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Abstract

VARIATIONAL AND QUASI-VARIATIONAL PROBLEMS
WITH GRADIENT CONSTRAINTS

Theodor Felix Rafael Arndt, PhD
George Mason University, 2021

Dissertation Director: Dr. Carlos N. Rautenberg

In this dissertation, we study variational inequalities (VIs) and quasi-variational inequal-
ities (QVIs) with gradient constraints in diffusive and non-diffusive settings together with
several related problems. Specifically, we consider evolutionary, as well as stationary ver-
sions of the aforementioned problems, and address existence and uniqueness of solutions,
differentiability properties in the context of optimal control, and rigorous Fenchel dualization
approaches under low regularity of the data.

Initially, we address features of the prototypical problem under study: The Prigozhin
model of sandpile growth. In particular, we establish an illustrating example and show closed
forms for its multiple solutions and prove that the elementary regularization of constraints
leads to uniqueness.

On the class of problems arising from the semi-discretization of the evolutionary version,
we study existence of solutions under low regularity assumptions; we analyze the cases where
the bounds of the gradient constraints are non-negative integrable functions, and also Borel
measures. In the latter, we identify new mathematical tools for the application of the direct
method. A complete characterization of the Fenchel pre-dual problem leads to the study of

minimization problems in a non-standard state space given by vectorial Borel measures with



square integrable divergences. The duality description is then exploited for the development
of a primal-dual solution algorithm and numerical tests are shown.

For a stationary problem formulation which includes a diffusive operator, we provide
novel results on the Newton differentiability of the control-to-state map. This is of interest
in the investigation of sensitivity features and optimal control. In this framework, the control
is the material source term and the state corresponds to the stationary shape of the material
pile. The mathematical enabling tool here is a new implicit function theorem for Newton
differentiable maps.

In the evolutionary sandpile growth setting, an optimal control problem with a QVI as
constraint, is considered. The main goal in this problem is to keep a part of the domain
free of material accumulation by controlling the initial supporting surface. We consider fully
discrete and semi-discrete approaches for this problem and provide an existence of solutions

result.



Chapter 1: Introduction

An increasing number of significant problems in applied sciences involve partial differential
operators as well as constraints on the first order derivatives of the state variable, thus
leading to nonsmooth distributed parameter systems. A large class of problems of this type
relate variational principles (or energy minimization) together with a known or unknown
bound on the norm of the gradient of the state variable. In this setting, when the constraint
is known a priori, the resulting mathematical problem is in general a variational inequality
(VI). However, and in contrast, in many of the gradient constrained problems, the upper
bound of the gradient constraint depends also on the state variable itself. This additional
complexity in the form of an ¢mplicit constraint results in what is called a quasi-variational
inequality (QVI).

The simplest situation where gradient constraints are found is within the elastoplastic
torsion of a cylindrical body. Here, the description of the stress variable w in the cross
section of the body divides the material domain into an elastic {z : |[Vu| < a} and a plastic
{z : |Vu| = a} region where a corresponds to the limit plasticity threshold. In the elastic
region, the variable u further requires a constitutive law associated to elasticity, and this
leads to a variational inequality. However more complex situations may arise that may
lead to a quasi-variational formulation: In the elastoplastic setting thus we may consider
the constraint {z : |Vu| < «a(u)}, where the plasticity threshold is also dependent on the
state variable: This is common when considering that the temperature of the material is
not uniform, it is further dependent on the deformation of the material, and that « is
temperature dependent.

Variational and quasi-variational inequalities with gradient constraints are not only found
in elastoplasticity, but in friction mechanics, superconductivity, and also arise as the result of

competition of a finite resource in generalized Nash games. Structurally speaking, QVIs are
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Source location & initial structure time=T time= 2T

Figure 1.1: Evolution of sand poured over a steep structure.

significantly more complex than VIs, in fact QVIs in addition to being nonsmooth problems
are nonconvex and in general possess multiple solutions. Derivation of solution algorithms,
and the study of differentiability properties (of the control-to-state map), are among the
features hindered by these highly complex nonlinearities.

This dissertation concerns the study of variational and quasi-variational inequalities with
gradient constraints that include diffusive and non-diffusive operators. The prototypical
model that is extended and studied within this dissertation is the Prigozhin model of sandpile
accumulation. Mathematically, the model corresponds to a variational or quasi-variational
inequality (according to its setting) with a gradient constraint that may be determined by
a discontinuous operator; it was developed and studied by Leonid Prigozhin, see [1-7], and
provides a solid description of the behavior of piles of granular cohensionless materials. See
Figure 1.1 for an example of the capabilities of the model, where sand is poured over a steep
supporting structure and the evolution of the pile exhibits a fully non-trivial shape. The
steepness of the pile is mainly dependent on a material parameter called angle of repose which
is determined as the angle established by the growth cone of material when being poured
from a point source. Different granular cohensionless materials (sand, gravel, couscous,...)
possess different angles of repose. In fact, the model is versatile enough to be able to describe
the water accumulation on a topographical map; such a feature is observed when considering
water as a material with a zero angle of repose. See Figure 1.2.

The focus of this work is mostly on stationary problems but some features involving

evolutionary ones are also discussed. Each chapter is self-contained, and corresponds to a
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time= 0, source location (blue) time= T, high angle of repose time= T, low angle of repose

Figure 1.2: Accumulation of sand and water over certain topography

completed paper or to work under development. The organization of the overall dissertation

is given as follows:

Chapter 2

Chapter 3

Chapter 4

describes initial properties of the main model under study: The Prigozhin ac-
cumulation model for cohensionless and granular materials. We deal with the
derivation of the model, properties of the semi-discretization approach, regu-
larization of the constraint and how the latter affects multiplicity of solutions.
Specifically, it is shown that regularization of the upper bound operator in the

QVI setting leads to uniqueness of solutions.

concerns the stationary non-diffusive problem and where the upper bound of the
gradient constraint can be a highly irregular function, i.e., an element in L (£2),
or a Borel measure. We deal with existence theory in this highly irregular setting
by providing novel mathematical tools for the application of the direct method
of calculus of variations. In addition, we conduct a rigorous identification of the
Fenchel pre-dual problem. The latter leads to a study of variational problems
on a non-standard state space of vectorial Borel measures with square integrable
divergences. In addition, a primal-dual solution algorithm is established, and

numerical tests are provided.

is devoted to the study of differentiability properties of the control-to-state map
for the stationary model. In this case the control corresponds to the forcing

term, and a novel result of Newton type differentiability is obtained. Such a
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result is concluded by a new kind of implicit function theorem involving Newton

differentiability.

Chapter 5 studies the semi-discretization as well as the full discretization of the evolutionary

Prigozhin model and optimal control thereof. In this chapter, the consider that
the control variable is the initial supporting structure. The motivation for this

problem is flood prevention by minimal topographical changes.

The material in this dissertation partially corresponds to the following publications that

I have co-authored:

(1)

with A. N. Ceretani, and C. N. Rautenberg, “The stationary Boussinesq equations
with do-nothing boundary conditions,” Proceedings of VII MACI 2019, Rio Cuarto,

Argentina, vol. 7, 2019.

with A. N. Ceretani, and C. N. Rautenberg, “On existence and uniqueness of solutions
to a Boussinesq system with nonlinear and mixed boundary conditions,” Journal of

Mathematical Analysis and Applications, vol. 490, no. 1, p. 124201, 2020.

with H. Antil, C. N. Rautenberg, and D. Verma, “Non-diffusive variational problems
with distributional and weak gradient constraints,” arXiv preprint arXiv:2106.12680,
2021.

with C. N. Rautenberg, “Differentiability and control of a model for granular material

accumulation,” arXiv preprint arXiv:2106.12653, 2021.



Chapter 2: QVIs and VIs with gradient constraints

We start by introducing the variational inequality (VI) with gradient constraints, which in
different forms is of interest in this work. The modeling capabilities of this problem for-
mulation are then demonstrated in the context of an application of sandpile growth: The
derivation of the VI from the physical properties of this application is presented. Fur-
thermore we then regard a more general setting of a quasi-variational inequality (QVI) in
presence of supporting structures with steep slopes. Semi-discretization in time, uniqueness,
and existence are also discussed.

We begin by considering the following evolutionary problem: Suppose that f : (0,7) x
Q — R together with the initial state ug : @ — R are given, where Q C RY is a bounded
domain with a Lipschitz boundary. We assume that the boundary 0 is partitioned into
a connected Dirichlet boundary part I'p and a boundary part 'y that is related to non-
permeability. Furthermore, let a : © — R be a given nonnegative function. In the first

part of this chapter, we additionally impose on the initial state the feasibility assumption

|Vup| < o a.e. (almost everywhere) in €. (2.0.1)

In the physical motivation that we introduce below, this condition reflects a flatness as-
sumption on the underlying surface, and it hinges on this condition if the sandpile models
motivates a VI or more generally a QVI.

The accumulation dynamics are driven by a diffusive or non-difussive operator A; the
two most common cases are determined by A = —cA for a sufficiently small ¢ > 0 and A =0
for the diffusive and non-diffusive cases respectively. The overall dynamics are described as

follows: Suppose that u : (0,7) x Q — R satisfying u(0,2) = ug(x) for all z € Q, is a



solution to the following problem:

Find w € K such that

. (2.0.2)
/0 (Opu(t) + Au(t)) — f(t),v(t) — u(t))vy, @) ,r, (@ dt 2 0, forall v e K,
with the set K is given by
K:=W(0O,T)N{w : w(t) € K ae. in (0,7}, (2.0.3)

and where

W(0,T) := {u € L*(0,T; H} () : dyu € L*(0,T; L*(Q))},

and Ur, () = H%D(Q) = {u e HY(Q) : u|p, = 0}.
The set K is convex and it arises by a nonlinear law with a bound on the first order

derivative terms. In the standard case K is given by
K :={veUr,(Q):|Vv| <aae. inQ}, (2.0.4)

where V is the weak gradient, and | - | denotes the Euclidian norm.

2.1 Modeling of the sandpile growth

A possible motivation for the above class of problems is based on the study of accumulation of
granular cohensionless materials. This approach was pioneered by Prigozhin [4,6, 7| limited
to homogeneous materials and a continuous support structure. The derivation of the model
is included for the sake of completeness. In such a model, f : (0,7T) x  — R represents the

(density) rate of a granular material being deposited on a supporting structure ug : Q@ — R.

In this setting, assuming enough regularity on f, the quantity fOT fQ fdxzdt is the total



l f [ — material source
up — initial surface

U u — evolving surface

0 6 — angle of repose
Uo

Figure 2.1: Angle of repose in one dimension

amount of material deposited on €2 over the time interval [0, 7.

The accumulation of granular cohesionless materials, such as sand, exhibit a material
specific critical angle, denoted by 6 and called angle of repose. On slopes of this angle,
further added material flows in the direction of steepest descent. This angle can be observed
on the resulting surface when such a material is disposed onto a flat surface from a point
source.

Letting oo = tan(f), the angle of repose condition is given by
|IVu| <a ae. in (. (2.1.1)

In the case that o > 0 is constant on €2, this corresponds to the classical case of a granular
homogeneous cohesionless material, if o : 2 — R is not constant, the value of o at a point
determines the local angle of repose. In the second case, heterogenous sandpiles can be
formed [8].

Slopes which are less steep than the angle of repose are considered stable, in such regions

material accumulates, and no flow occurs. Denoting the flux of material by gz; : Q= R,

this property is expressed by

Vu| < a= ¢ =0. (2.1.2)

This and the following functional equalities and inequalities are understood in the almost

everywhere sense, which we omit to explicate for readability. Due to gravity, if positive flux



occurs, material moves only in the direction of steepest descent, i.e.,

—Vu- ¢ = |Vul|d|. (2.1.3)

Furthermore the following law of mass conservation is in place:

u +dive = f. (2.1.4)

We assume that on I'p material is allowed to freely leave the domain 2 and that on I'y
material can not; 'y can be interpreted as an impermeable wall, as no flux can occur across

this boundary part. This leads to the following boundary conditions: On I'p we observe
that u = 0 and on I'y we observe that 7 - gi_; = 0 where 7 is the unit outer normal vector.
From (2.1.1)-(2.1.3), it follows that either ¢ = 0, which is the case if |Vu| < a, or

—Vu- ¢ = |Vul|¢| = a|d| in the case of |[Vu| = o. Hence

—Vu-¢=ald|. (2.1.5)
For every v € K, as defined in (2.0.4), it holds that
Vo ¢ > —|Vol|g] > —alg],

and thus

a|g| + Vo - ¢ > 0.

Adding (2.1.5), we get

V(’U—U)Q_S‘ZO,



and integration over €2 yields

OS/ﬂV(v—u)~$da:=—/9(v—u)~divd§dx+/ (v—u)i - ¢dsS,

where the second term on the right hand side vanishes: Note that on I'p we have that

v =wu =0, and on I'y we observe that 7 - (5 = 0. Here, dS' is the boundary measure and 7

is the unit outer normal vector. The inequality
(dive,u—v) >0 (2.1.6)
follows directly. Finally, applying the mass conservation law (2.1.4), this is equivalent to
(Ou— f,v—u) >0, VveK, (2.1.7)

for a.e. t € (0,7).
One interesting case is worth describing: Provided that v = uw + 1 is feasible, e.g., if

I'p = (), a conservation law of material is in place, specifically, it can be inferred from (2.0.2)

that [ (u(T) — uo) dx = fOT Jo f dadt.

Realistically, shapes of sandpiles do not resemble perfect cones, but some smoothing
occurs, rounding the top and the tails of accumulations. This is due to the stochastic nature
of the interactions of particles. A Deterministic way to capture this effect is by introducing a
diffusivity term Au = —cAwu with a small coefficient ¢ > 0. Including this term, the variable
u satisfies

(Ou+ Au— fo—u) >0, VveK. (2.1.8)

2.1.1 A simple example

A simple example to illustrate the behavior of the model above is the following. We assume

that ug = 0, and that €2 is a circle for d = 2 or on an interval for d = 1, respectively, and



Figure 2.2: Illustration of a basic example of sandpile growth for d =1

that T'p = 0. Suppose that the source term f is the characteristic function of a circle (in
two dimensions) or an interval (in one dimension). In this setting, first a truncated, and
then a full cone evolves. As its support reaches the boundary, some added material leaves

the domain, letting the free surface further grow only in other areas.

2.2 Semi-discretization and the stationary problem

The study of solutions to (2.0.2) usually makes use of the semi-discretization (in time) of
the problem via an implicit Euler method. In particular, we approximate the partial time
derivative dyu by (u, —up—1)/k for some time-step k > 0. For sake of simplicity we consider

the non-diffusive setting. The arising class of problems is then given by

Find u,, € K such that

(VI(un—lv fn))
/Q(u —Up—1)(v —u)dx > (fp,v — U>UFD(Q)I7UFD(Q), for all v € K,

where f, = [0, f(r)dr.

Letting g := fn + un—1, this variational problem (assuming enough regularity for g)

corresponds to the first order condition of the minimization problem

Minimize (min) % /Q () [? d — /Q g@)u(e)dz  over u € Up, (),
(2.2.1)

subject to (s.t.) wue€ K.

10



Uniqueness and existence can be shown using standard tools (e.g., see [9]). In Chapter 3
we focus on problems of this type with generalized gradient bounds. Therein, proofs of
existence and uniqueness for g € L?(Q) are also presented in the cases where the gradient
constraint is a function with low regularity, namely that a € L'(Q2), or further in the case

where « is a non-negative Borel measure.

2.3 The evolutionary QVI

In this section, we drop the assumption of a relatively flat underlying surface (2.0.1) and
regard the more general case where the slopes of the underlying surface can potentially be
steeper than the angle of repose. In this case, the upper bound of |Vu/| in the constraint set

is generalized to

a, if u > wug;
M (u,up) = (2.3.1)

max(a, |Vugl), if u < uyg,
and the gradient constraint (2.1.1) is replaced by
|[Vu| < M(u,up) a.e. in €. (2.3.2)

This accounts for the fact that the solution is not bound by the angle of repose at places
where no material accumulates, i.e., where the solution coincides with the underlying surface.
If the underlying surface ug does not exhibit steep slopes, then M (u, up) = « and the general
case reduces to the one previously discussed.

The generalization of the derivation in Section 2.1 is direct: In the same way as in (2.3.2)
compared to (2.1.1), the upper bound « is replaced by M (u,ug) throughout. Merely a short

argument for the generalization of (2.1.5), i.e.,

—Vu- ¢ = M(u,ug)|d|, (2.3.3)

11



needs to be appended: If M(u,ug) # «, then by (2.3.2), it holds that u = ug, from which
it follows that Vu = Vug, and hence, |Vu| = M(u,up). Together with (2.1.3), this shows
that (2.3.3) holds true.

Next, we introduce the evolutionary QVI which arises from the general formulation: We
assume that f € W(0,T), hence f € Ur, () a.e. in (0,7). The QVI in the Bochner space

setting is given as follows:

Find v € K(M (u,up)) such that

T (QVI(ug))
/0 (Opu(t) — f(t),v(t) — u(t)>UFD (@),Ur, (dt >0, forallve K(M (u,up))

with the initial condition u(0) = ug, and where
K(p) :={veW(0,T):v(t) € K(p) a.e. in (0,T)},

and
K(p) :={veUr,(Q):|Vv| < p ae. in Q}.
2.3.1 Regularization of the gradient bound

The pointwise gradient bound (2.3.1) is discontinuous in the u argument. While this makes
sense in modeling, from the viewpoint of wellposedness this presents an unsurmountable

obstacle. This motivates that and for € > 0, we introduce the regularization

/

«, U > ug + €,
M*(u, u0) == { max(a, |Vuo|) + =10 (o — max(a, [Vugl))), wo <u < wug+e, (2.3.4)
max(a, |Vugl), u < up.

12



2.3.2 Semi-discretization of the QVI

In the same vein as for the VI above, approximating d;u via an implicit Euler method, the
generalization of (VI(u,—1, fn)) is given by the general time discrete QVI that is given in

its general form next:

Find v € K(®(u)) such that

(QVI(un—la fna (I)))
=)o = 0o > (oo = Wi @10 Yo € K@),

where u,—1 € Ur,(Q2) denotes a previous timestep solution (or the initial surface), f, €
Ur,(2), and we use either ®(u) = M (u,ug) or ®(u) = M®(u,up); note that we observe
in both cases that ®(w) > « for all w. We rely heavily on the following non-increasing

property of the map ® in both the previous cases:
w; <wp  ae. = O(we) < ®(wy) aee.

In contrast to the VI case, an equivalent minimization problem in general is not possible
to be obtained, and (QVI(uy—1, fn, ®)) is not necessarily uniquely solvable as we show by
means of a 1-dimensional example in Section 2.3.3. First, we establish some increasing

properties of solutions.

Lemma 1. Let f > 0 and ®(u) = M (u,up) or ®(u) = M®(u,up). If u solves QVI(uy, f, P),

and ug € K(®(up)), then it holds true that u > wo.

Proof. Let u solve QVI(ug, f, ®) and suppose the opposite, namely that the set

S:={z e : u(x)>u(x)}
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has positive measure. Define v = max(ug, u), and note that because w +— ®(w) is a non-

increasing map, on S' it holds that
Vol = [Vue| < (ug) < B(u),

and on 2\ S

|[Vo| = |[Vu| < &(u).

Hence it holds that v € K(®(u)), and thus

[ (= w0} =)o = = wo)xslF <0 < (.0 = W oy 0

which violates that w is a solution to QVI(ug, f, ®). O

2.3.3 A 1-D example of multiple solutions

In this section, we show how the regularization of M resulting in M€ leads to the uniqueness
of solutions. In particular, we provide an example where QVI(ug, f, M(+,ug)) has multiple
solutions, however the respective regularized problem QVI(ug, f, M*(-,ug)) has a unique
solution.

We assume here that d = 1, Q = (=2,2), and I'p = {-2,2} = 99, i.e., we consider

Ur, () = HE(Q). Let the initial surface be given by
ug = max(0,1 — |z|), (2.3.5)

the gradient bound be given by @ = 0.5, and let f = cdg for a 0 < ¢ < 0.5, where dg is
Dirac’s delta centered at zero.

First, we give necessary and sufficient conditions for solutions of QVI(ug, f, ®). Based
on these conditions, we can show that QVI(ug, f, M (-,ug)) has multiple solutions while for

any € > 0 there exists a unique solution to QVI(ug, f, M(-,up)).
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Proposition 1. For the given example, it holds that u € H}(Q) is a solution of QVI(ug, f, ®)
if and only if the following two conditions are satisfied: There exist a,b € R with —2 < a <

—land 1 < b < 2, such that
v (z) = —sgn(z)®(u)(x) on (a,b), and u=0on N\ (a,b), (C1)

a.e., and it holds that

/u—uodx:(f,l). (C2)
Q

Proof. i) (Cl) is a necessary condition. Let u be a solution of QVI(ug, f,®). Noting
that suppug C suppu by Lemma 1, let [a,b] denote the largest interval which contains
suppug = [—1, 1] and is contained in supp u.

Consider that the negation of (C1) holds true. Initially, we assume the violation of the
first equality in (C1) and without loss of generality we assume that this violation occurs on

a set of positive measure S C (0,b), i.e.,
W' (x) #—®(u)(z), ae. inS.

Since —u’ < |u/| < ®(u) holds for any solution of QVI(ug, f, ®), it immediately follows that
' (z) > —®(u)(z), ae. inS.

As test function in QVI(ug, f, ®), regard

(uw(0) — [ ®(w)(€)de) ™, if z € (0,b),

v(z) =

u(x), otherwise.

By |v/| < ®(u), it holds that v < u on Q: We only need to prove this in (0,b), and note
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that either v'(z) = —®(u)(x) which leads to v < u, or v(x) = 0 which also implies the same
inequality given that all solutions w in this case are non-negative by Lemma 1. It further

holds on (0, b) that by definition of ug we have

o () = (UO(O) - /0 "B (u0)(©) ds)+. (2.3.6)

By Lemma 1 we have u > wug, and then by definition of v it holds that v(x) > ug(x) for = ¢
(0,b). Further, since u > wug, the non-increasing property of ®, implies that ®(u) < ®(up).
Thus, by definition of v and (2.3.6), we also have that v(x) > ug(x) for z € (0,b). Thus,
v(z) > ug(z) for every z.

Because |[u/| < ®(u) a.e. on (0,b), and v’ > —®(u) on S, a set of positive measure in

(0,b), there exists a 0 < o < b such that

T + T
uo(x) <w(z) = <u(0) —/0 D (u)(€) d{) < u(O)—i—/O u' (&) dé = u(x) for every x € (0,b).
Thus
/Q(u—uo)(v—u)dx > 0= c- (u(0) = u(0)) = (f,v — u),

which implies that u does not solve the QVI, a contradiction.
Secondly, we assume the violation of the second equality in (C1). By construction of the

interval [a, b], it holds that u(a) = 0 = u(b) and thus testing with

u(z), if z € [a,b],
v(x) =

0, otherwise,

yields w = 0 on Q \ (a,b), a contradiction. Hence (C1) is a necessary condition.
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ii) (C2) is a necessary condition. Let u be a solution of QVI(ug, f,®). It follows from the
first part of the proof that (C1) holds true. Since ®(u) > 0 by definition, and because
supp ug C suppu by Lemma 1, it holds that ¢ and b are uniquely defined satisfying —2 <
a<—-land1<b<2

First, we regard the case that —2 < a and b < 2. We define &t = min(a + 2,2 — b). For

any 11 € (—7i, 1), define

;

a-sgn(p) - (z+2) if —2<z< -2+ |y,

m(p) = a-sgn(p)- 2—a) if2—|u/<z<2,

Q- otherwise,

and let v, := u + m(u), which satisfies v, € K(®(u)). Since u is a solution of the QVI and

f = ¢dy, for every u € (=@, fr), it holds that

oz,u/ﬂ(u —up)dz + O(p?) = /Q(u —up)(vy —u)dr > (f,v, —w) = ap(f,1). (2.3.7)
Multiplying both sides with (a|u|)~!, and letting x — 0% and p — 0~ , we get the equality
(C2) due to O(u?) = o(u).

We complete this part of the proof by showing that a = —2 can not hold. The same
follows for b = 2 by symmetry. Suppose that a = —2. Then, by the first equation of (C1),
v = ®(u) > a = 0.5 on (—2,0). Due to the boundary condition u(—2) = 0, and because

u > ug by Lemma 1, it thus follows that

05-z4+1, if —2<z<0,
u(x) >

uo(x), if0<z <2
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Hence by direct computation we have

/ u—wug dez > 0.5. (2.3.8)
Q

However for —2 < pu < 0, v, is feasible and (2.3.7) holds true, hence we can let ;1 — 07,

and therefore conclude that
/u—uodx <{(f,1) =c<0.5.
Q

in contradiction to (2.3.8).
iii) (C1) together with (C2) is a sufficient condition.
Let u be a function which satisfies (C1) and (C2). Because ®(u) > 0 holds by definition,

(C1) implies that |u'(z)] < ®(u)(z) for every z € Q and hence u € K(®(u)). We need to

show that for every v € K(®(u))

/Q(uuo)(vu) dz > (f,v —u) (2.3.9)

holds true.
For v € K(®(u)) it holds that |v'(z)| < ®(u)(z). Then by (C1), for a.e. = € (a,b) we

have

sgn(a)u’ () = =@ (u)(z) < —P'(z)] < '(z) < [v'(2)] < @(u)(z) = —sgn(z)u’(z),

and hence v'(x) — v/(x) > 0 if z € (a,0) and v'(z) — u/(z) < 0 if x € (0,b). Defining the
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constant | := (v — u)(0), then
0
v(y) —u(y) =1— / V' (x) =/ (z)dz > 1, for y € (a,0), (2.3.10)

y
v(y) —u(y) =1 +/ V' (x) =/ (z)dz > 1, for y e (0,b). (2.3.11)
0
Because u > ug and v —up = 0 on 2\ (a,b), from (C2) we can conclude

/Q(u—uo)(v—u)dx2/(u—u0)-ldx—(f,l)—<f,v—u).

Q

O

We are now able to show that in the unregularized case multiple solutions exist, while

in the regularized case a unique solution exists.

Proposition 2. Let € > 0, and ®(u) = M¢(u, up). In the example under study, the problem

QVI(uo, f, M®(u,up)) admits a unique solution.

Proof. We use that by Proposition 1, solutions of QVI(ug, f, M¢(u,up)) can be equivalently
characterized by (C1) in conjunction with (C2).

First we show that for any fixed function value u(0) > 0 of a solution w, (C1) fully
characterizes u everywhere on 2, and subsequently, we show that by (C2) only one such
solution exists.

In the first step, we determine the solution for x € (0, 2], as for [-2, 0) the same construc-
tion can be applied symetrically. Due to the discontinuity of |ug| and therefore of M¢(u,ug)

at 1, we regard the intervals (0, 1] and [1, 2] separately: On the first interval, condition (C1)

19



yields u/(z) = —M*®(u, ug), hence

0.5 u(z) > -z +e¢
—u'(z)={1- “(;;);“E —z<u<-—z+e¢ (2.3.12)
1 u(z) < —x

or equivalently

u'(z) = —1 4 max(0,0.5 min(1, (u(z) +2) -7 1)), for z € [0,1].

Together with the given initial value u(0) is uniquely solvable by [10, Theorem I1.2.3] since
the right hand side is Lipschitz continuous in u for any fixed z € [0,1]. On the subsequent
interval [1,2] it holds that M¢(u,up) = «, and therefore by (C1), the solution for z € (1, 2]
is given by

u(z) = max(u(l) — a(z —1),0), for z € [1,2]. (2.3.13)

Finally, to show uniqueness, assume that there exist two distinct solutions u! and u?. Be-
cause the function value at 0 defines the function on €2, as we have shown above, without
loss of generality, suppose that u'(0) < u?(0). Since both functions satisfy (2.3.12), by
[10, theorem 1.2.2] and by continuity of u' and u?, there can not be a point ¢ € (0,1) such

that u!(&) = u?(¢), and thus

ul(z) < u?(z) for every z € (0,1). (2.3.14)

By continuity of both functions it follows that u!(1) < u?(1) holds true and therefore (2.3.13)

implies that

u'(z) < u’(xz) for every z € [1,2]. (2.3.15)
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Figure 2.3: Unique solution of the regularized problem

Because the same inequalities as in (2.3.14) and (2.3.15) hold symmetrically for z € [-2,0),

by (C2) we obtain the contradiction

<f,1>:/ﬂu1dx</gu2dx:<f,1>.

O

Remark 2.1. The closed form solution to the example problem can be obtained by resolu-

tion of (2.3.12) and (2.3.13), and can by basic calculus be shown to be given by

) (w(0) — up(0)) e +1— |z|, if0< || <b, .

max(0,u(b) — a(|z| — b)), if b < |z] <2,

where b = min (1, 2e log (¢/(u(0) — u(0)))). Furthermore, u(0) is uniquely defined by (C2),
Le, [qu—updr = [, fdz, due to the monotonous dependence of u(x) on u(0), as seen
above in (2.3.12) and (2.3.13).

Proposition 3. The problem QVI(ug, f, M (u,up)) has uncountably many solutions.

Proof. We provide a family of functions for which (C1) and (C2) are satisfied, and which

by Proposition 1 are solutions of the QVI.
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A NI A

Figure 2.4: 1-D example for non-uniqueness: solutions u°, w2yl

For every A € [0, 1], define u* € H(Q) by

max(up(x), (z —a(N))a), x <0,

uMz) =
max(ug(z), (b(\) — x)a), x>0,
where a(A) := —1 — /(1 = X)/2 and b(\) := 1+ /A/2. Further define j(\) := —1 +

(1—=X)/2 and k(\) :=1—/A/2.

To show that (C1) is satisfied, due to symmetry, it suffices to consider x € (0,2): On
(0,k(N)), where k(\) < 1, it holds that u*(x) = ug(z) and because |uj(z)| > a it follows
that (u*)(z) = uh(z) = —|uh(z)| = —M(u*,up)(x). On the interval (k(A),b())), we
have u*(z) > wug(z) and hence (u*)(z) = —a = —M*(u*, up)(z), and finally on (b(\),2),
it holds that u*(x) = wug(z) = 0 because b(\) > 1. In the same way we can show that
uMz) = M€(u?, up)(x) for = € (—2,0), and hence condition (C1) is satisfied.

Since supp(u* — ug) = (a(A),5(A)) U (k()\),b(N)), condition (C2) is satisfied as well:

2 (A b(\) -
/ uMz) — ug(z) dz = /j (x — a()\))%dx +/ (b(N\) — CL‘)%d:L‘ = % + % = (f,1).

2 a(\) k(\)
By Proposition 1, we can conclude that u* is a solution of QVI(ug, f, M (u,ug)) for every
A eo,1]. 0

A sample of the family of solutions in the previous proposition can be seen in Figure 2.4.

There we can see that the multiplicity of solutions is not an artifact of the quasi-variational
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model but actually a feature. Given that intensity is concentrated on the peak of the
supporting surface ug, there is no information of where material should go to, and hence
all possibilities are valid. Interestingly, this seems possible to be embedded into a random
variable approach; this is, of course, beyond the scope of this dissertation.

In the next chapter we will derive a dual problem which can for example be used for an
efficient solution scheme. In fact the condition under which a Fenchel dual can be derived is
more general then the setting above, as the gradient bound « is only required to be Lebesgue

measurable.
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Chapter 3: The stationary problem with measure constraint

The semi-discretization of the evolutionary sandpile problem in the VI case, (2.0.2), can
be posed as a minimization problem, (2.2.1), as we have seen in the previous chapter. In
the present chapter we concentrate on this minimization problem in a more general setting

which allows for a less regular gradient constraint:

i 1 w(@)|?dz — z)u(x)dxr over u
win 5 [ u@Pde = [ f@yu(e)d € Ur, (9),

st. wekK,

where the constraint set is given by
K={veUr,(Q) :|Gv|, <a}. (3.0.1)

with 1 < p < 4005 a full explanation on the sense in which the constraint is taken is given
briefly. In order to consider less regular gradient bounds « than in the introductory chapter,
the space Ur,, is chosen accordingly as a BV-space or a Sobolev space, which is described
in detail below, and G denotes an appropriate gradient operator. This generalized setting
allows for solutions with jumps at certain locations. Note that the underlying evolutionary
problem can be posed in such a generalized setting analogously.

In this section, we assume that the boundary 92 is partitioned into a Dirichlet bound-
ary part I'p and a non-Dirichlet boundary part I'y, both composed of a finite number of

connected parts, such that

TD Uszaﬁ, and I'pNITy=0.

24



The restriction of u to the I'p part of the boundary is assumed to be zero, and no restrictions
are assumed on I'y. Notice that on I'y, Neumann boundary conditions may not arise (due
to non-diffusive nature of the variational problem).

In this chapter, we rigorously identify the Fenchel pre-dual of (IP), and we address ques-
tions of uniqueness and existence for (IP) and its Fenchel pre-dual problem. In fact we
consider the aforementioned questions under low regularilty assumptions on «, i.e., when «
is a measure or an integrable function.

We briefly discuss the two possible scenarios that we consider:

(i) If o is a nonnegative integrable function, then Ur, () is a Sobolev-type space
and G = V is the weak gradient, so that |Vuv|, is the {)-norm of the weak gradient

of v. Hence, |Vv|, < a in (3.0.1) is considered in the almost everywhere (a.e.) in

sense.

(ii) If o is a nonnegative Borel measure, then Ur,(§2) is a subset of functions of
bounded variation BV(Q2). In this case, G = D is the distributional gradient, and
|Dv|, the total variation measure of Dv associated to the ¢,-norm, and the constraint

|Dv|, < a is understood in the measure sense.

Both instances, (i) and (ii), are related, in fact (i) may be considered as a special case of (ii):
Letting o € MT () in case (ii), where M () denotes the set of nonnegative Borel measures,
enables us to handle the delicate case a € L'(Q)* in (i) by assuming that the measure is
absolutely continuous with respect to the Lebesgue measure. Next we shall provide a brief
description of modeling capabilities of (i) and (ii) in the context of a particular application.

A description of the qualitative behavior of Problem (2.0.2) is displayed in Figure 3.1.
We assume two materials with different angles of repose a7 and ag with a; > a9 are poured
on the discontinuous structure uo(z) := X (3, 4,)(z) for z € Q= (0,1) and 0 < 21 < x5 < 1.
The intensity of the material being deposited is given by f(t, %) = f1X(xg,22)(Z) + f2X (22,1)(¥)

for some points xg, and z9, and some f1, fo > 0, i.e., the first and second materials are poured
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Figure 3.1: Accumulation of two kinds (magenta and blue) of granular materials on discontin-
uous surface. (LEFT) Depiction of f(t,7) = f1X(20,00)(%) + f2X(2,1)(), the accumulation

of both materials, and do = Q1X (3, 20) (¥)dT + Q2X(g5,1) (7)dT + Z§:1 d(x —x;). (RIGHT)
The value of the initial supporting structure ug and the final distribution (7).

with density rates f; and fo, respectively, during the entire time interval (0,7"). We further
assume that a sharp edge can form at xs with maximum height of 1, and in addition discon-
tinuities of maximum size 1 can be preserved at the locations of the discontinuities of uyg.
Finally, the gradient constraint « is then given by da = a1X(0,2,) (%) A2 + @2X (2,,1) (%) dz +
Zf’zl 0(z — x;), and the material is assumed to escape freely at the boundary points of .
On the right side of Figure 3.1, we see the comparison between ug and u(T"), the solution at
time T > 0; on the left we see the depiction of f, a, and the accumulation regions of both
materials.

Closely related to problem (PP), we consider the following class of problems

min ;/ |div p(x) — f(x)]*dz + J(p) over p € Vi, (9). (P*)
Q

We prove that (P*) is the Fenchel pre-dual of problem (PP), i.e., the Fenchel dual [11] of (P*)
under certain conditions is (P). Several choices for Vp, (€2) and J are explored which are

directly related to the nature of . In all cases considered, Vi, (§2) contains d-dimensional
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vector fields with divergences in L?(Q2). In particular, we consider the following settings:

i) If a is a nonnegative measurable function (additional assumptions are later ex-
g P
plained but continuity is enough to guarantee what follows), then we explore two

options for J:

J(p) = /Q a@)p@)gdz,  and  J(p) = /Q adlpl,.

In the first case Vi, () is a subspace of L!(€2)4. In the second case V1, (£2) is contained
in the space of R9-valued Borel measures, so that the second functional denotes the
integral of o with respect to the total variation measure of p induced by the /9-norm.
The two functionals are closely related, and the first can be seen as a restriction of the
second one to measures that are absolutely continuous with respect to the Lebesgue

measure.

(ii) If @ is a nonnegative Borel measure, then V1, (£2) is contained in the space of maps

that are o measurable, with J given by
J(p) —/ plgda.
Q

A few words are in order concerning (P) and (P*). Although the objective functional in
(P) is smooth and amenable, the constraint set K makes the entire problem highly nonlinear
and nonsmooth. The latter also holds for (P*) given the nature of the functional J. The
development of solution algorithms for both problems is a rather delicate issue that requires
appropriate regularization methods that can handle the nonsmoothness in an asymptotic
fashion.

Here we focus on functional analytic properties of (P) and (P*) together with duality
relationship properties. Additionally, we develop a mixed finite type method to solve the
optimality conditions corresponding to (P) and (P*).
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Some Bibliography

The structure of Problems (P*) and (IP) and their inherent difficulties are analogous to the
ones that appear in the context of plasticity; see [12,13] and references therein. In particular,
the first class of applications for diffusive variational problems with gradient constraints is
the elasto-plastic torsion problem. Such a problem has been thoroughly analyzed by Brézis,
Caffarelli, Evans, Friedman, Gerhardt, and others; see [14-21|. Further, a complete account
of the literature can be found in [22|. A significant amount of the aforementioned works
focuses on regularity of solutions, the free boundary, and the equivalence of the gradient
constrained problem to a double obstacle one.

The modeling of the evolution of the magnetic field in critical-state models of type-I1
superconductors also leads to a problem like (2.0.2) with the addition of a diffusive operator
and a state-dependent constraint in some cases; see |7,23-28|.

Analogous problems are found in mathematical imaging involving total variation regu-
larization [29-31] and more specifically in the weighted total variation version [32]|. There, in
contrast to the work here, the L>-norm on the gradient is replaced by the L'-norm, leading

to a pre-dual problem with a pointwise bound in its state variable.

3.1 Organization of the chapter

Elementary results about the generalized gradient constraint are given in Section 3.2.1.
In Section 3.3, we prove existence and uniqueness of the solution to problem (P) for the
cases when « is either a nonnegative Lebesgue measurable function or a nonnegative Borel
measure. Existence of solutions to problem (P*) is addressed in Section 3.4, while for the
case when p is a function we require d = 1, when p is a measure the dimension restriction is
dropped. The relation between problems (IP) and (IP*) are considered in Section 3.5, where a
rigorous Fenchel duality result establishes a link between these two problems. In particular,
in Section 3.5.1, we address the case where « is a function and the variable p is either a

function or a measure. The case when « is a measure and an extension of the duality result
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of the previous section is given in Section 3.5.2. Finally in Section 3.6, we introduce a mixed
finite element method to solve the underlying problems and present a range of numerical

tests.

3.2 Notation and Preliminaries

The purpose of this section is to introduce notation involving spaces, and convergence notions
that are used throughout the chapter; in particular, we address the well-known notions of
Sobolev spaces and the space of functions of bounded variation. We refer the reader to
Attouch et al. [33] that we follow closely for this introduction together with the book of
Adams and Fournier [34].

For a Banach space X, we denote its corresponding norm as || - ||x. For an element F
in the topological dual X’ of X, the duality pairing of F' and an arbitrary element x € X
is written as (F, x)x x. Throughout the chapter, all Banach spaces are assumed to be real
vector spaces.

The inner product on the Lebesgue space L%(Q) of (equivalence classes of) functions
that are square integrable on € is denoted as (-,-), so that (f,g) := [, f(z)g(x)dz for
f,g € L*(Q) where dx refers to integration with respect to the Lebesgue measure.

The Sobolev space of functions in L7(2) for 1 < r < 400 with weak gradients in L™ ()4

is denoted by W17 (Q), and it is endowed with the norm

[ollwrr@) = llvllr@) + VUl o),

where Vv denotes the weak gradient of v. In the case r = 2, we use the notation H(Q) :=
WH2(Q). Given that Q is assumed Lipschitz, restriction of a function v € WbH(Q) to
the boundary 9 is well-defined via the continuous trace map vo : WbH(Q) — L"(09).

Furthermore, the closed subspace of functions in W1 (Q) that are zero on I'p is denoted by
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WET(9Q), ie.,

W () = {v € WH(Q) : y0(v) = 0 on T'p}.

Similarly, we define H%D(Q) = WF1D2(Q) The space of real-valued Borel measures M(f2) is

endowed with the norm ||p|l\(q) := [1[(€2), where || is defined for an arbitrary open set O

as
11(O) = sup { {1, 2)m@),co@) : 2 € Co(), supp(z) C O, |z(x)] <1, for every z € O} .

Note that (i, 2)m@),co) = Jo 2 di, and that |u| defines a Borel measure in M*(£2), the

subset of nonnegative elements of M(Q), i.e., 0 € M1 (Q) if o(B) > 0 for every Borel set
B cqQ.
We denote by BV(Q2), the space of functions v in L'(Q), for which the total variation

semi-norm
/ |Dv|, = sup {/ vdivp dz : p e CHV)Y, |p(x)|, < 1, for every z € Q}
Q Q

is finite and where ¢ is the Holder conjugate of p, i.e., 1/p+ 1/q = 1; see 33, Section 10.1].

The space BV(Q) is a Banach space endowed with the norm

lollsve = ol + /Q Dol

The operator D represents the distributional gradient, and for a v € BV(Q), Dv is a R%
valued Borel measure. We use |Dwv|, to denote the total variation measure (associated to

the ¢P-norm) of Dv, and the total mass [Dv|,(£2) is by definition



Furthermore, the Lebesgue decomposition result applied to Dv implies that there exist

measures D,v and Dgv such that
Dv =Dgv + Dy,

with Dgv and Dgv respectively being absolutely continuous and singular with respect to the
d-dimensional Lebesgue measure.

We define now the notions of weak and intermediate convergence of sequences in BV(Q)
which provide different topologies on the space BV(£2). The former is obtained by a sub-
sequence of a bounded sequence in BV(£2). Moreover, the latter is sufficient to preserve

boundary conditions in the sense of the trace as stated in Theorem 3.1 below.

Definition 3.1 (WEAK CONVERGENCE FOR BV(Q)). Let {u,} be a sequence in BV ()

and u* € BV(Q2). We say that u,, converges to u* weakly, denoted as u,, — «* in BV(Q), if
U, — u* in LY(Q), and Duy|p, = |[Du”|, in M(£2).

Recall that if {p,} is a sequence of measures in M(2) then p, — p in M(§2) for some

w € M(Q), that is, u, weakly converges to p, if

/gdﬂn%/gdﬂ,
Q Q

for all g € Cy(Q2).

The definition 3.1 is understood in light of the following fact: If {w,} is a bounded
sequence in BV(Q), there exists u* € BV(f2) such that along a subsequence u,, — u* in
BV(£2). The latter follows since the embedding BV() < L(£2) is compact (see Attouch et
al. |33, Theorem 10.1.4.]) for Lipschitz domains, and since a bounded sequence of measures
admits a weakly convergent subsequence.

We shall use the direct method of calculus of variations to establish existence of solutions
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to problems in BV(Q) and with Dirichlet homogeneous boundary conditions on I'p. The

space of interest is BVr, (€2) defined as
BVr,(Q) :={v e BV(Q) :y(v) =00onI'p},

where vy is a trace operator; see [33, section 10.2]. Notice that we use the same notation
for the trace operator in Sobolev spaces WP(Q). There is a fundamental issue with the
trace in BV(Q) and the application of the direct method as we show next with an standard
example adapted from [33].

Consider a bounded sequence {u,} in BVr,(£2). Then, we can extract a subsequence
(not relabeled) of {u,} such that u, — u* in BV(€). The problem is that in general it is
not possible to say that u* € BVp,(€Q): Let Q = (0,1) with I'p = {0}, and consider {v,}

defined as

nx, if0<z<1/n,
on(z) =
1, ifl/n<z<l.
Then, v, € BVr,(Q), and v,, — v* € BV(Q)\BVr,(Q), with v* = 1. The underlying reason
is that the trace operator in BV(2) is not continuous with respect to weak convergence, but
it is with respect to the intermediate convergence subsequently defined. We further notice
that |Dv,[(0,1) = 1 and |Dv*|(0,1) = 0, this discrepancy is central to the issue we are

considering.

Definition 3.2 (INTERMEDIATE CONVERGENCE). Let {u,} be a sequence in BV(2) and

u* € BV(Q2). We say that u, converges to u* in the sense of intermediate convergence if

u, — u* in LY(Q), and / |Duy|p — / |Du*|,.
Q Q

The name intermediate convergence arises since it describes a stronger topology than
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the one of weak convergence, but not as strong as the norm one. The importance of the

intermediate convergence can be seen in the following result which holds in our case since
Q C RY is a Lipschitz bounded domain. We refer to Attouch et al. [33, Theorem 10.2.2] for

its proof.

Theorem 3.1. The trace operator vy : BV(Q) — L'(09) is continuous when BV(Q) is

equipped with the intermediate convergence and when L'(99) is equipped with the strong

convergence.

We also note that C°°(£2) is dense in BV(2) in the intermediate convergence topology,

for a proof see [33, Theorem 10.1.2|.

3.2.1 The gradient constraint

A few words are in order concerning the gradient constraint given in the set K defined in
(3.0.1). Although in the case when G = V the situation is somewhat standard, if G = D,
the distributional gradient for BV functions, several nontrivial explanations are required. In

the cases where « is a Borel measure and v € BV(Q), the inequality
D], < (3.2.1)

in (3.0.1) is understood in the sense of measures, i.e., (3.2.1) holds true if
/ w|Dol, < / wda for all w € C5°(2) with w > 0 in €, (3.2.2)
Q Q

and equivalently, for every Borel measurable set S C €2, it holds that

/SIDvlpé/Sda. (3.2.3)
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Given that nonnegative Borel measures are inner and outer regular (|33, Proposition 4.2.1])

the condition (3.2.2) is equivalent to

/OIDvlpS/Oda (3.2.4)

for all open sets O C Q.

It is possible to replace C§°(Q) in (3.2.2) by C°°(£2), which we discuss next.

Proposition 4. The condition in (3.2.2) is equivalent to
/ w|Dvl, < / wda for every w € C*®(Q) with w > 0 in Q. (3.2.5)
Q Q

Proof. Suppose that (3.2.2) holds true and let K, be a sequence of closed sets such that

/ |Dv|, = 0 and / da — 0. (3.2.6)
O\K, O\K»p,

The sequence {K,} exists given that measures in M+ () are inner regular; see [33, Propo-
sition 4.2.1]. Let @ € C*°(Q2) be nonnegative and arbitrary.
Accordingly, let {wy,} in C§°(£2) be nonnegative, uniformly bounded in €2, and such that

wp, = W in K,,. Hence |@| + |wy,| can be uniformly estimated by a constant, and by (3.2.6)

it holds that
/(w—wn)|Dv| :/ (@—w)[Dv| = 0 and /(ﬁ)—wn)da:/ (@—wy) da — 0.
Q O\K, Q O\Kn

Since the inequality in (3.2.5) holds for every wy,, by initial assumption, it also holds in the

limit for w. Furthermore, (3.2.5) immediately implies (3.2.2), so the result is proven. O
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3.3 Existence Theory for (P)

In this section, we discuss the existence and uniqueness of solution to the problem (P).
We start with the case when « is a measure, and the case when « is a function follows

as a special one. In particular, existence of solutions is studied in the function spaces
Ur,(©2) =BVr, (@) and Ur, () = Wll’; (€2). Both of these spaces share the same difficulty:

Bounded sequences do not necessarily admit convergent (in some sense) subsequences that
preserve the zero boundary condition on I'p in the limit. The main purpose of this section

is to overcome this obstacle.

3.3.1 The case when «a is a nonnegative Borel measure

We consider in this section that & € MT(Q) and hence the state space is given by
Urp (€) = BVr, (Q).

We start by proving the following lemma which gives sequential precompactness of some
classes of bounded sets in BV, (£2). These bounded sets are subsets of K which in this case

is defined as

K ={v e BVr,(Q) : |Dv|, < a}.

Lemma 2. Let o € MT(Q2) and M > 0, then the set
K*=Kn{veL'(Q) : ||v|pigq < M}

is sequentially precompact in the sense of the intermediate convergence of BV ((2).

Proof. Let {v,} be a sequence in K*, then it is bounded in BV(Q2), and thus v, — v* in

BV(Q) for some v* € BV(Q2) along a subsequence (not relabelled). Since |Duv,|, — [Dv*|,
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in M(12), and |Dvy|, < « it follows that for every open set O C €2 that

IDv*[,(0) < lim inf |Du,[»(0) < a(0), (3.3.1)

where we have used the lower-semicontinuity property for open sets of weak convergence of
measures; see [33, Proposition 4.2.3]. Additionally, since elements in M(2) are outer (and
inner) regular, we have that for a Borel set B it holds that u(B) = inf u(O) where the

infimum is taken over all open sets such that B C O; see [33, Proposition 4.2.1|. Thus,
|Dv*(,(B) < a(B) (3.3.2)

follows from (3.3.1) by taking the infimum over {O open : B C O}.

In order to prove that v, converges to v* in the sense of intermediate convergence, we
are only left to prove that |[Dv,| — |Dv*| narrowly in M (Q) (see |33, Proposition 10.1.2]).
The latter meaning that [, ¢|Dv,| — [, ¢/Dv*| for each continuous and bounded ¢ on €.
Given that « € MT(Q) we have that for each € > 0 there exists a compact set A, C € such
that

a(Q\ A <e.

Since v, € K, then |Dv,| < «, and hence for each € > 0 the compact set A, C €, is such
that

|Dv, |[(2\ Ae) <, for all n € N.

Then, by Prokhorov Theorem (see 33, Theorem 4.2.3]), there is a subsequence of {|Duv,|}
(not relabelled) that |Dv,| — |Dv*| narrowly in M (). That is, along a subsequence, v,

converges to v* in the sense of intermediate convergence. This implies that

v* € BVr, (),
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by virtue of Theorem 3.1 and the fact that v, € BV, (Q2) for all n € N. O]

The above results particularly means that for a sequence {v,} in K that is bounded
in BV(Q), there exists a subsequence that converges to some u* € BV(Q) in the sense of
intermediate convergence. Further, u* € BVr, () and also u* € K. A direct consequence

of the above lemma is the following result.
Theorem 3.2. If a € M1 (Q), then there exists a unique solution to (P) in BVp, ().

Proof. Consider an infimizing sequence {uy} for (P). It follows that {u,} is bounded
in L?(Q) and hence Lemma 2 is applicable. That is, there is a subsequence of {u,} (not
relabelled) such that u, — u* in L?(Q), and u,, — u* in the sense of the intermediate conver-
gence for BV(2), and further v* € K. Finally, by exploiting the weakly lower semicontinuity

property of the objective functional in (P), we have that u* € K is a minimizer. ]

Next we discuss the case when « is a function.

3.3.2 The case when « is an integrable function

In this section, we let a : 2 — R be a nonnegative and integrable function, leading to
1,1
Ur,, () = WhL(Q).

This case can be interpreted (to some extent) as a special case of the one in the previous
subsection under the assumption that « is a measure absolutely continuous with respect to
the Lebesgue measure. However, we proceed in a slightly different fashion by considering
« as a function and the state space contained in W!(Q); this provides further insight on

bounded sequences in K and in Sobolev spaces. In this case, we have K given by

K={ve WI}Dl(Q) D Vol < a aed.
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Next we state a version of Lemma 2 adapted to the current setting which can be used to

prove existence of solutions to (IP).

Lemma 3. Let a € LY(Q)" and M > 0, then every sequence {v,} in the set
K*=Kn{veL'(Q) : ||v|pigo < M}

admits a subsequence satisfying
vy, — v* in LY(Q), and / |V, (z)|p dz — / |Vo*(2)], dz,
Q Q

for some v* € K™, which is also the weak limit in WI};(Q) of the same subsequence.

The above can be seen as a consequence of equi-integrability of the set K. Recall that
a family of functions F C LY(Q) is equi-integrable provided that for every e > 0, there
exists a 6 > 0 such that for every set A C Q with |A| < ¢ we have that [, |u|dz < e for
all u € F. Further, the Dunford-Pettis theorem states that if {u,} is a bounded sequence
in L1(Q2) and is equi-integrable, then u, — wu along a subsequence for some u € L!(Q).
Hence, since K is bounded in W11(Q), and the gradients are equi-integrable, it is simple to
infer strong convergence in L!(£2) together with weak convergence of the gradients in L!((2).
The improvement of the latter convergence is done again via Prokhorov’s result as in the
proof of Lemma 2 leading to an equivalent of the intermediate convergence in BV(Q2). The
trace preservation follows directly from the same proof. Further note that the convergence
determined does not imply strong convergence in W!(Q) since this space is not uniformly

convex. Another formulation of the above lemma is that bounded sets with equi-integrable

gradients are compact in WI};}(Q) when endowed with the metric

Ao, u) = [[u — o]l ey + \ [ wu@has— [ [Fota)lpaz
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Using Lemma 3 and following the same argument as before for Theorem 3.2, we have

Theorem 3.3. If a € L'(Q)*, then there exists a unique solution to (P) in W%Dl(Q)

3.4 [Existence Theory for the pre-dual problem (P*)

The focus of this section is on existence and uniqueness of solutions of problem (P*) under
different functional analytic settings. In particular, we focus on two cases where p is either
(i) a function or (i) a Borel measure. In the first case, we let @ be either a function or a
measure; here, existence results are limited to d = 1. On the other hand, in the second case
we establish an existence and uniqueness result for p with arbitrary d € N, for a specific class
of a’s (to be specified later). Furthermore, this second case requires a nonstandard space
of vector measures with divergences in L?(€2). Remarkably, a version of the integration-by-
parts formula still holds in this general setting; such a construct is rather recent [35]. We

start with the case when p is a function.

3.4.1 The case when p is a function and « is either a function or a measure

We begin this section by considering that o € L'(Q)* and J is defined as

J(p) = /Q () |p(a)) e (3.4.1)

Moreover, we define

1Plla2 = /Qa(x)lp(ﬂﬁ)lq dz + ||div pl 20,
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for p € C>®(Q)4. We assume that if d = 1 and I'y = ) then « is not identically zero, and if

d > 1 then o > 0 a.e. in Q. The space V1, (§2) is defined by

Ve (@) = B@) ", (3.4.2)

where

E(Q) :={p € C=(Q)" : supp (p) NTx = 0}.

It follows that Vi, (2) is a Banach space: If d > 1, this is clear given that a > 0 a.e. in Q. If
d =1, then V1, () = H%N(Q) which follows from the fact that J(p)+ % [, [p/(z)|? dz is an
equivalent norm (to the usual one) on HllN (Q). The latter is due to J(p) = [ o( x)| dz
being a seminorm in H%N (©2) and norm on the constants, i.e. for a € R, J(a) = |a|a(2) =0

iff a = 0; see [36, Chapter 1.4]. We can now establish existence of a solution to problem

().

Theorem 3.4. Let d =1, o € L'(Q)", and if I'y = () then suppose that « is not identically
zero. Consider J as defined in (3.4.1) on Vi, () as in (3.4.2). Then, there exists a unique

solution to (P*).

Proof. The proof is based on the direct method. Let J: V1, (©2) — R be the objective

function in (IP*), that is,

/|p (@) dz + J(p),

and let {p,}22; in Vp,(Q) be an infimizing sequence of J. Note that 1 [, [p'(z)|?dz +
Jo @lp(x)|dz is a norm in H%N(Q); see |36, Chapter 1.4]. Hence, {p,}>2 is bounded in
Vry (22), and there exists a weakly convergent (not relabeled) subsequence {p,}7>; such

that p,, — p in H%N(Q) By the compact embedding of H%N (Q) = C(Q) (see [34, Chapter
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6]) we have existence of a subsequence (not relabeled) p,, — p in C(2). Finally, weak lower
semicontinuity of J(p) yields that p € Vi, (£2) is a solution to (P*). The strict convexity of

the objective functional provides uniqueness to the solution. ]

An analogous approach can be considered when « is a nonnegative Borel measure (and

not identically zero), that is, when o € M (). In particular, we set

J(p) = /Q p|qday, (3.4.3)

and we construct the space Vr (2) in the same way as in (3.4.2), but with the norm || - || 2

defined as

!Mw:AWNM$MMww

and assuming that if d = 1 and 'y = ) then « is not identically zero, and if d > 1 then

a(B) > 0if |[B| >0 and B C 2 is a Borel set.
The existence result of Theorem 3.4 follows mutatis mutandis: Since 3 [, |p/(z)[* dz +
Jo Iplda is again a norm in H%N(Q), see |36, Chapter 1.4|, the exact argument is applicable

in this case.
We can now focus on the case when p is a measure which provides a general setting for
the problem of interest in terms of existence, uniqueness, and duality results.

3.4.2 The case when p is a measure and « is a function

We focus now on problem (P*) when J is defined as

ﬂmzéawm, (3.4.4)

and p is a Borel measure. Notice that the above functional can be seen as a generalization of

the functional in (3.4.1). The latter corresponds to the case when p is absolutely continuous
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with respect to the Lebesgue measure.

The functional analytic setting in this section, requires p to be a measure with divergence
in L2(€2), and « to be measurable with respect to |p|,. We start with a proper definition of
such spaces and their properties.

We disregard the possible “boundary conditions” for the variable p, so that I'y = (), and

we define V() as follows:
Vi () =W (Q) = {peMQ)!: divp € L*(Q)}, (3.4.5)

where M(Q)? corresponds to the R-valued Borel measures in @ C RY. Specifically, for

p € M(Q)4 it follows that p € W (Q) if there exists h € L?(£2) such that

/QVgo -dp = — /Q phdz, Vo € C(Q), (3.4.6)
and we define divp := h. The space W (£2) is a Banach space when endowed with the norm
[l oy = [w]q() + ldiv wll 20, (3.4.7)
where g € [1, +o0] and
wl,y () == sup {(w,v) cv € ()Y with |v(z)], <1, Vae Q}

Note that above (-, -) is the duality pairing between M(Q)¢ and C.(2)9, and hence

d
w,v)= [ v-dw = /vidwi.
w.v) = [ >,
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Similarly to the definition of |w|4(f2), we can define |w|4(A) for any open set A, and sub-
sequently for an arbitrary Borel set A. Hence, |w|, induces a nonnegative measure (the
total variation measure of w); in addition |w|,(Q) = [, dJw|,. Note that the space W(Q)
contains regular maps, clearly if p € C1(Q)4 then p € W(Q), in this case “d|p|, = |p|, da”
where dzx is the Lebesgue measure.

A note on the space W () is in order. Although one may be inclined to think that
vector fields whose divergences are in L?(£2) would always have better regularity than just
the measure type, this is not true. We consider an example developed by Silhavy [35] to show
otherwise. Let v € BV(Q) with Q C R?, and define p = (Du)* with (ay,a2)* = (a2, —a1)
with Du the distributional (measure valued) gradient of u; it follows that div p = 0. This
can be seen as follows: C°°(Q) is dense (in the sense of the intermediate convergence) in
BV(Q), this means in particular that lim fQ Vo - p,dx = fQ Ve - dp for such a smooth
sequence defined as p, = (Du,)* with u, € C*°(Q). Since also [, V- py, dz = 0, the result
follows by taking the limit and from (3.4.6).

Following gilhavy [35], we have a form of integration-by-parts formula together with a

trace result. We denote by Lip®(A) the space of Lipschitz maps h: A — R for A € R¥ and
endow it with the norm

Il 1) = Liv(h) + sup [1(z)]

where Lip(h) is the Lipschitz constant of A on A. It follows that for each p € W there exists

a linear functional N, : Lip®(99) — R such that for all v € Lip?(Q) we have

Np(vlaa) = / Vo -dp +/ vdiv pdz. (3.4.8)
Q Q
Further, N, is bounded in the following sense

INp(9)| < (IPlg(€2) + |div pl()) [|9]lLip2 a0y < ClPIVIILLE00):
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for some C' > 0, and all p € W and all g € Lip®(99). Provided that p and v have enough

differential regularity, we observe
Np(vlaq) = / vp-idHI!
o0

as expected. Thus, (3.4.8) is an extension of the usual integration-by-parts formula.
We are now ready to state and prove the existence and uniqueness result for problem

(P*) under the setting above.

Theorem 3.5. Let a € C(Q) be such that a(z) > 0 for all z € €2, and consider J defined
by (3.4.4) on Vp,(2) = W(R) as given in (3.4.5). Then, problem (P*) admits a unique

solution.

Proof. Note first that J is well-defined given that o is measurable with respect to all

Borel measures. Consider an infimizing sequence {p,}. Since min, g a(z) > 0, then {p,}
is bounded in Vi, (£2). Hence, we can extract a subsequence (not relabelled) such that
pn — p* in M(Q)? for some p* € M(Q) and div p, — h in L3(Q) for some h € L3(Q).

Furthermore, for ¢ € C2°(Q) arbitrary

(p,divp")2(q) = —/QV@-dp* = —nan;O/QVgo-dpn = JLH()IO(%dinn)B(Q) = (¢, M) 12(0)»

so that h = div p*, i.e., p* € W(Q).
Since the map p +— |p|, is weakly lower semicontinuous, ap, — ap* in M(Q)4, and

*

lglq = a|p|, for ¢ = ap, we have that p* is a minimizer by a weakly lower semicontinuity

argument. Uniqueness follows from the strict convexity of the objective functional. O

At this point, one would be tempted to extend the result to the case where I'y # (), for
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example, by defining
Vi () = {p € W(Q) : Np(v|on) =0 Vv € Lipg, (Q)}. (3.4.9)

While the space above is well-defined, it is not clear if the weak limits of sequences in the

space also belong to it. In fact, if p,, € Vr, (Q2) is bounded, then

/Vv-dpn:—/vdivpndx,
Q Q

for each v € Lip{?D (). However, the weak limit along a subsequence argument is not enough

to pass to the limit on the left hand side given that Vv is not necessarily of compact support.

This remains an open problem.

3.5 Duality relation between (P) and (P*)

In this section, we discuss the dual problem corresponding to (P*). We start with the case
when « is a Lebesgue measurable function and further subdivide it into two subsections.
In Section 3.5.1 we first discuss the case when the pre-dual variable p is a function, and
subsequently we assume that the variable p is a measure. Next in Section 3.5.2, we consider
the case where « is a measure and the pre-dual variable p is a function. In general, we prove
that

Problem (PP) is the Fenchel dual of Problem (P*).

In order to keep the discussion self-contained, we introduce the following notation and
terminology. For an extended real valued function ¢ : X — R U {co} over a Banach space

X, by ¥* we denote its convex conjugate, which is defined by (e.g. see [11, p. 16])

P* X' 5 RU{o0}, P (x*) = :gg {(z*, 2y x« x —(x)}. (3.5.1)
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Provided that the operator div : V' — L?(Q) is defined for a Banach space V, and it is
bounded, its adjoint (div)* : L2(Q) — V* is well-defined and is given by ((div)*v, p)y«y =

(v,div p) for all v € L3(Q) and all p € V.

3.5.1 The case when « is a function

We first consider the case where a is a nonnegative Lebesgue measurable function and we

accordingly set

J(p) = /Q a@)p@)gde  or  J(p) = /Q adipl,,

in (P*) for the cases when p is a function or a measure, respectively. For each of the choices
of J above, we will also establish the strong duality to (P). We assume throughout this

section (and for the sake of simplicity) that
a€C(Q), and alx) >0,
for all € Q as discussed in the introduction of this chapter, together with
Urp(Q) =Wp(Q), and G=V,

and hence,

K={ve WI}DI(Q) D Vulp < o a