requirements of a collection of major regional conflicts,

the ability to succeed in other operations was “lesser-included.” With the end of the Cold

War and the necessary evolution in defense planning post-Cold War, the “lesser

included” assumption was subjected to scrutiny and abandoned for the purposes of

defense planning. Thus, post-Cold war defense planning began to include detailed

16

analysis of operations other than major regional conflicts or major combat operations

[DuBois, 1999].

The current paradigm for identifying scenarios for defense planning is the

spectrum of conflict. The spectrum of conflict characterizes military conflict based on an

ascending scale of violence in which military forces operate, from stable peace on one

end to general war on the other [United States Army, 2011]. In any point along the

spectrum of conflict, military forces conduct operations to reduce violence and establish

conditions that advance national strategic goals [United States Army, 2011].

A useful refinement of the spectrum of conflict, operational themes, describes the

nature of the dominant type of operations military forces conduct to reduce violence and

achieve national strategic objectives [United States Army 2011]. For defense planning

purposes, operational themes help define the types of operations that are considered for

scenario analysis. Some types of operations and their associated operational themes are

detailed below.

Figure 3: Operational themes and associated types of operations [United States Army, 2011]

17

The current approach to scenario planning is the integrated security construct

(ISC). An ISC is a combination of scenarios that represents one potential collection of

future challenges, arrayed over a prescribed period of time in the future. An ISC

essentially selects some number of individual scenarios and places those scenarios in

some order of occurrence. Since the resources required for any scenario and the duration

of each scenario is a pre-determined input, constructing an ISC provides planners and

analysts a time series of resource requirements for further analysis. A notional ISC is

depicted below.

Figure 4: A notional Integrated Security Construct. Adapted from [Stoddard et. al., 2011]

2.5 Total Army Analysis (TAA)
Total Army Analysis is the Army’s analytical venue for determining its force

structure. The objective of TAA is to determine and justify a program force structure

consistent with Defense Planning Guidance and other Army plans [United States Army,

18

1995]. While force structure is but part of the entire Army program, determining the

program force structure is of critical importance for other elements of the program such

as personnel and equipment decisions.

TAA includes activities spanning the spectrum from planning to programming.

Many of the analyses conducted by the Army during the planning phase of TAA inform

other DOD efforts, particularly the campaign analyses (of which, more later), which often

form the basis for Army requirements in DOD planning documents.

2.5.1 TAA Planning: Determining Force Structure Requirements
Army analysts determine force structure requirements in one of two ways—by

direct simulation or by use of allocation rules [Loerch, 2007]. In some cases, the numbers

of large combat forces, such as brigade combat teams, required for a given mission are

specified by the Department of Defense outside the scope of TAA. In these cases, the

Army will still conduct direct simulation to inform the analysis of forces determined

through allocation rules.

Given the large number of types of units, analysts use direct simulation to

determine requirements for only a limited subset of unit types. These directly determined

unit types are typically combat forces, such as brigade combat teams. The remainder of

unit types are then determined via allocation rules, which we discuss in more detail later.

Direct simulation takes on one of two forms—subject matter expert-informed,

tabletop exercises; and computational, theater combat modeling. The form of simulation

is a function of the availability of higher resolution computer models. In general,

computer simulation models are only available for high intensity conflict and in recent

19

years, for stability operations. In either case, analysts iterate through numerous instances

of the simulation until they determine a combat force that can achieve specified

objectives and within specified parameters such as timelines and casualty thresholds.

During the conduct of these simulations, analysts ensure that results used to

inform allocation rules are recorded. These results include, but are not limited to,

ammunition expenditure, geographic areas of responsibility, combat organization, and

casualties [Crain, 2007].

Forces not determined through direct combat simulation are determined using

rules of allocation, of which there are two types—existence rules and workload rules.

Existence rules specify that for every unit of type X in existence, some number of units of

type Y are required. Workload rules specify requirements such as the ratio of units

required to handle various volumes of ammunition expenditure [Loerch, 2007].

Taken together, the forces determined through direct combat simulation and by

means of allocation rules constitute the force requirements for a single engagement. TAA

then takes these requirements from engagements specified by the Department of Defense

(as discussed in section 2.4.3) to create a time-series of force requirements over some

specified period of time. Often this force structure requirement exceeds Congressionally-

mandated ceiling on personnel and other resources [Loerch, 2007]. In these cases, it is

necessary to select a portfolio of units that minimizes the risk incurred over the specified

planning scenario within these personnel and other resource constraints. In the resourcing

phase of TAA, Army analysts perform precisely this function.

20

2.5.2 TAA Programming: Resourcing a Force Structure
After determining the force structure requirements, TAA shifts its focus to

determining which elements in the force structure will be funded in future years, an

exercise known as resourcing the force structure. This resourcing process takes place

over several weeks and involves groups of individuals, typically colonels and their

civilian equivalents, performing qualitative analysis of the required force structure

[Loerch and Coblentz, 2002] and [United States Army, 1995]. This analysis includes

assessments of force affordability, supportability, and executability [United States Army,

1995]. This phase of qualitative analysis may take under advisement quantitative analyses

that consider risks and trade-offs across competing force structure options (see for

example [Helms, 2012]), though this type of input is neither mandatory nor habitual.

The final result of TAA is a force structure recommendation for each year of the

program objective memorandum.

2.6 Limitations in Defense Planning
Perhaps the greatest limiting factor in any force provision analysis is the

construction of demand functions which drive force structure requirements and readiness

policy decisions. We discussed in section 2.4.3 the current method for constructing

demand functions, the integrated security construct. Critiques of such an approach focus

on two distinct, but interrelated dimensions of the ISC approach—the process for

constructing a single ISC and the number of futures considered for analysis. As we will

discuss further, addressing issues related to ISC construction can ameliorate the

limitations related to the number of futures considered for analysis.

21

We discussed in section 2.4.3 the process used to construct an ISC. There are four

key variables which drive the development of an ISC demand function—the nature of

events which will occur; the duration of these events; the timing of the events; and which

resources are required to succeed in these events. Recall from our previous discussion

that these inputs are pre-determined.

Such a process, which uses pre-determined scenarios, drawn from a small set of

possible scenarios is subject to bias, placing undue attention on specific events, such as

conflict with a particular adversary (at the expense of others) [Lempert et. al., 2003].

Frequently, this attention to specific events focuses analysis on the performance of

desired (emphasis added) strategies.

The manner in which these ISCs focus on specific adversaries is relevant to the

discussion of the theme of our research, robustness. By specifying not only the

adversaries to be faced in the future, but also the timing of the interventions against those

adversaries, policy makers can limit the effect of these interventions on force structure

decisions, a criticism leveled by Davis [2002] among others.

For example, consider a planning construct that specifies adversaries X and Y. By

constructing an ISC that ensures that interventions against these adversaries do not

overlap, policy makers thus ensure that force structure requirements (to the extent that

such a thing exists) are less than would be indicated if those interventions overlapped.

Since we do not have a crystal ball, we cannot know for sure if those interventions would

overlap or even if they would occur, but ignoring the possibility of simultaneous

intervention limits the range of potential scenarios to which the force could intervene,

22

thus limiting a priori the robustness of potential responses. Now, it may be that based on

some value judgment, responding to both events would not be desirable, but the current

approach to constructing futures (and specifying strategies) does not support making such

an assertion.

Limiting the scenarios used for analysis and specifying the timing of those

scenarios necessarily limits the generalizability of any claims concerning the military’s

ability to execute the strategy. In particular, this prescriptive approach to analysis

precludes discussion of robustness. Since robustness concerns the ability of a system to

operate in any (though for practical purposes many) scenario, and the current analytic

paradigm considers only one scenario, analysts cannot presently make statements about

the military’s ability to execute the strategy beyond the single scenario under

consideration.

This criticism of narrowly focused analysis was put forth by Davis [2002] among

others, and in recent years, DoD has taken steps to address this criticism. For example,

the 2010 Quadrennial Defense Review [Department of Defense, 2010] considers three

potential futures. While this is a positive step, it does not go far enough. While no method

can possibly simulate and subject to analysis all possible futures which could confront the

DoD, any method that seeks to make generalizable statements about the ability to execute

the defense strategy must consider many possible futures. While the magic number of

potential futures is likely beyond our grasp, given the present state of computing power

available, it is certainly possible to analyze a great many more timelines of scenarios than

currently under consideration.

23

2.7 Summary
In this chapter we described the roles and responsibilities of the Combatant

Commands and military departments. As a force provider, the Army has a responsibility

to determine the future composition of its force. Defense PPBE provides a venue for the

Army to plan for its future force. However, current defense planning provides only

limited ways to consider uncertainty in the nature and timing of potential future

operations.

In the next chapter we review military force planning literature. Given the relative

paucity of the force planning literature, we also review private sector fleet planning

literature.

24

CHAPTER THREE: LITERATURE REVIEW: MILITARY FORCE MIX AND

RELATED PROBLEMS

In the previous chapter we discussed the system by which combatant commanders

request forces as well as the process by which the Army manages the resources it

provides to those combatant commanders. We also discussed the planning processes in

use to support the execution of this supply and demand system. In this chapter we discuss

the current state of methods the Army and the Joint Staff use to support force structure

decisions, methods used to analyze smaller scale force structure problems, and methods

used to study a useful, nearly-analogous problem: the fleet size and mix vehicle routing

problem.

3.1 Military Force Structure Analyses
As noted by [Carter et. al., 1997] (among others), and as we discussed in section

2.4.3 the Cold War and indeed post-Gulf War force structure analysis paradigm was to

size and shape the armed forces to conduct some specified number of major regional

conflicts and assume that the capabilities required to execute other types of operations

were a lesser-included subset of those needed to succeed on these major regional

conflicts.

In a series of planning exercises in 1996 and 1997, known as Dynamic

Commitment, the defense analytic community began to relax the lesser-included

assumption and considered the force size and force structure implications of so-called

25

“small-scale contingencies.” Carter et. al. [1997] describe in detail the Dynamic

Commitment series of planning exercises. We summarize this discussion below.

Dynamic Commitment began by noting that post-Gulf War military commitments

were placing a significant demand on U.S. military forces, though none of these

commitments was for a major regional conflict. Continuing with the assumption that the

nature of operations in the near-future would reflect the nature of those in the recent past,

planners developed a series of planning vignettes and associated force lists. The force

structure analysis proceeded by randomly distributing this collection of vignettes over

some notional future timeline and determining via seminar the response to each event in

sequence.

In order to investigate the sensitivity of like results to the assumption that the

near-future will look much like the recent past, the Center for Army analysis conducted a

series of analyses to look at both the nature of smaller scale contingencies and the force

structure required to succeed in those smaller scale contingencies.

The first of these studies, Stochastic Analysis for Deployments and Excursions

(SADE) [DuBois and Kastner, 2000] sought to apply queuing theory to the stochastic

modeling of the occurrence of smaller-scale contingencies. The methodology determined

the inter-arrival times for all events and the event-type and duration distributions for six

types of operations then simulated the occurrence of operations using these distributions

to determine the distribution over time of the number and nature of simultaneous

operations.

26

The second of these studies, Stochastic Analysis of Resources for Deployments

and Excursions (SARDE) [DuBois, 1999] built on the SADE analysis to examine the

force structure implications of a future in which the Army would be involved in

numerous, simultaneous smaller-scale contingencies. In SARDE, analysts determined for

each type of operation a mission, task-organized force (MTOF), a list of force structure

elements required to succeed in each type of operation modeled in SADE. By applying

the MTOF to the SADE simulations, analysts were then able to determine, for each

resource type, a probability distribution of the number of each unit type used

simultaneously.

[Loerch and Coblentz, 2002] built on the SADE/SARDE suite of analyses to

develop a method for analyzing force structure decisions in the context of both major

regional conflicts and smaller-scale contingencies. Their analysis proposed a two-stage,

recourse stochastic program. The first stage considered force structure decisions with

respect to the deterministic requirements of major regional conflicts; the second stage

assigns units to tasks in the smaller-scale contingencies. The first stage of the model is

used to determine an end-strength-constrained feasible solution while the second stage

minimizes the expected value of the risk associated with an optimal allocation of the

feasible force structure to the tasks in the SSCs.

The Army developed Marathon in response to the realization that readiness

policies influence the resources needed to meet anticipated demands. Marathon has two

methods of analyzing force structure: capacity analysis and requirements analysis.

27

Capacity analysis provides descriptive demand satisfaction and unit utilization

data given a specified structure, fixed demands, and a pre-determined readiness policy.

Marathon requirements analysis determines the force structure required to meet some

single collection of demands based on three inputs— a time series list of demands by

resource type; a time-based readiness policy; and a matrix of component proportions for

each resource type.

The logic by which Marathon generates a force structure based on these inputs is

described below. For further information on Marathon functionality see [Spoon, 2012]

and [Spoon, 2011].

The Randomly Generated Requirements Informed by Past Operational

Deployments (RANGER IPOD) [Helms, 2012] methodology was designed to address the

single-future limitation in current Army force structure analysis. Essentially, RANGER

IPOD creates many demand profiles using data-informed stochastic processes and

identifies one “ideal” force structure for each demand profile using the Marathon

requirements routine. The methodology then compares the performance of these

numerous force structures against another set of stochastic process-based demand profiles

to determine which of the generated force structures is likely to be most effective across a

range of potential demand profiles. In other words, RANGER IPOD searches for a force

structure that will enable the Army to have a robust ability to provide forces.

28

Figure 5: Marathon Requirements Analysis Logic

The Joint Staff uses a suite of tools to analyze Joint Force sufficiency. The

Capabilities to Forces Integration Tool (CFIT) [The Joint Staff, 2012a] is a mechanism

for representing combatant command requests for forces for individual events. The CFIT

Force Management Tool (CFORM) [The Joint Staff, 2012b] contains force structure

demand data, force management actions, and readiness policy attributes for US forces on

a future of specified events over a prescribed timeline. The functionality in the Mitigation

Options Selection Tool (MOST) [The Joint Staff, 2012d] allows service force structure

planners and analysts to determine how to supply forces to prescribed demands given

constrained resource inventory.

[Southerland and Loerch, 2014] developed an integer program to determine how

to reduce inventories in Army force structure to meet some directed overall personnel

29

reduction target. The data for the optimization are derived from multiple instances of

Marathon with varied inventories.

[Checco, 2015] describes a “multi-stage optimization model to determine

dynamic force size…while accounting for uncertainty of future demand.” The

optimization allows for the overall size of the force to change in response to conditions,

and considers multiple classes of manpower. Most other methods treat overall force size

as a fixed constraint, and focus on only military manpower.

3.2 Other Military Force Structure Analyses
[Wojtaszek and Wesolkowski, 2012] surveys the military fleet composition

literature and describes three classes of fleet composition problems—finding the best

fleet; determining how well a particular fleet will perform ; and determining the best

schedule for retiring and acquiring fleet platforms. In this section, we review their

findings with respect to two of these problems—finding the best fleet and determining

the best schedule for retiring and acquiring fleet platforms.

3.2.1 Finding an Optimal Fleet
Approaches to finding a single, optimal mix of resources to accomplish some

mission have generally focused on finding a mix of vehicles, for example armored

vehicles in the British Army or tactical vehicles in the Canadian Armed Forces. The

methods used to find these fleets are generally static, in that they consider a fixed

collection of scenarios to identify a static set of requirements. We discuss here some

linear and non-linear programming approaches as well as heuristic search methods to

identifying optimal vehicle fleet mixes.

30

[Walmsley and Hearn, 2004] describe a mixed integer linear program approach to

informing an armored vehicle fleet mix decision. The approach first determines total fleet

requirements by mapping platforms to roles, roles operational units, and operational units

to deployment types. Each platform is rated as either compliant or insufficient with

respect to these three requirements for various scenarios. The MILPs either determine (1)

a feasible fleet that complies with all requirements or (2) a fleet that maximizes

compliance given some cost constraint.

[Ghanmi et. al., 2010], like [Walmsley and Hearn, 2004], uses a requirements-

based approach to optimizing a vehicle mix. A MILP is used to determine minimum cost

fleets that meet all requirements and a mixed integer non-linear program is used to find a

maximally effective mix that meets cost constraints.

[Stuive at. al., 2010] describe an evolutionary algorithm, the non-dominated

sorted genetic algorithm II (NSGA II), in a multi-objective optimization framework to

find a Pareto curve describing the cost and performance characteristics of candidate

vehicle fleets. Other problems solved using evolutionary algorithms are discussed in

[Mazurek and Wesolkowski, 2009] and [Whitacre at. al., 2007].

3.2.2. Finding an Optimal Fleet Adaptation Schedule
The literature contains discussions of two broad approaches to determining how

best to adapt a fleet over time. The first approach is to determine which changes are

feasible over some given time frame and from these feasible changes, adapt the fleet as

well as possible given some constraining factors such as budget. The other approach is to

identify a single, target fleet and determine how to achieve this target over time.

31

[Barlow et. al., 2007] discusses a methodology for minimizing a risk metric over

time while changing the configuration of a particular force for some scenario or future.

The constraints are “discretized into a fixed number of changes per time period,” and the

set of all possible changes are then enumerated, creating a directed graph. The outcome

of each possible change is determined through simulation and the optimal solution found

by finding the shortest path, representing the minimum risk, through the directed graph.

[Brown et. al., 1991] describes a U.S. Army helicopter fleet modernization model.

Fleet modernization occurs via new production, modifying parameters of existing

production, upgrading platforms currently in the fleet, and retiring old platforms. The

modernization model uses a mixed-integer linear program to determine a fleet mix for

each year of a 20 to 30 year planning horizon. For each year in that planning horizon, the

fleet must adhere to specified performance standards, such as fleet age and proportion of

platforms at various levels of technology, without violating budgetary constraints.

[Wesolkowski et. al., 2009] uses a Non-dominated Sorting Genetic Algorithm II

to identify potential aircraft fleet mixes. Multiple scenarios are generated using the

Stochastic Fleet Estimation (SaFE) methodology [Wesolkowski and Billyard, 2008].

Fleets are then generated for each scenario using the genetic algorithm. Candidate fleets

are evaluated for their robustness, in terms of the number of generated scenarios that can

be completely satisfied by each fleet, and their adaptability, in terms of the number of

other scenarios that can be fully satisfied by adapting the fleet within specified budgetary

or other constraints.

32

In SaFE-Robust (SaFER), [Wesolkowski and Wojtaszek, 2012a] search for task

start times that minimize the total fleet cost required to meet all tasks. SaFE for Steady-

State Tasking (SaFESST) [Wesolkowski and Wojtaszek, 2012b] uses an evolutionary

fleet scheduling model to determine the performance of a specified fleet given specified

platform to task matching.

[Wojtaszek and Wesolkowski, 2011] describes a method to search for Pareto-

optimal platform to task assignment that can meet all requirements in a number of

stochastically generated scenarios. Solutions are evaluated in a multi-objective

optimization framework. Three objectives are proposed—minimal fleet cost; minimal

total task duration; and maximum flexibility in accomplishing tasks within specified time

windows. Here, flexibility is defined as the number of “subsets of platforms contained in

a fleet that can accomplish the task within the time window.” Thus, fleets with more

ways to service tasks are more flexible than fleets with fewer task-servicing options.

Rather than specify a single heuristic to generate solutions to the fleet mix

problem, [Shaffi et al, 2011] relates a method to find good heuristics. A learning

classifier system (LCS) applies heuristics to scenarios. By extracting scenario features

and evaluating the goodness of the heuristics the LCS learns the conditions under which

various heuristics perform well by relating heuristic performance with the extracted

scenario features.

 [Abbas et. al., 2008] describes a simulation-based methodology for determining

how to adapt a fleet of platforms. The Resource Planning under Time Constraints (RPTC)

model identifies for a series of scenarios, a list of non-dominated solutions, where each

33

solution lists some portfolio of platforms necessary to meet all requirements in a scenario.

These solutions are then clustered and these clusters are further clustered and ordered

based on the maximum number of platforms in any solution within the first set of

clusters. This ordering then informs candidate fleet adaptations, referred to as the

“capability evolution network.”

3.3 Fleet Mix Studies
In this section, we discuss literature concerning the fleet size and mix vehicle

routing problem (FSMVRP). Generally speaking, the FSMVRP is concerned with the

numbers and varieties of platforms in a vehicle fleet and managing that fleet of

heterogeneous resources to meet some demand for those resources.

While not directly related to force structure analysis, the FSMVRP provides a

useful analogy for identifying approaches to improving military force structure analysis.

As we discussed in chapter two, the problem of finding good force structures involves

three factors—supply, demand, and policy. The problem of sizing and shaping a fleet of

resources is, at its most basic, no different. Some collection of customers (demand) need

to be serviced by some collection of resources (supply) and rules (policies) exist, such as

in laws limiting the number of hours a truck can stay on the road at any given time (see,

for example, [Kok, et al, 2010]. Given these similarities it is prudent to review

approaches to finding optimal fleets.

[Golden et al, 1984] was the first to fully describe the FSMVRP. The objective of

the problem is to minimize some cost function, typically composed of both fixed and

variable costs, by determining not only how many of each of numerous types of vehicles

34

to purchase, but also how to route said vehicle in order to meet some known demand. The

fixed costs are generally associated with fleet acquisition while the variable costs are

generally associated with routing vehicles to meet customer demand.

[Jabali et al, 2012] suggests a useful delineation of approaches to the problem as

either operational or strategic. In operational studies, the goal is to find some mix of

vehicles that can meet current, day-to-day customer demand. This demand is generally

fixed and known. Strategic fleet mix studies, on the other hand, are focused on longer-

term shaping of a vehicle fleet to meet a range of potential future demands. Unlike

operational studies, strategic studies do not assume a fixed, known collection of

customers that require service.

Our research is focused on a strategic analysis of Army force structure. As such,

strategic fleet mix studies are most relevant to our research, but are less prevalent in the

literature than operational fleet mix studies [Jabali et al, 2012]. Approaches to solving

fleet mix problems at the operational level are nonetheless informative. In the following

sections we first review approaches to solving operational fleet mix problems, discussing

later the few strategic fleet mix studies we uncovered in our review of the literature.

3.3.1 Operational FSMVRP Formulations and Solution Methods
Solution methods to the operational FSMVRP can be summarized as following

one of three approaches— heuristic search and combinations thereof; heuristic search

augmented by a search-controlling metaheuristic; and various sorts of inequality and

column generation approaches within an integer programming framework. We discuss

35

below several unique methods for each of the three general classes of solution

methodology.

 [Golden et al, 1984] describes a series of heuristics for solving the FSMVRP as

well as methods for determining a lower bound on the solution and an underestimate of

the optimal solution. The heuristic methods include several savings heuristics, several

giant tour algorithms, as well as an improvement algorithm. The savings algorithms begin

by identifying some feasible set of routing sub-tours and determining the savings of

combining sub-tours with overlapping demands [Clarke and Wright, 1964]. The giant

tour algorithms create a solution in two phases—the first phase creates a single (giant)

tour that satisfies all customer demands and the second phase partitions the giant tour into

smaller tours satisfying the problem constraints. The improvement algorithm uses an

initial tour solution and tries to improve the tours by exchanging edges between tours

[Golden et al, 1980].

[Ulusoy, 1985] describes a variant on the giant tour approach to find a minimal

cost fleet and routing of said fleet. A giant tour is constructed and from this giant tour is

constructed a network with nodes corresponding to arcs on the giant tour and arcs

corresponding to single-vehicle feasible sub-tours. This network is then used to find a

shortest path collection of sub-tours, which is then subjected to a no-cost arc, tour-cost

improvement algorithm.

[Bookbinder and Reece, 1988] describe a non-linear, mixed integer program with

Benders decomposition for solving the FSMVRP. The fleet size and mix is determined

36

via an assignment problem in the context of multiple depot distribution. By assigning

customers to depots, a fleet is determined for each depot.

[Salhi and Rand, 1993] uses a heuristic search method to iteratively improve the

utilization of vehicles and thus potentially reduce the number of vehicles required to

service some demand. The algorithm uses a combination of reallocating customers within

vehicle routes, combining routes for a single thus reducing the number of required

vehicles, or by splitting routes.

Building on this work and the savings heuristics in [Golden et al, 1984], [Liu and

Shen, 1999] describe a heuristic approach to solving the FSMVRP with time windows.

Specifically, an insertion heuristic is used and the savings heuristic applied to determine

the cost savings of inserting customers into already existing routes while maintaining

time window and other constraint feasibility.

[Braysy et al, 2009] uses a three-phase, heuristic-based approach. In the first

phase, an initial solution is found using a savings heuristic. The second phase tries to

improve on the initial solution using a route elimination heuristic. And the third phase

uses a general local search to improve further the second phase solutions.

[Osman and Salhi, 1996] describe a tabu search metaheuristic used to search for a

near-optimal solution. Neighborhoods around an initial solution are determined using

customer re-allocation techniques, defined as shift and interchange. The best changes in a

neighborhood are then identified and compared to the initial solution. This process

continues until some pre-defined number of iterations passes without improving on the

then best solution. Other metaheuristic methods include [Liu et al, 2008] (genetic

37

algorithm), [Brandao, 2009] (tabu search), and [Repoussis and Tarantilis, 2010] (tabu

search augmented by adaptive memory programming).

[Taillard, 1999] uses a heuristic column generation approach to solving the

problem for a heterogeneous fleet of vehicles. The method begins by solving a series of

homogeneous vehicle routing problems using an adaptive memory process driven by a

tabu search [Taillard, 1993]. The set of solutions is then used to generate columns in a

matrix identifying which customers are served by which vehicles. This matrix is then

used to solve a Boolean linear program, the decision variables of which determine which

tours for each vehicle type to select as part of the final solution.

[Choi and Tcha, 2007] extend the column generation approach to solve exactly a

linear programming relaxation of an integer program. Columns are generated by way of

dynamic programming techniques for the vehicle routes. This approach is the first we can

find to use any sort of dynamic programming approach to generate potential solutions to

the FSMVRP.

[Yaman, 2006] identifies a difficulty in evaluating heuristic solutions to the

FCMVRP due to the “huge gap” in lower bound solutions. The proposed solution to this

problem is to formulate a number of valid inequalities with lifting of those inequalities

within an IP framework. [Pessoa et al, 2007] describes a branch, cut, and price algorithm,

also within an IP framework.

[Simao, 2009] determines the value of various trucking resources from an

approximate dynamic programming (ADP) model. The ADP manages the servicing of

38

uncertain demands. Outputs from this model are then used to determine the marginal

value of drivers. These marginal values were then used to inform fleet mix decisions.

3.3.2 Strategic FSMVRP Formulations and Solution Methods
 [List et al, 2006] details a robust, stochastic optimization methodology for

determining how invest in radioactive waste disposal equipment given uncertainty.

Uncertainty arises from variation in the timing and magnitude of waste disposal demands

as well as in readiness of vehicles to dispose of that waste. These uncertainties manifest

in the constraints of the formulation.

The goal in [Alvarez et al, 2011] is to find a solution that remains near-optimal

when the problem parameters are subjected to changes. To achieve this, a mixed integer

program is used to find solutions and then subjected to parameter variation based on the

robust optimization method of [Bertsemas and Sim, 2003].

[Cambini and Riccardi, 2009] defines three factors that contribute to a fleet mix

decisions—the ability to meet demand surges; the time to complete service tasks; and

capability hierarchy. In this framework capability hierarchy refers to the possibility that

some candidate platforms in the fleet can perform platform-unique tasks as well as tasks

performed by other platforms. This definition is consistent with our definition of

flexibility. Typically, the more flexible platforms are more expensive than less flexible

vehicles. The solution to this problem is solved using a recursive optimization

formulation.

[Cortes et al, 2011] optimizes the daily dispatch of operators within a simulation

framework. The results of the simulation are then used to adjust fleet performance curves.

39

These performance turns are then used in off-line decision making to develop long-term

policies.

Describing research by [Francis and Smilowitz, 2006], [Jabali et al, 2012]

discusses a continuous approximation method to solving the strategic fleet mix problem.

A notional demand scenario is modeled as a circle which has to be partitioned into rings

and those rings partitioned into routes. Each ring can only be serviced by one type of

vehicle while each route within a ring must be served by a single vehicle. Thus, the fleet

size and mix is determined by finding an optimal, or near-optimal, partitioning of the

circle into rings and routes by means of a mixed integer, non-linear program.

[Cheon et al, 2012] model a railcar fleet mix problem as a “long-term capacity

expansion problem.” The solution to this problem is determined over three stages. The

first stage determines likely requirements for railcars over some time frame. The second

part models the servicing of these requirements. The third, and final, stage of the model

then determines a fleet management plan to include procurement decisions and other

managerial tools such as railcar modification and transfer. All three stages of the model

are integrated into a mixed integer linear program.

3.4 Discussion
The current approach to analyzing force structure has limitations. The primary

limitation in force structure analysis arises from the fixed-future, fixed-force structure

approach to analysis. That is, not only does the approach we have discussed assume a

fixed future, the mix of units available to respond to that future is also fixed over the

duration of the future.

40

This fixed-force structure approach runs counter to several realities inherent in

defense planning and programming as well as counter to robust response to an uncertain

environment—the final product of the programming phase of PPBE, the program

objective memorandum, details a force structure for each year of the Future Years

Defense Program [United States Army, 2011]; the military, and in particular the Army,

adapts the mix of units in its force structure to respond to current and potential future

challenges ; and theoretically fixing force structure limits the ability to utilize one

dimension of flexible response to uncertainty, thus inhibiting modeling of adaptation to

ensure robust system performance.

While it is important to note for the sake of completeness that a program force

structure is actually one force structure per year over many years, it is more instructive to

focus on the implications of modeling a single force structure over some planning

horizon.

The theme of our research is ensuring robust response in an uncertain future

through flexibility-enabled adaptation. So a natural question to pose is, “To what extent

can the current approach to modeling consider robust response?” The answer, in short, is

only in a limited manner. Much like in our discussion of the limitations in representing

readiness management, assuming a fixed force structure over the planning horizon cannot

consider how changing the force structure over time in response to changing conditions

ensures an ability to provide forces when requested in support of the defense strategy.

This suggests that a failure to capture force mix adaptation is another critical limitation of

the current approach to analysis.

41

In this section we described literature on both military and civilian fleet sizing

problems. While the dynamics in the problems facing those sizing civilian fleets are

different than the dynamics facing military decision makers the methods used to model

civilian systems and solutions to their problems are nonetheless informative.

Some of the system models we described here take a short-term, deterministic

approach to solving for appropriate fleets. Others take longer term or stochastic

approaches to solving this problem. The literature is richest for the short-term,

deterministic models (operational models in the parlance of [Jabali et al, 2012]).

In either case, many of the solutions to fleet sizing problems involve heuristics,

meta-heuristics, and in one case, hyper-heuristics. Heuristic approaches include

algorithms for constructing solutions and approaches used to inform optimization models.

Meta-heuristic methods build on these heuristics and utilize, among others, variations on

the tabu search and genetic algorithms.

While the literature is richest for operational fleet sizing, there does exist a broad

array of methods and models for strategic sizing and shaping of fleets. Many of these

methods use an optimization framework, such as integer programs both linear and non-

linear, and stochastic programs. Other solution methods include the use of simulations to

determine fleet component value.

3.5 Summary
We have been thus far unable to identify any methods that use a combination of

simulation and dynamic programming to determine how to adapt a fleet over time in the

face of uncertain demand for fleet resources. This approach to fleet sizing and shaping is

42

the focus of our research. In the next chapter we describe our models for fleet demand,

fleet deployment management, and fleet mix over time. Our overarching approach is an

approximate dynamic programming model informed by a fleet deployment management

simulation given uncertain resource demand modeled by a collection of stochastic

processes. We discuss the methodology in chapter 5, but we first discuss approximate

dynamic programming.

43

CHAPTER FOUR: APPROXIMATE DYNAMIC PROGRAMMING AND THE

DIFFUSION WAVELET TRANSFORM

In this chapter we discuss the approach underpinning our methodology—

approximate dynamic programming (ADP) with value function approximation (VFA).

We review the ADP literature and describe the diffusion wavelet transform (DWT) VFA.

We conclude the chapter with a discussion of the current state of DWT research,

including present limitations in that research.

4.1 Dynamic Programming Overview
We define and describe here the field of approximate dynamic programming. This

discussion is adapted from [Powell, 2011], [Balakrishna, 2009] and [Gosavi, 2003]. Other

useful references include [Denardo, 2003], [Bellman, 2003], and [Busoniu, 2010] among

others.

4.1.1 Dynamic Programming
Dynamic programming is a collection of techniques used to solve sequential

decision making problems, often under conditions of uncertainty. Unlike mathematical

programming approaches, which solve all periods in multi-period decision models

simultaneously, dynamic programming solves these problems using a recursive

formulation (Balakrishna, 2009). This recursive formulation is characterized by a

statement of Bellman’s Equation suitably modified to the needs of the problem at hand

[Powell, 2011]—

44

Equation 1

𝑉𝑡(𝑆𝑡) = max
𝑥𝑡∈𝑋𝑡

(𝐶𝑡(𝑆𝑡, 𝑥𝑡) + 𝛾𝐸{𝑉𝑡+1(𝑆𝑡+1)|𝑆𝑡})

In the above equation, variables are indexed by time t, S is the state, V is the

value, x is the decision variable, C is the one-step contribution, and γ is a discount factor.

Dynamic programs are defined by state variables; decision variables; a state

transition function; an objective function; and, optionally, exogenous information

processes. State variables describe the information upon which any decision is to be

made, the information that must be known to make a ‘good’ decision. The goodness of

any decision is determined by the objective function. The transition function describes

how the state changes given any decision and any relevant exogenous processes.

Dynamic programming models with discrete states and decisions belong to a class of

models known as Markov Decision Processes.

Dynamic programs may seek to identify optimal decision over either a finite or an

infinite horizon. State transitions may be either deterministic, in which case there is no

exogenous process acting on the state transition, or stochastic. In any case the goal of a

dynamic programming is to associate with any state the optimal decision to make in that

state. Through its recursive formulation, a dynamic program finds an optimal decision

given a current state by considering both the immediate contribution of making any

decision and the potential future contributions that arise from having made that decision.

45

4.1.2 Markov Decision Processes
Dynamic programming is one solution method to a class of problems known as

Markov or semi-Markov decision process (MDP and SMDP). MDP and SMDP are

related to Markov and semi-Markov processes, the distinction being state transitions in

the decision processes are influenced by decisions (often in a system control context) in

some system whereas state transitions in the non-decision processes are not influenced by

external control mechanisms.

Markov processes and MDP are characterized by three properties—the jump

property, that is transitions between states occur regularly; the memoryless property, that

is the transition from any state depends only on the current state, and does not depend on

the states visited prior to the current state, depending; and the unit time property, that is

all state transitions occur after unit time [Gosavi, 2003]. The semi-Markov process and

SMDP are a more general class of problem than the MP and MDP in that the unit time

property is relaxed. Specifically, the transition times are generally distributed random

variables [Gosavi, 2003].

4.1.3 The Curses of Dimensionality and Modeling
As we discussed in the previous section Bellman’s equation provides a compact,

recursive solution to dynamic programs. In order to solve a dynamic program using

Bellman’s equation transition probability and transition reward matrices [Gosavi, 2003]

must be specified. In the case of the transition probability matrix, the probability of

transitioning from each state to every other state must be specified for every possible

decision. To specify a transition reward matrix, a value must be specified for each state

transition/action pair.

46

In either case, specifying the data needed to solve a dynamic program exactly

using Bellman’s equation is infeasible and the challenges therein, known as the curses of

modeling and dimensionality, have been widely acknowledged in the literature (see for

example, [Gosavi, 2003] and [Powell, 2011]).

The curse of modeling arises from the difficulty of modeling the relevant

dynamics of the system in question. In dynamic programming parlance, specifying the

state transitions, transition rewards, and transition times, given various decisions is

subject to the curse of modeling. In complex, stochastic systems, specifying a model of

that system is a challenging task [Gosavi, 2003].

A related challenge to the curse of modeling is the curses of dimensionality.

Whereas the curse of modeling relates to the ability to specify a model, the curses of

dimensionality relate to the computational feasibility of solving exactly a dynamic

program. The computational burden of solving a dynamic program is related to three

factors—the size of the state space; the size of the outcome space; and the size of the

decision space [Powell, 2011]. For example, consider a system with 1,000 states, each of

which is reachable from any other state via any one of ten decisions. In order to fully

specify the transition function, a transition probability for 1 million potential transitions

would have to be specified. In many practical cases, storing and recursing through the

matrices necessary to solve exactly a dynamic program outstrips a computer’s capacity to

store and process such information.

47

4.2 Approximate dynamic programming
Research into working through the challenges posed by the curses of modeling

and dimensionality has led to the development of approximate dynamic programming

techniques. Unlike dynamic programming, which through Bellman’s equation guarantees

optimality, approximate dynamic programming techniques can provide only nearly-

optimal solutions [Gosavi, 2003]. In this section we will discuss the approximate

dynamic programming techniques most relevant to our methodology and how those

techniques address the curses we discussed in the previous section.

4.2.1 Solutions to the curses of modeling and dimensionality
As we discussed in the section on dynamic programming, in order to find an exact

solution using Bellman’s equation a complete model, including transition probability

matrices and transition reward matrices, is required. Research into solutions to the non-

availability of explicit models has led to the development of so-called “model-free”

methods. Model-free methods do not require an analytical form of the objective function,

instead relying simply on the values of the objective function [Gosavi, 2003]. One

particular model-free method is of interest to our research—simulation-based

optimization. In simulation-based optimization, state transitions are generated through a

simulation. Note here that we have mentioned the use of optimization to mitigate the

need to explicitly represent state transitions, and acknowledge that model-free methods

do not explicitly represent the objective function, but we have not yet discussed how to

integrate this simulation into some value-based representation of the objective function.

The solutions of most relevance to our research bridge the gap between solving the curses

of modeling and dimensionality.

48

In general, there are three classes of solutions to the curses of dimensionality—

state-space reduction via aggregation; function fitting; and function interpolation [Gosavi,

2003] [Balakrishna, 2009]. Aggregation reduces the complexity of a dynamic

programming problem by combining multiple states into a single state. Frequently, this

aggregation allows for exact DP solutions, which can then be disaggregated to obtain

approximate solutions to the original problem [Powell, 2011]. Function fitting reduces

the dimensionality of the problem by fitting model parameters to state space variables to

generate an objective function. Function fitting methods include regression, among others

[Balakrishna, 2009]. Function interpolation methods also reduce dimensionality by

storing only a small number of representative value functions and interpolating to

determine all others [Balakrishna, 2009]. Together, function fitting and interpolation

reduce the dimensionality and provide a value-based representation of the objective

function. Thus, function fitting and interpolation address both the curses of modeling and

dimensionality. For more information on approximate methods, see [Busoniu et al, 2010].

4.2.2 The post-decision state variable
Before we discuss methods for approximating the value function it is important to

first discuss a subtlety in the expression of Bellman’s equation. Note in equation 5.1that

this version of Bellman’s equation requires evaluating the decision x that maximizes the

expectation of some other value. In order to find this optimal decision, we would need to

explicitly calculate this expectation for each decision. Calculating this expectation is

frequently intractable [Powell, 2011], due in part to the curse of modeling. The solution

49

to this challenge lies in re-expressing Bellman’s equation in terms of a post-decision state

variable.

To understand what constitutes a post-decision state variable, consider the state

transition from one decision cycle to the next. Two factors influence this transition—the

decision made in the initial state, and any exogenous processes. The logic behind the

post-decision state is to separate these two factors and apply only the influence of the

decision on the current state, thus the “post-decision” state. In this modeling framework,

the system operates just like any other MDP (or SMDP) except that observations are

made after each decision. The state transition equations are expressed as follows:

Equation 2

𝑆𝑡
𝑥 = 𝑆𝑀,𝑥(𝑆𝑡,𝑥𝑡)

Equation 3

𝑺𝒕+𝟏 = 𝑺𝑴,𝑾(𝑺𝒕
𝒙, 𝑾𝒕+𝟏)

In the above equations, 𝑆𝑡
𝑥 is the post-decision state at time t given decision x and

𝑆𝑡+1 is the pre-decision state at time t+1 given post-decision state 𝑆𝑡
𝑥 and exogenous

information 𝑊𝑡+1.

Given this discussion, we can express the relationship between the value of the

pre-decision and post-decision states as follows [Powell, 2011]:

50

Equation 4

𝑉𝑡−1
𝑥 (𝑆𝑡−1

𝑥) = 𝐸{𝑉𝑡(𝑆𝑡)|𝑆𝑡−1
𝑥 }

Equation 5

𝑉𝑡(𝑆𝑡) = max
𝑥𝑡∈𝑋𝑡

(𝐶𝑡(𝑆𝑡,𝑥𝑡) + 𝛾𝑉𝑡
𝑥(𝑆𝑡

𝑥))

Equation 6

𝑉𝑡−1
𝑥 (𝑆𝑡−1

𝑥) = 𝐸{max
𝑥𝑡∈𝑋𝑡

(𝐶𝑡(𝑆𝑡,𝑥𝑡) + 𝛾𝑉𝑡
𝑥(𝑆𝑡

𝑥))|𝑆𝑡−1
𝑥 }

With this form of Bellman’s equation we now have the expectation of a

deterministic quantity.

4.2.3 Value function approximation methods
Consider a hypothetical situation in which all state transitions are known and

deterministic. Computational feasibility aside, we could simply enumerate every possible

path forward in a network and determine with certainty the value of being in any state at

any time. Now consider a situation in which the state transitions are stochastic. If we

were to use a simulation to drive our ADP, each iteration through the simulation would

contain a different path forward through the states. From any given state, any number of

paths forward would be possible, and we could estimate the value of being in that state

for any of these paths. Each of these estimates would likely differ. The challenge we

would then face would be how best to incorporate the collection of sample value function

estimates. ADP uses an iterative value updating process driven by these sample value

estimates. The iterative update process is described by the equation below—

51

Equation 7

𝑉𝑛(𝑆𝑛) = (1 − 𝛼𝑛) ∗ 𝑉𝑛−1(𝑆𝑛) + 𝛼𝑛𝑣𝑛

In this equation the estimated value at iteration n of being in state S, denoted by

𝑉𝑛(𝑆𝑛), is the weighted sum of two quantities—the previous estimated value of being in

state S, denoted by 𝑉𝑛−1(𝑆𝑛); and the estimated value from the current iteration, denoted

by 𝑣𝑛. The choice of the weighting parameter, 𝛼𝑛, is of critical importance to ensuring

the quality of any value function approximation. For further research on the selection of

this parameter, see [George, 2006].

Given this iterative update method, it is important to discuss how to determine the

within iteration estimates, the 𝑣𝑛. The first step in this determination is to decide on a

functional form, such as a linear or non-linear function. Once this form is specified, the

parameters that define the function over the state-space or, in the case of function

interpolation, the relevant portion of the state-space must be specified. This specification

can come from regression or any other function fitting routine. One such routine, the

diffusion wavelet transform, and its associated functional form are of particular interest to

our research. The discussion that follows is adapted from [Balakrishna, 2009].

The diffusion wavelet transform represents a function by identifying “the best

scaling and orthogonal basis functions.” The functional form of this transform, in the

context of value function approximation, is as follows—

52

Equation 8

�̅�(𝑆|𝜃) = ∑ 𝑐(𝑗0,𝑘)𝜙(𝑗0,𝑘)(𝑆) + ∑ ∑ 𝑑(𝑗,𝑘)𝑤(𝑗,𝑘)(𝑆)

∞

𝑘=−∞

∞

𝑗=𝑗0

∞

𝑘=−∞

where 𝜙(𝑗0,𝑘) is the scaling function, 𝑤(𝑗,𝑘) are the wavelet functions, and

Equation 9

𝑐(𝑗0,𝑘) =
1

𝑚
∑ �̅�𝑖(𝑆)

𝑚

𝑖=1

𝜙(𝑗0,𝑘)(𝑆)

Equation 10

𝑑(𝑗,𝑘) =
1

𝑚
∑ �̅�𝑖(𝑆)

𝑚

𝑖=1

𝑤(𝑗,𝑘)(𝑆)

Given this functional form, the following algorithm can be used to approximate

the value function in an ADP framework (from [Balakrishna, 2009]).

Step 0: Initialization

0a: Initialize 𝑉(𝑆0), 𝑆0, and set n=0.

0b: Set a limit 𝑁𝑠, on the initial number of states to visit in order to initiate the

function approximation scheme

Step 1: Obtain a sample path 𝜔𝑛.

Step 2: Update 𝑆𝑛if n > 0.

Step 3: If 𝑁𝑠 distinct states have not yet been visited, go to step 3e.

53

3a: If 𝑁𝑠 distinct states are being visited for the first time, denote this set of states

by 𝑆𝑁𝑠
, and go to step 3b, else go to step 3c.

3b: Obtain the basis functions and the corresponding coefficients for the sample

of 𝑁𝑠 states. Go to step 3d.

3c: Obtain 𝑉𝑛−1(𝑆𝑛), the approximate value of being in current state 𝑆𝑛.

3d: Determine the next state, 𝑆𝑛+1 = 𝑆𝑀(𝑆𝑛, 𝑥, 𝜔𝑛). If 𝑆𝑛+1 ∈ 𝑆𝑛 then read

�̅�𝑛−1(𝑆𝑛+1) from the stored sample. Set 𝑉𝑛−1(𝑆𝑛+1) = �̅�𝑛−1(𝑆𝑛+1). Set 𝜙𝑛 = 𝜙𝑛−1 and

𝜓𝑛 = 𝜓𝑛−1. Go to step 3e. Else add 𝑆𝑛+1 to the set 𝑆𝑁𝑠
, as the last element and remove

the first element of the set 𝑆𝑁𝑠
. Using the updated state space sample, determine the basis

functions, 𝜙𝑛and 𝜓𝑛, and update the coefficients, 𝑐(𝑗0 ,𝑘)
𝑛 and 𝑑(𝑗,𝑘)

𝑛 . Obtain �̅�𝑛−1(𝑆𝑛+1)

and set 𝑉𝑛−1(𝑆𝑛+1) = �̅�𝑛−1(𝑆𝑛+1). Go to step 3e.

3e: Solve

Equation 11

𝑣𝑛 = min
𝑥∈𝑋

(𝐶(𝑆𝑛, 𝑥) + 𝛾𝑉𝑛−1(𝑆𝑀(𝑆𝑛, 𝑥, 𝜔𝑛)))

and let 𝑥𝑛 be the value of 𝑥 that solves this equation.

3f: Update the value function.

Equation 12

𝑉𝑛(𝑆𝑛) = (1 − 𝛼𝑛) ∗ 𝑉𝑛−1(𝑆𝑛) + 𝛼𝑛𝑣𝑛

54

Step 4: Find the next state, 𝑆𝑛+1 = 𝑆𝑀(𝑆𝑛, 𝑥, 𝜔𝑛).

Step 5: Set n=n+1. If n < N, go to step 1.

4.3 Discussion
Note that in step 3e of the preceding algorithm, we are told to solve an equation

by finding the action, x, that minimizes the equation’s value. However, step 3e does not

specify how to solve the equation. This raises a critical question—“How should we solve

the equation to find the optimal action?” To solve the equation, we must be able to

estimate the value, 𝑉𝑛−1(𝑆𝑀(𝑆𝑛, 𝑥, 𝜔𝑛)), for some set of actions, X. One possible

solution is to estimate the value for all possible 𝑥 ∈ 𝑋. However, given the curse of

dimensionality, estimating the value for all possible decisions is likely computationally

intractable for most problems.

[DeGregory, 2014] solves equation 11 by solving for only a subset of the decision

space. The method describes a pre-process that fixes values for some of the decision

variables. After setting these values, [DeGregory, 2014] uses information from the state

variable to develop a small number of candidate solutions. The solution carried forward

in the approximation is the best solution among this smaller list of candidates.

The solution-space reduction method seems a practical approach for solving

problems without running afoul of the dimensionality curses. However, many questions

remain about this approach, and particularly with respect to the DWT VFA. In particular,

in the course of our research we identified two questions that warrant further

investigation—“For how many decisions should the value be approximated?” and “How

55

does this number of candidate solutions relate to the size, 𝑁𝑠 (from step 3, above), of the

approximation?” These two questions provide the motivation for the computational

aspect of this dissertation.

4.4 Summary
In this chapter we reviewed the literature associated with our computational

approach to solving the problem described in chapter 2. We identified two unanswered

questions relating to the diffusion wavelet transform approach to approximating value

functions. These two questions provide the basis for the computational aspect of our

research. In chapter six we discuss the experimentation that provided us with insight

regarding these questions. In the next chapter we describe our methodology for applying

DWT DVA to solve the military force mix problem.

56

CHAPTER FIVE: METHODOLOGY

Recall that our problem is to determine how best to sequentially adapt the mix of

capabilities in the Army’s force structure. To solve this problem, we developed an

approximate dynamic programming formulation. We executed the formulation using a

Python-based simulation with a value function approximation. In this chapter, we

describe the simulation and its relationship to the DP formulation and value function

approximation.

5.1 Simulation
To model the force structure adaptation problem we developed a supply and

demand model in Python. In this model, as military missions occur, demand for forces

increases; military units represent the supply; and force generation policies represent the

rules by which units of supply are matched to demands.

5.1.1 Representing Military Units as Supply
Units of supply represent individual deployable elements of a given unit type.

Each unit is represented by a supply object in the simulation. Each object is characterized

by a collection of data, some of which are static and others dynamic. Static data include

the unit type and the unit name. Dynamic data include location, which can include

“Home” or a specific mission; status, which include “Non-Deployable”, “Deployable”,

and “Deployed”; and cycle time. We update these three dynamic parameters for each unit

57

at the beginning of every time step. We discuss these dynamic data in further detail later,

in our discussion of policies.

5.1.2 Representing Military Missions
In this methodology, military missions are divided into classes. Examples of

classes of military missions include humanitarian assistance, peace enforcement, and

homeland defense. Each class of mission is represented by a force list. Each force list, l,

is characterized by a deterministic duration parameter, 𝑑𝑙 which may be deterministic or

stochastic; a frequency parameter, 𝜆𝑙; and a list of unit types with associated required

quantities. Each mission type has one, deterministic list of required quantities. An

example force list is depicted below.

Table 1: Example Force List

Mission Enforce Peace

Frequency 14

Duration 3

Unit type Quantity

Tanks 2

Infantry 3

Logistics 1

The occurrence of each type of mission, l, is modeled as a Poisson process with

parameter 𝜆𝑙. By simulating the Poisson process for each mission type, we generate a list

58

of starting times for each mission. Coupling these starting times with the associated

frequency parameters allows us to visualize the missions over time. Adding the quantities

demanded for the various unit types allows us to create a demand vector for each unit

type for each time step in the simulation.

5.1.3 Governing Supply with Policies
Policies govern two aspects of supply behavior—the progression through various

states of readiness for each unit; and rules governing the assignment of units of supply to

missions.

Readiness policies are specified through three parameters-- “Not Deployable”;

“Cycle Max”; and “Deployment.” “Not Deployable” specifies the amount of time a unit

remains in “Non-Deployable” status before entering “Deployable” status. “Cycle Max”

describes how long a unit may remain at home before reverting to “Non-Deployable”

status and is the sum of the amounts of time a unit may be in either a “Non-Deployable”

or “Deployable” status. For example, if a unit has a “Cycle Max” of 24 months and a

“Not Deployable” parameter of 9 months, that unit may remain in “Deployable” status

for fifteen months before returning to “Non-Deployable” status.

The “Deployment” parameter dictates for how long a unit may be assigned to a

mission before returning to the “Home” location and to a “Non-Deployable” status. In

cases where a unit is assigned to a mission that ends before the unit’s remaining

“Deployment” time reaches zero, that unit will return to the “Home” location and enter

“Non-Deployable” status

59

While is it feasible and reasonable to specify different policies for different unit

types, in practice this is rarely done for units managed on a rotational policy. Thus, for

the purposes of this research, we allowed for the specification of a single readiness

policy.

The rules for assigning units of supply to mission take account of the unit types

required, the priority of the mission, and the relative cycle time of all deployable units of

supply. The assignment of units to demands follows a myopic, greedy heuristic. Thus, for

each given unit type, missions are sorted in priority order, deployable units of supply are

ordered descending by cycle time, and the two lists are matched until either all mission

requirements have been satisfied or no deployable units of supply remain.

5.1.4 Putting the pieces together
A single iteration of the simulation can be described by its demand, supply, and

policies. At the beginning of any iteration, supply and demand are initialized.

Demand initialization executes, for each mission class, the Poisson process. The

result is a data structure detailing the unit requirements for every unit type, for every time

step in the simulation. As the simulation progresses, we track mission requirement

satisfaction. This tracking is discussed in greater detail in section 6.2.

60

Figure 6: Simulation Overview

Supply initialization takes as input an initial supply portfolio which details the

initial quantities of units for each unit type. For each unit type, the created units’

readiness cycle times are evenly distributed across the readiness cycle. For example, if

the “Cycle Max” parameter is 24 months, and a unit type has three units, the units’

readiness will be 0, 8, and 16 months into the 24 month cycle. To ensure sufficiently

realistic starting conditions for performance measurement, we specify a burn-in period

during which no performance data are recorded. We describe these performance data in

greater detail in section 5.2.4.

After initialization, the simulation executes the same procedure for every time

step. The total number of time steps and the length of each time step are specified as

61

parameters. At the start of each time step, we update each unit of supply and update

demands.

To update supply, we advance the cycle time of each unit by the specified time

step parameter. Given this advance, we then update the status of each unit, as dictated by

the policy parameters discussed in section 5.1.3. Finally, we determine which units of

supply are eligible to be assigned to demands.

After updating the supply based on the specified policy parameters, we then

update mission requirements. Missions that begin during the time step are activated. We

then calculate the total number of units of supply assigned to each active mission. We use

this calculation to determine the list of unsatisfied demands.

Finally, we assign deployable units of supply to demand, using the myopic,

greedy heuristic as described in section 5.1.3.

5.2 Dynamic Programming Formulation
In the language of dynamic programming, the simulation, with one additional

piece of functionality, the decision function, provides us a representation of the transition

function. Recall from chapter 4 that the transition function defines transitions between

states given exogenous processes and the decision function (see equations 4.2 and 4.3). In

the simulation, missions and policies represent exogenous processes. We next describe

the decision function and then describe the data collected in the simulation and their

relationship to the state variable and the objective function.

62

5.2.1 Decision Function
As the simulation progresses from time-step to time-step, assigning ready units of

supply to unsatisfied mission requirements, we developed a decision variable, 𝑋𝑡, to

make, at regular intervals, changes to the portfolio of units types in the inventory. We

define this interval via a decision interval parameter. Typically, as is the case with this

research, the supply-demand interval is one month and the portfolio decision occurs

every twelve months.

At each portfolio decision interval, we decide, for each unit type, the number of

units to add or remove from the inventory, including the possibility of no changes to the

inventory. We denote the decision for each unit type, u, as 𝑋𝑡𝑢. Within the simulation, we

defined a heuristic to apply the force structure decisions at each decision interval. For

added units, we simply create a new supply object, and initialize the readiness cycle time

of each unit to zero. For unit types that need to shrink their inventory, we find the least

ready units with a “Home” location and set the status of the appropriate number of these

units to “Inactivated.”

This decision function, coupled with the functionality we discussed in section 5.1,

provide a method for modeling changes to the system state variable. We next discuss our

definition of the system state variable.

5.2.2 Decision Variable Constraints
The force structure portfolio decisions must meet a number of constraints.

Specifically, three classes of constraint define the feasible region for the (annual) force

structure decision—

63

1) Total change in personnel strength must not exceed some net change

parameter,

2) Total new structure must not exceed an annual feasibility parameter,

3) and the range of potential changes for any unit are limited to that which can

execute for a unit of its size class.

The third class of constraint provides us a way of representing a bit of reality in

our methodology. At their most basic, these constraints ensure we do not grow too many

large units, as defined by their echelon (company, battalion, brigade, in ascending order

of size) beyond that which the Army can feasibly execute. In general, larger units are

composed of a number of smaller units. This collection of smaller units may cover a wide

range of capabilities, thus making these larger units more complex to build. For example,

an armor brigade combat team is composed of five different types of battalions, each with

different classes of personnel, and is thus much more difficult to build than an infantry

company, which is composed overwhelmingly of infantry personnel.

5.2.3 State Variable
Within the simulation, we needed to identify a collection of variables that would

change between force structure decision intervals and whose association with some

notion of value would allow us to discriminate among potential force structure decisions.

Ultimately, we decided to model the system state as a vector. This vector contains one

entry for each unit type and describes the ability of each unit types to meet both readiness

requirements and forecast mission requirements. The value for each unit type consists of

three components: the fixed, pre-specified readiness requirements; a relation between

64

forecast and current mission requirements; and a relation between the current and

theoretical maximum number of deployable units.

To define the state variable we define the components as follows:

1. Readiness requirements for unit type u: 𝑅𝑢

2. Mission requirements: 𝑄𝑢𝑡

3. Maximum deployable units: 𝑌𝑢 ,where

𝑌𝑢=
𝐶𝑦𝑐𝑙𝑒𝑀𝑎𝑥−𝑀𝑖𝑛𝐷𝑒𝑝𝑙𝑜𝑦𝑎𝑏𝑙𝑒

𝐶𝑦𝑐𝑙𝑒𝑀𝑎𝑥
∗ (𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑢,𝑇−1 + 𝑋𝑇𝑢)

4. Currently deployed units: 𝐶𝑢

Then, 𝑆𝑢 = 𝑅𝑢 + max𝑡∈[𝑇,𝑇+𝑤) 𝑄𝑢𝑡 − 𝑄𝑢𝑇 − (𝑌𝑢 − 𝐶𝑢) and S=(𝑆𝑢). In this

equation, max𝑡∈[𝑇,𝑇+𝑤) 𝑄𝑢𝑡 − 𝑄𝑢𝑇 accounts for changes in mission requirements in some

window while 𝑌𝑢 − 𝐶𝑢 accounts for forecast changes in deployments in that same

window. Taken as a whole, the system state is a forecast for each unit type of its ability to

satisfy readiness and forecast mission requirements.

5.2.4 Objective Function
As is typical of a dynamic program, our objective function is defined as a

recursive relationship, namely the value of any given state given some decision is the

sum of the immediate contribution of the decisions given the current state and the value

of the subsequent state given the decision (see equation 4.1).

Given this recursive formulation, the contribution function given the current state

and the decision function is thus the critical element of the objective function. Our

contribution function is the weighted sum of two elements, demand satisfaction and force

65

readiness relative to some specified requirement, 𝐶𝑇 = 𝑤𝑟 ∗ 𝑟𝑇 + 𝑤𝑑 ∗ 𝑑𝑇, where

𝑤𝑟 + 𝑤𝑑 = 1.

Demand satisfaction is the first of two components in the contribution function.

At the end of every time step in the simulation, we record the total number of units of

each type assigned to each mission demand and weight both this satisfaction and the

requirement by the total number of personnel in the relevant unit type. As the simulation

progresses from decision epoch to decision epoch, we are thus able to calculate the total

satisfaction across all missions in the decision interval. This total satisfaction is expressed

as—

𝑇𝑜𝑡𝑎𝑙 𝑃𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙 𝑀𝑜𝑛𝑡ℎ𝑠 𝑆𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑃𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙 𝑀𝑜𝑛𝑡ℎ𝑠 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑
.

For example, if a mission requires three 20-person units for three months, the total

requirement would by 180 person-months; if two-thirds of this demand is met, demand

satisfaction is 120 person-months.

At each force structure decision epoch, the mission requirement satisfaction

component of the contribution is 𝑑𝑇 =
∑ 𝑆𝑎𝑡𝑚𝑚

∑ 𝑅𝑒𝑞𝑚𝑚
, where m is the set of all missions that

were active at any point in the decision interval.

The second component of the contribution function is readiness. At each mission

assignment interval in the simulation we record the number of units that would be

deployable within some window. For each unit type, we compare this number to a

specified readiness requirement, specified as a number of units of each type that must be

deployable within that same window. Thus, for each time step, we are able to calculate

66

the total force readiness relative to a requirement—𝑟𝑡 =
∑ min(𝑅𝑒𝑎𝑑𝑦𝑢𝑡,𝑅𝑢)∗𝑆𝑖𝑧𝑒𝑢𝑢

∑ 𝑅𝑢∗𝑆𝑖𝑧𝑒𝑢𝑢
, where u

is the set of unit types and 𝑆𝑖𝑧𝑒𝑢 is the number of personnel in a single unit of type u. The

readiness component of the contribution is the minimum readiness over the period

between the current and subsequent force structure decision, 𝑟𝑇 = min𝑡∈(𝑇,𝑇+1] 𝑟𝑡.

5.2.5 Exogenous Information Processes
The exogenous information in our formulation affects two components of our

system state as described in section 5.2.3. The mission simulation affects component 2 of

the system state, or mission requirements. The overall application of the simulation,

advancing unit cycles and assigning units to missions, affects component 4 of the system

state, or the number of units currently deployed at the time a unit inventory decision is

made.

5.3 Value Function Approximation Overview
The goal of an approximate dynamic program is to find an optimal, or near-

optimal, mapping of decisions to states. In this research, we use the Diffusion Wavelet

value function approximation to determine this mapping. The details of the Diffusion

Wavelet scheme are given in section 4.2.3 and we will not repeat those details here.

Instead, we describe the process by which we initialize and leverage simulation data for

the approximation.

5.3.1 Iteration and Convergence
Within the approximation scheme, we endeavor to reach a point at which

successive approximations do not vary greatly and of which we are reasonably satisfied

that solutions to Bellman’s equation arising from the approximation are near-optimal. In

67

practical terms, we address each of these considerations with separate mechanisms within

our methodology.

We use equation 4.7 to update our value function approximation. This equation

determines the current approximated value as the weighted sum of the value estimate

from the current iteration and the estimate from the most recent iteration. The weighting

factor, α, is critical in reaching a convergent approximation. If we are careless with how

we select this factor, we may experience a phenomenon known as apparent convergence

[Powell, 2011]. In apparent convergence, the approximation may reach a period of stable

approximations which mimic convergence but are merely locally stable. In these

situations, the approximation is likely to break out of this period of stability to better

approximations. One potential cause of this is a weighting factor that decreases too

quickly and thus exerts an unwanted influence on the approximation.

The other obstacle to reaching a convergent, near-optimal approximation is

sufficiently searching the state space to provide us confidence the solutions arising from

our approximation are, in fact, near-optimal. In the next section, we discuss how we

overcome this obstacle.

5.4 Implementation of Dynamic Programming
As we discussed above, to find a near-optimal policy we proceed through a

number of simulation iterations. This iteration progresses through two phases—an

exploration phase and an exploitation phase. The goal of the exploration phase is to

search the decision space to provide a foundation of data for the exploitation phase.

68

In the exploration phase, force structure decisions are made by one of two

mechanisms—an exploratory mechanism and function approximation-based mechanism.

In the exploratory mechanism, a random, feasible (as described in section 5.2.2) decision

is taken. As the simulation progresses, we track the decisions taken and the realizations of

the contributions. At the end of the iteration, we use these contributions to estimate, post-

hoc, the value of taking the various decisions in the relevant states. The random decisions

during the exploration phase ensure we have searched the decision space.

With the function approximation-based mechanism, we use the current value

function approximation to make a force structure decision. Specifically, we use the value

function approximation to determine which decision maximizes Bellman’s equation.

The exploration phase occurs over some pre-defined number of iterations. An

iteration uses the exploratory mechanism with probability, p, where p is determined from

a decreasing function whose value is close to 1 early in the exploration phase and reaches

0 at the end of the exploration phase. Within a single iteration, the decision mechanism is

constant.

The exploitation phase uses the same mechanics as the exploration phase with one

key modification—the probability of taking a random decision, i.e., exploring, is zero.

The exploitation phase continues for a fixed number of iterations or until the value

function approximation converges.

5.5 Summary
In this chapter, we described our methodology and model formulation for solving

the Army force structure adaptation problem. In the next chapter, we describe a case

69

study through which we demonstrate the feasibility of the methodology for solving the

problem.

70

CHAPTER SIX: EXPERIMENTATION

Recall the two objectives of this research: to demonstrate the feasibility of the

approximate dynamic programming approach to solving the force structure adaptation

problem and to examine the effect of value function approximation size on solution

quality. Our base hypothesis is that, within the range we tested, larger approximations

will yield better solutions. In this chapter, we describe the experimentation we conducted

to achieve these objectives, and test and refine the base hypothesis.

6.1 Experimentation Overview
Before we could test the solution quality of the DWT VFA, we first had to train

the VFA. Thus, the each experiment occurred over three distinct phases—an exploration

phase, in which we initiated the value function approximation; a learning phase, in which

we trained the value function approximation; and a “learnt” phase in which we assessed

the solution quality of the VFA by applying the approximation in an approximate

dynamic programming context against a number of test scenarios.

6.1.1 Exploration and a Decision Heuristic
One challenge we had to overcome in this research was the sheer size of the

decision space. As we describe below, we simulated a force with twenty different unit

types. Based on this and application of the decision space constraints, our decision space

71

had 804,651 possible decisions. This number of potential decisions would far outstrip the

computational ability of our system to estimate the value of every post-decision state.

To overcome this decision space challenge, we developed a heuristic to drastically

reduce the number of decisions we evaluated. To develop our reduced decision space, we

used the state space, which indicates relative surplus or shortage of inventory, to rank

order the 20 unit types. We then selected the five unit types with the greatest projected

surplus and five unit types with the greatest projected shortage as our candidates for

reduction or growth respectively.

Decision space constraints limited the total growth or reduction of each unit type

to one unit per decision, and our total number of new unit could not exceed three.

Applying these constraints to our two candidate populations reduced our decision space

to 226 decisions to be evaluated.

During exploration simulations, we selected randomly from this list of 226

decisions. For exploitation simulations, we evaluated these decisions using the diffusion

wavelet transform value function approximation (DWT VFA) and chose the decision that

took us to the most valuable post-decision state. Given the approximation sizes we

describe below, we were able to evaluate all candidate decisions with one single

application of the DWT VFA.

6.1.2 Learning Phase Description
Before we describe the details of the learning phase, we begin with some

terminology. When we use the word “scenario,” we mean an arraying over time of the

simulated mission occurrences with their associated force requirements. A simulation

72

dynamically applies specified force generation parameters to the inventory of unit,

assigns units to the scenario missions, and adjusts unit inventories by applying the

appropriate decision function. A single iteration, also called a state visit, is the application

of a single force structure inventory decision at a state. Thus, each simulation is

composed of one or more iterations.

Each simulation is defined by four major factors-- the scenario; the inventory of

units; force generation parameters; and a decision function. We created each scenario by

simulating the occurrence of eight mission types. The Poisson parameter and force

requirements for each mission type are described below. We started each simulation with

the same initial inventory, across 20 unit types of the same size, which is described

below. We applied a 24 month force generation cycle: each unit was deployable 6 months

after the beginning of a cycle and deployments were capped at 9 months. Decisions in the

simulation were random, as described above, or derived from the VFA-based

optimization described in chapter 5.

73

Table 2:Mission Requirements

The learning phase had three distinct sub-phases—an initialization phase,

intended to initialize the VFA by visiting many states with random decisions; a transition

phase, during which we slowly transitioned from random decisions to VFA-based

decisions; and an exploitation phase, during which we used VFA exclusively to make

inventory decisions.

Unit Type Mission 1 Mission 2 Mission 3 Mission 4 Mission 5 Mission 6 Mission 7 Mission 8

A 3 1 3 3

B 2 1 2 2

C 2 2 6 2 1 6 6

D 1 3 1 1 3 3

E 1 3 1 3 3

F

G 1 2 3 1 1 1 3 3

H 1 2 3 1 1 3 3

I 1 1 3 1 1 1 3 3

J 1 1 2 1 1 2 2

K 1 1 3 2 1 1 4 4

L 1 1 1

M 4 4 4 4

N 2 1 2 2

O

P

Q 3 1 3 3

R 1 2 2

S 3 1 3 3

T 1 3 1 1 1

Frequency 27 90 110 162 60 90 45 27

Duration 6 36 12 15 6 18 1 2

74

Table 3: Inventories and Readiness Requirements

In the process of determining exactly how to structure the learning phase (beyond

the three phases and the application of decision functions therein), we identified two

potential options. Each option lent itself to studying different aspects of the problem and

each option had the potential to run afoul of the curse of dimensionality. The first option,

to specify phase transition criteria and run simulations until all transition/termination

criteria had been met would have allowed us to study the convergence properties of the

value function approximation in greater detail, at the potential cost of having to run

orders of magnitude more simulations than time would permit. The second option, to

Unit Type Initial Inventory Alt Inventory 1 Alt Inventory 2 Readiness Requirement

A 9 8 2 6

B 8 0 5 3

C 9 0 13 7

D 6 14 16 3

E 9 0 16 3

F 5 4 12 10

G 10 5 12 3

H 10 18 1 3

I 9 5 11 3

J 12 5 12 2

K 10 18 6 5

L 5 7 11 1

M 11 16 3 2

N 8 12 2 3

O 5 9 12 2

P 5 5 12 3

Q 7 15 4 3

R 8 1 8 3

S 10 7 3 6

T 7 14 2 1

75

specify phase lengths a priori and run for a fixed number of simulations would allow us

to assess solution quality with reasonable controls and within manageable time.

After much consideration and informal experimentation, we opted to specify

phase lengths a priori. All results discussed in this dissertation are based on an

initialization phase of 5 million iterations, a transition phase of 2 million iterations, and

an exploitation phase of up to 5 million iterations (though in all cases we ran only 2

million iterations).

In each case, we observed the mean squared error of the gradient and monitored

this MSE for signs of convergence. [DeGregory, 2014] describes convergence within a

band. We applied the convergence with band approach to identify our stopping

conditions. For each measurement of the squared error of the gradient, we calculated a

mean (MSE) and plus-or-minus one standard deviation band, using the previous 500

observations of the squared error. We then counted the number of consecutive MSE

measurements that fell within its band.

6.1.3 Assessing the Impact of Approximation Size on Solution Quality
To assess the impact of approximation size we needed some way to compare

outcomes against some common feature. Tc achieve this, we generated 1,000 scenarios

using the Poisson processes described above. We then simulated each scenario applying

the base force structure and force generation rules described above, applying the DWT

value function approximations that resulted from the learning phase of each test case.

This simulation allowed us to compare solution quality within the DWT VFA.

76

However, to truly demonstrate goodness of the DWT VFA approach, we needed

to compare not only within variations on the DWT VFA, but with other approximate

dynamic program solution methods within the literature. To determine the potential

goodness of a VFA approach, [Powell, 2011] suggested asking, “Does a value function

add value?” In this context, he makes repeated reference to a myopic policy. Given this

discussion, we decided that comparing outcomes with our DWT VFA approach to

outcomes applying a myopic heuristic would be useful in establishing the goodness, or

added value, or our DWT VFA approach. Put another way, the myopic policy would

serve as an external control on statements of solution quality.

Having devised a way to establish the added value of our approach, we then

needed to determine a way to mitigate the possibility that any added value we identified

was an artifact of the setup of our study. In considering this need, we identified two

critical factors that might lead to misrepresenting the goodness of our approach—each of

the 1,000 scenarios we simulated started with the same inventory; and stated preferences

for outcomes measured in the objective function were fixed. In other words, we needed to

ensure that our statements of goodness were robust to varying initial conditions and to

changes in decision-maker preferences.

To investigate the robustness to initial conditions, we randomly generated two

additional force structures, listed above as “Alternate 1” and “Alternate 2”, each with the

same total number of units as the structure listed as “Initial.” We then performed the

simulation of the same 1,000 scenarios, substituting the initial structure with each

alternative. We did not re-learn a value function approximation because the initial state of

77

the simulation would be captured by the state space representation that resulted from the

learning phase.

To investigate the robustness we decided to reverse the weights. Since state

values are determined by the objective function, which is a function of the weights, we

needed to relearn the value function approximation using the new weights. Thus, we re-

executed the learning phase of our model for multiple approximation sizes. We then re-

simulated the 1,000 test scenarios for each combination of approximation and initial

inventory. In total, we learned 10 value function approximations, which are summarized

below.

Table 4: Approximations Learned

6.1.4 Computational Time
The first consideration we examined during our experimentation was

computational time. As we simulated the 1,000 scenarios for each approximation, we

noted the amount of time needed to simulate the scenarios to completion. We ran the

simulations on a PC running 64-bit Windows 7 with 32 gigabytes of RAM and a 3GHz

Intel Xeon 5760 processor. Although the processor had a dual core, we did not use any

Experiment wd wr 250 375 500 625

1 0.7 0.3 x x x x

2 0.3 0.7 x x

3 0.1 0.9 x x

4 0.9 0.1 x x

78

multi-threading to reduce computational time. The average simulation times for each of

the four approximations across the 1,000 scenarios are listed below.

Table 5: Average Simulation Time Over 1,000 Simulations

Size Avg. Simulation Time (sec)

250 5.4

375 9.1

500 14.6

625 22.5

It is clear from the data above that approximation size is a critical factor in

determining computational time. During development of the program, our speed

benchmarks indicated that about 80% of the computational time for any simulation was

due to QR factorizations required to calculate basis and scaling functions in the diffusion

wavelet transform.

We should note here that with the diffusion wavelet transfer, the simulations

times are a function of the approximation size and not a function of the length of the state

space vector. In our case, the state space vector had 20 entries. A single simulation for a

problem with 40, 50, or any arbitrarily larger (or smaller) number of entries would take

the same amount of time. This independence from problem size is part of the appeal of

the DWT VFA.

79

However, computational resources are finite, so we should choose an

approximation size that balances computational burden with solution quality. At the

speeds listed above, running the 100,000 simulations with a 625 state approximation for

the third sub-phase of our learning phase took about 26 days while the same number of

simulations with a 250 state approximation took less than one week. So, when

considering practical application of this methodology, we need to assess to what extent, if

any, the additional computational time improves simulation outcomes. The remainder of

this chapter presents our analysis of simulation outcomes.

6.2 Learnt Phase: First Experiment
Our first experiment utilized an objective function weighted 70% for satisfying

current mission requirements and 30% maintaining readiness for future contingencies. As

discussed above, we first learned four value function approximations. We then executed

the learnt phase for each value function approximation and compared the quality of

decisions applying these approximations to the quality of decisions applying a myopic

heuristic.

6.2.1 Solution Quality
To assess solution quality, we tracked two data point from each scenario: total

mission requirements satisfied over the 20 year simulation and average readiness over the

same period. Initial inspection of these data indicated that for each o each of the four

DWT value function approximations outperformed the myopic heuristic in all scenarios

for both data points. Given this finding, we decided to use the ratios of mission

80

satisfaction and readiness relative to the myopic heuristic as our modeling metrics. We

thus tracked percent increase of mission requirement satisfaction and readiness.

Given the experimental setup described in section 6.1, we decided to treat our

experiment like a fixed-effect model with a complete block design. In this setup, each of

the four DWT VFAs (denoted by i below) was a treatment and each of the 1,000

scenarios (denoted by j below) was a block. With this setup, we modeled each

observation as: 𝑦𝑖𝑗 = 𝜇 + 𝜏𝑖 + 𝛽𝑗 + 𝜖𝑖𝑗, where µ is the overall mean, 𝜏𝑖is the mean for

treatment i, 𝛽𝑗 is the mean for block j, and 𝜖𝑖𝑗is an error term.

We first set out to determine to what extent approximation size contributes to

better satisfaction of mission requirements. We needed to determine if the treatment

means were different. To this end, we proposed the following hypothesis:

𝐻0: 𝜏250 = 𝜏375 = 𝜏500 = 𝜏625

𝐻1: 𝜏𝑘 ≠ 𝜏𝑙 for some k,l ∈ 250, 375, 500, 625

To test this hypothesis we conducted an analysis of variance. With an F-statistic

of 405 and 3 degrees of freedom, the ANOVA results indicated that we could reject our

null hypothesis at the α=.01 level of significance.

Since we rejected the null hypothesis of equal treatment means, we then needed to

determine which treatment means differed significantly. We performed Duncan’s

multiple range test. This test allowed us to differentiate between individual treatment

means. The results of this test indicated that each of the four treatment means was

significantly different from the other means. Further, the results indicated the following

81

order, from best to worst, of the four treatments: 625, 500, 250, 375. The individual

treatment means from Duncan’s multiple range test are detailed in below.

Table 6: Experiment One, Mission Requirement Improvement Relative to a Myopic Heuristic

Approximation

Base

Inventory

Alt Inventory

1

Alt Inventory

2

250 1.8% 4.3% 3.9%

375 1.6% 3.4% 3.9%

500 2.1% 7.7% 3.1%

625 3.2% 13.3% 4.8%

We then repeated the experiment for each of the two alternate initial inventories.

For alternate inventory 1, we were able to reject the null hypothesis of equal treatment

means at the α=.01 level of significance (F=2,613 and df=3). Duncan’s multiple range

test indicated all treatment means being significantly different from other treatment

means with the same order as with the base inventory. Similarly, for alternate inventory

2, we were able to reject the null hypothesis of equal treatment means at the α=.01 level

of significance (F=158 and df=3). However, Duncan’s multiple range test indicated that

approximations with 250 and 375 states did not produce significantly different

improvements in mission requirement satisfaction and the approximation with 500 states

produced the worst improvements in mission requirement satisfaction of all treatments.

The order of means was 625, 250 and 375, 500.

82

We conducted the same statistical tests to determine if the treatment means for

improved readiness were significantly different. For each inventory, we were able to

reject the null hypothesis of equal treatment means. The ANOVA for treatment means for

the base inventory had an F statistic of 1,497; for the first alternate inventory 2,172; and

for the second alternate inventory 2,801. Duncan’s test indicated significant differences

between all means. The mean readiness improvement data for each of the three

inventories and four approximations are listed below.

Table 7: Experiment One, Readiness Improvement Relative to a Myopic Heuristic

Approximation

Base

Inventory

Alt Inventory

1

Alt Inventory

2

250 13.6% 12.6% 13.0%

375 12.8% 12.1% 12.0%

500 9.8% 7.6% 7.8%

625 16.9% 15.1% 16.7%

6.2.2 Discussion
Our results indicate that for both metrics, improved mission requirement

satisfaction and readiness, the size of the approximation has a statistically significant

effect on those improvements. For both metrics, the largest approximation outperformed

the other approximations. However, the results are less clear for the other three

approximation sizes. The smallest approximation yielded the second best improvements

in readiness for all three inventories. The smallest approximation also outperformed

83

larger approximations with respect to meeting mission requirement for one of the

inventories. Given the computational cost of larger approximations, this ambiguity

indicates that it might be computationally prudent to rely on the smallest approximation

we tested, 250 states. For the analyses we discuss in the next section, we compared only

the approximations using 250 and 625 states.

6.3 Learnt Phase, Experiment 2: Assessing the Robustness of Findings to
Alternative Preferences

To examine the robustness of our findings to alternative preferences, we decided

to reverse the weights in the objective function: the weight for readiness changed to .7

and the weight for meeting mission requirements changed to .3. We conducted the same

statistical tests with the same null hypotheses, namely equal treatment means. For each of

the three inventories we tested, we were able to reject the null hypothesis of equal

treatment means for both the readiness and mission requirements metrics. The relevant

ANOVA test statistics are depicted below.

Table 8: Experiment Two, F-Statistics for Comparing Equality of Means

Inventory

Mission

Requirement Readiness

Base 27 4,492

Alt 1 12.5 5,728

Alt 2 101.5 5,809

84

Closer inspection of the data revealed an interesting finding. For both metrics, the

smaller approximation yielded better outcomes. The mean outcomes for both metrics are

listed below.

Table 9: Experiment Two, Performance Improvements Relative to a Myopic Heuristic

Mission requirements

Approximation Base Inventory Alt Inventory 1 Alt Inventory 2

250 3.5% 14.9% 5.1%

625 3.2% 14.4% 4.3%

 Readiness

Approximation Base Inventory Alt Inventory 1 Alt Inventory 2

250 19.7% 17.3% 19.0%

625 14.4% 12.2% 13.8%

This result was rather unexpected. However, a few factors may bear on this

observation. First, the readiness requirements are deterministic. And in general, readiness

requirements are greater than mission requirements. It may be the case that weighting the

generally larger, deterministic factor more heavily than stochastic factors greatly

simplifies the structure of the state space to value space mapping. Plus, in our

methodology, we use a simplifying heuristic to assign units to missions. A method that

attempts to optimize both structure and assignment of units might benefit from a larger

approximation. However, such a method is beyond the scope of this research.

85

6.4 Learnt Phase, Experiments 3 and 4: Further testing with more
extreme weights

Based on the above observations, we hypothesized that the reversal of

performance should hold for other alternate weights. To test the hypothesis, we

conducted two additional experiments with more extreme weights on the two factors:

weights .9 for readiness, .1 for mission requirements and .1 for readiness, .9 for mission

requirements.

Table 10: Experiment Three, F-Statistics Comparing Equality of Means

Inventory

Mission

Requirement Readiness

Base 56 695

Alt 1 190 603

Alt 2 7.9 749

Table 11: Experiment Three, Performance Improvement Relative to a Myopic Heuristic

Mission requirements

Approximation

Base

Inventory

Alt Inventory

1

Alt Inventory

2

250 3.8% 15.7% 5.4%

625 3.3% 13.9% 5.1%

Readiness

Approximation

Base

Inventory

Alt Inventory

1

Alt Inventory

2

250 19.6% 17.2% 19.0%

86

625 17.4% 15.4% 17.1%

The results, detailed below, were somewhat surprising. As expected, and

consistent with our new hypothesis, the experiment that weighted readiness, the

deterministic factor, more heavily, had better results with the smaller (250 state)

approximation. However, the other experiment, which weighted mission requirements

more heavily, also had better results with the 250 state approximation.

Table 12: Experiment Four, F Statistics for testing equality of treatment means

Inventory

Mission

Requirement Readiness

Base 76 864

Alt 1 1,012 1,332

Alt 2 0.03 738

Table 13: Experiment Four, Performance Improvement Relative to a Myopic Heuristic

Mission requirements

Approximation

Base

Inventory

Alt Inventory

1

Alt Inventory

2

250 3.2% 13.9% 5.1%

625 2.8% 9.5% 5.1%

Readiness

Approximation

Base

Inventory

Alt Inventory

1

Alt Inventory

2

87

250 19.9% 18.0% 19.0%

625 17.4% 15.4% 17.1%

6.5 Discussion
We began the discussion of our results by highlighting the computational burden

associated with different approximation sizes. Within the range we tested, we observed

run times of up to 26 days to complete 2 million state visits over 100,000 simulations.

This run time is significant. Our problem size, 20 unit types, is comparable to many of

the problems the Army might face in shaping its force structure. For example, a problem

of the sort we modeled in this research could be applied to many of the branch-specific

resourcing decisions encountered in a typical Total Army Analysis. And a brigade mix

problem would also have in the neighborhood of 20 unit types. So our method should be

applicable to many interesting force structure problems.

However, overall problem size is multiplicative in the number of unit types. To

apply this method to the entirety of the Army would require significant additional

research. We did not investigate different approaches to exploring and exploiting the state

space. There may be significant dependencies between either of these and solution

quality associated with the DWT VFA. We noted that the computation of the DWT VFA

is a function of only approximation size and not the length of the state space vector. But,

for larger problems, we may need to explore for longer to ensure sampling of the state

space; we cannot know without more research for how many additional simulations we

88

might need to explore or exploit the state space. Due to this uncertainty, we must still be

mindful of computational time.

Our results indicate that for 3 of the 4 experiments we conducted, the smallest

approximation yields the best results for both mission requirement satisfaction and future

readiness. It may be the case that for approximations larger than we tested we might see

an improvement in these two metrics. However, the design of our experiments, fixed

effects, does not allow us to infer anything about the performance of approximations

whose sizes lie outside the values we tested. Had we randomly selected approximation

sizes and learned many more approximations, we might have been able to infer

performance for some arbitrary approximation size. But given our earlier discussion

about computing time, such a design would be impractical. We might be able to mitigate

some of the computational burden through multiple computing threads. Multi-threading

might make larger approximations more feasible for testing, though any gains in

computational power are linear in the number of processors, so multi-threading is likely

not a computational cure-all.

89

CHAPTER 7: CONCLUSION

[Powell, 2011] tells us that the future of ADP is likely a “collection of fairly

specific problem classes with well-defined structures.” This point serves as a reminder

that we probably should not paint too broadly any findings arising from an ADP solution.

Rather, we might be prudent to extend our findings only to problems with similar

structures. After all, ADP exists as a field to find computationally tractable, yet

demonstrably better solutions to massive problems with unique structures.

In this chapter we discuss the contributions of this research from both a

methodological and application perspective as well as areas for further research.

7.1 Application contributions
The primary objective of our research was to demonstrate the application of

approximate dynamic programming to the military force mix adaptation problem. We

accomplished this objective by developing a simulation-based, sequential decision

making model where decision in the model were determined by applying the diffusion

wavelet transform as a value function approximation in an approximate dynamic

programming formulation.

The United States Army annually revises its force structure. Despite the

computational challenges we discussed earlier, the methodology we developed is capable

of prescribing alternative decisions within the annual decision cycle. With sufficient lead

90

time, our methodology can also support numerous sensitivity analyses. All of these are

possible without any recourse to parallel processing. Any effort to expand this

methodology to include parallel processing would allow for analysis of sensitivity to

more parameters and possibly to provide alternative force structure recommendations

more rapidly, as decisions are being made.

There is a relative lack of research on military force mix problems. The most

frequent approach we identified in the literature applies heuristic search of the decision

space (for example, [Mazurek and Wesolkowski, 2009] and [Helms, 2012]). Fully

stochastic approaches include some two-stage stochastic programs, [Loerch and

Coblentz, 2002] and [Checco, 2015] among them. This dissertation is the first instance

we have identified that applies ADP to solve the military force mix problem. This

approach extends the problem by identifying the conditions that necessitate changing the

fore mix, as expressed through the ADP state variable, and selecting a good set of

changes to make to the mix, as expressed through the ADP decision variable. We now

refer to the military force mix problem as the military force mix adaptation problem.

One demonstrated strength of the DWT VFA is its scalability to larger problems.

We demonstrated our methodology on a sample problem of non-trivial size. With a

methodology that can apply to force mix problems of up to 20 unit types, we can use this

methodology for a wide array of problems: brigade mix problems; branch resourcing

problems within the United States Army’s Total Army Analysis; and likely force mix

problems for many nations’ armed forces. With further development and research, we

might be able to develop ADP solutions to the full force mix adaptation problem.

91

7.2 Methodological contributions
The methodological objective of our research was to investigate the effect of the

size of the diffusion wavelet transform value function approximation on solution quality.

This research advanced the field in three critical ways: we examined approximation size

as relates to solution quality; we established superior performance of the DWT VFA

relative to a myopic heuristic; and applied our DWT VFA research to the largest problem

yet investigated in the literature.

We examined for the first time the effect of approximation size on solution

quality and established superior performance of the DWT VFA to a myopic heuristic.

Two previous efforts, [Balakrishna, 2009] and [DeGregory, 2014], studied solution

quality with application of the DWT VFA. Both established the superiority of VFA

solutions to a myopic heuristic, but neither addressed approximation size as a variable.

In this dissertation, we examined four discrete approximation sizes in four distinct

experiments. Each experiment consisted of simulating 1,000 twenty-year scenarios for

each of three different starting conditions. In each experiment, VFA identified more

valuable decisions than the myopic heuristic for every scenario. The myopic heuristic

never outperformed the value function approximation.

As we began this research, we expected to find that, within the range of

approximation sizes we tested, solution quality would monotonically increase with

approximation size. This proved not to be the case. Our first experiment showed the

largest approximation, using 625 states, provided the greatest improvement in

performance relative to the myopic heuristic. However, the smallest approximation, using

250 states, did not perform much worse. Given the added computational needed to apply

92

a DWT VFA with 625 states, we completed the next three experiments comparing only

the 250-state and 625-state approximations. In each of these experiments, the 250-state

approximation identified better solutions than the 625-state approximation, excepting one

starting condition in one experiment in which the performances did not show a

statistically significant difference.

7.3 Areas for future research
The first area we would pursue to improve this methodology would be to

incorporate the ability to parallel process multiple simulations simultaneously. Doing so

would provide immediate additional scalability to our methodology, though this

scalability would not be a silver bullet. Parallel processing is linear in the number of

processes while problem complexity is exponential in the number of unit types under

consideration. However, parallel processing is critical to enabling other areas of potential

research.

In addition to parallel processing, we identified three additional areas that warrant

further study within the existing methodology: examining the effect of larger

approximations on solution quality, which would be aided by parallel processing;

examining the effect of imperfect knowledge or varying look-ahead on solution quality;

and examining the effect on outcomes of changing the learning phase.

93

APPENDIX A: PYTHON CODE

Our program used ten modules to execute the functionality described in the main

body of this dissertation. In this appendix we provide the code for the nine of the ten

modules comprising our program. The tenth module was a general purpose controller

which we modified frequently to execute our experiments in manageable chunks. We

thus do not include the controller code in this appendix

A.1 Simulation
import Params as Par

import SupplyClass as SC

import DemandClass as DC

import StochDemand as SD

import MatchingFunctions as MF

import Initialize as Init

import ADP

import random

import time

import os

import pickle

import thread

94

import DW

errorcount=0

ObjectiveList=[]

def Simulation(SimLength, BurnIn,

DecisionInterval,Explore,alpha,SRCData,SupplyList,DemandList,ReadReq,ReadHist):

 #create lists of states and values if in exploration mode

 #these will be used throughout the exploration phase to initialize the state

tracker

 #for use in value function approximation during exploitation phase

 global errorcount

 StateTrack=[]

 ContTrack=[]

 StateValue=[]

 decIntervalSat=[]

 Deactivating=[]

 ValueList=[]

 bigV=[]

95

 for T in range(SimLength+1):

 #Update all supply

 SC.UpdateAllSupply(SupplyList)

 #Update all demands

DemandList,Deactivating=MF.UpdateAllDemand(T,DemandList,SupplyList)

 #Update units of supply assigned to deactiving demands

 SupplyList=SC.UpdateSupplyDeact(SupplyList,Deactivating)

 #Assign deployable supply to unfilled demands

DemandList,SupplyList=MF.AssignSupplyDemand(DemandList,SupplyList)

 if T%(int(DecisionInterval))==0:

 if not T>=BurnIn:

s=MF.getSystemState(DemandList,ReadReq,SupplyList,SRCData,T,Par.lookAhead)

 if not len(StateTrack)==0 and Explore=='Yes':

 c=calcContribution(SRCData,decIntervalSat,ReadHist,ReadReq)

 ContTrack.append(float(c))

 #clear decision interval satisfaction record after determining

 #contribution

96

 decIntervalSat[:]=[]

 if T>=BurnIn:

SupplyList,SRCData,maxval=structureDecision(Explore,T,SupplyList,SRCData,s,ReadR

eq,decIntervalSat,Par.gamma)

 if not Explore=='Yes':

 ValueList.append(float(maxval))

 #post-decision state

s=MF.getSystemState(DemandList,ReadReq,SupplyList,SRCData,T,Par.lookAhead)

 StateTrack.append(s)

 ReadHist=SC.UpdateReadinessHistory(SRCData,SupplyList,ReadHist)

decIntervalSat=DC.trackRecentDemand(SRCData,DemandList,decIntervalSat)

 #after running through a single iteration of the simulation in exploration mode

 #add the state data to the state tracker for use in exploitation phase

 if Explore=='Yes':

 ValueList=CalcTotalCont(ContTrack,Par.gamma)

 StateValue=list(zip(StateTrack,ValueList))

 StateValue=StateValue[:Par.Observations]

97

 bigV=SC.calcBigV(StateTrack,Par.DWInitial)

 SC.UpdateErrorList(bigV[:Par.Observations],ValueList[:Par.Observations+1])

 SC.UpdateStateTracker(StateValue,alpha)

 if len(SC.ErrorList)>=10000:

 SC.saveErrorList(errorcount,500)

 errorcount+=1

def

structureDecision(explore,Time,SupplyList,SRCData,State,ReadReq,decIntervalSat,disco

unt):

 #Find new structure,place result in variable y

 if explore=='Yes':

 #changed function call to RandDec from makeRandomDecision

 y=ADP.RandDec(SRCData,5,State)

 maxval=0

 else:

y,maxval=ADP.makeGoodDecision(State,SRCData,SupplyList,ReadReq,decIntervalSat,

discount)

 #Apply structure changes

 SupplyList,SRCData=SC.applyDecision(y,Time,SupplyList,SRCData)

98

 return SupplyList,SRCData,maxval

def calcContribution(SRCData,decIntervalSat,ReadHist,ReadReq):

 #Get demand satisfaction data over previous decision interval

 #Then calculate readiness contribution and roll them both up...

 z=DC.getSatHistory(SRCData,decIntervalSat,'Full')

 b=SC.getReadinessCont(ReadHist,ReadReq,SRCData)

 a=100*MF.CalcCont(b,z)

 return a

def RecurseValues(elist,discount):

 if not elist:

 return 0

 else:

 return elist[0]+discount*RecurseValues(elist[1:],discount)

def CalcTotalCont(elist,discount):

 ContList=[]

 for i in range(len(elist)):

 ContList.append(RecurseValues(elist[i:],discount))

99

 return ContList

def writedatatofile(path):

 myfile=open(path+'\\perf.txt','w')

 for item in ObjectiveList:

 myfile.write(str(item)+'\n')

 myfile.close()

def storeObjTracker(path):

 name=path+'//Obj.pkl'

 F=open(name,'wb')

 pickle.dump(ObjectiveList,F)

 F.close()

def LearntExperiment(Type, SimLength, BurnIn,

DecisionInterval,SupplyList,SRCData,DemandList,ReadHist,ReadReq):

 ContTrack=[]

 decIntervalSat=[]

 Deactivating=[]

 ValueList=[]

100

 for T in range(SimLength+1):

 #Update all supply

 SC.UpdateAllSupply(SupplyList)

 #Update all demands

DemandList,Deactivating=MF.UpdateAllDemand(T,DemandList,SupplyList)

 #Update units of supply assigned to deactiving demands

 SupplyList=SC.UpdateSupplyDeact(SupplyList,Deactivating)

 #Assign deployable supply to unfilled demands

DemandList,SupplyList=MF.AssignSupplyDemand(DemandList,SupplyList)

 if T%(int(DecisionInterval))==0 and T>=BurnIn:

 if not T>=BurnIn+1:

s=MF.getSystemState(DemandList,ReadReq,SupplyList,SRCData,T,Par.lookAhead)

 if T>=BurnIn+1:

 c=calcContribution(SRCData,decIntervalSat,ReadHist,ReadReq)

 ContTrack.append(float(c))

101

 if T>=BurnIn:

 #Force structure decision

SupplyList,SRCData=LearntDecision(Type,T,SupplyList,SRCData,s,ReadReq,decInterv

alSat)

 #post-decision state

s=MF.getSystemState(DemandList,ReadReq,SupplyList,SRCData,T,Par.lookAhead)

 #clear decision interval satisfaction record after determining contribution

and making decision

 decIntervalSat[:]=[]

 ReadHist=SC.UpdateReadinessHistory(SRCData,SupplyList,ReadHist)

decIntervalSat=DC.trackRecentDemand(SRCData,DemandList,decIntervalSat)

 ValueList=CalcTotalCont(ContTrack,Par.gamma)

 Objective=ValueList[0]

 return Objective

def LearntDecision(Type,T,SupplyList,SRCData,s,ReadReq,decIntervalSat):

102

 if Type=='VFA':

y,maxval=ADP.makeGoodDecision(s,SRCData,SupplyList,ReadReq,decIntervalSat,Par.

gamma)

 elif Type=='Myopic':

 #Need to make a myopic decision function

 y=ADP.MyopicDecision(s,SRCData,SupplyList,ReadReq,decIntervalSat)

 SupplyList,SRCData=SC.applyDecision(y,T,SupplyList,SRCData)

 return SupplyList,SRCData

def ValidationExperiment(Type,path,count,SimLength,BurnIn,DecisionInterval):

 #initialize input data for a simulation

 fname=path+'Validate//dem_'+str(count)+'.pkl'

SupplyList,SRCData,DemandList,ReadHist,ReadReqt=Init.InitializeValidation(path,fna

me)

 if Type=='VFA':

 g='StateSpace_Final.pkl'

 Init.InitializeApprox(path,g,Par.LenStateTrack)

 #run a simulation with the relevant inputs

103

 obj=LearntExperiment(Type, SimLength, BurnIn,

DecisionInterval,SupplyList,SRCData,DemandList,ReadHist,ReadReqt)

 #append the simulation data to the relevant data structure

 ObjectiveList.append(obj)

def InitIterations(numiters):

 InitialComplete=False

 iteration=1

 alpha=.95

 while iteration<=numiters and not InitialComplete==True:

 #Clear simulation inputs from previous iteration

 SupplyList=[]

 SRCData={}

 DemandList=[]

 ReadReq={}

 ReadHist={}

 #initialize supply structures for this iteration

 SupplyList,SRCData=SC.InitSupply('.//SupplyRecords.txt')

 #initialize demand structures for this iteration

 DemandList=SD.processDemandDirectory('.//DemFiles')

104

 #initialize readiness structures for this iteration

 ReadReq,ReadHist=SC.InitReadReqt('.//Readiness.txt')

Simulation(Par.SimLength,Par.BurnInPd,Par.DecInterval,'Yes',alpha,SRCData,SupplyLis

t,DemandList,ReadReq,ReadHist)

 if iteration%500==0:

 SC.TrimTracker()

 print 'Tracker',len(SC.StateTracker)

 SC.storeStateTracker('.//','19Init')

 print iteration, time.clock(),alpha

 iteration+=1

 alpha=alpha-.000001

 SC.StateTracker.sort(key=lambda k: (k['Value']),reverse=True)

 SC.storeStateTracker('.//','19Init')

def TransitionIterations(numiters,numstates):

 iteration=1

 alpha=.7

 p=.8

 p0=.8

105

 Init.InitializeApprox('.//','StateSpace_73Init.pkl',numstates)

 while iteration<=numiters:

 SupplyList=[]

 SRCData={}

 DemandList=[]

 ReadReq={}

 ReadHist={}

 explorechance=random.random()

 #initialize supply structures for this iteration

 SupplyList,SRCData=SC.InitSupply('.//SupplyRecords.txt')

 #initialize demand structures for this iteration

 DemandList=SD.processDemandDirectory('.//DemFiles')

 #initialize readiness structures for this iteration

 ReadReq,ReadHist=SC.InitReadReqt('.//Readiness.txt')

 if explorechance<=p:

Simulation(Par.SimLength,Par.BurnInPd,Par.DecInterval,'Yes',alpha,SRCData,SupplyLis

t,DemandList,ReadReq,ReadHist)

 else:

106

Simulation(Par.SimLength,Par.BurnInPd,Par.DecInterval,'No',alpha,SRCData,SupplyList

,DemandList,ReadReq,ReadHist)

 if iteration%500==0:

 print iteration, time.clock()

 iteration+=1

 alpha=alpha-.15/float(numiters)

 p=p-p0/float(numiters)

def ExploitIterations(numiters,numstates):

 iteration=1

 alpha=.55

 Init.InitializeApprox('.//','StateSpace_TransAW19.pkl',numstates)

 while iteration<=numiters:

 SupplyList=[]

 SRCData={}

 DemandList=[]

 ReadReq={}

 ReadHist={}

107

 #initialize supply structures for this iteration

 SupplyList,SRCData=SC.InitSupply('.//SupplyRecords.txt')

 #initialize demand structures for this iteration

 DemandList=SD.processDemandDirectory('.//DemFiles')

 #initialize readiness structures for this iteration

 ReadReq,ReadHist=SC.InitReadReqt('.//Readiness.txt')

Simulation(Par.SimLength,Par.BurnInPd,Par.DecInterval,'No',alpha,SRCData,SupplyList

,DemandList,ReadReq,ReadHist)

 if iteration%500==0:

 print iteration, time.clock()

 SC.storeStateTracker('.//','Final')

 iteration+=1

 alpha=alpha-.45/float(250000)

A.2 Matching Functions
import SupplyClass as SC

import DemandClass as DC

import Params

import time

RecentPerf=[]

108

def UpdateDemandFill(DemandList,SupplyList):

 #make list of active demands

 ActiveDemandList=[obj for obj in DemandList if obj.status=='Active']

 for obj in ActiveDemandList:

 #make list of units assigned to current demand in the loop

 Units=[x for x in SupplyList if x.location==obj.name]

 #Number of units assigned

 count=len(Units)

 if count>=obj.qty+1:

 print 'More assigned than needed'

 obj.UpdateAssigned(count)

 #increment the total number of unit months satisfied

 obj.UpdateTotSat(obj.assigned)

 return DemandList

def UpdateAllDemand(Time,DemandList,SupplyList):

 #Deactivate Demands with finish = "Now"-1

109

 #Activate Demand with start = "Now"

 DemandList,Deactivating=DC.UpdateDemandStatus(Time,DemandList)

 #Update number of units assigned to each demand

 DemandList=UpdateDemandFill(DemandList,SupplyList)

 return DemandList,Deactivating

def AssignSupplyDemand(DemandList,SupplyList):

 #Find unfilled, active demands

 DList=DC.FindUnfilledDemand(DemandList)

 #Find deployable supply

 SList=SC.FindDeployableSupply(SupplyList)

 #make list of SRCs with at least one unfilled demand

 q=DC.getUnfilledSRC(DList)

 #iterate through the list of SRCs

 for entry in q:

 #Make a list of deployable supply with the SRC, ordered by CycleTime,

descending

 Supp=[x for x in SList if x.SRC==entry]

 #Make a list of unfilled demands with the SRC, ordered by priority

110

 Dem=[y for y in DList if y.SRC==entry]

 #for each entry in the Dem list

 for demand in Dem:

 #if supply list is not empty

 if Supp:

 #determine number of units to assign

 n=min(len(Supp),demand.qty-demand.assigned)

 #assign units to demand

 for q in range(n):

 Supp[q].AssignSupply(demand.name)

 #delete the assigned units of supply from the supply list

 Supp[0:n]=[]

 return DemandList,SupplyList

def CalcCont(Ready,Fill):

Cont=Ready*Params.MetricWeight['Ready']+Fill*Params.MetricWeight['Now']

 return Cont

def getSystemState(DemandList,readReq,SupplyList,SRCData,t,window):

 #system state: combination of window-length demand forecast, readiness

111

 #requirements, and current readiness

 #1) Calculate max and current demand by SRC

 #2) Calculate max deployable and currently deployed supply

 #3) Calculate forecast surplus,shortage=readReq+maxDem-CurrDem-

(MaxDep-CurrDep)

 f=[]

 SRClist=[obj for obj in SRCData.keys()]

 maxDem=DC.getDemandLookAhead(t,window,DemandList,SRCData)

 currDem=DC.getDemandLookAhead(t,0,DemandList,SRCData)

 maxDep=SC.getMaxDeployable(SRCData)

 currDep=SC.getCurrDep(SupplyList,SRCData)

 for entry in SRClist:

 p=round(readReq[entry]+maxDem[entry]-currDem[entry]-(maxDep[entry]-

currDep[entry]),0)

 f.append((entry,p))

 f.sort()

 return f

112

def TopBottom(length,Forecast):

 Recent=sorted(Forecast,key=lambda x:x[1],reverse=True)

 t=Recent[:length]

 b=Recent[len(Forecast)-length:]

 top=[(item[0],1) for item in t]

 bottom=[(item[0],-1) for item in b]

 return top,bottom

A.3 Supply Class
import Params as Par

import DemandClass as DC

import ADP

import numpy as NP

import time

import pickle

import DW

StateTracker=[]

ErrorList=[]

113

densitycheck=[]

mu=0

sigma=0

mulist=[]

sigmalist=[]

maxNewStruct=3 #constrains the total new personnel in any year

EchelonMax={'Bde':1, 'Bn':2, 'Co':3} # lists the max any single SRC at this

echelon can grow

TotalUnitGrowth=10

MaxPAXDelta=1200 #allows for some deviation from 0 end-strength growth

class Supply:

 def __init__(self, SRC, name, cycletime, location='Home'):

 self.SRC=SRC

 self.name=name

 self.cycletime=cycletime % Par.policy['CycleMax']

 self.location=location

 if self.cycletime<=Par.policy['NotDep']:

 self.status='NotDeployable'

 elif self.cycletime> Par.policy['NotDep'] and self.cycletime <=

Par.policy['CycleMax']:

114

 self.status='Deployable'

 def UpdateStatus(self):

 if self.location == 'Home':

 if self.status == 'Deployable' and self.cycletime>Par.policy['CycleMax']:

 self.cycletime=0

 self.status='NotDeployable'

 elif self.status=='NotDeployable' and self.cycletime>Par.policy['NotDep']:

 self.status='Deployable'

 elif self.status=='Deployed' and self.cycletime>Par.policy['Deploy']:

 self.cycletime =0

 self.status='NotDeployable'

 self.location='Home'

 def UpdateDeact(self,Deactivating):

 if self.location in Deactivating:

 self.cycletime =0

 self.status='NotDeployable'

 self.location='Home'

 def AdvanceCycle(self):

 self.cycletime=int(self.cycletime+1)

 def AssignSupply(self,name):

 self.location=name

 self.status='Deployed'

115

 self.cycletime=0

 def DeactivateUnit(self):

 self.status='Inactive'

 self.location='None'

def InitSupply(filename):

 #local list and dictionary for use within a single simulation

 SupplyList=[]

 SRCData={}

 SupIn = [line.split() for line in open(filename)]

 for i in range(len(SupIn)):

 #make dictionary of SRCs: inventory and associated unit sizes, echelon from

input file

 SRCData[SupIn[i][0]]=[int(SupIn[i][1]),int(SupIn[i][2]),SupIn[i][3]]

 #create supply objects and populate a list with these objects

 for j in range(int(SupIn[i-1][1])):

 SupplyList.append(Supply(str(SupIn[i-1][0]),str(SupIn[i-

1][0])+'_'+str(j+1),j*Par.policy['CycleMax']/int(SupIn[i-1][1]),))

 return SupplyList, SRCData

116

def UpdateAllSupply(SupplyList):

 for Obj in SupplyList:

 Obj.AdvanceCycle()

 Obj.UpdateStatus()

def UpdateSupplyDeact(SupplyList,Deactivating):

 for obj in SupplyList:

 obj.UpdateDeact(Deactivating)

 return SupplyList

def FindDeployableSupply(SupplyList):

 SupplyDep=[]

 SupplyDep=[x for x in SupplyList if x.status=='Deployable']

 SupplyDep=sorted(SupplyDep, key=lambda k: (k.cycletime))

 return SupplyDep

def createNewSupply(SRC,number,time,SupplyList):

 for i in range(int(number)):

 #create new units and append to SupplyList

 SupplyList.append(Supply(SRC,SRC+'_'+str(number)+'_'+str(time),0,))

117

 return SupplyList

def InactivateUnits(SRC,number,SupplyList):

 #make sorted list of names by cycletime for SRC

 dList=[x for x in SupplyList if x.SRC==SRC]

 dList=sorted(dList,key=lambda k: (k.cycletime))

 dList=dList[0:abs(int(number))-1]

 for obj in dList:

 #deactivate unit, then remove from SupplyList

 obj.DeactivateUnit()

 SupplyList.remove(obj)

 return SupplyList

def ApplyStructChanges(SRC,quantity,time,SupplyList):

 if quantity>=1:

 SupplyList=createNewSupply(SRC,quantity,time,SupplyList)

 elif quantity<=-1:

 SupplyList=InactivateUnits(SRC,quantity,SupplyList)

 else:

 return

 return SupplyList

118

def modSRCInventory(SRC,delta,SRCData):

 SRCData[SRC][0]=SRCData[SRC][0]+delta

 return SRCData

def InitReadReqt(filename):

 ReadReq={}

 ReadHist={}

 Input = [line.split() for line in open(filename)]

 for i in range(len(Input)):

 ReadReq[Input[i][0]]=int(Input[i][1])

 ReadHist[Input[i][0]]=[]

 return ReadReq,ReadHist

def getCurrentReadiness(SRCData,SupplyList):

 readCurr=[]

 #count number of units of each SRC ready to deploy within 'DepWindow'

months

119

 for SRC in SRCData:

 List=[x for x in SupplyList if x.SRC==SRC and x.location=='Home' and

x.cycletime>=(Par.policy['Deploy']-Par.DepWindow)]

 c=len(List)

 T=(SRC,c)

 readCurr.append(T)

 readCurr.sort()

 return readCurr

def UpdateReadinessHistory(SRCData,SupplyList,ReadHist):

 #Make variable with current readiness stats for update

 c=getCurrentReadiness(SRCData,SupplyList)

 for entry in c:

 if len(ReadHist[entry[0]])<=(Par.DecInterval-1):

 #Grow the list for each SRC until it is DecInterval long

 ReadHist[entry[0]].append(entry[1])

 else:

120

 #once the list is DecInterval long, pop the oldest record, append the new

one

 ReadHist[entry[0]].pop(0)

 ReadHist[entry[0]].append(entry[1])

 return ReadHist

def UpdateTotReady(olddata,newdata):

 #get list of keys (SRCs) from newdata

 SRClist=[obj for obj in olddata.keys()]

 #for each key, update value list with list items from newdata

 for item in SRClist:

 for entry in newdata[item]:

 olddata[item].append(entry)

 return olddata

def initTotReady(SRCData):

 datadict={}

 SRClist=[obj for obj in SRCData.keys()]

 for item in SRClist:

121

 datadict[item]=[]

 return datadict

def getReadinessCont(ReadHist,ReadReq,SRCData):

 ReadCont=[]

 Req=0

 #calculate the total personnel ready at each sample

 for i in range(Par.DecInterval):

 c=0

 for SRC in ReadHist:

 #take the minimum of required and ready, then weight by unit size

 c+=min(ReadHist[SRC][i],ReadReq[SRC])*SRCData[SRC][1]

 #once the total personnel is calculated,append to the list

 ReadCont.append(c)

 #calculate the total personnel required

 for SRC in ReadReq:

 Req+=ReadReq[SRC]*SRCData[SRC][1]

 d=min(ReadCont)

122

 #return ratio of ready to required

 return d/float(Req)

def getSystemState(SRCData,SupplyList):

 s=getCurrentReadiness(SRCData,SupplyList)

 return s

def UpdateStateTracker(StateStruct,alpha):

 l=len(StateTracker)

 tl=[]

 #Boolean to determine if state tracker has been updated with new data, only

applies after initializing the DW

 update=False

 #make list of states in state tracker for searching

 st=[item['State'] for item in StateTracker]

 for item in StateStruct:

 #either the state is in the tracker, so retrieve its value, or populate a list of

states to estimate

123

 if item[0] in st:

 #find where in the list the state resides

 dex=st.index(item[0])

 #retrieve the state's value from the state tracker

 lastValue=float(StateTracker[dex]['Value'])

 #use the Bellman update equation to determine the state's new value

 nextValue=float((1-alpha)*(lastValue)+alpha*item[1])

 #update the state tracker with the state's new value

 StateTracker[dex]['Value']=nextValue

 StateTracker[dex]['Visits']+=1

 update=True

 else: #make a list of states to estimate value

 tl=[]

 p={}

 p['State']=item[0]

 p['Value']=item[1] #little v hat

 p['Visits']=1

 tl.append(p)

 if not(len(tl))==0:

 if Par.DWInitial=='Yes':

 Estimates=ADP.estStateValue(tl,Par.LenStateTrack)

124

 estStates=[item['State'] for item in Estimates]

 for item in tl:

 p={}

 p['State']=item['State']

 dex=estStates.index(item['State'])

 lastValue=float(Estimates[dex]['Value'])

 p['Value']=float((1-alpha)*(lastValue)+alpha*item['Value'])

 p['Visits']=1

 #if the value is greater than the last entry in the StateTracker, add the

new state to the list

 StateTracker.append(p)

 StateTracker.sort(key=lambda k: (k['Value']),reverse=True)

 StateTracker[Par.LenStateTrack:]=[]

 update=True

 else:

 for item in tl:

 p={}

 p['State']=item['State']

 p['Value']=float(alpha*item['Value'])

 p['Visits']=1

 StateTracker.append(p)

125

def applyDecision(decVector,Time,SupplyList,SRCData):

 for i in range(len(decVector)):

 if not decVector[i][1]==0:

SupplyList=ApplyStructChanges(decVector[i][0],decVector[i][1],Time,SupplyList)

 SRCData=modSRCInventory(decVector[i][0],decVector[i][1],SRCData)

 else:

 next

 return SupplyList,SRCData

def convergenceCheck(stability):

 #determine number of iterations that are within bounds

 numiters=0

 YesList=[]

 YesList=[ErrorList[i] for i in range(len(ErrorList)-stability,len(ErrorList)) if

(ErrorList[i]>=mu-sigma and ErrorList[i]<=mu+sigma)]

 numiters=len(YesList)

 if numiters==stability:

 convergence='Yes'

 else:

 convergence='No'

126

 return convergence

def CalcReadReq(SRCData,ReadReq):

 Req=0

 for SRC in ReadReq:

 Req+=ReadReq[SRC]*SRCData[SRC][1]

 return Req

def TrackReadiness(SRCData,SupplyList,ReadReq):

 ready=0

 req=CalcReadReq()

 c=getCurrentReadiness(SRCData,SupplyList)

 for entry in c:

 ready+=SRCData[entry[0]][1]*min(entry[1],ReadReq[entry[0]])

 return ready/float(req)

def storeStateTracker(path,size):

 if not type(size)==str:

 name=path+'//StateSpace_'+str(size)+'.pkl'

 else:

127

 name=path+'//StateSpace_'+size+'.pkl'

 F=open(name,'wb')

 pickle.dump(StateTracker,F)

 F.close()

def estReadinessCont(Candidates,ReadReq,SRCData):

 ReadCont=[]

 Req=0

 #calculate the total personnel required

 for SRC in ReadReq:

 Req+=ReadReq[SRC]*SRCData[SRC][1]

 #calculate the total personnel ready at each sample

 for entry in Candidates:

 c=0

 r=0

 for i in range(len(entry['State'])):

 #take the minimum of required and ready, then weight by unit size

128

c+=min(entry['State'][i][1],ReadReq[entry['State'][i][0]])*SRCData[entry['State'][i][0]][1

]

 #once the total personnel is calculated,determine proportion for candidate

 r=(c/float(Req))*Par.MetricWeight['Ready']

 ReadCont.append([entry,r])

 return ReadCont

def storeErrorTracker(path):

 name=path+'//ErrorTrack.pkl'

 F=open(name,'wb')

 pickle.dump(ErrorList,F)

 F.close()

def UpdateVFA():

 TempState=[]

 Tracker=[]

 TempState.append(StateTracker[Par.LenStateTrack-1]['State'])

129

 #sort the state tracker and trim it down to size

 StateTracker.sort(key=lambda k: (k['Value']),reverse=True)

 for i in range(Par.LenStateTrack):

 Tracker.append(StateTracker[i])

 StateTracker[Par.LenStateTrack:]=[]

 #if the last entry in the newly trimmed tracker is different than before,

 #new items have been added to the list, so update the DW coefficients

 if not StateTracker[Par.LenStateTrack-1]['State']==TempState[0]:

 ADP.initDWdata(Tracker,.5)

def calcMSE(Square):

 Errors=[]

 l=len(ErrorList)

 for i in range(l):

 Errors.append(ErrorList[i]['Square'])

 #calculate MSE

 squaresum=sum(Errors)+Square

 MSE=squaresum/float(l+1)

130

 return MSE

def sortedTracker(keep,freq,number):

 Tracker=[]

 StateTracker.sort(key=lambda k: (k['Value']),reverse=True)

 for i in range(keep):

 Tracker.append(StateTracker[i])

 return Tracker

def checkVisitSaturation(keep,percent,number):

 #determine number of frequently visited states

 if Par.freqVisSaturation=='No':

 numHighVis=calcVisSet(number)

 #compare to percentFreqVis=.5

 if numHighVis>=keep*percent:

 Par.freqVisSaturation='Yes'

 StateTracker[keep:]=[]

def calcVisSet(number):

 templist=[i for i in StateTracker if i['Visits']>=number]

131

 lenlist=len(templist)

 return lenlist

def getMaxDeployable(SRCData):

 MaxDep={}

 #theoretical max percentage of units depoyable

 percentage=(Par.policy['CycleMax']-

Par.policy['NotDep'])/float(Par.policy['CycleMax'])

 for item in SRCData:

 Inventory=item[0]

 Dep=int(int(Inventory)*percentage)

 MaxDep[item]=Dep

 return MaxDep

def getCurrDep(SupplyList,SRCData):

 CurrDep={}

 SRClist=[obj for obj in SRCData.keys()]

 for item in SRClist:

132

 Dep=[entry for entry in SupplyList if entry.SRC==item and

entry.status=='Deployed']

 if Dep:

 num=len(Dep)

 else:

 num=0

 CurrDep[item]=num

 return CurrDep

def TrimTracker():

 for item in StateTracker:

 if item['Visits']==1:

 StateTracker.remove(item)

 print 'StateTracker',len(StateTracker)

def checkInitConditions(length,freqvis,density):

 #check to see if StateTracker has enough high valued, frequently visited states

 num=0

 StateTracker.sort(key=lambda k: (k['Value']),reverse=True)

 for i in range(length):

133

 if StateTracker[i]['Visits']>=freqvis:

 num+=1

 densitycheck.append(num/float(length))

 if num/float(length)>=density:

 print 'StateSpace conditions met!'

 return True

 else:

 return False

def calcBigV(states,DWInitial):

 bigV=[]

 appList=[]

 StateList=[item['State'] for item in StateTracker]

 for item in states:

 d={}

 d['State']=item

 d['Value']=0

 if item in StateList:

 #if the state is in the tracker, retrieve its value

 dex=StateList.index(item)

 d['Value']=StateTracker[dex]['Value']

134

 elif DWInitial=='Yes':

 #if the DW has been initialized, append to list for value approximation

 appList.append(d)

 else:

 #if estimating the value is not possible, set to zero

 d['Value']=0

 bigV.append(d)

 #approximate value of states in appList, if it exists

 if not len(appList)==0:

 Est=ADP.estStateValue(appList,Par.LenStateTrack)

 #create list of states in bigV tracker

 bigVStates=[p['State'] for p in bigV]

 for entry in Est:

 #find the location in bigV list of state, update value key

 dex=bigVStates.index(entry['State'])

 bigV[dex]['Value']=entry['Value']

 bigV.sort(key=lambda k:k['Value'],reverse=True)

 return bigV

135

def UpdateErrorList(bigV,littleV):

 for i in range(len(bigV)):

 diff=bigV[i]['Value']-littleV[i+1]

 ErrorList.append(diff**2)

def saveErrorList(Type,errorcount,bandcalc):

 global ErrorList

 #Save ErrorList to directory

 if not type(errorcount)==str:

 name='.//ErrorDumps//Error_'+str(Type)+str(errorcount)+'.pkl'

 else:

 name='.//ErrorDumps//Error_'+str(Type)+errorcount+'.pkl'

 F=open(name,'wb')

 pickle.dump(ErrorList,F)

 F.close()

 l=len(ErrorList)

 #calculate the mean and error for error band calculation

 mu=NP.mean(ErrorList[(l-bandcalc):])

136

 mulist.append(mu)

 sigma=NP.std(ErrorList[(l-bandcalc):])

 sigmalist.append(sigma)

 #clearErrorList

 ErrorList[:]=[]

def saveMuSigma(mu,sigma):

 muname='.//ErrorDumps//Mu.pkl'

 sigmaname='.//ErrorDumps//Sigma.pkl'

 F=open(muname,'wb')

 pickle.dump(mu,F)

 F.close()

 G=open(sigmaname,'wb')

 pickle.dump(sigma,G)

 G.close()

def writeMuSigma():

 muname='.//ErrorDumps//Mu.pkl'

 sigmaname='.//ErrorDumps//Sigma.pkl'

 F=open(muname,'rb')

137

 m=pickle.load(F)

 F.close()

 G=open(sigmaname,'rb')

 s=pickle.load(G)

 G.close()

 mufile=open('.//mu.txt','w')

 for item in m:

 mufile.write(str(item)+'\n')

 mufile.close()

 sigmafile=open('.//sigma.txt','w')

 for item in s:

 sigmafile.write(str(item)+'\n')

 sigmafile.close()

def calcRealReady(ReadyData,SRCData,ReadReq):

 Ready={}

 readsum=0

 reqsum=0

 SRCList=[obj for obj in SRCData.keys()]

138

 #calculate average readiness by SRC

 for item in ReadyData:

 Ready[item]=sum(ReadyData[item])/len(ReadyData[item])

 #calculate weighted Average readiness

 for entry in SRCList:

 readsum+=SRCData[entry][1]*Ready[entry]

 #calculate weighted Readiness required

 for entry in SRCList:

 reqsum+=SRCData[entry][1]*ReadReq[entry]

 #calculate weighted average readiness percent

 r=readsum/float(reqsum)

 return r

A.4 Demand Class
import operator

import SupplyClass as SC

import Params

class Demand:

 def __init__(self, scenario, SRC, name, start, duration, qty, priority,

status='Inactive'):

 self.scenario=scenario

 self.SRC=SRC

139

 self.start=int(start)

 self.finish=int(start)+int(duration)-1

 self.qty=int(qty)

 self.name=name

 self.assigned=0

 self.priority=int(priority)

 self.status=status

 self.TotReqd=int(qty)*int(duration)

 self.TotSat=0

 def UpdateAssigned(self,count):

 self.assigned=count

 def UpdateTotSat(self,count):

 self.TotSat+=count

def FindUnfilledDemand(DemandList):

 DemandUnfilled=[]

 DemandUnfilled=[x for x in DemandList if x.status=='Active' and x.assigned

<= (x.qty-1)]

 DemandUnfilled=sorted(DemandUnfilled, key=lambda k: (k.SRC, k.priority))

140

 return DemandUnfilled

def getUnfilledSRC(List):

 UnfilledSRC=[]

 seen=set()

 for obj in List:

 if obj.SRC not in seen:

 UnfilledSRC.append(obj.SRC)

 seen.add(obj.SRC)

 return UnfilledSRC

def UpdateDemandStatus(Time,DemandList):

 #list of deactivating demands

 Deactivating=[]

 for x in DemandList:

 if x.start==Time:

 x.status='Active'

 elif x.finish==Time-1:

 x.status='Inactive'

141

 #add name of demand to both current deactivating and archive thereof

 Deactivating.append(x.name)

 return DemandList,Deactivating

def clearHistDeact():

 HistDeact[:]=[]

def getSatHistory(SRCData,decIntervalSat,Type):

 TotalSat=0

 TotalReqd=0

 if Type=='Full':

 #if type is full, calculate over full decision interval

 for item in decIntervalSat:

 for obj in item.keys():

 #TotalSat is weighted by SRC size

 TotalSat+=int(item[obj][0])*int(SRCData[obj][1])

 TotalReqd+=int(item[obj][1])*int(SRCData[obj][1])

 elif Type=='Est':

 #if type is estimate, calculate only for the latest entry into decIntervalSat

 l=len(decIntervalSat)

 item=decIntervalSat[l-1]

142

 for obj in item.keys():

 #TotalSat is weighted by SRC size

 TotalSat+=int(item[obj][0])*int(SRCData[obj][1])

 TotalReqd+=int(item[obj][1])*int(SRCData[obj][1])

 if not TotalReqd==0:

 z=TotalSat/float(TotalReqd)

 else:

 z=1

 #Return size weighted percentage of demand satisfaction

 return z

def TrackFill():

 Sat=0

 Req=0

 for obj in DemandList:

 Sat+=obj.TotSat*SC.SRCData[obj.SRC][1]

 if obj.finish>=(Params.SimLength+1) and obj.start<=Params.SimLength:

 Req+=(Params.SimLength-obj.start+1)*obj.qty*SC.SRCData[obj.SRC][1]

 else:

143

 Req+=obj.TotReqd*SC.SRCData[obj.SRC][1]

 return Sat/float(Req)

def initRecDem(SRCData):

 recDem={}

 SRClist=[obj for obj in SRCData.keys()]

 for entry in SRClist:

 recDem[entry]=()

 return recDem

def trackRecentDemand(SRCData,DemandList,decIntervalSat):

 recDem={}

 SRClist=[obj for obj in SRCData.keys()]

 for entry in SRClist:

 sat=[Demand.assigned for Demand in DemandList if Demand.SRC==entry

and Demand.status=='Active']

144

 req=[Demand.qty for Demand in DemandList if Demand.SRC==entry and

Demand.status=='Active']

 recDem[entry]=()

 if req:

 a=reduce(lambda x,y:x+y,sat)

 b=reduce(lambda x,y:x+y,req)

 recDem[entry]=(a,b)

 else:

 recDem[entry]=(0,0)

 #append by SRC demand satisfaction data to the decision interval history for

use in calculating contribution

 decIntervalSat.append(recDem)

 return decIntervalSat

def updateFillHistory(SRCData,decIntervalSat,fillHistory):

 d={}

 SRClist=[obj for obj in SRCData.keys()]

 for entry in SRClist:

 d[entry]=(0,0)

145

 for item in decIntervalSat:

 for obj in item.keys():

 d[obj]=tuple(map(lambda x,y:x+y,d[obj],item[obj]))

 fillHistory.append(d)

 return fillHistory

def getDemandLookAhead(T,Window,DemandList,SRCData):

 DemForecast={}

 SRClist=[obj for obj in SRCData.keys()]

 for entry in SRClist:

 maxi=0

 for i in range(T,T+Window):

 Dem=[Demand.qty for Demand in DemandList if Demand.SRC==entry

and Demand.start<=i and Demand.finish>=i]

 if Dem:

 a=reduce(lambda x,y:x+y,Dem)

 else:

 a=0

 if a>=maxi:

146

 maxi=a

 DemForecast[entry]=maxi

 return DemForecast

def calcSat(satDict,reqDict,SRCData):

 satWeight=0

 reqWeight=0

 for key in SRCData.keys():

 satWeight+=satDict[key]*SRCData[key][1]

 reqWeight+=reqDict[key]*SRCData[key][1]

 s=satWeight/float(reqWeight)

 return s

A.5 ADP
import random

import SupplyClass as SC

import DemandClass as DC

import numpy as np

import DW

147

import Simulation as Sim

import operator

import Params as Par

import math

import time

import itertools as it

import MatchingFunctions as MF

from copy import deepcopy

def makeRandomDecision(SRCData):

 declist=[]

 slist=[SRC for SRC,data in SRCData.items() if data[0]>=1]

 #determine number of unit types to ad inventory

 num=random.randint(0,SC.maxNewStruct)

 #find random set of num unit types to add inventory

 add=random_combination(slist,num)

 for entry in add:

 declist.append((entry,1))

 #remove this list from total SRC list

 slist=list(set(slist)-set(add))

 #create random list of num unit types to reduce inventory

 red=random_combination(slist,num)

148

 for entry in red:

 declist.append((entry,-1))

 return declist

def RandDec(SRCData,length,state):

 #limit decision space to best and worst forecast SRCs

 t,b=MF.TopBottom(length,state)

 #make list of SRCs that can shrink

 slist=[SRC for SRC,data in SRCData.items() if data[0]>=1]

 #pare the list of reduction candidates to only those with non-zero inventory

 reduction=[item for item in b if item[0] in slist]

 #make the list of candidate solutions

 l=min(len(t),len(reduction))

 DecSpace=makeGoodDecSpace(t,reduction,3)

 #create random num to choose decision from DecSpace

 num=random.randint(0,len(DecSpace)-1)

 sol=DecSpace[num]

 return sol

149

def

makeGoodDecision(state,SRCData,SupplyList,ReadReq,decIntervalSat,discount):

 Candidates=[]

 estCont=[]

 #generate the list of candidate solutions

 Candidates=generateGoodDec(5,3,state)

 #Estimate the post decision state for each candidate solution

 CandStates=estPostDecState(Candidates,state)

 #estimate the value of the next state for each candidate decision

 est=estStateValue(CandStates,Par.LenStateTrack)

 estContList=SC.estReadinessCont(CandStates,ReadReq,SRCData)

 fill=Par.MetricWeight['Now']*DC.getSatHistory(SRCData,decIntervalSat,'Est')

 for item in estContList:

 item[1]=100*(Par.MetricWeight['Ready']*item[1]+fill)

 v=(item[0],item[1])

 estCont.append(v)

 #pick the candidate solution with the greatest total value

 y,maxval=findMaxEstimate(est,estCont,discount)

150

 #return this best candidate solution

 choice=Candidates[y]

 return choice,maxval

def MyopicDecision(state,SRCData,SupplyList,ReadReq,decIntervalSat):

 Candidates=[]

 estCont=[]

 #generate the list of candidate solutions

 Candidates=generateGoodDec(5,3,state)

 #Estimate the post decision state for each candidate solution

 CandStates=estPostDecState(Candidates,state)

 #Estimate contribution for candidate states

 estContList=SC.estReadinessCont(CandStates,ReadReq,SRCData)

 fill=Par.MetricWeight['Now']*DC.getSatHistory(SRCData,decIntervalSat,'Est')

 for item in estContList:

 item[1]=100*(Par.MetricWeight['Ready']*item[1]+fill)

 v=(item[0],item[1])

 estCont.append(v)

 #pick the candidate solution with the greatest total value

 y,maxval=findMyopicEstimate(estCont)

151

 #return this best candidate solution

 choice=Candidates[y]

 return choice

def estPostDecState(DecList,CurrState):

 Cand=[]

 perc=(Par.policy['CycleMax']-

Par.policy['NotDep'])/float(Par.policy['CycleMax'])

 #Loop over entries in DecList

 for state in DecList:

 d={}

 a=[]

 #list of SRCs with changing inventory

 changelist=[entry[0] for entry in state]

 for j in range(len(CurrState)):

 #if SRC in list of changing SRCs

 if CurrState[j][0] in changelist:

 #location in list of SRC

 dex=changelist.index(CurrState[j][0])

 b=(CurrState[j][0],round(CurrState[j][1]+perc*state[dex][1],0))

 else:

152

 b=(CurrState[j][0],CurrState[j][1])

 a.append(b)

 #append the list to the list of candidate states

 d['State']=a

 d['Value']=0

 d['Visits']=1

 Cand.append(d)

 return Cand

def estStateValue(StateList,keep):

 #copy the state tracker to a temp variable, replace the last entries with the

candidate states

 SC.StateTracker.sort(key=lambda k: (k['Value']),reverse=True)

 Temp=[]

 Temp=deepcopy(SC.StateTracker)

 #delete the last l entries from Temp and add the l entries from StateList

 l=len(StateList)

 Diff=len(Temp)-l

 Temp[Diff:]=[]

153

 for item in StateList:

 Temp.append(deepcopy(item))

 #run the DW procedure to estimate the state values of all states in the Temp

Tracker

 stateMat=StateToMat(Temp)

 phi,psi=DW.computeDW(stateMat,.5)

 values=DW.estimateValue(DW.cee,DW.dee,phi,psi)

 #associate the estimated values to their respective states

 for i in range(len(Temp)):

 #traverse the Temp list and replace the realization at the value key for each

state in the list

 Temp[i]['Value']=float(values[i])

 #trim the Temp Tracker to only contain candidate states

 del Temp[:Diff]

 #Temp.sort(key=operator.itemgetter('Value'))

 return Temp

def StateToMat(StateStruct):

154

 Mat=[]

 #iterate over each entry in the state list

 for entry in StateStruct:

 #iterate over each element in the state for each entry

 for i in range(len(entry['State'])):

 #add the data from the state variable to the list

 Mat.append(entry['State'][i][1])

 #calculate the number or rows for later reshaping of the array

 rows=len(StateStruct)

 #calculate total length of the array of data

 TotalLength=len(Mat)

 Mat=np.array(Mat).reshape((rows,TotalLength/rows))

 #dimensions are rows,columns where columns=totallength/rows

 return Mat

def ValuetoArray(StateStruct):

 #converts the entries in the State dictinary at 'Value' key into an array

 Val=[]

155

 for entry in StateStruct:

 #append each 'Value' into the Val list

 Val.append(entry['Value'])

 rows=len(StateStruct)

 #convert the list to an array and reshape it to be rows by 1 in dimension

 Val=np.array(Val).reshape((rows,1))

 return Val

def initDWdata(StateData,delta):

 matrix=StateToMat(StateData)

 values=ValuetoArray(StateData)

 phi,psi=DW.computeDW(matrix,delta)

 DW.cee,DW.dee=DW.permDWcoeff(phi,psi,values)

156

def findMaxEstimate(StateStructure,ContEst,discount):

 maxim=-10000000

 index=-1

 for i in range(len(StateStructure)):

 val=discount*StateStructure[i]['Value']+ContEst[i][1]

 if val>maxim:

 index=i

 maxim=val

 return index,maxim

def findMyopicEstimate(ContEst):

 maxim=-10000000

 index=-1

 for i in range(len(ContEst)):

 if ContEst[i][1]>maxim:

 index=i

 maxim=ContEst[i][1]

157

 return index,maxim

def alphadecay(iteration):

 #attributed to DeGregory, alpha decay based on logistic curve

 decayparam=Par.alpha-(Par.alpha/(1+math.exp(5-10*iteration/Par.decayiters)))

 return decayparam

def random_combination(iterable, r):

 "Random selection from itertools.combinations(iterable, r)"

 pool = tuple(iterable)

 n = len(pool)

 indices = sorted(random.sample(range(n), r))

 return tuple(pool[i] for i in indices)

def makeGoodDecSpace(top,bottom,maxlen):

 #list of decisions space items

 space=[]

 data=[]

 #loop over integers between 1 and maxlen

158

 for i in range(maxlen+1):

 t=it.combinations(top,i)

 b=it.combinations(bottom,i)

 sp=it.product(t,b)

 space.extend(list(sp))

 for i in space:

 temp=[]

 for j in i:

 for k in j:

 temp.append(k)

 data.append(temp)

 return data

def generateGoodDec(maxitems,maxlen,state):

 top,bottom=MF.TopBottom(maxitems,state)

 DecSpace=makeGoodDecSpace(top,bottom,maxlen)

 return DecSpace

A.6 DW
import numpy as np

159

import numpy.linalg as LA

import math

import scipy.linalg as spla

import time

import scipy

from scipy.spatial.distance import pdist, squareform

dee=np.array([])

DWInitial=''

def computeWeight(matrix,delta):

 #computes a symmetric weight matrix

 W=np.zeros((np.shape(matrix)[0],np.shape(matrix)[0]))

 for i in range(np.shape(matrix)[0]):

 for j in range(i,np.shape(matrix)[0],1):

 q=matrix[i]-matrix[j]

 y=-LA.norm(q)/delta

 W[i][j]=math.exp(y)

 if j>i:

 W[j][i]=W[i][j]

160

 return W

def computeDmatrix(WMatrix):

 D=np.zeros((np.shape(WMatrix)[0],np.shape(WMatrix)[0]))

 d=np.sum(WMatrix,axis=1)

 for t in range(np.shape(d)[0]):

 D[t][t]=d[t]

 return D

def sqrtDiag(DMatrix):

 sD=np.zeros((np.shape(DMatrix)[0],np.shape(DMatrix)[0]))

 for t in range(np.shape(DMatrix)[0]):

 sD[t][t]=DMatrix[t][t]**.5

 return sD

def computePmatrix(D,W):

 P=np.dot(LA.inv(D),W)

161

 return P

def computeDW(matrix,delta):

 #initialize lists that will hold scaling (phi) and wavelet(psi) matrices

 phi=[]

 psi=[]

 #generate state-space graph matrices for input matrix(weight, diffusion, random

walk)

 W=Kernel(matrix,1)

 D=computeDmatrix(W)

 P=computePmatrix(D,W)

 #create indentity matrix for phi0 and add to phi list

 phimat=np.eye(np.shape(P)[0])

 #compute T matrix

 a=LA.inv(D)

 b=sqrtDiag(a)

 T=np.dot(np.dot(b,W),b)

 Q,R=np.linalg.qr(T)

 #columns of Q are DW scaling functions

162

 c=phimat-np.dot(Q,np.matrix.conjugate(Q))

 Qp,Rp=np.linalg.qr(c)

 return Q, Qp

def computeDWcoeff(phi,psi,values):

 #initialize list for coefficients. Each list entry will correspond to one level in the

DW decomposition

 c=[]

 d=[]

 c=np.dot(values.T,phi)

 d=np.dot(values.T,psi)

 return c,d

def estimateValue(c,d,phi,psi):

 ValVect=(np.dot(phi,c.T)+np.dot(psi,d.T))/2

 return ValVect

def permDWcoeff(phi,psi,values):

 cee,dee=computeDWcoeff(phi,psi,values)

163

 return cee,dee

def Gaussian(x,z,sigma,axis):

 return scipy.exp((-LA.norm(x-z,axis=axis))**2/2*sigma**2)

def Kernel(X,s):

 pairwise_sq_dists = squareform(pdist(X, 'sqeuclidean'))

 K = scipy.exp(-pairwise_sq_dists / s**2)

 return K

A.7 StochDemand
import numpy as np

import DemandClass as DC

import os

import Params

import math

import pickle

def GenerateEvents(expparam, maxT):

 LastSample = 0

 interval = 0

 EventList=[]

164

 while LastSample <=maxT:

 #generate exponential random variable for interval between events

 interval=(np.random.exponential(scale=expparam, size=1))

 LastSample=LastSample+interval

 EventList.append(LastSample)

 return EventList

def ReadDemData(filename):

 DemData=[]

 DemData = [line.split() for line in open(filename)]

 FP=float("".join(DemData[0]))

 DemData = DemData[1:]

 return DemData,FP

 #First line contains frequency parameter data

def processDemandDirectory(path):

 DemandList=[]

165

 dirs=os.listdir(path) #create a list of all files in the path

 p=str(path)+'//'

 for file in dirs: #loop over each file in the directory

 DemData,FreqParam=ReadDemData(p+file) #read in the demand records

 EventList=GenerateEvents(FreqParam,Params.SimLength)

 for t in range(len(EventList)):#loop over each event instance

 for i in range(len(DemData)): #loop over each demand record from the file

 #create the Demand objects

DemandList.append(DC.Demand(DemData[i][0],DemData[i][1],DemData[i][1]+'_'+De

mData[i][0]+str(EventList[t]),EventList[t],DemData[i][2],DemData[i][3],DemData[i][4],

))

 return DemandList

def CreateTestDemands(path,SimLength,count):

 DemandList=[]

 dirs=os.listdir(path) #create a list of all files in the path

 p=str(path)+'//'

166

 for file in dirs: #loop over each file in the directory

 d={}

 d['filename']=file

 DemData,FreqParam=ReadDemData(p+file) #read in the demand records

 d['Events']=GenerateEvents(FreqParam,SimLength)

 DemandList.append(d)

 name=p+'..//Validate//dem_'+str(count)+'.pkl'

 F=open(name,'wb')

 pickle.dump(DemandList,F)

 F.close()

def InitValDemand(path,filename):

 DemandList=[]

 F=open(filename,'rb')

 E=pickle.load(F)

 F.close()

 DemandList=GenerateValDemand(path,E)

 return DemandList

167

def GenerateValDemand(path,structure):

 DemandList=[]

 p=path+'DemFiles//'

 for item in structure:

 #determine which file to read

 name=p+item['filename']

 #determine which demands to create

 OccurList=item['Events']

 data=[line.split() for line in open(name)]

 data=data[1:]

 for t in range(len(OccurList)):#loop over each event instance

 for i in range(len(data)): #loop over each demand record from the file

 #create the Demand objects

DemandList.append(DC.Demand(data[i][0],data[i][1],data[i][1]+'_'+data[i][0]+str(Occur

List[t]),OccurList[t],data[i][2],data[i][3],data[i][4],))

 return DemandList

168

A.8 Initialize
import SupplyClass as SC

import StochDemand as sd

import ADP

import pickle

import Params

def Initialize():

 SC.InitSupply('//SupplyRecords.txt')

 sd.processDemandDirectory(' //DemFiles')

 SC.InitReadReqt('//Readiness.txt')

def InitializeValidation(path, filename,supplyname):

SupplyList,SRCData=SC.InitSupply(path+'SupplyRecords_'+supplyname+'.txt')

 DemandList=sd.InitValDemand(path,filename)

 ReadReqt,ReadHist=SC.InitReadReqt(path+'Readiness.txt')

 return SupplyList,SRCData,DemandList,ReadHist,ReadReqt

def InitializeApprox(path,filename,numstates):

 F=open(path+filename,'rb')

 SC.StateTracker=pickle.load(F)

169

 F.close()

 #sort the StateTracker by values

 SC.StateTracker.sort(key=lambda k: (k['Value']),reverse=True)

 #Trim the state tracker to its apprporiate size

 SC.StateTracker[numstates:]=[]

 #initialize the DW approximation

 ADP.initDWdata(SC.StateTracker,.5)

 Params.DWInitial='Yes'

A.9 Params
policy = {'NotDep': 6, 'CycleMax': 24, 'Deploy': 9}

SimLength=288

#number of data point to put into state tracker for each explore iteration

Observations=20

#number of months between decisions (set to one year)

DecInterval=12

#number of months used to evaluate readiness

DepWindow=6

MetricWeight={'Now':.7,'Ready':.3}

#length of the state tracker for DW approximation purposes

LenStateTrack=625

#length to run simulation without making decisions to ensure some supply

#is assigned to demands at start of decision making functionality

170

BurnInPd=24

#initial value of the stepsize parameter for value function updates

alpha=.95

#number of iterations over which to gradually reduce the alpha stepsize parameter

decayiters=50000

#number of iterations for exploration phase

exploreiters=250000

#discount parameter for Bellman's equation

gamma=.97

#param to set how far back to calculate MSE

lookbackiters=100

#param to set number of consecutive error measurements within bounds to

achieve convergence

stable=100

#Number of validation runs to complete

validations=100

#maximum end-strength violation for decision optimization

maxvio=100

#parameter to control periodic reduction of state tracker by size

maxtracker=1500

DWInitial='No'

#number of parallel simulations to run

171

numthreads=1

freqVis=10

percentFreqVis=1

freqVisSaturation='No'

lookAhead=24

172

REFERENCES

Abbas, H.A., et al. “Computational Scenario-Based Capability Planning. “

Proceedings GECCO. 2008.

Alvarez, J. Fernando, et al. “Robust Fleet Sizing and Deployment for Industrial

and Independent Bulk Ocean Shipping Companies.” Information Systems and

Operational Research, 49.2 (2011): 93-107. Print.

Balakrishna, Poornima. Scalable Approximate Dynamic Programming Models

with Applications in Air Transportation. Diss. George Mason University, 2009.

Barlow, Michael, et al. “A Temporal Risk Assessment Framework for Planning a

Future Force Structure.” Proceedings of the IEEE Symposium on Computational

Intelligence in Security and Defense Applications. 2007.

Bellman, Richard. Dynamic Programming. Mineola, NY: Dover, 2003.

Bertsimas, Dimitris, and Melvyn Sim. “Robust Discrete Optimization and

Network Flows.” Mathematical Programming, Series B, 98 (2003): 49-71. Print.

Betts, Richard. Military Readiness: Concepts, Choice, Consequences.

Washington, DC: Brookings Institution, 1995. Print.

Bookbinder, James, and Kathleen Reece. “Vehicle Routing Considerations in

Distribution System Design.” European Journal of Operational Researc, 37 (1988): 204-

213.

173

Brandao, Jose. “A Deterministic TABU Search Algorithm for the Fleet Size and

Mix Vehicle Routing Problem.” European Journal of Operational Research, 195 (2009):

716-728.

Braysy, Olli, et al. “A Well-Scalable Metaheuristic for the Fleet Size and Mix

Vehicle Routing Problem with Time Windows.” Expert Systems with Application, 36

(2009): 8460-8475.

Brown, Gerald., et al. “An Optimization Model for Modernizing the Army’s

Helicopter Fleet.” Interfaces, 21.4 (1991): 39-52.

Busoniu, Lucian, et al. Reinforcement Learning and Dynamic Programming

Using Function Approximators. Boca Raton, FL: CRC Press, 2010.

Cambini, Riccardo, and Rossana Riccardi, “Theoretical and Algorithmic Results

for a Class of Hierarchical Fleet Mix Problems.” European Journal of Operational

Research, 198 (2009): 741-747. Print.

Carter, Clarence, et al. “Dynamic Commitment: Wargaming Projected Forces

Against the QDR Defense Strategy.” National Defense University Strategic Forum. 131

(1997). Print

Checco, John. Developing Discrete Empirical Distributions for Tractable

Stochastic Programming Problems with Application for U.S. Army Force Sizing. Diss.

George Mason University, 2015.

Cheon, Myun-Seok, et al. “A Modeling Framework for Railcar Fleet Sizing in the

Chemical Industry.” Industrial and Engineering Chemistry Research, 51 (2012): 9825-

9834.

174

Choi, Eunjeong, and Dong-Wan Tcha. “A Column Generation Approach to the

Heterogeneous Fleet Vehicle Routing Problem.” Computers and Operations Research,

34 (2007): 2080-2095.

Clarke, G, and J. Wright. “Scheduling of Vehicles Form a Central Depot to a

Number of Delivery Points.” Operations Research, 12.4 (1964): 568-581.

Cortes, CE, et al. “A Simulation-Based Approach for Fleet Design in a

Technician Dispatch Problem with Stochastic Demand.” Journal of the Operational

Research Society, 62 (2011): 1510-1523.

Crain, William. “Theater Campaign Analysis.” Methods for Conducting Military

Operational Analysis. Ed. Loerch, Andrew, Larry Rainey. Alexandria, VA: Military

Operations Research Society, 2007. 13-50. Print.

Davis, Paul. Analytic Architecture for Capabilities-Based Planning, Mission-

System Analysis, and Transformation. Santa Monica, CA: RAND, 2002. Print.

Defense Science Board. “Enhancing Adaptability of U.S. Military Forces.” 2011.

Web. 19 Jan. 2012.

<

http://www.acq.osd.mil/dsb/reports/EnhancingAdaptabilityOfUSMilitaryForcesB.pdf>.

DeGregory, Keith. An Approximate Dynamic Program for Allocating Federal Air

Marshals in Near Real-Time Under Uncertainty. Diss. George Mason University, 2014.

Department of Defense. Quadrennial Defense Review Report. Washington, DC:

Department of Defense, 2010. Print

http://www.acq.osd.mil/dsb/reports/EnhancingAdaptabilityOfUSMilitaryForcesB.pdf

175

Denardo, Eric. Dynamic Programming: Models and Applications. Mineola,

NY:Dover, 2003.

Deshmukh, Abhi, et al. “Valuing Flexibility.” 2010. Web. 2 Feb. 2012.

<http://www.dtic.mil/cgi-

bin/GetTRDoc?AD=ada546882.pdf&Location=U2&doc=GetTRDoc.pdf>

Downey, Kris, et al. “An Introduction to Smart Assemblies for Robust Design,”

Research in Engineering Design, 14. 4 (2003): 236-246. Print.

DuBois, Patrick, and Thomas Kastner. “Stochastic Analysis for Deployments and

Excursions.” Military Operations Research, 5.4 (2000): 19-35. Print.

DuBois, Patrick. Stochastic Analysis of Resources for Deployments and

Excursions. Memorandum Report CAA-MR-99-14. Fort Belvoir, VA: Center for Army

Analysis, 1999. Print.

Francis, Peter, and Karen Smilowitz. “Modeling Techniques for Periodic Vehicle

Routing Problems.” Transportation Research, Part B, 40 (2006): 872-884.

George, James. “Is Readiness Overrated?: Implications for a Tiered Readiness

Force Structure.” Washington, DC: CATO Institute, 1999. Web. 6 Aug. 2012.

<www.cato.org/pubs/pas/pa342.pdf>

George, Abraham, and Warren Powell. “Adaptive Stepsizes for Recursive

Estimation with Application in Approximate Dynamic Programming.” Machine Learning

65 (2006): 167-198. Print.

Gerwin, Donald. “Manufacturing Flexibility: A Strategic Perspective.”

Management Science, 39.4 (1993): 395-410.

http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ada546882.pdf&Location=U2&doc=GetTRDoc.pdf
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ada546882.pdf&Location=U2&doc=GetTRDoc.pdf

176

Ghanmi, Ahmed, et al. “Tactical Vehicle Fleet Mix Optimization.” Proceedings

of the Summer Computer Simulation Multiconference.

Golden, B., et al. “Approximate Traveling Salesman Algorithms.” Operations

Research, 28.3 Part 2 (1980): 694-711.

Golden, Bruce, et al. “The Fleet Size and Mix Vehicle Routing Problem.”

Computers and Operations Research, 11.1 (1984): 49-66

Gosavi, Abhijit. Simulation-Based Optimization. Kluwer Academic Publisher:

Boston, 2003.

Helms, Josh. Randomly Generated Requirements Informed by Past Operational

Deployments, Fort Belvoir, VA: Center for Army Analysis, 2012. Print.

Jabali, Ola, et al. “A Continuous Approximation Model for the Fleet Composition

Problem.” Transportation Research, Part B, 46 (2012): 1591-1606.

The Joint Staff. Capabilities to Forces Integration Tool Information Paper.

Washington, DC: The Joint Staff, 2012a. Print

The Joint Staff. CFIT Force Management Tool Information Paper. Washington,

DC: The Joint Staff, 2012b. Print.

The Joint Staff. Joint Publication 1-02: Department of Defense Dictionary of

Military and Associated Terms. Washington, DC: The Joint Staff, 2012c. Print.

The Joint Staff. Mitigation Options Selection Tool Information Paper.

Washington, DC: The Joint Staff, 2012d. Print.

177

Kok, A.L., et al. “A Dynamic Programming Heuristic for the Vehicle Routing

Problem with Time Windows and European Community Social Legislation.”

Transportation Science, 44.4 (2010): 442-454.

Lempert, Robert, et al. Shaping the Next One Hundred Years: New Methods for

Quantitative, Long-Term Policy Analysis. Santa Monica, CA: RAND, 2003. Print.

List, George, et al. “Logistics Planning Under Uncertainty for Disposition of

Radioactive Wastes.” Computers and Operations Research, 33 (2006): 701-723.

Liu, F-H, and S-Y Shen. “The Fleet Size and Mix Vehicle Routing Problem with

Time Windows.” Journal of the Operational Research Society, 50 (1999): 721-732.

Liu, Shuguang, et al. “An Effective Genetic Algorithm for the Fleet Size and Mix

Vehicle Routing Problem.” Transportation Research Part E, 45 (2009): 434-445.

Loerch, Andrew, and Linda Coblentz. “Incorporating Operations Other than War

in Analysis of Force Structure Alternatives for U.S. Ground Forces.” Proceedings of the

Tenth National Symposium on Defense Management (Taiwan). 2002.

Loerch, Andrew. “Analysis Support for Force Structure Decisions.” Methods for

Conducting Military Operational Analysis. Ed. Loerch, Andrew, and Larry Rainey.

Alexandria, VA: Military Operations Research Society, 2007. 241-280. Print.

Mazurek, Michael, Slawomir Wesolkowski. “Minimizing Risk on a Fleet Mix

Problem with a Multiobjective Evolutionary Algorithm.” Proceedings of the 2009 IEEE

Symposium on Computational Intelligence, 2009.

McCain, John. “Ready Tomorrow: Defending American Interests in the 21
st

Century.” 1996. Web. 23 Jul. 2013.

178

<http://www.mccain.senate.gov/public/index.cfm?FuseAction=PressOffice.Press

Releases&ContentRecord_id=813cc18b-7382-4c89-a55b-

ed9b8f532fbd&Region_id=&Issue_id=1172f761-a830-4020-ae1b-7ec3db088fc9>.

McIlvaine, Rob. “Soldiers to Begin 2012 with Nine Month Deployments.” 2011.

Web. 28 Jul 2013. < http://www.army.mil/article/63073/>

Osman, Ibrahim, and Said Salhi. “Local Search Strategies for the Vehicle Fleet

Mix Problem.” Modern Heuristic Search Methods. Ed. Rayward-Smith, V.J., et al. :John

Wiley and Sons, 1996.

Pessoa, 2007

Powell, Warren. Approximate Dynamic Programming: Solving the Curses of

Dimensionality. Hoboken, NJ: Wiey, 2011.

Repoussis, P., and C. Tarantilis. “Solving the Fleet Size and Mix Vehicle Routing

Problem with Time Windows via Adaptive Memory Programming.” Transportation

Research, Part C, 18 (2010): 695-712.

Salhi, Said, and Graham Rand. “Incorporating Vehicle Routing into the Vehicle

Fleet Composition Problem.” European Journal of Operational Research, 66 (1993):

313-330.

Shaffi, Kamran, et al. “Fleet Estimation for Defence Logistics Using a Multi-

Objective Learning Classifier System.” Proceedings of the 13
th

 Annual Conference on

Genetic and Evolutionary Computation, 2011.

http://www.army.mil/article/63073/

179

Simao, Hugo, et al. “An Approximate Dynamic Programming Algorithm for

Large-Scale Fleet Management: A Case Application.” Transportation Science 43. 2

(2009): 178-197. Print.

Southerland, Jason, and Andrew Loerch. “Using Simulation and Optimization to

Inform Army Force Structure Reduction Decisions.” Proceedings of the 2014 Winter

Simulation Conference, 2014.

Spoon, Thomas. Marathon History from 1.x to 3.x. (Working Draft). Fort Belvoir,

VA: Center for Army Analysis, 2011.

Spoon, Thomas. Marathon 3.1415926535897932384 Design Documentation

(Working Draft). Fort Belvoir, VA: Center for Army Analysis, 2012.

Stoddard, Steven, et al. “An Analytic Approach to Army Force Structure.” 79
th

Military Operations Research Society Symposium. 2011.

Stuive, Leanne, et al. “Tactical Fleet Mix Computation Using Multiobjective

Evolutionary Optimization. “ Proceedings IEEE CEC, 2010.

Taillard, E.D. “Parallel Iterative Search Methods for Vehicle Routing Problems.”

Networks, 23 (1993): 661-676.

Taillard, E.D. “A Heuristic Column Generation Method for the Heterogeneous

Fleet VRP.” RAIRO Operations Research, 33.1 (1999): 1-14.

Ulusoy, Gunduz. “The Fleet Size and Mix Vehicle Routing Problem for

Capacitated Arc Routing.” European Journal of Operational Research, 22 (1985): 329-

337.

180

United States Army. Army Regulation 1-1: Planning, Programming, Budgeting

and Execution System. Washington, DC: Headquarters, Department of the Army, 1994.

Print.

United States Army. Army Regulation 71-11: Total Army Analysis (TAA).

Washington, DC: Headquarters, Department of the Army, 1995. Print.

United States Army. Army Regulation 525-29: Army Force Generation.

Washington, DC: Headquarters, Department of the Army, 2011. Print.

United States Army. Field Manual 3-0: Operations. Change 1. Washington, DC:

Headquarters, Department of the Army, 2011. Print.

United States Army Force Management School. “Department of Defense

Planning, Programming, Budgeting, and Execution (PPBE) Process/Army Defense

Planning, Programming, Budgeting, and Execution (PPBE) Process: An Executive

Primer.” Web. 1 Jun. 2012.

< http://www.afms1.belvoir.army.mil/primers.php>.

United States Government. Title 10, United States Code, The Armed Forces.

Web.23 July 2013

< http://uscode.house.gov/download/title_10.shtml>

Walmsley, NS, and P Hearn. “Balance of Investment in Armoured Combat

Support Vehicles: An Application of Mixed Integer Programming.” Journal of the

Operational Research Society, 55.4 (2004): 403-412.

Wesolkowski, Slawomir, Andrew Billyard. “The Stochastic Fleet Estimation

Model.” Proceedings of the Spring Simulation Multiconference, 2008.

http://www.afms1.belvoir.army.mil/primers.php
http://uscode.house.gov/download/title_10.shtml

181

Wesolkowski, Slawomir, et al. “Robustness and Adaptability Analysis of Future

Military Air Transportation Fleets.” Proceedings SimTecT, 2009.

Wesolkowski, Slawomir, et al. “Multi-Objective Optimization of the Fleet Mix

Problem Using the SaFER Model.” IEEE World Congress on Computational

Intelligence, 2012a.

Wesolkowski,, Daniel Wojtaszek.”SaFESST: Stochastic Fleet Estimation Under

Steady State Tasking via Evolutionary Fleet Scheduling.” IEEE World Congress on

Computational Intelligence, 2012b.

Whitacre, James, et al. “Network Topology and Time Criticality Effects in the

Modularised Fleet Mix Problem. “ Proceedings SimTecT, 2008.

Wojtaszek, Daniel, Slawomir Wesolkowski. “Multi-Objective Evolutionary

Optimization of a Military Air Transportation Fleet Mix with the Flexibility Objective. “

Proceedings IEEE CISDA, 2011.

Wojtaszek, Daniel, Slawomir Wesolkowski. “Military Fleet Computation and

Analysis.” IEEE Computational Intelligence Magazine, (2012): 53-61.

Yaman, Hande. “Formulations and Valid Inequalities for the Heterogeneous

Vehicle Routing Problem.” Mathematical Programming, Series A, 106 (2006): 365-390.

182

BIOGRAPHY

Jason Alan Southerland graduated from Judson High School, Converse, Texas, in 2000.

He received his Bachelor of Arts in Mathematics from the University of Texas at Austin

in 2004. He has been employed as an analyst at the Center for Army Analysis since 2007

and received his Master of Science in Operations Research from George Mason

University in 2008.

