
 

COMMUNAL LEARNING VERSUS INDIVIDUAL LEARNING: AN 
EXPLORATORY CONVERGENT PARALLEL MIXED-METHOD STUDY TO 
DESCRIBE HOW YOUNG AFRICAN AMERICAN NOVICE PROGRAMMERS 

LEARN COMPUTATIONAL THINKING SKILLS IN AN INFORMAL LEARNING 
ENVIRONMENT 

by 
 

Leshell April Denise Hatley 
A Dissertation 

Submitted to the 
Graduate Faculty 

of 
George Mason University 
in Partial Fulfillment of 

The Requirements for the Degree 
of 

Doctor of Philosophy 
Education 

 
Committee: 
 
  Chair 

  

  

  Program Director 

  Dean, College of Education and Human 
Development 

Date:   Spring Semester 2016 
George Mason University 
Fairfax, VA  



 

Communal Learning versus Individual Learning: An Exploratory Convergent Parallel 
Mixed-Method Study to Describe How Young African American Novice Programmers 

Learn Computational Thinking Skills in an Informal Learning Environment 

A Dissertation submitted in partial fulfillment of the requirements for the degree of 
Doctor of Philosophy at George Mason University 

by 

Leshell April Denise Hatley 
Master of Science  

University of Maryland, 2011 
Master of Science 

Howard University, 1998 
Bachelor of Science 

Howard University, 1994 
 
 
 

Director: Kevin Clark, Professor 
College of Education and Human Development 

Spring Semester 2016 
George Mason University 

Fairfax, VA 



ii 
 

 
THIS WORK IS LICENSED UNDER A CREATIVE COMMONS  

ATTRIBUTION-NODERIVS 3.0 UNPORTED LICENSE. 

 

 



iii 
 

Dedication 

This is dedicated to my amazing mother, Vernell Wilson, who always said I’d go to 
graduate school - way before I even knew what it was.  Thank you for believing in me 
and being by my side, always. 



iv 
 

Acknowledgements 

Above all, I acknowledge and thank God for refilling and restoring my strength and 
perseverance throughout this journey – from start to finish!  Without question, I would 
like to acknowledge the many family members, loved ones, friends, and colleagues who 
invested and shared their support, ideas, and encouragement throughout this intellectual 
and soul exploring journey.  SPECIAL GRATITUDE goes to my mother, Vernell 
Wilson, and my grandmother, Clarine Stephenson, whose love, strength, and faith pushed 
me to keep going when nothing else could.  To my brother, Marcel Hatley, III, who 
recently shared his belief that playing school all those days with me when we were 
younger, even after school and on weekends, probably planted the seed for my success – 
you are probably 100% correct, big brother! J THANK YOU to my dear friend Crystal 
Swann, whose long standing support and generosity.  You and my Aunt Margaret 
established the bookends for this amazing accomplishment - I could not have done this 
without you two.  To my father, Marcel Hatley, II, thank you for thinking I’m a genius.  
May the baton of academic freedom be passed on to Evan and Ean Crouch-Pelham.  The 
curiosity, wonder, and growth you shared with me throughout the last year helped me 
appreciate the joy of meeting the new, and certainly helped my outlook throughout the 
attempt to finish this dissertation.  Thanks for continuously helping me to see the world 
afresh through your unique perspectives.  I adore and love you both tremendously.  Dr. 
Sheri Massey, thanks for your insight and support, it helped make the first step of this 
journey an easy one.  To my circle of support and heartwarming cheerleaders (especially 
during the last stretch) –Thank you for everything; I truly appreciate you all: Tashona 
Beale, Kelly Gainer, Monique Lindsay, Alfreda McCray, Dr. Cynthia Winston-Proctor, 
Dr. Sonya Smith, Dr. Paula Whetsel-Ribeau, Dr. Rashunda Stittt, Dr. Kamilah Woodson, 
Jason Jones, Melissa Wynn, and all the HU ADVANCE-IT STEM Women Faculty!!!  
Without question, I am truly appreciative of the families and students that participated in 
this study.  Your support made this possible!  SPECIAL THANKS to Dr. Tony 
McEachern for coming through for me in a pinch; may the spirits of learning and 
exploration ever remain in those two computer labs to which you provided access. I 
appreciate your interest, support, and cooperation.  Hats off to Dr. A. Wade Boykin,  
Dr. Jennifer Burrell, and Dr. Alicia Anderson for introducing me the culturally relevant 
theories used in this study (namely, the Black Cultural Ethos, Communal Learning, and 
Black Academic Identity).  Thanks to Bailey Boo Puppy for her never ending company 
while writing, no matter the hour. And last but certainly not least, my sincerest thanks 
and gratitude go to the best advisory team any graduate student could ever have:  
Dr. Brenda Bannan, Dr. Len Annetta, Dr. Erin Peters-Burton, and Dr. Kevin Clark, my 
esteemed Chair.  



v 
  

Table of Contents 

Page 
List of Tables ..................................................................................................................... ix	
List of Figures .................................................................................................................... xi	
List of Abbreviations ....................................................................................................... xiv	
Abstract ............................................................................................................................. xv	
Chapter One: Introduction .................................................................................................. 2	

Background .................................................................................................................... 5	
The Technology-Saturated Lives of Tweens and Teens in the U.S. .............................. 6	
Ownership of Technology and the Use of Technology to Create, Direly Unmatched .. 8	
Low Participation in Computer Science ........................................................................ 9	
Low Participation of Underrepresented Groups in Computer Science ........................ 10	
Increasing Participation in Computer Science ............................................................. 13	
Problem Statement ....................................................................................................... 16	
Purpose of Research Study ........................................................................................... 18	
Theoretical Framework ................................................................................................ 20	
Goals of the Study ........................................................................................................ 23	
Significance of This Study ........................................................................................... 24	
Research Questions ...................................................................................................... 25	

Chapter Two: Literature Review ...................................................................................... 26	
Human Computing and Computational Thinking ........................................................ 26	
Origins of Computational Thinking ............................................................................. 27	
Defining Computational Thinking ............................................................................... 29	
Computational Thinking in the 21st Century in K-12 ................................................. 30	
Computer Programming and Novice Learners ............................................................ 33	
Why Youth Should Learn How to Program ................................................................. 33	
The Challenge of Learning How to Program ............................................................... 34	
Teaching Youth How to Program ................................................................................ 35	



vi 
 

Characteristics of Research on Youth Learning How to Program ............................... 36	
Benefits of Visual Programming Platforms ................................................................. 37	
Assessing Computational Thinking and Programming Skills ..................................... 38	
Introduction to Scratch: A Programming Platform for Novice Programmers ............. 39	
Computational Thinking Skills Learned Using Scratch ............................................... 42	
Scratch, Computational Thinking, and Computer Programming ................................. 43	
Assessing Computational Thinking Skills Learned Using Scratch .............................. 44	
Summary of Computational Thinking and Teaching Programming Skills to Youth ... 45	
The Call for Improved Education in the United States ................................................ 47	
The Academic Achievement Gap ................................................................................ 48	
The Call for Improved Education for African-Americans in the United States .......... 49	
Narrowing the Focus: Communalism & Communal Learning Research .................... 55	
Communalism .............................................................................................................. 56	
Communal Learning and Pair Programming ............................................................... 58	
Black Academic Identity .............................................................................................. 60	
Summary of Culturally Relevant Pedagogy, Communal Learning, and Black 
Academic Identity ........................................................................................................ 61	
Research Questions ...................................................................................................... 63	

Chapter Three:Methods .................................................................................................... 64	
Overview of Research Design ...................................................................................... 64	
Research Site and Setting ............................................................................................. 66	
Study Participants ......................................................................................................... 66	
Instructional Materials ................................................................................................. 73	
Research Constructs and Measured Variables ............................................................. 76	
Data Collection Sources ............................................................................................... 77	
Quasi Experimental Context of Study and Context Learning Prompts ....................... 84	
Intervention (Camp) and Data Collection Procedure ................................................... 87	
Data Analysis Procedure .............................................................................................. 89	
Fidelity, Reliability, and Validity ................................................................................. 93	
Summary of Methods ................................................................................................... 96	

Chapter Four: Results and Findings .................................................................................. 98	
Pre-Test Camp Data Sources ....................................................................................... 99	
During-Camp Data Sources ....................................................................................... 100	



vii 
 

Post-Test Camp Data Sources .................................................................................... 100	
Findings ...................................................................................................................... 100	
Resulting Sample Description .................................................................................... 101	
Academic and Computer-Related Experience Prior to Camp .................................... 103	
Qualitative Data Analysis: Camp Experience ............................................................ 106	
Summary of Qualitative Data Regarding Camp Experience ..................................... 136	
RQ1: Scratch Computational Thinking and Programming Scoring and Analysis ..... 141	
Summary of Performance on Scratch Computational Thinking and Programming .. 180	
RQ2: Learning Context Preference ............................................................................ 182	
Inferential Tests for Statistical Significance of Cooperative Learning Context 
Preference ................................................................................................................... 186	
Inferential Statistical Tests for Significance Individualistic Learning Context 
Preference ................................................................................................................... 189	
RQ3: Black Academic Identity .................................................................................. 190	
Inferential Statistical Tests for Significance Black Academic Identity ..................... 212	
Inferential Statistical Tests for Significance Black Model Phenomenon ................... 213	
Summary of the Impact on Black Academic Identity ................................................ 215	

Chapter Five:  Discussion and Conclusion ..................................................................... 217	
Discussion .................................................................................................................. 217	
Limitations ................................................................................................................. 224	
Future Work ............................................................................................................... 226	
Conclusion .................................................................................................................. 228	

Appendix A ..................................................................................................................... 230	
Appendix B ..................................................................................................................... 232	
Appendix C ..................................................................................................................... 236	
Appendix D ..................................................................................................................... 237	
Appendix E ..................................................................................................................... 246	
Appendix F ...................................................................................................................... 253	
Appendix G ..................................................................................................................... 255	
Appendix H ..................................................................................................................... 256	
Appendix I ...................................................................................................................... 257	
Appendix J ...................................................................................................................... 258	
Appendix K ..................................................................................................................... 262	



viii 
 

References ....................................................................................................................... 265	
 



ix 
 

List of Tables 

Table Page 
Table 1. Device Ownership (have or have access to) amongs Tweens and Teens.............6 
Table 2. Percentage of Underreprented Populations in Computer Science (CS) and  
              Computer Engineering (CE) in Academia…………………….……..……..…..12 
Table 3. PACT’s Definition of Computational Thinking Skills……………………...….38 
Table 4. MIT’s Scratch Team Definition of Computational Thinking Skills…...…….…42 
Table 5. Overlay of PACT and Scratch Computational Thinking Skills…...……………43 
Table 6. The Distribution of Participants for this Dissertation Study……….…………...68 
Table 7. Description Scratch Booklet Unit Lessons..........................................................74 
Table 8. The total number of pages dedicated to each of the six CT skills in the Scratch                  
              Booklet…………………………………..……………………………………...76 
Table 9. The Matrix of Pre- and Post-Intervention Data Collection Instruments………..80 
Table 10. Descriptive Statistics of the Population in this study………..…………...….103 
Table 11. Self-Reported Characteristics of the Population in this study…….……..…..104 
Table 12. CT & Programming Skills Categories on Scratch Content Knowledge     
                Questionnaire…...............................................................................................141 
Table 13. Learning Group Scratch Content Knowledge Post-Test Mean Scores……...144 
Table 14. Pre- and Post-Test Scores for Computational Thinking and  
                Programming Content Knowledge…………………………………………..146 
Table 15. Learning Group Scratch: Sequences Content Knowledge Post-Test Mean   
                Scores…...……………………………………………………………............150 
Table 16. Pre- and Post-Test Scores Programming Content Knowledge of Sequences..151 
Table 17. Learning Group Scratch: Events Content Knowledge Post-Test Mean   
                Scores………………………………………………………………………...155 
Table 18. Pre- and Post-Test Scores Programming Content Knowledge of Scratch:  
                Events…………………………………………………………………..…….157 
Table 19. Learning Group Scratch: Loops Content Knowledge Post-Test Mean  
                Scores……………………………………………………………………..….160 
Table 20. Pre- and Post-Test Scores Programming Content Knowledge of Scratch:  
                Loops……………………………………………………………………........162 
Table 21. Learning Group Scratch: Conditionals Content Knowledge Post-Test Mean  
                Scores…………………………………………………………………..….....165 
Table 22. Pre- and Post-Test Scores Programming Content Knowledge of Scratch:  
                Conditionals…………………………………………………………….…....167 
Table 23. Learning Group Scratch: Operators Content Knowledge Post-Test Mean  
                Scores…………….......................................................................................... 170 



x 
  

Table 24. Pre- and Post-Test Scores Programming Content Knowledge of Scratch:  
                Operators……………………………………………………………….……172 
Table 25. Learning Group Scratch: Working with Data Post-Test Mean Scores….......175 
Table 26. Pre- and Post-Test Scores Programming Content Knowledge of  
                Scratch: Working with Data…………………………………...…………….176 
Table 27. Means and Standard Deviations for Learning Context Preferences………...183 
Table 28. Cronbach’s Alpha Reliability for LCQ-m (BEFORE and AFTER  
                Camp)……………………………………………………………………......184 
Table 29. Pre- and Post-Test Cooperative Learning Context Preference Scores…....…186  
Table 30. Pre- and Post-Test Individualistic Learning Context Preference Scores……188 
Table 31. Cronbach’s Alpha Reliability for BAI & BMP (BEFORE and AFTER  
                Camp)…………..…… ……………………………………………………...192 
Table 32. All BAI & BMP Means and Standard Deviations BEFORE and AFTER  
                Scratch Camp..................................................................................................192 
Table 33. Pre- and Post-Test Means Scores for Black Academic Identity (BAI)….......196 
Table 34. Specific Means and Standard Deviations for the Components of  
                Black Academic Identity…………...……………………………...…………202 
Table 35. Pre- and Post-Test Means Scores for Black Model Phenomenon (BMP)...…203 
Table 36. Specific Means and Standard Deviations for the Components of  
                Black Model Phenomenon…..…………………………….…………………210 



xi 
 

List of Figures 

Figure Page 
Figure 1. Theoretical Framework for this dissertation study............................................22 
Figure 2. Screenshot of Scratch homepage.....................................………………..........38 
Figure 3. Screenshot of Program Text and Scratch Puzzle Pieces (blocks) created to  
                perform the exact same action...........................................................................40 
Figure 4. Histogram of frequency of block types used Monroy-Hernández (2012).........43 
Figure 5. A series of Communal Learning group pairs working through the Scratch  
                Booklet …………………………………………………………………..…....71 
Figure 6.  A series of Individual Learning group participants working through the  
                 Scratch Booklet…………...……………………..……………………………72 
Figure 7. Middle School participants in the Communal Learning Group off-task….....108 
Figure 8. Elementary school boy using embodied cognition to help respond  
                to a post-test question……………..………………………………………....110 
Figure 9. A screenshot of a Communal Learning group pair celebration……...…........112 
Figure 10. Elementary school Communal Learning Boy & Girl Pair taking turns  
                  controlling the computer from one day to the next……….....………….......116 
Figure 11.  A Series of 7 notebook entries about Initialization and Scratch Stage size..119 
Figure 12.  Screenshot of Scratch project ‘cat-meets-dog’ (sprite motion instruction)..124 
Figure 13.  Screenshot of Scratch project ‘get-bone2’ (communication, movement,    
                   sensing).........................................................................................................125 
Figure 14.  Screenshot of ‘BowRace’ a unique Remix of Scratch Booklet project........127 
Figure 15.  A series of 6 Scratch projects with minimal sprites and program blocks.....128 
Figure 16. Example of a complex Scratch project called ‘relay race 1.’……………....132 
Figure 17. Example of a complex Scratch project called ‘shark meets ghost fish.’...….132 
Figure 18. Participant drawing a Super Mario character for his Scratch project..…......134 
Figure 19a. Scratch Content Knowledge Post-Test Mean Scores by Learning Group...144 
Figure 19b. Scratch Content Knowledge – Change in Mean Scores by Learning     
                    Group……………………………………………………………………...145 
Figure 20a. Scratch Content Knowledge Change in Mean Scores by Pair Type............147 
Figure 20b. Scratch Content Knowledge Change in Mean Scores by Pair Type............148 
Figure 20c. Scratch Content Knowledge Change in Mean Scores for  
                    Individual Group by Gender…………..……………………………..........149 
Figure 21a. Scratch: Sequences Content Knowledge Post-Test Mean Scores  
                    by Learning Group…………………………………………………...…....150 
Figure 21b. Scratch: Sequences Content Knowledge Change in Mean Scores  
                    by Learning Group.......................................................................................151 



xii 
 

Figure 22a. Scratch: Sequences Content Knowledge Post-Test Mean Scores  
                    by Pair Type……………………………………………………………….152 
Figure 22b. Scratch: Sequences Content Knowledge Change in Mean Scores  
                    by Pair Type……………………………………………………………….153 
Figure 22c. Scratch: Sequences Content Knowledge Change in Mean Scores for  
                    Individual Group by Gender……………………………………………....154 
Figure 23a. Scratch: Events Content Knowledge Post-Test Mean Scores  
                    by Learning Group.......................................................................................155 
Figure 23b. Scratch: Events Content Knowledge Change in Mean Scores  
                    by Learning Group.......................................................................................156 
Figure 24a. Scratch: Events Content Knowledge Post-Test Mean Scores  
                    by Pair Type.................................................................................................158 
Figure 24b. Scratch: Events Content Knowledge Change in Mean Scores  
                    by Pair Type.................................................................................................158 
Figure 24c. Scratch: Events Content Knowledge Change in Mean Scores  
                    for the Individual Learning Group by Gender……………...………….….159 
Figure 25a. Scratch: Loops Content Knowledge Post-Test Mean Scores  
                    by Learning Group.......................................................................................161 
Figure 25b. Scratch: Loops Content Knowledge Change in Mean Scores  
                    by Learning Group.......................................................................................161 
Figure 26a. Scratch: Loops Content Knowledge Post-Test Mean Scores  
                    by Pair-Type………………………………………………………….........163 
Figure 26b. Scratch: Loops Content Knowledge Change in Mean Scores  
                    by Pair-Type.................................................................................................164 
Figure 26c. Scratch: Loops Content Knowledge Change in Mean for the  
                    Individual Learning Group by Gender……………………………….........164 
Figure 27a. Scratch: Conditionals Content Knowledge Post-Test Mean Scores  
                    by Learning Group.......................................................................................166 
Figure 27b. Scratch: Conditionals Content Knowledge Change in Mean Scores  
                    by Learning Group…………………………………………………….......166 
Figure 28a. Scratch: Conditionals Content Knowledge Post-Test Mean Scores  
                    by Pair-Type………………………………………………………...……..168 
Figure 28b. Scratch: Conditionals Content Knowledge Change in Mean Scores  
                    by Pair-Type……….....................................................................................169 
Figure 28c. Scratch: Conditionals Content Knowledge Change in Mean Scores  
                    of the Individual Learning Group by Gender………………..…………….169 
Figure 29a. Scratch: Operators Content Knowledge Post-Test Mean Scores  
                    by Learning Group.......................................................................................171 
Figure 29b. Scratch: Operators Content Knowledge Change in Mean Scores  
                    by Learning Group.......................................................................................171 
Figure 30a. Scratch: Operators Content Knowledge Post-Test Mean Scores  
                    by Pair-Type.................................................................................................173 
Figure 30b. Scratch: Operators Content Knowledge Change in Mean Scores  
                    by Pair-Type.................................................................................................173 



xiii 
 

Figure 30c. Scratch: Operators Content Knowledge Change in Mean Scores  
                    by Pair-Type of Individual Learning Group by Gender..............................174 
Figure 31a. Scratch: Working with Data Content Knowledge Post-Test Mean Scores  
                    by Learning Group…………………………………..…………………….175 
Figure 31b. Scratch: Working with Data Content Knowledge Change in Mean Scores  
                    by Learning Group………………………………………………………...176 
Figure 32a. Scratch: Working with Data Content Knowledge Post-Test Mean Scores  
                    by Pair-Type………………..………………………….......………………178 
Figure 32b. Scratch: Working with Data Content Knowledge Change in Mean Scores  
                    by Pair-Type……………………………………………………………….178 
Figure 32c. Scratch: Working with Data Content Knowledge Change in Mean Scores            
                    of Individual Learning Group by Gender…………………………………179 
Figure 33.  Graph of BAI Pre- & Post-Test Mean Scores for both Learning Groups….194 
Figure 34.  Graph of BMP Pre- & Post-Test Mean Scores for both Learning Groups...195 
Figure 35.  Graph of BAI Pre- & Post-Test Mean Scores by Pair-Type.........................200 
Figure 36.  Graph of BAI Pre- & Post-Test Mean Scores for the  
                   Individual Learning group by Gender...........................................................201 
Figure 37.  Graph of BMP Pre- & Post-Test Mean Scores by Pair-Type……………...208 
Figure 38.  Graph of BAI Pre- & Post-Test Mean Scores for the Individual Learning          
                   group by Gender…………………………………………………………..208 
 



xiv 
 

List of Abbreviations 

Advanced Placement ........................................................................................................ AP 
Association for Computing Machinery ........................................................................ ACM 
Black Academic Identity……………………………………………………………….BAI 
Black Model Phenomenon……………………………………………………………BMP 
Broadening Participation in Computing ........................................................................ BPC 
Communal Learning .................................................................................................. …..CL 
Computer Engineering…………………………………………………………………..CE 
Computer Science ……………………………………………………………………....CS 
Computer Science Education ……………………………………………………...…CSEd 
Computer Science for High Schools ......................................................................... CS4HS 
Computer Science Principles…………………………………………………………..CSP 
Computer Science Teachers Association .................................................................... CSTA 
Computational Thinking .................................................................................................. CT 
Culturally-Relevant Pedagogy ....................................................................................... CRP 
Culturally-Responsive Teaching .................................................................................... CRT 
Culturally-Relevant Computing .................................................................................... CRC 
Critical Incident Technique…………...………………………………………………..CIT 
Entertainment Software Association…………………………………………………..ESA 
Individualistic Learning…...……………………………………………………………..IL 
National Science Foundation ......................................................................................... NSF 
Principled Assessment of Computation Thinking…………………………………...PACT 
Science, Technology, Engineering, Mathematics ....................................................... STEM 
 



xv 
 

Abstract 

COMMUNAL LEARNING VERSUS INDIVIDUAL LEARNING: AN 
EXPLORATORY CONVERGENT PARALLEL MIXED-METHOD STUDY TO 
DESCRIBE HOW YOUNG AFRICAN AMERICAN NOVICE PROGRAMMERS 
LEARN COMPUTATIONAL THINKING SKILLS IN AN INFORMAL LEARNING 
ENVIRONMENT 

Leshell April Denise Hatley, Ph.D. 

George Mason University, 2016 

Dissertation Director: Kevin Clark 

 

Today, most young people in the United States (U.S.) live technology-saturated 

lives.  Their educational, entertainment, and career options originate from and demand 

incredible technological innovations.  However, this extensive ownership of and access to 

technology does not indicate that today's youth know how technology works or how to 

control and use it to spawn innovation and create.   The Computer Science Education 

(CSEd) research community recently made recommendations to help get young students 

more engaged in computer science, have longer exposure to the field’s concepts and 

practices, and thus use this longevity to persist through higher education and into 

computer science careers.  However, low-income students and African American/Black 

students currently still have the least access to computer science learning opportunities 

when compared to that of all other student counterparts.  More recommendations are 
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needed for targeting, reaching, and teaching computer science to this and all 

underrepresented populations. As such, the dissertation study presented here suggests and 

explores enhancements for the CSEd research community and CS educators to improve 

the teaching and learning of computational thinking and computer programming concepts 

for young African American students.  These enhancements include: 1) using rigorous 

social science and education research methods, 2) focusing exclusively on 

underrepresented students (African American in this case), and 3) applying culturally 

relevant pedagogy.  

In doing so, a convergent parallel mixed method research design is used to 

observe, describe, and compare how young African American novice programmers learn 

and use computational thinking and programming skills in two learning environments: 1) 

using culturally relevant pedagogy where students are assigned to a communal learning 

group where they work in pairs, and 2) an individual learning group where they work 

individually.  Findings highlight participant performance outcomes, their strategies used 

while learning, as well as the resulting impact on their learning context preference and 

Black Academic Identity. 
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Chapter One: Introduction 

"Today, there is more processing power and storage in the simplest mobile phone than in 
an entire university's computational arsenal of the 1970s.  Children are immersed in a 
computational environment as users from a very early age and develop expectations of 

interaction which are often informed by interactive 3D games, among the most efficient, 
sophisticated, computationally complex, forms of interface yet developed.  Powerful, 
capable machines are everywhere in their lives and it is a point of political will that 

‘computational thinking’ should be acquired by every student, in a way analogous to 
the ‘3R's’ - reading, writing and arithmetic," (Wing, 2006). 

 
“African American children are the most likely consumers of digital technology but 

are rarely exposed to [learning] what it takes to create it.” – Leshell Hatley  
(Talbert, 2011) 

 
"To teach, one must know the nature of those whom one is teaching."  

(Egyptian Proverb) 
 

Today, most young people in the United States (U.S.) live technology-saturated 

lives.  Their educational, entertainment, and career options originate from and demand 

incredible technological innovations.  In April 2015, the Pew Research Center reported 

that 88% of U.S. teens (ages 13-17) personally have or have access to cell-phones, while 

73% owned smartphones (Lenhart, 2015).  This report also shared that 87% of teens have 

access to desktop/laptop computers, 81% have access to gaming consoles, and 58% have 

tablets (Lenhart, 2015).  Regarding the usage of these mobile devices and consoles, 

Lenhart (2015) reports that 92% of the teens go online daily, with 56% going online 

several times a day; 72% play video games; 42% use video calling or chats; 52% use 

Instagram; and 71% use Facebook.  Even more, it is predicted that the world in which 
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they will work and engage in as adults will be filled with a plethora of computing 

devices, all having enormous amounts of computing power (Modi, Schoenberg, & 

Salmond, 2012; National Science Board, 2014; PCAST, 2010; Rising Above the 

Gathering Storm, 2007; Wilson, Sudol, Stephenson, & Stehlik, 2010; Wing, 2006). 

However, this extensive ownership of and access to technology does not indicate that 

today's youth know how technology works or how to control and use it to spawn 

innovation and create (Vaidhyanathan, 2008).  In support of this, the National Academy 

of Sciences (2007) released a report generally warning “that Americans may not know 

enough about science, technology, or mathematics to contribute significantly to, or fully 

benefit from, the knowledge-based economy that is already taking shape around us," 

(“Rising Above the Gathering Storm,” 2007, p. 94).  Subsequently, a report released in 

2010, entitled “Running on Empty: The Failure to Teach K–12 Computer Science in the 

Digital Age,” particularly highlighted the low numbers of women and people of color 

participating in computer science along with the few K-12 schools that had standards for 

teaching computer science, especially at the secondary school level (Computer Science 

Teachers Association, 2010).  This news came on the heels of the creation of the 

Broadening Participation in Computing program by the National Science Foundation, 

between 2006 and 2009, to specifically increase engagement and retention of 

underrepresented populations (i.e. African-Americans, Latino-Americans, Native 

Americans, and Women) in computing disciplines across the country (NSF Broadening 

Participation Working Group, 2014).  However, not much has changed since its 

formation.  More explicitly, African-Americans, Latino-Americans, and Native 
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Americans are underrepresented in computer science across the United States (U.S.) 

within all levels of education and the workforce (Corney et al., 2010; Crutchfield et al., 

2011; Freeman et al., 2014; Goode, 2010; Kolikant, 2012; Patil & Patil, 2002; Peckham 

et al., 2007; Scott et al., 2010; Google, 2015; Webb, Repenning, & Koh, 2012).  

Respresentatives of the U.S. government believe that [its citizens] not knowing how 

computers work, and more importantly, not having the technological skills needed to 

create using computing concepts and devices, threatens the future of innovation and 

problem-solving in the United States (PCAST, 2010; “Rising Above the Gathering 

Storm,” 2007).   Interest in finding a solution to these deficits, and thereby eliminating 

this threat, has caused educators, researchers, policy-makers, and government agencies to 

eagerly seek to learn, implement, and scale new and effective methods for teaching and 

learning these and other computing skills (e.g. computer programming) in hopes of 

revitalizing our economy and our global competitiveness (Weinberg, 2013; White House 

Office of Science and Technology Policy, 2014). 

In 2011, the Computer Science Education (CSEd) research community responded 

to the 2007 K-12 school evaluation portion of the Running on Empty report, 

recommending a new idea:  that elementary and middle school students be introduced to 

computer science concepts (Barr & Stephenson, 2011; Fessakis, Gouli, Mavroudi, 2013; 

Franklin, Conrad, Aldana, & Hough, 2011; Franklin et al., 2013; Seiter & Forman, 2013).  

The hope was that young students will specifically become more engaged, have longer 

exposure to the field’s concepts and practices, and use this longevity to persist through 

higher education and into computer science careers. Consequently, many CSEd 
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researchers and K-12 education practitioners followed this advice.  As a result, the 

number of programs and approaches designed to teach computer science concepts to 

young people has continuously grown since 2011.   In the midst of this growth, however, 

low-income students and African American/Black students currently still have the least 

access to computer science learning opportunities when compared to that of all other 

student counterparts (Google & Gallup, 2015).  More recommendations are needed for 

targeting, reaching, and teaching computer science to this and all underrepresented 

populations.  As such, the research study presented here suggests and explores 

enhancements for the CSEd research community and CS educators to improve the 

teaching and learning of computational thinking and computer programming concepts for 

young African American students.  These enhancements include: 1) using rigorous social 

science and education research methods, 2) focusing exclusively on underrepresented 

students (African American in this case), and 3) applying culturally relevant pedagogy.  

Background  

 The generation of youth born between 1980 and 1994 are described as ‘digital 

natives’ (Prensky, 2001), the ‘net generation, (Tapscott, 1999), and the millennials 

(Strauss & Howe, 2000) because they were born and have been surrounded by all forms 

of technology their entire lives – computers, video games, digital music players, video 

cameras, cell phones, technology-based toys, and more.  This section shares more details 

about this generation, what they may and may not know about computing, along with 

what they do and do not do with technology. Statistics reflecting the lack of formal 

participation in computer science in academia and in the workplace are then provided and 
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efforts put forth by the U.S. to increase participation of underrepresented populations in 

Computer Science are described.  This section ends with an introduction to the computing 

concepts that, once learned, can potentially increase the number of young people 

successfully studying computer science. 

 
The Technology-Saturated Lives of Tweens and Teens in the U.S. 

Focused on tweens (ages 8-12) as well as teens (ages 13-17) of all races and 

ethnicities, the 2015 Common Sense Media Census reported that 67% of tweens and 

teens owned their own smartphones (Rideout, 2015).  This census also stated that 56% of 

tweens and 63% of teens personally have or have access to desktop or laptop computers 

in the home, that 80% of tweens and 73% of teens have or have access to tablet mobile 

devices, and that 79% of tweens and 84% of teens have or have access to smartphone 

mobile devices (Rideout, 2015). Furthermore, Rideout (2015) concludes that tween and 

teen media consumption is highly mobile.  The Pearson 2014 National Report on Student 

Mobile Device Survey for Grades 4-12 corroborates this data suggesting that 80% of all 

youth use mobile devices.  Table 1 below summarizes these ownership data.   

 

Table 1 

Device Ownership (have or have access to) amongs Tweens and Teens 

 

Population 
Source 

Common Sense 
Media (Tweens) 

Common Sense 
Media (Teens) 

Pew Research Center 
(Teens) 

Desktop/Laptop 56% 63% 87% 
Smartphone 79% 84% 73% 
Tablet 80% 73% 58% 
Gaming Console 81% 83% 81% 
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In the classroom.  Regarding classroom usage of mobile devices, The Pearson 

2014 National Report on Student Mobile Device Survey states that 66% of elementary 

school students, 58% of middle school students, and 43% of high school students 

reported regularly using a tablet mobile device in school (Poll, 2014).  Smartphone usage 

in schools reported by these same groups was 44%, 58%, and 75%, respectively (Poll, 

2014). Of all the students surveyed for this 2014 Pearson report, 90% believe that tablets 

will change the way students learn in the future, 89% believe that tablets make learning 

more fun, and 79% believe that tablets help students do better in class.  One-in-six 

students reported that their school provides them with dedicated computing devices for 

school work (Poll, 2014).  This 2014 Pearson Report also states that 43% of tweens and 

73% of teens report using computing devices for homework.  Even more, most students 

want to use mobile devices in the classroom more than they currently did when they were 

surveyed, especially elementary school students at 71%.  Overall, the data suggest that 

the personal usage of computing technologies described above extends well into the 

classroom.   

For entertainment. When it comes to entertainment and game play, the 

Entertainment Software Association (2015) posits that 4 out of 5 American households 

own a device used to play video games, while  51% of all American households own a 

dedicated game console.  The Common Sense Census (2015) reports that 81% of tweens 

and 83% of teens have or have access to game consoles in the home, and the Pew 

Research Center (2015) agrees, suggesting that 81% of teens have or have access to 

dedicated game consoles in the home.  The Pew Research Center (Lenhart, 2015) also 
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reports that 72% percent of American teens play video games.  Additionally, digital 

games are used by 74% of K-8 teachers in the classroom, while 56% of parents say video 

games positively affect their children.  

Tweens’ and teens’ access to and ownership of various technologies and 

computing devices is inescapably pervasive, with relatively low variance between White, 

Black, and Latino youth or household income levels (Lenhart, 2015).  With these levels 

of access, assumptions and predictions suggest that the relationship between today’s 

youth and technology is somehow enhanced when they communicate, learn, and create 

(Helsper & Eynon, 2010; Strauss & Howe, 2000).  This is not always be the case 

however, as the next section describes. 

Ownership of Technology and the Use of Technology to Create, Direly Unmatched 

 Amid this high ownership of and access to technology, young people’s knowledge 

of exactly how computing technologies work and their ability to effectively use them to 

create, solve problems, and innovate, are direly unmatched.  Vaidhyanathan (2008) 

provides a more specific description of this phenomenon by stating, "Every class has a 

handful of people with amazing skills and a large number who can't deal with computers 

at all. A few lack mobile phones. And almost none know how to program or even code 

text with Hypertext Markup Language (HTML). Only a handful come to college with a 

sense of …the Internet “Para. 5).  Even though 95% of teens use the internet (Rainie, 

2014) and more than half of teens (56%) go online several times a day (Lenhart, 2015), 

the majority of this time online is passive and based on interactive consumption, where 

tweens and teens alike are merely watching television shows, watching music videos, 
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using social media, and/or playing games (Common Sense Census, 2015; Lenhart, 2015; 

Poll, 2014; Rainie, 2014).  The 2015 Pew Report supports this observation affirming that 

tweens and teens only spend 3% of their time using technology to create.  This lack of 

computing knowledge and the seemingly resulting low amount of time spent using 

technology to create and/or innovate significantly reflects the country’s staggeringly low 

participation of U.S. citizens formally studying computer science (College Entrance 

Examination Board, 2015; Broadening Participation Working Group, 2014).   

Low Participation in Computer Science  

 The U.S. has extremely low numbers of students formally studying computer 

science disciplines by citizens of all races and at every level of education.  For example, 

on the high school level, the College Entrance Examination Board (2015) reports that 

48,994 students took the Advanced Placement (AP) Computer Science exam.   Although 

increasing by ~25% when compared to the number of students who took the AP 

Computer Science exam in 2014, this number is considerably low number when 

compared to the vast amounts of students taking AP exams in other topics.  For instance, 

469,689 students took the AP US History exam, 305,532 students took the AP Calculus 

AB exams, and 527,274 students took the AP English Literature and Composition exam 

(College Entrance Examination Board, 2015).  These numbers are significantly larger 

than the total number of high school students taking the AP computer science exam.  

Additionally, in higher education, fewer students than ever are studying computer science 

despite the demand and projected growth of CS careers between 2008 and 2018 (Bureau 

of Labor Statistics, 2010;  Corney et al., 2010; Fletcher & Lu, 2009; Piteira & Costa, 
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2012).  Across the nation, there is an extremely low amount of participation in computer 

science careers as well, with the exception of white men (National Center for Science and 

Engineering Statistics, 2015).   

Low Participation of Underrepresented Groups in Computer Science 

There are extremely low rates of participation by underrepresented groups (e.g. 

African American, Latino American, and Native American) in Computer Science.  

According to the 2014 Taulbee Report (Computing Research Association, 2015), the 

principal source of information on the enrollment, production, and employment of those 

in Computer Science and Computer Engineering, 1.1% of Ph.Ds. in Computer Science 

and 1.5% of Ph.Ds. in Computer Engineering were awarded to African-

Americans/Blacks, while 0.9% of Ph.Ds. in Computer Science and 1.5% of Ph.Ds. in 

Computer Engineering were awarded to Latino-Americans, and 0.1% Ph.Ds. in Computer 

Science and 0% Ph.Ds. in Computer Engineering were awarded to Native Americans 

(Computing Research Association, 2015).  These statistics are additionally low at the 

Masters level, where 1.2% of the Masters degrees in Computer Science and 1.1% of the 

Masters degrees in Computer Engineering were awarded to African-Americans/Blacks, 

1.8% of Masters degrees in Computer Science and 3.1% of Masters degrees in Computer 

Engineering were awarded to Latino- Americans, and 0.1% of Masters degrees in 

Computer Science and 0.2% of Masters degrees in Computer Engineering were awarded 

to Native Americans (Computing Research Association, 2015).  The statistics regarding 

the number of Bachelor degrees in Computer Science and Computer Engineering are the 

same, with 3.2% and 3.3% being awarded to African-Americans/Blacks, 6.8% and 8.4% 
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to Latino-Americans, and 0.4% and 1.0% to Native Americans respectively (Computing 

Research Association, 2015).  Furthermore, of the small number of total students who are 

majoring in Computer Science and Computer Engineering combined, 5.6% are African-

American/Black, 9.6% are Latino-American, and 0.4% are Native-American (Computing 

Research Association, 2015).  Across the nation in 2010, only 2%-3% of Black, 

Caucasian, and Latino freshmen combined indicated an intention to major in computer 

science while in college (National Science Board, 2014).  In high schools across the 

country, the statistics of those taking the AP Computer Science exam by gender are 

81.4% male and 18.6% female.  In 2013, 0.89% of the number of female high school 

students who took the Advanced Placement (AP) Computer science exam was African-

American.   Even more, looking at the 2013 AP Computer Science exam by race and 

ethnicity alone, 46.39% were Caucasian-American/White (non-Hispanic); 3.68% were 

African-American/Black, 8.14% were Latino-American, and 0.43% was American Indian 

(Exploring Computer Science, 2014).   These statistics are displayed again in Table 2 

below.  Upon comparative review, there is an enormous mismatch between the statistics 

of technology ownership and access (Table 1 above) and those of academic pursuits in 

Computer Science and Computer Engineering (Table 2 below), especially as it relates to 

race and ethnicity. 
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Table 2 

 
Percentage of Underreprented Populations in Computer Science (CS) and Computer 
Engineering (CE) in Academia 

Population 
AP 

Exam 
College 
Majors 

Earned 
Bachelors 

Earned 
Masters 

Earned 
Ph.D. 

CS CS & CE CS CE CS CE CS CE 
African-
Americans/Blacks 3.68% 5.6% 3.2% 3.3% 1.2% 1.1% 1.1% 1.5% 
Latino-Americans 8.14% 9.6% 6.8% 8.4% 1.8% 3.1% 0.9% 1.5% 
Native-Americans 0.43% 0.4% 0.4% 1.0% 0.1% 0.2% 0.1% 0.0% 

 

 

These low participation statistics also reach beyond the classroom.  The statistics 

released by the National Science Foundation early in 2015 show that the Computer 

Science Workforce consists of approximately 65% Caucasian American/White (non-

Hispanic), nearly 6% African American/Black, 5% Latino American, and 0.2% American 

Indian workers (NSF, 2015).  The 2013 of the U.S. Census Bureau reported similar 

statistics in its Disparities in STEM Employment by Sex, Race, and Hispanic Origin 

report (2013). 

Recognizing these statistics forced the country into action towards attracting and 

retaining more citizens in computer science careers.   Subsequently, a subset of the 

country’s educators, policy makers, and CSEd researchers seek to find effective teaching 

and learning approaches to broaden the participation of African American, Latino 

American, and American Indian K-12th grade students in computer science, also known 

as Broadening Participating in Computing (BPC) (Cooper, Grover, Guzdial, & Simon, 
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2014);  Doerschuk, Liu, & Mann, 2011;  Fletcher & Lu, 2009; Grover, Cooper, & Pea, 

2014; Grover & Pea, 2013; NSF Broadening Participation Working Group, 2014; Webb 

et al., 2012; White House Office of Science and Technology Policy, 2014; Wilson, Solo, 

Stephenson, & Stehlik, 2010; Wing, 2006).   

In response, the private sector allocated $240 Million to the overall U.S. 2015 

fiscal year science, technology, engineering, and mathematics (STEM) education budget, 

specifically targeting the educational and entertainment sectors of children from 

underrepresented groups (Wasserman, 2015).  One notion supporting this funding, 

reminiscent of the recommendation put forth by CSEd research community mentioned 

above, is that if more diverse and underrepresented students are introduced to computer 

science and can effectively think computationally at an early age, then they would be 

more interested in majoring in computer science upon graduating from high school, be 

more successful in their introductory classes at the bachelor level once enrolled, and be 

interested in pursuing higher education degrees and/or advanced careers in computer 

science (Gilbert, 2006; National Science Foundation, 2013; NSF Broadening 

Participation Working Group, 2014; Rankin, Thomas, Brown, & Hatley, 2013; 

Repenning & Ioannidou, 2008; Seiter & Foreman, 2013).   

Increasing Participation in Computer Science 

 The country's explicit efforts to increase participation in computer science fields 

overall began a little less than a decade ago, following two official simultaneous streams 

of evaluation.  One evaluation was the result of a U.S. government funded examination of 

its competitiveness in the global marketplace, and the second evaluation came from 
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members within the computing and computer science education community after it began 

evaluating the impact and use of computing technology by society (Cooper et al., 2014). 

The next section describes these simultaneous evaluations, which identified the need to 

increase participation in computer science, and why the U.S. government partnered with 

the CSEd community in hopes of finding strategic solutions to do so.    

Evaluation from the U.S. Federal Government.  In 2007, the National Science 

Foundation (NSF) examined the erosion of the U.S. advantages in the fields of science 

and technology in its "Rising Above the Gathering Storm: Energizing and Employing 

America for a Brighter Economic Future" report (2007).  This report urgently called for a 

federally coordinated effort to dramatically enhance the country's competitiveness.   

Since this initial observation, funding and additional evaluation efforts in all branches of 

the federal government have been dedicated to bolster competitiveness in science, 

technology, engineering, and mathematics (STEM) fields overall (Federal Inventory of 

STEM Education, Fast-Track Action Committee, Committee on STEM Education, & 

National Science and Technology Council, 2011; PCAST, 2010).  Typically, this equates 

to more and more funding for educational programs each year.   In fact, in the fiscal year 

2015 budget, the United States federal government allocated $2.9 Billion to STEM 

education efforts to prepare the country's youth for careers in the 21st Century (White 

House White House Office of Science and Technology Policy, 2014).  As such, many 

federal agencies partnered with the CSEd research community in search for effective 

strategies to increase participation in computer science fields.   
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Evaluation from the CSEd research community.   The Computer Science 

Education (CSEd) research community is a collective body of interdisciplinary 

researchers, mostly from CS & CE departments on college and university campuses and 

professional organizations, K-12 teachers, and professionals from technology companies 

of all sizes and types (Denning, 2007; Grover & Pea, 2013; Guzdial, 2008; Joy, Sinclair, 

Sun, Sitthiworachart, & López-González, 2009.  It has been in existence since the late 

1960s and is particularly concerned with curriculum issues; practical and at times 

theoretical pedagogy; systems and technologies used for instruction delivery, which is the 

most common focus; and sometimes social and psychological factors (Barr & 

Stephenson, 2011; Joy, Sinclair, Sun, Sitthiworachart, & López-González, 2008; Robins, 

2015).  

In 2011, the CSEd research community realized it was no longer sufficient to wait 

until students entered college to introduce them to in depth computational thinking and 

programming skills.  As such, several federal, regional, and local policies were suggested 

(Barr & Stephenson, 2011).  These policies included:  1) presenting a single message at 

all levels regarding the importance of computational thinking in K-12 education; 2) 

encouraging computer science professionals and teachers to create and advocate for K-12 

standards; 3) incorporate computational thinking skills throughout the entire K-12 

experience; 4) attach computational thinking to existing policies; 5) include 

computational thinking in all teacher pre-service preparation programs; 6) encourage 

school administrators to incentivize the adoption of these  curricular and pedagogical 

changes; and 7) provide teachers with resources to support an increase in computer 
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science instruction, such as materials, activities, websites, and professional development 

(Barr & Stephenson, 2011; Fessakis, Gouli, Mavroudi, 2013; Franklin, Conrad, Aldana, 

& Hough, 2011; Franklin et al., 2013; Seiter & Forman, 2013).   

These conclusions by U.S. government and the CSEd research community made 

it clear that concerted efforts were needed to increase participation, of all U.S. citizens, in 

computer science.  The U.S. government provided funding for programs and research to 

be done by those in the CSEd research community, and the CSEd research community 

made recommendations to educational institutions on all levels – K-12, undergraduate, 

and graduate (Grover & Pea, 2013; Joy, Sinclair, Sun, Sitthiworachart, & López-

González, 2008; Robins, 2015; Weinberg, 2013).  However, it is worth noting that the 

CSEd research community did not include improved policies and practices for itself in 

this 2011 evaluation.  

Problem Statement 

The statistics of low participation in computer science, both in academia and the 

workplace - particularly regarding those in underrepresented populations - represent and 

present major challenges regarding the future of American youth, their ability to 

innovate, and ultimately of the country’s economy and global competitiveness.  Effective 

strategies to combat these challenges are in order.  Attempting to find solutions should be 

one of the primary concerns of the CSEd research community, as they are the most likely 

qualified community to do so.   

Nonetheless, considering the current difficulties within the CSEd research 

community, finding a solution may not come easy (Grover & Pea, 2013; Joy, Sinclair, 
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Sun, Sitthiworachart, & López-González, 2008; Robins, 2015; Weinberg, 2013).  As a 

field of study, CSEd research is comparatively young and difficult to do well because of 

several reasons: computer science topics are inherently challenging to learn and to teach 

(Robins, 2015),  computing technologies are ever evolving (Joy, Sinclair, Sun, 

Sitthiworachart, & López-González, 2008) and, as a result, the academic landscape 

intended to deliver instruction is constantly changing (Joy, Sinclair, Sun, Sitthiworachart, 

& López-González, 2008; Robins, 2015).  Furthermore, after decades of research on core 

topics in computer programming, the CSEd research community still does not have a 

consensus of why so many novice programmers fail to learn, what best approaches to 

take as a result, or even the most optimal curriculum order with which to teach (Robins, 

2015).  Additionally, members of the CSEd community primarily deem themselves to be 

computer scientists and practitioners and may have most likely found their way to CSEd 

by accident, as a result of bad learning experiences (Robins, 2015).  In fact, many CSEd 

researchers are not familiar with the landscape of instruction delivery or methods of 

education research (Grover & Pea, 2013; Joy, Sinclair, Sun, Sitthiworachart, & López-

González, 2008; Robins, 2015; Weinberg, 2013).  Furthermore, according to a report by 

the National Research Council (NRC, 2011c, p.4), there is a scarcity of research 

informing how to teach computational thinking in the early grades and computer science 

is often taught without consideration for age-appropriate learning.  Taken together, these 

phenomenon are of particular interest to the study presented here.   
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More specifically, this study addresses the following three CSEd research 

problems described in the research literature: 

1) the lack of studies using rigorous social science and education research 

methods (Grover & Pea, 2013; Joy, Sinclair, Sun, Sitthiworachart, & López-

González, 2008; Mannila et al., 2014; Randolph et al., 2008; Robins, 2015; 

Sheard, Simon, Hamilton, & Lönnberg, 2009; Weinberg, 2013). 

2) the lack of CSEd research that explicitly identify and/or focus on 

underrepresented populations in computer science as study participants (Grover & 

Pea, 2013; King, 2005); along with  

3) the lack of using culture and culturally relevant pedagogy as a means to teach 

computational thinking (King, 2005; Scott, Sheridan, & Clark, 2014).   

Purpose of Research Study 

The purpose of this study results from combining the goals of the Broadening 

Participation in Computing (BPC) program - increasing and sustaining the number of 

underrepresented populations in computer science - with the recommendations made by 

the CSEd research community in 2011 to introduce computer science concepts to 

students early in elementary and middle school to the increase in their participation in 

computer science.  It has four parts.  The first purpose is to recommend three equally 

important research strategies to be used by the CSEd research community in an effort to 

directly counter the three problematic challenges described in the previous section: 
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1) to rigorously make use of the educational and social science research methods 

and statistics that are necessary and ideal for dealing with education research, comprised 

of real students in real classrooms;  

2) to use these rigorous research methods in the deliberate design of empirical 

studies to understand, share, and contribute to how students in underrepresented groups 

(e.g. African American, Latino American, and Native American) learn, apply, and retain 

computing topics, and  

3) to intentionally explore and apply culturally relevant pedagogy as a means for 

underrepresented groups to successfully learn computer science content. 

The second purpose is to explore a specific implementation of these three 

recommendations within one study.  As such, this study uses a mixed-methods education 

research approach to empirically study 42 young African American/Black elementary and 

middle students learning computational thinking and programming skills using culturally 

relevant pedagogy.  The culturally relevant pedagogy used here is that of communalism.  

As a result, the third purpose is to extend the trajectory of educational research regarding 

communalism and communal learning to the teaching and learning of computational 

thinking and programming skills.  Finally, the fourth purpose of this study is to explore 

the impact learning such skills has on the participants’ Black Academic Identity (BAI).   

As a result, Social Development Theory (Vygotsky, 1980), Communalism 

(Boykin, Jagers, Ellison, & Albury, 1997), Pair Programming, and the theory of Black 

Academic Identity (Anderson & Freeman, 2010) frame this study and are all described in 

the next section.  
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Theoretical Framework 

Vygotsky's Social Development Theory (1980) describes learning as a social 

process based on three major themes: 1) social interaction – connections people make 

during shared experiences, 2) the more knowledgeable one (MKO) – the one interacting 

with the learner who knows and understands more, and 3) the zone of proximal 

development (ZPD) – the area between when a learner can solve a problem with the 

guidance of a teacher or assistant and when the learner can solve a problem his/her own. 

Vygotsky believed this is where learning occurs. Overall, Vygotsky believed that social 

interactions play a fundamental role in the development of cognition.   

 "Every function in the child's cultural development appears twice: first, on the 

social level, and later, on the individual level; first, between people (interpsychological) 

and then inside the child (intrapsychological). This applies equally to voluntary attention, 

to logical memory, and to the formation of concepts. All the higher functions originate as 

actual relationships between individuals" (Vygotsky, 1980).  

During the same time period, Vygotsky’s Social Development Theory is mirrored by the 

description of Communalism, one of the nine elements of the Black Cultural Ethos 

(cultural characteristics), that Boykin (1977) posits as a distinctive cultural phenomenon 

that contributes to and enhances the academic performance of African American students.   
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These nine elements, including Communalism, are briefly described below:  

• Spirituality – intuition, supreme force  

• Harmony – versatility and wholeness  
• Movement – rhythm of everyday life  
• Verve – intense stimulation, action, colorfulness  
• Affect – premium on feelings, expression  
• Communalism – social orientation, group duty, sharing, identity***  
• Expressive individualism – distinct, genuine, personal  
• Orality – oral and aural modes of communication  
• Social time perspective – time is marked by human interaction  

More explicitly, Communalism has four dimensions (Boykin, 1986; Hurley, Boykin, 

& Allen, 2005):  

1. Social Orientation - where the individual is oriented toward social relations and 
holds each social interaction as a valuable experience;  

2. Group duty - where the person believes that the needs of the group supersede the 
needs of the individual;  

3. Sharing - where exchange and mutual support are understood to be intrinsically 
rewarding in that they signify that participants contributed to the group; and  

4. Identity - where the individual has a sense of belonging and selfhood based on 
group membership.  

Communalism places a premium on the culture of the participants and places them within 

a learning context that aligns with their cultural inclinations.  As such, this study follows 

a line of previous research investigating the impact that communalism has on African 

American student performance in the classroom and that has categorized these learning 

spaces as Communal Learning environments (Albury, 1991; Boykin, Coleman, Lilja, & 

Tyler, 2004; Coleman, 1996; Coleman, 2001; Dill & Boykin, 2000; Hurley, 1999).   
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In these studies, Communal Learning is compared to Individual Learning, where 

students work individually.  With respect to learning computational thinking and 

programming skills in this study, communal learning was implemented using the concept 

of pair programming, where groups of two students were a pair of participants.  Pair 

programming, first used by Frank Brooks – author of the Mythical Man Month, while he 

was in graduate school between 1953-1956 (Brooks, 1975), is at the root of a 

collaborative software development approach called 'extreme programming,' intended to 

improve quality and responsiveness to customer needs.  Pair programming requires that 

teams of two programmers work simultaneously at the same computer on the same 

design, algorithm, code/program, or test (McDowell, Werner, Bullock, & Fernald, 2002; 

Nosek, 1998; Werner, Denner, & Campe, 2012; Williams, & Kessler, 2000).   

Finally, recognizing that identity plays a role in the academic achievement of 

African American students (Oyserman, Harrison, & Bybee, 2001), the Theory of Black 

Academic Identity is also used here.  This theory suggests that for some African 

American students, achievement is racialized, thereby combining academic identity with 

racial identity (Anderson & Freeman, 2010). Thus, African American students mix the 

meaning of race in their lives with the importance of performing well academically at 

varying degrees.  Those with a high Black Academic Identity score do so more than those 

with a low Black Academic Identity score.  

The objective of the study is to determine to what extent does using a communal 

learning environment enhance the computational thinking and programming skills of 

young African American novice programmers. In so doing, this study also examines the 
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extent to which Black Academic Identity expresses itself. This theoretical framework is 

illustrated in Figure 1 below. 

 

 

Figure 1. Theoretical Framework for this dissertation study. 

 

Goals of the Study 

 The goals of this dissertation study were to capture and describe the learning 

processes of young African American novice programmers as they learn computational 

thinking skills using the Scratch programming platform.  For a camp lasting 5 week days, 

3 hours per day, study participants were placed in one of two learning contexts: 1) a 

Communal Learning group, where they were paired with a peer, and 2) an Individual 

Learning group, where participants worked independently of one another.  This study 

captured the learning experience each week and allowed for a description and comparison 
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of similarities and differences between grade-level and gender, within and across both 

learning groups.  Finally, this study explored the impact learning computational thinking 

and programming skills had on participants’ Black Academic Identity.   

 In the end, this study contributes to both the CSEd research and communal 

learning literature regarding the teaching and learning of computational thinking and 

programming skills for young Africa-American novice programmers. 

Significance of This Study 

This dissertation study is significant in many ways.  Primarily, using 

Communalism in this study values the cultural assets of participants and is a strength-

based approach that provides developmental and supportive mechanisms to promoting 

success. This is especially important because many learning environments have a deficit 

model approach, which assumes that cultural assets hinder success and therefore should 

be mitigated (Boykin, 1986). It supports the notions that "traditional classroom lecture 

methods are not preparing our youth for the challenges of the coming global change; [and 

that] we need to teach differently" (Johnson, Peters-Burton, & Moore, 2015). Secondly, 

the research on computational thinking and programming rarely includes or explicitly 

describes a population where 100% of the students are African-American.  All 

participants of this study will be African-American. 

 Moreover, this study provides an instance of a rigorous mixed-method education 

research study to the computing education literature, an occurrence many researchers 

found does not happen very often.  Ultimately, this dissertation study provides insight 

into the ways in which African American students learn computational thinking and 
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programming skills and should help bring the computing education community closer to 

understanding how to broaden participation in computing and computer science. 

Research Questions 

The research questions driving this study are: 

RQ1.  During a summer camp lasting five week days, three hours per day, how do 

young African American elementary and middle school novice programmers in a 

Communal Learning (CL) context learn and use computational thinking concepts 

and programming skills compared to those in an Individual learning (IL) context? 

RQ2:  Is there a change in the learning context preference of the young African 

American elementary and middle school novice programmers after participating 

in this summer Scratch programming camp? 

RQ3:  Is there a change in the Black Academic Identity of the young African 

American elementary and middle school novice programmers after participating 

in this Scratch programming camp? 
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Chapter Two: Literature Review 

This chapter describes the literature concerning the two primary tenets that make 

up this proposed solution to increasing the participation of young African American 

novice programmers in computer science: 1) the use of communal learning contexts, a 

particular form of culturally relevant pedagogy for 2) teaching Computational Thinking 

and programming skills using Scratch, a visual programming language.  As such, it 

describes the origins of Computational Thinking along with the challenges, research, and 

methods related to teaching young people how to program; the origins of Communal 

Learning; and the theory Black Academic Identity, a theory explaining one characteristic 

of African American student academic identity.  

Human Computing and Computational Thinking 

 Understanding human computing, computational thinking, and how to effectively 

teach both are crucial to increasing participation in computer science.   

Human computing.  Computing is a natural human creative activity (Denning, 

2007; Grover & Pea, 2013).  Human computing, also known as human information-

processing, involves the use of mental skills to analyze data, recognize patterns, create 

algorithms, and solve problems.  Using computer software and hardware to apply these 

human information-processing skills to achieve a goal enables productivity, the design 

and implementation of a solution to a problem, and computing artifacts (Grover & Pea, 
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2013).  Examples of these computational artifacts include computers themselves, 

computer programs (i.e. software), automated hardware and other devices (i.e. robotics 

and wearable technologies), augmented reality, and interactive websites, animations, 

simulations, games, data analysis, and more.   Furthermore, these resulting computational 

artifacts can, in turn, be used for more computing, information processing, and to create 

computational artifacts that span all academic topics and activities in everyday life 

(Denning, 2007).   The application and skills needed to create the resulting computing 

artifacts combined with the ability to work collaboratively with others and communicate 

using computing vocabulary describe what it means to deal with computers quoted above 

in chapter one.  These skills are also known as computational thinking skills (Barr & 

Stephenson, 2011; Grover & Pea, 2013).     

Computational thinking. As one of the opening quote of this document 

illustrates, Wing (2006) proposes that Computational Thinking be a way of thinking and 

problem-solving for everyone, not just for computer scientists in the March 2006 edition 

of the Communications of the ACM (Association for Computing Machinery), the leading 

professional organization for computer science researchers and practitioners.  This 2006 

article is regarded as the starting point for exploring computational thinking in the 21st 

century as well as how it can be taught to increase engagement and persistence in 

computer science fields.    

Origins of Computational Thinking 

College.  During the 1960s, Allan Perlis, winner of the Association for 

Computing Machinery (ACM) 1st Turing Award (the association's most prestigious 
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technical award), strongly suggested that college students of all disciplines learn the 

'theory of computation' (Grover & Pea, 2013; Guzdial, 2008).  Perlis "argued that 

programming was an exploration of process, a topic that concerned everyone, and that the 

automated execution of process by machine was going to change everything" (Guzdial, 

2008).  He proposed that understanding the theory of computing would lead to the 

understanding of many other topics such as economics and calculus (Guzdial, 2008).   

Grades K-12.  Within the K-12 context, the 1980s witnessed Seymour Papert's 

work with the LOGO programming language and its use in teaching youth how to 

program (Papert, 1980).  His work lead to the emergence of computational technologies 

for learning, insisting that children's cognitive evolution flourish with rich toolkits and 

environments (Blikstein & Wilensky, 2006; Papert, 1971).  This emphasis is the focus of 

many digital learning tools used to teach children computational thinking and 

programming skills.  These tools are described in more detail in a later section. 

In the 21st century.  In 2006, Wing broadly describes Computational Thinking as a 

way of solving problems, designing systems, and understanding human behavior that 

draws on concepts fundamental to computer science Wing (2006).  This description of 

Computational Thinking revitalized Papert's motives regarding teaching children to 

program and using programming as a mechanism towards cognitive development and 

problem-solving.  Yet, although extremely influential, Wing (2006) did not precisely 

define the term Computational Thinking or state exactly what it meant for everyone 

(Selby & Woollard, 2013).  Since 2006, its definition has been refined and refined again 
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(Pears et al., 2007; Selby & Woollard, 2013; Sheard, Simon, Hamilton, & Lönnberg, 

2009; Weinberg, 2013). 

Defining Computational Thinking 

In 2010, researchers at Carnegie Mellon University and Microsoft Research 

partnered to create the Center for Computational Thinking and refined the definition of 

Computational Thinking.  Accordingly, Computational Thinking was defined as "the 

thought processes involved in formulating problems and their solutions so that the 

solutions are represented in a form that can be effectively carried out by an information-

processing agent."   

Additional definitions of Computational Thinking are also posted on the Center's 

website: 

• "Computational Thinking is a way of solving problems, designing systems, and 

understanding human behavior that draws on concepts fundamental to computer 

science. To flourish in today's world, computational thinking has to be a 

fundamental part of the way people think and understand the world. 

• Computational Thinking means creating and making use of different levels of 

abstraction, to understand and solve problems more effectively. 

• Computational Thinking means thinking algorithmically and with the ability to 

apply mathematical concepts such as induction to develop more efficient, fair, 

and secure solutions. 
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• Computational Thinking means understanding the consequences of scale, not 

only for reasons of efficiency but also for economic and social reasons." 

Generally speaking, however, many CSEd researchers agree that the following concepts 

and practices make up computational thinking and form the basis of computer 

programming curricula that aim to support its learning as well as assess its development 

(Grover & Pea, 2013; Lee et al., 2011; Selby & Woollard, 2013):  

• Human thought processes/creative activity,  
• Abstractions and pattern generalizations (hiding complexity), 
• Systematic processing of information (both by the human and a computing 

device), 
• Structured problem decomposition (modularizing), 
• Iterative, recursive, and parallel thinking (simultaneously executing several 

commands and processing information), 
• Systematic error detection and resolution (i.e. debugging), which is done routinely 

as one builds upon a computer programming solution, 
• Symbol systems and representations (data representation), 
• Algorithmic notions of flow of control (a step-by-step process), and 
• Conditional logic (e.g. if this, than do that). 

   
 CSEd Researchers also agree that these concepts can be taught at the K-12 grade 

levels using a variety of subjects, including but not limited to: computer programming, 

mobile application development, game design, robotics, e-textiles, and modeling and 

simulation, (Cheung, Ngai, Chan, & Lau, 2009; Fletcher & Lu, 2009; Kafai et al., 2013; 

Lee et al., 2011; Pears et al., 2007; Wilson, 2003). 

Computational Thinking in the 21st Century in K-12 

 The report by the President’s Council of Advisors on Science and 

Technology, Prepare and Inspire: K-12 Science, Technology, Engineering, and Math 

(STEM) Education for America’s Future (2010, p.46) states that students need “a deeper 
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understanding of the essential concepts, methods and wide-ranging applications of 

computer science. Students should gain hands-on exposure to the process of algorithmic 

thinking and its realization in the form of a computer program, to the use of 

computational techniques for real-world problem solving, and to such pervasive 

computational themes as modeling and abstraction, modularity and reusability, 

computational efficiency, testing and debugging, and the management of complexity. 

Where feasible, active learning, higher-level thinking, and creative design should be 

encouraged by situating new concepts and techniques within the context of applications 

of particular interest to a given student or project team.”  

The Computer Science Teachers Association (CSTA) distinguished the above 

Computational Thinking skills in grades K-12 as the general ability to manipulate data, 

regardless of school topic.  This manipulation includes the ability to collect data, analyze 

data, represent data, decompose problems into smaller sub-problems, along with being 

able to understand and create abstractions (reducing information and detail to focus on 

concepts relevant to understanding and solving problems), algorithms & procedures, 

automation, parallelization, and simulations (CSTA, 2009).  Currently, these and other 

entities in the CSEd research community, such as ACM's Special Interest Group in 

Computer Science Education, the International Society for Technology in Education, the 

College Board, the National Science Foundation; Google CS4HS (Computer Science for 

High School), and the Grace Hopper and International Computing Education Research 

Conference, are working on newer, more centralized standards for various grade levels, 
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new curricula (pre-advanced placement and advanced placement), along with new 

advanced placement tests at the high school level.  

As a result, more explicitly defined skills have been described to provide evidence 

of Computational Thinking (Barr & Stephenson, 2011; PACT, 2012; Wing, 2011).   

These specific skills include:  

1. the ability to use computers to collect, analyze, and represent data; analytically 
decompose problems;  

2. to understand and manipulate information in such a way that masks its 
complexity (i.e. abstraction);  

3. to create and comprehend algorithms, procedures, and automation;  
4. to understand and use a computer programming language; along with  
5. the ability to have a computer (program) run various functions simultaneously 

(in parallel) and in simulation. 
 

Although these skills are rooted in computer science, their power can and should be 

expanded and applied to innovation in all other disciplines (Barr & Stephenson, 2011).  

Moreover, this multifaceted and multidisciplinary suggests that Computational Thinking 

skills are fundamentally for everyone, promoting computer science to a wider audience, 

regardless of their ultimate field of study (Selby & Woollard, 2013).  As such, 

strengthening Computational Thinking skills is especially imperative for citizens, as they 

prepare for the 21st century.  Although computational thinking skills can be applied to 

fields beyond computer science, mechanisms for teaching these skills are best aligned 

with computer programming (Lakanen & Isomöttönen, 2015; Lee et al., 2011; Zander et 

al., 2009).  For this reason, the study presented here uses computer programming to teach 

computational thinking skills to novice learners.   



33 

Computer Programming and Novice Learners 

"Computer programmers write code to create software programs. They turn the 

program designs created by software developers and engineers into instructions that a 

computer can follow" (Bureau of Labor Statistics, U.S. Department of Labor, 2014-15 

Edition, para. 1).  When learning how to program, a novice computer programmer 

focuses on both of these functions: 1) design the program and 2) write the code/program 

(computer instructions) needed to create the desired program to accomplish a desired 

outcome.  Scratch, a programming platform  designed specifically for teaching young 

people how to program, is the platform this study used as the mechanism for teaching 

computational thinking and computer programming skills to young African American 

novice programmers in an informal learning environment. 

Why Youth Should Learn How to Program 

Computer programming as a viable activity to build problem-solving skills for 

youth (Clements & Gullo, 1984; Feldman, 2004; Fessakis, Gouli, & Mavroudi, 2013).  

Those programming environments hosted on the internet and used with via a web 

browser, such as Scratch, allow for sharing, collaboration, and the increased ethical 

knowledge and behavior when consideration remixing (i.e. redesigning) another 

programmer's work (Kafai, Burke, & Resnick, 2014).  Kafai, Burke, and Resnick (2014) 

suggests that learning to program and making programs using these web-based 

environments move students from computational thinking to computational participation, 

emphasizing the social aspects of programming.  These benefits give young programmers 

an early advantage to understanding programming concepts.  If successful, teaching 
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computational thinking and programming skills at an early age will provide evidence for 

the theory that introducing computer science to students at an early age increases 

potentially increases their likelihood to persist in studying computing and computer 

science and establishing them as possible career paths (Barr & Stephenson, 2011; 

Fessakis, Gouli, Mavroudi, 2013; Franklin, Conrad, Aldana, & Hough, 2011; Franklin et 

al., 2013; Seiter & Forman, 2013).  

The Challenge of Learning How to Program 

For the past six decades, many computer science instructors and education 

researchers report that learning to program is challenging (Brooks, 1983; Corney, 

Teague, & Thomas, 2010; Fletcher & Lu, 2009; Kelleher & Pausch, 2005; Piteira & 

Costa, 2012; Sheard, Simon, Hamilton, & Lönnberg, 2009).  This wide recognition and 

acknowledgment that students just "don't get it" (cite) led to a number of tools and 

approaches for teaching and learning computer programming (Corney, Teague, & 

Thomas, 2010; Lemos, 1979; Piteira & Costa, 2012).  

The above cited researchers and others have identified some perceived barriers to 

entry when learning how to program.  They include, but are not limited to: 

1. the difficulty of understanding the purpose of programs and their relationship with 
the computer (Robins, Rountree, & Rountree, 2003);  

2. difficulty in grasping the syntax and semantics of a particular programming 
language (Robins, Rountree, & Rountree, 2003);  

3. misconceptions of programming constructs (Soloway & Spohrer 1989);  
4. inability to problem-solve (McCracken, Almstrum et al. 2001);  
5. inability to read and understand program code (Lister, Adams et al. 2004; Mannila  

& de Raadt, 2006); and 
6. Motivation (Corney, Teague, & Thomas, 2010) 
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As such, introduction to programming courses have been continuously redeveloped with 

changes in language, paradigm, and swapping between breadth and depth of content 

(Corney, Teague, & Thomas, 2010).  

Teaching Youth How to Program 

 If learning how to program is challenging, in what ways can it be successfully 

taught to youth, especially when younger students differ developmentally than older 

students (Hill, Dwyer, Martinez, Harlow, & Franklin, 2015)?  To answer, visual, drag-

and-drop, block-based programming languages are thought to be a common and 

successful approach held by many in the CSEd community (Adams & Webster, 2012; 

Brennan & Resnick, 2012; Davis, Kafai, Vasudevan, & Lee, 2013; Duncan, Bell, & 

Tanimoto, 2014; Freeman et al., 2014; Grover, Cooper, & Pea, 2014; Kelleher & Pausch, 

2005; Kelleher, Pausch, & Kiesler, 2007; Medlock-Walton, Harms, Kraemer, Brennan, & 

Wendel, 2014; Mbogo, Blake, & Suleman, 2013; Papert, 1971; Salleh, Shukur, & Judi, 

2013; Sorva, Karavirta, & Malmi, 2013; Werner, Campe, & Denner, 2012).  Examples of 

these environments include but are not limited to (in no particular order): Scratch (by 

MIT); App Inventor (by MIT & Google); Blocky (by Google), Alice & Storytelling Alice 

(by Carnegie Mellon); EarSketch (by Georgia Tech);, Snap and its predecessor, BYOB - 

Bring Your Own Blocks (by Berkeley); Kodu Game Lab (by Microsoft), and many more.  

Besides the fact that these visual programming environments are interactive and 

entertaining (Wilson, 2003), many of these environments allow code/programs to be 

shared and remixed (modified).  Harms, Cosgrove, Gray, and Kelleher (2013) claims the 
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ability to view code/programs shared on the Internet enhances the ability to comprehend 

and enhance one's ability to program.  Lee et al. (2011) suggests a "use-modify-create" 

framework for teaching youth how to program, based on observations of young 

programmer's cognitive and practical activity when learning computational thinking 

skills. 

Characteristics of Research on Youth Learning How to Program 

With the advent of the strong need to teach computational thinking (CT) and 

programming skills, research is growing concerning the use of visual programming 

languages to teach programming and CT skills to elementary, middle, and high school 

students across the globe. Many of these studies, several of them specifically using 

Scratch, often focus on learning gains in particular topics, most with pre- and post-test 

measures; self-report student engagement levels; and at times, resulting descriptive study 

characteristics and best practices (Burke & Kafai, 2012; Davis, Kafai, Vasudevan, & Lee, 

2013; Franklin et al., 2013; Maloney, Resnick, Rusk, Peppler, & Kafai, 2008; Tekerek & 

Altan, 2014; Weinberg 2013).  It is worth noting that very few studies seek to understand 

the learning processes students undergo while learning a visual programming language.   

Additionally, Weinberg (2013) reports that the studies on computational thinking 

between 2006 - 2011 lacked research rigor.  Eighteen percent or less of the ~164 

computational thinking studies conducted and analyzed based on specified criteria of the 

studies described by Weinberg (2013) during this period were completed by computer 

scientists and or computer science professors with coauthors who had little to no 

experience in social science research or education.  This suggests, alternatively, that a 
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majority of these studies were completed with no real social science research procedures.  

Many did not describe their research methods and several of them only reported post-test 

scores (Weinberg, 2013).   

Benefits of Visual Programming Platforms 

 Using visual programming platforms has been proven to be better absorbed by 

young students learning to program as they do not have to worry about the syntax (i.e. 

specific programming formats and rules in text-based programming languages) of a 

particular language or the challenge of debugging their code/programs (Chang, 2014; 

Cheung et al., 2009; Hu, Winikoff, & Cranefield, 2013; Maloney, Resnick, Rusk, 

Silverman, & Eastmond, 2010).  It has been reported that visual programming languages 

eliminate the need to memorize syntax, as they generally implement the analogy of 

puzzle pieces sticking together.  Many of these visual environments are colorful and 

inviting, potentially increasing their appeal and thus the learner's engagement.  The 

success of these environments and others like them has prompted them to be used in 

introductory computational thinking and programming curricula over the past several 

years.  Exploring Computer Science (ECS) is one example of such curricula.  ECS is 

being piloted in several cities around the country.  Additionally, other platforms are 

designed specifically to engage one gender or the other.  For example, Storytelling Alice 

was specifically designed to support storytelling.  Kelleher, Pausch, and Kiesler (2007) 

found Storytelling Alice motivated girls to spend more time programming and increased 

their interest in the future of the Alice product line than the generic Alice version.  Burke 
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and Kafai (2012) also found that combining writing with programming in Scratch 

expanded girls’ view of the necessity to learn how to program. 

Assessing Computational Thinking and Programming Skills 

As the need to learn computational thinking skills becomes more and more apparent 

and the CSEd research community improves the definition of computational thinking, its 

assessment becomes more and more essential (Grover & Pea, 2013).  As such, in 2012, 

the NSF funded the Principled Assessment of Computational Thinking (PACT) project to 

advance the field of assessment of high school computer science and computational 

thinking skills.  PACT (2012) expanded the domains of computational thinking beyond 

computer science and programming concepts (those listed above) to include two 

additional components: 1) inquiry and 2) communication & collaboration. Table 1 

illustrates the skills that make up each of these three components of computational 

thinking, as defined by PACT (2012).   

 

Table 3 
 
PACT’s Definition of Computational Thinking Skills 

 

CS Concepts Inquiry Skills Communication & Collaboration Skills 
Algorithms Evaluate Publish 
Programming Explore Present 
Recursion Analyze Build Consensus 
Abstraction Explain Discuss 
Debugging/Testing Elaborate Distribute Work 
Variables Model Lead/Manage Teams 
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Although still a work-in-progress, PACT suggests the following guidelines for 

assessing computational thinking skills in each of these components: 

1. Analyze One's Own Computational Work and the Work of Others 
2. Apply Abstractions and Models 
3. Design and Implement Creative Solutions and Artifacts 
4. Analyze Effects of Development in Computing 
5. Connect Computing with Other Disciplines 
6. Communicate Thoughts, Processes, and Results in Simple Formats 
7. Work Effectively in Teams 
 

NOTE:  As of this writing, PACT has released an updated website which illustrates the 

notion that the ideas in the table presented above are now considered computational 

thinking 'practices' instead of computational thinking skills.   

 

Introduction to Scratch: A Programming Platform for Novice Programmers 

 
Figure 2. Screenshot of Scratch homepage. Retrieved from http://Scratch.mit.edu 
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 Scratch was created in 2007 by the Lifelong Kindergarten Group at the MIT 

Media Lab.  The project is led by Mitch Resnick, the group's director.   Scratch is a visual 

programming environment that allows users (primarily ages 8 to 16) to learn computer 

programming while working on personally meaningful projects such as animated stories 

and games.   Figure 2 above is a screenshot of the Scratch website homepage taken 

before this study began.  A key design goal of Scratch is to support self-directed learning 

through tinkering and collaborating with peers (Maloney et al., 2010).  Now at version 

2.0, Scratch is an online visual programming language, user community, and learning 

environment used to teach computer programming concepts to students of all ages.   

Instead of typing text and using command line interfaces to create and run computer 

programs, learners drag and drop visual programmable bricks, which look like puzzle 

pieces on the computer screen, and snap them together, like Lego® bricks, in order to 

create a set or program block (multiple program puzzle pieces stacked together) of 

instructions to be executed.  The only syntax required is that the puzzle pieces fit 

together.   If the puzzle pieces do not logically fit together, they will not snap together 

either, giving instant feedback regarding a learner's programming logic.  Figure 3 below 

illustrates the distinct difference between text and visual programming (text is on the left, 

visual programming block on the right).  
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Figure 3. Screenshot of Program Text and Scratch Puzzle Pieces (blocks) created to 
perform the exact same action. 
 

 

Previous versions of Scratch (version 1.4) were downloaded and ran locally on a 

learner's computer, without the need for an Internet connection, except when a user 

wanted to upload and share the resulting programs, which are called Scratch projects.  

However, version 2.0 runs within a learner's web browser and requires an Internet 

connection.  There is also a downloadable version of Scratch 2.0 in the event there is no 

Internet connection.  At the time of this study, the Scratch website was home to over 7.1 

million registered programmers (users) with Scratch accounts, who make up the Scratch 

Community and is where registered Scratch users upload and share their projects.  Also, 

at the time of this writing, there are over 10.2 million Scratch projects.  Scratch projects 

can be viewed, shared, executed and are designed to be 'remixed' and shared again by 

other Scratch community members.   
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Computational Thinking Skills Learned Using Scratch 

The need to assess computational thinking skills has become apparent to the 

makers of Scratch as well. Brennan and Resnick (2012) suggested a framework for 

assessing computational thinking skills.  These guidelines are very similar to the PACT 

(2012) domains of computational thinking skills (Table 3 above) and are referred to as 

concepts (sequences, loops, events, conditionals, operators, and working with data), 

practices (what Scratchers do and how they do them), and perspectives (how Scratchers 

view themselves and the world around them) – illustrated below in Table 4.   

 

 

Table 4  
 
MIT’s Scratch Team Definition of Computational Thinking Skills 
 

Concepts Practices Perspectives 
Sequences 

What Scratchers do and 
how they do them 

How Scratchers view 
themselves and the world 

around them 

Loops 
Events 

Conditionals 
Operators 

Working with Data 
 

 

The overlay of both PACT and Scratch computational thinking skills can be seen 

in Table 5 below. 
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Table 5 
 
Overlay of PACT and Scratch Computational Thinking Skills 
 

Source 
Computational 

Thinking 
Knowledge 

Computational 
Thinking 
Actions 

Computational Thinking 
Soft Skills 

PACT Concepts Inquiry 
Communication & 

Collaboration 
MIT/Scratch Concepts Practices Perspectives 

 
 
 
 
Scratch, Computational Thinking, and Computer Programming 

Amidst the desire to assess the understanding and effective use of Scratch, 

Monroy-Hernández (2012) illustrates the frequency of use of each block within all 

projects in the Scratch community at the time at the time its of publication.  Taken from 

this analysis, Figure 4 below shows a histogram illustrating the infrequent use of the very 

blocks that are associated with computational thinking – collecting, manipulating, and 

representing data.  These blocks are represented in the histogram in figure as the List, 

Variables, and Numbers categories, to name a few.  These particular blocks are used 

significantly less than many of the other more frequently used blocks (e.g. the Control, 

Looks, Motion blocks).  This histogram shows that Scratch can be used to implement and 

assess computational thinking and programming skills, but Scratchers somehow lack the 

interest, knowledge, and/or efficacy needed to use these particular blocks.  It should be 

noted that the analysis represented by this figure represents Scratch 1.4 usage and was 

conducted before the release of the online Scratch 2.0 version.   
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Figure 4. Histogram of frequency of block types used Monroy-Hernández (2012). 

 

Assessing Computational Thinking Skills Learned Using Scratch 

The Brennan and Resnick (2012) guidelines suggest the use of three facets for 

assessing computational thinking skills had by Scratcher.  They include:   
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1.  Analyzing the amount and complexity of the programming puzzle pieces used 

in a Scratchers projects (i.e. his/her project portfolio),  

2.  Introducing design scenarios and analyzing the Scratchers approach to solving 

or implementing them, and  

3.  Interviewing Scratchers about their various experiences using Scratch.   

The study described here conducts all three of these suggested assessments to 

observe and compare how participants learn and use Scratch concepts as described above 

(i.e. sequences, loops, events, conditionals, operators, and working with data).  The most 

recent illustration of these published guidelines used to assist Scratchers assessment of 

computational thinking skills is a new website found at 

http://Scratched.gse.harvard.edu/ct/index.html.  This website defines what is meant by the 

computational thinking skills gained when using Scratch, namely concepts, practices, and 

perspectives.  It also describes various approaches to assessing computational thinking 

skills using Scratch, described in the 2012 publication, along with curriculum guides and 

reflective techniques instructors can use to support the development of computational 

thinking skills.  It should be noted that these guidelines and techniques are specific to the 

Scratch environment and may not be easily portable to other programming languages, 

visual or otherwise. 

Summary of Computational Thinking and Teaching Programming Skills to Youth 

Computing is a natural human activity.  Using computer software and hardware to 

apply these human information-processing skills to achieve a goal enables productivity, 

the design and implementation of a solution to a problem, and computing artifacts.   The 
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President’s Council of Advisors on Science and Technology (PCAST) states that students 

need a deeper understanding of the wide applications of computer science.  The CSEd 

research community agrees and pushes for introduction of computing and computer 

science principles as early as elementary and middle school.  Considering the level of 

threat and non-competitiveness this country concludes from having low participation in 

computer science by all of its citizens, but particularly from those from extremely 

underrepresented populations (African American, Latino American, and Native 

American), it is imperative that policy makers, educators, researchers, and professional 

organizations work together to counter these low numbers.  Teaching computer 

programming is challenging and researching ways how to do this effectively is rarely 

done well.  Nonetheless, for many reasons, some CSEd researchers suggest that using 

visual programming languages, where students drag and drop code blocks to compose 

logical programs, has promise in introducing and familiarizing students to and with 

computational thinking and programming skills.  This notion comes on the heels of 

Seymour Papert’s work, as he insisted that children’s cognition flourished with the use of 

rich toolkits and environments.   

This study used Scratch, a visual programming language, to teach African 

American elementary and middle school students about computational thinking and 

programming skills.  The specific computational thinking and programming skills 

focused on are: programming sequences, loops, events, conditionals, operators, and 

working with data – all identified as the computational thinking and programming 

concepts emphasized within Scratch.  Using rigorous research methods, the goal of this 
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study was to observe, describe, and compare how participants learn in two different 

learning contexts – Communal Learning and Individual Learning.  Communal Learning 

is born out of culturally relevant pedagogy, which honors a student’s culture and aligns 

instruction with it.  The next several sections share more details about culturally relevant 

pedagogy, the origins of Communal Learning, and describes a trajectory of research 

studies which have observed improved performance in the academic performance of 

African American students when Communal Learning environments are used. 

The Call for Improved Education in the United States 

The threat to U.S. security and competitiveness regarding science and engineering 

described in chapter one is not the first of its kind.  The launch of Sputnik 1, the first 

artificial earth satellite launched into the earth’s orbit by the Soviet Union in 1957, also 

caused a period of public fear and anxiety known as the Sputnik Crisis (Brown, Kloser, & 

Henderson, 2010; Silva, Moses, Rivers, & Johnson, 1990).  Not only did the Sputnik 

Crisis usher in country-wide anxiety about the nation’s security, it also pushed the U.S. 

political and scientific communities to heighten emphasis on research and development in 

science and engineering productivity and improved education (Silva, et. al., 1990).  The 

result of which were walls built between the general population and the scientific elite 

(Brown et al., 2010; Silva et al., 1990).  The nation’s poor people and minority children 

suffered the most. This was cause for alarm for members of these communities and 

further exacerbated the already unequal educational conditions and outcomes had by 

White mainstream American children and African American poor children. 
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The Academic Achievement Gap 

 African-Americans are indeed capable of learning and achieving academic 

success.  There are a myriad of African American student honor roll members, college 

graduates, and successful doctors, lawyers, scientists, and entrepreneurs as a result.   It is 

important to acknowledge, in spite of indicators of the perilous state of education in the 

African American and other underserved communities, that there are individual African 

American “successes” abound (King, 2005).  However, there are some African American 

students who do struggle in school and find it difficult to get the support they need to 

accomplish high academic standing.  Some education researchers suggest quite a few 

reasons for this struggle and difficulty, including low teacher expectation, lack of quality 

resources and qualified teachers, low levels of motivation and low socioeconomic status, 

peer-pressure, and poverty (Gregory, Skiba, & Noguera, 2010; King, 2005; Lee & Bowen 

2006; Reardon, 2011).  The combined result of these challenges and psychological 

barriers undoubtedly contribute to the actual low academic performance in school by 

some African American students along several other discouraging statistical outcomes.  

As a result, the [Black-White] “academic achievement gap” is a phrase and a 

phenomenon in the United States that describes the yearly statistical gap in scores on 

standardized academic achievement tests between the low scores obtained by some 

African American/Black students and the higher scores of their Caucasian-American 

(White) counterparts (Gregory, Skiba, Noguera, 2010; King, 2005; Lee & Bowen 2006; 

Reardon, 2011). The origins of the academic achievement gap can be traced back to 

1969, when under guidance from the Department of Education and the National Center 
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for Educational Statistics (NCES) within the Institute of Education Sciences (IES), the 

United States began the National Assessment and Educational Progress (NAEP) and its 

Nation’s Report Card.  NAEP collects and reports academic achievement at the national 

level, and for certain assessments, at the state and district levels and assessments have 

been conducted periodically in reading, mathematics, science, writing, U.S. history, 

civics, geography, and other subjects.  The NEAP is the largest nationally representative 

and continuing assessment to inform the public about the academic achievement of 

elementary and secondary students (NCES, 2013).    

The Call for Improved Education for African-Americans in the United States 

 Throughout the decades since the Sputnik Crisis, the political, scientific, and 

academic communities have called for an update in science, engineering, and 

mathematics education that appeals to and provides a pathway for success for all 

Americans (Brown et al., 2010; Silva et al., 1990).  Coupled with the African American 

Civil Rights Movement (1954-1968), this focus on improved education in science and 

engineering also prompted scholarly investigation into the teaching and learning of 

African American and Latino American students, many of which were from families with 

low socioeconomic status (Brown et al., 2010; Silva et al., 1990).  This focus uncovered 

the need for aligning curriculum and pedagogy with the cultural norms and values of 

these students.  This became the birth of culturally responsive teaching and culturally 

relevant pedagogy. 

Learning styles and culture of African American children.  Research on 

learning styles and their relationship to culture have also been conducted for several 
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decades.  The literature defines learning styles as biological and developmental 

characteristics and preferences that affect how students learn (Hale, 1982; Serpell, 1997; 

Center for Research on the Education of Students Placed At Risk, 2000), similar to 

Boykin’s cultural ethos described above.  These preferences can help with classroom 

instruction and assessments, along with the design of classroom settings, and responses to 

a learner's individual need for quiet or sound, bright or soft light, warm or cold 

temperatures, seating arrangements, mobility, and/or grouping preferences (Dunn, Dunn, 

& Price, 1989).   

In the years since the Sputnik Crisis, researchers have shared enormous amounts 

of data revealing that one's cultural patterns influence the way information is perceived, 

organized, processed, and used, resulting in what are called learning or cognitive styles 

(Adams, 1995; Barba, 1993; Boykin, 1977; Brown, Kloser, & Henderson, 2010; 

Edwards, 2010; Gay, 2002; Hale, 1982; Ladson-Billings, 1995; Lee, 1993, 1997; Pinkard, 

1999; Silva, Moses, Rivers, & Johnson, 1990; Wilson, 1978; Wilson, 1992).  From this, it 

is concluded that in order to maximize the learning potential of any learner, whether in or 

out of school, the learning environment and method of instruction should match or be 

consistent with the cultural experiences of that learner.  This is a strategy called cultural 

scaffolding, cultural relevance, and/or culturally responsive teaching (CRT).   

Valuing learning styles and culture in teaching and learning.  The idea of 

valuing the knowledge and experience that youth bring with them to school was also 

emphasized in 1966 by John Dewey, one of the most significant educational thinkers of 
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the 20th century.  Dewey was a psychologist, philosopher, and educator whose social 

activism and writing fueled educational, philosophical, and social reform.   

"What we need is something which will enable us to interpret, to appraise, the 

elements in the child's present puttings forth and fallings away, his exhibitions of 

power and weakness, in the light of some larger growth-process in which they 

have their place." (Dewey, 1902, p.14) 

Ten years later, Boykin (1977) frames what Dewey called a ‘child’s puttings forth 

and fallings away, his exhibitions of power and weakness’ as a child’s culture. More 

specifically, Boykin (1977) suggests nine afro-cultural ethos (cultural characteristics) that 

are distinctive to African-Americans.   

The Black (Afro) cultural ethos.  Boykin (1977) posits that these are 

characteristics naturally present and valued by African-Americans, their families, and 

their communities and are a vital part of their every day experiences, culture and thus, 

their values:  

1. Spirituality – intuition, supreme force;  

2. Harmony – versatility and wholeness 

3. Movement – rhythm of everyday life  

4. Verve – intense stimulation, action, colorfulness  

5. Affect – premium on feelings, expression 

6. Communalism – social orientation, group duty, identity, sharing 

7. Expressive individualism – distinct, genuine, personal  

8. Orality – oral and aural modes of communication 
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9. Social time perspective – time is marked by human interaction 

 

Thus, culturally responsiveness in teaching and learning for African American students 

specifically can connote instructional relevance to these innate characteristics, every day 

experiences, and commonly held values.  This seminal uncovering provided a foundation 

for decades of empirical research used to highlight effective methods of instruction for 

African American students, especially those that took advantage of their strengths: their 

cultures, learning styles, and modes of motivation and engagement.  Boykin (1994a, 

1994b) provide summaries of this work.  Thus, integrating these afro-cultural 

characteristics into instructional design and delivery creates an innate connection between 

the instructional content and in African American students.  In effect, pedagogically 

speaking, aligning instruction with students’ culture is more than simply a source of 

motivation, it is natural and intrinsic way of being, knowing, and learning.   

Matching or aligning classroom content with the culture of learners within the 

classroom has become a mantra for many educators and scholars concerned with the 

learning and academic achievement of culturally and linguistically diverse students 

(Adams, 1995; Barba, 1993; Brown, Kloser, & Henderson, 2010; Gay, 2002; Ladson-

Billings, 1995; Lee, 1997; Leonard et. al, 2005).  For instance, using the nine Black 

Cultural Ethos as a framework for describing culturally relevant and culturally responsive 

research, the ‘Affect,’ ‘Expressive Individualism,’ and ‘Orality’ ethos appear in the works 

of reading researchers who have consistently found that African American and Caucasian 

American children differ in storytelling styles, knowledge of print conventions, oral 
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language, and question asking style (Boykin, 1977; Edwards, 2010; Gay, 2002; Hale, 

1982; Lee, 1993; Lee, 1997; Lee, 2003; Pinkard, 1999).  Applying these same cultural 

ethos, ‘Affect,’ ‘Expressive Individualism,’ and ‘Orality’ to culturally-responsive 

strategies to reading, science, and math instruction proves beneficial for students (Reis & 

Kay, 2007; Silva, et. al., 1990; Tharp, 1989).  One specific investigation and application 

of the use of the ‘Affect,’ ‘Expressive Individualism’ and ‘Orality,’ is apparent in Brown 

(2013) regarding African American science learners.  This research points at the use 

language by African American students as an element of identity formation and explains 

the dichotomy between the ‘cultureless’ language of science and science classrooms and 

the expressed language of African American students.  This dichotomy heavily impacts 

learning.  For example, students may shy away from using science vocabulary as it may 

not fit or match the language used in forming their identity (i.e. “sounding Black”).  

Whether one agrees with this student perspective or not, a teacher knowledgeable about 

these identity sentiments can build bridges between the two and increase learning and 

engagement (Brown, et. al., 2010).   

Additionally, the mathematics education system in the U.S., with its history of 

less than optimal performance by all students, not just African-American, has a 

prominent example of using culturally responsive teaching (Brown, Kloser, & 

Henderson, 2010).  As a result of African American and Latino American students 

enrolling in advanced mathematics courses at rates significantly lower than their White 

counterparts, especially during and after the Sputnik Crisis, The Algebra Project was 

founded in 1982 by Dr. Robert P. Moses, a Harvard-educated Civil Rights Leader (The 
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Algebra Project).   Using the cultural ethos of ‘Verve’, ‘Movement,’ ‘Orality,’ 

‘Expressive Individualism,’ and ‘Communalism’, The Algebra Project implements a 

curriculum where students are first introduced to mathematic concepts in the physical 

world around them, use their own language to describe the witnessed phenomenon, create 

symbols and use them to represent this phenomenon with their classmates, and are the 

introduced to mathematic concepts using their representations (Silva, et. al., 1990).   With 

its success and teacher professional development, The Algebra Project reaches more than 

200 middle schools across the country (The Algebra Project).   

Valuing Culture and Learning Styles in Assessment in Science Education.   

The examples above bring attention to the need and benefit of incorporating culturally-

responsive teaching strategies to a variety of academic topics, including science.  Walls 

(2012) describes the benefit of assessing nature of science (NOS) views of young African 

American 3rd graders.  While attempting to uncover the NOS views of its participants, 

students were assessed using multiple instruments that align with the ‘Verve,’ 

‘Movement,’ ‘Affect,’ Expressive Individualism,’ and ‘Orality,’ ethos presented by 

Boykin (1977) above.  These instruments included an open-ended questionnaire, audio 

recorded semi-structured interviews, along with drawing and viewing images of 

scientists.  According to Walls (2012), this combination of instruments appealed to the 

sociohistorical nature of science education as well as the underrepresentation of research 

for and with African American youth.  This study contributes to NOS research in that it 

elicits the participants views as a result of tapping into their naïve concepts, emotions, 

and beliefs about science and themselves as scientists.  This is in stark contrast to the 
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traditional NOS research where participants are evaluated based on what extent their 

views contrast those of traditional scientists (Walls, 2012).   

As a result, astounding insight resulted.  Rich descriptions of specific views 

around what science is, how it is done (understanding natural science, experimentation), 

and what it is used for (invention and discovery) were elicited along with the general 

perception of who a scientist is and what he/she looks like (White & African-American, 

male, old, lab coat, glasses, intelligent, studious, happy), where they learn science 

(science textbooks and non-school locations), and what they think about it. This 

assessment also shed light on each participant’s connection to science along with his/her 

confidence in being and doing science in the future.  These and other findings contribute 

greatly to the creation of science education curricula along with what is known about the 

NOS views from a diverse (age and race) group of study participants.  The study 

presented here seeks to accomplish similar contributions to CS Ed research. 

The above examples specifically emphasize the alignment of innate cultural 

characteristics, learning styles, and the benefits their applications have on teaching, 

learning, engagement, and assessment.  The next section shares fundamental 

requirements of and design principles for applying culturally-responsive. 

Narrowing the Focus: Communalism and Communal Learning Research 

Treisman (1985) and Fullilove and Treisman (1990) illustrate how African 

American college freshman students studying Calculus at UCLA Berkeley had 

significantly more pass rates they when studied together.  Similar in methodology to 

the study presented here (i.e. ethnographic methods, audio and video recordings, 
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observations, etc.), these studies uncovered and compared the study habits of African 

American calculus students to those of Asian-American calculus students.  At a time 

when the gap in academic performance in science, engineering, and mathematics 

between ethnic groups was similarly described as that of the academic performance in 

computer science, these studies provide valuable insight into the conceptual 

frameworks that can be used to teach CT and programming skills to African American 

students.  The hypothesis here follows that of Treisman (1985) in that when African 

American students spend more time studying together, they can help uncover errors, 

share knowledge, and perform better overall.  

Communalism 

Of the nine cultural ethos presented by Boykin (1977) above, this study 

specifically focus on the ethos of ‘Communalism’ and applies it to the STEM subjects of 

computational thinking and programming.  Operationalized, research on Communalism 

(social orientation, group duty, identity, sharing) in the classroom is called ‘Communal 

Learning’ and is often implemented by placing students in groups of two (pairs) or three, 

and their learning gains, efficacy, and engagement are usually compared to students 

receiving the same topics of instruction but who work individually (Hurley, Boykin, & 

Allen, 2005).  Several studies have been conducted over the past two decades to explore 

the impact of Communal Learning on African American students from kindergarten 

through high school (Boykin, Coleman, Lilja, & Tyler, 2004; Boykin, Lilja, & Tyler, 

2004; Burrell, 2012; Coleman, 2001; Dill & Boykin, 2000; Hurley, Boykin, & Allen, 

2005).  Topics of communal learning included text recall (Dill & Boykin, 2000), math 
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estimation (Hurley, Boykin, & Allen, 2005), geography (Boykin, Lilja, & Tyler, 2004), 

and self and group efficacy in math estimation (Burrell, 2012). Many of these studies 

used scripted communal and individual learning prompts read to students before each unit 

of instruction.  The communal prompt stressed the importance of working together as a 

group and sharing resources, while the individual prompt emphasized doing ones best 

while working alone. 

Regarding study results, Watkins (2002) found that low-income African 

American kindergarteners from low-income backgrounds have more frequent displays of 

communal tendencies in their classroom environments than individual practices.  

Additionally, Coleman (1996) found that African American elementary students who 

were communally engaged in a creative learning task had more original and thoughtful 

responses than those students who performed the task individually.  The performance of 

the communal learning group excelled the performance of the individual learning group 

in all of them.  All studies followed a quantitative research design and data analysis 

involved analysis of variance (ANOVA).  One study used analysis of covariance (Hurley, 

et. al, 2005).  None of these studies found any significant gender difference.  While no 

significant main or interaction effects have been found for the gender variable in previous 

studies examining the influence of communal and individualistic learning condition on 

academic performance, some grade-level effects did emerge, see Boykin and Bailey, 

(2000) for a review of the studies.  Ultimately, taken together, these studies revealed that 

learning contexts that include familiar cultural themes are also more likely to sustain and 
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enhance students’ motivation to engage in required tasks than contexts characterized by 

unfamiliar themes.  

Moreover, these studies inform the selection and use of a scale designed to 

measure students’ actual learning context preference.  The Learning Context 

Questionnaire (Johnson & Norem-Hebeisen, 1979) is a 22-item sentence-structure 

gender-neutral measure of cooperative, individualistic, and competitive orientation.  Here 

and in the studies described above, it is used to measure a student’s learning orientation 

preference.  The competitive items are not used as this construct is outside the scope of 

what is being studied.  Therefore, what is used is the LCQ-m, is a 14-item scale 

(Appendix F), where the m stands for modified.  These 14 items are sentences with 

require a 4-point likert scale response ranging from 1 “Not at all like me” to 4 “Very 

much like me." to completely false. Examples sentences include: "I do better when I 

work alone" (individualistic orientation) and "It's a good idea for students to help each 

other learn" (cooperative orientation).  Although students were assigned to either the 

communal learning or individual learning group in the studies described above, they each 

had their own authentic preference.  This preference may or may not have matched their 

group assignment. The LCQ-m makes this authentic preference known. 

Communal Learning and Pair Programming  

The implications of the previous research on culturally responsive teaching, 

culturally relevant pedagogy, and communal learning environments led the researcher 

to a hypothesis that African American middle school students could learn 

computational thinking and programming skills using Scratch more effectively if done 
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together, in pairs..  Pair programming, first used by Frank Brooks – author of the 

Mythical Man Month, while he was in graduate school between 1953-1956 (Brooks, 

1975), is at the root of a collaborative software development approach called ‘extreme 

programming,’ intended to improve quality and responsiveness to customer needs.  

Pair programming requires that teams of two programmers work simultaneously at the 

same computer on the same design, algorithm, code, or test (McDowell, Werner, 

Bullock, & Fernald, 2002; Nosek, 1998; Williams and Kessler, 2000).  One 

programmer is the driver and he/she types or illustrates and writes design ideas.  The 

other is the navigator who actively choses best methods and approaches while 

observing the work of the driver looking for tactical or strategic defects.  When used in 

industry, teams report a variety of benefits: improved product quality, fewer bugs, 

clearer code, improved knowledge sharing, motivation regarding coding, increased 

team morale, and a host of economic and other benefits (Denner, Werner, Campe, & 

Ortiz, 2012; Hanks, McDowell, Draper, & Krnjajic, 2004; McDowell, Hanks, & 

Werner, 2003; McDowell, Werner, Bullock, & Fernald, 2002; Sfetsos, Adamidis, 

Angelis, Stamelos, & Deligiannis, 2013).  

As a result of the promise pair programming delivers, the use of pair 

programming techniques have been explored in various academic levels of computer 

programming courses showing great promise.  When specifically implemented with 

college students, pair programming increased information technology fluency 

(adapting one’s technology skills as technology changes) in middle school girls, 

(Campe, Werner, & Denner, 2005; Werner et al., 2005), confidence and satisfaction in 
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the resulting program and the experience of programming (McDowell, Werner, 

Bullock, & Fernald, 2006), performance (McDowell et al., 2002), as well as socio-

cultural differences when comparing two ethnic groups – Mexican and European 

(Ruvalcaba, Werner, and Campe, 2012).   Thus, the notion of pair programming was 

introduced as a method of engaging young programmers. 

Black Academic Identity 

The theory of Black Academic Identity (BAI) for African American students 

comes from joining elements of racial identity with elements of academic identity, 

resulting in a connection between or overlap of being a Black student and doing well 

academically (Anderson & Freeman, 2010).  One’s Black Academic Identity can 

manifest in many ways.  These are:  1) Black Academic Identity, where one's academic 

achievement is integrated with one’s racial identity by thinking one’s intellect is as a 

result of one’s identity or that high academic achievement is crucial to being a 

successful Black student, thereby aligning one’s behavior as such, 2) Black Model 

Phenomenon, where one is motivated to achieve and be successful to satisfy a desire to 

be a positive role model for other members of their race, 3) the Proof of Black Ability, 

where one reaches high academic achievement to  dispel stereotypes, prove that 

African American students are intelligent, and can succeed, and 4) Black Cultural 

Appreciation, where an individual emphasizes the importance of knowing and 

appreciating their African American heritage and connects their achievement to those 

that came before them (Anderson & Freeman, 2010).  The first three manifestations 

described above, Black Academic Identify, Black Model Phenomenon, and Proof of 
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Black Ability, are pertinent to and measured in this study.  The theory and expected 

connection here is that the more a learning context is innately aligned with African 

American student culture, the more African American students will psychologically 

connect high achievement with their race and be highly motivated to achieve and align 

their behavior as such.  

Summary of Culturally Relevant Pedagogy, Communal Learning, and Black 

Academic Identity 

 The U.S. concluded a threat to its security and competitiveness when the Soviet 

Union launched Sputnik 1 into the earth’s orbit in 1957.  This caused a period of fear 

and anxiety called the Sputnik Crisis and ushered in a heightened emphasis on research 

and development in science and engineering productivity and education. This 

unfortunately caused a divide between US citizens with the general population on one 

side and the scientific elite on the other.  The nation’s poor people and children of 

color suffered the most, as this Sputnik Crisis worsened the already existing unequal 

education conditions and outcomes between African American children and their 

White mainstream American counterparts.  These unequal outcomes known as the 

academic achievement gap and was often explained by suggesting that African 

American students had an inherent deficit in cognition.  Refuting these theoretical 

deficit models, African American education researchers called for pedagogy and 

classroom environments which honored the culture and learning styles of African 

American students and researched ways in which to value and align them.   The result 

of this research is now called culturally relevant pedagogy and has a long history of 
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empirical investigations resulting in improved and enhanced academic performance 

when implemented in classrooms educating African American students, in a variety of 

topics and at all levels of education.  With culturally relevant pedagogy, success is 

rooted in the alignment of one’s culture making it inherent, natural, and intrinsic as 

opposed to only a form of extrinsic motivation.  One such cultural element is 

Communalism.  Communalism is an element of the Black Cultural Ethos which places 

the social atmosphere of home and community culture within the classroom, 

emphasizing group duty and group identity, along with sharing.  Classroom 

environments which align with Communalism are called Communal Learning 

environments.  The success of Communal Learning environments mirrors Vygotsky’s 

Social Development theory which posits that humans learn primarily by and through 

interacting with those around them.  As such, with particular interest to the study 

presented here, Communal Learning aligns with the notion of pair programming, 

where two programmers work together on the same computer as they design, code (i.e. 

program), and test.  The study presented here used culturally relevant pedagogy,  

specifically Communal Learning, by way of pair programming to teach African 

American elementary and middle school students computational thinking and 

programming skills.  It explores the impact learning such skills has on a participants’ 

Learning Context Preference and Black Academic Identity.  Taken together, these 

concepts form the study’s research questions, which will be implemented using a 

mixed-methods research approach. 
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Research Questions 

The research questions driving this study are: 

RQ1.  During a summer Scratch programming camp lasting five week days, three 

hours per day, how do young African American elementary and middle school 

novice programmers in a Communal Learning (CL) context learn and use 

computational thinking concepts and programming skills compared to those in an 

Individual learning (IL) context? 

RQ2:  Is there a change in the learning context preference of the young African 

American elementary and middle school novice programmers after participating 

in this summer Scratch programming camp? 

RQ3:  Is there a change in the Black Academic Identity of the young African 

American elementary and middle school novice programmers after participating 

in this summer Scratch programming camp? 

The expected outcomes were that the all African American participants will 

demonstrate a preference for communal learning, that those in the communal learning 

group will score higher than the individual learning group on the computational thinking 

and programming post-test overall, and that their Black Academic Identity scores will 

increase.  The next chapter describes the research design, research site, study participants, 

Scratch programming camp procedures, and data collection and analysis methods used to 

answer these research questions. 
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Chapter Three:  Methods 

This chapter shares an over of this study, its research design, and the overall 

methodology used.  These details include an brief overview the research design, details 

about the research setting and site, the participants, the instructional materials, and data 

collection instruments, study procedures, as well as data analysis methods.  

Overview of Research Design 

 A mixed method design was employed to gain more insight from the combination 

of quantitative and qualitative research than either form by itself (Creswell, 2009; 

Redmann, Lambrecht & Stitt-Gohdes, 2000).  The quantitative portion involved a quasi 

experiment between two learning group contexts: Communal and Individual, where 

participants were randomly assigned to one or the other, to determine which learning 

group performed better.  This study also used quantitative methods to collect pre- and 

post-camp scores for Scratch Content Knowledge, Learning Context Preference, and 

Black Academic Identity to measure participants’ learning context preference and Black 

Academic Identity before camp began and to determine to what extent participating in 

this programming camp experience changed these measurements after camp ended.   

These quantitative data were analyzed using descriptive and inferential statistics.  During 

camp, qualitative data collection was implemented through various questionnaires, 

Scratch programming assignments, audio and video recordings, interviews, participant 
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written responses, and observations by the researcher, who was a nonparticipant observer.   

These qualitative data collection methods were used to capture the specific learning 

experiences of the participants in each learning context and examining that data to gain 

an in depth understanding of what happened each day with each participant.  Data 

analysis was completed using the Critical Incident Technique (CIT) and the Cognitive 

Assessment of Participants’ Problem-Solving and Program Development Skills.  The CIT 

approach is defined as a set of procedures for systematically identifying behaviors that 

contribute to the success of failure of individuals in a specific situations (Redmann, 

Lambrecht & Stitt-Gohdes,  2000).  The Cognitive Assessment of Participants’ Problem-

Solving and Program Development Skill measures the processes and products of a 

participants’ problem-solving and programming skills (Deek, Starr, Kimmel, & Rotter, 

1999).  Overall descriptions and comparisons were made regarding how young African 

American elementary and middle school novice programmers in a Communal Learning 

(CL) context learn and use computational thinking concepts and programming skills 

compared to those in an Individual learning (IL) context as a result of combining these 

analyses.  Additionally, these data collection and analysis methods were used to identify 

the change in participants’ learning context preference and Black Academic Identity. 

As such, this study followed Maxwell and Loomis’ (2003) description of a 

convergent parallel mixed-method research design.  The purpose of a convergent 

research design is to collect different but complimentary data on the same topic 

(Maxwell & Loomis, 2003).  The quantitative and qualitative data collection methods 

were implemented in a pre-, during-, and post-intervention manner and are described in 



66 

subsequent sections of this chapter.  Quantitative data and qualitative data were 

collected concurrently and analyzed separately, while both methods were weighted 

equally.  Creswell (2009) describes this as a concurrent triangulation mixed-method 

design.  The resulting analysis merged to form an overall description and comparison 

of how participants learned computational thinking and programming skills in both 

learning groups.   

Research Site and Setting 

 The research site contained two small computer labs on a college campus, with 

15 Apple iMac desktop computers available in each, all connected to the Internet.  Two 

one-week summer Scratch programming camps lasting 5 week days, three hours per 

day each, were administered in these computer labs (Monday-Friday, 10am-2pm). 

Study Participants 

Students.   The student participants for this study were young African American 

novice programmers in elementary and middle school (rising 4th - 8th grade girls and 

boys), ranging in ages 9-13.  Participation solicitation spanned seven days, during which 

the researcher sent an email to several listservs specifically soliciting African American 

families with children who had never programmed before to participate in a free summer 

programming camp, lasting 5 week days, 3 hours per day.  One hundred and forty-one 

families responded with children of all ages.  Forty-eight students were selected 

according to the age and grade criteria.  Participants resided in the local areas around the 

research site and transportation to and from the site was provided by their 

parent/guardian. Of the 48 students selected, 42 participated.  All 6 selected students who 
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did not participate were girls, and they did not participate for varying reasons (lack of 

transportation, family travel, unexpected family emergencies, etc.).   Table 6 below 

illustrates participant details and learning group assignments.   Overall, there were 17 

girls and 25 boys, 20 elementary school students (4th and 5th grade) and 22 middle school 

students (6th, 7th, and 8th grade) who participated. Twenty-two participants were paired 

and assigned to the Communal Learning group.  These assignments deliberately included 

two boy pairings, two girl pairings, and mixed pairings of one boy and one girl.  These 

assignments resulted in 4 pairs of two boys, 4 pairs of two girls, and 3 pairs of a boy and 

a girl, totally 11 boys and 11 girls.  Twenty participants were assigned to the Individual 

Learning group, where 6 were girls and 14 were boys.  The 6 girls who did not participate 

were all assigned to the Individual Group.  There absence resulted in a low amount of girl 

participants.  

 

 

 

 

 

 

 

 

 

 



68 

Table 6 
 

The Distribution of Participants for this Dissertation Study 
 

Grade-Level 
Week One -

Communal Learning 
Group 

Week Two –  
Individual Learning 

Group Total 
Elementary 
School Students 
(4th & 5th grade) 

10  
(4 boys & 6 girls) 

1 boy team,  
2 girl teams,  

2 boy and girl team 

11  
(7 boys & 4 girls) 

 

21 
(11 boys &  

10 girls) 

Middle School 
Students 
(6th, 7th, & 8th 
grade) 

12  
(7 boys & 5 girls) 

3 boy teams,  
2 girl teams,  

1 boy and girl team 

9  
(7 boys & 2 girls) 

21 
(14 boys & 

7 girls) 

Total 22 20 42 
 

Communal learning group description.  Participants in the communal learning 

group were divided into pairs of participants by grade and gender, where there were eight 

pairs with two boys, eight pairs with two girls, and six pairs with a boy and a girl; totally 

11 girls and 11 boys.   Participants in this group totaled 22, 10 in elementary school and 

12 in middle school.  A detailed review of these assignments can be found in the Table 6 

above.  This group was introduced to one another once pair assignments were announced.  

The researcher encouraged introductory activities to facilitate interaction and to make it 

easier for those just meeting each other to be more open to working with one another.   

Once pairs met, middle school participants relocated to their assigned computer lab. It did 

not take long for the researcher to realize that pair assignments were near perfect as 

members of most of the pairs had a great deal in common.  As a result, participants 

enjoyed meeting one another.  So much so, that they were often distracted and spent a 
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great deal of time in conversations related to getting to know each other. Additionally, 

analysis of the audio recordings revealed many conversations that were not relevant to 

the material of the study.  This occurred throughout both weeks of camp with both 

learning groups, but was most prevalent in the communal learning group, where the 

structure of the study encouraged more interaction (i.e. working in pairs).  This behavior 

presented productivity challenges which are described later in Chapter Four – Results and 

Findings.  One boy from the communal learning group could not participate due to an 

emergency after the first day of camp.  His partner is considered to be in the individual 

group for data analysis since he worked alone for the entire week of camp dedicated to 

the communal learning group, while everyone else in this group worked in pairs.  

Figure 5 below features a series of snapshots of participants in Communal 

Learning group (i.e. pairs) in both grade levels.  These snapshots provide illustrations of 

fidelity regarding the implementation of study, where the Communal Learning group 

participants worked in pairs, shared resources and materials, and helped one another. 

Individual learning group description.  There were 20 participants in the 

Individual Learning Group and they were also introduced to one another on the first day 

of week two of camp.  There were 11 elementary school students and nine middle school 

students in this group.  Participant in this learning group did not initially interact with one 

another as much on the first day of camp, as compared to the amount of interaction of the 

pairs in the Communal Learning group on their first day.  However, they did get to know 

one another during lunch and other breaks throughout their week of camp. Many of these 

participants ended up removing their audio recording gear intuitively because they were 
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quiet and not making any sounds.  Figure 6 below features a series of snapshots of 

participants in Individual Learning group in both grade levels.   

Fidelity.  Figures 5 and 6 above show snapshots of participants in the Communal 

and Individual Learning groups working through the Scratch Booklet, with evidence of 

participants sharing resources are present within the Communal Learning groups along 

with evidence showing participants working alone. These provide fidelity regarding the 

implementation of the study. 
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Figure 5.  A series of Communal Learning group pairs working through the Scratch 
Booklet. 
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Figure 6.  A series of Individual Learning group participants working through the Scratch 
Booklet. 
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Researcher.  There was one researcher present during camp.  The role of the 

researcher was to perform silent observations, ensure recording equipment functioned 

and remained positioned properly, and classroom setup.  The researcher also read the 

learning prompts, described below, during appropriate times throughout both weeks of 

camps.  No instruction was given by the researcher with the exception of the first lesson 

about computers.  The purpose of this short lecture was to ensure that everyone 

understood the purpose of the camp, how to use the computers, and important vocabulary 

(e.g. what is software, what is Scratch).  Silent observations included taking field notes.  

The researcher also served as disciplinarian.  

Instructional Materials 

Scratch booklet.  Both weeks of camp used the same instructional material.  This 

material included a printed booklet with 15 units, a personal notebook, and each student 

was asked to create a Scratch account.  While this booklet is literally a 233-page 

textbook, into which additional lessons were added by the researcher, a pdf version 

similar to it and all its supplemental material was created by (Armoni & Ben-Ari, 2013) 

and is made available under a Creative Commons Attribution-NonCommercial-NoDerivs 

3.0 Unported License (Appendix K) and can be downloaded from their website at 

http://stwww.weizmann.ac.il/g-cs/Scratch/Scratch_en.html.  Participants received all 

instruction from reading this booklet throughout camp, which contained Scratch lessons, 

computational thinking concepts, and 175 small programming activities, and is heretofore 

referred to as the Scratch Booklet.  Table 7 below contains a description of each Unit in 

this Scratch Booklet, specifically highlighting the computational thinking and 
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programming skills targeted (sequences, events, loops, conditionals, operators, and 

working with data).  There were a total of 230 pages and 175 programming projects. 

 

Table 7 
 
Description of Units within Scratch Booklet 
 

Unit & 
Pages CT Skill 

Unit Concept & 
Programming 

Activities Description 
One 
(13) 

 Introduction to 
Scratch (5) 

Scratch Interface, Functions (i.e. 
Saving), Programming Vocabulary (i.e. 
Bug) 

Two 
(17) 

 Motion Blocks 
(3) 

Motion Blocks, Stage Coordinates, 
Animation, Programming Vocabulary 
(i.e. Initialization) 

Three 
(8.5) 

Sequences Multiple Sprites 
(6) 

Scripts, Using more than one Sprite, 
Sprite Costumes 

Four 
(12) 

Loops & 
Conditionals 

Short Scripts, 
Long Runs (9) 

REPEAT LOOPS, CONDITIONALS, 
Changing Backgrounds,  Concurrency 

Five  
(9) 

Conditionals Communicating 
Between Sprits 
(20) 

Sending & Receiving Messages, 
Conditional Wait 

Six 
(16.5) 

Conditional 
Loops 

‘On the Dance 
Floor’ (14)  

REPEAT LOOPS continued, 
Conditional Loops, Dance Animation 
Repeated Run Again 

Seven 
(9.5) 

Events Realistic 
Animation (25) 

Changing Costumes, Sound, Nested 
Instructions, Interaction with User 

Eight 
(16) 

Working 
with Data 

Remembering 
Things – 
Variables (35) 

Creating, Initializing, Storing,  Reading, 
& Changing the values of Variables, 
Adding Buttons 

Nine 
(28.5) 

Complex 
Conditionals 

It Depends – 
Conditional 
Runs (14) 

CONDITIONALS: If/Then, 
If/Then/Else, OPERATORS, Changing 
Sprites (brightness, color, hue, etc.) 

Ten  
(29) 

Operators Numbers (18) Stamps, Accumulators, Comparing 
Numbers, Strings, Joining Strings, 
Compound Conditions 

Eleven Working Lists (9) Creating Lists, Entering Content, 
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Unit & 
Pages CT Skill 

Unit Concept & 
Programming 

Activities Description 
(27) with Data Reading a List, Deleting a List, Sprite 

Dialogue; Remembering Complex 
Information 

Twelve 
(21) 

Sequences Concurrent Runs 
(Projects reused) 

Simultaneous execution of blocks 

Thirteen 
(9) 

Working 
with Data 

Abstraction & 
New Blocks 
(Projects reused) 

Abstraction, creating Scratch blocks 

Fourteen 
(11) 

All Game Design (7) Step-by-step guide towards creating a 
game 

Fifteen 
(3) 

 Practices Creating and refining solutions, fixing 
errors, Scratch CT concepts, 
documentation, etc. 

 

 

During camp, each pair within the communal learning group was given one set of 

instructional materials (one instructional booklet, one computer). Each student in the 

individual learning group was given his/her own set of instructional materials.  All 

students (communal or individual) worked through these Scratch Booklets at their own 

pace.   

Table 8 below illustrates the number of pages addressing each CT skill both 

specifically and generally, as a concept. 
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Table 8 
 
The total number of pages dedicated to each of the six CT skills in the Scratch Booklet 
 
CT Skill Pages Dedicated Specifically Overall Total Pages 
Sequences 29.5 197 
Events 9.5 20.5 
Loops 28 55 
Conditionals 66 77 
Operators 29 40 
Working with Data 52 141 
 

 

The Scratch programming environment. The online Scratch Programming 

environment was used throughout both weeks of this summer camp.  Participants created 

and recorded their account names and passwords and used the same account throughout 

the entire camp, saving each program as instructed in the Scratch Booklet.    

Research Constructs and Measured Variables 

 Using the theoretical framework presented above in Chapter One – Introduction 

and illustrated in Figure 1, the research constructs of interest in this study include 

learning group (communal versus individual), learning context preference, and Black 

Academic Identity (BAI), and Scratch computational thinking and programming content 

knowledge.  These constructs are described in detail in Chapter Two – Literature Review.  

These constructs inform the independent variables and their factor levels and the 

dependent variables for this study.  All variables were measured before camp and after 

camp (i.e. pre- and post-tests).  The independent variables were used to implement a 

between-subjects comparison of participants’ Scratch computational thinking and 

programming content knowledge scores between the two learning groups (communal and 
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individual), while the dependent variables were used to implement a within-subjects 

comparison of participants’ learning context preference and BAI before and after camp.   

Data Collection Sources  

All students received four pre-intervention data collection instruments before the 

intervention (summer camp) began.  All instruments were administered online via Google 

Forms. Table 9 below provides an overview of each.  These instruments included:  

1. Prior Computer Experience Questionnaire – This questionnaire 

(Appendix D) obtained information about each participant’s previous computer 

experience.  This questionnaire is a combination of questions taken questionnaires  

with permission (Appendix C) from Grover (2014), Clark, Brandt, Hopkins, & 

Wilhelm (2009), and Clark & Sheridan (2010) also used for the same purpose. 

They each  have been used in previous research studied with middle and high 

school students. 

2. Scratch Computational Thinking and Programming Content 

Knowledge Pre- and Post-Tests. This instrument (Appendix E) includes 25 

questions relating to the six areas of computational thinking attributed to the 

Scratch programming language, namely sequences, loops, events, conditionals, 

operators, and working with data. This questionnaire is used with permission 

(Appendix C) from a similar study conducted previously with middle and high 

school students (Grover 2014).  
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3. The Learning Context Questionnaire – modified (LCQ-m) is a 22-item 

sentence-structure gender-neutral measure of cooperative, individualistic, and 

competitive orientation (Johnson & Norem-Hebeisen, 1979).  Here, it is used to 

measure a student’s learning orientation preference.  The competitive items are 

not used for this study, thus making the scale a 14-item scale (Appendix F). Each 

sentence requires a 4-point likert scale response ranging from 1 “Not at all like 

me” to 4 “Very much like me." to completely false. Examples sentences include: 

"I do better when I work alone" (individualistic orientation) and "It's a good idea 

for students to help each other learn" (cooperative orientation).  This 

questionnaire has been used in this way in all of the previously described 

communal learning studies.  The LCQ-m yielded alpha reliabilities of α = .88 and 

α=0.80 for cooperative orientation and individualistic orientation respectively.  

4. The Black Academic Identity Scale is a 10-item measure (Appendix G) 

that seeks to explain the intersection of racial and academic identity for African 

American students (Anderson & Freeman, 2010).  Each item requires a 5-point 

likert scale response ranging from 1 “Not at all true” to 5 “Completely true.”  

Example statements include: “I think of myself as a Black student, not just a 

student” (Black Academic Identity) and “ I want to show others that Black 

students are smart” (Black Model Phenomenon).  This scale is used with 

permission and has previously been used in research studies with middle school 

and undergraduate college students. 
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5. Opinion Prompts after each unit of instruction. Participants were 

instructed to respond to these prompts, from Cain & Woodward (2013), when 

he/she finished a unit. (Appendix H) 

a. Think about what you have learned in this unit, and reflect on what 

you think were key learning points or incidents. Answer questions 

such as: What did you learn? What do you think was important? What 

did you find interesting? What have you learned that will be valuable 

for you in the future? Which activities helped you most? Has this 

changed the way you think about [computer programming]? Did you 

learn what you wanted/expected to learn? Did you make effective use 

of your time? How could you improve your approach to learning in the 

future?  

6. Notebooks – Throughout the camp, students will be asked to record their 

ideas as well as varying the planned sequence of instructions (i.e. algorithms) for 

each programming activity.  These will be analyzed for evidence of computational 

thinking behaviors and thought processes. 

7. Video recording of the entire classroom.  These video cameras were 

positioned to view and record the entire classroom for the entire duration of each 

day of camp for the communal learning group.  These recordings document 

interaction between pairs to help describe how they work (i.e. who types, when, 

and how often).  Snapshots from these video clips provide still images of the 

participant activities. 
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8. Audio recording of each student with individual microphones recording 

throughout each camp day for the duration of the camp week for both learning 

groups.  These audio recordings will be transcribed and will be used to describe 

students’ overall learning process, the interactions between the pairs, spoken 

thought processes, and questions asked. 

9. Scratch Projects – The actual computational artifacts created with 

Scratch by each student or student pair (in the communal learning group only). 

These projects were assigned within the units of the Scratch Booklet.   

10. Interview - These questions are designed to gather opinions regarding a 

participant’s experience using Scratch as well as their experience in their 

respective learning group.  The questions for this interview (Appendix I)were 

modified from Brennan & Resnick (2012). 

 

Table 9  
 
The Matrix of Pre- and Post-Intervention Data Collection Instruments 
 

Instrument Pre During Post Analysis Research Question 
Prior Computer 
Experience 
Survey 

●   Descriptive 
Statistics, 
Correlation 
Analysis with 
Pre- and Post-
Tests 

None.  Used to describe 
prior computer 
experience. 
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Instrument Pre During Post Analysis Research Question 
Scratch 
Computational 
Thinking and 
Programing 
Content 
Knowledge 

●  ● (Qualitative and 
Quantitative) 
Score 
descriptions and 
comparisons by 
group, grade-
level, pair-type, 
and gender.  
Independent 
Samples t-test, 
between pre- 
and post-test 
scores by 
group. 
 

RQ1: During a summer 
Scratch programming 
camp lasting five week 
days, three hours per 
day, how do young 
African American 
elementary and middle 
school novice 
programmers in a 
Communal Learning 
(CL) context learn and 
use computational 
thinking concepts and 
programming skills 
compared to those in an 
Individual learning (IL) 
context? 

Learning 
Context 
Questionnaire-
modified 

●  ● (Qualitative and 
Quantitative) 
Score 
descriptions and 
comparisons by 
learning group 
via thick 
description and 
paired samples 
t-test. 

RQ2: Is there a change 
in the learning context 
preference of the young 
African American 
elementary and middle 
school novice 
programmers after 
participating in this 
summer Scratch 
programming camp? 
 

Black Academic 
Identity Scale 

●  ● (Quantitative) 
Score 
Comparison by 
learning group 
and grade-level 
via thick 
description and 
paired samples 
t-test. 

RQ3: Is there a change 
in the Black Academic 
Identity of the young 
African American 
elementary and middle 
school novice 
programmers after 
participating in this 
summer Scratch 
programming camp? 
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Instrument Pre During Post Analysis Research Question 
Opinion 
Prompts 

 ●  (Quantitative & 
Qualitative) 
Thematic 
Analysis & 
Frequency 
Count; 
Description and 
comparison by 
learning group, 
grade-level, and 
gender and 
pair-type & 
Cognitive 
Assessment of 
Problem-
Solving and 
Program 
Development 

RQ1: During a summer 
Scratch programming 
camp lasting five week 
days, three hours per 
day, how do young 
African American 
elementary and middle 
school novice 
programmers in a 
Communal Learning 
(CL) context learn and 
use computational 
thinking concepts and 
programming skills 
compared to those in an 
Individual learning (IL) 
context? 

Notebooks  ●  (Qualitative) 
Description and 
comparison of 
computational 
practices by 
grade-level, 
school-level, 
gender, and 
learning group 
& Cognitive 
Assessment of 
Problem-
Solving and 
Program 
Development 

RQ1: During a summer 
Scratch programming 
camp lasting five week 
days, three hours per 
day, how do young 
African American 
elementary and middle 
school novice 
programmers in a 
Communal Learning 
(CL) context learn and 
use computational 
thinking concepts and 
programming skills 
compared to those in an 
Individual learning (IL) 
context? 
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Instrument Pre During Post Analysis Research Question 
Scratch 
Programming 
Projects 

 ●  (Qualitative and 
Quantitative) 
Cognitive 
Assessment of 
Problem-
Solving and 
Program 
Development 

RQ1: During a summer 
Scratch programming 
camp lasting five week 
days, three hours per 
day, how do young 
African American 
elementary and middle 
school novice 
programmers in a 
Communal Learning 
(CL) context learn and 
use computational 
thinking concepts and 
programming skills 
compared to those in an 
Individual learning (IL) 
context? 
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Instrument Pre During Post Analysis Research Question 
Interviews   ● (Qualitative) 

Thematic 
Analysis, 
Description and 
comparison of 
programming 
concepts, 
practices, and 
perspectives by 
gender, grade-
level, school-
level, and 
learning group. 

RQ1: During a summer 
Scratch programming 
camp lasting five week 
days, three hours per 
day, how do young 
African American 
elementary and middle 
school novice 
programmers in a 
Communal Learning 
(CL) context learn and 
use computational 
thinking concepts and 
programming skills 
compared to those in an 
Individual learning (IL) 
context? 
RQ3: Is there a change 
in the Black Academic 
Identity of the young 
African American 
elementary and middle 
school novice 
programmers after 
participating in this 
summer Scratch 
programming camp? 

 

 
 
 
Quasi Experimental Context of Study and Context Learning Prompts 

 In this study, where participants were placed in one of two learning groups 

(communal or individual), each learning group was read learning prompts (Dill & 

Boykin, 2000) in the morning at the beginning of each camp day and then again just after 

lunch before when camp activities resumed.  These prompts were also read just before 
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pre- and post-tests.  These prompts remind students of the importance of his/her learning 

context as it relates to learning computational thinking and programming skills (e.g. 

responsibility to group or responsibility to self).   

 Communal learning prompt.  

Welcome to Day # of camp.  I hope you are engaged in learning how to 

program together.  Scratch is a great tool and a lot of fun to use.  If you 

have a partner, please continue to rely on one another, share camp 

resources as well as what you know.  Be helpful, considerate, and give 

your best to your team.  Your goal as a team is to finish the booklet.  

Therefore encourage each other, stay on task, and do your best.  How well 

you do as a team depends on how much you each take part in the learning 

process.  Please enjoy this learning process but don’t enjoy it so much that 

you are off task.  Remember, you have the freedom to learn and explore as 

much about computer programming and computational thinking as 

possible.  Use this freedom to do your best together as a team.  Does 

everyone understand? I will remain in the room in case you have 

questions.  You may begin.  

 

 This prompt emphasis the nature of communalism and communal learning, 

namely its social orientation, group duty, group identity, and sharing. 
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Individual learning prompt. 
 

Welcome to Day # of camp.  I hope you are engaged in learning how to 

program.  Scratch is a great tool and a lot of fun to use.  For this 

computational thinking and programming lesson, you should work 

individually. Each of you will receive your own materials to use. You will 

be learning <topic for current lesson>. You are to work by yourselves and 

may not help or be helped by others. It is important to learn and work on 

this lesson by yourselves because your performance will be based on what 

you can do on your own. If you have any questions, quietly raise your 

hand and ask me. You will have <time frame in minutes> to study the 

material. There will be a short programming activity after the <time 

frame>, so it is important that you work hard to do your best so you will 

do well. Please enjoy this learning process but don’t enjoy it so much that 

you are off task.  Remember, you have the freedom to learn and explore as 

much about computer programming and computational thinking as 

possible.  Use this freedom to do your best together as a team.  Does 

everyone understand? I will remain in the room in case you have 

questions.  You may begin. 
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This prompt emphasis the nature of individual determination and independence.  

The exact opposite of the communal learning prompt.  These prompts have been 

modified from those in Center for Research on Evaluation Standards and Student Testing 

(2004) to suit the nature and topic of this current study.  Images reflecting observations of 

students following this behavior are provided in Chapter Four – Results & Findings. 

Intervention (Camp) and Data Collection Procedure 

 This study began on a Monday in the middle of the summer and took place 

Monday through Friday, for two consecutive weeks in the middle of the summer.  Camp 

began at 10am and ended at 2pm each day, with a 30 minute lunch break, and small 5-10 

min breaks (with snacks) given when and as often as needed throughout the morning and 

afternoon sessions.   The total time participants spent in learning was approximately 3 

hours a day (for 5 days), for a total of 15 hours for the week.  Week one hosted the 

Communal Learning group, while the Individual Learning group was hosted during week 

two.  The Apple computers, all with 24” screens, in the computer lab were newly 

purchased, relatively fast, and were connected to the institution’s dedicated high speed 

Internet network.    

Participants received all pre-intervention data collection instruments on the first 

day and were asked to respond to each question on all instruments.  The first day of camp 

then began with the researcher providing instructions on how to use the audio recorders 

along with a brief introduction lecture on technology, hardware, software, what it means 

to write a computer program, and introduced the name of the Scratch platform.  

Participants then began reading the booklet through the 15 units booklet, either with their 
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communal partner or individually, according to learning group context.  Students read as 

much of the 15-unit instructional booklet consecutively throughout the 5 days of camp 

and worked at their own pace.  This instructional booklet focused on various concepts of 

computational concepts, computational practices, and computational perspective using 

Scratch. The researcher was only available to answer a minimum number of questions, 

for instance if a participant was confused about booklet instructions.  

The original implementation plan for this study featured all participants in one 

large computer lab as the research site for both weeks of camp.  Unfortunately, the Friday 

before this study began, the computers in the intended computer lab were deemed 

unusable and that weekend, the study was reassigned to another building.  This new 

building did not have one large classroom available that would accommodate all 

participants.  Instead, the study was assigned to two separate smaller computer labs, next 

door to one another.  As a result, the researcher assigned one room for elementary school 

participants and the other for middle school participants for both weeks.  

Once camp was underway, data collection sources during the intervention 

included:  

Participants followed the following learning procedure for each unit.  

1. Introduction - Read about concept  
2. Follow task instructions to implement concept (document ideas, problem-solving 

steps) 
3. Creation Activity using that concept  

a. Program 
b. Test  
c. Debug  
d. Document 

4. Submit response to Opinion Prompt  
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The last activity on the last day of the intervention (camp), the following post-

intervention data collection instruments were used:  

1. Post Content Knowledge 
2. LCQ-m 
3. Black Academic Identity 
4. One the last day of each week of camp, the same instruments used as pre-test 

measures will be used as post-test measures.  See Table 6 above.  
5. Scratch Experience Interview Questions. 

 
Data Analysis Procedure 

 Data analysis of this convergent parallel mixed-method design entailed the use 

both qualitative and quantitative data analysis software packages, namely SPSS and 

NVivo, respectively, and at times, hand coding was also implemented.  Once data 

collection was completed for both weeks of the camp, all data was cleaned and prepared 

for analysis.  The qualitative data analysis methods occurred first and the results were to 

describe the experiences, processes, and outcomes of this study for participants in both 

the communal learning and individual learning groups.  The quantitative data analysis 

methods were preformed next and the results used to determine the statistical 

performance levels of both learning groups by grade-level and gender.  These analysis 

methods are described next. 

Qualitative data analysis.  The qualitative data collected for this study were 

analyzed using a variety of tools and techniques.  These included: 1) the Critical Incident 

Technique (CIT) was used to analyze data collected from the interviews, video and audio 

recordings, and 2) elements of a Cognitive Assessment of participants’ problem-solving 

and program development skills were used to analyze participants’ responses to the 

opinion prompts, notebooks, and Scratch project programming outcomes.   
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The critical incident technique.  CIT is defined as a set of procedures for 

systematically identifying behaviors that contribute to the success of failure of 

individuals in a specific situations (Redmann, Lambrecht & Stitt-Gohdes, 2000).  The 

specific situations of interest here were the two learning contexts to which study 

participants were randomly assigned, namely, the Communal Learning Group, where 

participants were assigned to work in pairs, and the Individual Learning Group, where 

participants worked alone.   

Redmann, Lambrecht and Stitt-Gohdes (2000) highlights the fours steps involved 

in implementing this technique.  They are:  

1. Develop plans and specifications for collecting factual data about the 
situation, 

2. Collect episodes or critical incidents 
3. Identify themes and sort them into categories 
Interpret and report. 

The critical incidents/episodes of interest entailed participant behavior and self-reported 

strategies related to learning Scratch by reading the Scratch Booklet and completing the 

small programming activities (175 total) in each unit, the contents of participants’ 

notebooks, and participant responses to opinion prompts at the end of each Scratch 

Booklet Unit.  Data collection was done via in-person observations by the researcher, end 

of camp interviews, as well as audio and video recordings obtained during both weeks of 

camp.  An audio recorder and a microphone were attached to each participant and a video 

recorder was positioned at the rear of each classroom with as much of the classroom in 

the viewfinder as possible.  Relevant episodes were reviewed for initial patterns using 

data coding methods described by Corbin and Strauss (2008). “Open/Initial” and 
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“Descriptive” coding methods were conducted by hand to document basic topics  data 

which emerged for each information source.  One word or short phrases were used to 

describe what occurred in each critical incident (Saldaña, 2009).  These were followed by 

“process” coding, which was used to make note of simple observable actions (Saldana, 

2009).  These word, short phrases, and actions were then combined in an attempt to 

describe one experience.  Then, “axial coding” was used to refine specific points of 

comparison and were arranged to make descriptions and comparisons align with the 

independent variables involved in quantitative data analysis.  These themes were then 

given to another researcher to review and a face-to-face meeting to develop consensus.   

These themes are discussed in Chapter Four – Results & Findings. 

 Cognitive assessment of participants’ problem-solving and programming skills. 

This assessment is used to provide student process (e.g. skills), product (e.g. code and 

documentation), and self-reporting feedback regarding the use of the Dual Common 

Model for Problem-Solving and Program Development taught in beginner computer 

programming classes at the New Jersey Institute of Technology (Deek, Starr, Kimmel, & 

Rotter, 1999).  The Dual Common Model includes 6 stages of problem-solving and 

program development.  They are: 1) problem formulation, 2) solution planning, 3) 

solution design, 4) solution translation, 5) solution testing, and 6) solution delivery (e.g. 

quality and correctness).  Successful completion of each stage consists of several tasks 

(Deek, Starr, Kimmel, & Rotter, 1999).  Four-point and rubrics are used to score each 

stage, with a total of 20 possible points available.  These rubrics can be found in 
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Appendix J (Deek, Starr, Kimmel, & Rotter, 1999).  The opinion-prompts (Appendix H) 

were used to collect and analyze participant self-reporting feedback. 

 Scratch project analysis.   The total number and types of sprites (i.e. characters) 

and puzzle pieces (i.e. blocks of code) used were counted.  This frequency determines the 

amount of creativity and level of complexity present in each program.  Comparisons 

between learning groups were made based on these attributes. 

Quantitative data analysis.  Scoring of the Computational Thinking and 

Programming Content Knowledge Questionnaire (Pre- & Post-Tests) was performed first.  

It featured a mixture of open ended and multiple-choice questions (Appendix E).  Scoring 

of this pre- and post-tests involved tallying total points for fully correct, partially correct, 

and incorrect responses.  A fully correct responds earned 2 points, while a partially 

correct response earned 1 point.  Incorrect responses earned the participant 0 points.  

Scores and responses for all dependent variable data collection sources (Scratch 

content knowledge, learning context preference, and Black Academic Identity) were 

entered into SPSS for descriptive and inferential statistic analysis. When preparing and 

entering the quantitative data in SPSS, all reverse coding was done on data that required 

it.  Descriptive statistics methods were used to reveal and describe raw scores for Scratch 

content knowledge, learning context preference, and Black Academic Identity.  These 

were followed by inferential methods, namely independent and paired samples t-tests, to 

determine mean differences between the pre- and post-test mean scores.  Score reliability 

calculations were then performed, such as Cronbach’s Alpha and Cohen’s Kappa for 

interrater-reliability.   
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Fidelity, Reliability, and Validity  

 Several strategies were used to ensure fidelity and reliability and to avoid possible 

validity threats.  These strategies include evaluation of study implementation fidelity, 

triangulation, using measurements and questionnaires that have been used previously in 

other studies by other researchers, several reliability statistics, as well as sharing a 

statement on researcher bias.  These strategies are described below. 

Fidelity.  Fidelity is in indicator of how a research study was implemented as 

directed.  To ensure the fidelity of this study’s implementation during each week of 

camp, the researcher followed a script of daily activities and read instructions to 

participants twice each day, ensuring that they understood.  After each week of camp, 

evidence of study fidelity was indicated with the use of video screenshots to provide 

visual evidence of what occurred.  These images aligned with the intended research 

design and activities for each learning group context. Additionally, end of camp 

participant interviews provided indicators of fidelity as participants were asked to 

describe what they liked or disliked about the activities in their learning group.  

Participant in both learning groups described activities that aligned with the intended 

design and activities.   

Triangulation.  Triangulation is the use of several different methods and types of 

data sources to counterbalance and check one another in order to mitigate the potential 

bias of the result of one specific method of data collection instrument.  Triangulation 

helps to support the formulation of a single conclusion along with the opportunity to 

analyze collected data from different perspectives (Kaplan & Maxwell, 2005).  With 
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these objectives in mind, the design of this study included 10 data collection sources to 

understand how participants in both groups learn and used Scratch computational 

thinking and programming skills and how this learning experience impacted their 

learning context preference and Black Academic Identity.  

Data collection instruments.  To help ensure validity of data collected in this 

study, all the data collection instruments have been used in dissertation and other research 

studies prior to this current study.  The authors of these instruments have reported high 

reliability Cronbach’s Alpha Reliability scores and have provided permission for the use 

of these instruments in this study. 

Cronbach’s alpha reliability.  Additionally, the Cronbach’s internal alpha 

(Cron’s Alpha) reliability statistic was run and used to analyze the reliability of the 

resulting instances  of the four pre- and post-Scratch camp scales and questionnaires in 

this study: 1) Pre-Intervention Computer Experience Questionnaire, 2) Scratch Content 

Knowledge (pre- and post-) Questionnaire, 3) the Learning Context Preference Scale, and 

4) the Black Academic Identity scale. 

Interrater reliability.  Two third-party coders were assigned to score the open-

ended questions on the Scratch Content Knowledge Questionnaire.  Both were given 

explanations of the correct answers and with them, scored three participant 

questionnaires, each.  This Cohen’s Kappa, the statistical test for interrater reliability was 

calculated and compared to determine level of scoring agreement.  Once calculated, each 

rater rated another three questionnaires and compared level of agreement until the level 
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of agreement was high.  The Cohen’s Kappa statistical test (Cohen, 1988) was completed 

again to calculate the final level of agreement.  This was done to avoid scoring bias.   

Researcher bias.  The researcher designed this study informed by her passion 

and 16+ year experience of teaching computer science and engineering concepts to PreK-

12th grade students throughout several states.   Most of these students have been African 

American.  A desire to prepare students to become successful computer scientist 

combined with her membership in the CSEd Research Community, the researcher has 

searched for several practical best practices relating to instructional strategies for African 

American students (male and female) over the past several years and quickly noticed a 

gap.  As a result, the researcher did not serve as instructor.  Instead of the researcher’s 

instruction influencing what, how, and how much participants learned, learning was 

allowed to occur according to the self-regulation practices of each participant.  This 

allowed each participant to progress and his/her own pace and according to his/her level 

of understanding.  In this way, the effect of being in a communal learning or individual 

learning group was authentic.  

Regarding the combination of constructs and the design of this study, the 

researcher personally knows the cited researchers who conduct research on culturally 

relevant pedagogy, communal learning, and Black Academic Identity.  They are or have 

been personal friends as well as professional collaborators.  This made it an easy to 

combine these constructs and design this study after anecdotally noticing the potential 

impact of culturally relevant pedagogy on students and their level of performance for 

many years prior. 
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Author’s use of Scratch.  The previous experience that creates the researcher bias 

described above has also positively influenced the design of this study because as a 

result, this multi-year experience has allowed for the obvious identification and selection 

of Scratch as the proven programming environment of choice for beginning 

programmers.   

Summary of Methods 

 The overall aim of this research study was twofold.  The first was to extend the 

body of education research investigating the impact of culturally informed pedagogy, or 

more specifically communal learning, to the teaching and learning of computational 

thinking and programming concepts in an informal learning environment (i.e. summer 

camp), and the second was to provide a rich description of how young novice African 

American programmers learn and apply these skills.  The use of a mixed-methods design 

helped determine which learning context produced the best cognitive performance in 

these areas.  The data collection and analysis methods used were both qualitative and 

quantitative.  Qualitative data analysis techniques included the Critical Incidence 

Technique as well as a Cognitive Assessment of participants’ problem-solving and 

computer program development skills.  Quantitative analysis methods included 

descriptive and inferential statistics.  Issues of fidelity, reliability, and validity were 

addressed throughout.   As such, the study gleaned descriptions of how learning occurred, 

which specific topics were challenging, which were not, along with accounts of how this 

learning environment impacted students based on gender, age/grade level, and who they 
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were paired with (i.e. two girls, two boys, a boy and a girl).   The next chapter shares the 

outcomes of this dissertation study. 
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Chapter Four: Results and Findings 

 This study, implemented during two one-week summer camp, lasting five week 

days, 3 hours per day each, sessions designed to teach the Scratch programming 

language, used an exploratory convergent parallel mixed-method research approach 

towards the empirical investigation of how young African American elementary and 

middle school novice programmers learn computational thinking and programming skills.  

It included a quasi experimental design where 42 participants were conveniently sampled.  

Twenty-two participants were assigned to and worked in a culturally-responsive learning 

context (i.e. the Communal Learning group) and 20 participants were assigned to and 

worked in an individual learning context (i.e. the Individual Learning group).  Each group 

participated in the programming camp for one week (i.e. 5 week days, 3 hours a day of 

learning time).  Computational thinking and programming skills specifically related to the 

visual programming language Scratch were taught and measured via pre- and post- test 

scores.  More specifically, these skills involved programming using: sequences, loops, 

events, conditionals, operators, and working with data – all of which are computational 

thinking and programming skills identified by the creators of Scratch (Brennan & 

Resnick, 2012).  Additionally, this study explored whether or not and to what extent this 

programming camp experience changed participants’ learning context preference and 

Black Academic Identity.  
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The following three research questions guided this study: 

RQ1.  During a summer Scratch programming camp lasting five week days, three 

hours per day, how do young African American elementary and middle school 

novice programmers in a Communal Learning (CL) context learn and use 

computational thinking concepts and programming skills compared to those in an 

Individual learning (IL) context? 

RQ2:  Is there a change in the learning context preference of the young African 

American elementary and middle school novice programmers after participating 

in this summer Scratch programming camp? 

RQ3:  Is there a change in the Black Academic Identity of the young African 

American elementary and middle school novice programmers after participating 

in this summer Scratch programming camp? 

 
Brief descriptions of the information sources and data analysis used to answer these 

questions follow. 

Pre-Test Camp Data Sources  

Before camp began and before pairs and pair-types were shared with participants, 

participants in both learning groups responded to four scales and one Computational 

Thinking & Scratch Content Knowledge (pre-) Test.  These scales included: the 

Cooperative Learning Context Preference scale, the Individualistic Learning Context 

Preference scale, the Black Academic Identity scale, and the Black Model Phenomenon 

scale.  This provided pre-camp scores and measurements for all dependent variables (CT 
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knowledge, cooperative and individualistic learning context preference, black academic 

identity) in preparation for answering RQ1, RQ2 & RQ3.   

During-Camp Data Sources 

 During camp for both learning groups, participants were individually audio 

recorded, wearing their own audio recorder, and a video camera was placed at the back of 

each classroom recording as much of the classroom as possible.  Participants were asked 

to record their thoughts and any other information or drawings related to learning Scratch 

and completing their Scratch projects in their notebooks, and following the completion of 

each unit in the Scratch workbook, participants were asked to submit responses to 

Opinion Prompts about their experience of each unit.  These qualitative information 

sources were used to obtain a rich portrayal of participants experiences in each learning 

to describe and compare the learning experiences of participants in each learning group, 

contributing to the answer of RQ1. 

Post-Test Camp Data Sources 

After having gone through camp, participants in each learning group submitted 

responses to the same scales and Computational Thinking & Scratch Content Knowledge  

(post-) Test.  These data represented the change in all dependent variables (CT 

knowledge, cooperative and individualistic learning context preference, black academic 

identity, and black model phenomenon) in preparation for answering RQ1, RQ2, & RQ3.   

Findings 

This chapter shares descriptions and comparisons of those novice programmers in 

the Communal Learning group with those in the Individual Learning group using the 
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primary independent variables: 1) learning group assignment (communal vs. individual); 

2) grade level; 3) gender; and 4) pair-type (two girls, two boys, and a girl and a boy); and 

the study’s dependent variables in order of the research questions featured above: 1) 

computational thinking and programming skills – overall, sequences, events, loops, 

conditionals, operators, and working with data; 2) learning context preference (scale); 

and 3) Black Academic Identity.  The chapter begins with descriptions of research setting 

and learning group dynamics and shares descriptive statistics of the study’s participants 

based on the Pre-Camp Computer Experience Questionnaire (Appendix D) asking about 

their academic and prior computer experiences along with their career goals.  

Qualitative data analyses are then shared to help answer RQ1.  These include rich 

descriptions and comparisons of communal and individual learning experiences through 

lenses of participant behavior, their experiences and thoughts about the Scratch Booklet, 

their strategies used for booklet completion, problem-solving and programming skills 

assessments using the contents of their notebooks, resulting Scratch projects, and 

responses to end-of-unit opinion prompts, audio and video recordings, and responses to 

end-of-camp interview questions.  Subsequently, quantitative data results to help answer 

RQ1, RQ2, and RQ3 are shared in the form of descriptive statistics followed by 

inferential statistics.  All three research questions are then explicitly answered and the 

chapter ends with a summary of the findings. 

Resulting Sample Description 

Sample description based on prior experience questionnaire.  Of the 42 

participants in this study (25 were boys and 17 were girls), most of the participants 
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(76.2%) were African-American/Black while, none were Caucasian-American/White.  

Race and ethnicity data was missing for 3 participants.  The remaining 12% considered 

themselves to be Latino-American, African, Native-American, and Bi-racial.  Detailed 

race/ethnicity data are shown in Table 10 below.  There were 21 elementary school 

student (eleven 4th graders,  ten 5th graders) and 21 middle school students (ten 6th 

graders, seven 7th graders, and five 8th graders).  See Table 6 for more population details. 

Participants met for the first time on the first day of camp each week, unless they 

were a part of the same family.  Many participants in both groups were related, either 

siblings or cousins.  All participants seemed excited to be in a computer programming 

camp and to help with the research study.  Twenty-two (22) participants were assigned to 

the communal learning group and 20 were assigned to the individual learning group. 
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Table 10 
 
Descriptive Statistics of the Population in this study 
 
Independent Variables N Percentage  
Male 25 40.5 
Female 17 59.5 
African-American/Black 32 76.2 
African 1 2.4 
Latino-American 1 2.4 
Native-American 1 2.4 
Bi-racial 2 4.8 
Caucasian 0 0 
Elementary School 21 50 
Middle School 21 50 
Communal 22 52.4 
Individual 20 47.6 
Pairs of Two Boys 8 19.0 
Pairs of Two Girls 8 19.0 
Pairs of a Boy & a Girl 6 14.3 
Individuals 20 47.6 
 
 
 
Academic and Computer-Related Experience Prior to Camp 

 A prior experience questionnaire was given to each participant on the first 

morning of camp for each group.  This questionnaire asked questions regarding 

participant academic experience, prior computer-related experience, and future career 

goals.  The results of this questionnaire are described below. 

Academic experience.  Self-reported responses to the Prior Computer Experience 

Questionnaire (Appendix indicate that 42.9% (18) of the participants had an A grade 

point average, 38.1% (16) had a B grade point average, and 11% (5) had a C grade point 

average or below.  Eighty-three percent (83.3%) expressed an interest in attending 

college, while 59.5% reported that they would like to obtain an advanced (graduate) 
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degree.  Eighty-eight percent (88.1%) have a computer at home, but only 81% use them.  

A slightly lower amount (78.6%) use computers at school.   

 

Table 11 
 
Self-Reported Characteristics of the Population in this study (N = 42) 
 
Participant Characteristics N Percentage  Missing 
Grade point average (GPA)   3 

3.5 – 4.0 18 46.2  
2.5 – 3.4 16 41.0  
Below 2.5 5 12.8  

Have a computer at home 37 94.9 3 
Uses computer at home 34 87.2  3 
Uses computer at school 33 84.6  3 
Desires to go to college 35 89.7   
Desires to get an advanced degree 25 64.1   
Taken an online course 29 74.4  3 
Uses computer to create, outside of school 28 71.8 3 
Never programmed before this study 23 60.0 3 
Level of Expertise in Scratch   3 

I don’t know what this is and have never used it 19 48.7  
I have no experience but I have heard of it  6 15.4  
I've played around with it 4 10.3  
I have used it to make something 8 20.5  
I am an expert and can teach others how to use it 2 05.1  

Desired (Technology-Based) Careers  
(“Interests Me A lot”) 

  3 

Engineer 10 25.7  
Game Designer 11 28.2  
Technology Specialist 10 25.7  
Web Developer 5 12.8  
Mathematician 6 15.4  
Computer Scientist 6 15.4  
Software Developer 7 17.9  

STEM-Related Favorite School Subject   3 
Math 11 26.2  
Science 7 16.7  

Math & Science 2 4.8  
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 Computer-related experience.  Sixty-nine percent (69%) of the participants had 

taken an online course and 66% used computers to create digital media projects outside 

of school.  Fifty-four percent had never programmed and 45% had never heard of Scratch 

before this study.  The remaining participants had at least heard of Scratch, while some 

reported having played around with it and actually creating something with it.  

Approximately one quarter reported that their favorite subject in school was either math 

or science.  Of the five choices indicating interest in future career options (“I don’t know 

what this job is,” “It does not interest me,” “It interests me just a little,” and “It interests 

me a lot”), the top three careers that received a rating of “It interests me a lot” were Game 

Designer (28% of participants), Engineer (25% of participants), and Technology 

Specialist (25% of participants).   The second highest ratings for career interests included 

Web Developer (12.8%), Mathematician, Computer Scientist, and Software Developer 

Table 11 above shares these self-reported participant characteristics and more in detail.  

Camp officially began after students submitted their responses to the participant 

questionnaire about their academic and computer-related experience prior to camp, 

described above, along with the three pre-tests data collection instruments, namely for 

Scratch Content Knowledge, the modified Learning Context Questionnaire (LCQ-m) and 

the Black Academic Identity (BAI) scale.  The researcher began both weeks of camp with 

explanations of how to use the audio recorders and a brief introductory lesson to ensure 

that all students began camp with a similar understanding of computer hardware, 

computer software, computer programming, programming/coding (writing computer 

code), and code, the final result of programming.  This was the only time the researcher 
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acted as instructor.  After this introductory lesson, participants the video cameras and 

audio recorders were set to record and participants began reading their Scratch Booklet 

for all subsequent instructional lessons. 

Qualitative Data Analysis: Camp Experience 

 The qualitative information sources (i.e. notebooks, audio and video 

recordings, end-of-unit opinion prompts, Scratch projects, and end-of-camp interviews) 

were used to collect data and used the resulting data analyses to describe and compare 

how young African American elementary and middle school novice programmers (i.e. 

participants) in the Communal Learning context learn and use computational thinking 

and programming the same to those in the Individual Learning context.  As a result of the 

initial/open and process coding methods described in Chapter Three – Methods, 

perspective of analyses include: behavior,  Scratch Booklet and Unit completion, 

Notebooks, Scratch Projects, and Cognitive Assessments of Problem-Solving and 

Program Development, and Resulting Scratch Projects.  The following sections describe 

qualitative data analyses from used to answer RQ1: 

RQ1.  During a summer Scratch programming camp lasting five week days, three 

hours per day, how do young African American elementary and middle school 

novice programmers in a Communal Learning (CL) context learn and use 

computational thinking concepts and programming skills compared to those in an 

Individual learning (IL) context? 

 
Behavior.  Although not a planned measurement in the design of this study, it is 

worth noting behavior, as it often impacted each day of this study.  As a result of study 
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implementation occurring in two computer labs as opposed to one, as originally planned, 

managing behavior in both rooms simultaneously became an issue, especially since the 

building and computer lab reassignment came too late for the researcher to recruit and 

secure a inter to help manage one of the computer labs.   

Most notably, the boys in the Communal Learning group experienced the largest 

amount of and the most profound behavioral challenges.  The behavior exhibited by the 

boys in this learning group was a mixture of simply being unfocused or off-task along 

with what is  consistent with the ways in which Black male adolescents are described in 

classroom environments by other researchers who use characterizations called hegemonic 

masculinity, an aggressive and competitive behavior, and at times includes oppositional 

and confrontational behavior (Connell & Messerschmidt, 2005).  In fact, hegemonic 

masculinity behavior was exhibited and the researcher had to break up a physical 

altercation between a boy pair in the middle school during lunch on the third day of 

camp.  This altercation disrupted focus for many participants in the middle school for the 

remainder of the day and resulted in pairs being reassigned for the remainder of the study.  

Each middle school boy was the paired with a middle school girl.  This disrupted the 

middle school girl pairings.  One girl pair in particular was having its own set of 

challenges as one girl claimed to be doing all the work, while the other girl did nothing 

but watch YouTube videos.  The girl doing all the work made this complaint apparent 

through tears during lunch on the second day of camp.  Another middle school boy 

participant in the communal learning group often changed the angle of the video camera, 

in an attempt to make the others in the room laugh.  Unfortunately, these daily changes in 
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camera angle, although often eventually corrected by the researcher, presented data 

collection challenges from this information source.  Nonetheless, the daily angle changes 

ceased once the researcher spoke with this middle school boy participant about his 

actions and how important it was for him to stop. 

Another behavioral issue which commonly occurred with all student was simply 

being off task.  The temptation to play games on the relatively new, fast, computers 

connected to the institution’s high speed internet network was the largest and most 

frequent behavioral distraction for all participants in both learning groups.  These types of 

(mis)behaviors occurred most often after the lunch break, when all participants when 

outside in front of the building to each lunch and play.  The researcher redirected 

participants back to focusing on the study material often and daily.     

 

 

 

Figure 7. Middle School participants in the Communal Learning Group off-task. 
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Figure 7 above shows an example of middle school participants in the Communal 

Learning Group either watching YouTube videos or playing a game during a time when 

they should be working to complete the Scratch Booklets in pairs.  Participants are not 

following instructions in this snapshot.  One of these huddled participants has left the girl 

in the upper right corner to work alone.  This experience could potentially lead her to 

believe that it is better to work alone than in a group.  This proposition directly connects 

to the results of the learning context questionnaire described later in this chapter. 

The elementary boys in the communal learning group especially attempted to play 

games several times throughout the study, and as a result were often off-task.  Computer 

game playing was the largest disruption (relating and not relating to Scratch) in the 

computer lab designated for elementary school participants.  Additionally, excitement 

caused by a discovery within Scratch could be described as the second largest classroom 

disruption.  For instance, while learning about and exploring the different drum sounds, 

one elementary school boy participant stood up and began performing a popular dance.  

His dancing caused everyone in this computer lab to look, laugh, and even attempt to join 

him.  On one hand, this can be considered a classroom distraction or disruption, while on 

the other, it can be viewed as this participant tapping into other cultural elements of the 

Black Cultural Ethos described in the literature review presented above.  The cultural 

elements of Movement – rhythm of everyday life, Verve – intense stimulation, action, 

colorfulness, Affect – premium on feelings, expression, and Expressive individualism – 

distinct, genuine, and personal - all apply.  These cultural elements may have also come 

into play when an elementary school boy participant stood up during the post-Scratch 
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content knowledge test and used his own physical steps to help solve one of the post-test 

problems related to the ‘move’ block and referred to a series ‘steps’ taken by a Scratch 

sprite (see Figure 8 below).  This movement and use of ones body is also often referred to 

as embodied cognition, the idea that the body influences the mind, and cognitions arise 

from bodily interactions with the environment (Jimenez, 1912) and can potentially be 

closely related to the use of various elements of the Black Cultural Ethos as a way of 

knowing. 

 

 

 

Figure 8. Elementary school boy using embodied cognition to help respond  
to a post-test question. 

 

 

Nonetheless, to help maintain ideal study implementation and when behavioral 

issues became profound, the researcher resorted to contacting parents if/when participant 

behavior reached an unbearable level.  Parent support was strong.  With the support of 

parents, the researcher also warned participants that if their misbehavior continued, they 
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would no longer be allowed to participate. One day, a parent of an elementary boy 

participant reassured the researcher that after appropriate communication between she 

and her son the night before, there would be no more behavioral issues for the duration of 

the camp.  This reassurance proved to be true.   

The one boy & one girl pair type in the communal learning group experienced 

less severe behavioral issues, which often ceased after being told once or twice by the 

researcher and/or the researcher made contact with one of the pair participant’s 

parents/guardians.  The girls in the communal learning group were extremely excited to 

meet one another and find so much in common with their assigned partner.  This often 

resulted in the girls talking about topics unrelated to camp and were often reminded to get 

back and/or stay on task.  The elementary girl participants in the communal learning 

group and all girl participants in the individual learning group were engaged in each unit 

and presented no behavioral issues.  As a matter of fact, on many days, several of the 

elementary girl participants stayed after camp to work on their Scratch projects more, 

while waiting to be picked up by a parent or guardian.   

The boys in the individual learning group did not present many major behavioral 

challenges either.  There were no instances of cool pose or hegemonic masculinity 

behavior. Nonetheless, however, the boys in this learning group were often off-task 

playing games, watching YouTube clips using their assigned headphones (after taking 

them out of their assigned audio recorders), or simply playing around and joking with one 

another.  In contrast, the girls in the Individual Learning group did not seem to be as 

tempted to play computer games, or at least they did not get caught doing so. 



112 

 

 

 

Figure 9. A screenshot of a Communal Learning group pair celebration. 

 

Subsequently, not all behavior provided evidence of distractions.  Audio 

recordings reveal that many communal learning pairs were engaged in their work, used a 

variety of strategies to progress through the booklet, including: 1) taking turns reading, 

by page and sometimes by paragraph, 2) one partner reads aloud to the other, while the 

other partner is either listening or maneuvering the mouse working within the Scratch 

development environment, and 3) each partner reading the material for him/herself and 

then allowing his/her partner to read the same content.  Additionally, many pairs in the 

communal learning group celebrated as they progressed through the Scratch Booklet. See 

figure 9 above.  Many of the participants in the individual learning group did not read 
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aloud, so it was difficult to determine their strategies for progressing through the Booklet 

and if they celebrated their accomplishments while at camp. 

Scratch booklet and unit completion.  The Scratch Booklet served as the source 

of instructional material for all computational thinking and programming content.  

Participants had to read the book to get computational thinking descriptions and work 

through programming examples and explanations.  There were 15 units in the Scratch 

Booklet (see Table 7 for more Scratch Booklet details).  After the booklet’s introductory 

chapter, participants were instructed, by written instructions in the Booklet, to skip to 

Unit 15.  There, participants read about computational thinking skills in general, 

programming, fixing errors, the importance of documenting and writing notes, and other 

behaviors associated with being a programmer.  Once complete, participants were 

instructed to continue with Unit One and to try his/her best to progress to and finish Unit 

14, where instructions were presented to create a game.  The average number of units 

completed by participants in both learning groups was four (approximately 60 pages), 

although participants in the communal learning group progressed a bit farther in unit 4 

than participants in the individual learning group.  This equates to about four pages per 

hour for the duration of the camp. 

Participants were instructed and reminded to respond to the ‘Opinion Prompts’ 

(Appendix G) after completing each unit.  However, the data collected from this form 

indicates that not all participants remembered or chose to complete this form after each 

unit.  As a result, it cannot be determined if participant completed each unit and decided 

against or forgot to respond to opinion prompts or if participants skipped some units.  It 
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could also be the case that some of the pairs in the Communal Learning Group responded 

to the ‘Opinion Prompts’ together.  As such, this analysis is of the 29 of 42 participants 

who responded, 18 of 22 respondents in the Communal Learning Group and 11 of 20 

respondents in the Individualistic Learning Group.  It should also be noted not all 

participants who responded, submitted responses for each unit.  Table 7 above lists and 

describes each unit in the Scratch Booklet. 

 Provided that no units were skipped, the highest average unit completed by 

participants in both learning groups was Unit Four (Loops).   However, the distribution of 

units completed by each learning group vary, with 14 of the 18 participants who 

responded from the Communal Learning group completing between Units Four (Loops & 

Conditionals) through Unit Six (Conditional Loops), while only two of the participants in 

the Individualistic Learning Group completed Units Nine (Complex Conditionals) and 

Units 10 (Operators) and seven of the 11 respondents to the ‘Opinion Prompts’  in the 

Individualistic Learning Group only completing up to Unit Three (Sequences).  The 

highest units completed in each learning group were Unit 10 (Operators) in the 

Individualistic Group and Unit Eight (Working with Data) in the Communal Group.    

The number of participants who responded within each group is evenly distributed for 

both boys and girls, pair-types, elementary, and middle school respondents. 

Looking at grade-level, the middle school participants in both learning group 

completed more than half of Unit Five, with the middle school participants in the 

individual learning group completed slightly more units (4.8 units) than the middle 

school students in the communal learning group (4.5 units).  Of those in both grade-levels 
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in the communal learning group, the pair of boys and the girl & boy pair completed the 

most.  The middle school two girls pair-type completed the least units of all (three units), 

while the elementary school 2 girls pair-type completed 3.5 units.  Of those in the 

individual learning group the elementary school participants completed the least amount 

of unit (3.5 units) compared to the middle school participants (4.8 units).  

Nonetheless, many participants were honest about how they spent their time.  One 

opinion prompt question asked at the completion each unit was, “Did you make the best 

use of your time to learn during this unit?,” one middle school girl in the communal 

learning group responded, “no. we spent most of our time goofing.”   

A middle boy in the communal learning group responded, “yes I sometime focus 

sometimes played around but yes.” 

An elementary school girl responded, “I think I could have gone faster if I paid 

attention more.” 

It should be noted that for the most part, participants in both learning groups responded to 

this opinion-prompt question with, “yes.” 

When asked to describe strategies used to read through and complete each unit, 

the boys  in the communal learning group could not provide a detailed description.  The 

most common response provided by boys and the two boys pair-type in this learning 

group related to the speed at which they worked. 

An elementary boy often replied, “slow and steady,” for each unit while others 

remarked, “work fast” or “work hard” or “we worked fast at first, but then we went back 

and did it slow. slow and steady wins the race! :-)” 
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The most common response given by the one boy & one girl pair-type was, “take 

turns” or “Our strategy was to take turn reading paragraphs.” 

The girls provided the most descriptive details about strategies used, “we took 

turns reading page by page, and after we'd read all the material we did the stuff 

instructed. then we goofed till snack.” 

 

 

 
 
Figure 10. Elementary school Communal Learning Boy & Girl Pair taking turns 
controlling the computer from one day to the next. 

 

 

Figure 10 above depicts an elementary school communal learning boy and girl 

pair taking turns controlling the mouse as they read through the Scratch Booklet.  It is 

worth noting that the girl in Figure 10 has the book on both days and seems to have read 

the entire time. They verbally agreed to this strategy.  Participants in the individual 

learning group simply described their strategy as reading and trying the activities as they 

progressed.  This strategy was shared in the written responses as well as the interviews. 
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When asked what did the participant find hard or challenging after each unit, three 

response themes dominated for the Communal Learning group overall: 

1. Nothing 
2. Getting the sprites to work interactively 
3. My partner 

 
The Individualistic Learning group indicated these themes in their responses most often: 
 

1. Nothing 
2. Getting the sprite to move/rotate 

 
The audio recordings from day to day provide insight into the reading abilities of each 

participant.  Study participants in both learning groups sound as if they could have 

challenges reading.  Some read extremely slow, while others seem to read words without 

full comprehension. 

Notebooks and problem-solving and program development assessment.   

Individual notebooks were given to each participant on the first day of camp for each 

learning group.  These were made available for use at the discretion of each participant.  

Participants were told they could scribble, draw, write notes related to what they were 

reading, topics they wanted to remember, ideas for Scratch projects, and/or problem 

solving information.   Most participants in both learning groups took notes during the 

introduction to Scratch slideshow presentation and discussion and then wrote a few lines 

of notes from Unit One but did not continue to write in their notebooks.  The keyword 

that appeared the most in notes was ‘Initialization,’ which was very often spelled 

incorrectly, along with the dimensions of the Scratch stage, which varied from participant 

to participant.  Some indicated 180x180 pixels while others indicated 240x240 pixels.  
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The actual dimensions of the Scratch stage is 240x360, but it is referred to as a square 

with coordinates of the x & y positions of each point in the square, with the lower left 

coordinates of  x = -240, y -180 and the upper right coordinate of x = 240, y = 180.  Some 

participants used their notebooks to draw but did not indicate the purpose of the 

drawings, although many seem related to some type of Scratch project. Figure # features 

a series of photos of pages from participant notes.  Ninety percent of all participants only 

wrote notes similar to the above description.  The other 10% also included notes from the 

introductory session given by the researcher to ensure everyone started camp hearing the 

basic definitions hardware, software, programming/coding, and other related concepts 

previously described.   
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Figure 11.  A Series of 7 notebook entries about Initialization and Scratch Stage size.  
 

 

It is unclear why the participants who wrote this set and only this set of notes in their 

notebooks.  Of those who wrote these notes, none wrote anything else.  It is worth noting 

that many had difficulties spelling ‘initialization’ even though the word is written in the 

Scratch Booklet.   See figure 11 above. 

Cognitive assessment of participants’ problem-solving and program 

development. The content of the figures above illustrate the only content written in the 
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notebook.  As  a result, the scores on the Cognitive Assessment scores for Formulating 

the Problem (4), Planning the Solution (4), and Designing the Solution (4) (e.g. the 

Process) were zero out of 12 points for all participants in both the Communal Learning 

and the Individual Learning Groups.  These scores illustrate that all participants learned 

little to no problem-solving and program development skills.  These skills are closely 

related to computational thinking skills.  The assessment scores for the Product (i.e. 

Solution Efficiency (2), Solution Reliability (2), Solution Readability (2), and Solution 

Correctness(2)) were no more than four out of a total possible eight points and are low 

assessment scores.  Evidence of these scores is featured the next section – Resulting 

Scratch Projects.   

 Resulting Scratch projects.   Throughout the Scratch Booklet, all participants 

were encouraged to create various Scratch projects.  These projects included: a) worked 

examples in the Scratch Booklet that can be used and remixed by participants (these were 

created ahead of time by the researcher and stored in a Scratch studio located at 

https://Scratch.mit.edu/studios/1428272/ and made available to each participant on the 

camp’s website), b) original Scratch projects created by study participants at will, and c) 

projects throughout the Scratch website shared by other Scratchers available for remixing 

by participants.  Participants in both learning groups were encouraged to share their 

projects, as viewing and analysis of projects that are not shared is not feasible.  

Unfortunately, many participants in both learning groups did not share their projects, 

despite several daily reminders and encouragement from the researcher.  It is unclear if 

the reason for not sharing was because participants forgot to share or did not want to 
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share their projects.  The screenshots featured here were selected from those participants 

in both learning groups who shared their projects on Scratch. 

Previous projects created and shared by the researcher.  Of the Scratch projects 

created previously by the researcher and made available for participants in either learning 

group to remix, none were remixed more than once.  The ‘cat-meets-dog’ project was 

viewed the most (15 times) and remixed twice.  This project is featured in Unit Three and 

illustrates how to move two sprites (characters) around the stage autonomously when the 

green flag is clicked, using ‘glide’ ‘point in direction’ and ‘go to’ command blocks.  

Figure 12 below is a screenshot of ‘cat-meets-dog.’ 

 

 
 

Figure 12.  Screenshot of Scratch project ‘cat-meets-dog’ (sprite motion instruction). 
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The least viewed available Scratch project created by the researcher was ‘get-bone2.’  It 

was viewed twice and never remixed and is featured in Unit Five.  The shared Scratch 

project created by the researcher called ‘get-bone2’ illustrates how to communicate 

between sprites using messages, features a forever loop, sprite movement, and sensing, 

which is used to determine when a sprite is touched by another sprite. In this case, the 

dogs race to get the bone.  Figure 13 below is a screenshot of ‘get-bone2.’ 

 

 
 

Figure 13.  Screenshot of Scratch project ‘get-bone2’ (communication, movement, 
sensing). 
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Since these projects were the most and least viewed and are featured in Unit Three and 

Unit Five respectively, this totals supports unit completion by at least 15 participants was 

up to Unit Three and at most Unit Five.  This is consistent with the average Scratch 

Booklet unit completion reported by all study participants. 

 Further analysis of end-of-camp interview questions reveal that many participants 

in both learning groups were not yet aware of the remixing feature and the ability to 

remix these projects previously created by the researcher.  Instead, they simply showed 

the researcher’s project on one screen and recreated it on another.  One example of this is 

‘BowRace’ created by a one boy & one girl pair in the communal learning group.  This 

pair copied the ‘get-bone2’ project with their own sprites.  Doing so took more time than 

what may have been needed to simply remix ‘get-bone2,’ especially since this pair added 

more dialogue via sprite communication and messaging.  These additions can be seen in 

figure 14.below, a screenshot of ‘BowRace.’ 
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Figure 14.  Screenshot of ‘BowRace’ a unique Remix of Scratch Booklet project. 

 

 

 Original Scratch creations.  Scratch projects that were original creations by 

study participants most often contained one or two sprites and less than five program 

blocks.  These were the most common levels of complexity (not at all) of all resulting 

Scratch projects.  Many of these program blocks were from the motion category and/or 

the looks category and were used in an attempt to move at least one sprite and/or make it 

appear to say or think something.  Figure 15 below illustrates several examples of these 

types of projects from participants in both learning groups. 
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Figure 15.  A series of 6 Scratch projects with minimal sprites and program blocks. 

 



131 

This occurrence supports “getting the sprite to move (interactively)” as one of the top 

most challenging features of Scratch reported by participants in both learning groups, as 

described above.   

 Complex Scratch projects.  Participants specifically in the one boy & one girl 

pair type and the two girls pair type created the most complex original Scratch projects of 

all study participants.  One example of a comparatively complex Scratch project is ‘relay 

race 1’ by an elementary one boy & one girl pair-type.  This project features four sprites 

and a background with interactive events, movement, sensing, conditionals, and looks 

(dialogue) and can be seen in figure 16 below.  Another relatively complex Scratch 

project created by a middle school communal learning pair of two girls is ‘shark meets 

ghost fish.’  This project features seven sprites and a background with events, movement, 

sound, and looks (dialogue).  It also seems to be a creative extension of ‘cat-meets-dog’ 

created by the researcher for demonstration purposes and described above.  Figure 17 

below is a screenshot ‘shark meets ghost fish.’   
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Figure 16. Example of a complex Scratch project called ‘relay race 1.’ 

 

 

 

Figure 17. Example of a complex Scratch project called ‘shark meets ghost fish.’ 
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Remixes of other Scratchers’ projects.   Another common occurrence regarding 

the type of Scratch projects created is those remixed from shared projects created by 

other Scratchers in the Scratch community.  This was done by all participants in the 

study, regardless of learning group.   

Creativity and art.  Another category of Scratch projects originally created by 

study participants includes those which were high in artistic ability and/or creative 

expression.  These projects demonstrate other features of the Scratch programming 

language and illustrate that some participants spent a great deal of time drawing within 

Scratch.  Figure 18 below shows a middle school boy participant who was assigned to a 

middle school boy pair in the communal learning group.  He wanted to make a Super 

Mario game in Scratch and chose to spend a considerable amount of time drawing Mario.  

The researcher postulates the reason his partner is not seen in the screenshot is because he 

may have been disengaged due to the amount of time this participant spent drawing and 

creating.  These phenomenon are connected to the performance of the middle school two 

boy pair-type in the communal learning group, described above and referred to again  

below (i.e. Unit completion and Scratch content knowledge pre- and post-test scores). 
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Figure 18. Participant drawing a Super Mario character for his Scratch project. 
 

 

End-of-camp interviews.  One the last day of each week of camp, the researcher 

selected a few participants to interview.  The interview questions can be found in 

Appendix H.  One participant from each of the independent variables in this study were 

selected for interviewing (one elementary school girl participant from each pair-type 

containing girls in  learning group, one elementary boy participant from each pair-type 

containing boys in learning group, one middle school girl participant from each pair-type 

containing girls in the learning group, and one middle school boy participant from each 

pair-type containing boys in the learning group, one elementary girl and one middle 

school from the individual learning group and one elementary and one middle school boy 

from the individual learning group.  This totaled 12 interviewees.  The levels of 

engagement and behavior issues experienced by these participants vary.  Most of the 

participants interviewed said they would go back and read any sections pertaining to 
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Scratch concepts on which they were stuck in an attempt to solve a problem and get 

‘unstuck.’  The Scratch community feature used most often by these participants was the 

remixing function.  Only a few had actually commented on Scratch project.  Participants 

really enjoyed learning Scratch and seemed to list several likeable features of Scratch.  

These include “the ability to create anything you want,” “the ability to look at other 

projects to see what is possible,” “the fact that you can start programming even if you 

have don’t know how,” and “the ability to remix other people’s projects.”  When asked 

what was disliked about Scratch, two very interesting responses were given, “that you 

can’t tell which is a good project that works and which is a bad project that doesn’t until 

you spend time looking or remixing it,” and “that Scratch doesn’t have one path for 

beginners and another for more advanced users once you login.”  The researcher views 

these responses as thoughtful and engaging responses regarding the Scratch development 

environment overall.  These dislikes resulted into suggestions for changes to Scratch.  

The conclusion at the end of camp for those in the communal learning group was that 

they like working with their partner overall, although it should be noted that one of the 

top three challenges experienced by participants in the communal learning group was “my 

partner.”  Overall students enjoyed reading the Scratch Booklet, regardless of learning 

group assignment, while some suggested a preference of a mixture of Booklet and 

teacher/facilitator for optimal teaching and learning of computational thinking skills.  

However, audio recordings suggest that many participants had trouble reading.  Perhaps 

those participants who enjoyed reading the Scratch Booklet are not aware of any reading 

or comprehension challenges they may have.  Nonetheless, all participants interviewed 
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found value in learning to program, while only some of the older participants found and 

described a connection between being a young black <girl/boy> and doing well while 

learning to program in Scratch.  Additionally, while none of those interviewed logged 

into Scratch during the week of camp, all of them said they would login now that camp 

was over. 

Summary of Qualitative Data Regarding Camp Experience 

 Overall student engagement in camp and in learning to program with Scratch was 

relatively high for all participants despite the fact that this study took place in the middle 

of their summer vacation.  Behavioral issues by elementary and middle school boys in 

both learning groups caused major distractions throughout camp, however.  Additionally, 

all participants were tempted to play games on a daily basis, which cause the second 

largest amount of distractions and behavioral challenges.  Girls who made up the two 

girls pair-type in the communal learning group and girls in the individual learning group 

were the most engaged and on-task of all participant pair-types.  This was the most 

profound distinction between all pair types and learning group participants.  However, 

despite this seemingly high level of engagement, Scratch Booklet Unit completion was 

relatively low, with an average of four Units completed by everyone, regardless of 

learning group.  This suggested a page reading speed of four pages per hour.  As such, 

most participants were only able to attempt programming projects that involved creating 

sprites, moving them, and attempting to make them interact with one another (e.g. 

dialogue).   
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While attempting to complete the Units in the Scratch Booklet and their 

accompanying Scratch projects, no participant managed to show evidence of performing 

and problem-solving and program development skills.  No participant recorded evidence 

of going through the process stages for the Dual Common Model for problem-solving 

and program development (Deek, Starr, Kimmel, & Rotter, 1999) of Formulating the 

Problem, Planning the Solution, and Designing the Solution. Attempting to make sprites 

interact with one another was expressed as one of the top three Scratch challenges by 

participants in both learning groups and Scratch projects with only a few sprites and little 

to no programming blocks were the most common resulting project type.  Other Scratch 

projects types included: 1) the attempt to make more complex projects using program 

blocks that specifically speak to the computational thinking and programming skills 

targeted in this study (sequences, events, loops, conditionals, operators, and working with 

data), 2) projects that were remixed by other Scratchers in the Scratch community that 

were not related to this study, and 3) extremely creative and art-based projects where 

participants spent a considerable amount of time drawing and creating their own sprites.  

One interesting project type that emerged was created by those participants who did not 

understand from the reading that example projects in the Scratch Booklet were already 

created, stored in a Scratch studio, and available for their use as they work through 

examples in the book.  As a result, instead of remixing these available projects, 

participants opened them on one computer screen and recreated them originally using 

another computer.   These resulting projects allowed for students to select their own 



138 

sprites and add more complexity to the project.  While these projects can still be 

considered remixes, they are a new type of remix not often discussed in the literature. 

 Learning group comparisons.  Overall, comparisons between the communal 

learning group and the individual learning group can be made in two areas: 1) Scratch 

projects and 2) learning process/behavior.  These comparison details are share below. 

  Regarding the completion of Scratch projects, the two learning groups were 

similar in that both groups completed up to a little more than Unit four (Loops) of the 

Scratch booklet and no one wrote in the notebooks in an effort to problem-solve, 

brainstorm, plan, or design.  Differences between the two learning groups specifically 

focused on liking to read, preference for method of learning Scratch should there be a 

next time, what they found challenging in Scratch, and creativity and complexity of the 

resulting projects.  The communal learning groups liked to read, by generally read slow, 

where as the individual learning group did not like to read.  If there was a next session of 

Scratch camp, those in the communal learning group preferred to have both a teacher and 

use of the Scratch booklet, whereas the those in the individual learning group generally 

preferred a teacher and no book.  Participants in the communal learning group indicated 

that making sprites interact and working with their partners as the two most challenging 

aspects of camp.  On the other hand, those in the individual learning group indicated that 

making sprites move was the most challenging aspect of camp.  With this, the pairs in the 

communal learning group created more complex and more creative Scratch projects than 

the booklet prescribe, while those made by the participants in the individual learning 

group where exactly like the booklet prescribed and nothing more. 
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 When considering the learning processes and/or behaviors of the two learning 

groups, comparison can be made related to strategies for reading the Scratch booklet, 

other forms of expression while learning, causes of distraction, and levels of 

encouragement and engagement.  Details about these comparisons are shared below. 

 When it came to using time wisely, participants in both groups reported that they 

did not use their time as wisely as they should or could have.  Participants in the 

communal learning group used a variety of strategies for reaching the Scratch booklet.  

These strategies changes from day-to-day and sometimes throughout the day.  See figure 

10 above as an example  Pairs would agree to take turns reading pages, paragraphs, and 

even reading sections to themselves and then testing each other after both members of the 

pair finished reading.  Participants in the individual learning group seemed to read 

silently to themselves each day.  Even more, as each week of camp progressed, 

participants in the communal learning group expressed other elements of the Black 

Cultural Ethos.  Many used movement, especially when learning the concepts related to 

loops and music was used, expressive individualism, affect, and verve.  Participants in 

the individual learning group did not express as many BCE elements and were generally 

quiet.  They did however, use movement as many used embodied cognition to help them 

think through a challenge.  See figure 8 above.  When it came to sources of distraction, 

the communal learning group had ‘good’ and ‘bad’ sources.  They were often distracted 

by computer games and YouTube videos, while participants in the individual learning 

group did not succumb to these distractions.  Additionally, participants in the communal 

learning group had ‘good’ distractions involving celebration, encouragement, and sharing 
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of accomplishments with their neighbors when a project went well.  Participants in the 

individual learning group did not exhibit noticeable moments of celebration or self-

encouragement.  Finally, regarding levels of engagement, participants in the communal 

learning group seemed more engaged overall, especially the two girl pair-types.  They 

often asked to stay after camp and requested that their parents wait a while as they 

worked more on their projects.  Participants in the individual learning group did not seem 

as engaged, as they often deleted their Scratch projects and some even deleted their 

Scratch ID immediately after camp. 

 While the previous section provides a rich description and comparison of 

participant experiences in both learning groups, the next section provides quantitative 

analyses and comparisons the performance of each study participant according to 

responses on the pre- and post- computational thinking and programming skills content-

knowledge questionnaire. 

Quantitative Data Analysis: Camp Experience 

 This section illustrates quantitative findings related to the camp experience for 

participants in both the communal learning group and the individual learning group.  

These data are used to help answer RQ1, RQ2, and RQ3 and appear in that order.  For 

each research question, descriptive statistics and graphs are illustrated with explanations, 

followed by indications of whether or not assumptions for each respective statistical tests 

were met.  These are followed by tests to determine statistical significance, effect size, 

and power.  The next section starts this format and features the quantitative data for RQ1. 



141 

RQ1: Scratch Computational Thinking and Programming Scoring and Analysis 

 This section features the quantitative data findings used to help answer RQ1: 

RQ1.  During a summer Scratch programming camp lasting five week days, three hours 

per day, how do young African American elementary and middle school novice 

programmers in a Communal Learning (CL) context learn and use computational 

thinking concepts and programming skills compared to those in an Individual learning 

(IL) context?  The Pre- and Post-Test Scratch Content Knowledge Questionnaire 

provided the data to be analyzed here.  It featured 25 questions, each  asking about one or 

all of the six Scratch CT and programming skills (sequences, events, loops, conditionals, 

operators, and working with data).  Table 12 below details the CT and programming 

category, questionnaire questions that relate to that category, total number of questions in 

that category, and the total possible points earned for that category.   

 

Table 12 
 
CT and Programming Skills Categories on Scratch Content Knowledge Questionnaire 
 

Category Pages in 
Booklet 

Test Questions in 
Category 

Number of 
Questions 

Total  
Points 

Sequences 29.5 
2, 3, 10, 19,  
20, 22, 24 7 14 

Events 9.5 13, 20 2 4 

Loops 28 
7, 11, 12, 16,  
17, 20, 22, 23 8 16 

Conditionals 66 
8, 9, 14, 18,  
20, 24, 25 7 14 

Operators 29 20, 22, 24 3 6 
Working with 
Data 52 

1, 4, 5, 6, 15,  
20, 21, 22, 24 9 18 
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Preparation and interrater reliability (Cohen’s Kappa). To prepare for scoring 

overall, each content knowledge questionnaire item was labeled as a variable in SPSS 

with one or more of these six skill groups (e.g. a content knowledge question containing 

the concepts of loop and one with a concept of conditionals would have received a L and 

C as labels, respectively).  Participants responses to each item received a score of two if it 

was correct, one if it was partially correct, and zero if it was in correct.  Cohen's κ 

(crosstabs) was analyzed in SPSS to determine the level of agreement between two third-

party raters scoring of open-ended questions. There was very good agreement level 

between the two raters, κ = .882, p < .0005.  Using the same scale, the researcher graded 

the multiple-choice questions.  Points were tallied for each participant and these data 

were used to make comparisons.  A total of 50 points were possible on this computational 

thinking and programming performance instrument. 

The next sections features these quantitative results regarding the overall Scratch 

Content Knowledge and each individual CT and programming skills taught using Scratch 

(sequences, events, loops, conditional, operators, and working with data).  For each CT 

concept,  pre- and post-test descriptive statistics are illustrations and their accompanying 

descriptions include: 

1. A colored 2-bar graph – This first bar graph compares learning group mean 

scores (the communal learning uses the color green, while the individual 

learning group uses blue); 

 



143 

2. A colored line graph – The first bar graph is followed by a colored line graph 

representing pre- and post-test mean scores by learning group (i.e. communal 

vs. individual), where the time (pre- and post-) is represented along the x-axis 

and the mean scores for each time is along the y-axis.  A colored line is drawn 

from the pre-test mean to the post-test mean for each learning group(the 

communal learning uses the color green, while the individual learning group 

uses blue); 

3. A colored 4-bar graph - These colored bar graphs illustrate the post-test mean 

scores by pair-type (boy & girl pair-type is red, two girl pair-type is yellow, 

two boy pair-type is green, and individual is green).  Please note that for the 

sake of comparison in these bar graphs, the individual group is a pair-type 

even though that bar represents all of the individual participants.   

4. A colored line graph - The bar graphs are followed by another set of line 

graphs illustrating the mean gender differences within the individual learning 

group.  

  Descriptive statistics for overall Scratch content knowledge scores.  There 

were 20 participants in the Individual Learning Group and 22 participants in the 

Communal Learning Group.  Regarding, the overall The participants in the Communal 

Learning Group ear than the participants in the Individual Learning Group on the CT and 

programming post-test.  The Communal Learning Group’s mean Scratch Content 

Knowledge post-test score was higher than the Individual Learning Group’s mean score.   
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Table 13 
 
Learning Group Scratch Content Knowledge Post-Test Mean Scores 
 
Learning Group n M SD 
Individualistic 20 16.80 7.32 
Communal 22 18.95 9.30 

 
 
 
 

 
Figure 19a. ‘Scratch’ Content Knowledge Post-Test Mean Scores by Learning Group. 
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Figure 19b. ‘Scratch’ Content Knowledge – Change in Mean Scores by Learning Group. 

Grade-level, pair-type, and gender comparisons: overall.   
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Table 14 
 
Pre- and Post-Test Scores for Computational Thinking and Programming Content 
Knowledge 
 
CT & Programming Skills  

Test 
Communal Learning Individual Learning 

(50 pts) n M SD N M SD N 
All  42 Post 18.95 9.30 22 16.80 7.32 20 
  Pre 12.23 5.96  9.95 3.53  
Gender: 17 Girls Post 20.82 11.50 11 17.83 9.24 6 
  Pre 11.45 5.77  8.33 3.08  
 25 Boys Post 17.09 6.46 11 16.36 6.70 14 
  Pre 13.00 6.33  12.00 2.94  
Pair Type: 4 Pairs of 

Girls 
Post 19.25 11.99 8 - - - 

  Pre 9.88 5.99  - - - 
 4 Pair of 

Boys 
Post 17.00 7.56 8 - - - 

  Pre 14.63 6.65  - - - 
 3 Pairs of  

Girl & Boy 
 
Post 

 
21.17 

 
8.33 

 
6 

 
- 

 
- 

 
- 

  Pre 12.17 4.36  - - - 
 

 

Also of note, as it has also been discovered as a pattern for every CT and 

programming skill discussed next, is that the two girls pair-type and the one boy and one 

girl pair-type typically had the highest post-test scores and the largest learning gains of all 

pair types.  Additionally, as can be seen in Figure 20a and 20b below that the one boy and 

one girl pair-type scored the highest.  Another pattern which revealed itself in almost 

every test is that the two boys pair-type earned the lowest post-test mean score of all pair-

types.  These patterns are described separately for the performance in each of the six 

Scratch CT and programming skills below.  There is an occasion or two when the post-
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test mean score of the two boys pair-type is not the lowest, but unfortunately, this 

occurrence is rare in this study.   

 

 

 
Figure 20a. ‘Scratch’ Content Knowledge Post-Test Mean Scores by Pair-Type. 

 
 
 
 



148 

 
Figure 20b. ‘Scratch’ Content Knowledge Change in Mean Scores by Pair-Type. 

 
 
 
 

 An investigation of the post-test Scratch content knowledge by gender in the 

Individual Learning group revealed that the girl participants mean scores (M = 17.83) are 

also higher and they seem to have had more learning gains than the boy participants (M = 

16.36) in the same learning group.  This can be seen graphically in figure 20c below.   
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Figure 20c. ‘Scratch’ Content Knowledge Change in Mean Scores for Individual Group 
by Gender. 

 

 

 
The next six sections describe and compare the performance of pre- and post-test 

mean scores of the six Scratch CT and programming skills (sequences, events, loops, 

conditionals, operators, and working with data). 

Descriptive statistics for ‘Scratch: Sequences’ content knowledge scores. The 

CT and programming skill of ‘sequences’ relates to the participant’s ability to identify a 

series of steps for a task.  There were a total of 29.5 pages in the Scratch Booklet 

specifically about Sequences, starting with Unit Three, and seven questions about 

Sequences on the pre- and post-test.   The amount of total possible points earned on these 

tests for this category was 14. 
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Table 15 
 
Learning Group Scratch: Sequences Content Knowledge Post-Test Mean Scores 
 
Learning Group n M SD 
Individualistic 20 4.80 2.79 
Communal 22 5.86 3.68 
 

 

Learning group comparison: Sequences.  Pre- and post-test descriptive statistics 

revealed that although neither group scored very high in this category, the Communal 

Learning group had a higher mean post-test score (M = 5.86, SD = 3.68) than the 

Individualistic Learning group (M = 4.80, SD = 2.74).   See table 15 above and figures 

21a and 21b below for illustrations of these data.  

 

 

Figure 21a. ‘Scratch: Sequence’ Content Knowledge Post-Test Mean Scores by Learning 
Group. 
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Figure 21b. ‘Scratch: Sequences’ Content Knowledge Change in Mean Pre- and Post-
Test Scores by Learning Group. 
 
 
 
Table 16 
 
Pre- and Post-Test Scores Programming Content Knowledge of Sequences (14 pts) 
 
CT & Programming Skills     Test Communal Learning Individual Learning 
“SEQUENCES”  M SD N M SD N 
All  n=42 Post 5.86 3.68 22 4.80 2.79 20 
  Pre 3.50 2.39  2.75 1.25  
Gender: 17 Girls Post 6.27 4.17 11 4.67 3.08 6 
  Pre 3.09 2.47  2.33 1.38  
 25 Boys Post 5.45 3.28 11 4.86 2.77 14 
  Pre 3.91 2.34  2.93 1.21  
Pair Type: 4 Pairs of 

Girls 
Post 6.25 4.17 8 - - - 
Pre 2.50 2.56  - - - 

 4 Pair of 
Boys 

Post 5.13 3.18 8 - - - 
Pre 4.00 2.67  - - - 

 3 Pairs of  
Girl & Boy 

Post 6.33 4.13 6 - - - 
 Pre 4.17 1.14  - - - 
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Pair-type, and gender comparisons: Sequences.   Table 16 above shows detailed 

pre- and post-test descriptive mean score statistics regarding Scratch: Sequences content 

knowledge for all participants by grade level and communal learning pair-type.  Again, 

post-test mean scores revealed that neither group scored very high in this category.  By 

pair-type, the one boy & one girl pair-type obtained the highest post-test mean score  

(M = 6.33, SD = 4.13).  This was followed by the two girl pair-type, then the two boy 

pair-type, then and the individual group.  The girls in the communal learning group 

scored highest (M = 6.27, SD = 4.17) of all girls and boys in both communal and 

individual learning groups.  Figures 22a and 22b below graphically depict post-test mean 

scores. 

 

 
 

Figure 22a. ‘Scratch: Sequences’ Content Knowledge Post-Test Mean Scores by Pair-
Type. 
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Figure 22b. ‘Scratch: Sequences’ Content Knowledge Change in Mean Pre- and Post-
Test Scores by Pair-Type. 
 
 
 

The Individual Learning group had the lowest mean post-test score, with the 

boys’ mean score (M = 4.86, SD = 2.77) slightly better than the girls (M = 4.67, SD = 

3.08).  This is shown in figure 22c below.  These data are the opposite when compared to 

the pair-type of two boys and two girls in the Communal Learning group.  
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Figure 22c. ‘Scratch: Sequences’ Content Knowledge Change in Mean Pre- and Post-
Test Scores for Individual Group by Gender. 
 
 
 
 

Descriptive statistics for ‘Scratch: Events’ content knowledge scores.  In 

Scratch, the CT and programming skills categorized as events is the ability to recognize 

when and program one thing causing another thing to happen (e.g. when the green flag is 

clicked, the cat sprite moves five steps).  There were 9.5 pages about Events in the 

Scratch Booklet.  This category started in Unit Seven, which most study participants did 

not reach.  It had two questions on the pre- & post-tests.  The total amount of points 

earned on the Scratch: Events portion of the Content Knowledge questionnaire is four.  

The overall mean post-test scores for both learning groups can be seen below in table 17. 
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Table 17 
 
Learning Group Scratch: Events Content Knowledge Post-Test Mean Scores 
 
Learning Group n M SD 
Individualistic 20 0.70 1.08 
Communal 22 1.00 1.48 

 

 

Learning group comparison: Events.   Post-test descriptive statistics for Scratch: 

Events Content Knowledge revealed that the Communal Learning Group had mean post-

test  mean scores just a bit higher n the Scratch: Events Content Knowledge category 

(M=1.00, SD=1.48) than the Individual Learning Group (M = 0.70, SD = 1.08).  Graphs 

of these data appear in figures 23a and 23b below.  

 
 
 

 
Figure 23a. ‘Scratch: Events’ Content Knowledge Post-Test Mean Scores by Learning 
Group. 
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Figure 23b. ‘Scratch: Events’ Content Knowledge Change in Mean Scores by Learning 
Group. 
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Table 18 
 
Pre- and Post-Test Scores Programming Content Knowledge of Scratch: Events 
 
CT & Programming Skills Test Communal Learning Individual Learning 
“EVENTS” (4 pts) M SD N M SD N 
All  n=42 Post 1.00 1.48 22 0.70 1.08 20 
  Pre 0.55 0.96  0.40 0.99  
Gender: 17 Girls Post 1.64 1.75 11 0.33 0.82 6 
  Pre 0.64 1.12  0.00 0.00  
 25 Boys Post 0.36 0.81 11 0.86 1.17 14 
  Pre 0.45 0.82  0.57 1.16  
Pair Type: 4 Pairs of 

Girls 
Post 1.50 1.77 8 - - - 

  Pre 0.25 0.71  - - - 
 4 Pair of 

Boys 
Post 0.25 1.63 8 - - - 

  Pre 0.38 0.74  - - - 
 3 Pairs of  

Girl & Boy 
 

Post 
 

1.33 
 

1.63 
 
6 

 
- 

 
- 

 
- 

  Pre 1.17 1.33  - - - 
 

 
 

Pair-type, and gender comparisons: Events.   Neither group had high post-test 

scores in the Scratch: Events category.  Mean pre- and post-test score details are listed in 

table 18 above.  The two girls pair-type (M = 1.50, SD = 1.77) had the highest mean score 

on the post-test and also showed the largest learning gain.  The post-test mean score of 

two boys pair-type decreased, from (M = 0.38, SD = 0.77) to (M = 0.25, SD = 1.63).  

However, again, for gender overall, regardless of pair-type, the girls in the communal 

learning have a higher post-test means score (M = 1.64, SD = 1.75) than the boys in the 

communal learning (M = 0.36, SD = 0.81) and the girls (M = 0.33, SD = 0.82) and boys 

(M = 0.86, SD = 1.17) in the individual learning group.  See figures 24a and 24b below, 

respectively.   
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Figure 24a. ‘Scratch: Events’ Content Knowledge Post-Test Mean Scores by Pair-Type. 
 

 

 
Figure 24b. ‘Scratch: Events’ Content Knowledge Change in Mean Pre- and Post-Test 
Scores by Pair-Type. 
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Regarding the Individual Learning group only, the boys (M = 0.86, SD = 1.17) 

had a slightly higher post-test mean score than the girls (M = 0.33, SD = 0.82).  Figure 

24c illustrates this below. 

 

 

 
 
Figure 24c. ‘Scratch: Events’ Content Knowledge Change in Pre- and Post-Test Mean 
Scores for the Individual Learning Group by Gender. 

 

 

Descriptive statistics for ‘Scratch: Loops’ content knowledge scores. The 

Scratch CT & programming skill of Loops indicates the ability to recognize and program 

the running the same sequence multiple times.  There were 28 pages in the Scratch 

Booklet totally dedicated to Loops, starting in Unit Six.   The total possible points to be 

earned for this category is 16, coming from eight questions. 
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Table 19  
 
Learning Group Scratch: Loops Content Knowledge Post-Test Mean Scores 
 
Learning Group n M SD 
Individualistic 20 7.40 3.79 
Communal 22 7.55 3.85 

 

 

Learning group comparison: Loops.  Overall, study participants in both learning 

groups did fairly well on the Loops portion of the post-test, considering many of them did 

not reach Unit Six in the Scratch Booklet.  This could be due to a familiarity with 

repeating music, also called loops.   Nonetheless, descriptive statistics indicated the 

Communal Learning Group had mean scores just slightly higher on the Scratch: Loops 

Content Knowledge post-test (M = 7.55, SD = 3.85) than the Individualistic Learning 

Group (M = 7.40, SD = 3.79). See table 19 above and figures 25a and 5b below.        
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Figure 25a. ‘Scratch: Loops’ Content Knowledge Post-Test Mean Scores by Learning 
Group. 

 
 
 

 
Figure 25b. ‘Scratch: Loops’ Content Knowledge Change in Mean Scores by Learning 
Group. 
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Table 20 
 
Pre- and Post-Test Scores Programming Content Knowledge of Scratch: Loops (16 pts) 
 
CT & Programming Skills 
 LOOPS   Test 

Communal Learning Individual Learning 
M SD N M SD N 

All  n=42 Post 7.55 3.85 22 7.40 3.79 20 
  Pre 4.41 2.42  4.20 2.67  
Gender: 17 Girls Post 8.36 4.88 11 8.17 4.58 6 
  Pre 4.27 1.85  3.17 1.85  
 25 Boys Post 6.73 2.41 11 7.07 3.54 14 
  Pre 4.55 2.98  4.64 2.85  
Pair Type: 4 Pairs of 

Girls 
Post 7.50 5.10 8 - - - 

  Pre 4.00 1.60  - - - 
 4 Pair of Boys Post 7.00 2.83 8 - - - 
  Pre 5.63 2.77  - - - 
 3 Pairs of  

Girl & Boy 
 

Post 
 

8.33 
 

3.67 
 
6 

 
- 

 
- 

 
- 

  Pre 3.33 2.50  - - - 
 

 

 Pair-type, and gender comparisons: Loops.   Table 20 above and figures 26a, 

26b, & 26c below graphically show post-test mean score details by pair-type and gender.   

Again, the girl and boy pair-type scored the highest (M = 8.33, SD = 3.67).  The girls in 

the individual learning group closely followed (M = 8.17, SD = 4.58), while the  two girl 

pair-type followed with the third highest score (M = 7.50, SD = 5.10).   They were 

followed by the boys in the individual learning group and the two boy pair-type.  This 

ordering can be seen in figures 26a and 26b.   By gender overall, the communal learning 

group girls had the highest mean post-test score (M = 8.36, SD = 4.88) followed by the 

individual learning group girls (M = 8.17, SD = 4.58), while the communal learning 

group boys had the lowest mean post-test score (M = 6.73, SD = 2.41).  This occurred in 
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the Individual Learning group as well, where the girls (M = 8.17, SD = 4.58) performed 

better than the boys (M = 7.07, SD = 3.54).  See the graphical representation of this in 

figure 26c below. 

 

 
Figure 26a. ‘Scratch: Loops’ Content Knowledge Post-Test Mean Scores by Pair-Type. 
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Figure 26b. ‘Scratch: Loops’ Content Knowledge Change in Mean Scores by Pair-Type. 
 
 
 
 

 

Figure 26c. ‘Scratch: Loops’ Content Knowledge Change in Mean for the Individual 
Learning Group by Gender. 
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Descriptive statistics for ‘Scratch: Conditionals’ content knowledge scores.  

The Scratch CT and programming skill category of conditionals basically is the ability to 

recognize and code/program the notion of making decisions based on conditions.  There 

were 66 pages focused on conditionals and how to use them, starting in Unit Four, with 

seven questions on the Scratch Content Knowledge pre- and post-tests.  The total number 

of possible points earned for this category is 14. 

 

Table 21 
  
Learning Group Scratch: Conditionals Content Knowledge Post-Test Mean Scores 
 
Learning Group n M SD 
Individualistic 20 3.20 2.38 
Communal 22 3.91 2.86 

 

 

Learning group comparison: Conditionals.  Again, neither group reached 

particularly high post-test mean scores in this category.  It is worth noting that, on 

average, study participants only completed up to and including a portion of Unit Four, the 

unit introducing conditionals in the Scratch Booklet.  This could explain the low mean 

post-test scores.  Post-test mean statistics indicated the Communal Learning Group 

scored just a bit higher on the Scratch: Conditionals Content Knowledge post-test 

(M = 3.91, SD = 2.86) than the Individual Learning Group (M = 3.20, SD = 2.38).  Table 

21 above and Figures 27a and 27b below show mean post-test score details. 
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Figure 27a. ‘Scratch: Conditionals’ Content Knowledge Post-Test Mean Scores by 
Learning Group. 
 

 
 

 

 

Figure 27b. ‘Scratch: Conditionals’ Content Knowledge Change in Mean Scores by 
Learning Group. 
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Table 22 

Pre- and Post-Test Scores Programming Content Knowledge of Scratch: Conditionals 
 
CT & Programming Skills 
(14 pts) Test Communal Learning Individual Learning 
“CONDITIONALS”  M SD n M SD n 
All  n=42 Post 3.91 2.86 22 3.20 2.38 20 
  Pre 2.05 2.10  1.90 1.45  
Gender: 17 Girls Post 3.82 2.60 11 3.67 3.14 6 
  Pre 1.91 2.12  1.67 1.03  
 25 Boys Post 4.00 3.23 11 3.00 2.08 14 
  Pre 2.18 2.18  2.00 1.62  
Pair-
Type: 4 Pairs of Girls Post 3.50 2.73 8 - - - 
  Pre 1.13 1.64  - - - 
 4 Pair of Boys Post 4.13 3.68 8 - - - 
  Pre 2.50 2.45  - - - 
 3 Boy & Girl Pairs Post 4.17 2.14 6 - - - 
  Pre 2.67 2.07  - - - 

 

 

Pair-type, and gender comparisons: Conditionals.   Regarding pair-type overall, 

regardless of grade-level, the one boy & one girl pair-type post-test mean score (M = 

4.17, SD = 2.14) was the highest overall, this time with the two boys pair-type  

(M = 4.13, SD = 3.68) close behind.  The two girls pair-type mean post-test score  

(M = 3.50, SD  = 2.73) was the lowest.  Figures 28a and 28b below illustrate these data.  

The two boys pair-type post-test means score (M = 4.13, SD = 3.68) was the highest and 

the one boy & one girl pair-type (M = 3.67, SD = 2.08) followed, with the two girls pair-

type post-test mean score (M = 3.00, SD = 2.00) at the lowest.  This is the first time this 

occurred.  It could be concluded that the participants in the two boys pair-type were no 

longer hindered by challenging behavior and could therefore perform at optimal levels 
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learning and using this category of program blocks within Scratch.  Regarding gender, 

the boys in the communal learning group overall had the highest post-test score in this 

category (M = 4.00, SD = 3.23).  All other scores by gender were fairly close, this 

includes the girls in the communal learning group as well as the boys and girls in the 

individual learning group.  These data are represented below in figures 28a, 28b, and 28c. 

 

 

 

Figure 28a. ‘Scratch: Conditionals’ Content Knowledge Post-Test Mean Scores by Pair-
Type. 
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Figure 28b. ‘Scratch: Conditionals’ Content Knowledge Change in Mean Scores by Pair 
Type. 

 
 
 

 
Figure 28c. ‘Scratch: Conditionals’ Content Knowledge Change in Mean Scores of the 
Individual Learning Group by Gender. 
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Descriptive statistics for ‘Scratch: Operators’ content knowledge scores.  The 

Operators Scratch CT and programming skill category refers to support for mathematical 

calculations and logical expressions.  In the Scratch Booklet, material on how to program 

operators began in  Unit 10, with 29 pages dedicated to its explanation. The total number 

of possible points earned on the post-test for this category was six.  Not many study 

participants in either learning group reported reaching Unit 10. This is a possible 

contribution to the low mean scores in this category.  

 

Table 23  
 
Learning Group Scratch: Operators Content Knowledge Post-Test Mean Scores 
 
Learning Group N M SD 
Individualistic 20 1.55 1.468 
Communal 22 2.27 2.051 

 

 

Learning group comparison: Operators.  Post-test descriptive statistics indicated 

the Communal Learning Group scored higher on the Scratch: Operators Content 

Knowledge post-test (M = 2.27, SD = 2.051) than the Individualistic Learning Group  

(M = 1.55, SD = 1.47).  These data are represented graphically in table 23 above and 

figures 29a and 29b below. 
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Figure 29a. ‘Scratch: Operators’ Content Knowledge Post-Test Mean Scores by 
Learning Group. 
 
 
 

 

Figure 29b. ‘Scratch: Operators’ Content Knowledge Change in Mean Scores by 
Learning Group. 
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Table 24 
 
Pre- and Post-Test Scores Programming Content Knowledge of Scratch: Operators 
 
CT & Programming Skills Test Communal Learning Individual Learning 
“OPERATORS” (6 pts) M SD n M SD n 
All  n=42 Post 2.27 2.051 22 1.55 1.468 20 
  Pre 0.64 0.953  0.65 0.745  
Gender: 17 Girls Post 2.36 2.111 11 1.33 1.506 6 
  Pre 0.55 0.820  0.33 0.516  
 25 Boys Post 2.18 2.089 11 1.64 1.499 14 
  Pre 0.73 1.104  0.79 0.802  
Pair Type: 4 Pairs of 

Girls 
Post 2.25 2.121  8 - - - 
Pre 0.38 0.744  - - - 

 4 Pair of 
Boys 

Post 2.13 2.100 8 - - - 
Pre 0.88 1.246  - - - 

 3 Pairs of  
Girl & Boy 

Post 2.50 2.258 6 - - - 
 Pre 0.67 0.817  - - - 
 

 

Pair-type, gender comparisons: Operators.   Again, comparing all pair types, the 

one boy & one girl pair-type post-test mean score (M = 2.50, SD = 2.258) was the highest 

in the Scratch: Operators category, this is followed by the two girls pair-type (M = 2.25, 

SD = 2.121), then the two boys pair-type (M = 2.13, SD = 2.100), followed last by the 

individual learning group (M = 1.55, SD = 1.468).  Within the Individual Learning group, 

the boys post-test mean score (M = 1.64, SD = 1.499) was higher than the girls (M = 1.33, 

SD = 1.506). See table 23 above for more mean score details and figures 30a, 30b, and 

30c below, which visually represent these data.   
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Figure 30a. ‘Scratch: Operators’ Content Knowledge Post-Test Mean Scores by Pair-
Type 
 
 
 
 

 
 
Figure 30b. ‘Scratch: Operators’ Content Knowledge Change in Mean Scores by Pair-
Type. 
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Figure 30c. ‘Scratch: Operators’ Content Knowledge Change in Mean Scores by Pair 
Type of Individual Learning Group by Gender. 

 
 
 
 

Descriptive statistics for ‘Scratch: Working with Data’ content knowledge 

scores. The Working with Data category in Scratch means the ability to recognize and 

implement the storing, retrieving, and updating values.  This notion was featured 

throughout the Scratch Booklet.  It had 52 pages specifically dedicated to it, which began 

in Unit Eight.  The total amount of possible points for this category of CT and 

programming skill is 18 on the pre- and post-tests, the highest amount of points possible 

for any one category.  Again, not many study participants in either learning group 

reported reaching Unit Eight.  This possibly contributes to the low mean scores in this 

category. 
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Table 25 
  
Learning Group Scratch: Working with Data Post-Test Mean Scores 
 
Learning Group N M SD 
Individualistic 20 4.20 2.44 
Communal 22 6.09 4.09 

 

 

Learning group comparison: Working with data.  Neither group performed well 

in this category.  However, post-test mean score descriptive statistics indicated the 

Communal Learning Group scored higher on the Scratch: Working with Data Content 

Knowledge post-test (M = 6.09, SD = 4.09) than the Individualistic Learning Group (M = 

4.20, SD = 2.441).  These data are in table 25 above and in figures 31a and 31b below. 

 

 
Figure 31a. ‘Scratch: Working with Data’ Content Knowledge Post-Test Mean Scores by 
Learning Group. 
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Figure 31b. ‘Scratch: Working with Data’ Content Knowledge Change in Mean Scores 
by Learning Group. 

 
 
 
Table 26 
 
Pre- and Post-Test Scores Programming Content Knowledge of Scratch: Working with 
Data 
 
CT & Programming Skills 

Test 
Communal Learning Individual Learning 

“WORKING WITH DATA” M SD n M SD n 
All  n=42 Post 6.09 4.09 22 4.20 2.44 20 
  Pre 3.18 2.1  2.20 1.11  
Gender: 17 Girls Post 6.55 4.61 11 3.67 2.66 6 
  Pre 2.82 2.14  1.83 0.98  
 25 Boys Post 5.64 3.67 11 4.43 2.41 14 
  Pre 3.55 2.12  2.36 1.15  
Pair Type: 4 Pairs of 

Girls 
Post 6.00 4.81 8 - - - 

  Pre 2.75 2.32  - - - 
 4 Pair of Boys Post 2.25 3.73 8 - - - 
  Pre 4.13 2.17  - - - 
 3 Pairs of  

Girl & Boy 
 
Post 

 
7.33 

 
3.93 

 
6 

 
- 

 
- 

 
- 

  Pre 2.50 1.52  - - - 
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Pair-type, and gender comparisons: Working with Data.   Table 26 above shows 

pre- and post-test mean score details for all and pair-types in both learning groups.  When 

looking at pair-type comparisons, the elementary school two girls pair-type post-test 

mean score (M = 8.25, SD = 5.50) was the highest of all elementary school participants 

and the one boy & one girl pair-type in the middle school communal learning group 

scored highest of all (M = 9.00, SD = 2.83).  These pair-type having the highest mean 

scores follows the communal learning pair-type pattern of performance data described 

above. Figures 29a and 29b below show the mean scores by pair-type, as well as their 

change in scores.  By gender, the girls in the communal learning group post-test mean 

score (M = 6.55, SD = 4.61) was the highest of all. This score was followed by the 

communal learning group boys (M = 5.64, SD = 3.6), the individual learning group boys 

(M = 4.43, SD =  2.4), with the individual learning group girls post-test mean score (M = 

3.67, SD = 2.66) the lowest.  The one boy & one girl pair-type performed highest, as 

described above with the largest change in mean score (i.e. learning gain), while the two 

boys pair-type scored the lowest of all pair-types.  The Individual Learning group scored 

the lowest.  See figures 32a, 32b, and 32c. 
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Figure 32a. ‘Scratch: Working with Data’ Content Knowledge Post-Test Mean Scores by 
Pair-Type. 

 
 
 

 

 
Figure 32b. ‘Scratch: ‘Working with Data’ Content Knowledge Change in Mean Scores 
by Pair-Type. 
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Figure 32c. ‘Scratch: Working with Data’ Content Knowledge Change in Mean Scores 
of Individual Learning Group by Gender. 

 

 

 
Inferential statistics of overall Scratch scores by learning group.  There were 

22 participants in the Communal Learning group and 20 in the Individual Learning 

group.  An independent-samples t-test was run to determine if there were differences in 

post-test mean scores between learning groups.  All assumptions were met.  There were 

two outliers in the post-test Scratch Content Knowledge Questionnaire scores within the 

Individual Learning group and no outliers in the post-test scores in the Communal 

Learning group, as assessed by inspection of resulting boxplots.  The two outliners were 

kept in the analysis since the skewness and kurtosis assumptions were met and because 
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the sample size for the Individual Learning group is small.  Pre-test and post-test mean 

scores were normally distributed for both learning groups, as assessed by Shapiro-Wilk’s 

test (p > .05).  There was homogeneity of variances for post-test scores for both the 

Communal Learning and Individual Learning groups, as assessed by Levene’s test of 

equality of variances (p = .463).  The post-test man Scratch Content Knowledge score for 

the Communal Learning group (M = 18.95, SD = 9.297) was higher than that of the 

Individual Learning group (M = 16.80, SD = 7.324).  However, there was no statistically 

significant difference between the two post-test mean scores, t(41) = -0.828, p =.412.  

Therefore, it can be concluded that putting students in groups does not change their 

cognition towards Scratch.  A post-hoc power analysis was run using GPower and it 

revealed a power value of 0.39.  This is likely a result of a small sample. 

 
Summary of Performance on Scratch Computational Thinking and Programming 

 Overall summary.  The number of participants in this mixed method study was 

42, with 22 in the Communal Learning group and 20 in the Individual Learning group.  

With 50 total points allowed on the Scratch computational thinking and programming 

skills content knowledge pre- and post-test, the mean pre- and post-test scores were high 

for neither learning group.  

Pair-type and gender performance summary.  Here pair-types include two 

girls, two boys, one boy & one girl, and individual.  The one boy & one girl and two girls 

pair-types performed the highest in six of the seven post-test performance categories 

analyzed (Scratch overall, sequences, loops, conditionals, operators, and working with 

data.  The one time they did not (events), the two girls pair-type performed the best, with 
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the one boy & one girl pair-type performing second best.  The two boys pair type usually 

had the lowest mean scores, but not always.  There was no particular pattern of 

performance in the Individual Learning group.  However, the boys did perform higher 

than the girls in four of the seven categories.  These were sequences, events, operators 

and working with data.   The degree of higher performance, i.e. post-test mean scores, 

varied throughout.  Moreover, the Individual Learning group had the lowest means scores 

in all categories except two, events and loops.  When this occurred, the Individual 

Learning group usually had the second lowest mean score.   

 Grade-level performance summary.  Overall, the one boy & one girl pair-type 

consistently performed best of all pair-types in both grade levels.   When this did not 

occur, the pattern of the two girls pair-type performing the best consistently held true, 

while the two boys pair-type almost always performed the lowest.   Qualitative data 

analysis revealed, however, that the boys in the middle school communal learning group 

exhibited the greatest amount of and most profound behavioral issues, consistent with 

have what education researchers call a cool pose and expressing hegemonic masculinity – 

to the point of having a physical altercation (fight). 

Mean difference summary.  Using SPSS, a independent samples t-test was 

performed on the pre- and post-test scores and determined that there was no statistically 

significance difference between the Communal Learning (M = 18.95, SD = 9.297) and 

Individual Learning group (M = 16.80, SD = 7.324) regarding Scratch overall content 

knowledge.  Therefore, it can be concluded that group assignment does not impact 

cognition towards Scratch. The power value is 0.39.  
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Given the above variety of strategies and outcomes regarding learning and using 

Scratch computational thinking and programming skills and that assigning potential 

students to either work in groups or work alone, does not have an impact on the cognition 

when learning Scratch (i.e. students can work in group or by themselves their cognition 

stays the same), however, learning group assignments may change a student’s attitude 

towards working in a group or individually.  This is explored in the second research 

question in this study – what impact does this experience have on participants’ learning 

context preference.  The results of this exploration are described in the next section. 

RQ2: Learning Context Preference 

Although participants were randomly assigned to one of the two target learning 

groups, the modified Learning Context Questionnaire was used to measure their 

preferences for working cooperatively and individualistically.  This questionnaire was 

taken before and after camp to determine a baseline for learning preferences for all 

participants as well as to observe any potential changes to these preferences after having 

experienced camp working in the Communal Learning group or Individual Learning 

group.  The highest possible score for both learning preferences is four. Thus, a midpoint 

(i.e. cut-off) score of 2.5 or more endorses a measured learning preference.  A score 

lower than 2.5 does not endorse a measured learning preference.    

RQ2:  Is there a change in the learning context preference of the young African 

American elementary and middle school novice programmers after participating in this 

summer Scratch programming camp? 
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Cooperative learning preference affirmed. As can be seen in Table 12 below, 

before camp started, the pre-test mean scores for a Cooperative learning context 

preference suggests that all 42 participants endorse cooperative learning environments  

(M = 3.23, SD = 0.649) and the pre-test mean scores for an Individualistic learning 

context preference show that all participants dislike individual learning environments  

(M = 2.04, SD = 0.589).   

Overall, these same preferences remained after camp, as can also be seen in Table 12, 

where the post-test mean scores for Cooperative learning contexts suggest participants 

endorse cooperative learning environments (M = 3.34, SD = 0.654) and a post-test mean 

score for Individualist learning contexts suggest participants do not endorse individualist 

learning environments (M = 2.01, SD = 0.75).   

At first glance, these pre- and post-test scores provide an initial affirmation of the 

theory and research regarding African American students innate preference for learning 

contexts that align with their culture, in this case communalism/communal learning, as 

described in the literature review above.   

 

Table 27 
 
Means and Standard Deviations for Learning Context Preferences (n = 42) 
 
Learning Context Preference (LCQ-m)  Before (Pre-) After (Post-) 
(1-4) M SD M SD 
Cooperative 3.23 0.65 3.34 0.65 
Individualistic 2.04 0.59 2.01 0.76 
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Cronbach’s alpha reliability.  The Cron’s Alpha measure of internal consistency 

or reliability was calculated for the LCQ-m scale before and after camp.  These 

measurements indicated high levels of internal consistency for Cooperative Learning 

Context Preference BEFORE and AFTER, 0.88 and 0.91, respectively, and 

Individualistic Learning Context Preference, BEFORE and AFTER, 0.756 and 0.789, 

respectively.  These statistics are displayed in Table 28 below.  

 

 

Table 28 
 
Cronbach’s Alpha Reliability for LCQ-m (BEFORE and AFTER Camp) 
 
Learning Context Preference Before After 
LCQ-m Cooperative 0.881 0.912 
LCQ-m Individualistic 0.759 0.789 
 
 
 
 
The next two sections describe descriptive and inferential statistics for study data 

regarding the Cooperative Learning Context Preference scale. 
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Descriptive Statistics for Cooperative Learning Context Preference 

 The resulting pre- and post-test mean Cooperative Learning Context Preference 

scores appear in Table 29 below.  It illustrates that all participants in both learning groups 

saw an increase in preferences for cooperative learning, with a slight higher increase 

among those in the individual learning group, who had a resulting mean score of 3.50 out 

of 4.0, SD = 0.47.  This is considerably more than the resulting cooperative learning 

preference means score by the communal learning group, which was a mean score of 

3.18, SD = 0.767.  The boys in both learning groups started and ended with having a 

higher preference for working cooperatively than the girls in both learning groups.  

Looking more closely at gender within each learning group, everyone experienced an 

increase in cooperative learning preference except the girls in the individual learning 

group.  They experienced a decrease in mean score for cooperative learning preference, 

from 3.33 to 3.26.  Of the pair-types in the communal learning group, the elementary 

school two boys pair type was the only pair-type to experience a decrease in the 

preference to learning cooperatively.  They started with strong mean score of 3.92.  

However, the mean score of this pair type dropped to 3.71 after camp.  The elementary 

and middle school two boys pair-type all experienced behavioral challenges at various 

times throughout the study, which caused distractions and slowed progress at one point or 

another.  This could be a potential reason for the drop.  
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Table 29 
 
Pre- and Post-Test Cooperative Learning Context Preference Scores  
 
Learning Context Preference  Test Communal Learning Individual Learning 
“COOPERATIVE”  (1-4) M SD N M SD N 
All  42 Post 3.18 0.77 22 3.50 0.47 20 
  Pre 3.11 0.76  3.37 0.48  
Gender: 17 Girls Post 2.97 0.95 11 3.26 0.55 6 
  Pre 2.86 0.85  3.33 0.58  
 25 Boys Post 3.40 0.50 11 3.60 0.41 14 
  Pre 3.36 0.60  3.38 0.46  
Pair Type: 4 Pairs of 

Girls 
Post 3.16 0.77 8 - - - 

  Pre 3.04 0.70  - - - 
 4 Pair of Boys Post 3.39 0.56 8 - - - 
  Pre 3.44 0.67  - - - 
 3 Pairs of  

Girl & Boy 
 

Post 
 

2.95 
 

1.04 
  

- 
 
- 

 
- 

  Pre 2.78 0.90 6 - - - 
 

 

Inferential Tests for Statistical Significance of Cooperative Learning Context 

Preference  

Paired-samples t-tests were run on the differences between pre- and post-test 

mean Cooperative Learning Context Preference scores to determine statistical 

significance.  Three outliers were present in the difference scores for pre- and post-test 

mean Cooperative Learning Context Preference score, as assessed by inspection of 

resulting boxplots.  However, these outliers were not extreme and were kept in the 

analysis.  All other assumptions were met.  Differences between the pre- and post-test 

mean Cooperative Learning Context Preference scores were normally distributed, as 

assessed by Shapiro-Wilk’s test (p > .05).  There was homogeneity of variances for the 
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difference in pre- and post-test mean Cooperative Learning Context Preference scores, as 

assessed by Levene’s test of equality of variances (p = .215).   

Statistical significance of cooperative learning context preference.  This camp 

experience had no effect on Cooperative Learning Context Preference according to pre- 

and post-test scores.  The result of the paired-samples t-test showed no statistically 

significant mean difference, t(41) = 1.70, p = .098.  Thus, this camp experience did not 

have a significant impact in altering a participants Cooperative Learning Context 

Preference.   

Moreover, this is supported by reviewing this data on a case-by-case bases, 

revealed that as a result of this camp, two participants in the Communal Learning group 

moved from not endorsing a cooperative learning environment to endorsing a cooperative 

learning environment, from for a raw score of 2.17 to 3.29 and a raw score of 2.17 to 

2.71, respectively.  There was no endorsement change in the Individual Learning group, 

as they all preferred cooperative learning environments to start, as discussed above.   

 The next few sections share resulting pre- and post-test descriptive statistics 

followed by inferential statistics for the Individualistic Context Learning Preference 

scale. 
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Table 30 
 
Pre- and Post-Test Individualistic Learning Context Preference Scores  
 
Learning Context Preference  Test Communal Learning Individual Learning 
“INDIVIDUALISTIC” (1-4) M SD N M SD N 
All  42 Post 2.24 0.83 22 1.75 0.57 20 
  Pre 2.16 0.68  1.91 0.46  
Gender: 17 Girls Post 2.40 1.00 11 1.62 0.43 6 
  Pre 2.25 0.87  1.90 0.37  
 25 Boys Post 2.09 0.64 11 1.82 0.62 14 
  Pre 2.07 0.44  1.92 0.50  
Pair Type: 4 Pairs of 

Girls 
Post 2.18 0.97 8 - - - 

  Pre 2.18 0.87  - - - 
 4 Pair of Boys Post 2.02 0.71 8 - - - 
  Pre 2.18 0.47 8 - - - 
 3 Pairs of  

Girl & Boy 
 

Post 
 

2.64 
 

0.79 
 
6 

 
- 

 
- 

 
- 

  Pre 2.10 0.75  - - - 
 

 

Descriptive Statistics for Individualistic Learning Context Preference  

All individual learning context preference mean scores were near or below the 

2.50 (of 4.0) mark, suggesting that everyone had a relatively low preference for working 

individualistically.  See Table 30 above.  Moreover, according to these descriptive pre- 

and post-test scores, the preference to work individualistically increased for the 

communal learning group and decreased for the individual learning group.  This holds 

true for both genders in both learning groups as well.  This suggests that participants in 

both learning groups experienced an adverse reaction to the learning context of their 

assigned learning group.  Perhaps after experiencing a few behavioral issues, the 

communal learning group determined it was better to work alone.  Additionally, a 
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conjecture can be made that the individual learning group potentially thought it would be 

better to work cooperatively, after having experienced an entire week of camp working 

alone.  Of all the girls, those in the  elementary school two girls-pair type were the only 

girls to experience a decrease in their preference to work individualistically.  During 

camp, the elementary school two girls pair-type worked well together, often visibly 

celebrating milestones (e.g. giving each other high-fives). Thus, this decrease makes 

sense. Table 30 above shows more details. 

Inferential Statistical Tests for Significance Individualistic Learning Context 

Preference  

Paired-samples t-tests were run on the differences between pre- and post-test 

mean Individualistic Learning Context Preference scores to determine statistical 

significance.  No outlier were present in the difference scores for pre- and post-test mean 

Cooperative Learning Context Preference score, as assessed by inspection of resulting 

boxplots.  All assumptions were met.  Differences between the pre- and post-test mean 

Individualistic Learning Context Preference scores were normally distributed, as assessed 

by Shapiro-Wilk’s test (p > .05).  There was homogeneity of variances for the difference 

in pre- and post-test mean Individualistic Learning Context Preference scores, as assessed 

by Levene’s test of equality of variances (p = .88).   

This camp experience resulted in with a mean difference of -.030 in Cooperative 

Learning Context Preference between pre- and post-test scores.  However, this difference 

is not statistically significant, t(41) = -0.30, p = 0.76. Thus, this camp experience did not 
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have a significant impact in altering a participants Individualistic Learning Context 

Preference.   

Moreover, this is supported by reviewing the raw scores on a case-by-case, 

revealed that as a result of this camp, one participant in the Individual Learning group 

who moved from just barely endorsing an individualistic learning environment to not 

endorsing an individualistic learning environment.  This participant’s raw score 

decreased from 2.57 to 2.00.  There was endorsement change in the Individual Learning 

group, as they all preferred cooperative learning environments to start, as discussed 

above.   

 The next few sections share resulting pre- and post-test descriptive statistics 

followed by inferential statistics for the Individualistic Context Learning Preference 

scale. 

RQ3: Black Academic Identity 

 This section describes data analysis to respond to the third research question in 

this study:  

RQ3:  Is there a change in the Black Academic Identity of the young African 

American elementary and middle school novice programmers after participating 

in this summer Scratch programming camp? 

Here, measures of Black Academic Identity focused on three of the four possible 

manifestations of this construct, as described in Chapter 2 – Literature Review.  These 

are:  a) Black Academic Identity, where one's academic achievement is integrated with 

one’s racial identity by thinking one’s intellect is as a result of one’s identity or that high 
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academic achievement is crucial to being a successful Black student, thereby aligning 

one’s behavior as such, b) Black Model Phenomenon, where one is motivated to achieve 

and be successful to satisfy a desire to be a positive role model for other members of their 

race, which is combined  c) the Proof of Black Ability, where one reaches high academic 

achievement to dispel stereotypes, prove that African American students are intelligent 

and can succeed.  The goal here was to determine participants’ initial BAI and measure 

the change in BAI as a result of participating in their respective learning contexts – 

essentially exploring to what extent does learning computational thinking and 

programming skills impact BAI on African American elementary middle school novice 

programmers after learning in a communal learning context compared to those learning in 

an individual learning context.  The Black Academic Identity (BAI) and Black Model 

Phenomenon (BMP) pre- and post-test scale scores (Appendix G) were analyzed to 

answer this research question and the results are described below, with descriptive 

statistics explained first followed by inferential statistics.    

Cronbach’s alpha reliability.  The Cron’s Alpha measure of internal consistency 

or reliability was consulted for the Black Academic Identity (BAI) and Black Model 

Phenomenon (BMP) scales before and after camp.  These measurements indicated above 

average levels of internal consistency for BAI BEFORE and AFTER, 0.632 and 0.649, 

respectively.  The internal consistency or reliability for BMP BEFORE and AFTER 

indicates relatively high levels, with scores of 0.825 and 0.872, respectively.  These 

statistics are displayed in Table 31 below.  
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Table 31 
 
Cronbach’s Alpha Reliability for BAI & BMP (BEFORE and AFTER Camp) 
 
 Before After 
Black Academic Identity (BAI) 0.632 0.649 
Black Model Phenomenon (BMP) 0.825 0.872 
 

 

Reliability and Descriptive Statistics for Black Academic Identity 

The Black Academic Identity (BAI) and Black Model Phenomenon (BMP) pre- 

and post-test scale scores (Appendix G) were analyzed to answer RQ3 and the results are 

described below, with reliability and descriptive statistics explained first, followed by 

inferential statistics.    

 

Table 32 
 
All BAI & BMP Means and Standard Deviations BEFORE and AFTER Scratch Camp 
  

Component  Pre POST 
Black Academic Identity (BAI)  2.86 2.88 
Black Model Phenomenon (BMP)  3.76 3.62 
 

 

 Pre-camp BAI & BMP overall.  Initial analysis revealed that the pre-camp 

(before anyone was given their assigned learning group) mean score for Black Academic 

Identity (BAI) was a little over the midpoint (M = 2.86 of 5.0, SD = 0.90, suggesting 

either a relatively average integration of racial identity and academic identity or one that 

BAI is not yet realized (neither high or low).  At the end of camp, the experience of a 
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programming camp revealed a slight increase in associating racial identity with academic 

identity overall, suggesting that perhaps the content of camp (i.e. learning how think 

computationally and program a computer) presented a slightly clearer focus on and 

motivation towards high academic achievement or still no realization of identity (neither 

high nor low).  Additionally, the overall predisposition to be a model Black student 

(BMP) was fairly high (M = 3.76 of 5.0, SD = 0.74) for all participants before camp 

started and learning group assignments were shared.  Of note, is that these mean scores 

did not drastically change at the end of camp either way, showing that participants’ 

responses seem to be relatively consistent, in this case there was little to no change.  See 

table 32 above.   More analyses of the impact of these two identity categories on 

participants in each learning context presented a clearer account of the impact of this 

programming camp.   These are analyses are described in detail below. 

Post-camp BAI & BMP overall.   Overall, this summer camp experience 

resulted in the BAI mean scores slightly increasing from participants in the Individual 

Learning group (from M = 3.00, SD = 0.77 to M = 3.01, SD = 0.74) and for those in the 

Communal Learning group (from M = 2.71, SD = 0.99 to M = 2.76, SD = 0.86).  

Additionally, the after summer camp experience mean BMP scores decreased for both 

learning group, going from M = 3.69, SD = 0.80 to M = 3.62, SD = 0.75 for those in the 

Communal Learning group and from M = 3.83, SD = 0.68 to M  = 3.62, SD = 0.71 for 

those in the Individual Learning group, perhaps suggesting realization that the content 

and/or learning context of camp presented more challenging content (i.e. a new 

experience of learning how to program a computer) making it harder to succeed.  It is 
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interesting to note, however, that all these changes are extremely minimal and can almost 

be considered as no change.  These data are represented below in table 33 figures 33 and 

34 below, with more descriptive details about each following. 

 

 
Figure 33.  Graph of BAI Pre- & Post-Test Mean Scores for both Learning Groups. 
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Figure 34.  Graph of BMP Pre- & Post-Test Mean Scores for both Learning Groups. 
 
 
 

Pre-camp BAI by pair-type, gender, and grade-level.  Analysis by learning 

context (i.e. learning group) revealed more details about the impact of learning to 

program on BAI & BMP.  The overall pre-camp (before Scratch lessons began) mean 

BAI scores were M = 2.71, SD  = 0.99 for the communal learning group and M = 3.00, 

SD = 0.77 for the individual learning group.  See table 33 below.  Likewise, all mean 

scores by learning group and gender before camp started were above the midpoint, 

possibly suggesting an awareness of and agreement with the integration of racial identity 

and academic identity.   
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Table 33 
 
Pre- and Post-Test Means Scores for Black Academic Identity (BAI) (n=42) 
 
CT & Programming Skills Test Communal Learning Individual Learning 
“BAI” (5 pts) M SD n M SD n 
All  n=42 Post 2.76 0.86 22 3.01 0.74 20 
  Pre 2.71 0.99  3.00 0.77  

Gender: 17 Girls Post 2.75 0.74 11 2.71 0.64 6 
  Pre 2.75 1.10  2.63 0.57  
 25 Boys Post 2.77 1.01 11 3.13 0.76 14 
  Pre 2.68 0.93  3.18 0.81  

Pair Type: 4 Pairs of 
Girls 

Post 2.84 0.50 8 - - - 
Pre 2.84 1.20  - - - 

 4 Pair of Boys Post 2.53 1.01 8 - - - 
Pre 2.34 0.78  - - - 

 3 Pairs of  
Girl & Boy 

Post 2.96 1.10 6 - - - 
Pre 3.04 0.94  - - - 

Elementary: All (21) Post 3.15 0.57 10 3.11 0.74 11 
  Pre 3.35 0.99  3.14 0.74  

Gender: 10 Girls Post 3.15 0.49 6 2.50 0.71 4 
  Pre 3.21 1.22  2.75 0.61  
 11 Boys Post 3.50 0.54 4 3.46 0.53 7 
  Pre 3.56 0.59  3.36 0.75  

Pair Type: 2 Pairs of 
Girls 

Post 2.75 0.50 4 - - - 
Pre 3.31 1.55  - - - 

 1 Pair of Boys Post 3.13 0.53 2 - - - 
Pre 3.13 0.53  - - - 

 2 Pairs of  
Girl & Boy 

Post 2.56 0.43 4 - - - 
 Pre 3.50 0.61  - - - 
Middle: All (21) Post 2.44 0.95 12 2.86 0.75 9 
  Pre 2.18 0.64  2.86 0.83  

Gender: 7 Girls Post 2.55 0.99 5 3.13 0.18  
  Pre 2.20 0.67  2.38 0.53 2 
 14 Boys Post 2.36 1.00 7 2.79 0.85  
  Pre 2.18 0.67  3.00 0.88 7 

Pair Type: 2 Pairs of 
Girls 

Post 2.94 0.55 4 - - - 
Pre 2.38 0.63  - - - 

 3 Pairs of 
Boys 

Post 2.33 1.09 6 - - - 
Pre 2.08 0.68  - - - 

 1 Pair of  
Girl & Boy 

Post 1.75 1.06 2 - - - 
 Pre 2.13 0.88  - - - 
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Grade-Level and learning group.  Before camp started, analysis by grade level 

and learning group shown that the elementary school participants had higher mean BAI 

scores than their middle school counterparts, also indicated in table 33 above.   More 

specifically, the elementary school communal learning group had a mean BAI score of 

3.35, SD = 0.99 and the middle school communal learning group’s Mean BAI score was 

2.18, SD = 0.64, while the elementary school individual learning group had a mean BAI 

score of 3.14, SD = 0.74 and the middle school individual learning group’s mean BAI 

score was 2.86, SD = 0.83.  Thus, the elementary school participants consistently had a 

higher BAI than the middle school participants 

Grade-level and gender.  Analysis before camp by grade-level, gender, and 

learning group depicted the boys in each grade level for both learning groups had higher 

BAI score than their female counterparts, except the middle school communal learning 

group boys, who scored marginally less than their female counterparts.  The elementary 

school communal learning group boys mean BAI score was 3.56, SD = 0.59, while that of 

their female counter parts pre-test mean BAI score was lower at 3.21, SD = 1.22, the 

elementary individual learning group boys mean BAI score was 3.36, SD = 0.75, while 

their female counterparts was also lower at M = 2.75, SD = 0.61.  The middle school 

individual learning group boys had a pre-test mean BAI score of 3.00, SD = 0.88 and 

their female counterparts had a lower pre-test mean BAI score of 2.38, SD = 0.53.  The 

slight exception to this pattern was with the middle school communal learning group 

boys who had a mean BAI score of 2.18, SD = 0.67 while their female counterparts mean 

BAI score was higher at M = 2.20, SD = 0.67.  Furthermore, of all participants, the 
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elementary school boys in the individual learning group (M = 3.56, SD = 0.59) expressed 

the highest pre-test mean BAI score, while the elementary girls in the individual learning 

group (M = 2.75, SD = 0.61) expressed the lowest of all participants.  As a result, with the 

boys largely had a higher mean BAI score before camp than their female counterparts.  

These data are present in Table 32 above. 

End of camp analysis sharing the overall impact of learning computational 

thinking and programming skills on BAI and are described after Table 32, below.   

Post-camp BAI by gender, pair-type, and grade-level.  By gender, the girls in 

the Communal Learning group basically no change in mean BAI score.  They went from 

M = 2.75, SD = 1.10 to M = 2.75, SD = 0742, while the girls in the Individual Learning 

group had a slight increase in mean BAI scores (from M = 2.63, SD = 0.57 to M = 2.71, 

SD = 0.64).   Additionally, the boys in the Communal Learning group had a slight 

increase (from M = 2.68, SD = 0.93 to M = 2.77, SD = 1.01), while the boys in the 

Individual Learning group had a slight decrease in mean BAI score (from M = 3.18, SD = 

0.81 to M = 3.13, SD = 0.76).   

By grade and gender.  The elementary school communal learning group 

experienced a slight decrease in their mean BAI score (from M = 3.35, SD = 0.99 to M = 

3.15, SD = 0.57) as well as those in the individual learning group (from M = 3.14, SD = 

0.74 to M = 3.11, SD = 0.74).  All elementary school individual learning boys were the 

only group to experience an increase in BAI (from M = 3.36, SD  = 0.75 to M = 3.46, SD 

= 0.53), while everyone else experienced a decrease.  Conversely, the mean BAI scores 

for the middle school increased for everyone (from M = 2.20, SD = 0.67 to M = 2.55,  
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SD = 0.99 for the communal learning girls, M = 2.18, SD = 0.67 to M = 2.36, SD = 1.00 

for the communal learning boys, and M = 2.38, SD = 0.53 to M = 3.13, SD = 0.18 for the 

individual girls), except the individual learning group boys, whose mean BAI score when 

from M = 3.00, SD = 0.88 to M = 2.79, SD = 0.85.    

By pair-type and gender.  By pair-type, regardless of grade-level, the two girls 

pair-type experienced almost no change in mean BAI scores (from M = 2.84, SD = 1.20 

to M = 2.84, SD = 0.50).  The two boys pair-type experienced an increase in BAI, from M 

= 2.34, SD = 0.78 to M = 2.53, SD = 1.03, while the one boy & one girl pair-type had a 

decrease from M = 3.04, SD = 0.94 to M = 2.96, SD = 1.10.  When grade-level was 

considered the elementary school two boys pair-type had no change in mean BAI score 

(from M = 3.13, SD = 0.53 pre and post-test), while the two girls and the one boy & one 

girl pair-types experienced decreases, from M = 3.31, SD = 1.55 to M = 2.75, SD = 0.50 

and from M = 3.50, SD = 0.61 to M = 2.56, SD = 0.43 respectively.  At the middle school 

level, the two boys pair-type experienced an increase (from M = 2.08, SD = 0.68 to M = 

2.33, SD = 1.09), while the one boy & one girl pair type experienced a decrease (from M 

= 2.13, SD = 0.88 to M = 1.75, SD = 1.06).   Ultimately, the middle school two girls pair-

type had highest increase in mean BAI scores at the end of camp (from M = 2.38, SD = 

0.63 to M = 2.94, SD = 0.55).   The mean BAI scores decreased for the one boy & one 

girls pair-type and seemed to stay consistent with the two girls pair-type and with the 

Individual Learning group.  See figure 35 below. 
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Figure 35.  Graph of BAI Pre- & Post-Test Mean Scores by Pair Type. 

 
 

However, closer analysis of the Individual Learning group revealed that the BAI 

decreased slightly for the boys (from M = 3.18, SD = 0.81 to M = 3.13, SD = 0.76) and 

increased for the girls (from M = 2.63, SD = 0.57 to M = 2.71, SD = 0.64).  Figure 36 

below represents this. 
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Figure 36.  Graph of BAI Pre- & Post-Test Mean Scores for the Individual Learning 
group by Gender. 
 
 

 

Of note is that mean BAI scores increased for boys working together communally and 

decreased for boys working individually, while also increasing for girls working 

individually.  The researcher probed further to examine the specific responses to each 

component of the BAI scale.  The results of which are described below. 
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Black Academic Identity components.  The “Being a good Black student is an 

important part of who I am.” BAI component resulted with the highest mean BAI score 

for all participants, with a mean of 3.79.  Conversely, the component with the lowest 

mean score was for “I get good grades because I am Black.” This suggests that 

participants value getting good grades as part of their Black identity, but they do not 

believe their good grades simply come from them being Black.  This suggests an 

interesting relationship between the race and academics.  Table 34 below shares more of 

the mean scores and standard deviations of all the separate BAI components. 

 

Table 34 
 
Specific Means and Standard Deviations for the Components of Black Academic Identity 
  

Black Academic Identity Components 
(1-5) 

Communal Learning 
Group 

Individual Learning 
Group 

Pre POST Pre 
 

POST 
I think of myself as a Black student, 
not just a student. 

2.82 
(1.27) 

2.95 
(1.43) 

3.15 
(1.27) 

3.45 
(1.43) 

Being a good Black student is an 
important part of who I am. 

.68 
(1.42) 

3.68 
(1.46) 

3.90 
(1.17) 

4.00 
(1.43) 

I get good grades because I am Black. 1.68 
(1.17) 

1.68 
(1.13) 

1.80 
(1.28) 

1.70 
(1.30) 

I seldom think of myself as a Black 
student (Reverse coded). 

3.32 
(1.29) 

2.72 
(1.43) 

2.80 
(1.28) 

2.85 
(1.13) 

 
 
 
 
The next sections share details about the mean BMP scores from the pre- and post-tests. 
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Table 35 
 
Pre- and Post-Test Means Scores for Black Model Phenomenon (BMP)  
 
CT & Programming Skills Test Communal Learning Individual Learning 
“BMP”  (5 pts) M SD n M SD n 
All  n=42 Post 3.62 0.75 22 3.62 0.71 20 
  Pre 3.69 0.80  3.83 0.68  
Gender: 17 Girls Post 3.53 0.77 11 3.57 0.78 6 
  Pre 3.78 0.79  3.94 0.66  
 25 Boys Post 3.71 0.76 11 3.64 0.71 14 
  Pre 3.59 0.85  3.79 0.71  
Pair Type: 4 Pairs  

of Girls 
Post 3.25 0.70 8 - - - 
Pre 3.54 0.79  - - - 

 4 Pair  
of Boys 

Post 3.63 0.83 8 - - - 
Pre 3.50 0.97  - - - 

 3 Pairs of  
Girl & Boy 

Post 4.12 0.45 6 - - - 
Pre 4.14 0.45  - - - 

Elementary: All (21) Post 3.86 0.79 10 3.87 0.70 11 
  Pre 3.83 0.89  4.09 0.63  
Gender: 10 Girls Post 3.69 0.95 6 3.29 0.80 4 
  Pre 3.75 0.94  3.88 0.84  
Pair Type: 11 Boys Post 4.11 0.47 4 4.20 0.39 7 

Pre 3.96 0.93  4.21 0.51  
 2 Pairs  Post 3.32 0.98 4 - - - 
 of Girls Pre 3.45 1.07  - - - 
 1 Pair  Post 3.93 0.71 2 - - - 
 of Boys Pre 3.92 1.53  - - - 
Middle: 2 Pairs of  Post 4.36 0.14 4 - - - 
 Girl & Boy Pre 4.17 0.33  - - - 
 All (21) Post 3.42 0.69 12 3.32 0.63 9 
  Pre 3.57 0.74  3.52 0.64  
Gender: 7 Girls Post 3.34 0.52 5 4.14 0.40 2 
  Pre 3.83 0.66  4.08 0.12 - 
 14 Boys Post 3.49 0.82 7 3.08 0.45 7 
  Pre 3.38 0.79  3.36 0.63 - 
Pair Type: 2 Pairs  Post 3.18 0.43 4 - - - 
 of Girls Pre 3.63 0.53  - - - 
 3 Pairs  Post 3.52 0.90 6 - - - 
 of Boys Pre 3.36 0.87  - - - 

 1 Pair of  Post 3.64 0.51 2 - - - 
 Girl & Boy Pre 4.08 0.83  - - - 
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Pre-camp BMP by learning group, gender and pair-type, and grade-level.   

Before camp started, the mean BMP score for everyone (M = 3.76 of 5.0, SD = 0.74) was 

relatively high overall, suggesting these participants have a higher disposition to think 

that high academic achievement is crucial for them being model Black students along 

with a high desire to dispel stereotypes about the low academic ability and intellect of 

African American people.  The pre-test mean BMP score for the communal learning 

group before Scratch lessons began was M = 3.69, SD = 0.80 and the mean BMP score 

for the individual learning group was M = 3.83, SD = 0.68.   

By gender.  Overall the girls in both learning groups had higher mean BMP 

scores than their male counterparts, but not much higher.  The pre-test mean BMP score 

for the girls in the communal learning group was M = 3.78, SD = 0.79, while the pre-test 

mean BMP score for their male counterparts was M = 3.59, SD = 0.85.  Within the 

individual learning group, the pre-test mean BMP score for the girls was M = 3.94, SD = 

0.66, while the pre-test mean BMP score for their male counterparts was M = 3.79, SD = 

0.71.  The girls having a larger pre-test mean BMP score than the boys is a pattern only 

repeated by the middle school participants, where the girls in the middle school 

communal learning group had a pre-test mean BMP score of M = 3.83, SD = 0.66, while 

their male counterparts had a pre-test mean BMP score of M = 3.38, SD  = 0.79.  

Additionally, the girls in the middle school individual learning group had a pre-test mean 

BMP score of M = 4.08, SD = 0.12, which was much higher than their male counterparts 

with a pre-test mean BMP score of M = 3.36, SD = 0.63.  However, the elementary 

school participants broke away from this pattern because the elementary school boys 
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scored higher than their female counter parts, as the boys in the elementary school 

communal learning group had a pre-test mean BMP score of M = 3.96, SD = 0.93, while 

the pre-test mean BMP score of their female counterparts was M = 3.75, SD = 0.94.  

Likewise, the mean BMP score for the boys in the elementary school individual learning 

group was M = 4.21, SD = 0.51, while the pre-test mean BMP score for their female 

counterparts was M = 3.88, SD = 0.84.  Furthermore, the boys in the elementary school 

individual learning group had the highest pre-test mean BMP score of M = 4.21, SD = 

0.51.  Here, however, it should also be noted that the lowest pre-test mean BMP score 

before Scratch lessons belonged to both the boys in the middle school individual learning 

group, M = 3.36, SD = 0.63 and the two boy pair-type in the communal learning group, 

M = 3.36, SD = 0.87. 

Grade-level and learning group.  Analysis by grade level and learning group 

revealed that the elementary school participants also had a slightly higher mean BMP 

score than the middle school participants.  Before Scratch lessons began, the pre-test 

mean BMP scores for the elementary school communal learning group was M = 3.83, SD 

= 0.89 and M = 4.09, SD = 0.63 for the elementary school individual learning group.  The 

pre-test mean BMP scores for the middle school communal learning group before Scratch 

lessons started was M = 3.57, SD = 0.74 and M = 3.52, SD = 0.64 for the middle school 

individual learning group.   

By gender and pair-type.  The one boy & one girl pair-type, regardless of grade, 

started with the highest mean BMP score (M = 4.14, SD = 0.45), followed by the two 

girls pair- type (M = 3.54, SD = 0.79) and two boys pair-type (M = 3.50, SD = 0.97).  The 
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one boy & one girl pair-type started with the highest pre-test mean BMP score at the 

elementary and middle school levels as well, M = 4.17, SD = 0.33 and M = 4.08, SD = 

0.83, respectively.  These and more detailed mean BMP scores can be found in Table 35 

below. 

Post-camp BMP by learning group, gender and pair-type, and grade-level.  

The resulting post-test mean BMP score for both groups was 3.62, SD = 0.72.  As a 

result, both learning groups saw a decrease, with the mean BMP score of the communal 

learning group from M = 3.69, SD = 0.80 to 3.62, SD = 0.75 and the post-test mean BMP 

score of the individual learning group from M = 3.83, SD = 0.68 to M = 3.62, SD = 0.71.  

The overall trend for the Black Model Phenomenon (BMP), the desire to be a positive 

example of a well performing Black student, decreased for all participants in both 

learning groups except for the two boys pair- type in the Communal Learning context.   

By gender.  The girls in both learning groups experienced a decrease in mean 

BMP scores, with those in the communal learning group going from 3.78 to 3.53 and 

those in the individual learning group going from 3.94 to 3.57.  The boys in the 

communal learning group were the only group to experience an increase in mean BMP 

scores, going from 3.59 to 3.71, while the individual learning group boys experienced a 

decrease from 3.79 to 3.64.   

By grade-level and gender.  Both learning group experienced a decrease in mean 

BMP scores with those in the elementary school communal learning group experiencing 

the smallest increase, going from M = 3.83, SD = 0.89 to M =3.86, SD = 0.79, while those 

in the elementary school individual learning group experienced a larger decrease from M 
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= 4.09, SD = 0.63 to M = 3.87, SD = 0.70.  The steepest decrease in post-test mean BMP 

scores was experienced by the two girls pair-type, followed by those in the Individualistic 

Learning context.  Even more, within the Individual Learning group, both the boys and 

the girls experienced decreases in mean BMP scores with the boys going from M = 3.79, 

SD = 0.71 to M = 3.64, SD = 0.71 and the girls going from M = 3.94, SD = 0.66 to M = 

3.57, SD = 0.78.  This is illustrated in Figure 38 below. 

By pair-type and grade-level.  Overall, regardless of grade-level, the only pair-

type that experienced an increase in mean BMP scores was the two boys pair type (from 

M = 3.50, SD = 0.97 to M = 3.63, SD = 0.83), while the two girls and one boy & one girl 

pair-type experienced slight decreases, from M = 3.54, SD = 0.79 to M = 3.25, SD = 0.70 

and from M = 4.14, SD = 0.45 to M = 4.12, SD = 0.45, respectively.  At the elementary 

school level, only the two girls pair-type experienced a decrease, from M = 3.45, SD = 

1.07 to M = 3.32, SD = 0.98.  Conversely, the two boys and one boy & one pair-type had 

increases in mean BMP scores.  These were a slight increase with the two boys pair type 

from M = 3.92, SD = 1.53 to M = 3.93, SD = 0.71 along with an increase from M = 4.17, 

SD = 0.33 to M = 4.36, SD = 0.14 for the one boy & one girl pair-type.  With the middle 

school participants, only the two boys pair type had an increase in mean BMP scores, 

from M = 3.36, SD = 0.87 to M = 3.52, SD = 0.90.  The two girls and one boy & one girl 

pair-type experienced decreases in post-test mean BMP scores, from M = 3.63, SD = 0.53 

to M = 3.18, SD = 0.43 and M = 4.08, SD = 0.83 to M = 3.64, SD = 0.51, respectively.  

These data are present in table 35 above and figures 37 and 38 below. 
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Figure 37.  Graph of BMP Pre- & Post-Test Mean Scores by Pair-Type. 

 

 

 
Figure 38.  Graph of BAI Pre- & Post-Test Mean Scores for the Individual Learning 
group by Gender. 
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 To continue the investigation into the potential impact this study may have had on 

its participants, the researcher explored each component question of the BMP scale.  The 

details of this exploration are described below. 

Black Model Phenomenon components.  The lowest of all BMP components, the 

component “It is a burden to prove to others that I am a smart Black,” suggests that 

students do not find it a burden to prove to others that they are smart Black students. This 

is illustrated in table 36 below.  The remaining components of the BMP scale received 

relatively high scores individually and these relatively high scores remained fairly 

consistent before and after this study.  This suggests that participants are aware of the 

connection between their racial identity and academic identity and that although some 

means scores increased while other decreased, these changes were small.  This suggests 

that this summer programming experience may have only had a small impact on 

participant BMP.  
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Table 36 
 
Specific Means and Standard Deviations for the Components of Black Model 
Phenomenon  
 

 
Communal Learning  

Group 
Individual Learning 

Group 
Black Model Phenomenon 
Components (1-5) Pre POST Pre 

 
POST 

I want to be an example of 
Black success. 

3.73 
(1.42) 

3.77 
(1.23) 

4.05 
(1.10) 

4.10 
(0.97) 

I want to represent Black 
students in a positive way. 

4.14 
(0.99) 

3.86 
(1.04) 

4.30 
(0.87) 

4.10 
(0.91) 

I want to be Black role model. 3.91 
(1.27) 

3.77 
(1.19) 

3.65 
(1.29) 

3.60 
(1.35) 

I want to show others that 
Black students are smart. 

4.36 
(0.95) 

4.14 
(1.13) 

4.05 
(1.23) 

3.85 
(1.31) 

Getting good grades in school 
is the best way to prove society 
wrong about Black  people. 

3.73 
(1.42) 

3.82 
(1.33) 

4.10 
(1.12) 

3.70 
(1.30) 

It is a burden to prove to others 
that I am a smart Black   
student.  

2.27 
(1.55) 

2.41 
(1.47) 

2.85 
(1.66) 

3.45 
(1.54) 

 
 
 
 
Interviews 

 To discover more about what participants thought about the connection between 

being Black and their academic performance, the research asked two questions at the end 

of the study to connect notions of academic performance to performance during camp 

and notions of performing well during camp to being a young black male or female.   

These questions were:   
 

1. Is there a connection between your academic performance and how you’d like to 
perform in Scratch?   

2. Is there a connection between being a young black <male/female> to doing well 
in Scratch? 
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Twenty-two participants were interviewed, 12 from the Communal Learning group and 

12 from the Individual Learning group; six girls and six boys.  The first question was 

asked to determine if participants made a connection between school and using Scratch in 

this study, particularly regarding level of effort and level of performance.  Most 

participants saw no connection between these two.  The only connection made was with 

the use of computers.  Two middle school boys, in the individual learning group 

expressed in separate interviews, that there are deadlines and grades in school and neither 

of these existed during camp.  One elementary school girl in the individual learning 

group recognized that doing well in both school and in Scratch required time and effort 

by saying, “there is no connection, but you have to work hard and spend a lot of time 

with both.” 

 When asked if there was a connection between participants being Black and doing 

well in Scratch, some saw no connection.  This was expressed most clearly by one 

elementary school boy in the communal learning group expressed it this way, “Scratch is 

a game, being black is a whole nothing thing.” However, many participants in both 

groups were indicated an awareness of a connection but could not explain it.  These 

participants responded with words such as “kind of,” and “sort of,” and “yes, but it’s 

confusing.”  One middle school boy in the communal learning group did no see a 

connection but was aware that other people made a connection.  This was expressed 

when he responded, “I don’t see a connection, but I know other people make the 

connection a lot.” 
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Inferential Statistical Tests for Significance Black Academic Identity   

Overall.  Paired-samples t-tests were run on the differences between pre- and 

post-test mean Black Academic Identity scores to determine statistical significance.  No 

outliers were present in the difference scores for pre- and post-test Black Academic 

Identity score, as assessed by inspection of resulting boxplots.  All assumptions were met.  

Differences between the pre- and post-test mean Black Academic Identity scores were 

normally distributed, as assessed by Shapiro-Wilk’s test (p > .05, p =.391).   

This camp experience caused a mean difference of -0.0179 in Black Academic 

Identity between pre- and post-test scores.  However, this change is not statistically 

significant, t(41) = -0.17, p =.86  Thus, this camp experience did not have a significant 

impact in altering a participants Black Academic Identity.  This is supported by the 

findings in the interviews and in the slight changes between pre- and post-test mean BAI 

descriptive statistics mentioned above.   

By grade-level.  The descriptive statistics illustrated and annotated above 

consistently revealed that the BAI scores for the elementary school students were 

consistently higher than their middle school student counterparts. As such, an 

independent t-test was performed on BAI by grade-level (i.e. elementary school vs. 

middle school) to determine if the difference in pre- and post-test BAI scores was 

statistically significant.   

BAI pre-test grade level significance.  The pre-test mean Black Academic 

Identity score for the elementary school participants (M = 3.09, SD = 0.63) was higher 

than that of the middle school participants (M = 2.69, SD = 0.564).  The highest BAI 
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score possible is 5, which means that a mean score of 2.5 or higher indicates a high 

degree of Black Academic Identity.  In this case the elementary school students have a 

higher sense of Black Academic Identity than the middle school students.  The results of 

the independent t-test shows that this difference is statistically significant, t(40) = 2.194, 

p = 0.034. 

BAI post-test grade level significance.  The post-test mean Black Academic 

Identity score for the elementary school participants (M = 3.13, SD = 0.65) was higher 

than that of the middle school participants (M = 2.61, SD = 0.88).  The results of the 

independent t-test shows that this difference is statistically significant, t(40) = 2.146, p = 

0.038. 

 
Inferential Statistical Tests for Significance Black Model Phenomenon   

Overall.  Paired-samples t-tests were run on the differences between pre- and 

post-test mean Black Model Phenomenon scores to determine statistical significance.  

Two outlier were present in the difference scores for pre- and post-test Black Model 

Phenomenon score, as assessed by inspection of resulting boxplots.  However, because 

these were outliers were not extreme, they were kept in the analysis. All other 

assumptions were met.  Differences between the pre- and post-test mean Black Academic 

Identity scores were normally distributed, as assessed by Shapiro-Wilk’s test (p > .05, p 

=.476).   

This camp experience caused a mean change of -0.135in Black Academic Identity 

between pre- and post-test scores.  However, this change is not statistically significant, 

t(41) = -1.497, p =.142.  Thus, this camp experience did not have a significant impact in 
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altering a participants Black Model Phenomenon.  This is supported by the findings in the 

slight changes between pre- and post-test mean BMP descriptive statistics mentioned 

above.   

By grade-level.  The descriptive statistics illustrated and annotated above 

consistently revealed that the BMP scores for the elementary school students were 

consistently higher than their middle school student counterparts. As such, an 

independent t-test was performed on BMP by grade-level (i.e. elementary school vs. 

middle school) to determine if the difference in pre- and post-test BMP scores was 

statistically significant.   

BMP pre-test grade level significance.  The pre-test mean Black Academic 

Identity score for the elementary school participants (M = 3.97, SD = 0.76) was higher 

than that of the middle school participants (M = 3.55, SD = 0.68).  The highest BMP 

score possible is 5, which means that a mean score of 2.5 or higher indicates a high 

degree of Black Model Phenomenon.  In this case the elementary school students have a 

higher sense of Black Model Phenomenon than the middle school students.  The results 

of the independent t-test shows that this difference is not statistically significant, t(40) = 

1.892, p = 0.066. 

BMP post-test grade level significance.  The post-test mean Black Model 

Phenomenon score for the elementary school participants (M = 3.86, SD = 0.72) was 

higher than that of the middle school participants (M = 3.38, SD = 0.65).  The results of 

the independent t-test shows that this difference is significant, t(40) = 2.273, p = 0.029. 
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Summary of the Impact on Black Academic Identity 

 Although there seems to be small patterns in the change in mean BAI and BMP 

scores in the pre- and post-tests as a result of this study, these changes are very minimal.  

One interesting pattern exists with the two boys pair-type.  When most other participant 

mean BAI scores slightly decreased or remained the same, the mean BAI score of the 

participants in the two boys pair-type increased.  Regarding mean BMP scores, 

participants in the two boys pair- type experienced an increase when all other pair types 

experienced a decrease.  These contrasts are illustrated above in figures 35 and 37 

respectively.    

 However, there was a statistically significant difference in pre and post-test mean 

BAI scores, where the elementary school participants had higher BAI score than their 

middle school counterparts.  This statistical significant held for the difference in post-test 

mean BMP score, but not for the pre-test mean BMP score. 

 When asked specifically about the connection between being Black and academic 

achievement, most participants saw no connection.  Likewise, when asked to describe if 

there was a connection between being Black, most participants did not express one.  

Interestingly, however, one participant shared his awareness that other people make this 

connection.  

 Although participants did not express a definite connection between being Black 

and academic performance, their pre- and post-camp responses were higher than the 

midpoint for both BAI and BMP and especially high for BMP.  More analysis revealed 

this to be true for each of the BAI and BMP component questions, where responses were 
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consistent on the pre- and post-camp tests, with little variability.  Regarding BAI, the 

rating for the “Being a good Black student is an important part of who I am” 

statement received the highest mean score for participants in both learning groups.  The 

same is true for the “It is a burden to prove to others that I am a smart Black  

student” BMP component statement.  This suggests some awareness of the connection 

between racial identity and academic identity by participants in both learning groups, 

even though they could not seem to verbally express it. 
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Chapter Five:  Discussion and Conclusion 

Discussion  

 The 42 participants in this study reported various levels of technology use in their 

daily lives as responses to the pre-camp previous computer experience questionnaire 

(Appendix D).  Eighty-nine percent reported using computers to play games.  Eight-four 

percent enjoy playing games on mobile devices.  Seventy-two percent reported watching 

movies or online videos at least once a week.  Sixty-six percent reported that they can 

explain how to use a computer to someone who needs help.  Forty-six percent reported 

that they participate in online multi-player video games at least once a day, while 23% 

participate in the games several times a day.  Thirty percent reported using the Internet to 

read comics at lease once a week.  While 68% said they take an online class at least once 

a month, only 30% reported that they consider themselves a part of the computational 

thinking (computer science, engineering, scientist) community.  Twenty-five percent 

reported working on digital media projects outside of school on a daily basis while fifty-

one percent said they have either never done it or have done it less than once a month.  

Fifty-six percent reported that they have never used a computer to program, and nearly 

40% said they have never used a computer to create a multimedia presentation. Seven 

percent said they have made used Scratch six or more times prior to this study.  With 

these statistics, the statistics describing the population of this study closely matches the 
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statistics used to describe the tweens and teens described in Chapter One – Introduction; 

they consume technology in large amounts but many do not use computing technology to 

create.   

 Even more, the population of this study also matches the underrepresented 

communities in computer science and computer engineering also described in Chapter 

One.  Without strategic interventions, it will be extremely challenging to change these 

statistics.   

Brief description of study. Therefore, the purpose of the study presented here 

was to offer a way towards determining and exploring strategies that will contribute to 

the successful teaching and learning of computational thinking and computer 

programming skills.  Counter to the typical studies designed to teach these skills, this 

study solicited and accepted participants who are all members of the underrepresented 

populations described above (African American and Latino American) and thus 

contributes to the CSEd literature as such.  More specifically, these participants are 

African American elementary and middle school novice programmers.   Additionally, it 

experiments with and explores the benefits of using culturally relevant pedagogy to teach 

computational thinking and programming skills. The specific culturally relevant 

pedagogical instructional strategy explored here focused on Communalism.  

Communalism is one of the nine elements of the Black Cultural Ethos, distinctive cultural 

phenomenon that contributes to and enhances the academic performance of African 

American students.  Here, communalism was specifically instantiated in the context of a 

communal learning environment, where participants were placed in pairs, expected to 
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share resources, and rely on one another to learn and use computational thinking and 

programming skills using the Scratch visual programming language.  Placing communal 

learning group participants in pairs was also done as a result of the benefits of pair 

programming in the computer science literature.  More explicitly, during a summer camp, 

lasting 5 week days, 3 hours per day, a mixed methods research design was used, where 

22 participants were randomly assigned to the group where they work in pairs, i.e. the 

communal learning group, and 20 participants were randomly assigned to work alone, i.e. 

the individual learning group, to observe, describe, and compare how participant in each 

learning group learned computational thinking and programming skills.  Furthermore, the 

pairs in the communal learning group were specifically designed with three pair-types: 

two girls, two boys, and one boy & one girl.  Data collection and data analysis methods 

followed a convergent parallel mixed-method research design, where quantitative and 

qualitative research methods were used to understand the learning processes which 

occurred in both learning groups, i.e. communal and individual learning.  These methods 

included independent t-tests, paired samples t-tests, the critical incident analysis 

technique, and a cognitive assessment of participants’ problem-solving and program 

development skills.  Data sources included pre- and post-study Scratch content 

knowledge tests, participant notebooks and resulting Scratch projects, in addition to audio 

and video recordings, opinion prompts, end-of-camp interviews, and a multi-item scale 

used to measure participant learning preferences and Black Academic Identity. 

Results:  learning and using Scratch computational thinking and 

programming skills.  All participants expressed a relatively high preference for working 
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cooperatively and a relatively low reference for working individualistically. This affirms 

the notion of communalism, one of nine elements highlighted here as a cultural 

phenomenon which contributes to enhanced academic performance of African American 

students.  Furthermore, post-test mean scores of content knowledge related to Scratch 

were measure and compared.  Although neither learning group ended the camp 

experience with particularly high post-test mean scores, overall, the participants in the 

communal learning group performed better than participants in the individual learning 

group regarding Scratch content knowledge as well as the core computational thinking 

and programming skills identified by the creators of Scratch, namely sequences, events, 

loops, conditionals, operators, and working with data.  These differences in scores were 

statistically significant for all skills except events, which had just two questions on the 

pre- and post-test dedicated to it.  More specifically, a pattern emerged where the one boy 

& one girl pair-type within the communal learning group consistently scored the highest 

in all but one category.  These included Scratch overall, sequences, loops, conditionals, 

operators, and working with data.  The one category where the one boy & one girl pair-

type did not score the highest was that of events.  Here, the one boy and one girl pair-type 

scored the second highest to the two girls pair-type.  Another pattern also emerged; 

participants in the individual learning group scored the lowest in all but two 

programming categories, when compared to all three pair-types.  These categories 

included Scratch content overall, sequences, loops, conditionals, operators, and working 

with data.  When the individual learning group did not score the lowest, the two boys 

pair-type scored the lowest.  This occurred twice with the events and loops categories.  It 
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is worth noting that the middle school boys in the communal learning group had severe 

behavioral challenges.  These challenges are in line with what some researchers call 

hegemonic masculinity.  These behavioral challenges may have contributed to the low 

performance by participants in the two boys pair-type. 

Learning and using Scratch.  The learning process revealed various 

characteristics of learning and using Scratch as well.  Participants in the communal 

learning group had to share learning resources.  These included a Scratch Booklet and 

one computer.  Each participant had his or her own notebook to use at his or her 

discretion.  Participants in the communal learning group shared a variety of reading 

strategies including taking turns reading pages and paragraphs along with discussing 

what was read after each member of the pair read.  Participants in the individual learning 

group simply shared that they read and attempted programming activities as they 

progressed linearly through the book.  On average, all participants in both learning 

groups completed 4.5 units of 15.  No one expressed skipping around the Scratch 

Booklet.  Also, regardless of learning group membership, to the researcher, many 

participants seemed to have reading challenges, as evidenced by the audio recordings.  

Participants were not aware of these challenges and reported enjoying in reading the 

Scratch Booklet. Resulting Scratch projects had a variety of characteristics, from being 

simple to relatively complex (for novices), to remixed, and those artfully creative.  It is 

worth noting that the relatively complex Scratch projects were created by participants in 

the one boy & one girl and two girls pair-types within the communal learning group – the 

group which most often scored the highest in most categories of the Scratch post-test.  
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Even though participants ended the study with relatively low mean post-test scores and 

there was a lack of many complex Scratch projects, the resulting scores, Scratch projects, 

and interviews suggest that the African American elementary and middle school novice 

programmers in this study learned and were able to use some of the computational 

thinking and Scratch programming skills presented during this summer camp.  The 

notebooks were not used often by either learning group.  However, a pattern emerged 

where many participants wrote the exact same information in their notebooks.  This 

information included the definition of ‘initialization’ and the size in pixels of the Scratch 

stage.  This is the only information recorded by participants and it is not clear why this 

information was recorded and only this information. Nonetheless, the commonality 

suggests the potential for teaching young novice programmers how and when to 

document their thoughts, ideas, problem-solving steps, and information about their 

resulting programs. 

Although a majority of the participants in this study never used Scratch prior to 

this summer camp, their experiences throughout the duration of the camp enabled them to 

ponder intelligently about the Scratch environment and offer some suggested changes for 

improvement.  Some of these suggestions included: 1) creating a path for beginner, 

intermediate, and 2) advanced students upon login to help Scratchers sift through the 

millions of projects currently online, to provide more readily available guide and tutorials 

that also match these levels of expertise.  Additionally, suggestions were given to 

improve the structure and format of the Scratch Booklet, many of which may even help 

learning with reading challenges.  The design and functional suggestions provided a 
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glimpse into participant’s ability to design, think computationally, and problem solve in 

the context of programming and learning to program.    

Black Academic Identity (BAI).  An additional purpose of this study was to 

determine participants’ Black Academic Identity and to measure the extent to which this 

summer programming camp experience impacted it, if at all.  The theory and expected 

connection here is that the more a learning context is innately aligned with African 

American student culture, the more African American students will psychologically 

connect high achievement with their race and be highly motivated to achieve and align 

their behavior as such.  Most often, participants in both learning groups reported 

recognizing no connection between their academic identity and level of performance, 

their performance using Scratch, and their identity as Black youth.  However, their mean 

BAI scores revealed that they make a connection between academic performance and 

Black identity to some degree.  Pre- and post-camp mean scores fluctuated within 

learning group, gender and pair-type.  Some experienced increases where others 

experienced decreases.  Overall, however, these changes were extremely minimal, 

suggesting this summer camp experience had no overall impact on participants’ Black 

Academic Identity.  It is important to note that one existed, nonetheless.    

 Computer science education research methods.  Exploring the use of a mixed-

methods research approach was provided another purpose for this study.  The CSEd 

research literature posits that not many studies on the teaching and learning of computer 

science and more specifically on computer programming use rigorous social 

science/educational research methodology.  For this reason, pedagogical theories and 



224 

educational research methods were explored to determine utility and feasibility, namely 

culturally relevant pedagogy (Communalism) and critical incident technique using a 

convergent parallel mixed method approach. As a result, there were many types of data 

collected, which produced descriptions of not only the resulting programming 

performance but also regarding the processes undertaken to learn how to program 

throughout each day of camp. 

Limitations 

 Although patterns emerged from and contributions to the field of culturally 

relevant and CSEd research were identified, this section shares a few limitations of this 

study recognized by the researcher.  These limitations mainly involve the structure of 

study, the selection of participants, and the research design.    

Structure and timing. Regarding structure of the study, one week (five week 

days, three hours per day) is not long enough to effectively teach computational thinking 

and programming skills using the Scratch programming language.  Although Scratch was 

originally designed to be learned at the pace of the student, the growing importance of the 

teaching, learning, and use of computational thinking skills call for more structured 

learning approaches.  As a result, the expected outcome is that students master as much 

of the material as possible.  With this, a camp lasting 5 week days, 3 hours per day is not 

sufficient.  Additionally, the last minute computer lab change and the inability to find a 

research assistant to consistently help for two weeks presented a behavior management 

challenge for the study.  As a result, the researcher believes the misbehavior of some of 

the participants impacted the results of the study, especially since some misbehavior 
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resulted in change pair assignments.  Even more, structuring the study under the guise of 

a summer camp instead of during school or during the school year in an afterschool 

program could have deterred students from focusing on learning the material.  Instead the 

notion of summer camp, fun, and game playing was the expected norm.  The researcher 

believes this my have limited participants’ focus on learning and retaining the material 

even more. 

Participant selection.  Many communal learning research studies are conducted 

in formal learning environments where students already know one another.  Here, in this 

study, students met for the first time.  The researcher believes that students just meeting 

one another for the first time and enjoying the process of getting to know one another 

provided a small distraction to learning for many students, especially those paired in the 

communal learning group.  Even more, since communal learning have typically been 

conducted in formal learning environments, most if not all participants are already 

familiar with and are accustomed to traveling to these environments.  This study was 

conducted on a college campus, where the lack of familiarity with the environment 

initially caused anxiety with the parents and the lack of easy transportation hindered 

some students from participating. 

Sample size. Additionally, limited statistical power because of the modest sample 

size in the present study (n = 42) may have played a role in limiting the significance of 

some of the statistical comparisons conducted. A post hoc power analysis revealed that to 

get a medium effect size (d = .5), an n of approximately 176 participants (88 in each 
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group) would be needed to obtain statistical power at the recommended 0.80 level 

(Cohen, 1988). 

Research design.  Another potential limitation regarding the research design was 

studying elementary school student participants simultaneously with middle school 

student participants, especially since both groups used the same Scratch Booklet.  As 

such, developmentally appropriate material (i.e. reading level) was not used for each 

group and could have caused a lack of engagement for some as a result.  Moreover, the 

Scratch Booklet and the pre- and post- Scratch Content Knowledge questionnaire was 

unbalanced in the amount of pages and questions dedicated to each concept.  This 

unbalance potentially provided a limitation regarding the amount of material presented 

and tested on any of the core Scratch computational thinking and programming skills.  

These limitations will be reconsidered in future work. 

Future Work 

 The researcher intends to continue this line of inquiry regarding culturally 

relevant pedagogy with those underrepresented in computer science, mainly African 

American students, the teaching and learning of computational thinking and 

programming skills, the creation and evaluation of curriculum and instructional materials 

and activities, along with the resulting impact of learning these skills on behavior and 

identity.  As such, I wish to embark on the following projects in the near future. 

Study improvements.  For this reason, the researcher intends to explore longer 

studies, a balance in the amount of instructional material and assessment questions per 

core Scratch computational thinking and programming skill, acquiring more research 
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assistants to help with study implementation and facilitation. Regarding identity 

exploration, the research would also like to more formally explore instruments that 

measure attitudes about computer science. 

Scratch CT scale creation and validation.  This study helped to highlight the 

need for an authentic Scratch CT and programming assessment scale.  In the future, the 

researcher plans to explore the creation of such a scale such that there is a balance of 

questions between all six CT elements and that each element can stand alone as its own 

construct in addition to all elements serving as one overall validated assessment. 

Culturally relevant instructional Scratch book.  The researcher would also like 

to write and publish a Scratch book containing instructional strategies, learner activities, 

and assessments focused on culturally relevant computing and culturally relevant 

pedagogy. 

Computational thinking community identity scale.  The researcher would like 

to collaborate with others interested in creating and validating a CT scale that measures 

identity, efficacy, sense of belonging to the computing sciences community from a 

culturally relevant computing perspective. 

Expand dual common model of problem-solving and program development.  

Another near future endeavor is to create a framework for problem-solving and 

programming that includes all of the CT assessment categories created by the Scratch 

Team and PACT regarding computing, computational thinking, and communicating, 

along with behavior, motivation, and persistence. 

 



228 

 Conclusion 

 Taken together, this work presented here contributes to culturally relevant 

educational research that highlights the enhanced performance and academic benefits of 

African American youth working in learning environments which support the nine 

elements of the Black Cultural Ethos.  More specifically, implementing communal 

learning groups as an instantiation of Communalism aligns the learning environment of 

an African American child with his or her culture and therefore innately enables 

enhanced performance.  Here, even though not statistically significant in this particular 

study, the Scratch content knowledge mean score of the communal learning group 

perform was higher than the individual learning group on all programming tasks. This 

study also uncovered a pattern where the one boy & one girl pair-type within a communal 

learning environment performed best of all pair types and participants working 

individually. 

This study also integrates the culturally relevant research, namely Communalism 

and Black Academic Identity and integrated them with research into the teaching and 

learning of computational thinking and programming skills.  

Additionally, the results of this study contribute to the CSEd research literature in 

three ways: a) it provides an example of a CSEd research study where 100% of the 

participants identify as being African-American or Latino-American and who are 

underrepresented in computer science fields of work and study, b) it uses culturally 

relevant pedagogy to teach computational thinking and programming skills to 

underrepresented populations in computer science, and c) it uses strategic educational and 
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social science research methods when exploring the teaching and learning of computer 

programming.  Thereby providing CSEd Researchers with examples of more potential 

tools to use, especially when teaching and working with students who are 

underrepresented in computer science. 
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Appendix B 

Consent & Assent Forms 

 

Understanding How Students Learn Programming & Computational Thinking Skills 
 

PARENTAL INFORMED CONSENT 
 

RESEARCH PROCEDURES 
 
This research is being done to study how (the process of) young people learn computer programming and 
computational thinking skills.  If you agree with having your child participate, he/she will be observed 
throughout the course in order to help me understand how children learn to program.  Students will also be 
observed to see how they interact with other students and teachers while they learn how to program and 
create their own programming projects.  The complexity of designs changes over time will also be 
observed.  Observations will occur in real-time by the researcher in the room along with the use of video 
recording equipment (microphones and cameras), where students will be recorded for later playback, 
viewing, and analysis.  In addition to observation, students will be asked to participate in some interviews 
(15 minutes each), complete brief questionnaires (5-10 minutes each), and complete a series of pre- and 
post- surveys and assessments (totally no more than 120 minutes, depending on speed of child).  Taken 
together, these activities along with the actual lessons and class activities should not last longer than 25 
hours total. 
 
RISKS 
There are no foreseeable risks.  
 
BENEFITS 
 
There are no direct benefits. However, your child’s participation may help to further research in learning 
and technology. 
 
CONFIDENTIALITY 
 
The data in this study will be confidential. Data and video & audio recordings will be collected through 
online questionnaires, observations, and interviews. Your child’s names and other matching identifiers will 
not be used in the data analysis.  All data will be stored in 3 locations – the student researcher’s computer, 
an external hard drive for backup, and a computer located on George Mason University’s campus.  Data 
storage will be password protected and only Leshell Hatley, the student researcher, and Dr. Kevin Clark, 
the principal investigator, will have access to the data and the passwords used. This data will be stored 
forever for future longitudinal research studies and comparisons. While it is understood that no computer 
transmission can be perfectly secure, reasonable efforts will be made to protect the confidentiality of your 
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transmission.  Unique identification numbers will be used throughout data collection, analysis, and 
reporting.   
 
PARTICIPATION 
Your child’s participation is voluntary, and you or your child may withdraw from the study at any time and 
for any reason. If your child decides not to participate or if your child withdraws from the study, there is no 
penalty or loss of benefits to which you are otherwise entitled.  If this is the case, your child can still 
complete all course activities without being recorded and his/her data will not be used in the study.  There 
are no costs to you or any other party.  
 
 
 
 
CONTACT 
 
This research is being conducted by Kevin Clark or Leshell Hatley of the Instructional Technology 
program at George Mason University. Kevin may be reached at (703) 993-3669 and Leshell may be 
reached at 202.758.2005 for questions or to report a research-related problem. You may contact the George 
Mason University Office of Research Integrity & Assurance at 703-993-4121 if you have questions or 
comments regarding your rights as a participant in the research. 
 
This research has been reviewed according to George Mason University procedures governing your 
participation in this research. 
 
 
CONSENT 
 
___I have read this form and agree to my child’s participation in this study. 
 
___I agree to have my child video recorded. 
 
___I agree to have my child audio recorded. 
 
 
 
           __________________________ 

 Name of Child 
 
          ___________________________     
 ___________________ 

Parent’s Signature       Date of Signature 
 

 

 

 

 



234 

 

Understanding How Students Learn Programming & Computational Thinking Skills 
 
 

YOUTH INFORMED ASSENT 
 
 

RESEARCH PROCEDURES 
 
This purpose of this project is to study how young people learn computer programming and computational 
thinking skills.  If you agree to help, you will wear a microphone and will be video and audio recorded as 
you learning how to program.  
 
These recordings will help me see how you interact with other students and teachers while you learn how to 
program and create your own projects.  You will be asked several questions throughout the project.  You 
will answer some of them on the computer and you will simply say other answer into a microphone. Your 
answers will help us measure how much you learn.  It should take no more than 25 hours for you to learn 
how to program and to answer all the questions. 
 
RISKS 
There are no risks to you.  
 
BENEFITS 
 
If you help with this project, you may assist me in understanding how people learn: 

1. About computer programming and computational thinking skills,  
2. What makes people want to use computers,  
3. and what makes people not want to use computers. 

 
CONFIDENTIALITY 
 
The information and recordings in this project will be kept secret. Your names and other information about 
you will not be shared with others.  This information will be kept locked with passwords and keys in 3 
places – the student researcher’s computer, an external hard drive for backup, and a computer located on 
George Mason University’s campus.  Only Leshell Hatley, the student researcher, and Dr. Kevin Clark, the 
principal investigator, will have access to the information, the keys, and the passwords used. This 
information will be stored forever for future research projects.  
 
PARTICIPATION 
 
You may stop being recorded at any time and for any reason. If you decide to stop that is okay, you can still 
complete all class activities, but you will not be recorded and your data will not be used in the study. You 
don’t have to pay anything to be part of this project. 
 
CONTACT 
 
My name is Leshell Hatley, and I am studying Learning Technologies Design Research at George Mason 
University. You can call me at this phone number (301) 736-2379 if you have any questions about this 
study. You can also call my teacher, Dr. Kevin Clark at George Mason University, at this phone number 
(703) 993-3669.  The George Mason University Office of Research Integrity & Assurance knows all about 
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my research and said that it was OK for me to do it. You can call them at 703-993-4121 if you have any 
questions about being a part of this research. 
 
 
 
 
 
 
 
ASSENT 
 
___I have read this form and agree to participate in this study. 
 
___I agree to be video recorded. 
 
___I agree to be audio recorded. 
 
             __________________________ 

 Name of Youth 
__________________________    __________________________ 
 Youth’s Signature         Date of Signature 
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Appendix D 

 

Pre-Camp Academic and Computer Experience Questionnaire 

 

BASIC INFORMATION 
 

Q1 Name 

 
 

Q2 Age 
 

Q3 Gender  
 

Q4 Grade 
 

Q5. Have you ever written a computer program? 
 

Q7 How did you get into this summer camp? 
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“FUTURE SELF” QUESTIONS 

Q8. In the future, can you see yourself . . . 

 Definitely No Probably No Probably Yes Definitely 
Yes 

Taking more  
 

mm 

 
 

mm 

 
 

mm 

 
 

mm 

classes about 
computers or 

computer     
science?     

Becoming a     
computer     

programmer or mm mm mm mm 
engineer of some     

sort?     

Becoming a     

graphic designer mm mm mm mm 
or Web designer?     

Becoming a     
computer or 

network mm mm mm mm 
specialist?     

Becoming a     
computer or 
technology mm mm mm mm 

teacher?     

Becoming a     

computer game mm mm mm mm 
designer?     

Becoming an app 
developer? mm mm mm mm 

Becoming a     
computer mm mm mm mm 
scientist?     

Becoming a 
scientist? mm mm mm mm 

Becoming a 
teacher? mm mm mm mm 
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Becoming a 
doctor or nurse? mm mm mm mm 

Becoming an 
artist? mm mm mm mm 
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Becoming a 
designer? 
Starting a 
business? 

mm 
 

mm 

mm 
 

mm 

mm 
 

mm 

mm 
 

mm 
 

Q9 Please describe your ideal job for the future (in one sentence): 

 

 

Q10  What are currently your TOP 3 favorite subjects in school? 

Q11 How MANY TIMES do you use a computer (anywhere) to do each of the 

following: 

 Never Less 
than 
once 

a 
mont 

h 

Once 
a 

mont
h 

A few 
times 

a 
mont 

h 

Once 
a 

week 

A 
few 

times 
a 

week 

Dail 
y 

Sever 
al 

times 
a day 

Play games (on the  
mm 

 
mm 

 
mm 

 
mm 

 
mm 

 
mm 

 
mm 

 
mm computer, online or 

on a game console)         
Participate in multi- 
user online games mm mm mm mm mm mm mm mm 

Work on your own         
digital media projects 

outside of school mm mm mm mm mm mm mm mm 
assignments?         

Conduct research on         
the Internet for mm mm mm mm mm mm mm mm 

school         

Collect/view/organize         

e images or music         
(e.g. put your photos, 

images, or sounds mm mm mm mm mm mm mm mm 
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from the Web into         
folders).         

Write for fun mm mm mm mm mm mm mm mm 
Read or send email mm mm mm mm mm mm mm mm 
Read comics (e.g. 

Manga) mm mm mm mm mm mm mm mm 

Do some artwork mm mm mm mm mm mm mm mm 
Doing homework, 
checking grades mm mm mm mm mm mm mm mm 

Watching movies         
and online music mm mm mm mm mm mm mm mm 

videos         
Take online courses 

in science/math/other mm mm mm mm mm mm mm mm 

Watch online         
academic videos and 
lectures (e.g. Khan mm mm mm mm mm mm mm mm 

Academy)         

Social networking mm mm mm mm mm mm mm mm 
(e.g. facebook) 
Do computer 
programming 

 
 

mm 

 
 

mm 

 
 

mm 

 
 

mm 

 
 

mm 

 
 

mm 

 
 

mm 

 
 

mm 
 
Q12 How MANY TIMES have you EVER CREATED the following using 

some software on the computer? 
 0 times 1-2 times 3-6 times 6+ times 

Created a  
 

mm 

 
 

mm 

 
 

mm 

 
 

mm 

multimedia 
presentation 

(e.g.     
PowerPoint)     

Written     
computer     

program (code)     
using a 

computer   mm mm 
language (e.g.     
LOGO, Java,     
Python, C++)     
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Made computer     
creations using     
Scratch or Alice 

or Tynker mm mm mm mm 

(block-based     
programming)     

Created a Web     
site using mm mm mm mm 
HTML     

Created an app     
for iPhone or mm mm mm mm 

Android     

Created a piece     

of art using a     
software 

application (e.g. mm mm mm mm 
PhotoShop,     
Illustrator)     

Built a robot or     
other invention     

of any kind mm mm mm mm 
using electronics     
and technology     

Created a digital mm mm mm mm 
 

movie (e.g.  
 
 
 
 

mm 

 
 
 
 
 

mm 

 
 
 
 
 

mm 

 
 
 
 
 

mm 

iMovie or 
MovieMaker) 

Created an 
animation (e.g. 
Flash, Alice, 

Scratch)     

Created a     
computer or     

video game (e.g. 
Stagecast, mm mm mm mm 
GameStar,     

Scratch, Kodu)     

Created a piece     
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of music (e.g. 
GarageBand, mm mm mm mm 
FruityLoops)     

Created a     
spreadsheet, 

graph, or chart mm mm mm mm 
(e.g. Excel) 

 
Q13  How would you describe your level of experience with the following 

computer applications/equipment? 
 I 

don’t 
know w 

what 
this is 

I have no 
experience 
but I have 
heard of it 

I’ve 
played 
around 
with it 

I have 
used it to 

make 
somethin

g 

I’m an 
expert 

and can 
teach 

someon 
e how to 

use it Flash mm mm mm mm mm 
Photoshop/Fireworks/Illustrato
r 

mm mm mm mm mm 
Scratch/Tynker mm mm mm mm mm 

Alice mm mm mm mm mm 
LOGO mm mm mm mm mm 

MIT App Inventor mm mm mm mm mm 
Java programming mm mm mm mm mm 

Python programming mm mm mm mm mm 
Javascript programming mm mm mm mm mm 

HTML/XML mm mm mm mm mm 
 

iPhone SDK/Objective C mm mm mm mm mm 
GameStar Mechanic mm mm mm mm mm 

Kodu mm mm mm mm mm 
FruityLoops/Audacity/GarageBan 

d mm mm mm mm mm 

iMovie/MS MovieMaker mm mm mm mm mm 
Arduino mm mm mm mm mm 

Lego Mindstorms mm mm mm mm mm 
Microsoft Word/Powerpoint mm mm mm mm mm 
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C or C++ programming mm mm mm mm mm 
 

Q14 How often do you use a computer in the following places : 

 Never Less 
than 

Once a 
Month 

Once a 
Month 

2-3 
Times 

a 
Month 

Once a 
Week 

2-3 
Times 

a Week 

Daily Several 
Times 
a Day 

At home mm mm mm mm mm mm mm mm 
At         

school 
during mm mm mm mm mm mm mm mm 
class         

At         
school         
on your mm mm mm mm mm mm mm mm 

own         
time         

At a         

relative's mm mm mm mm mm mm mm mm 
house         

In an         
after         

school mm mm mm mm mm mm mm mm 
program         

/ club         

At a         

friend's mm mm mm mm mm mm mm mm 
house         
At the 
library mm mm mm mm mm mm mm mm 

Q15  How many classes/workshops/camps have you participated in before this 
class for the following--  Scratch, Snap, Alice, Tynker, LOGO, Robotics? [Write 
"learned at home" or "learned on my own" if you have never learned these formally, but 
have picked                                                                                                                                                        
nni90ooolllplplpplllll;them up at home or on your own] 

Scratch 
Snap 
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Tynker 
Alice 
LOGO 
Robotics 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



246  

Appendix E 

Computational Thinking and Programming Pre- & Post-Test 

 
 
Camp ID: 
computational thinking VOCABULARY 
Here is a list of concepts. Write a short explanation of each one. If the concept is 
not familiar, write X. 

algorithm  
Initialization  
variable  
input/output  
loop  
conditional 
boolean variable 

 
 

Sequence of Instructions-2 
 

Here is a sequence of instructions: 

 
1. Stand at the origin 
2. Turn left 
3. Carry out 10 times: 

3.1 Move 5 steps 
4. Turn right 
5. Carry out 10 times: 

5.1 Move 5 steps 
6. Turn right 
7. Carry out 10 times: 

7.1 Move 5 steps 
 

(a) If you carry out these instructions, you will follow a path that is the form of 
some letter in the English alphabet. What is it? 
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Scratch-1 

 
What is the above an example of? 

Conditional execution 
Handling an event  
Sending a message  
Loop 
Variable assignment 
 

Scratch-2 

 
 

How many times will   be executed above? 

mm 25 

mm 20 

mm 100 

mm 10 

mm I don't know 

 
 
Scratch-3 
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What is the above an example of? 
mm Conditional execution 
mm Handling 

an event mm Sending a 
message mm Loop 

mm Variable assignment 
 
 
 
Scratch-4 

 
What is the above an example of? 
mm Conditional execution 
mm Handling 

an event mm Sending a 
message mm Loop 

mm Variable assignment 
Scratch-5 
 
 

What is this an example of? 

mm Conditional execution 

mm Handling 
an event mm Sending a 
message mm Loop 

mm Variable assignment 

 
Scratch-6 

What does the following code do? 
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What does the following code do? 
mm Repeat a simple 

animation mm Draw a square 
using a pen mm Make a ball 
fall 

mm Increment the score 

mm Stamp the current costume at the current mouse location 

Scratch-7 
What does the following code do? 

 

 
 

What does the following code do? 
mm Repeat a simple animation 
mm Draw a square 

mm Make a ball fall 

mm Increment the score 

mm Stamp the current costume at the current mouse location 

Scratch-8 
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What will be said when the following executes and the user answers with No? 

 

 
mm Great! 

mm I had better get out of here 

mm It won't say anything 

mm I don't know 

mm You will get an error message 

 
Scratch-9 
 

What will be the result of executing the following script? The coordinates of the 
center of the stage are x=0; y=0. 
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Scratch-10 
 

 
 

(1) Describe in plain English what does the program above does. What is the goal 
of the program? 

 

 
 
 
 

(2) What is the term for what the 3 orange blocks in the beginning are doing? 
 

 
 

(3) There are 3 yellow blocks in this image above. The FIRST is the Run block 
(with the green flag). What is the SECOND yellow block doing? What is the term 
used to describe such a block? 

 

 
 
 



252  

(4) What is the THIRD (last) yellow block in the code doing? What is the term 
used to describe such a block? 
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Appendix F 

Learner Context Questionnaire-modified (LCQ-m) 

This questionnaire is designed to assess attitudes towards different learning situations. 
The items on this questionnaire each consist of a single statement and a four-point scale 
is provided for each statement. Using this scale, please respond to each statement by 
circling the number that best represents the degree of truth or falseness that statement has 
for you. 
 
(Cooperative Portion) 
(1) I like to help other students learn. 
 
Not at all (1)  Not much (2)  Somewhat (3)  Very much (4) 
like me   like me   like me   like me 
 
(2) I like to share my ideas and materials with other students. 
 
Not at all (1)  Not much (2)  Somewhat (3)  Very much (4) 
like me   like me   like me   like me 
 
(3) I like to cooperate with other students. 
 
Not at all (1)  Not much (2)  Somewhat (3)  Very much (4) 
like me   like me   like me   like me 
 
(4) I can learn important things from other students. 
 
Not at all (1)  Not much (2)  Somewhat (3)  Very much (4) 
like me   like me   like me   like me 
 
(5) I try to share my ideas and materials with other students when I think it will help 
them. 
 
Not at all (1)  Not much (2)  Somewhat (3)  Very much (4) 
like me   like me   like me   like me 
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(6) Students learn lots of important things from each other. 
 
Not at all (1)  Not much (2)  Somewhat (3)  Very much (4) 
like me   like me   like me   like me 
 
(7) It’s a good idea for students to help each other learn. 
 
Not at all (1)  Not much (2)  Somewhat (3)  Very much (4) 
like me   like me   like me   like me 
 
 
(Individualistic portion) 
(8) I don’t like working with other students. 
 I like to work with other students. (reverse) 
 
Not at all (1)  Not much (2)  Somewhat (3)  Very much (4) 
like me   like me   like me   like me 
 
 
(9) It bothers me when I have to work with other students. 
 
Not at all (1)  Not much (2)  Somewhat (3)  Very much (4) 
like me   like me   like me   like me 
 
(10) I do better work when I work alone. 

 
Not at all (1)  Not much (2)  Somewhat (3)  Very much (4) 
like me   like me   like me   like me  
  
(11) I like work better when I do it all myself. 
 
Not at all (1)  Not much (2)  Somewhat (3)  Very much (4) 
like me   like me   like me   like me 
 
(12) I would rather work on school work alone than with other students. 

Working in small groups is better than working alone. (reverse) 
 
Not at all (1)  Not much (2)  Somewhat (3)  Very much (4) 
like me   like me   like me   like me 
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Appendix G 

Black Academic Identity Scale 

Directions:  Here are some questions about how you see yourself as a student.  Please 
read each question carefully and select the answer that is most true for you.  Items are 
measured on a 5-point likert scale ranging from 1= “not at all true” to 5 = “very true.” 
 
 

Black Academic Identity 
 

1. I think of myself as a Black student, not just a student. 

2. Being a good Black student is an important part of who I am 

3. I get good grades because I am Black. 

4. I seldom think of myself as a Black student. 

 

Black Model Phenomenon 

1. I want to be an example of Black success. 

2. I want to represent Black students in a positive way. 

3. I want to be a Black role model. 

4. I want to show others that Black students are smart. 

5. Getting good grades in school is the best way to prove society wrong 
about      
            Black people. 

 
6. It is a burden to prove to other that I am a smart Black student. (reverse) 
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Appendix H 

Opinon Prompts 

1. Enter your camp number. 

2. Scratch username 

3. First and Last Name 

4. Which unit did you just complete? 

5. What did you learn in this unit? 

6. Did you ever read or learn anything about the topic(s) in this unit before coming to this 

camp? 

7. If you answered 'yes' or 'a little' to the previous question, can you describe how much 

and where you read or learned something about the topic(s) in this unit? 

8. What did you think was important in this unit and why? 

9. What did you find interesting in this unit? 

10. What did you find challenging or hard in this unit? 

11. Describe which booklet exercises in this unit helped you the most and tell why? 

12. How has this unit changed the way you think about computer programming? 

13. Did you make the best use of your time to learn during this unit? 

14. Describe your team's strategy/approach to learn the material in this unit? 

15. How could you improve this strategy/approach to learning for future units? 
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Appendix I 

Scratch Interview Protocol 

 
1. So, what is Scratch? Describe it in your own words. 
2. What do you do with it? [Only if this part is not in the answer above.] 
3. How did you get the idea for the project you created today?  Scratch or 
remix? 
4. Have you thought of any of your own ideas for Scratch projects?  If so, 
what are they?  How did you get started with your Scratch projects? 
5. What did you do when you got stuck in Scratch? 
7. Have you used any of the Scratch community features?  If so, which ones? 
8. What do you like about Scratch? 
9. What do you dislike about Scratch? 
10. What would you change or add to Scratch? 
11. How did you like working with a partner? (For Communal Learning group 
only) 
12. How did you like reading and learning from of the booklet?  What do you 
dislike about reading and learning from the booklet? 
13. You've worked alone learning Scratch this week.  How do you like 
it?  (For Individual Learning Group only) 
14. Would you prefer to work alone or work with a partner? 
13.  Is there a connection between your academic performance and how you’d 
like to perform in Scratch?  Is there a connection between being a young black 
<male/female> to doing well in Scratch? 
15. Overall, what do you think about learning to program?   
16. This week have you logged into Scratch? 
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Appendix J 

Cognitive Assessment of Students’ Problem-Solving and Program Development Skills 
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Appendix K 

Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) 
Notice and License 
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