
THE EVOLUTION OF LOGIC LOCKING:
TOWARDS NEXT GENERATION LOGIC LOCKING COUNTERMEASURES

by

Hadi Mardani Kamali
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
In Partial fulfillment of

The Requirements for the Degree
of

Doctor of Philosophy
Electrical and Computer Engineering

Committee:

Dr. Avesta Sasan, Dissertation Director

Dr. Kris Gaj, Committee Member

Dr. Brian Mark, Committee Member

Dr. Fei Li, Committee Member

Dr. Monson H. Hayes, Department Chair

Dr. Kenneth S. Ball, Dean, The Volgenau
School of Engineering

Date: Summer 2021
George Mason University
Fairfax, VA

The Evolution of Logic Locking: Towards Next Generation Logic Locking
Countermeasures

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Hadi Mardani Kamali
Master of Science

Sharif University of Technology, 2013
Bachelor of Science

K. N. Toosi University of Technology, 2011

Director: Dr. Avesta Sasan, Associate Professor
Department of Electrical and Computer Engineering

Summer 2021
George Mason University

Fairfax, VA

Copyright © 2021 by Hadi Mardani Kamali
All Rights Reserved

ii

Dedication

This thesis is dedicated to my wife, Kimia, who has been a constant source of support
and encouragement during the challenges of graduate school and life. This work is further
dedicated to my parents, who have always loved me unconditionally. I am enormously
grateful and indebted to them for their continuous love and support.

iii

Acknowledgments

First and foremost, I would like to take this opportunity to express my deepest gratitude
to my supervisor Dr. Avesta Sasan for all his extensive guidance, advice, and continuous
support during my doctoral studies. In particular, I am truly grateful to Avesta for provid-
ing me valuable and insightful research opportunities, for his patience and understanding
throughout the thesis that has set an example of excellence as a professional researcher and
mentor for me. In addition, I cannot thank Avesta enough for all the influential insights and
valuable experiences that I have learned from him, for his attention to details and in-depth
knowledge that has helped me grow as a researcher, and for his encouragement, concern,
and interest towards my success.

I would also like to thank my other committee members, Dr. Kris Gaj, Dr. Brian Mark,
and Dr. Fei Li for their insightful comments and feedbacks which have helped me to address
the research questions in a much broader aspect.

My special gratitude to my family, particularly my Mom and Dad for their unconditional
love and constant support. The holidays would have been so lonely without them. I am
enormously grateful and indebted to my lovely parents for their kindness, dedication, and
the education they offered me, and for having always supported me, believed in me, and
encouraged me to pursue my life-long dreams and goals.

Last but not least, heartfelt gratitude and appreciation go out to my wife, Kimia, for all
his love, constant support, understanding, and patience during the challenges of graduate
school and life. You have always been my constant source of support and encouragement
during all days and nights of research and hard work in my academic education. You
were always there caring for me making all the stressful days and nights full of joy and
memory. Kimia, without your unconditional love, encouragement, and support my academic
achievements and completion of this research would not have been possible.

iv

Table of Contents

Page

List of Tables . viii

List of Figures . ix

Abstract . xi

1 Introduction . 1

2 Background and Definitions . 7

2.1 Basic Definitions of Logic Locking . 7

2.2 Models and Assumptions in Attacks on Logic Locking 9

2.3 Logic Locking: Previous Countermeasures and Attacks 12

2.3.1 Primitive Countermeasures . 12

2.3.2 The SAT Attack: The Game Changer 13

2.3.3 Post-SAT Logic Locking Countermeasures 14

2.3.4 Weakening/Disabling the SAT Attack 15

2.3.5 Restricting Unauthorized Scan Chain Access 20

2.4 Previous Work on LUT/Routing Locking 23

3 LUT-Lock: SAT-resilient LUT-based Locking . 25

3.1 LUT-based Locking in FPGA . 26

3.2 LUT-based Locking in ASIC . 27

3.3 Different Placement Strategies used in LUT-Lock 28

3.3.1 FIC: Focusing on the Fan-In Cone of Primary Outputs 28

3.3.2 HSC: Focusing on Higher Skew Gates in FIC 29

3.3.3 MFO-HSC: Focusing on gates with Minimum Fan-Out 30

3.3.4 MO-HSC: Focusing on Gates with least impact on POs 31

3.3.5 NB2-MO-HSC: Avoiding Back-to-Back insertion of LUTs 32

3.4 LUT-Lock Flow: Implementing NB2-MO-HSC 34

3.5 The Efficacy of LUT-Lock against the SAT Attack 34

3.6 From Theory to Reality: LUT-lock Overhead 37

3.6.1 LUT Size vs. Number of LUTs . 38

3.7 More Investigation is Required on LUT-based Locking 40

v

4 Full-Lock: Moving towards Routing-based Locking 42

4.1 A New Perspective of SAT Hardness . 43

4.1.1 Recursive DPLL in the SAT Solver 44

4.2 Full-Lock: SAT-hard Routing Locking . 45

4.2.1 Logarithmic Networks for SAT-Hardness 47

4.2.2 Moving towards non-Blocking Logarithmic Networks 49

4.2.3 Strongly Twisted KeyRB into LUT/Logic 51

4.3 Inserting SAT-hard PLRs into Design . 53

4.4 Robustness/Overhead Evaluation of Full-Lock 55

4.4.1 Blocking vs. almost non-Blocking KeyRB 55

4.4.2 Full-Lock Security against Various Attacks 56

5 CP&SAT: A New Attack on Routing-based Locking 60

5.1 Canonical Prune-and-SAT Attack . 60

5.2 Threat Model in CP&SAT Attack . 61

5.3 Attack Flow . 61

5.3.1 Modeling keyRB as a Numerical Bound Problem 62

5.3.2 SAT Reduction using Bounded Variable Addition 63

5.3.3 SAT Execution and Key Matching 65

5.4 CP&SAT Attack Effectiveness on Routing Locking 66

5.4.1 The Efficiency of the BVA . 66

5.4.2 CP&SAT Attack on Full-Lock . 67

6 Interlock: Moving towards Intercorrelated Logic and Routing Locking 68

6.1 Truly-Twisted Logic & Routing Locking . 68

6.1.1 Different Possibilities for f1 and f2 69

6.1.2 Embedding Actual Timing Paths into KeyRBs 70

6.2 Twisted Logic in Interlock vs. Full-Lock . 71

6.3 Area/Delay Overhead Exploration . 72

6.4 Robustness/Overhead Evaluation of InterLock 74

6.4.1 Disabling the BVA using InterLock 75

6.4.2 Elevated Security at Lower Overhead 76

7 SCRAMBLE: Logic and Routing Locking for Scan/Sequential Locking 78

7.1 FSM, Sequential Datapath, and Scan Chain Locking 79

7.2 Attacks on FSM, Sequential, and Scan Chain Locking 79

7.3 Proposed Scheme: SCRAMBLE . 82

vi

7.3.1 SCRAMBLE-C . 83

7.3.2 SCRAMBLE-L . 87

7.4 LUT-based Remapping of SCRAMBLE . 89

7.5 Robustness Evaluation . 90

8 kt-DFT: A key-trapped Design-for-Trust Architecture for Logic Locking 94

8.1 Background on Scan Blockage Techniques 96

8.1.1 R-DFS: Restricting Scan Access . 96

8.1.2 Shift-and-Leak Attack on R-DFS . 98

8.1.3 mR-DFS: Resisting Shift-and-Leak 99

8.2 mR-DFS Architectural Drawbacks . 100

8.2.1 High Functional Test Time . 100

8.2.2 Necessity of Duplicating the SCs . 101

8.2.3 Re-enabling Shift using Leaky Glitches 102

8.3 Proposed kt-DFS Architecture . 104

8.3.1 No Possibility of Key Leakage in kt-DFS 106

8.3.2 Functional/Structural Test in kt-DFS 107

8.3.3 Test Complexity and Scan Chain Overhead 108

8.4 kt-DFS vs. other DFS Architectures . 109

9 Discussion and Opportunities . 114

10 Conclusion . 117

A List of Publications . 119

Bibliography . 122

vii

List of Tables

Table Page

3.1 Exponential Regression of the SAT Attack Exection Time on LUT-Lock. . . 37

3.2 The SAT Attack Execution Time on LUT-Locked ISCAS-85 Benchmarks. . 37

4.1 Tseytin Transformation of Basic Logic Gates. 48

4.2 SAT Execution Time on shuffle-based Blocking KeyRBs. 56

4.3 Overhead/SAT-Resiliency of Blocking vs. almost non-Blocking KeyRBs. . . 56

4.4 Execution Time of the SAT Attack on Full-Lock. 57

4.5 PLRs Size in SAT-resilient Full-Lock compared to Cross-Lock. 58

5.1 The Effectiveness of the BVA Pre-Processing Step on Routing Blocks. . . . 66

5.2 SAT Attack vs. CP&SAT Attack on Full-Lock. 67

6.1 The SAT Attack Runtime on KeyRBs with Different Logic. 70

6.2 The SAT Attack vs. CP&SAT on InterLock. 76

6.3 The SAT Attack Iterations on Routing Blocks. 76

6.4 InterLock Overhead in: Tgate, Anti-fuse, and TIGFET. 77

7.1 Simplification Ratio of Input Multiplexing (FSMIM). 89

7.2 The Effectiveness of SCRAMBLE in FSM/Sequential/Scan Obfuscation. . . 89

7.3 Attack Execution Time on SCRAMBLE-C. 91

7.4 Attack Execution Time on SCRAMBLE-C and SCRAMBLE-L. 92

7.5 The PPA Overhead of Resilient SCRAMBLE-C and SCRAMBLE-L 92

7.6 The PPA Overhead of SCRAMBLE with Different Sizes. 93

8.1 Comparison of the State-of-the-art DFS architectures. 95

8.2 Modes of Operation in Secure Cell (SC). 97

8.3 Modes of Operation in kt-DFS. 107

8.4 Specifications of the Benchmark Circuits in kt-DFS. 109

8.5 PPA Overhead Comparison between Different DFS Architectures. 110

8.6 kt-DFS PPA Overhead with Different {Key Sizes, Number of Scan Chains}∗. 111

8.7 SCs and SFFs Decoupling vs Stitching in kt-DFS. 112

8.8 Test Coverage and Key Leakage Comparison between DFS Architectures. . 112

8.9 KC2 Execution Time on kt-DFS+SSL. 113

viii

List of Figures

Figure Page

1.1 IC Supply Chain Flow. 2

2.1 Common Basic Gates used for Logic Locking. 8

2.2 Logic Locking Examples at Different Level of Abstractions. 9

2.3 Logic Locking Key Initialization from tpNVM. 10

2.4 The Main Steps of Reverse Engineering. 11

2.5 Scan Chain Architecture in ICs. 12

2.6 The SAT Attack Iterative Flow [1–3]. 14

2.7 The Structure of Point Function Techniques. 16

2.8 An Example of Cylic Locking using 2-to-1 MUXes. 17

2.9 Overall Structure of TDK used in DLL [4]. 19

2.10 Overall Architecture of SMT Attack for Behavioral Logic Locking. 20

2.11 Circuit Locked by Cross-Lock [5] with an 8× 8 Crossbar Network. 24

3.1 LUT-based Logic Locking using Unutilized LUTs. 27

3.2 Different Placement Strategies in LUT-Lock. 31

3.3 De-Morgan’s law: Four Different Conversion with the Same Function. . . . 33

3.4 Number of Valid Keys in back-to-back LUT placement (c5315). 33

3.5 Execution time of the SAT Attack on LUT-Lock vs. Previous Work. 36

3.6 The SAT Attack Execution Time for Different Values of the Key Factors. . 39

3.7 The SAT Attack Execution Time: LUT Size vs. Number of LUTs. 39

3.8 Normalized Area/Power Overhead of LUT-based locking. 40

4.1 Recursive DPLL Call for Different Clause to Variable Ratio [6]. 47

4.2 N -by-M switch-boxes for Building Hard Satisfiable Instances [7]. 49

4.3 Shuffle-based Blocking Logarithmic-based keyRB with N = 8. 50

4.4 Almost Non-Blocking Logarithmic-based KeyRB with size 8 (LOG8,1,1). . . 51

4.5 Power, Delay, and Area of STT-LUT and Standard Cells in 28nm CMOS. . 53

4.6 An Example of Routing-based Locking using Full-Lock Example. 54

4.7 Average C2V Ratio for Different Logic Locking Schemes. 59

ix

6.1 Full-Lock vs. InterLock. 69

6.2 Timing Path Embedding into KeyRB. 72

6.3 Different Multiplexer Implementation Possibilities. 74

6.4 2:1 TIGFET MUX Implementation. 74

7.1 FSM Obfuscation Solutions. 81

7.2 Augmentation Model in SCRAMBLE . 83

7.3 Augmentation using shuffle-based KeyRB in SCRAMBLE-C. 84

7.4 Using SCRAMBLE-C for FSM Locking. 86

7.5 Sequential Circuits Locking using SCRAMBLE-L. 87

7.6 Different FSM Implementation Models. 88

7.7 SAT-based Memory Modeling for Different Address Width. 90

8.1 R-DFS Overall Architecture. 97

8.2 Example of shift-and-leak attack on R-DFS. 99

8.3 Mode Switch Shift Disable (MSSD) in mR-DFS. 100

8.4 Re-enabling Shift after Actual Key Load. 103

8.5 Proposed kt-DFS Overall Architecture. 105

x

Abstract

THE EVOLUTION OF LOGIC LOCKING: TOWARDS NEXT GENERATION LOGIC
LOCKING COUNTERMEASURES

Hadi Mardani Kamali, PhD

George Mason University, 2021

Dissertation Director: Dr. Avesta Sasan

The globalization of the design and implementation of integrated circuits has drastically

increased, particularly in the past two decades. This is when high-tech companies try (1)

to reduce the cost of manufacturing, (2) to access technology that is inclusively available

by a limited number of suppliers, (3) to reduce time to market, and (4) to meet the market

demand. However, it results in emerging many security threats and trust challenges. Some

of these threats include Hardware Trojan insertion, reverse engineering, and IP theft.

To combat these threats, numerous Design-for-Trust (DfTr) techniques have been pro-

posed, one of them is logic obfuscation, a.k.a logic locking. In logic locking, the designer

adds post-manufacturing programmability into the design controlled by programmable val-

ues referred to as the key. The key value is driven from an on-chip tamper-proof non-volatile

memory (tpNVM), and it will be initiated after fabrication via a trusted party.

The security and the strength of the primitive logic locking techniques have been called

into question by various attacks, especially by the Boolean satisfiability (SAT) based attack.

To thwart the SAT attack, over the past few years, researchers have investigated different

directions, such as point function techniques, cyclic-based locking, and behavioral logic

locking. However, many of them are vulnerable to newer attacks.

The main aim of this thesis is to open a new direction as a means of logic locking.

Unlike almost all previous logic locking solutions that rely on XOR-based locking, we will

investigate and evaluate non-XOR-based logic locking solutions, including LUT-based and

MUX-based logic locking. We first introduce LUT-Lock as a LUT-based logic locking tech-

nique, which relies on some heuristic placement strategies. LUT-Lock is resilient against the

existing attacks, especially the SAT attack. However, our comprehensive design space ex-

ploration on LUT-based logic locking shows its inefficiency (in terms of overhead) compared

to other techniques making this form almost impractical.

Then, we introduce Full-Lock as a new MUX-based routing locking solution. We show

how MUX-based routing blocks could create SAT-hard instances while the overhead is con-

siderably lower than the LUT-based locking solution. Although Full-Lock guarantees the

resiliency against state-of-the-art attacks, we introduce a new attack, called CP&SAT, in

which a satisfiability-based routing optimization will be introduced showing how routing-

based locking techniques are still vulnerable. With this in mind, we introduce a security-

enhanced routing locking technique, called InterLock. Interlock mitigates the weakness of

existing routing-based obfuscation techniques against the proposed CP&SAT attack. In

InterLock, the routing modules are intercorrelated with actual logic gates. Hence, since the

logic is truly twisted with routing all controlled by the key, the adversary cannot convert

and model the routing modules using the satisfiability-based routing optimization tech-

niques, and then the CP&SAT attack is no longer applicable to them. We implement

InterLock based on three different technologies: (1) transmission-gate (Tgate) CMOS, (2)

programmable-via using anti-fuse elements (PVIA), and (3) three-independent-gate field-

effect transistors (TIGFET). It helps us to provide a better illustration of the area/delay

overhead of routing-based locking. We also show that by implementing in the lower level of

abstraction, the area/delay overhead of InterLock could be even below ∼10% to make the

design resilient against the prevailing attacks at a reasonable area overhead.

Since the availability of design-for-testability (DFT) structure, i.e. scan chain pins, is

a mandatory requirement of the powerful SAT attack or its derivatives, we also take a

step further, and by introducing SCRAMBLE, we evaluate the possibility of using MUX-

based routing blocks as a means for locking the DFT. By locking the DFT structure,

the SAT attack fails to be applied on SCRAMBLE-locked circuits. We also investigate

the modeling/mapping of the logic using small-size memories optimized using the input-

multiplexing technique. We will show how the integration of logic in memory and routing

blocks will resist different de-obfuscation attacks at low overhead with no test compromising.

Apart from locking the DFT structure, we also propose a key-trapped design-for-security

(kt-DFS) architecture, which is a DFT blockage mechanism that limits/blocks any unautho-

rized access to the scan chain. DFT blockage techniques provide resiliency against a wide

range of de-obfuscation attacks at lower overhead compared to DFT locking techniques. In

kt-DFS, we introduce a new scan chain secure cell, which is designated for safeguarding the

logic locking key against any form of key leakage. We will evaluate and compare kt-DFS

with other state-of-the-art logic-locking-oriented DFS architectures in terms of overhead,

test coverage, and leakage.

Chapter 1: Introduction and Motivation

The cost of building a new semiconductor fabrication site was estimated to be $5.0 billion

in 2015, with large recurring maintenance costs, and sharply increases as technology mi-

grates to smaller nodes. To reduce these costs, most of the manufacturing and fabrication

is pushed offshore. Over the past two decades, the ever-increasing outsourcing of different

stages of the integrated circuits (ICs) has primarily changed the supply chain. Outsourcing

and the involvement of numerous stakeholders in different stages of the supply chain dra-

matically reduce the cost and time-to-market of the chip [8]. However, as demonstrated in

Fig. 1.1, getting the benefit of globalization will significantly reduce the control of original

manufacturers and IP owners/vendors over the supply chain. For example, manufacturing

in offshore entities, known as untrusted foundries, has raised concern over potential attacks

in the manufacturing supply chain, with an intimate knowledge of the fabrication process,

the ability to modify and expand the design before production, and unavoidable access to

the fabricated chips during testing. This results in emerging security vulnerabilities, in-

cluding but not limited to reverse-engineering, hardware Trojan insertion, counterfeiting,

IP piracy, and over-production [9, 10].

During the past two decades, a wide range of design-for-trust (DfTr) techniques have

been introduced, from passive to active, including watermarking, IC metering, IC camou-

flaging, and logic obfuscation [11–14]. The watermarking and IC metering techniques are

passive protection models that could be used to detect overproduction or illegal copies,

however, they cannot prevent IP theft or overproduction. The camouflaging techniques use

logic gates (or other physical structures such as dummy vias) with high structural similarity,

that are indistinguishable from one another to protect against reverse engineering. However,

camouflaging is only effective against post-manufacturing attempt(s) of reverse engineer-

ing, while it provides no limitations against a foundry’s attempt at reverse engineering, as

1

Figure 1.1: IC Supply Chain Flow.

a foundry has access to all masking layers and is not trapped by structural ambiguity for

being able to logically extract a netlist.

Amongst the existing countermeasures, logic obfuscation, a.k.a. logic locking, could be

selected as the most prominent and proactive DfTr solution that is widely accepted and

studied, and it is shown that it could combat all the aforementioned threats. Logic locking

provides the possibility of adding limited post-fabrication programmability into the circuit

by adding/inserting some specific gates, known as key gates [14, 15]. The key gates will

be driven using programming value, referred to as key. The key values would be initiated

after the fabrication via a trusted party, and in most cases, it would be stored within

a tamper-proof non-volatile memory (tpNVM) [16]. When the initiated key value is the

correct one, the circuit functions correctly. However, when the key value is not correct, the

functionality of the circuit will be corrupted. The main aim of inserting key gates controlled

by the key values is to hide the circuit’s functionality from the source of vulnerabilities

(untrusted stakeholders). Hence, by using the logic locking, the original manufacturer or IP

owners/vendors can regain control of the supply chain (ownership/secrets) while the source

of vulnerability has no information about the correct key/functionality.

2

Although logic locking delivers strong protection against IP piracy and IC overpro-

duction, during the last decade, numerous attacks have been introduced in the literature

that shows the vulnerability of logic locking when the technique is not well-designed. The

most well-known attack on logic locking is the satisfiability-based attack on logic locking,

known as the SAT attack. Getting inspired by the miter circuit used for formal verification,

the SAT attack tries to find some specific inputs called distinguishing input patterns (DIP)

which rule out the incorrect keys. The SAT attack is considered as the turning point in logic

locking, and the main aim of almost all state-of-the-art logic locking countermeasures is to

be resilient against this powerful attack. Also, many of the existing attacks are derivatives

of the traditional SAT attack, showing the importance of this attack in this area.

In many of the existing logic locking countermeasures, the key or correct functionality

of the locked circuit could be revealed by one of the existing attacks, including the SAT

attack or one of its derivatives. Over time, the introduction of newer attacks is along with

the introduction of a newer countermeasure that provides the resiliency against the attack.

Similarly, the introduction of newer countermeasures followed by newer and more advanced

attacks on the countermeasure, showing that this cat and mouse game has continued since

the introduction of the logic locking.

Based on the key types used for logic locking, the existing approaches could be catego-

rized into three main groups: (1) XOR-based logic locking techniques in which the XOR

gates are used as the key gate. In XOR-based, XOR gates are added/inserted, and one of

their inputs would be controlled by the key. (2) multiplexer- (MUX-) based logic locking

techniques in which MUXes are used as the means of the locking, and in MUX-based, the

selector of the MUX would be controlled by the key. (3) look-up-table- (LUT-) based logic

locking techniques that use LUTs for locking purposes, and in LUT-based, the initialization

(configuration) of the LUTs are considered as the programming value (key) and would be

initiated via a trusted party.

Unlike most state-of-the-art logic locking techniques that are XOR-based techniques, in

this thesis, we will leverage a new breed of logic locking, which relies on the exploiting of

3

look-up-tables (LUTs) and key-based multiplexer- (MUX-) based locking. As a part of this

research, in Chapter 3, we first introduce LUT-Lock [17], which is new LUT-based locking

technique. LUT-lock locks a netlist while embedding several key features that make the

LUT-based locking a hard problem for the state-of-the-art attacks with particular attention

to the SAT attack. To develop this defense mechanism, we have identified several key

features that increase the difficulty of logic locking for SAT attacks. We illustrate how

by utilizing each feature during the logic locking, the SAT problem becomes harder. We

propose LUT-Lock algorithm which combines all features, providing the best defense against

SAT attacks. We also provide a comprehensive analysis on LUT-lock by investigating three

key design factors: (1) LUT size, (2) number of LUTs, and (3) replacement strategy as they

have a considerable influence on design criteria, i.e., Power-Performance-Area (PPA) and

Security (PPA/S).

Then, in Chapter 4, we introduce and explore the characteristics and principles of design-

ing a new direction of SAT-hard logic locking solutions, which rely on MUX-based routing

locking. In this new direction, the goal is to exponentially increase the time required for

finding each DIP in the SAT attack. As a strong representative member of this class of

logic locking techniques, we introduce Full-Lock [18]. Full-Lock is constructed using a set

of cascaded fully programmable logic and routing blocks (referred to as the PLR) networks

that replace parts of the logic and routing in the desired netlist. The PLRs are SAT-hard

instances designed to construct the desired ratio between the number of clauses and the

number of variables with PLRs are translated to their Conjunctive Normal Form (CNF).

The cascaded and non-blocking design of PLR pushes the SAT solver’s algorithm to build

a very deep decision tree and to spend significant time in hopeless regions of the decision

tree, causing a significant increase in each iteration of the SAT attack.

Although Full-Lock provides a high resiliency against the existing attacks, particularly

the SAT attack and its derivatives, the existence of routing optimization algorithms, partic-

ularly satisfiability-based routing optimization algorithms, shows why solely focusing on the

MUX-based routing locking might not be enough as the means of logic locking. Hence, we

4

investigate the possibility of attacking routing-based locking techniques, and in Chapter 5,

we introduce a new attack called canonical-and-prone-based SAT (CP&SAT) attack [19], in

which cardinality constraint formalization has been engaged as a pre-processing technique

to optimize and simply key-based routing modules in a routing-based locked circuit. In

the CP&SAT attack, after simplifying the routing modules using cardinality constraint, the

SAT attack would be invoked with no scalability/complexity issue.

To combat against our proposed CP&SAT attack, we extend the structure of routing-

based locking introduced in Full-lock to build a new logic locking technique that (1) could

get the benefit of complexity/hardness provided by MUX-based routing locking, and (2)

could be resilient against simplification/optimization used in CP&SAT. Thus, in Chapter

6, we introduce Interlock [19], which is an intertwined routing and logic locking technique,

in which the logics are embedded within the key-based MUX-based routing modules. We

also evaluate the implementation overhead of Interlock at the transistor-level with three

different technologies to show the efficiency of this new approach at lower overhead.

Since the SAT attack and its derivatives like CP&SAT attack requires to have access

to the design-for-testability (DFT) structure of the IC, i.e. scan chain pins, in Chapter

7, we propose SCRAMBLE [20], which is a comprehensive augmentation model for logic

locking implemented using MUX-based routing blocks. The main aim of SCRAMBLE

is to engage routing module and in-memory computation for locking the DFT structure.

After locking the DFT structure using SCRAMBLE, the SAT attack, and all other de-

obfuscation mechanisms that require DFT access will fail to recover the correct functionality

of the locked IC. Similar to Interlock which engages twisted logic and routing locking,

SCRAMBLE employs small-size memories for logic concealment. Integrating in-memory

and routing-based locking schemes provides robustness at a much lower overhead.

Instead of scan-based logic locking mechanisms, more recent studies have focused on

lightweight design-for-security (DFS) architectures that block the DFT access for unautho-

rized access. The scan blockage techniques mostly consist of two main parts: (1) a secure

scan chain cell that securely stores the logic locking key when it is loaded into the circuit

5

after power ON, and (2) a blockage circuitry which blocks scan pins while there exist the pos-

sibility of key leakage. Although the existing scan blockage techniques provide robustness

at much lower overhead compared to the scan-based logic locking techniques, in Chapter

8, we will investigate the architectural drawbacks of these schemes. Then, we propose a

new key-trapped DFS (kt-DFS) structure, to overcome such limitations and drawbacks.

We demonstrate that the scan-blockage techniques, once implemented appropriately, can

provide robustness with no compromising at much lower overhead compared to other logic

locking countermeasures.

To conclude this thesis, in Chapter 9, we will discuss the current status of different

breeds of logic locking, including LUT-based, routing-based, scan-based, and scan blockage.

We conclude this thesis by drawing the future outlook for these categories of logic locking.

Regarding LUT-based, we demonstrate how the state-of-the-art models could be extended

to not only mitigate the overhead of this category and make this group practical in real

cases, it also enhances the robustness against the existing attacks. Regarding the routing-

based on the other hand, for deeper scrutiny and wider assessment, it is required for the

countermeasures of this group to be evaluated against more attacks. In terms of scan-based

countermeasures, either locking or blockage, we evaluate the pros and cons of the existing

approach to determine how it still could be extended in future studies.

6

Chapter 2: Definitions, Background, and Previous Work

In this chapter of this research, we first provide the basic definitions of logic locking. Based

on the metrics, characteristics, and assumptions defined in this section, the logic locking

countermeasures and attacks could be categorized and evaluated. Then it is followed by

the different logic locking groups, their characteristic, and their advantages/disadvantages.

Since a plethora of this research focuses on utilizing reconfigurable logic/routing using

LUTs/MUXes, we conclude this chapter by reviewing the previous work on LUT-based and

routing-based locking techniques.

2.1 Basic Definitions of Logic Locking

Logic locking is the capability of adding post-fabrication programmability using key gates.

Based on the type of the key gates used for logic locking, we can categorize them as: (1)

XOR-based, (2) MUX -based, and (3) LUT -based. As their names imply, they are using

XORs/MUX s/LUT s for locking, respectively. Fig. 2.1 depicts a simple example of each

of these models. During the last decade, different logic locking solutions commonly have

engaged these models with different structures/functions for locking purposes. Based on

the location, structure, count, intercorrelation, etc., of these gates, the countermeasures

provide different levels of resiliency against the existing attacks.

Logic locking could be implemented at different levels of abstraction. Fig. 2.2 demon-

strates a simple example of logic locking in different levels of abstraction. For instance,

at layout-level as shown in Fig. 2.2(a), the metal-insulator-metal (MIM) structure that

connect two adjacent metal layers has been engaged as key-based programmable unit for

routing-based locking [21]. In general, moving from layout-level to HLS- or architecture-

level will mitigate implementation effort; However, at a lower level of abstraction, finding

7

I0
I1

I2
I3

O

(a) The Original Circuit

k0

I0
I1

I2
I3

O

(b) XOR-based Locking (k0 = 0)

k0

I0
I1

I2
I3

O

0

1

(c) MUX -based Locking (k0 = 1)

I0
I1
I2
I3

O

00011011

k0k1k2k3

(d) LUT -based Locking (k0:3 = 0001)

Figure 2.1: Common Basic Gates used for Logic Locking.

a solution at lower overhead is more possible. At the moment, more than 90% of existing

logic locking techniques are introduced and implemented at the gate-level, which could be

done as a post-synthesis stage in the supply chain.

One important property of logic locking techniques is the corruptibility. Corruptibility

means that when an incorrect key will be applied to the locked circuit, the value of how many

of the primary output (PO) pins will be corrupted. Based on the location, structure, count,

intercorrelation, etc., of the key-based XORs/MUX s/LUT s that are engaged for any logic

locking technique, the corruptibility will change. Corruptibility directly affects the resiliency

of the countermeasure against the existing attacks. For instance, if the corruptibility is low,

which means that an incorrect key only affects a few numbers of PO pins, it allows the

adversary to look for a specific way for only those POs affected by logic locking. For a

well-design logic locking countermeasure, the corruptibility must be high to avoid such

vulnerabilities.

The key of logic locking will be initiated and stored in tpNVM after the fabrication via

a trusted party. At power UP of a locked IC, as a part of the boot process per each power

UP, the content of tpNVM must be read and loaded into temporary registers connected to

the locked logic. Fig. 2.3 shows a simple example of key initialization structure when logic

8

Silicon Substrate

M1

M2
X Y

So
ur

ceeeeeee
SoSooo

uouou
rcrcrcc

ecece
uur

crccrcc
ecece

SoSoSoSoo
uououuuu

rcrcrcrc

ct
rl

 g
at

e
ggga

teat
e

at
e

atga
teeatgggggga
teat
e

atatatta
cccct

r
ct

r
ct

rllll
ggg

rrrlll
ggg

ccctct
rrrrrlll

 ll

polarity
gate

D
ra

in

cg
 pg

s

d

key

key

key0

key1

a
b

d
e

c

x

y

(a) Layout-level (b) Transistor-level (c) Gate-level

(e) RTL-level (f) HLS-level

Figure 2.2: Logic Locking Examples at Different Level of Abstractions.

locking is in place. This part of the design consists of (1) tpNVM that consists of the logic

locking key, (2) tpNVM wrapper which serializes the logic locking key via parallel-in serial-

out (PISO) module, and (3) temporary registers that stores the logic locking key while the

IC is power ON.

2.2 Models and Assumptions in Attacks on Logic Locking

Based on the threat model and assumptions considered in the attacks on logic locking, they

could be categorized into different sub-groups [22]. Some of the attacks require to have

access to one additional activated version of the chip (oracle). This group of the attacks

could be referred to as Oracle-guided attacks. On the other hand, those attacks with no need

for having access to the oracle could be called Oracle-less attacks. During the last decade,

9

kw-1:0

k2w-1:w

k3w-1:2w

…
…
...

knw-1:(n-1)w

w
bits

PI
SO

k0 k1 k6 k7 knw-1

tpNVM

I0
I1

I2
I3

0

1

k8 k9

O

00011011

k6k7k8k9

Figure 2.3: Logic Locking Key Initialization from tpNVM.

most of the attacks are members of Oracle-guided attacks. However, in many cases, the

adversary cannot have one additional activated chip, and the fulfillment of this requirement

is almost impossible. So, the adversary has to rely on only Oracle-less attacks.

Many of the attacks on logic locking are invasive. They require access to the netlist of

the chip. Acquiring the netlist of the chip could be accomplished in two different scenar-

ios: (1) The adversary is located in the foundry, and they receive the GSDII of the chip,

which is locked. (2) The adversary as an end-user can obtain the packaged IC from the

field/market, and then reconstructs the netlist through physical reverse engineering. Fig.

2.4 demonstrates the main steps of physical reverse engineering, including de-packaging,

delayering, imaging, image (of metal layers) processing, and re-constructing the netlist. In

both cases, the adversary does not have access to the logic locking key. When (s)he is at the

foundry, only netlist the GDSII of the locked netlist will be available. Also, as an end-user

during the physical reverse engineering, since the key is stored in tpNVM, it will be wiped

out in the de-packaging stage.

Unlike invasive attacks, there exists a very limited number of semi-invasive and non-

invasive attacks on logic locking, in which the adversary relies on electro-optical or optical

probing, such as electro-optical probing (EOP) and electro-optical frequency management

(EOFM). Such attacks focus on pinpointing and probing the logic gates and flip-flops of the

chip. So, regardless of the logic locking technique used in the chip, this group of attacks

10

(a) The Packaged IC (b) After De-packaging (c) Imaging per Metal Layer

(d) Extracting Layout from Images (e) Extracting the Netlist from the Layout

Figure 2.4: The Main Steps of Reverse Engineering.

would be able to reveal the security assets like logic locking key.

The availability of scan chain architecture for testability/debug purposes in ICs opens

a big door for the attackers to assess and break logic locking techniques. Hence, many

of the attacks on logic locking assume that the scan chain is OPNE. Fig. 2.5 shows a

simplified scan architecture with two chains. Assuming that the scan chain is OPEN, SE,

SI, and SO pins would be available. So, the adversary can reach (control and observe) each

combinational part, e.g. CL1 and CL2 in Fig. 2.5, whose FFs are part of the scan chain.

The scan chain access allows the adversary to divide the attack on locked circuit into a

bunch of much smaller sub-problems (each CL), and assess them independently. However,

it is very common for an IC to limit/restrict access to the scan chain for security purposes.

But, even while the access to the scan chain is NOT OPEN (e.g. SO pins are burned),

some other attacks have studied and demonstrated the possibility of retrieving the correct

key/functionality of the locked circuit via primary inputs/outputs (PI/PO).

11

P
O

SI

Q

D

SFF
SI

SE

Q

D

SFF
SI

SE

Q

D

SFF
SI

SE

Q

D

SFF
SI

SE

Q

D

SFF
SI

SE

C
om

bin
ational Logic

(Locked)

Q

D

SFF
SI

SE

Q

D

SFF
SI

SE

Q

D

SFF
SI

SE

Q

D

SFF
SI

SE

Q

D

SFF
SI

SE

SO

P
I

SE SI

Q

D

SFF
SI

SE

Q

D

SFF
SI

SE

Q

D

SFF
SI

SE

Q
D

SFF
SI

SE
Q

D

SFF
SI

SE

C
om

bin
ational Logic

(Locked)

Q

D

SFF
SI

SE

Q

D

SFF
SI

SE

Q

D

SFF
SI

SE

Q
D

SFF
SI

SE

Q

D

SFF
SI

SE

SOSE

CL 1 CL 2

Figure 2.5: Scan Chain Architecture in ICs.

2.3 Logic Locking: Previous Countermeasures and Attacks

Starting 2008, numerous logic locking techniques have been introduced in the literature

each trying to introduce a new countermeasure against the existing threats. In this section

of the research, we categorize them into different groups, and briefly describe each one of

them.

2.3.1 Primitive Countermeasures

The first group of countermeasures introduced in the literature are primitive techniques,

including EPIC a.k.a. random logic locking (RLL) [14], strong logic locking (SLL) [15],

fault-based logic locking (FLL) [23], and reconfigurable barriers [24]. For example, in EPIC

(RLL) [14], as its name implies, XOR-based key gates will be inserted at some arbitrarily

chosen location in the circuit. All primitive techniques are XOR-based and implemented

at gate-level. Since a locked circuit initiated with an incorrect key corrupts the PO by

propagating errors at POs, in SLL [15] and FLL [23], some features of automatic test pattern

12

generation (ATPG) tools and testability specification, such as controllability/observability,

and faults propagation/masking have been used for selecting the location of XOR-based key

gates. However, using these features results in the reduction of corruptibility in SLL and

FLL compared to that of RLL. Reconfigurable barriers [24], on the other hand, investigates

the possibility of using reconfigurable modules, like look-up-tables (LUTs) as a means of

locking.

2.3.2 The SAT Attack: The Game Changer

The introduction of primitive logic locking solutions, such as RLL (random-based insertion)

and SLL (no-sensitizable insertion) [14, 15, 23, 24], was considering a reliable proactive so-

lution against hardware security threats. However, in 2015, considering and assuming that

the access to the scan chain of the circuits is OPEN for the test/debug purposes, a new

and powerful attack based on Boolean satisfiability (SAT) was formulated that completely

threatened the security of the existing logic locking schemes [1, 2].

In the SAT attack, as an oracle-guided attack, the adversary has access to (1) one

successfully reverse-engineered yet locked netlist, and (2) the activated/functional circuit

with OPEN access to its scan chain architecture. By getting inspiration from the miter

circuit in the formal verification process, in the SAT attack, a SAT solver is employed

iteratively to rule out the incorrect keys. As shown in Fig. 2.6 and Algorithm 1, in each

iteration of the SAT attack, the SAT solver finds a specific input, called discriminating

(distinguishing) input patterns (DIP), that distinguish between two sets of keys, where at

least one set of them is incorrect. By applying each DIP to the activated/functional circuit,

Algorithm 1 SAT Attack on Locked Circuits [1–3]

1: SCKV C = 1;
2: KDC = CL(X,K1, Y1) ∧ CL(X,K2, Y2) ∧ (Y1 �= Y2);

3: while ((XDI ,K1,K2) ← SATF (SATC) = T) do

4: Yf ← CO(XDI);

5: DIV C = DIV C ∧ CL(XDI ,K1, Yf) ∧ CL(XDI ,K2, Yf);

6: SATC = SATC ∧DIV C;

7: KeyGenCircuit = DIV C ∧ (K1 = K2)

8: Key ← SATF (KeyGenCircuit)

13

Y1

Y2

K1

K2

Key-Differentiating
Circuit (KDC)

C(X,K1,Y1) C(X,K2,Y2)
(Y1!=Y2)

CL
X

CL

(a) Building Miter

DI Validation
Circuit (DIVC)

K1

K2

Xdip

Y2

Y1CL

CL

Co

(b) Finding DIP + eval Matching

...

Xdip

K1

K2

Xdip
d

Xdip
2

1

Validation Circuit
(SCKVC)

DIVC

DIVC

DIVC

(c) Finding More DIPs

SAT Circuit
(SATC)Xdip

1

Xdip
2

Xdip
d

K1
K2
X

... SCKVC

Learned
Clauses

KDC

(d) No More DIP: Correct Key

Figure 2.6: The SAT Attack Iterative Flow [1–3].

the adversary is able to invalidate (rule out) the incorrect set(s) before the next iteration.

This process continues until the SAT solver cannot find a new DIP. At this point, any key

that generates the correct output for the set of found DIP is the correct key. In general,

the SAT attack could eliminate all incorrect keys within a few iterations (a few minutes),

leading to retrieving the correct functionality of the circuit.

2.3.3 Post-SAT Logic Locking Countermeasures

After 2015, the introduction of the SAT attack significantly changed the direction of logic

locking. Due to the strength of this technique, the main aim of almost all post-SAT coun-

termeasures is to be resilient against the SAT attack. The main strength of the SAT attack

comes from two important factors: (1) The pruning power of each DIP (each iteration of

the SAT attack) is very high. In fact, the portion of incorrect keys that would be ruled out

14

per each iteration is big leading to termination (successful attack on logic locking) within

a few iterations (few minutes). (2) The access to the scan chain is NOT restricted, which

helps the adversary to apply the SAT attack for each combinational logic part of the circuit

separately (independently).

Considering these two factors, there are two main groups of countermeasures that have

been introduced in the literature to show how a logic locking technique could be built to

defeat the SAT attack. One group tries to either weaken the pruning power of DIPs or

introduce a solution that could not be formulated by the SAT attack (behavioral locking).

However, the main focus of the second group of countermeasures, on the other hand, is to

restrict any unauthorized access to the scan chain to completely invalidate the possibility

of engaging the SAT the attack.

2.3.4 Weakening/Disabling the SAT Attack

As mentioned previously, the first group of countermeasures tries to weaken/disable the

SAT attack. Since having access to the scan chain does not provide any advantage for the

adversary in this group of countermeasures, there is no concern for the designer to leave the

scan chain architecture OPEN [4,25–33]. These countermeasures could be categorized into

different sub-groups: (1) point-function structure, (2) cyclic logic locking, (3) and behavioral

locking.

Point Function Logic Locking

The main aim of point function techniques is to minimize the number of available input

patterns showing that a specific key is incorrect1. SARLock and Anti-SAT are the very first

logic locking techniques in this category [25,26]. As demonstrated in Fig. 2.7(a), the main

structure of point function techniques relies on a flipping circuitry that corrupts the PO(s)

only for a very limited number of input patterns (e.g. 1) per each incorrect key. Also,

a masking circuitry has been engaged in point function techniques to re-flip the impact

1The best case is ONE input pattern per each incorrect key.

15

Original or
Locked
CircuitryIN

K1

One-Point
Flipping
Circuitry

K2

Anti-SAT
SA

R
Lo

ck

YYO

Masking
Circuitry

f l
ip

(a) Anti-SAT and SARLock

IN

HD(IN,K) = hK

YYfs

?
Restore unit

Cube
Stripper

Original
or Locked
Circuitry

(b) Stripped-based Point Function

Figure 2.7: The Structure of Point Function Techniques.

of flipping circuitry for the correct key to guaranteeing the correct functionality when the

correct key is applied. Also, these techniques could be combined with primitive techniques,

called compound techniques. For instance, as shown in Fig. 2.7(a) the upper part could be

the original or locked version of the circuit. In case of locked, it is suggested to be locked

primitive techniques.

Point function techniques could be applied on stripped functioned version of the circuit,

known as stripped function logic locking [27]. In such techniques, the original/locked part

is modified, and in at-least one minterm, the (affected) POs are flipped. This is done

using cube stripper module as demonstrated in Fig. 2.7(b). The restore unit builds the

flipping and masking circuitry. In the stripped function techniques, for each incorrect key,

there exists a very limited number of input patterns (e.g. 1) plus one extra input pattern

(caused by the stripped function) that corrupt the POs. Point function techniques could

be categorized as XOR-based techniques. Except SFLL-HLS that is at architecture-level,

all techniques in this category are implemented at gate-level.

Similar to a brute force attack, the SAT attack faces an exponential runtime when

the point function is applied on the circuit. However, as demonstrated in Fig. 2.7, the

part(s) of the logic added for locking purpose are completely decoupled from the original

part of the circuit. Hence, these techniques suffer from various structural vulnerabilities

16

I0
I1

I2

I3 0

1

0

1

k0

I2
I3k1

O

Figure 2.8: An Example of Cylic Locking using 2-to-1 MUXes.

that were eventually exploited to break them. Attacks like signal probability skew (SPS),

removal, bypass, and functional analysis (FALL) attack [34–37] exploit these structural

characteristics of the point function techniques to break them. Also, as demonstrated in

Fig. 2.7, since the point function sub-circuitry will be added for limited (e.g. 1) number

of POs, the corruptibility of this breed of logic locking is very low. Due to the low output

corruptibility, the error probability is exponentially small. Hence, the adversary could

also rely on approximate key with an extremely low error rate, which could be found by

approximate-based SAT attacks [38, 39].

Cyclic-based Logic Locking

As its name implies and as shown in Fig. 2.8, cyclic logic locking will add key gates that

control the possibility of adding/removing combinational cycles into the circuit. Having

combinational cycles will add difficulties for the CAD tools to deal with (like synthesis

and timing analysis) such structures. Many CAD tools do not allow the designers to have

combinational cycles in the circuit. However, the designers would be able to handle the

combinational cyclic paths during the physical design in a manual manner, like false paths.

Hence, combinational cycles are used commonly as a means of logic locking recently. Also,

since the SAT attack only receives directly acyclic graphs (DAGs) as its input, for those

circuits containing the cycle, the SAT attack cannot be used. Accordingly, cyclic-based

logic locking received a significant attention in recent years.

17

Different techniques have been used for cyclic logic locking, such as (1) adding false

cycles [28], (2) adding cycles as a part of the original functionality (like stateful) [29, 31],

(3) exponentially increasing the number of cycles w.r.t. the number of feedbacks [29, 32],

(4) engaging new modules and technologies for cycle generation [30], and (5) inserting cycle

pairs [40]. Since re-routing is required to generate the combinational cycles, all cyclic logic

locking techniques use key-based MUX gates. Also, in some cases, key-based XOR gates

are used to build the model. All existing cyclic logic locking techniques are implemented at

the gate-level. Since re-routing involve many logic cones in the circuit, the corruptibility of

this group of logic locking would be high.

The promise of secure cyclic locking was shortly after broken by CycSAT attack [41].

In CycSAT, the key combinations that result in formation of cycles are found in a pre-

processing step. These conditions are then translated into problem augmenting CNF for-

mulas, denoted as cycle avoidance clauses, satisfaction of which guarantee no cycle in the

netlist. The cycle avoidance clauses are then added to the original SAT circuit CNF and

the SAT attack is executed. Also, inability to analyze all cycles in the prepossessing step

of CycSAT [41] results in missing cycles in the pre-processing step of CycSAT, leading to

building a stateful or oscillating circuit, trapping the SAT stage of the CycSAT attack.

However, BeSAT [42] remedies this shortcoming by augmenting the CycSAT attack with

a run-time behavioral analysis. By performing behavioral analysis at each SAT iteration,

BeSAT detects repeated DIPs when the SAT is trapped in an infinite loop. Also, when

SAT cannot find any new DIP, a ternary-based SAT is used to verify the returned key as a

correct one, preventing the SAT from exiting with an invalid key. Recently, the work in [43],

IcySAT, shows how explicitly banning cyclic keys as used in BeSAT can end up performing

exponential computation on small and simple cyclic circuits. They propose an algorithm

that can produce non-cyclic conditions in polynomial time with respect to the size of the

circuit, avoiding the potentially exponential runtime of BeSAT.

18

k1
k2
x

y
Tunable

Delay
 key-gate

(TDK)

yk1
x

k2

C

Tunable Delay
Buffer (TDB)

k2k2k

C

Tunabble Delay
Buffer (TDB)

k2k

k1k2 f(x) Delay

00 y = x d0
01 y = x d1
10 y = x d0
11 y = x d1

(a) TDK Gate (b) Layout of TDK (c) TDK Specifications

Figure 2.9: Overall Structure of TDK used in DLL [4].

Behavioral Logic Locking

A SAT attack works perfectly fine if the logic locking is of Boolean nature. This is because

any Boolean logic could be easily transformed into its Conjunctive Normal Form (CNF) and

be converted into a satisfiability assignment problem. Hence, in a group of logic locking

techniques, the locking mechanism is designed to control aspects of circuit operations that

could not be translated to CNF as required by a SAT solver. The delay-locking (DLL)

scheme proposed in [4] is a good instance of such locking mechanism. For the purpose of

locking, DLL uses a tunable delay key-gate (TDK) which is illustrated in Fig. 2.9. TDK

consists of a conventional key-gate (XOR/XNOR) with a tunable delay buffer (TDB). The

Goal of DLL is introducing setup and hold violation if the correct key is not applied. In this

case, the locking flow attempts to change both logical and behavioral (timing) properties.

A functionally-correct but timing-incorrect key will result in timing violations, leading to

circuit malfunctions.

Considering that timing is not translatable to CNF, the SAT solver remains oblivious to

the keys used for timing locking. However, authors in [44] introduce a new attack called the

satisfiability modulo theory (SMT) attack. As shown in Fig. 2.10, SMT attack engages the

capability of SMT solvers, in which a combination of theory solver and SAT solver could

19

Bit-vectors Arrays Equality Graph...

Theory-n
extraction

...
Theory-2

extraction

Translation
module

Locked
netlist

Circuit
extraction

Graph
extraction

SAT
solver

Update
TLC

Update
SMTLC

Update
SATCC + LLK

Quantifier-free
SMT solver

SMT solver

SAT/UNSAT

Graph
solver

Theory solvers

Figure 2.10: Overall Architecture of SMT Attack for Behavioral Logic Locking.

be used for solving much more complex problems. The SMT attack could easily deploy a

graph theory solver, provide timing constraints to the theory solver (in terms of required

min and max delay to meet the hold and setup time), and use the theory solver in parallel

with the internal SAT solver to break both logic and delay locking. They additionally show

that the theory solver could be initiated as a pre-processor (Eager SMT approach) or as

a co-processor (Lazy SMT approach) to break the same problem, showcasing the strength

of SMT attack. Similarly, TimingSAT is another attack on DLL [45], in which similar to

many prior SAT-based attack, it is deploying a pre-processor for analysis of graph timing,

and generating helper clauses for the subsequent call to the SAT attack.

2.3.5 Restricting Unauthorized Scan Chain Access

Unlike all previously discussed countermeasures that focus on combinational part(s) of the

circuit and assume that the scan chain is available for the adversary, some other techniques

focus on protecting the key instead of the protecting the design [46, 47]. A very specific

20

group of this category is trying to secure scan architecture []. Restricting the access to the

scan chain could be accomplished by limiting/blocking the access to the scan chain pins, i.e.

scan-enable (SE), scan-in (SI), and particularly scan-out (SO). This restriction has been

evaluated in two different ways: (1) scan chain locking, and (2) scan chain blocking.

Scan Chain Locking

Scan chain locking techniques directly target the scan chain structure to be locked. By using

these techniques, the scan chain pins, SE/SI/SO would be out of access, and the adversary

loses the chance of direct/independent controlling/observing the combinational parts of

the circuit. Some of the scan chain locking techniques lock the scan structure statically

[20, 48–50]. However, there also exist some techniques which dynamically lock the scan

chain using LFSR and/or PRNG [51–53]. Unlike all combinational techniques that could

be done in all abstraction layers, since scan chain locking techniques must be applied on the

scan chain structure, they only could be done after design-for-testability (DFT) synthesis.

So, these techniques could be implemented at gate-level, transistor-level, or layout-level.

All the existing techniques are implemented at gate-level. Since the scan locking techniques

only lock the scan chain structure, even while an incorrect key is initiated in the circuit, it

only affects the scan chain functionality and has no impact on the functionality of the circuit

at POs. Hence, to add the desired ambiguity to the circuit, they need to be combined with

one of the previously discussed combinational logic locking techniques. In many cases, they

are combined with primitive techniques.

Scan Chain Blocking

Similar to scan chain locking techniques, some approaches BLOCK the access to the scan

chain pins, particularly SO [54–59]. The blockage will happen based on a sequence of

specific operations in the scan chain structure. For example, assuming that (part of) the

key is loaded into the scan chain after activation, switching SE to 1 (shift mode) might

be perilous. Hence, shift operation would be limited after the activation. Compared to

21

scan chain locking techniques, they incur less area overhead. However, they have some

limitations during the test phase, such as limiting the functional test and increasing the

test time and complexity. Also similar to scan chain locking techniques, they need to be

combined with one of the previously discussed combinational logic locking techniques. Some

techniques use RLL with high corruptibility [57], some other techniques use SLL [54, 58],

and one scan blockage technique is combined with true-RLL (TRLL) [59].

Attacks on Scan Chain Locking/Blocking

Shortly after the introduction of the primitive studies on scan chain locking and blocking,

new derivatives of the SAT attack demonstrate the feasibility of breaking these schemes,

called sequential SAT attacks [60–62]. Sequential SAT attacks first try to convert each

circuit to its combinational counterpart and then apply the SAT attack. This prepossessing

step could be done using unrolling with a specific depth (e.g. u times), or using a bounded-

model-checker (BMC). So, for any given u, SAT solver will find u input patterns, denoted as

discriminating input sequence (XDIS), that have at least one difference at one of u output

vectors with two different keys. This process continues until no further XDIS is found

within the boundary of b. After reaching the boundary, the algorithm checks three criteria

(Unique Completion (UC), Combinational Equivalence (CE), and Unbounded Model Check

(UMC)) to determine if the attack can be terminated [60].

The sequential SAT was first introduced in [60] that is only applicable to static-based

scan locking techniques. The work in [62], improved and accelerated the primitive sequential

SAT attack [60] via implementing several tweaks and dynamic optimization techniques in

the attack procedure. However, it still only works on static locking techniques. ScanSAT [61]

is another sequential SAT attack, which is able to break dynamicity in DOS architecture.

In scanSAT, by relying on the fact that the LFSR structure of DOS architecture (and its

polynomial) are known to the adversary, it would be able to find the seed as well as update

frequency parameter, which is the only secret in DOS architecture. So, it could derive all

the keys that are dynamically generated on the chip. Another state-of-the-art sequential

22

SAT attack is DynUnlock [63], which has a similar approach to ScanSAT, and shows how

it is possible to break the dynamicity and find the seed of the PRNG in EFF-Dyn [52].

Furthermore, locking or blocking the scan chain architecture will impose some critical

issues for the test/debug of the design-under-test. For example, disabling the shift operation

in scan blocking forces the tester to rely on PI/PO for the functional test, which significantly

increases the test flow complexity. Also, the structure of some scan chain locking/blocking

techniques forces the designer to engage a trusted party (the tester should have the correct

key) for the functional test; however, it is a hard assumption to maintain in many practical

cases. In some other cases, due to the structure of the secure scan chain, a system reset is

required for each test pattern to initiate the state of the circuit, which significantly increases

the test time.

2.4 Previous Work on LUT/Routing Locking

Unlike almost all previously discussed countermeasures that use XOR-based logic locking,

MUX-based (could be used for routing locking) and LUT-based locking has been previ-

ously visited by few researchers2. Engaging reconfigurable logic like look-up-tables was first

evaluated in [24], where LUTs as the reconfigurable barriers are used for locking purposes.

In [24], some placement strategies have been introduced for LUT insertion. For instance,

controllability and observability are two metrics used for part of their selection heuristic,

expressed as don’t-care conditions. Another parameter in their strategies is the gate-level

distance with PI/PO. Although power, performance and area (PPA) overhead is thoroughly

evaluated in [24], the claim on the security of these schemes is made solely base on inabil-

ity to readout the content of LUTs after reverse engineering, and the proposed placement

strategies are not resilient against the SAT attacks.

The work in [64] proposed another LUT-based locking technique with three different

LUT placement algorithms, which relies on spin-transfer-torque (STT) magnetic technology

2The only group that exploits non-XOR (MUX-based) is cyclic-based, where key-programmable MUXes

are added to generate feedbacks/cycles.

23

g1

g15

g12

g14

g3

g4

g10

g13
g16

g6

g11

g8

g17

g7
g9

g5

g2

pk0

pk1

pk7

nk0 nk1 nk7

VPB

GPB

Anti-fuse

PT

cross
bar

crossbar

Figure 2.11: Circuit Locked by Cross-Lock [5] with an 8× 8 Crossbar Network.

for implementing LUTs. Three different placement algorithms are: (1) dependent selection

in which there is the dependency between reconfigurable units (reachable), (2) Independent

selection in which the gates are randomly selected such that they may or may not connected

(directly or indirectly) through any design path, and (3) parametric-aware selection in which

the placement aims to minimize the impact and possibly avoid violating timing requirement

(inserting in timing paths with the highest positive slack). This work further focuses on the

PPA impact of their strategies and illustrates that utilizing STT-based LUTs could reduce

the PPA impact. However, the proposed solution does not consider its resiliency against

the SAT attack.

Routing-based locking was first introduced and investigated in Cross-Lock [5]. In Cross-

Lock [5], key-based switching network are built using programmable-vias (PVIA) con-

structed using one-time-programmable (OTP) elements made of anti-fuse [21]. PIVAs are

used to implement n × m crossbars. The main approach for PVIA programming is con-

necting two complementary (NMOS and PMOS) programming transistors (PTs) to the two

ends that connect the device terminals to programming supplies [21]. Routing locking in

Cross-lock has been performed by inserting PVIA-based n×m crossbars. Fig. 2.11 shows

a small circuit locked by Cross-Lock with n = m = 8.

24

Chapter 3: LUT-Lock: SAT-resilient LUT-based Locking

Compared to XOR-based and MUX-based logic locking, the usage of Look-up-tables (LUTs)

as a means of locking could have a wider range of technologies as the application. For

instance, since the main building blocks of FPGAs are built using LUTs, LUT-based logic

locking could be used more efficiently in FPGAs. FPGAs are inherently more secure for their

post-silicon reconfigurability. However, the FPGA hardware security relies on the protected

and non-intruded mapping of the intended bitstream into FPGAs. In certain cases, it is

difficult to protect the bitstream both during the initial configuration in untrusted third-

party systems as well as during remote and in-field reconfiguration [65]. A successful attack

may result in an unauthorized transfer of a bitstream to a third-party, reverse-engineering,

injection of a hardware Trojan, and cloning or theft of embedded IPs [65,66].

Although high-end FPGAs are typically equipped with bitstream encryption, there are

many cases where encryption alone is not enough [66]: (1) Not all FPGA families are

equipped with implementations of cryptographic algorithms [65], especially for small and

low-energy FPGAs. (2) When the power and delay overhead of the bitstream encryption

process is not tolerable, a developer may choose not to use encryption. (3) Many FPGA-

based products, to support new services or to enhance the existing ones, require frequent

updates which are mostly accomplished remotely. Despite the first time safely programming,

for an in-field update or a remote upgrade, the encrypted bitstream, and the keys are

vulnerable to leakage [65]. (4) After deployment, FPGAs are susceptible to physical attacks.

The long-term in-field usage makes it possible for an attacker to extract the encryption keys

via various side-channel attack mechanisms [67]. So, it is essential to implement additional

security measures to prevent the usability of a leaked bitstream. Such threats validate the

need for implementing logic locking as an extra security measure to protect the bitstream.

25

3.1 LUT-based Locking in FPGA

In FPGA solutions, the hardware resources are fixed and are designed independently of a

given netlist. Hence by nature, state-of-the-art FPGAs provide a large pool of resources to

apply to a wide range of applications, resulting in a large number of non-utilized LUTs after

mapping a netlist to the FPGA. For instance, the study in [65] depicts the utilization of

Altera Cyclone V after mapping a diverse set of benchmarks of various scales and complexity

to this FPGA and reported that FPGA utilization is typically low. This phenomenon

was coined as FPGA-Dark-Silicon [65]. These unmapped and unutilized LUTs are freely

available and could be used for logic locking purposes. Hence, LUT-based locking in FPGAs

could be considered as utilizing unused LUTs or using larger than needed LUTs, where the

connectivity and impact of additional logic are controlled using keys. An example of the

process of using LUTs in FPGA for logic locking is illustrated in Fig. 3.1, where some of

the 2-input (or 3-input) logic gates could be mapped to a LUT of larger size (e.g. size 4

or 5). Then, the additional inputs can be taken from the new inputs (keys) for locking

purposes. It also could be taken from output of an internally implemented (non)linear

feedback shift register (LFSR) or a physical unclonable function (PUF) [68]. Also, by

changing the ordering of inputs based on the key values (generated by PUF), the locked

circuit possibilities will increase considerably. For instance, assuming that a PUF is used,

each FPGA has unique PUF responses. By knowing the PUF responses ahead of time,

the bitstream will load the LUTs with proper values and will transmit the directives for

connecting the known PUF outputs to the proper LUT inputs and switch box select lines.

However, the PUF values will not be transmitted in the bitstream. These missing key values

serve as the locking key in LUT-based locking. Also note that the bitstream, in this case,

is unique for each FPGA, as each FPGA has unique PUF responses. In this case, even if

the bitstream is leaked, the PUF responses remain unknown, making the problem similar

to ASIC flow, where after reverse-engineering the locked netlist is available, but the keys

are unknown.

26

O1

I0
I1

I2
I3
I4

I5
I6

O0

(a) Original Netlist

O1

I0
I1

I2
I3
I4

I5
I6

O0LUT2

LUT3
LUT5

LUT2
LUT4GND/VCC

GND/VCC

GND/
VCC

(b) Mapped to LUTs

k4
(unused)

k2
k3

O1

I0
I1

I2
I3
I4

I5
I6

O0LUT2

LUT3
LUT5

LUT2
LUT4k0

k1
(unused)

(unused)

(c) Locking Unutilized LUTs

Figure 3.1: LUT-based Logic Locking using Unutilized LUTs.

3.2 LUT-based Locking in ASIC

In ASICs, utilizing LUTs for logic locking can lead to considerable area and delay overhead.

In the CMOS implementation of LUTs, the area overhead of the memory elements in a LUT

exponentially increases as a function of its input size. Hence, the imposed area overhead

limits the number of LUTs that could be replaced with basic gates in a netlist. Also, the

performance/delay requirements constrain the placement of LUTs in timing-critical and

near timing critical paths. However, with the introduction of STT and MTJ based LUTs

[64, 69, 70] and the promise of integration of STT and MTJ/pMTJ-based LUTs into the

same CMOS process, the area overhead of LUTs is expected to sharply reduce. Integra-

tion of CMOS and MTJ/STT devices makes it possible for a larger number of LUTs to

be implemented given a fixed area overhead. Using LUTs for logic locking in ASICs is

straightforward: selected cells are removed and replaced by LUTs. The functionality of the

cell remains hidden from the manufacturer. LUTs are then programmed after fabrication

27

in a trusted testing facility.

3.3 Different Placement Strategies used in LUT-Lock

Since none of the previous LUT-based locking techniques evaluated the security of LUT-

based locked circuits against the existing threats, our proposed LUT-Lock algorithm com-

bines several key features, each introduces a specific strategy for the placement of LUTs

in the circuit, which helps to enhance its ability to resist against the SAT attacks. In this

section, we first explain each key feature and then propose the LUT-Lock algorithm that

combines all features into a comprehensive solution. In the result section of this chapter,

we illustrate how by adding each key feature, the resiliency of the locked netlist against

the SAT attack increases, proving that the resiliency gained from adding these features are

orthogonal to one another.

3.3.1 FIC: Focusing on the Fan-In Cone of Primary Outputs

Since the SAT attack works on a structure-like binary decision tree, deepening the search

tree for the SAT solver will increase the complexity significantly. Having a deeper tree

dependent on the key values makes the SAT problem much harder to be solved. Hence,

moving towards dependent LUT insertion would be more promising. Hence, mapping the

LUTs such that they place in the same fan-in-cone (FIC) would increase the strength of

the locking against the SAT attacks. To achieve this, we limit the LUT insertion to the

fan-in cone of the smallest possible set of primary outputs (best case being single PO), and

we refer to this algorithm as FIC. It should be noted that FIC-based LUT replacement

still corrupts other outputs, as the intersection of fan-in cones of different outputs is not

empty. Hence, we expect to face high (enough) output corruption even while we choose a

limited number of FICs of POs. Also, to have more control on the number of POs affected

by LUTs, in LUT-Lock, we start with replacing the closest cells to the selected output first

and then we move towards PIs.

In the FIC algorithm, the output pin(s) selected for locking should meet two conditions:

28

(1) Total Positive Slack (TPS) of all timing paths leading to that primary output(s) should

be large (timing paths with highest positive slack). This is because replacing a gate with

LUT incurs additional delay in every timing path that passes through that gate. Hence,

we need available timing slack for the replacement of faster logic gates with slower LUTs.

(2) it must have a large fan-in cone size, giving us more candidate gates for replacement.

These two conditions mean that we require wider FICs than deeper ones. For large circuits,

we define two coefficients (α and β) for prioritizing these two conditions to generate a

cumulative weight which helps to select the best candidate output(s). For this purpose,

we normalize the TPS (into TPS*) and FIC (into FIC*) with respect to their maximum

possible values in the given circuit. Then using α.TPS* + β.FIC*, we obtain the cumulative

weight for the FIC selection process.

Fig. 3.2 demonstrates different features of LUT-Lock we introduce in this chapter, and

Fig. 3.2(a) illustrates the FIC replacement strategy. Between the two outputs, i.e. g8 and

g9, g9 is not selected, as it contains the largest number of timing critical paths (deeper

paths). So, in this simple example, we choose g8 as the PO, and its FIC would be the

candidates for locking. When using breadth-first-search (BFS) for gate selection (moving

from POs towards PIs), FIC selects gates {G8 and G5} or {G8, G5, G2, and G4} when its

asked to replace 2 or 4 gates, respectively.

3.3.2 HSC: Focusing on Higher Skew Gates in FIC

Our investigation on the hardness of many tested LUT placement strategies revealed that

the cells with lower controllability are better candidates for LUT-based locking. The con-

trollability could be defined as the effort/hardness metric for controlling the logic value of

a wire in a circuit. Hence, it is evident that the controllability of the wires located near the

POs would be much harder than other wires located near the PIs. Since we move from POs

towards PIs in LUT-lock, we already choose gates with higher controllability. However, for

sibling gates, located at the same depth, we need to calculate controllability to prioritize

29

them for the placement strategy. Hence, we could define the controllability using the prob-

ability as the skew probability (SPS) |Pr(0)− Pr(1)|, in which Pr(1) and Pr(0) denoted as

the probability of being 1 or 0 at the output of the gate, respectively. The higher the SPS,

the lower the controllability of the respective gate. Hence, selecting a high SPS output gate

lowers the chances of SAT solver selecting an input that tests the output of that gate.

With this observation, the second step (feature) of our LUT-lock algorithm is to enhance

the FIC to perform the gate selection based on its measure of the gate’s output (higher)

SPS. In this modified FIC algorithm, which is now referred to as HSC, the gate selection

strategy is modified as follows: within the fan-in-cone of selected output(s) based on FIC,

the replacement priority is given to gates with higher SPS; In HSC, when a gate is selected

for locking, its fan-in gates will be added to the list of gates that could be visited in the next

search for gate replacement, and the gates with the highest SPS will be selected among all

gates in the list. HSC replacement flow is illustrated in Fig. 3.2(b). In the first invocation

of HSC, the fan-in-cone of gate G8, for satisfying the FIC requirements, is selected and is

locked. For the 2nd gate selection, HSC has three candidates G2, G5, and G4. Based on

the skew probability of wires, as illustrated in Fig. 3.2(b), G4 with SPS of 0.5 is selected

over G5 and G2 with SPS of 0.25 and zero, respectively. For the 3rd gate selection, HSC

appends the fan-in gates of G4 (Here are primary inputs and will be ignored!) as candidate

gates for the replacement along with G2 and G5. Hence, among these 2 gates, G5 is selected

for having the higher SPS.

3.3.3 MFO-HSC: Focusing on gates with Minimum Fan-Out

Although we develop FIC in the first step, the probability of having a fan-in cone with no

common gate with other fan-in cones is almost zero. Separating the fan-in cones of different

outputs could be achieved by replicating the common gate, however, this will result in a

large area overhead. To have more control over the corruption of the POs without exploding

the area, we introduce another sub-algorithm (feature), in which we give more priority to

candidate gated with lower fan-outs. We refer to this gate selection strategy as MFO-HSC.

30

i1
i2

i3
i4

i7
i6 G4

G6

G7

G9

g5

g3

g1

g4 g6

g7

g8

g9
i5

G3
G1

G2

G5

G8g2

4

8

(a) FIC

i1
i2

i3
i4

i7
i6 G4

G6

G7

G9

g5

g3

g1

g4 g6

g7

g8

g9
i5

G3
G1

G2

G5

G8g2

4

8
0
0

0

0
0
0
0

0

0.5

0.5

0.25

0.25

0.0625

(b) HSC

i1
i2

i3
i4

i7
i6 G4

G6

G7

G9

g5

g3

g1

g4 g6

g7

g8

g9
i5

G3
G1

G2

G5

G8g2

4

8
1

2

3

2

1

1

(c) MFO-HSC

i1
i2

i3
i4

i7
i6 G4

G6

G7

G9

g5

g3

g1

g4 g6

g7

g8

g9
i5

G3
G1

G2

G5

G8g2

4

8
1

2

2

2

1

1

(d) MO-HSC

i1
i2

i3
i4

i7
i6 G4

G6

G7

G9

g5

g3

g1

g4 g6

g7

g8

g9
i5

G3
G1

G2

G5

G8g2 8

G5

G2

G44

(e) NB2-MO-HSC (LUT-Lock)

Figure 3.2: Different Placement Strategies in LUT-Lock.

In the MFO-HSC algorithm, a BFS search is first deployed (FIC), visiting all candidate

gates at the current cone, and gate(s) with a minimum number of fan-outs will be selected.

Whenever a tie between two or more gates is observed, the gate with the highest SPS is

selected (the previous feature). When a gate is locked, its fan-in gates are added to the list

of candidate gates that will be considered in the next gate selection. Fig. 3.2(c) depicts how

the MFO-HSC works; Similar to FIC, the fan-in cone of g8 is selected for locking and G8

is locked. Based on BFS, the next candidates are G5, G2, and G4. The gate G2 is selected

over G5 and G4 for having fan-out of 1. The fan-in of G2 is then added to the candidate

gates for the next visit. In this figure, the fan-in of G2 are primary inputs, and they are

ignored, and the next candidate gate is only G5.

3.3.4 MO-HSC: Focusing on Gates with least impact on POs

Based on our observation in MFO-HSC, some gates have more than one fan-out, but they

only affect one output. For instance, as it can be seen in Fig. 3.2(c), the fan-out of g4 is 2.

However, it affects only g9. This observation led us to introduce a similar but more efficient

31

sub-algorithm (feature) to choose gates with an impact on minimum outputs, which is called

MO-HSC. In this sub-algorithm rather than looking at the fan-out of the candidate gates, we

count the number of outputs that are connected (direct or indirect) to each candidate gate.

MO-HSC requires additional parsing and processing, however, it further provides better

control on outputs corruption. Similar to MFO-HSC, the tie between two candidate gates

(for affecting an equal number of outputs) is broken using the SPS of respective gates. Each

time a gate is selected for its locking, the fan-in of the gate is added to the list of candidate

gates to be considered for the next gate selection. Similar to the FIC algorithm, each gate

replacement candidate should pass the timing check, otherwise ignored. An example of the

MO-HSC has been illustrated in Fig. 3.2(d), where after selecting the G8 based on FIC

selection policy, the gate G2 is selected over G5 and G4 for impacting the smaller number

of outputs.

3.3.5 NB2-MO-HSC: Avoiding Back-to-Back insertion of LUTs

The back-to-back locking of the gates with LUTs suffers from the increased number of

key-possibilities as a result of the provided freedom in exploiting gate conversion based on

De Morgans’s Laws. For instance, as shown in Fig. 3.3, the back-to-back locking of the

function (A ∨ B) ∧ (C ∨ D), using 2-input LUTs (replacing all three gates with 2-input

LUTs), could have 4 different combinations of programmable logic based on De Morgans’s

Laws with the same function. So, instead of having one correct key, we will have four

different keys all provide the correct functionality. When LUT placement focus on FIC,

placement of each LUT in the fan-in of the logic cone with a direct connection with other

LUTs, creates another set of possibilities leading to the exponential increase in the number

of valid keys, a phenomenon that we refer to as correct key explosion.

Depending on the growth rate of the set of valid keys and the number of keys, locking

more gates may even reduce the locking strength. This is illustrated in Fig. 3.4, where the

execution time of the SAT solver and some generated keys per each inserted LUT for the

benchmark C5315 of ISCAS-85 is illustrated. The LUTs are placed back-to-back, hence,

32

(a) OR-AND (b) NOR-NOR (c) Custom1 (d) Custom2

Figure 3.3: De-Morgan’s law: Four Different Conversion with the Same Function.

0
10
20
30
40
50
60
70
80
90

38 39 40 41 42 43 44 45

Ex
ec

ut
io

n
T

im
e

Execution Time

100

101

102

103

104

105Number of Keys

N
um

be
r

of
 G

en
er

at
ed

 K
ey

s

Number of Obfuscated Gates

Figure 3.4: Number of Valid Keys in back-to-back LUT placement (c5315).

insertion of each LUT increases the number of keys. Fig. 3.4 focuses on the insertion of

the 38th to the 45th LUT. As shown, the insertion of 41st and 42nd LUT produces a large

number of new (correct) keys (around 104). Hence, the SAT solver execution time doesn’t

increase. On the other hand, the replacement of gate 40 produces far fewer new keys (in the

range of 10s). Hence the growth of the set of candidate/possible keys exceeds the growth

rate of correct keys, significantly increasing the run-time of SAT solver.

From this key observation, we need to suppress the growth-rate of correct keys from the

exploitation of De Morgan’s gate conversion laws. So, we introduce another sub-algorithm

(feature), NB2-MO-HSC, which implements this restriction by avoiding back-to-back lock-

ing, keeping the set of correct keys at a minimum. In this gate replacement strategy, we first

select the candidates in FIC using no back-to-back constraint. Then, the selection among

the candidates is made based on the candidate gate’s connectivity to the minimum number

of outputs. If there is a tie among candidates, the SPS of candidate gates determines the

33

selection. As soon as a gate is selected, the NB2-MO-HSC searches the fan-in of the selected

gate skips one logic level (no back to back) and adds the fan-in of all skipped gates to the

set of candidate gates for the next gate selection. Similar to FIC, each gate replacement

candidate should pass the timing check, otherwise ignored. As illustrated in Fig. 3.2(e), the

application of NB2-MO-HSC results in the selection of G8 and G3 for the LUT insertion.

3.4 LUT-Lock Flow: Implementing NB2-MO-HSC

LUT-Lock relies on all previously mentioned strategies combined in NB2-MO-HSC. In sum-

mary, it is the combination of (1) no back-to-back, (2) minimum impact on POs (minimum

fan-out), (3) on gates with higher SPS, and (4) located in selected FICs. The Algorithm 2

captures the detailed implementation of the proposed LUT-Lock locking flow implementing

the NB2-MO-HSC policy. As mentioned previously, the overall structures of MFO-HSC and

MO-HSC are the same, and since MO-HSC provides slightly more resilient behavior and

also more possible candidates during each iteration, we embed MO-HSC in the LUT-Lock

algorithm.

3.5 The Efficacy of LUT-Lock against the SAT Attack

To evaluate the efficacy (Robustness) of the LUT-Lock algorithm, we used a set of desktops

equipped with Intel Core-i5 processor and 8GB of RAM. For a fair comparison, and to

reduce the impact of the operating system background processes, we dedicated one machine

to each SAT solver at a time, and installed Ubuntu Server 16.04.3 LTS operating system

in shell mode. We used the largest ISCAS-85 benchmarks (C2670, C3540, C5315, C6288,

and C7552) to show the effectiveness of the LUT-Lock. We employed the Lingling-based

SAT attack described and developed by [1]. We measured the SAT solver execution time

by increasing the number of locked gates (the number of LUTs) from 1 to 200. A run-time

limit of 1.1× 104 seconds was set for the SAT solver.

To show the effectiveness of each key feature of the proposed algorithm, we compared

34

Algorithm 2 LUT-Lock: Implementing NB2-MO-HSC

1: α = β = 0.5; � α: TPS coeff, β: FIC size coeff;
2: γ = 0.1 � γ: feasible delay overhead
3: max delay thr = γ×CriticalPath;
4: MaxSize FIC = Max TPS = 0; � Total Positive Slack (TPS);

5: Forbidden output list = []

6: outputs list = find outputs(Circuit C);

7: for each (output in outputs list) do

8: if (output not in Forbidden output list) then

9: current FIC = BFS(output);

10: for all (paths in current FIC) do

11: Current TPS = TPS Calc(current FIC, paths);

12: Current Weight = α×Current TPS + β×sizeof(current FIC)

13: Max Weight = α×Max TPS + β×MaxSize FIC
14: if (Current Weight > Max Weight) then

15: candidate output = output ;
16: MaxSize FIC = sizeof(BFS(candidate output));

17: Max TPS = Current TPS ;

18: candidate list = Forbidden list = [];

19: candidate list.append(candidate output);

20: while (num of locked < target no) do

21: if (candidate list == φ) then

22: Forbidden output list.append(candidate output)

23: go to line 5
24: else
25: current candidate = candidate list[0] ;

26: if (delay estimate(current candidate) < max delay thr) then

27: replace LUT(current candidate);

28: current candidate childlist = current candidate.child;
29: Forbidden list.append(current candidate childlist);

30: for each (current child in current candidate childlist) do

31: if (current child.child not in Forbidden list) then

32: candidate list.append(current child.child)

33: sort list(candidate list, min out impact);

34: for all (candidate list members with equal min out impact) do

35: sort list(candidate list, skew probability);

36: else
37: remove current candidate;

the execution time of the SAT attack on circuits which are locked based on different features

(sub-algorithms). We also compare the effectiveness of the proposed LUT-Lock with the

previous work, STT-LUT [64] and reconfigurable barriers [24]. As illustrated in Fig. 3.5 the

SAT attack execution time increases as the replacement algorithm evolves from Random

replacement to FIC, then to HSC, then to MFO-HSC, then to MO-HSC, and then to MB2-

MO-HSC, illustrating the orthogonal improvement of added features in providing resiliency

against the SAT attack. The LUT-Lock algorithm, which implements the NB2-MO-HSC

replacement policy, combines all key features and provides a close to an exponential increase

in the execution time of the SAT attack with respect to the number of locked gates.

35

10-1

100

101

102

103

104

Ex
ec

ut
io

n
Ti

m
e

(I
n

Se
co

nd
s)

0 20 40 60 80 100 120 140 160 180 200
Number of Obfuscated Gates

Random (RND) FIC HSC MO-HSC
MFO-HSC NB2-MO-HSC (Lut-Lock)

STT-LUT [21] Reconfigurable Barriers [22]

(a) on ISCAS-85 c5315

10-1

100

101

102

103

104

Ex
ec

ut
io

n
Ti

m
e

(I
n

Se
co

nd
s)

0 20 40 60 80 100 120 140 160 180 200
Number of Obfuscated Gates

Random (RND) FIC HSC MO-HSC
MFO-HSC NB2-MO-HSC (Lut-Lock)

STT-LUT [21] Reconfigurable Barriers [22]

(b) on ISCAS-85 c7552

Figure 3.5: Execution time of the SAT Attack on LUT-Lock vs. Previous Work.

Fig. 3.5 shows that although the execution time of the SAT attack increases steadily,

it faces small variation. The variation in the execution time is the result of the rate of

growth in the size of valid keys (as a result of gate conversion using the application of

De Morgan’s laws, as explained in section 3.3.5), compared to the rate of growth in the

number of possible keys. A poor selection of candidates for locking results in faster growth

in the number of valid keys, reducing the overall effectiveness of locked netlist against the

SAT attack. As illustrated, the LUT-Lock (NB2-MO-HSC) has the least variation, as it

eliminates the explosion of the set of valid keys by preventing back-to-back gate replacement.

36

Table 3.1: Exponential Regression of the SAT Attack Exection Time on LUT-Lock.

Exponential RND FIC HSC MFO-HSC MO-HSC NB2-MO-HSC (LUT-Lock)

Regression A = 0.2065 A = 38.769 A = 15.238 A = 41.252 A = 38.644 A = 0.352
(Aeex) B = 0.8875 B = 0.9961 B = 1.217 B = 1.316 B = 1.339 B = 3.518

Table 3.2: The SAT Attack Execution Time on LUT-Locked ISCAS-85 Benchmarks.

Circuit
1% 2% 3% 5% 10%

RND LUT-Lock RND LUT-Lock RND LUT-Lock RND LUT-Lock RND LUT-Lock

c2670 0.18 0.88 0.5 1.39 0.93 1.92 2.41 24.6 3.48 Timeout
c3540 0.6 1.24 1.07 6.12 2.25 988.2 2.66 Timeout 5.29 Timeout
c5315 0.5 9.05 1.21 115.01 1.66 941.02 3.93 Timeout 12.04 Timeout
c7552 0.79 28.432 2.61 182.9 3.71 492.04 11.1 Timeout 264.9 Timeout

As shown in Fig. 3.5, the SAT resiliency of the prior work is very close to that of random

(RND) replacement, showing slow growth in the SAT attack execution time with respect to

the number of LUTs. However, in LUT-Lock, it shows a much faster exponential increase

in difficulty (the SAT execution time). As illustrated, in both c5315 and c7552 benchmarks,

with only 20 LUTs, the LUT-Lock locked netlist is as resilient as the netlist locked by [64]

and [24] when they use 10X (200 gates) LUTs.

Table 3.1 captures the fitted function (exponential regression) of execution time for

different sub-algorithms and LUT-Lock, where x denote the number of locked gates. As

illustrated in this Table, the LUT-Lock (NB2-MO-HSC) poses an exceptionally more chal-

lenging SAT problem compare to other locking scheme. Table 3.2 compare the execution

time of SAT attack, across selected number of ISCAS-85 benchmarks, once locked by ran-

dom LUT insertion and once using LUT-Lock. As illustrated, despite random policy, the

SAT execution time grows exponentially when LUT-Lock policy is adopted.

3.6 From Theory to Reality: LUT-lock Overhead

When LUT-based locking is in place, like LUT-lock, as we demonstrated, the design would

be partially mapped to LUTs. For instance, if a 2-input AND gate have to be locked

37

using LUT of size 2, one can set the configuration bits of the LUT to ”0001” as per the

truth table of the AND gate. From the SAT attack perspective, on the other hand, to

model the LUT-based locking, each LUT is substituted with a (2+)-level MUX. Unlike the

preliminary LUT-based locking techniques that are vulnerable to the SAT attack, LUT-lock

can provide robustness against this powerful attack. However, it would have more chances

to being resilient when we increase the number of LUTs inserted/replaced into the circuit.

So, the impact of LUT-lock on the overhead is required to be considered meticulously.

When a LUT with size u is used to be replaced with a gate, each u-input LUT can

provide all 22
u
possible functions, which increases the key length along with the search

space to find the correct key configuration for LUT. However, increasing the size of the

LUTs imposes large area and performance overheads, even while it is built using STT. To

evaluate the efficiency (robustness vs overhead) of the LUT-based locking, we investigate

some key factors that play important role in both robustness and overhead. These factors

are (1) LUT size, (2) number of LUTs inserted for locking, and (3) replacement strategy.

Fig. 3.6 illustrates the overall impact of these three key factors on the SAT attack

execution time. As shown, even for random (RND) strategy, for LUT size larger than 8,

locking only ∼1% gates of each circuit is sufficient to provide the SAT resiliency. Further, it

is evident that NB2-MO-HSC remarkably increases the SAT execution time, which shows

its effectiveness on the SAT resiliency. However, increasing the size of LUTs (on the X-axis)

significantly increases the hardness of locking regardless of the replacement strategy and

the number of LUTs locked.

3.6.1 LUT Size vs. Number of LUTs

One of the straightforward approaches for LUT-based locking is to either increase the num-

ber or the size of LUTs to enhance the security against the SAT attack. For example, instead

of using a LUTu for the u-input gate, a LUTu+ (i.e., LUTu + 1, LUTn + 2,...) could be

used. When LUTs are replaced by MUXs for SAT modeling leads to a log2(u)-level MUX-

based structure. Thus, by increasing the size of the LUTs, the SAT attack replaces them

38

Figure 3.6: The SAT Attack Execution Time for Different Values of the Key Factors.

1E-1

1E0

1E1

1E2

1E3

1E4

1E5

0 20 40 60 80 100 120 140

SA
T

Ex
ec

ut
io

n
Ti

m
e

(S
ec

)

no. of LUTs

LUT2 LUT3 LUT4 LUT5 LUT6
LUT7 LUT8 LUT9 LUT10 LUT11
LUT12 LUT13 LUT14

Figure 3.7: The SAT Attack Execution Time: LUT Size vs. Number of LUTs.

with more deeper MUX trees, and consequently, the attack time gets exponentially longer

to exploit the value of keys for LUTs, making large LUT resilient against the SAT attack.

Fig. 3.7 demonstrates the SAT attack execution time with more details on ISCAS-85

c7552 for different sizes of LUTs, and different numbers of LUTs using the replacement

strategy NB2-MO-HSC. This experiment shows that using larger sizes of LUT provides

higher SAT resiliency than locking a higher number of gates with smaller sizes of LUTs.

For instance, only replacing a single gate with a LUT13 is sufficient to make the design

perfectly resilient against the SAT attack.

39

1

10

100

1000

10000

1 10 100 1000 10000

N
or

m
al

iz
ed

 P
ow

er
 (N

on
-R

es
ili

en
t)

Normalized Area

Non-Resilient
Resilient

Figure 3.8: Normalized Area/Power Overhead of LUT-based locking.

3.7 More Investigation is Required on LUT-based Locking

Although Fig. 3.7 shows that LUT scale-up (enlarging the LUTs) is the most straightfor-

ward approach for LUT-based locking for yielding high resiliency against the SAT attack,

Fig. 3.8 shows that precipitous increase in the number and the size of LUT can render

inefficient solutions. Every possible combination from Fig. 3.7 is synthesized using Syn-

opsys Design Compiler to obtain area and power overhead which are demonstrated in Fig.

3.8. As shown, making the circuits resilient against the SAT attack incurs at least 10x area

and power overhead, making LUT-based locking an idealistic solution at the moment for

hardware security.

Therefore, to make LUT-based locking a realistic and resilient solution with reasonable

overhead, different directions need to be investigated. One possible direction is to design

and build a customized LUT structure with more focus on the security of the LUT at lower

overhead. Exploiting the combination of MUX-based and LUT-based locking as a full con-

figurable block also could be evaluated as a possible direction. As we demonstrated, the

strategy of LUT replacement plays a crucial role to provide resiliency at lower overhead.

40

Hence, more investigation on LUT placement strategies is inevitable in this topic. Also,

all previous LUT-based locking techniques use LUT-per-gate replacement which incurs sig-

nificant overhead, and it could be replaced with LUT-per-cone replacement. Undoubtedly,

these factors could be the main contributors to the future of LUT-based locking techniques,

which will show us the feasibility/idealism of this breed of locking countermeasures.

41

Chapter 4: Full-Lock: Moving towards Routing-based

Locking

The inefficiency of LUT-based locking, particularly in terms of overhead, motivates us to

open a new direction by investigating other non-XOR-based logic locking techniques, i.e.

MUX-based logic locking. In MUX-based logic locking as discussed in Section 4.4, key-

based MUXes are added, and the selector of the MUXes are controlled with the key. So, in

MUX-based locking, the routing/wiring of the circuit would be locked. In this chapter, we

introduce and evaluate a new MUX-based (routing-based) locking technique, which could

open a new direction for building SAT-hard solutions. Unlike point function techniques

which exponentially increase the number of iteration required for the SAT attack, the main

aim of the proposed routing-based locking is to significantly increase the run-time of each

iteration of the SAT solver. The only existing solution that somewhat could be enumerated

as a member of this category is Cross-lock [5]. In Cross-lock, a one-time programmable

interconnect mesh is used to lock the routing of a netlist, and the resulting locked netlist

substantially increases the runtime of each iteration of the SAT attack. However, we will

illustrate that locking solution in [5], although a step in the right direction, is not a strong

solution in this space, and by following the principles and design guidelines discussed in

this chapter, it is possible to construct locked circuits that translate into far harder SAT

circuits than Cross-lock.

In this chapter, we explore the characteristics and principles of designing this new cate-

gory of SAT-hard logic locking solutions, where the goal is to exponentially increase the time

required for each iteration of the SAT attack. As a strong representative member of this

direction of logic locking techniques, we introduce Full-Lock. Full-Lock is constructed using

a set of cascaded fully programmable logic and routing blocks (PLR) networks that replace

42

parts of the logic and routing in the desired netlist. The PLRs are SAT-hard instances

designed to construct the desired ratio between the number of clauses and the number of

variables with PLRs are translated to their conjunctive normal form (CNF). The cascaded

and non-blocking design of PLR pushes the SAT solver’s algorithm to build a very deep

decision tree and to spend significant time in hopeless regions of the decision tree, causing

a significant increase in each iteration of SAT attack.

4.1 A New Perspective of SAT Hardness

As previously mentioned in 2.3.2, in each of the SAT attack iteration, the SAT solver would

be invoked to find a discriminating input patterns (DIP), which results in ruling out a set

of incorrect key value(s). Hence, many SAT-resilient locking schemes tried to weaken the

pruning power of one DIP, making sure each DIP can only rule out a very limited number

of (the best case is one) incorrect key. This forces the number of needed iterations to be

exponentially increased with respect to the number of keys. Consequently, it exponentially

increases the required execution time of the SAT attack, although, the execution time of

each iteration of SAT solver could be quite short.

The strength of the SAT solvers comes from their conflict-driven clause learning (CDCL)

ability. In each iteration of the SAT attack, a new SAT problem will be defined, in which

there exist many clauses each contains a set of literals. The goal of the SAT solver is to find

a satisfying assignment for all its literals. The literal values are either assigned or derived.

Each assignment of value to a literal pushes the solver down into one of the branches of

its decision tree implemented using a recursive call. During this recursive procedure, if the

solver reaches a state where the derived value of a literal is different from its previously

derived or assigned value, a conflict is detected. This is when the solver investigates how

the conflict was driven, identifies a set of literal assignments that cause the conflict, and

generates a clause that prevents the identified literal assignment. The newly learned conflict-

clause is then added to the original problem set, aiding the solver to prune its decision tree

and to avoid reaching the same conflict in the future. Then, the decision tree is backtracked

43

to a safe point before the conflict.

4.1.1 Recursive DPLL in the SAT Solver

Davis-Putnam-Logemann-Loveland (DPLL) algorithm (or one of its derivatives), which is

used to perform CDCL, is illustrated in Algorithm 3. Each SAT iteration invokes the

recursive DPLL function. Besides, DPLL is a recursive function that may also call itself.

As it can be seen in line 12 and 16, new recursive call adds a new variable, l or l̄, to Φ.

Hence, an increase in the number of recursive calls (line 12 and 16) increases the complexity

of the next DPLL call. So, the number and complexity of recursive DPLL calls could be a

dominant factor for each invocation of the SAT solver (a SAT attack iteration).

Algorithm 3 DPLL Algorithm Pseudo-code

1: function DPLL(Φ)
2: if Φ has an empty clause then
3: return ”UNSAT”;

4: if Φ is [] then � Φ is empty
5: SATassign ← Current Assignment;
6: return ”SAT”;

7: if Φ contains a unit clause l then � Unit Propagation
8: Φ ← Φ - all clauses with l;

9: Φ ← Φ with eliminating all l̄;
10: return DPLL(Φ);

11: if Φ contains a pure literal l then � Purification
12: return DPLL(Φ ∪ l);

13: if DPLL(Φ ∪ l) is SAT then � Branching
14: return ”SAT”;
15: else
16: return DPLL(Φ ∪ l̄); � (One more level in Tree)

Based on the SAT attack algorithm discussed in Section 2.3.2, the runtime of the SAT

attack could be obtain from:

TAttack =
N∑

i=1

T (i) =
N∑

i=1

(t+ TDPLL(Φ)) (4.1)

We call locked circuit SAT resilient if the SAT attack faces a very large runtime on it.

As we discussed previosly in Section 2.3.4, the most intuitive way as the first solution is

44

to weakening the DIP and increasing the number of iteration (N) to a very large number

[25–27]. In spite of very shallow DPLL recursive tree, for having a very large N , these

solution exhibit resistance against SAT attack. However, this type of logic locking solutions,

as suggested previously is prone to SPS [25], Approximate-based [38, 39], bypass [36], and

possibly removal attack [35].

Based on the discussion on DPLL, an alternative solution is smaller N but larger recur-

sive trees. Hence, as illustrated in equation 4.2, the attack time could also increase beyond

acceptable if the number of recursive calls (M) grows to a very large number.

TAttack =

N∑

i=1

(t+ TDPLL(Φ)) �
N∑

i=1

M∑

j=1

(TAvg
DPLL) � MN × TAvg

DPLL (4.2)

The very strong aspect of this form of building SAT-hard solutions is that (1) the

problem posed at each iteration of the SAT attack is a SAT-hard problem, (2) the output

corruption of these methods is significantly higher than point function techniques relying

on increasing the N , and (3) it is not susceptible to SPS, removal or approximate attack.

Motivated from this discussion, in this chapter we present Full-Lock. Full-Lock is able

to considerably and exponentially increase the number (M) and computational complexity

(TAvg
DPLL) of recursive calls in DPLL function via replacing some of the logic and routing in

the circuit by one or more SAT-hard MUX-based locking instance(s) in the circuit.

4.2 Full-Lock: SAT-hard Routing Locking

Many SAT-hard problems (instances) are introduced annually in SAT competitions. These

problems aim to trap Davis-Putnam-Logemann-Loveland (DPLL) or generate extremely

complex and time-consuming computational models for this algorithm. Although none of

them is directly convertible to a logic circuit, features and tricks used in these SAT-hard

problems could be used in designing SAT-hard circuit (SATC) problems.

45

In [6], the SAT hardness of formulas produced using a fixed-length clause generator

was investigated. This work concluded that ”For formulas that are either relatively short,

in which the number of clauses per variable is less than 3, or relatively long, in which the

number of clauses per variable is larger than 6, DPLL finishes quickly, but the formulas of

medium length, between 3 to 6, take significantly longer”. This is because formulas that

have few clauses are under-constrained, and have several satisfying assignments. Providing

under constrained clauses to Algorithm 3 increases the chances of one satisfying assignment

to be found early in the search using unit propagation or purification. Note that these two

steps are used to simplify the size of the formula before branching, while branching assigns

a value to an unassigned variable, making the DPLL tree one level deeper. Formulas that

have many clauses on the other hand are over-constrained. In over-constrained clauses, the

contradictions are found easier and the search is quickly concluded.

SAT hardness of medium-length formulas is higher than under or over-constrained for-

mulas. This is because they only have relatively few (if any) satisfying assignments. Hence,

throughout the search and after assigning values to many variables, many empty clauses

will be generated. This results in a deep DPLL recursive tree for testing each assumption

[71]. Fig. 4.1 demonstrates the number of recursive calls made by DPLL for solving the

formula for fixed-length 3-SAT formulas, where the ratio of clauses to variables is varied

from 2 to 8.

As illustrated, the ratio from 3 to 6 provides much higher DPLL calls, and 4.3 clause

per variable is the best ratio, generating the most computational challenging SAT in-

stances with the highest number of DPLL calls. For example, a 100-variable 300-clause

instance (clause/variable = 3 ”under-constrained”), or a 100-variable 5000-clause instance

(clause/variable = 50 ”over-constrained”) is easily solvable within few seconds. However,

the SAT solver takes a very long time to solve a 3-SAT instance which is constructed with

100 variables and 450 clauses. From this discussion, an locked circuit is SAT-hard when

its Conjunctive Normal Form (CNF) has medium-length clauses with a ratio of clauses to

variables between 3 to 6 (best if close to 4).

46

0.5

1

1.5

2

2.5

3

3.5

4

0 2 3 4 5 6
Clause to Variable Ratio

R
ec

ur
si

ve
 D

P
LL

 C
al

l

×103

7 8

20 Variables
40 Variables
50 Variables

Figure 4.1: Recursive DPLL Call for Different Clause to Variable Ratio [6].

4.2.1 Logarithmic Networks for SAT-Hardness

Since the SAT solvers receive the inputs (SAT problems) in CNF, the Boolean representation

of the circuit must be translated into CNF before the attack. This translation could be done

using Tseytin transformation [73]. Table 4.1 lists the Tseytin transformation [73] of various

logic gates into their respective CNF expression. From this table, only XOR/XNOR and

MUX have 4 clauses per gate. This is when the clause to variable ratio is 1 and 4/3 in

MUX and XOR/XNOR respectively. Despite the observation that for a single gate the

XOR/XNOR has a larger clause to variables ratio, MUXes provides a better building block

for constructing SAT-hard circuits. This is because: (1) with no unit propagation and

purification, for having four variables, a MUX can make the recursive DPLL tree one level

deeper, (2) unit propagation and purification steps in the DPLL algorithm provide more

simplified and smaller formula using enhanced Gaussian elimination while the contribution

of XOR/XNOR gates is much higher [75]. Hence, MUXes needs more DPLL recursive tree

prunings/backtrackings compared to XORs/XNORs. Moreover, since unit propagation and

purification satisfy less formula, the clause to variable ratio will increase while MUXes have

more contribution.

47

Table 4.1: Tseytin Transformation of Basic Logic Gates.

Gate Operation CNF (sub-expression)

C = AND(A,B) C = A.B (A ∨B ∨ C) ∧ (A ∨ C) ∧ (B ∨ C)

C = NAND(A,B) C = A.B (A ∨B ∨ C) ∧ (A ∨ C) ∧ (B ∨ C)

C = OR(A,B) C = A+B (A ∨B ∨ C) ∧ (A ∨ C) ∧ (B ∨ C)

C = NOR(A,B) C = A+B (A ∨B ∨ C) ∧ (A ∨ C) ∧ (B ∨ C)

C = BUFF(A,B) C = A (A ∨ C) ∧ (A ∨ C)

C = NOT(A,B) C = A (A ∨ C) ∧ (A ∨ C)

C = XOR(A,B) C = A⊕B (A ∨B ∨ C) ∧ (A ∨B ∨ C) ∧ (A ∨B ∨ C) ∧ (A ∨B ∨ C)

C = XNOR(A,B) C = A⊕B (A ∨B ∨ C) ∧ (A ∨B ∨ C) ∧ (A ∨B ∨ C) ∧ (A ∨B ∨ C)

C = MUX(S,A,B) C = A.S +B.S (S ∨A ∨ C) ∧ (S ∨A ∨ C) ∧ (S ∨B ∨ C) ∧ (S ∨B ∨ C)

The next step for building a SAT hard problem, and to push the clause to variable ratio

to the desired range of 3 to 6 (4.3 as the best), is preventing the propagation and purification

from simplifying the circuit before branching into recursive DPLL tree. This could be

achieved by building a switching network using MUXes, where none of the variables related

to a given MUX in a switching network could be resolved unless their cascaded variables

(related to cascaded MUXes in the original circuit) are resolved, a requirement that is

recursively continued. This would prevent purification and simplification prior to reaching

the leaves of the decision tree, as each variable in an intermediate layer of the switching

network is cascaded while pushing up the clause to variable ratio to the desired range.

This is consistent with the finding in the [76], in which investigating Boolean formulations

of global detailed interconnect constraints, authors concluded that the CNF of symmetric

switching networks is a hard problem for the SAT solvers. Besides, using N -by-M switch-

boxes, with back-to-back interconnection, illustrated in Fig. 4.2 creates hard satisfiable

instances that trap even the best solvers in hopeless regions of their solution space for a

long time before a satisfying solution can be found [7].

In Full-Lock, we achieve this by constructing a logarithmic-based key-programmable

routing block (KeyRB) for locking the wires. For this purpose, we create small and

lightweight switch-boxes (SwB) that are implemented easily using only MUXes/inverters.

These small and lightweight SwBs allow us to create large logarithmic switching (log2N)

network to (1) increase the clauses to variables ratio using MUXes that are independently

48

Logic 1 Logic 4
Logic 2

Logic 3

Figure 4.2: N -by-M switch-boxes for Building Hard Satisfiable Instances [7].

interconnected back-to-back (cascaded) to each other, and (2) benefit from the hardness of

switch-boxes while the power, performance, and area overhead remains reasonable.

Across all existing switching networks, self-routing logarithmic networks, log2N net-

works, provide configurable interconnection with less overhead compared to conventional

networks such as mesh or crossbar. There are numerous self-routing networks in this cate-

gory, such as banyan, baseline, shuffle, etc. Fig. 4.3 demonstrates a simple implementation

of a 8× 8 keyRB using the blocking shuffle network [77]. This keyRB is constructed using

small SwBs, where each SwB is built using MUXes/inverters. In each SwB, the outputs

can be an arbitrary permutation of the inputs. Also, as shown, we add key-configurable

inverters for each wire, allowing the outputs of each keyRB to be shuffled and negated

based on the key value. The keyRB has N inputs, and due to its structure, N is a power

of 2. The numbers of SwBs in a keyRB depend on the number of inputs as well as the

model of log2N networks. In all aforementioned blocking keyRB, the number of SwBs is

the same, i.e. N/2 ∗ logN , and the only difference between them is the topology of SwBs

interconnections.

4.2.2 Moving towards non-Blocking Logarithmic Networks

The previously discussed self-routing logarithmic networks are blocking networks as they

cannot propagate all permutations of their inputs to the outputs. In Section 4.4, we illus-

trate that the blocking feature of these networks, eliminate a large number of permutations

and significantly reduce the SAT hardness of these networks. This could change by building

a non-blocking network.

49

Keys

O
2i
+1

I 2
i

I 2
i+
1

key0

O
2i

key2

key1

1

0

1

0

1

0

1

0

SwB

SwB

SwB

SwB

00

01

02

03
SwB

SwB
20

23

SwB

SwB

SwB

SwB

10

11

12

RRBij

SwB
22

SwB
21

In
pu

ts

O
ut
pu

ts

13

Figure 4.3: Shuffle-based Blocking Logarithmic-based keyRB with N = 8.

According to [78], a non-blocking logarithmic network is characterized by LOGN,M,P .

In this equations N denotes the number of inputs/outputs, M is the number of extra

(cascaded) stages, and P indicates there are P − 1 additional copies vertically cascaded.

Exploration on N , M , and P shows that the minimum feasible values of P and M , which

makes the network strictly non-blocking, results in constructing a much larger network than

a blocking keyRB. As an instance, for N = 64, these values are M = 3 and P = 6. It means

that a LOGN,M,P , with N = 64, has more than 5× area overhead compared to a blocking

keyRB with the same input size, i.e. N = 64.

To substantially increase the permutations possibilities without incurring large area

overhead, we used the near non-blocking logarithmic network suggested in [78] for con-

structing the logarithmic-based key-programmable routing block (keyRB). This network is

able to generate not all, but almost all permutations, while it could be implemented using

a LOGN,log2(N)−2,1 configuration, meaning it has only log2(N)− 2 extra stages and no ad-

ditional copy. Fig. 4.4, demonstrates an example of such an almost non-blocking keyRB

with N = 8. As it can be seen, the topology of SwBs interconnections is different with

shuffle-based, shown in Fig. 4.3. This topology is a banyan-based interconnection that

matches with our proposed LOGN,log2(N)−2,1.

Since almost non-blocking keyRB has only log2(N) − 2 extra stages, its area/power

50

Keys

SwB

SwB

SwB

SwB

00

01

02

03
SwB

SwB
20

23

SwB

SwB

SwB

SwB

10

11

12
SwB

22

SwB
21

In
pu

ts

O
ut
pu

ts

13

SwB

SwB

SwB

SwB

30

31

32

33

Figure 4.4: Almost Non-Blocking Logarithmic-based KeyRB with size 8 (LOG8,1,1).

overhead is roughly 2x compared to a blocking keyRB with the same N . However, this

almost non-blocking keyRB is far more resistant against SAT attack compared to a blocking

network. For example, an N = 64 input non-blocking keyRB allow only 5 iterations of SAT

attack to be completed within 2×106 seconds, while the same size blocking network resist

the SAT attack for only ∼17 Seconds, or a much larger blocking network of N = 512 inputs

(4 times the number of inputs, 16 times the area) complete 6 iterations of SAT attack in

2×106 seconds.

4.2.3 Strongly Twisted KeyRB into LUT/Logic

The keyRB provides an interconnect locking scheme that can generate a SAT-hard instance

which significantly increases the execution time for each SAT iteration. However, to enhance

this strength, and especially to be resilient against other types of attacks, such as removal

attacks, we try to twist keyRB into the logic of the gates around it. For this purpose, we

suggest two methods. First, as was mentioned, we add key-configurable inverters within

keyRB. These inverters allow us to combine the keyRB with the logic of the gates leading

to its inputs. So, both logic and interconnect locking are embedded into the keyRB. For

instance, let us suppose that one of the inputs of keyRB is derived using an OR gate. Using

these inverters, we can change it to NOR, and configure the keyRB to generate its negate

51

on its corresponding output. These key-configurable inverters within keyRB allow us to

change the logic of the gates leading it. So, even removing keyRB and finding the correct

permutation provided by keyRB will not generate the correct functionality. Also, since

adding these inverters has no impact on simplification steps in DPLL, i.e. unit propagation

and purification, the clause to variable ratio generated by keyRB will not change.

Furthermore, we replace the gates preceding the keyRB with small spin-transfer-torque-

(STT)-based LUTs with the same input. Combining keyRB with LUTs provides a fully

programmable logic and routing blocks (PLRs) that bears a resemblance to FPGA archi-

tecture. From SAT attack perspective, since each LUT will be translated to MUXes, for a

LUT with u inputs, it adds up to u layer to the recursive DPLL tree. Moreover, since LUTs

are directly connected to the output of keyRB, these extra u layers will be added to the

large recursive DPLL tree of keyRB. Hence, by massively increasing the size of a recursive

DPLL tree of keyRB using small LUTs, PLR boosts the security of Full-Lock against SAT.

It should be noted that we use STT-based LUTs that are similar in functionality to

FPGAs, however, they provide significantly higher speed running at GHz frequency, near-

zero leakage power, high thermal stability, and highly integrative with CMOS [79]. Since,

each gate, located at the output of keyRB, will be replaced with a LUT with the same

input size, investigation on sizes of gates in different benchmarks such as ISCAS-85 and

MCNC, shows that the maximum fan-in size is 5. It means that the largest required LUT

has 5 inputs. Hence, using STT-based LUTs with a maximum size of 5 relatively has no

delay overhead compared to CMOS-based basic gates. Also, the power and area overhead is

considerably low in these LUTs with size less than 5. As shown in Fig. 4.5, LUTs with sizes

2, 3, 4, and 5, have negligible overhead compared to CMOS-based basic gates. Besides, the

size of all gates leading the keyRB can be decreased to be 2. For instance, an AND3 gate

can be changed to two AND2 while the output of one of them is an input for the second

one. Hence, the overhead of STT-LUT can be even lower while only LUTs with size 2 are

required.

52

N
or

m
al

iz
ed

N
or

m
al

iz
ed

N
or

m
al

iz
ed

A
re

a

Po
w

er

D
el

ay

Figure 4.5: Power, Delay, and Area of STT-LUT and Standard Cells in 28nm CMOS.

4.3 Inserting SAT-hard PLRs into Design

Using these PLRs provides a big advantage compared to other locking schemes. Since

inserting a PLR in a circuit provides a SAT-hard instance in the circuit, it is not required

to employ a specific insertion to enhance the strength of PLRs. However, due to the

topological structure of circuits, it may be beneficial to have an insertion policy. But, we

demonstrate that even using random insertion/replacement strategy for these PLRs creates

an extremely large recursive DPLL tree that makes the circuit resilient against SAT.

Additionally, in comparison with Cross-lock [5] that is a layout-based interconnect lock-

ing scheme, Full-Lock has no restriction on the selection of wires and logic gates to replace

them with PLRs. In Cross-lock, since they used high-density cone-based selection strate-

gies, such as k-cut and wire-cut, to decrease the possibility of using removal attack, it has a

restriction in selecting the wires to insert the crossbar. However, since we strongly twisted

the keyRB into the logic of the gates leading and preceding the selected wires, even remov-

ing the keyRB using a removal attack does not generate correct functionality. Hence, there

is no limitation for wire selection in Full-Lock.

Fig. 4.6 demonstrates two simple examples that how Full-Lock inserts PLRs in the

circuit. As shown in Fig. 4.6(a) and (b), the selected gates are highlighted in red, i.e. g14,

53

g15

g14

g16

g5g1

g12
g2

g13g10
g3

g4

g6

g9

g7

g8

g11
g17

(a) Gate-level of Original Circuit

LUT22

LUT11

LUT31
g1

g7

g12
g2

g13
g10

g3

g4

LUT21

g6

g9

g8 keyRB

g11

g5

gnew

PLR

(b) PLR with Acyclic Structure

g1

g15

g12

g14

LUT22

LUT21

LUT11

LUT31

key
RB

g3

g4
g10

g13
g16

g6

g11
g8

g17

PLR

(c) PLR with Cyclic Structure

Figure 4.6: An Example of Routing-based Locking using Full-Lock Example.

g15, g16, and g17. Since these gates have no impact on each other, replacing them with

PLR, including keyRB and LUTs, does not generate any cycle in the design. However, Fig.

4.6(a) and (c) show that replacing the gates, which are highlighted in blue, i.e. g2, g5, g7,

and g9, generates cycle in the circuit. Additionally, some of the leading gates of keyRB is

changed (negated), all highlighted in purple, i.e. g5, g12, gnew in Fig. 4.6(b), and g1, g6

in Fig. 4.6(c), which shows that how twisting leading gates into keyRB is working. For

instance, g5 in Fig. 4.6(a), an XOR, has been replaced with g5 in Fig. 4.6(b), an XNOR. In

this case, keyRB will recover the functionality of this gate using key-configurable inverters

that are embedded into keyRB.

54

4.4 Robustness/Overhead Evaluation of Full-Lock

To show the efficiency of Full-lock, it is evaluated using different SAT-based attacks, in-

cluding SAT for acyclic [1, 3], cycSAT for cyclic [41], and AppSAT for approximate-based

[38, 39], all implemented in C++, and were run on a Dell PowerEdge R620 equipped with

Intel Xeon E5-2670 2.50GHz and 64GB of RAM. Assuming that the circuits are cycle-

free before locking, since routing-based locking techniques might add cycles into the circuit

(combinational cycles), a cyclic-based SAT attack is required (cycSAT I in this case) to be

applied on Full-Lock.

4.4.1 Blocking vs. almost non-Blocking KeyRB

As was mentioned previously, Since not all but almost all permutations can be generated

using non-blocking keyRB, LOGN,log2(N)−2,1, it is far more resistant against SAT attack

compared to a blocking network, especially with less power/performance/area overhead.

We evaluate a shuffle-based keyRB and an almost non-blocking with different sizes using

SAT. As it can be seen in Table 4.2, increasing the keyRB size, exponentially increases SAT

execution time for either blocking or almost non-blocking. However, the SAT execution

time is at least one order of magnitude higher in almost non-blocking. In addition, SAT is

not able to break almost non-blocking keyRB with a size larger than N = 64, however, for

blocking keyRB, it is easily broken for all sizes less than N = 512.

Since keyRBs is the main part of PLRs as a SAT-hard instance that have medium length

clauses while translated to CNF, the execution time of each iteration is significantly high,

particularly for large sizes that cannot be broken using SAT. For blocking keyRB with size

N = 512 and non-blocking with size N = 64, after 2×106 Seconds, the number of completed

iterations in SAT is only 7 and 5, respectively. It means that, on average, each iteration at

least takes 2.8× 105 Seconds in blocking and 4× 105 in almost non-blocking keyRBs.

Table 7.6 demonstrates power/area/delay of blocking and almost non-blocking keyRBs

for different sizes using Synopsys generic 32nm educational libraries. As it can be seen, the

55

Table 4.2: SAT Execution Time on shuffle-based Blocking KeyRBs.

KeyRB Size (N) 4 8 16 32 64 128 256 512

Shuffle-based Blocking KeyRB

SAT Iterations 7 8 9 13 15 27 28 TO

SAT Execution Time (Seconds) 0.01 0.04 0.22 1.22 17.4 154.7 2329.3 TO

Almost non-Blocking KeyRB

SAT Iterations 14 18 25 32 TO TO TO TO

SAT Execution Time (Seconds) 0.01 0.15 2.35 79.18 TO TO TO TO

TO: Timeout = 2× 106 Seconds

Table 4.3: Overhead/SAT-Resiliency of Blocking vs. almost non-Blocking KeyRBs.

keyRB Area (um2) Power (nW) Delay (ns) SAT-Resilient

Shuffle (N = 32) 10.1 448.1 0.82 �

LOG32,3,1 17.8 2137.5 0.98 �

Shuffle (N = 64) 22.8 1071.1 0.89 �

LOG64,4,1 38.6 8451.4 1.06 �

Shuffle (N = 128) 50.8 2503.6 0.93 �

Shuffle (N = 256) 113.6 5791.4 0.99 �

Shuffle (N = 512) 254.3 2308 1.04 �

incurred overhead by the smallest almost non-blocking keyRB, which is resilient against

SAT (N = 64), is approximately one-third of the smallest SAT-resilient blocking keyRB

(N = 512) in terms of power consumption. Additionally, the overhead imposed by keyRB

is significantly low compared to area and power of even small-scale benchmark circuits.

4.4.2 Full-Lock Security against Various Attacks

As was mentioned previously, in Full-Lock, the gates and their driving wires will be selected

randomly to be replaced with PLRs. After selecting the required wires and their leading

gates, Full-lock replaces them with PLR. Furthermore, the logic of some gates leading the

selected wires will be negated. One or few PLR(s) can be added into the design based on

the design criteria in terms of power/area/delay or security.

56

Table 4.4: Execution Time of the SAT Attack on Full-Lock.

Circuit 16×16 32×32

1 2 3 4 1 2 3

c432 28.8 1506.8 TO TO TO TO TO
c499 40.7 786.2 TO TO TO TO TO
c880 34.1 847.6 TO TO TO TO TO
c1355 64.9 1158.3 TO TO TO TO TO
c1908 45.5 1022.6 TO TO TO TO TO
c2670 79.8 1766.2 11791.5 184993.6 TO TO TO
c3540 67.2 429.6 7924.7 TO TO TO TO
c5315 66.8 887.2 5748.1 TO TO TO TO
c7552 90.3 1109.4 7638.6 66808.2 273367.4 TO TO

apex2 38.4 633.1 TO TO TO TO TO
apex4 40.1 348.9 3670.9 18539.1 58467.6 380449.5 TO

i4 55.8 1604.8 TO TO TO TO TO
i7 84.6 1330.8 TO TO TO TO TO

TO: Timeout = 2× 106 Seconds

Security Against SAT-based Attack

Since random insertion is implemented for inserting PLRs in Full-Lock, it may generate

cycle into the design. So, cycSAT has been used instead of SAT to support having potential

cycles in locked circuits. In addition, to check resiliency against approximate-based attack,

the cycSAT is enabled using AppSAT to extract the approximate key and corresponding

error rate. Table 4.4 shows cycSAT execution time while different numbers of PLRs with

different sizes have been inserted into ISCAS-85 and MCNC benchmark circuits. As it can

be seen, for all circuits, having three PLRs contain 32×32 keyRBs makes all locked circuit

resistant against SAT. However, for each benchmark circuit, even smaller PLRs can break

cycSAT.

In order to show the SAT-hardness of PLRs, we explore different sizes/numbers of PLRs

to find the smallest size and the smallest number of PLRs (the lowest power/area overhead)

that is required to provide resiliency against SAT. Table 4.5 shows the best solution of Full-

Lock in terms of area/power/delay for each benchmark circuits. As shown, in all benchmark

circuits, Full-Lock needs smaller/fewer PLRs compared to the required numbers of crossbar

in Cross-Lock. As an instance, in apex4, only having two PLRs with a 32×32 keyRB and

57

Table 4.5: PLRs Size in SAT-resilient Full-Lock compared to Cross-Lock.

Circuit # Gates # I/Os Full-Lock Cross-Lock [5]

c432 160 36/7 2×16×16 + 1×8×8 1×32×36
c499 202 41/32 2×16×16 + 1×8×8 1×32×36
c880 386 60/26 2×16×16 + 1×8×8 1×32×36
c1355 546 41/32 2×16×16 + 1×8×8 2×32×36
c1908 880 33/25 3×16×16 2×32×36
c2670 1193 157/64 1×32×32 3×32×36
c3540 1669 50/22 3×16×16 + 1×8×8 3×32×36
c5315 2307 178/123 3×16×16 + 2×8×8 3×32×36
c7552 3512 206/107 1×32×32 + 1×16×16 3×32×36

apex2 610 39/3 2×16×16 + 1×8×8 2×32×36
apex4 5360 10/19 2×32×32 + 1×8×8 11×32×36

i4 338 192/6 2×16×16 + 1×8×8 1×32×36
i7 1315 199/67 2×16×16 + 2×8×8 3×32×36

another PLR with a 8×8 keyRB can break SAT while its timeout is set to 2×106 Seconds.

However, for the same circuit, Cross-Lock inserts 11 32×36 crossbars to make it resilient

against SAT.

In addition, in order to show that PLRs are SAT-hard instances that significantly in-

crease the number (M) and computational complexity (TAvg
DPLL) of DPLL calls in each SAT

iteration, we calculate the average clauses to variables ratio using MiniSAT for different

logic locking schemes during the attack. As it can be seen in Fig. 4.7, clauses to variables

ratio in Full-Lock is 3.77. However, for all other methods this value is much lower. Across

all logic locking schemes, LUT-Lock and Cross-Lock have higher clauses to variables ratio.

Since LUT-Lock uses key-programmable LUTs for locking, the translated CNF is MUX-

based. However, since they have no back-to-back connection, the depth of MUX tree is low,

which results in reducing the value of this ratio. The only technique with a close clauses to

variables ratio is Cross-Lock, which is an interconnect locking with a tree of MUX. However,

this ratio is almost 4 (3.77) in Full-Lock.

58

1

1.5

2

2.5

3

3.5

4

C
la

us
es

/V
ar

ia
bl

es

RL
L

FL
L

SL
L

SA
R

Lo
ck

A
nt

iS
A

T

TT
Lo

ck

LU
T-

Lo
ck

SF
LL

C
ro

ss
-L

oc
k

Fu
ll-

Lo
ck

Figure 4.7: Average C2V Ratio for Different Logic Locking Schemes.

Security Against Removal Attack

As was mentioned previously, Cross-lock [5] as a layout-based interconnect locking scheme,

used high-density cone-based selection strategies, such as k-cut and wire-cut, to decrease

the possibility of using removal attack, which restricts in selecting the wires to insert the

crossbar. However, since the logic of the gates leading each keyRB can be negated, even

having the possibility of removing keyRB, and finding the functionality of LUTs does not

produce correct functionality, which shows that Full-Lock has no vulnerability against re-

moval attacks.

Security Against Algebraic Attack

keyRB can be expressed as an affine transformation function of the data input X, of the

form y = A ·X+B, where A is an N×N matrix and B is an N×1 vector, with all elements

dependent on the key input. Although recovering A and B is not equivalent to finding the

key input, it may enable the successful attack of keyRB. Since Full-Lock replaces the the

preceding gates of selected wires with LUTs, it cannot be transformed to an affine function.

So, it is safe against SAT-based algebraic attacks.

59

Chapter 5: CP&SAT: A New Attack on Routing-based

Locking

As we discussed in Section 4.1, Full-Lock as a symmetric routing-based locking technique

shows how the direction of adding difficulties to the SAT attack could be changed (becoming

deeper) via deepening the DPLL tree. This deepening could be achieved if the logic locking

technique forces a relationship between the number of clauses and the number of variables

to maximize the penalty associated with incorrect variable assignment symmetrically across

the search tree. As we discussed in Section 4.1, with having a deeper DPLL tree, the runtime

formula of the SAT attack could be re-written as follows:

TAttack =

N∑

i=1

(ti + TDPLL(Φi)) �
N∑

i=1

M∑

j=1

(TAvg
DPLL) (5.1)

In Chapter 4, we demonstrated that the main aim of this technique as a symmetric

routing locking technique is to extremely increase the number (M) and the computational

complexity (TAvg
DPLL) of recursive calls in DPLL algorithm, which occurs when the DPLL

tree is extremely deep/large enough.

5.1 Canonical Prune-and-SAT Attack

As of today, there is still no successful attack on routing-based locking techniques. Each

iteration of SAT solving on routing-based locked circuits faces an ultra-deep and complex

DPLL tree. Hence, the SAT attack cannot even find a satisfying assignment(s) to com-

plete the attack process. However, in this Chapter, we propose canonical prune-and-SAT

(CP&SAT) attack on the routing-based locking techniques. In the CP&SAT, we first model

60

the key-programmable routing blocks (keyRB(s)) as numerical bound problems, and then

a bounded variable addition (BVA) algorithm has been engaged as a pre-processing step to

reduce the size and complexity of numerical bound problems. By using the BVA algorithm,

the CNF corresponded to each keyRB will be reduced dramatically in terms of the number

of clauses. Then, the re-encoded CNF will be solved using the traditional SAT attack.

5.2 Threat Model in CP&SAT Attack

The CP&SAT attack will be performed based on the conventional threat model for logic

locking [1, 2, 15], where:

1. The adversary has access to the successfully reverse-engineered yet locked netlist.

Hence, (s)he has all the necessary information about the netlist, such as the locking

technique, the key gates, the key inputs, etc. Specifically in routing locking, the

location of the keyRBs could be determined by the adversary.

2. The adversary has access to an activated/unlocked chip, in which the correct key is

embedded into a secure tpNVM.

3. With having scan chain access on the activated/unlocked chip, the adversary can

apply the SAT attack on each combinational part of the circuit, independently.

5.3 Attack Flow

The proposed CP&SAT attack is composed of three main steps: (1) modeling the keyRB(s)

to be presented as a numerical bound problem, where for each output of keyRB, a sub-

CNF will be extracted from the CNF of the whole circuit; (2) re-encoding the sub-CNF

corresponded to each keyRB output using bounded variable addition (BVA) algorithm; (3)

merging the updated (reduced) sub-CNFs into the CNF of the whole circuit, running the

traditional SAT attack, and match the key for the correct routing.

61

5.3.1 Modeling keyRB as a Numerical Bound Problem

Extensive analysis on the application of Boolean satisfiability in detailed routing constraints

[7, 76, 80–82] shows that the SAT solvers can consider simultaneously the routability con-

straints for all nets, leading to potentially faster convergence to a solution. However, this

only happens when an appropriate encoding approach has been chosen to represent routing

constraints as a SAT problem before solving. Many studies have investigated and compared

different encoding approaches [76,81]. Using the key observations provided in these studies,

in the first step of the proposed CP&SAT attack, we encode the sub-CNF related to each

keyRB output using one-layer linear encoding. To describe the logic-equivalent model, for

each output of a n× n keyRB, the one-layer linear encoding replaces the original sub-CNF

with a CNF describing a one-layer n− to− 1 multiplexer (MUX) controlled by the one-hot

key. More formally, for a n×n keyRB, the sub-CNF of each keyRB output, which is encoded

using one-layer linear encoding, will be as follows:

∧

M⊆1,...,n,
|M|=1

(∨

i∈M
xiki

)
(5.2)

In which xi denotes the wire that is connected to the ith input of the keyRB, and ki

denotes the one-hot key that connects the ith input of the keyRB to the corresponded keyRB

output when it is 1, and M is the search space for each keyRB output. The Eq. 5.2 is

the most special case of encoding of numerical bounds [83]. The numerical bound problems

could be denoted as ≤ p(x1, x2, ..., xn), meaning that among n variables p variables are

allowed to be assigned true. The most special case of numerical bounds is when p = 1,

called at-most-1 constraint, that is applied whenever a finite domain is encoded, and the

Eq. 5.2 is one form of at-most-1 constraint encoding. According to this encoding definition,

in the first step of the proposed CP&SAT attack, we first extract the sub-CNF related to

each output of keyRB(s). Then, we use one-layer linear encoding for the extracted sub-CNF

to be encoded as a numerical bound problem. Then, in the second step as described in the

62

next section, we use the BVA to re-encode and reduce the size of each sub-CNF for each

output of the keyRB.

5.3.2 SAT Reduction using Bounded Variable Addition

As an integral part of SAT solving, resolution and variable elimination (VE) are two rules

that would be applied on CNF before running the SAT solver to reduce the size of vari-

ables/literals [84–86]. The VE, as a proof procedure for CNF formulas, faces an exponential

space complexity. Hence, to make it practical for usage, the VE must be bounded [85, 86].

In bounded VE (BVE) a variable x could be eliminated only if |S| ≤ |Sx ∪ Sx̄|, in which

Sx(Sx̄) denotes a set containing clauses all contain x(x̄), S is obtained from Eq. 5.3, and

|S| ≤ |Sx ∪ Sx̄| means that the resulting CNF
(
((F \ (Sx ∪ Sx̄)) ∪ S

)
1 will contain no more

than the original CNF (F) clauses.

S = Sx ⊗ Sx̄ = {C1 ⊗ C2|C1 ∈ Sx, C2 ∈ Sx̄, C1 ⊗ C2 �= Tautology} (5.3)

In CP&SAT attack, we engage the complementary version of BVE, called bounded vari-

able addition (BVA) [83], in which either a new variable will be added to the CNF or a

variable will be substituted. Similar to BVE, the same bounding concept must be used in

BVA to decrease the size of the CNF [83]. As the simplest example of the BVA, by adding a

new variable x to the following formula F with 6 clauses, the re-encoded formula F ′ would

have one clause less.

F = (a ∨ c) ∧ (a ∨ d) ∧ (a ∨ e) ∧ (b ∨ c) ∧ (b ∨ d) ∧ (b ∨ e) (5.4)

F ′ = (a ∨ x) ∧ (b ∨ x) ∧ (c ∨ x̄) ∧ (d ∨ x̄) ∧ (e ∨ x̄) (5.5)

In the BVA, the number of possibilities to add or substitute a variable is extremely large.

1((F \ (Sx ∪ Sx̄)) ∪ S means that, in CNF F , both sets of clauses, Sx and Sx̄, that contain x and x̄,
respectively, must be replaced with clauses of set S that are built using Eq. 5.3.

63

Hence, to make it practical for any CNF (F), the BVA algorithm must be constructed based

on two steps:

1. Replaceable Matching : Creating a pair of sets consisting of a set of literals (SETL)

and a set of clauses (SETC) such that for all {l, c} ∈ {SETL, SETC}, the clauses

(c \ {SETL}) ∪ {l} are either in CNF (F) or tautological.

2. matching-to-clauses: Using a method that creates the sets Sx = {(l ∨ x) | l ∈ SETL}
and Sx̄ = {(c \ SETL) ∪ {x̄} | c ∈ SETC}, and removes all clauses (c \ {SETL) ∪ {l},
and replaces them with Sx ∪ Sx̄.

By applying these two steps on F (Eq. 5.4), SETL = {a, b} and SETC = {(a ∨ c), (a ∨
d), (a ∨ e)}, F ′ could be generated using matching-to-clauses with one clause less as shown

in Eq. 5.5. Now, by using this 2-step BVA algorithm, any CNF formula could be reduced

provably in size (the number) of clauses while the reduced CNF is also provably equivalent

with the original CNF.

Theorem 1. For two sets as replaceable matching {SETL, SETC} as for the CNF
formula F , F ′ as the reduced of F could be constructed by adding a Boolean variable such

that (1) F ′ is logically equivalent to F and (2) F ′ contains |F ′|+|SETC |+|SETL|−|SETC |×
|SETL| clauses if none of the resolvents is a tautology.

Proof. For two sets as replaceable matching {SETL, SETC}, we can construct F ′ as

follows: All clauses of (c \ {SETL) ∪ {l} must be removed from F and must be replaced

with Sx ∪ Sx̄ that are obtained using the matching-to-clauses construction method. The

number of removed clauses is |SETL| × |SETC |, while the number of added clauses is

|SETL|+ |SETC | proving (2). Since the BVA is the complement of BVE, by applying BVE

on x in F ′, it re-produces (reverse) F , and BVE preserves logical equivalence proving (1).

�

One of the best fitting applications of the BVA algorithm is re-encoding cardinality con-

straints [7,80,83,87], where it is necessary to encode numerical bounds (≤ k(x1, x2, ..., xp)).

64

As discussed previously, the one-layer linear encoding formulates each keyRB output as the

most special case of cardinality constraints (k = 1), called at-most-1 constraint. Compared

to naive encoding for at-most-1 constraint in which the number of clauses is n.(n + 1)/2,

by using BVA algorithm, the number of clauses would be reduced to ∼ 3n [83].

It is worth mentioning that numerous studies are explaining how cardinality constraints

(numerical bounds) could be encoded efficiently [88–92]. Also, a few SAT solvers handle

cardinality constraints by itself, such as Sat4J [93] or clasp [94]; however, since these solvers

do not extract cardinality constraints from the formula, compared to the direct re-encoding

using BVA, their efficiency is extremely low. Furthermore, the strongest SAT solvers tend to

not support native cardinality constraints, such as MiniSAT [95] that was supporting native

cardinality constraints up to version 1.12. In CP&SAT attack, we employ the simpleBVA

proposed in [83] as a pre-processing step before running the SAT attack and after one-layer

linear encoding. The simpleBVA will be used for each sub-CNF, corresponded to each

keyRB output, and encoded using one-layer linear encoding, separately.

5.3.3 SAT Execution and Key Matching

After the reduction using the BVA algorithm, we update the CNF of the whole circuit

using the reduced sub-CNFs corresponded to keyRB(s) outputs. Now, it is time to run the

traditional SAT attack on the updated CNF. Since each keyRB might add cycles into the

design, as mentioned in Section 5.2, we need to use a cyclic-based SAT attack. Assuming

that the circuits are acyclic, the CycSAT-I will be used.

As was mentioned previously, in one-layer linear encoding, the actual keys of each keyRB

will be replaced with a set of one-hot key controlling the MUXes (one-layer encoding).

Hence, after breaking the updated CNF, the SAT attack will recover the values of the one-

hot keys. These one-hot keys determine the correct wiring/interconnection for the MUXes.

So, a matching step is required, in which we need to calculate the actual key for each keyRB

that establishes the same (correct) wiring/interconnection built by one-hot key in MUXes.

65

Table 5.1: The Effectiveness of the BVA Pre-Processing Step on Routing Blocks.

Instance
Original BVA Pre-processed

#Variables #Clauses Solve #Variables #Clauses pre+Solve

keyRB-4 271 418 0.02 428 202 0.01+0.22
keyRB-8 875 1606 0.45 1278 718 0.01+0.36
keyRB-12 1544 3084 2.48 2188 1288 0.01+0.54
keyRB-16 2419 4750 5.42 3982 2184 0.01+0.82
keyRB-24 3372 7502 54.82 4618 3452 0.02+1.64
keyRB-32 6178 12510 194.8 8892 7258 0.02+2.22
keyRB-48 9891 18614 Timeout 12672 9918 0.04+3.92
keyRB-64 15043 31182 Timeout 23818 14772 0.04+12.22

Timeout = 105 Seconds ≈ 1 day

5.4 CP&SAT Attack Effectiveness on Routing Locking

To evaluate our proposed CP&SAT attack, we engage well-known ISCAS-89 and ITC-99

combinational circuits locked using Full-Lock23. We sweep the size of keyRBs to show

the efficiency of the BVA algorithm on routing-based locking. All the experiments are

implemented using Python/C++ and have been carried out on many Dell PowerEdge R620

equipped with Intel Xeon E5-2670 2.50GHz and 64GB of RAM.

5.4.1 The Efficiency of the BVA

To show how the BVA algorithm efficiently reduces the CNF size of the routing-based locked

circuits, Table 5.1 shows the rate of reduction that is more than a factor of two. The BVA

adds/substitute the variables to decrease the number of clauses. As shown, the number of

variables increases (by up to 2x); however, the number of clauses that play an important

role in determining the complexity of the CNF is decreased by more than 2x. Hence, the

BVA-based pre-processed CNFs are far easier for the SAT solver to be solved.

Furthermore, as can be seen in Table 5.1, increasing the size of the keyRBs does not in-

crease the SAT runtime after BVA pre-processing exponentially (most likely quadratically).

2Since Cross-Lock is a weaker version of Full-Lock (It has no configurable inverters), we only report the
attack results on circuits locked by Full-Lock.

3Since all ISCAS-89 and ITC-99 are sequential, we apply all techniques on combinational parts of these
circuits, and we assume that all FFs are accesible to be read/written for both SAT and CP&SAT attack.

66

Table 5.2: SAT Attack vs. CP&SAT Attack on Full-Lock.

Circuit #Gates #I/O

Traditional SAT proposed canonical proposed canonical
Attack prune&SAT prune&SAT

(CycSAT-I) (with inverters) (detached inverters)

keyRB-16 (16×16) keyRB-16 keyRB-16

2 3 4 2 3 4 2 3 4

b15 ∼8.5K 485/519 1507.5 TO TO 486.4 2581.5 TO 44.8 75.9 319.8
b14 ∼9.5K 277/299 788.3 TO TO 329.7 1688.8 TO 34.8 88.9 416.6

s35932 ∼16K 1763/2048 856.6 TO TO 643.8 5238.1 TO 76.4 147.9 407.4
s38417 ∼18K 1464/1731 1187.4 TO TO 482.5 2037.9 TO 58.2 100.7 366.3
b20 ∼19.5K 522/512 1096.8 TO TO 537.8 3507.9 TO 70.8 129.4 411.2
b21 ∼20K 522/512 1832.4 13283 TO 984.8 8207.3 TO 134.4 207.8 550.1
b17 ∼30K 1452/1512 508.2 8401.7 TO 306.8 6095.4 TO 81.7 137.4 463.8
b22 ∼30K 767/757 924.6 6491.5 TO 508.2 5538.4 TO 68.5 99.1 390.5
b18 ∼110K 3357/3343 1283.7 9208.1 TO 581.9 6327.8 TO 91.6 162.7 472.2

Timeout (TO) = 105 Seconds ≈ 1 day

Since we cannot infinitely increase the size of the keyRB (due to overhead and limitation

of candidate selection), we report the results on keyRB with size up to 64×64.

5.4.2 CP&SAT Attack on Full-Lock

To show the success of our proposed CP&SAT attack on routing-based locking, in Table 5.2,

we illustrate the runtime of the SAT (CycSAT-I) and the CP&SAT attack on circuits locked

by Full-Lock. As shown, in all cases, after inserting four keyRB-16 (16×16), the traditional

SAT attack fails to break the locked circuits. However, when we apply the CP&SAT attack,

all circuits locked by four keyRB-16 are broken in less than 10 minutes. When we assume

that the configurable inverters of SwBs in Full-Lock are in place, the BVA algorithm within

the CP&SAT attack does not provide a significant advantage. As shown in Table 5.2, we

observed that this new attack also fails to break circuits locked with four keyRB-16 while

inverters are intact. However, as described previously, we detach the inverters in Full-Lock

by fixating the key values of all layers of inverters (disable the inversion) except the last

layer. When the inverters are detached, the BVA could efficiently reduce the size of the

locked circuit allowing us to break the locking within few minutes.

67

Chapter 6: Interlock: Moving towards Intercorrelated Logic

and Routing Locking

In the previous Chapter, we described how prior routing-based locking techniques could

be broken using the proposed CP&SAT. It calls into a question that ”How routing locking

could be still used while it is not vulnerable to the BVA algorithm?”. In this Chapter, we

answer this question by proposing a countermeasure that improves the resiliency of this

category of locking techniques against CP&SAT attack.

6.1 Truly-Twisted Logic & Routing Locking

To still get the benefit of routing locking, and to combat against the efficiency of BVA-based

re-encoding on routing-based locking, we truly twist the keyRB with logic gates, meaning

that a part of the actual logic gates will be also embedded into the keyRB.

In the CP&SAT attack, we explained how a keyRB could be modeled as multiple nu-

merical bound problems before the BVA re-encoding. So, the idea is that when the routing-

based locked circuit could not be translated (converted) to a numerical bound problem,

the BVA is no longer applicable to it. For this purpose, inspired by the logarithmic (per-

mutation) networks proposed in Full-Lock, we employ the same architecture for keyRBs in

InterLock; however, for each layer of that hierarchy, we will add a Boolean function (logic

gate). Fig. 6.1 shows our new keyRB architecture that must be used for routing-based

locking. Compared to Full-Lock, for each switch-box (SwB), the configurable inverters are

removed, and f1 and f2 are added that could be any of 2-input basic logic gates, i.e. NAND,

NOR, XNOR, AND, OR, XOR. Also, for each SwB, we add extra inputs (exI) as one of

the inputs of 2-input logic gates. For each SwB with 4 inputs (Ii, Ij , exIi, exIj), output Oi

68

Keys

SwB

SwB

SwB

SwB

00

01

02

03
SwB

SwB
20

23

SwB

SwB

SwB

SwB

10

11

12
SwB

22

SwB
21

In
pu

ts

O
ut
pu

ts

13

SwB

SwB

SwB

SwB

30

31

32

33

0
1

1
0

0
1

0
1

SwBijI i
I j

O
j

O
i

(a) key-programmable Routing Block (KeyRB) in Full-Lock

Keys

SwB

SwB
20

23

SwB

SwB

SwB

SwB

10

11

12
SwB

22

SwB
21

In
pu

ts

O
ut
pu

ts

13

SwB

SwB

SwB

SwB

30

31

32

33

SwB

SwB

00

01

SwB
02

SwB
03

I i
I j

f1

f2

ex
I i

ex
I j

0
1

1
0

0
1

1
0

O
j

O
i

(b) key-programmable Routing Block (KeyRB) in InterLock

Figure 6.1: Full-Lock vs. InterLock.

could be {Ii, Ij , f1(Ii, exIi), and f1(Ij , exIi)}, and output Oj could be {Ii, Ij , f2(Ii, exIj),
and f2(Ij , exIj)}.

6.1.1 Different Possibilities for f1 and f2

In this section, we aim to explain (1) ”Why the usage of f1 and f2 gates in the SwBs improves

the resiliency of Interlock (compared to full-lock in which only routing and inversion is

implemented)?”, and (2) ”how the selection of the logic for f1 and f2 affects its resiliency”.

To answer these two questions, we investigate five different scenarios: f1s and f2s could be

(1) still inverters with no extra input (similar to Full-Lock), (2) all NAND (AND), (3) all

NOR (OR), (4) all XNOR (XOR), and (5) selected randomly (any arbitrary 2-input gate).

Table 6.1 shows the runtime of the SAT attack (CycSAT-I) on an locked ISCAS-85 c7552

circuit while only one keyRB is embedded into the design based on these five scenarios. The

first and the most promising observation is that, compared to Full-Lock (when the logic

69

Table 6.1: The SAT Attack Runtime on KeyRBs with Different Logic.

Size
f1,2 Full-Lock InterLock InterLock InterLock InterLock

NOT all NAND all NOR all XNOR Random

keyRB-4 0.02 0.192 0.136 0.718 0.232

keyRB-8 0.437 3.083 5.905 2062 19.79

keyRB-16 5.413 522.1 558.2 Timeout 62332

keyRB-32 195.1 Timeout Timeout Timeout Timeout

keyRB-64 Timeout Timeout Timeout Timeout Timeout

Timeout = 105 Seconds ≈ 1 day

layer is still inverter), for the same-size keyRB, the InterLock (all scenarios) builds a much

harder SAT problem. As shown, in Full-Lock, the smallest single keyRB that breaks the

SAT attack is a 64 × 64 keyRB (keyRB-64). However, in InterLock, it is even smaller

(keyRB-16 or keyRB-32). Furthermore, we observe that, while all f1s and f2s are XNOR

(or XOR), keyRB-16 is enough; however, for other gate types (NAND, NOR, AND, OR),

the smallest resilient is keyRB-32.

6.1.2 Embedding Actual Timing Paths into KeyRBs

This is a key observation that when all f1s and f2s are XNOR (XOR), the SAT resiliency

of the keyRB is extremely higher. But, as shown in Fig. 6.1, similar to Full-lock that

engaged inverters to handle the toggling of some gates preceding the keyRB, in InterLock,

these extra gates must become a part of the actual logic gates to avoid far exceeding the

overhead. However, it is less likely to find a set of paths that only consist of XNOR (XOR).

Hence, if we select the gate of each SwB based on an actual gate in a selected timing path, all

f1s and f2s will become the actual gates of the design. It guarantees that, in InterLock, only

MUXes could be considered as the overhead, however, in Full-Lock, all inversions except

one layer are surplus as an extra overhead. Hence, although InterLock adds extra logic, it

even reduces the overhead compared to the Full-Lock.

To embed part(s) of the logic gates into each keyRB, we need a strategy to select the

gates from the design. For the selection strategy, when the number of timing paths in

70

each keyRB is m, m timing paths must be selected1 For 2log2(m) − 2 layers of SwBs in

permutation-based network2, the length of the timing path must be equal with 2log2(m)−2.

Hence, among the candidate timing paths, we select paths (or cut the paths) with length

2log2(m) − 2. For example, Fig. 6.2 shows how an actual timing path will be embedded

into a keyRB in InterLock. For a 8× 8 keyRB, we have 2log2(m)− 2 = 2(3)− 2 = 4 layers

of SwBs. So, the timing paths must be the length of 4, and Fig. 6.2(a) shows a part of the

timing path with a length of 4 that is selected to be embedded into the keyRB. Fig. 6.2(b)

shows how this timing path is embedded into the keyRB. By using this approach, we embed

m timing paths into a m×m keyRB allowing us to utilize the logic gates of each keyRB by

100%. Fig. 6.2(c) shows the top view of 8 different paths that are embedded into a keyRB

while an arbitrary key has determined the connection between keyRB I/O.

6.2 Twisted Logic in Interlock vs. Full-Lock

In Full-Lock, we showed that by adding a layer of configurable inverters into each SwB,

the logic could be twisted with the keyRB. For example, Fig. 4.6(a) and 4.6(b) show that

gates g5 and g12 are converted to its negated model ({XOR, XNOR} → {XNOR, XOR},
and the inversion is handled within keyRB. Hence, to handle the inversion inside each

keyRB, a layer of inversion is added into each SwB. However, such usage of the sequence of

key-programmable inversion does not elevate the security of Full-Lock, and the KeyRB of

Full-Lock could be simplified. More precisely, to attack the Full-lock, one could remove all

inverters from the KeyRB (from all layers), and just add one layer of the key-programmable

inverters at the end to reduce the key size while still maintaining the same function. This

decouples the inversion from the routing block. Hence, in Full-Lock, the logic (inversion)

and routing are not truly twisted. This allows us to simplify the KeyRB of Full-Lock before

applying our CP&SAT attack to give maximum efficiency to the BVA. However, InterLock

1For a permutation-based m×m network, there are m different timing paths.
2The number of layers depends on the topology and being a blocking/non-blocking network. In this work,

we use 2log2(m)−2 layers of SwBs for m×m network that builds a near non-blocking permutation network.

71

g7

g4

g0 g8

g11

g12

g5

g6

g3

g9 g10
g1

g2

w0

e0
w1

e1 w2

e2

w3

e3
w4

(a) A Timing Path Selected to be Embedded into KeyRB

f2
1
0

1
0

w
g5

0
1e

0
1

f2

0
1

1
0

0
1

1
0

w1

e1

f2

0
1

1
0

g7

w2

e2 g8

1
0 f2

0
1

0
1

1
0

w3

e3

1
0

0
1 g11

w40

0

K0=0 0 0 0 X kn=00 0 0

(b) Inserting the Selected Timing Path into a KeyRB

Keys

SwB

SwB
20

23

SwB

SwB

SwB

SwB

10

11

12
SwB

22

K
ey

RB
 In

pu
ts

13

SwB

SwB

SwB

SwB

30

31

32

33

SwB

SwB

00

01

SwB
02

SwB
03

w0

e0 e1 e2 e3
w4

SwB
12

SwB

00

w1 w2 w3

20

SwB23SwB13

01

wB
22 32

wB
02

SwB SwSwSw

SwB

Sw

03
Sw

wBSwB

30

SwB
2111

SwB
31

SwSwB

SwB
33

w

Sw

10

wBwB

SwB
21

SwB

K
ey

RB
 O

ut
pu

ts
(c) 100% Utilization: m Timing Paths in a m×m KeyRB

Figure 6.2: Timing Path Embedding into KeyRB.

does not allow such simplification as f1 and f2 functions in each SwB are 2-input logic

gates, and each input is (or could be considered as a) random and independent input.

6.3 Area/Delay Overhead Exploration

At first glance, embedding routing-based locking incurs prohibited area/delay overhead.

However, both Full-Lock and Cross-Lock engages some techniques to reduce the overhead

to a reasonable ratio. Full-Lock shows how LUT insertion succeeding each keyRB allows

72

them to use a smaller size of the keyRB to guarantee the resiliency at lower overhead.

Unlike Full-lock that is implemented at gate-level and based on static CMOS technology,

Cross-Lock engages anti-fuse-based elements called programmable via (PVIA) elements to

minimize the overhead ratio of each keyRB. To implement InterLock in this thesis, we exam-

ine both CMOS-based and PVIA-based implementation of keyRBs. Since MUXes are the

only gate types that are used (overhead) for InterLock implementation, for CMOS-based im-

plementation, amongst static logic, pass-transistor, or transmission gates, as demonstrated

in Fig. 6.3(a)-6.3(d), we engage transmission-gates (Tgate) for MUXes based on tree-like

structure [96, 97] that incur much lower overhead compared to static CMOS implementa-

tion. Also, as shown in Fig. 6.3(e), by using one-time-programmable elements (called PVIA

elements in Cross-Lock [5]), we investigate the overhead of InterLock while implemented us-

ing anti-fuse-based (PVIA-based) 2:1 MUX. Similar to Tgate CMOS technology, we would

use the tree-like structure to build keyRBs using PVIA elements.

Apart from these two technologies, in this thesis, we assess the efficiency of another

technology, called Three-Independent-Gate Field Effect Transistors (TIGFET), for imple-

menting MUXes in InterLock. In TIGFET technology, each transistor has three independent

gates, and any two CMOS transistors could be modeled using only one TIGFET transistors,

compacting the structure and achieving area as well as energy reduction, particularly for

MUXes. Fig. 6.3(f) shows a 2:1 TIGFET multiplexer, and comparing with static CMOS

each driving path consists of only one TIGFET transistors.

As shown in Fig. 6.4(a), Three terminal gates in TIGFET transistors called Control

Gate (CG), Polarity Gate at Drain (PGD), and Polarity Gate at Source (PGS). Based on

the value of these terminals, as illustrated in Fig. 6.4(b, c), one could build 2 series nFETs

or 2-series pFETs. Since MUXes could be built using tristate inverters, in Fig. 6.4(d),

we show how a tristate inverter could be built using TIGFET transistors. Compared to

CMOS-based tristate inverter, the number of transistors is reduced by 50% in the TIGFET

version. When m tristate TIGFET inverters are cascaded, a m : 1 MUX is built (e.g.

2:1 TIGFET MUX in Fig. 6.4(e)). It is worth mentioning that since the tristate inverter

73

s=0

s=1

in0

in1

out

s

(a) Symbol

in0
GND

s

VDD

s

in1

out

(b) PT CMOS

s

s

s

in0

in1

out

(c) TGate

out

in1

s

in0

s

in1in0

ss

(d) Static

anti-fuse

in0
s=0

s=1
in1

out

(e) Fuse

out
s
0

in0
s
1

in1
s
0

in0

in

1

0

0

1

s1
1

(f) TIGFET

Figure 6.3: Different Multiplexer Implementation Possibilities.

PGD
CG
PGS

D

S

(a) Transistor

1
G
G

1

0

G1

G2

LVT

HVT

2 series nFETs

2
1

(b) 2 Series nFETs

0
G
G

1

0

G2

G1

HVT

LVT

2 series pFETs

2
1

(c) 2 Series pFETs

out

in

in

1
0
s

s

(d) Tristate INV

out
s
0

in0
s
1

in1
s
0

in0

in
1

0

0

1

s1
1

(e) 2:1 MUX

Figure 6.4: 2:1 TIGFET MUX Implementation.

is used for each path of the multiplexer, the control signal (MUX selector) needs to be

decoded. Hence, since all MUXes are controlled by the keys, and since we only use 2:1

MUXes, decoding selectors doubles the number of selectors (key inputs) in this technology.

In our experimental results, we compare the implementation and the overhead of all three

technologies.

6.4 Robustness/Overhead Evaluation of InterLock

To evaluate the proposed InterLock, as a countermeasure against CP&SAT attack, we

implement keyRBs from Fig. 6.1(b) on the same benchmark circuits to acquire locked

74

circuits. We apply both the SAT (CycSAT-I) and our proposed CP&SAT attack on locked

circuits by InterLock. All the experiments are implemented using Python/C++ and have

been carried out on many Dell PowerEdge R620 equipped with Intel Xeon E5-2670 2.50GHz

and 64GB of RAM. We evaluate the overhead of InterLock in three different technologies:

(1) Transmission-Gate (Tgate) CMOS using Synopsys generic 32nm library, (2) PVIA-based

MUXes that are manually added between the M2 and M3 layers as physical-only cells, and

(3) Silicon NanoWire TIGFETs (TIG SiNWFETs 32nm) modeled using Verilog-A [98,99].

6.4.1 Disabling the BVA using InterLock

To show how InterLock could be used as a countermeasure against the Canonical prune

and SAT attack, we insert different numbers of the keyRBs from Fig. 6.1(b) into the

benchmark circuits with different sizes. For the insertion of the keyRBs two strategies have

been considered/applied in InterLock: (1) To minimize the performance degradation (delay

overhead), the timing paths that are selected as the candidates to be embedded into keyRBs

must be one of the highest positive slack timing paths, and (2) as shown in Table 6.1, since

having more XNORs (XORs) increase the resilience of the locked circuits considerably,

amongst the candidates, we select those paths that have more XNORs (XORs).

Table 6.2 shows the runtime of both the SAT and the canonical prune and SAT attack

on circuits locked by InterLock. In both cases, since the locked circuit is possibly cyclic,

for the SAT solving part, CycSAT-I has been used. As shown, for almost all cases, after

inserting only two keyRB-16, both attacks fail to break the locked circuit.

Unlike previous routing-based locking techniques, BVA does not provide any advantage

as a pre-processing step showing that truly twisting logic into the keyRBs guarantees the

resistance against this new attack. Furthermore, compared to Full-Lock and Cross-Lock,

twisting logic into keyRB allows us to engage smaller sizes of keyRB to guarantee the

resiliency (keyRB-32/16 → keyRB-16/8). Shrinking the size of the keyRB with guaranteed

security in InterLock allows the designer to considerably reduce area and delay overhead.

To illustrate that InterLock elevate the complexity of locked circuit, in Table 6.3, we

75

Table 6.2: The SAT Attack vs. CP&SAT on InterLock.

Circuit

Traditional SAT proposed canonical
Attack (CycSAT-I) prune&SAT

keyRB-8 keyRB-16 keyRB-8 keyRB-16

1 2 3 1 2 1 2 3 1 2

b15 98.5 3807.8 TO 74127.8 TO 85.3 3207.8 TO 69328.5 TO
b14 120.8 4229.1 TO 67203.2 TO 105.1 4028.5 TO 64328.6 TO

s35932 291.7 7126.4 TO 59372.1 TO 260.7 6992.1 TO 55221.4 TO
s38584 267.9 7624.4 TO 71375.5 TO 233.8 7168.5 TO 63298.8 TO
b20 284.4 11275.8 TO 58348.6 TO 186.7 8673.8 TO 55373.3 TO
b21 738.4 TO TO TO TO 672.5 TO TO TO TO
b17 320.4 6221.3 TO 77023.3 TO 271.9 5882.2 TO 74623.7 TO
b22 376.4 5209.9 TO 51042.4 TO 126.7 3862.7 TO 37621.2 TO
b18 701.9 32841.5 TO TO TO 630.3 30067.7 TO TO TO

Table 6.3: The SAT Attack Iterations on Routing Blocks.

Model
Insance

keyRB-4 keyRB-8 keyRB-16 keyRB-32 keyRB-64

Full-Lock 3-5 4-6 8-10 10-12 (5) Timeout

InterLock 8-12 16-22 30-33 (8) Timeout (9) Timeout

compare the average number of iterations (N in Eq. 4.2) in Full-Lock with that of InterLock.

Since we still get the benefit of routing-based locking, the number (M in Eq. 4.2) and the

computational complexity (TAvg
DPLL in Eq. 4.2) of recursive calls in DPLL algorithm is still

extremely high in InterLock. However, as illustrated in Table 6.3, the average number of

required iterations is increased by ∼3x-4x. This increase shows that MN × TAvg
DPLL (from

Eq. 4.2) is extremely higher in InterLock deepening the logic locking problem significantly.

6.4.2 Elevated Security at Lower Overhead

To perform a proof-of-concept physical design flow, we implement the keyRB in Inter-

Lock using three different 32nm technology: (1) Transmission-Gate (Tgate) CMOS, (2)

PVIA-based MUXes, and (3) TIGFET SiNWFETs using Verilog-A. Table 6.4 shows the

area/power/delay overhead of locked circuits via three keyRB-8, which is resilient against

76

Table 6.4: InterLock Overhead in: Tgate, Anti-fuse, and TIGFET.

Circuit
Original

3×keyRB-8

Tgate CMOS PVIA Anti-Fuse TIGFET

a p d a p d a p d a p d
(μm2) (μW) (ns) % % % % % % % % %

b15 5292.7 327.6 1.23 34.5% 27.8% 12.9% 27.6% 21.9% 7.1% 24.5% 20.1% 6.4%
b14 5707.9 423.9 1.55 22.6% 17.5% 14.6% 19.5% 16.2% 8.8% 18.6% 15.4 6.8%

s35932 9283.1 729.8 1.68 30.7% 22.8% 10.9% 27.3% 20.7% 6.5% 24.8% 18.7% 5.1%
s38584 11003.2 806.6 1.77 24.1% 19.1% 19.7% 22.4% 17.3% 10.7% 20.7% 16.7% 8.3%
b20 11752.5 755.6 2.34 19.8% 15.5% 12.8% 17.6% 13.9% 7.1% 15.9% 13.4% 5.6%
b21 13007.1 922.7 2.21 16.2% 12.7% 10.7% 14.3% 11.2% 5.7% 12.9% 10.4% 4.5%
b17 15573.3 1245.1 3.58 8.9% 7.4% 7.6% 7.8% 6.4% 4.2% 7.2% 5.9% 3.4%
b22 16582.7 1319.5 3.18 6.4% 4.9% 8.5% 5.9% 4.1% 4.3% 4.8% 3.9% 3.5%
b18 57626.9 4834.1 3.81 3.7% 2.1% 3.2% 3.5% 1.8% 1.9% 2.7% 1.4% 1.6%

the SAT and the cnonical prune-and-SAT attack. Compared to Full-Lock which is a gate-

level implementation of MUXes using static CMOS, in InterLock, Tgate-based implementa-

tion at transistor level would considerably reduce the area/delay overhead. In many cases it

was expected to observe that PVIA-based MUXes could achieve the most optimum results;

However, since there is no automatic flow in existing EDA tools for optimization of a large

number of PVIA-based elements, the insertion has to be done manually. To do it manually,

we inserted the PVIAs in a grid and push the standard cells away from this PVIA grid to

successfully perform placement, and due to fine-granularity of MUXes in the circuit (small

units and a large amount of usage), and since the number of PVIAs that must be used is a

lot, in many cases we faced DRC violations leading us to use much lower utilization rate.

Based on our evaluation of these three different technologies, as shown in Table 6.4,

TIGFET-based keyRB could bring more efficiency compared to Tgate CMOS and PVIA-

based implementation. As shown, on average, TIGFET could reduce the area/delay over-

head by up to 20%/56% compared to Tgate-based CMOS keyRB. However, for two im-

portant reasons, in all three technologies, on average, the overhead is less than 10%, which

is completely acceptable: (1) The required number/size of keyRBs is less/smaller in In-

terLock, and (2) The actual timing paths selected for embedding are paths with highest

positive slack time.

77

Chapter 7: SCRAMBLE: Logic and Routing Locking for

Scan/Sequential Locking

Although the SAT attack (and many of its derivatives) only works on combinational circuits

[22], having access to the DFT structure. i.e. scan chain pins, allows an adversary to apply

the SAT attack, or its derivatives, on each combinational logic part of sequential circuits

separately. Accordingly, the adversary can target sequential circuits using the SAT attack.

Hence, few recent studies investigated the possibility of restricting the scan chain using

scan chain locking/blocking [48, 50, 54, 56]. Also, considering that the access to the scan

chain is restricted/locked, several studies investigated the possibility of applying the logic

locking to the whole sequential circuits [100, 101], particularly FSMs [100–105]. However,

further research revealed that new attacks could be formulated for these locking solutions

even while access to the scan chain is restricted/locked.

In case of FSM locking [102–104, 106], a new attack, without oracle access, denoted as

2-stage attacks on FSM (2-stage) was formulated [100, 105]. Also, in case of sequential

(datapath) or scan chain locking [48, 54, 56, 100, 101], a new breed of SAT-based attacks,

referred as unrolling-based SAT attack (UB-SAT) as well as SAT attacks integrated

with bounded-model-checking (BMC) was formulated [60–62], challenging the validity of

these solutions.

To defend against UB-SAT or BMC, and to break 2-stage attacks on FSMs, in this Chap-

ter, we introduce a new state, connectivity and routing augmentation model for building

logic encryption (SCRAMBLE). SCRAMBLE is designed to (a) add and maximize the false

transitions within state transition graph (STG) when FSM is targeted for locking, (b) add

and maximize the false connections between datapath flip flops (FFs) when sequential dat-

apath locking is targeted, and (c) add and maximize the false sequences’ possibilities in

78

scan FFs (SFFs) when the scan chain is targeted. SCRAMBLE, with 2 variants, can resist

both 2-stage attacks on FSM as well as UB-SAT or BMC attacks on sequential datapath

or scan chain locking.

7.1 FSM, Sequential Datapath, and Scan Chain Locking

In FSM locking [102–104,106], few extra sets (modes) of states are added to the original state

transition graph (STG), such as locking/authentication mode states or black holes. The

traversal sequence of locking/authentication modes is the locking/authentication key, and

a correct traversal that reaches the initial state of the original STG unlocks the FSM. Also,

the output generated by the correct traversal of authentication states serves as a watermark.

In addition to these groups, a set of studies focuses on locking the STG without adding

any extra state. However, the complexity and overhead (area) of this approach is higher

compared to other schemes [100].

In sequential datapath locking or scan chain locking, XOR- or MUX-based locking has

been added into timing paths or the scan chain. For instance, in scan chain locking solutions,

the scan chain has been blocked or locked to prevent the scan chain loading and readout

(shift/load) for protecting the logic against the SAT attacks. For example, the Encrypt

Flip-Flop solution [48] adds key-programmable MUXes on the outputs of SFFs enabling

the negation of the SFFs when the scan chain locking key is incorrect.

7.2 Attacks on FSM, Sequential, and Scan Chain Locking

To assess the strength of FSM locking solutions, many studies evaluated the possibility of

deploying 2-stage attacks, as an oracle-less attack, on locked FSMs [100, 105]. The 2-stage

attacks on FSM are composed of: (1) (stage 1): topological analysis (described in line 2-

13 of Algorithm 4), which is a detection algorithm to find FFs that are responsible for storing

the state values (separating them from datapath FFs), and (stage 2): functional analysis

79

Algorithm 4 2-stage on FSM Locking [100,105]

1: function FSM Extract(Circuit CL)

2: SFF ← []; � State Flip Flops

3: RS ← classify(FFs); � Classifying FFs into Register Sets
4: for each set ∈ RS do
5: set ← set - notSCC(set); � Keeps Strongly Connected Components

6: if is splittable(set) then

7: RS ← {RS - set} ∪ split(set);

8: CLFP ← find feedback circuits(CL, Reg Sets);
9: for each set ∈ RS do

10: set ← set - notInfDep(set); � Keeps Intersected Influence/Dependence

11: set ← set - InputIndependt(set); � Check Control Metrics

12: update(CLFP);
13: SFF ← SFF ∪ set ;
14: S0 ← initial state(state regs); SQ ← []; � State Queue

15: SQ ← SQ ∪ S0; STF ← []; � State Transition Table

16: while SQ �= [] do

17: state ← SQ.dequeue();
18: for each DIP do � DIP found by SAT
19: if eval(state regs, DIP, state) /∈ SQ then

20: SQ.enqueue(nx state);

21: STF ← STF ∪ {state, DIP, nx state, PO}
return SQ, S0, STF ; � States, Initial, Transition Func.

(described in line 14-21 of Algorithm 4) that finds the STG based on the list of FFs found

in (stage 1). In such an attack, the topological analysis, which is derived from [107], iden-

tifies FFs whose input contains a combinational feedback path from their output. Then, it

reduces the set of possible state FFs by (a) grouping the FFs controlled by the same set

of signals, and (b) finding strongly connected components (SCC) using Tarjan’s algorithm

[100, 105, 108, 109]. In the functional analysis stage (stage 2), the attacker attempts to

extract/re-draw the STG. This is done by first attempting to find the initial state, and then

identifying the reachable states by creating a reduced binary decision diagram (BDD) or

using a SAT solver. After re-drawing STG by using a 2-stage attack, in most FSM locking

solutions, the adversary can readily distinguish the original part of the FSM from either

extra added states or extra state transitions, leading to extracting the original FSM. Fig.

7.1 illustrates four examples of FSM locking. As shown, the original part of the FSM is

easily distinguishable from extra locked states in these solutions.

In UB-SAT or BMC [60–62] on the other hand, as a much stronger attack that is

applicable to all FSM locking, sequential datapath locking, and scan chain locking, the

80

S2A

S1AS0A

S0O S1O

S2O
start

S3N
S5N

S4N

S2N
S0N

S1N

(a) HARPOON [102]

B4
0

B4
1 B4

2

S5N

S2N

S1N
S0N

S3N

S4N

B3
0

B3
1 B3

2

B0
0

B0
1 B0

2

B5
0

B5
1 B5

2

B2
0

B2
1 B2

2

B1
0

B1
1 B1

2

start

(b) Dynamic State Deflection [104]

B0
2

B0
3

B0
1

B0
4

S3N
S5N

S4N

S2N
S0N

S1N

SzO

SuO

SxO

SwO

SvO

SyO

(c) Hardware Active Metering [103]

S5O

S4OS3O

S0O S1O

start

CW

CW

S3N

S2O

S5N

S2N
S0N

S1N

S4N

(d) Interlocking Obfuscation [106]

Figure 7.1: FSM Obfuscation Solutions.

adversary does not need to have access to the scan chain. In these attacks, the adversary

unrolls the reverse-engineered netlist n times and then creates a double circuit similar to the

SAT attack. Then, the adversary uses a SAT solver to find a sequence of n inputs and two

key values such that the output of the meter (double) circuit detects a mismatch. Such an

input sequence is denoted as a discriminating input sequence (DIS). The attacker increases

the unrolling depth (n) until a termination condition is met. The overall flow of this breed

of attacks is captured in Algorithm 5. By using this structure, the adversary can target

and attack any sequential logic locking solution even while the access to the scan chain

is restricted. Also, as an enhanced version of this group of attacks, KC2 [62], accelerates

the original UB-SAT [60] by using some additional simplification steps. Some of the added

features include (a) integrating BMC with SAT, (b) model conversion to BDD to simplify

81

the circuit representation, and (c) constraint simplification using key-sweeping. Similarly,

the ScanSAT [61] is another unrolling-based SAT attack that only focuses on scan chain

locking solutions, which is applicable to both statically and dynamically scan chain locking

solutions.

Algorithm 5 UB-SAT on Sequential/Scan Locking [60–62]

1: function UB SAT (Circuit C)
2: b ← initial boundary ;
3: Terminated ← False;
4: MCcircuit ← C(X, K1, Y1) ∧ C(X, K2, Y2) ∧ (Y1 �= Y2);
5: while !Terminated do
6: while (XDIS , K1, K2) ← BMC(MCcircuit, b) = T do

7: Yf ← CBlackBox(XDI);

8: MCcircuit =∧ C(XDIS , K1, Yf) ∧ C(XDIS , K2, Yf);

9: if not BMC(MCcircuit, b) then � UC
10: Terminated = True;
11: else if not BMC(MCcomb circuit, b) then � CE
12: Terminated = True;
13: else if UMC (MCcircuit, b) then � UMC
14: Terminated = True;
15: else
16: b ← b + boundary step;

17: KeyGenCircuit = DIVC ∧ (K1 = K2)

18: Key ← BMC(emphKeyGenCircuit, b)

7.3 Proposed Scheme: SCRAMBLE

In SCRAMBLE, we engage the term augmentation to refer to the process illustrated in Fig.

7.2. Augmentation in SCRAMBLE adds false state transitions in case of FSM locking, or

adds false FF-to-FF timing paths in case of sequential datapath locking, or adds false scan

chain sequence in case of scan chain locking. SCRAMBLE is proposed in two variants: (1)

The first variant is connectivity SCRAMBLE (SCRAMBLE-C) that hides the connectivity

to the targeted FFs using logarithmic switching network. (2) The second variant is logic

SCRAMBLE (SCRAMBLE-L) that hides the logic by implementing part(s) of the logic

within memory. The SCRAMBLE-C could be used for locking either FSMs, sequential

datapath, or scan chains, to protect the locked design against all UB-SAT and BMC attacks,

such as KC2 or ScanSAT. SCRAMBLE-L, on the other hand, is mostly applicable to FSMs

82

000
001

010

101 011100

110

111

(a) for FSM Locking

C
om

bi
na

ti
on

al

Lo
gi

c
Pa

rt
s

FF

FF

FF

FF

FF

FF

FF

FF

(b) for Sequential Locking

SFF

Combinational
Logic Parts

SI
SFF

SO
SFF SFF

(c) for Scan Chain Locking

Figure 7.2: Augmentation Model in SCRAMBLE

to provide resilience against 2-stage attacks [100,105].

7.3.1 SCRAMBLE-C

The overall structure of SCRAMBLE-C has been illustrated in Fig. 7.3. In SCRAMBLE-

C, the connectivity between the targeted FFs and their fan-in-cones (FiCs) (combinational

logic cones) is locked. Hence, before connecting the output of corresponding FiCs to the

FFs, a key-programmable routing block (KeyRB) has been inserted to control the connec-

tions. For instance, in Fig. 7.3, a KeyRB with size 8 has been inserted before a combination

of FSM FFs and datapath FFs. Similar to Full-Lock and InterLock, the KeyRB, which must

be inserted between the targeted FFs and their corresponding FiCs, is a key-programmable

switching network that is built using self-routing logarithmic (log2(N)) networks [18, 78].

As discussed previously, the log2(N) networks, compared to the existing and well-known

switching networks, such as mesh, crossbar, etc., incur less area overhead. Also, we demon-

strated that due to its cascading structure, log2(N) networks could improve the robustness

against the SAT attack.

As shown in Fig. 7.3, the KeyRB is built using key-programmable 2x2 switch-boxes

(SwBs). However, as shown in this example, in this case, one layer of the MUXes that

were designated for inversion in Full-Lock has been omitted, and to add the capability of

83

FiC
s 1

PIs

POs

I0
I1
I2
I3

O0

On-3

On-1

O0

O1

O2

O3

O4

O5

O6

O7

SwB

SwB

SwB

SwB

SwB

SwB

SwB

SwB

SwB

SwB

SwB

I0

I1

I2

I3

I4

I5

I6

I7

SwB

SwB

SwB

SwB

k0 k1 k2 k3

k4 k5 k6 k7

k8 k9 k10 k11

k12 k13 k14 k15

Datapath FFs
Controller FFs
(FSM or IC state)

KeyRB

KeyRB with one layer inversion

to/from FiCs 3, 4, 5, ...
wi wj wk wl

On-2

O1

O2

 FiC
s 2

 FiC
s 2

 FiC
s 2

 FiC
s 2

FiC
s 2

In
ve

rs
io

n
La

ye
r:

 o
ut

 =
 in

 k

ey

SwB

swij

kx

wi

wj

w'i

w'j

Figure 7.3: Augmentation using shuffle-based KeyRB in SCRAMBLE-C.

logic programmability, we only add one extra key-controlled (XOR) inversion layer, as the

final layer of KeyRB. Based on its key, a SwB saves or changes the order of inputs while

connecting them to output pins. Also, the connection between the layers of sws is fixed.

This inter-layer connection determines the topology of the log2(N) network. For instance,

the topology of the sample KeyRB demonstrated in Fig. 7.3 is shuffle topology.

In SCRAMBLE-C, the KeyRB must be inserted before the targeted FFs. When FSM

locking or sequential datapath locking is targeted, during either the physical design or after

DFT synthesis step, the KeyRB is placed on wires that connect the outputs of FiCs to

the data-in (DI) pin of targeted FSM FFs or datapath FFs. When scan chain locking is

targeted, after DFT synthesis, the KeyRB is placed in scan network before the scan-in (SI)

pin of the targeted SFFs.

Although engaging self-routing log2(N) networks provides a low-overhead routing lock-

ing solution, similar to Full-Lock, we have to address a few issues even while it targets

sequential circuits: (1) What is the best size for the log2(N) KeyRB to make the sequential

circuit robust against the UB-SAT attack or 2-stage attacks on FSMs; and (2) How we can

build more permutations using log2(N) in FSM, sequential, and datapath locking. Hence,

84

the number of wires ((N) as the inputs of KeyRB must be small enough to make the net-

work overhead reasonable; and large enough to make the number of permutation enough.

It raises two questions: (1) which N FFs must be selected? and (2) How we can minimize

N?

Selection of N FFs

The selection of FFs (to insert KeyRB before them) in SCRAMBLE-C could significantly

impact its locking strength, particularly in FSM locking. For example, let us consider the

engaging of SCRAMBLE-C for an FSM presented in Fig. 7.4(b), which is generated using

binary encoding of 4 FFs. In this example, if we select two least significant bits (LSB)

FFs to insert a KeyRB with size 2 before them (circuit of Fig. 7.4(a)), the locked FSM is

demonstrated in Fig. 7.4(c). Fig. 7.4(a) shows how the false transitions in Fig. 7.4(c) have

been generated for some of the original transitions. As shown in 7.4(c), when 2 LSBs are

selected, a limited number of false transitions are added, and only one extra (unreachable)

state is visited. However, if we select two most significant bits (MSB) FFs, it will visit all

extra states and generates a large number of false transitions demonstrated in Fig. 7.4(d).

Since 2-stage attacks are applicable to FSM locking, maximizing false transitions as well

as extra states makes SCRAMBLE-C more robust against this attack. Accordingly, being

aware of the encoding style of FSM will impact its locking strength. For instance, in binary

encoding, a synthesis tool usually encodes the states from low to high (0 to 2N−1). Hence,

using the N FFs representing the MSB of state value results in the inclusion of the largest

number of previously unreachable states and false transitions in the locked FSM.

Reducing N by making KeyRBs near non-blocking

As previously discussed, the implementation of blocking log2(N) network revealed that even

a 256-input KeyRB could be broken by the SAT attack in less than an hour. Hence, to

address the blocking nature of KeyRB and to resist against UB-SAT or BMC attacks (with

a small KeyRB), we expand the log2(N) network towards non-blocking via adding extra

85

Controller FFs
(FSM or IC state)

Ox

Oy

Oz

FiC

q3

q2

q1

q0

0000 » 0001

» 0000
» 0010
» 0011

Original State
Transition

false State Transition

two LSbs (q1q0) are selected
for Augmentation.

Per each transition, few
fake Transitions are added.

q3q2q1q0
0010 » 0001

» 0000
» 0010
» 0011

» 0000
» 0010
» 0011

» 0000
» 0010
» 0011

Transition 1 (T1):

T2:

T3:
0001 » 0011

0001 » 0001

11

0

current state is the same, but only
one bit difference in the next state.

Same false transitions with T2!

T4:

0010 » 0011
» 0000
» 0010
» 0011

T5:

0011 » 0000
» 0001
» 0010
» 0011

T6:

0011 » 0100
» 0101
» 0110
» 0111

T7:

0011 » 0101
» 0100
» 0110
» 0111

T8:

(a) FSM circuit and transitions generation

“q3q2q1q0”»

0000
0001

0010

0011

0100

0101

0110

0111
1000

1001

1010

1011

1100

1101

1110

1111

(b) the original FSM

“q3q2q1q0”»

0000
0001

0010

0011

0100

0101

0110

0111
1000

1001

1010

1011

1100

1101

1110

1111

(c) 2 LSBs to SCRAMBLE-C

0001

0011

0100

0101

0110

0111
1000

1001

1010

1011

1100

1101

1110

1111

“q3q2q1q0”»
0000

0010

(d) 3 LSBs to SCRAMBLE-C

Figure 7.4: Using SCRAMBLE-C for FSM Locking.

(cascaded) stages. To move close enough towards non-blocking nature without incurring

large area overhead, we used the ”near non-blocking” structure [78]. In near non-blocking,

not all but almost all permutations are feasible, while it could be implemented using a

LOG2(N, log2(N)−2, 1), meaning it has onlyM = log2(N)−2 extra stages and no additional

copy (P = 1). The KeyRB depicted in Fig. 7.3 is an example of a near non-blocking

KeyRB for 8 inputs. Our implementation shows that a 32-input near non-blocking network

(LOG2(32, 3, 1)) is far stronger against the SAT attack compared to a 256-input blocking

network log2(256), while it is 8x smaller.

86

7.3.2 SCRAMBLE-L

In SCRAMBLE-L, which is proposed for FSM locking against 2-stage attacks, the logic

located before the targeted FFs is locked using in-memory computation. As shown in Fig.

7.5, in SCRAMBLE-L, a small part of the combinational logic in the FiCs of the targeted

FFs is replaced with a one-cycle read memory, such as SRAM. As an example, FiC2 and

FiC4 are replaced with equivalent memories. The content of the memories must provide

the same output compared to that of FiC2 and FiC4 while the triggering input is the

same. Hence, the truth table corresponded to those FiCs must be generated and stored

in the memories. The memories would be initialized during boot-up from a tamper-proof

NVM which serves as the key storage. To avoid additional delay incurred by memories, the

selection of FFs must be done with respect to their available timing slack.

FiC
s 1

FiC
s 2

Datapath FFs Controller FFs
(FSM or IC state)Ii

Ij
Ik
Il

Ox

Oy

Oz

Logic 3FiCs 3
FiCs4

Iw Ix Iy Iz

Oi

Oj

(a)

FiC
s 1

Datapath FFs Controller FFs
(FSM or IC state)Ii

Ij
Ik
Il

Ox

Oy

Oz

Logic 3FiCs 3
Iw Ix Iy Iz

Oi

Oj

Mem 1

Mem 2

(b)

Figure 7.5: Sequential Circuits Locking using SCRAMBLE-L.

SCRAMBLE-L makes 2-stage attacks almost impractical. Considering that the ad-

versary has no access to the contents of memories after reverse engineering, there is no

equivalent logic for the memories, and the BDD- or SAT-based functional analysis (stage

2) cannot be accomplished on the locked circuit. Also, similar to Fig. 7.5(b), if the designer

selects a combination of datapath FFs and FSM FFs, the adversary cannot distinguish

87

FFs

i
input

s

output
o

s

s

current
state

next
state

ST logic

output
 logic

(a) Traditional

Memory
2i+s×(o+s)

FFs

i
input

s

output

o

o

s

s

current
state

next
state

(b) Memory-based

i’

Memory
2i’+s×(o+s)

FFs

i
input

s

output

o

o

s

s

current
state

next
stateMUXes

(c) Memory-based
with Input Multiplex-
ing 1

e

i’

Memory
2i’+s×(o+s)

FFs

i
input

s

output

o

o

s

s

current
state

next
state

MUXes

e

(d) Memory-based with
Input Multiplexing 2

Figure 7.6: Different FSM Implementation Models.

between them when deploying topological analysis (stage 1) of the 2-stage attack, resulting

in the inclusion of an extremely large number of non-FSM FFs in the candidate FSM FFs.

Hence, none of the existing 2-stage attacks can be applied to SCRAMBLE-L.

The big challenge with the SCRAMBLE-L is the size of the memory for implementing the

selected FiCs. However, since SCRAMBLE-L is proposed for FSM locking, this problem

could be easily addressed by engaging the FSM input multiplexing (FSMIM) techniques

[110]. In this technique, considering that the next state and the outputs of the FSM

are a function of a subset of the inputs (not all), a set of multiplexers has been used to

select only those signals that affect the next state and the output. Hence, the designer is

able to minimize the number of inputs to the memories (as address width), resulting in a

significant decrease in the size of memory. The main difference between traditional FSM

implementation, memory-based FSM, and FSMIM has shown in Fig. 7.6.

In FSMIM, multiplexers could be controlled using two different strategies: (1) using the

value of the current state, (2) using code-words stored in the memory. The first option is

more efficient in terms of memory size reduction; however, the second method has better

efficiency in reducing the multiplexers complexity. Hence, the first option has been used in

88

Table 7.1: Simplification Ratio of Input Multiplexing (FSMIM).

FSM
Required Memory Size and Additional MUXes

Traditional Input MUXing Input MUXing + State Reduce

SizeKb SizeKb MUX Reduction SizeKb MUX Reduction

s510 435,500 5.5 14, 5 ∼99.9% 2.5 14, 7 ∼99.9%

s820 195,000 255 5, 4, 3, 2 ∼99.9% 38 7, 6, 4, 4, 2, 2. 2 ∼99.9%

s832 200,000 262.5 5, 4, 3, 2 ∼99.9% 69 5, 4, 4, 4, 2 ∼99.9%

s1488 408,000 110,500 2, 2 73% 16,000 4, 4, 2, 2, 2 92.5%

s1494 408,000 110,500 2, 2 73% 16,000 4, 4, 2, 2, 2 92.5%

Table 7.2: The Effectiveness of SCRAMBLE in FSM/Sequential/Scan Obfuscation.

Variants SCRAMBLE-C SCRAMBLE-L

Attacks 2-stage UB-SAT or BMC 2-stage UB-SAT or BMC

FSM � � � �
Sequential Datapath N/A � N/A �∗

Scan-chain N/A � N/A �∗

∗: Requires large augmentation model incurring area overhead.

SCRAMBLE-L to minimize the area overhead of the memories. Our evaluation in Table 7.1

illustrates the effectiveness of FSMIM when applied to the ISCAS-89 benchmarks, resulting

in memory size reduction above 90%.

7.4 LUT-based Remapping of SCRAMBLE

Table 7.2 shows the effectiveness of each variant of SCRAMBLE against 2-stage and UB-

SAT or BMC attacks. Although the main aim of SCRAMBLE-C is to protect the design

against UB-SAT and BMC, it also breaks 2-stage attacks. Similar to SCRAMBLE-L, if we

use a combination of both datapath FFs and FSM FFs as input to SCRAMBLE-C (Similar

to Fig. 7.3), topological analysis (stage 1) of 2-stage attack cannot detect the correct set of

FSM FFs. Therefore, the functional analysis (stage 2) has to generate the STG using an

incorrect set of FFs (extremely larger set), resulting in a significant increase in the attack

89

10-2 10-1 100 101 102 103 104 105 106

5 bits
6 bits

7 bits
8 bits
9 bits

10 bits
11 bits
12 bits
13 bits

Address Line » 14 bits

4 bits
3 bits
2 bits SAT Execution Time

Address Line Width

Exponential
Regression
Equation

Figure 7.7: SAT-based Memory Modeling for Different Address Width.

time with respect to the number of additional (datapath) FFs included in the set. Also, the

extracted STG is constructed using a combination of datapath FFs and FSM FFs, which

leads to an incorrect STG, and the adversary is not able to extract the original FSM from

the extracted STG.

Although SCRAMBLE-L protects the design against 2-stage attacks by hiding the logic

within memory, the adversary can generate the equivalent logic of the memory (X input

(address width) and Y outputs (word size)) by replacing it with Y of X-input LUTs, which

is a fully configurable logic, and then the SAT attack could be invoked on the LUT-based

remapped model. However, increasing the input size of the LUTs exponentially increases the

execution time of BDD-based or SAT-based attacks. Fig. 7.7 shows that by increasing the

address width (from 2 bits to 14 bits), when we replace the memory with the same size LUTs,

SAT execution time increases exponentially. In addition, due to the unrolling structure of

UB-SAT or BMC, these LUTs must be replicated per each iteration (per each unrolling),

which makes them almost unresolvable by SAT-driven attacks. We demonstrate that UB-

SAT or BMC cannot reveal the correct functionality of a design even while SCRAMBLE-L

has been used with only one 256 words (address width is 8) memory.

7.5 Robustness Evaluation

We evaluated the strength of SCRAMBLE on two sets of benchmark circuits: (1) sequen-

tial ISCAS-89 benchmark circuits and (2) few well-known small-scale ASICs to large-scale

90

Table 7.3: Attack Execution Time on SCRAMBLE-C.

Attack Time (second) Datapath Locking

scanSAT BMC PPA overhead of

KeyRB Size KeyRB Size 16-input KeyRB

Circuit #FF #Gate In/Out 8 16 32 8 16 32 Power Delay Area

s1196 18 529 14/14 2029 � N/A 1109 � N/A 26.3% 36.5% 24.1%
s1423 74 657 17/5 3441 � � 438.6 9356 � 25.8% 28.1% 23%
s5378 179 2779 35/49 6406 � � 6921 � � 8.9% 18.5% 7.1%
s9234 211 5597 36/39 1801 � � 1548 � � 5.1% 14.8% 3.9%
s15850 534 9772 77/150 5882 � � 7097 � � 3.1% 12.9% 2.4%
s35932 1728 16065 35/320 8604 � � 7110 � � 1.1% 6.5% 0.9%
s38584 1426 19253 38/304 4072 � � 6287 � � 1.2% 5.7% 0.9%

� : Timeout = 106 Seconds

microprocessors. We have deployed a 2-stage attack according to Algorithm 4 to assess the

strength of SCRAMBLE in FSM locking. For sequential datapath locking, we deployed an

integrated BMC with SAT [60] accelerated using stages described in KC2 [62]. Finally, to

assess the effectiveness of scan chain locking, we implemented the ScanSAT as described in

[61]. All attacks are carried on a Dell PowerEdgeR620 with Intel Xeon E5-2670 2.50GHz

and 64GB of RAM.

Table 7.3 captures the execution time of scanSAT [61] (for scan locking) and accelerated

BMC [60, 62] (for sequential datapath locking) while SCRAMBLE-C is used on ISCAS-89

benchmarks. The maximum runtime of attack is set to 106 seconds, and attack will time-

out (� in tables) if attack time exceeds the limit. Note that in some cases, the number

of required FFs is limited. For instance, in s1196, with 18 FFs, the maximum possible

size of KeyRB is only 16. As illustrated, by utilizing the KeyRB with size 16, for almost

all benchmark circuits, both attacks cannot retrieve the keys. Also, Table 7.3 reports the

power, performance, and area (PPA) overhead of SCRAMBLE-C with a KeyRB of size

16. While the KeyRB size is fixed, the area overhead is constant and the percentage area

overhead reduces when the size of the benchmark circuits increases. As shown, for even

mid-size ISCAS-89 benchmark circuits, the area overhead is less than 10%.

91

Table 7.4: Attack Execution Time on SCRAMBLE-C and SCRAMBLE-L.

Attack Time (second)

BMC 2-stage

SCRAMBLE-C SCRAMBLE-L SCRAMBLE-C SCRAMBLE-L
KeyRB Size Mem Addr KeyRB Size Mem Addr

Circuit #FF #Gate 8 16 32 7 8 9 8 16 32 7 8 9

RS232 168 59 2.7 2029 � 35.7 � � ...�... � � ...�... � �
32b RSA 555 2139 1.4 3441 � 45.8 � � ..�.. � � � � �
MC8051 578 6590 47.7 6406 � 50.1 � � � � � � � �
SPARC 120K 233K 938 � � 288.2 � � � � � � � �

� : Timeout = 106 Seconds

Table 7.5: The PPA Overhead of Resilient SCRAMBLE-C and SCRAMBLE-L

SCRAMBLE-C SCRAMBLE-L
(Resilient with KeyRB Size = 32) (Resilient with SRAM Size = 28×8)

Circuit RS232 32b RSA MC8051 SPARC RS232 32b RSA MC8051 SPARC

Area (%) 38.5% 4.5% 1.2% 0.05% 173% 17.8% 5.1% 0.1%

Power (%) 44.8% 5.6% 1.7% 0.1% 224% 26.8% 7.2% 0.3%

Delay (%) 48.4% 10.8% 11.4% 9.7% 22.7% 5.5% 6.8% 3.9%

To assess the robustness of SCRAMBLE for FSM locking, both SCRAMBLE-C and

SCRAMBLE-L have been used on the second group of circuits. Also, the locked circuits

have been evaluated using both BMC and 2-stage attacks. As illustrated in Table 7.4,

BMC can break SCRAMBLE-C while the KeyRB size is up to 16. However, for none of the

circuits, BMC cannot retrieve the correct key while the KeyRB size is 32. Also, in case of

BMC, only utilizing a memory with 256 words (address width = 8) is enough to make the

locked circuit resilient against BMC.

Unlike BMC, which can break SCRAMBLE for small-size KeyRBs and memories, 2-

stage attacks are far weaker. As shown in Fig. 7.4, since the number of false paths is

extremely larger, after re-drawing the FSM using 2-stage, there is no chance for the adver-

sary to extract the original part of the FSMs. Hence, as shown in Table 7.4, 2-stage attacks

completely fail against SCRAMBLE.

92

Table 7.6: The PPA Overhead of SCRAMBLE with Different Sizes.

SCRAMBLE-C SCRAMBLE-L Sample ISCAS-89
(KeyRB Input Size) (SRAM Size) Benchmarks

Overhead 8 16 32 64 (27×8) (28×8) (29×8) s15850 s38584

Area (um2) 58.1 136.7 330.8 620.4 305.8 612.1 1119 6262 21458

Power (uW) 4.5 6.9 14.5 31.9 31.4 80.6 118.9 325.7 1031

Delay (ns) 0.33 0.37 0.48 0.56 0.17 0.18 0.19 1.24 2.68

Since the minimum size of KeyRB in SCRAMBLE-C (memory in SCRAMBLE-L), which

provides a resilient FSM locking against BMC, is 32 (256 words), we reported the PPA

overhead of these sizes for second groups of the circuits in Table 7.5. As shown, even for

mid-size 32b RSA circuit, the overhead is less than 5%. Also, the impact of increasing the

size of KeyRB or memory on the PPA overhead for different sizes has been illustrated in

Table 7.6. As shown, in both SCRAMBLE-C and SCRAMBLE-L, increasing either the size

or address width, approximately doubles the overhead. However, compared to ISCAS-89

benchmark circuits, such as s15850 or s38584, the incurred overhead is reasonable.

93

Chapter 8: kt-DFT: A key-trapped Design-for-Trust

Architecture for Logic Locking

Blocking unauthorized access to the scan chain [46,48,54–56] limits the access of an adver-

sary only to the primary inputs and primary outputs (PI/PO). However, with expanding the

SAT attack, it was later shown, that an adversary can still attack a sequential circuit with

no access to the scan chain by using unrolling-based (UB) SAT attack [60] or a bounded-

model-checking (BMC) attack [61]. However, these sequential attacks are far weaker than

the traditional SAT and are mostly applicable to moderately small sequential circuits. Since

the sequential attacks are not scalable, by blocking the scan chain, and applying many of

the prior logic obfuscation techniques, a moderately small-size locked circuit could easily

resist such attacks.

Prior work on restricting unauthorized access to the scan chain could be divided into

(1) scan chain locking [48,54] and (2) scan chain blocking [55,56]. In the scan chain locking

techniques, such as encrypt flip-flop [48] or dynamically obfuscated scan (DOS) [54], the

scan chain is statically or dynamically locked by inserting key gates. However, ScanSAT [61]

could break both statically and dynamically scan chain locking techniques by transforming

the locked scan chain into a combinational circuit and thereby launching the SAT attack

on them (the unrolling-based SAT) [61].

In the scan chain blocking techniques, after loading the logic locking key (from tpNVM),

the access to the scan-out(s) (SO) would be blocked [56]. By eliminating the access to the

SO, an adversary’s ability to monitor the behavior of the circuit will be limited only to the

PO. This eliminates the possibility of the SAT attack as well as any attack that requires

access to the scan chain, forcing an attacker to use the far weaker and non-scalable sequential

attacks.

94

Table 8.1: Comparison of the State-of-the-art DFS architectures.

Defenses
Test Test Resilient against
Time Complexity ScanSAT [61] Shift&leak [57] Glitch&Leak

EFF + RLL [48] low None � � �

R-DFS + SLL [56] low None � � �

mR-DFS + SLL [57] high
key reload

� � �
per pattern

kt-DFS + SLL low None � � �

Scan chain blocking in the presence of logic obfuscation was first introduced in [56]. In

the rest of this Chapter we refer to this solution as robust design-for-security (R-DFS). In

addition to blocking the SO, the R-DFS also introduces a new storage element for holding

the obfuscation key, denoted by secure cell (SC). However, the security of the R-DFS archi-

tecture was later challenged by the shift-and-leak attack [57]. To remedy the leakage issue,

the authors proposed modification to the scan blocking architecture (we call it mR-DFS),

equipping the SCs with a mode switch shift disable (MSSD) circuitry [57]. The mR-DFS

blocks any shift operation after the obfuscation key is loaded from the tpNVM, removing

the ability of an adversary to apply the shift-and-leak attack.

In this Chapter, by showing the architectural drawbacks of mR-DFS, we introduce our

proposed DFS scan blocking architecture for protecting the logic obfuscation key. More

precisely, the contributions of this work are as follows: (1) We illustrate how a glitch-

based shift-and-leak attack allows an adversary to leak the logic obfuscation key even if

the shift operation is disabled in mR-DFS, thereby, leaking the actual logic obfuscation key

through the PO. (2) As a countermeasure, we propose a new key-trapped design-for-security

(kt-DFS) architecture, where the scan chain that loads the logic obfuscation key is fully

detached from regular scan chain(s). To fulfill this requirement, we propose a new secure cell

design content of which cannot be shifted in the scan chain after a key registration event

is observed. (3) We assess the security of proposed kt-DFS, and compare the proposed

95

solution with R-DFS and mR-DFS. As shown in Table 8.1, we will illustrate how the kt-

DFS can support both structural and functional testing while resisting all leaky-based and

SAT-based attacks on logic locking.

8.1 Background on Scan Blockage Techniques

Both R-DFS [56] and mR-DFS [57] block the SO pins after the obfuscation key is loaded

into the design. The mR-DFS is built on top of R-DFS to fix the leakage issue. In the

following section, we first describe how R-DFS works. Then, we explain the leakage issue

identified in R-DFS, motivating the shift-and-leak attack. Then, we describe how mR-DFS

remedies the problem with disabling shift operations after loading the obfuscation key.

8.1.1 R-DFS: Restricting Scan Access

In R-DFS [56], the obfuscation key is stored in a custom-designed scan (storage) cell, de-

noted as secure cell (SC). As shown in Fig. 8.1(a), in R-DFS, each key value is stored

in one SC. The R-DFS architecture, as indicated in Table 8.2, allows four types/modes of

operation based on the Test and SE pins. The key values could be loaded into SCs either

directly from tpNVM (actual key values in mode M0) or the scan-in (dummy/actual key

in mode M2). The scan chains, as shown in Fig. 8.1(b), are constructed by stitching the

SCs with regular scan Flip-Flops (SFF). The SFFs in this paper are denoted as Regular

Cells (RC). The SCs keep their previous values in modes M1a and M1b. The only difference

between the M1a and M1b mode is the value of the SE pin that determines the shift/capture

mode in RCs. Both of the M1a and M1b modes allow the SCs to be bypassed (keeping their

previous values) when the RCs are in shift/capture mode.

For the structural (a.k.a manufacturing fault) test, the Test pin must be 1, allowing

the shift and capture operations to be carried in modes M2 and M1b respectively, giving

unrestricted access to the scan. On the other hand, for a functional test, first, the correct

key is loaded from tpNVM into SCs using the mode M0. Then, the initial state is loaded

96

D Q

Q
_

00
01
10
11

Fan in
ConeSecure

Cell
(SC)

K

SI

Test
SE

Clk

Key
Gateki

wi w’i

D Q

Q
_

0
1

Regular Cell

DI
SI

SE
Clk (RC)

Fan in
Cone

(a) SC vs. RC

D
ec

om
pr

es
so

r

C
om

pr
es

so
r

Delay Unit D Q

Q
_

1

Te
st

SOSI scan chains

B
lockage C

ircuitry

(b) Blockage Circuitry

Figure 8.1: R-DFS Overall Architecture.

Table 8.2: Modes of Operation in Secure Cell (SC).

Test SE Mode Description

0 0 M0
The circuit is in functional mode. Actual keys from
tpNVM applies to the Logic (Correct Functionality).

0 1 M1a The SCs hold their previous value. Based on the value
1 0 M1b of SE, RCs are in capture/shift mode.

1 1 M2
The SCs become part of the scan chain. Actual/Dummy
keys from SI for structural testing.

into the RCs in mode M1a, with no change on the key value in SCs. Finally, the response

is observed at the PO in mode M0. To block unauthorized access to the scan chain (when

a valid key is loaded), as illustrated in Fig. 8.1(b), the R-DFS architecture utilizes a SO-

blockage circuitry. This module blocks/masks the SOs upon a switch from functional mode

(mode M0 that loads the actual key into SCs) to test mode (mode M2 that supports the

shift operation). Hence, after loading the key in mode M0, SO will no longer be accessible,

removing the possibility of SAT attack, and limiting the adversary’s attack option to the

far weaker and non-scalable unrolling-based or BMC based attacks.

97

8.1.2 Shift-and-Leak Attack on R-DFS

Although R-DFS breaks the SAT attack by blocking the SO, the introduction of shift-and-

leak attack [57] shows that there is a valid key leakage possibility in R-DFS that allows the

adversary to observe and extract the logic obfuscation key using PO. This attack exploits

(1) the availability of the shift-in process through SI, and (2) the capability of reading out

the PO through chip pin-outs in the functional mode. Considering Fig. 8.2 as an illustrative

example, the steps of a shift-and-leak attack are as follows:

1. Identify leaky cells (LCs) that can leak info onto a PO.

2. Insert a stuck-at-fault at the chosen LC candidate.

3. Propagate the fault onto a PO (SCs set to unknown X ′s). If it fails to propagate, it

rules out this LC, and repeats steps 1 and 2.

4. Power up the chip in mode M0 to load the correct key into SCs.

5. Switch to mode M1a (SCs hold value) and shift in d-bit reverse-shifted of the leak

condition into the scan. The value of d is the scan distance between the targeted SC

and the chosen LC.

6. Switch to mode M2 (SCs are in the scan), and perform d-bit shift to have the leak

condition in place and the key in chosen LC.

7. Clocklessly switch to mode M0 and observe the PO, to leak the content of the LC,

i.e., the target key bit.

The authors noted that when the number of SCs increases, ATPG may fail to find a

leak condition for the chosen LC. To address this challenge, by exploiting the conventional

SAT attack [1], a pre-processing step was added to the shift-and-leak attack, in which the

logic cone was treated as a locked combinational circuit considering RCs as the primary

inputs and SCs as the key inputs. The pre-processing phase (which resembles the steps of

the conventional SAT attack) is launched as follows:

98

FiCRC4

FiCRC3

FiCRC2SC

RC1

RC0

RC2 RC6

RC5

RC4

RC3

Chosen
LC

Propagate
Path

ki

(a) Determining the Leaky Cell (LC) in Circuit.

RC0 RC1 RC2 RC3 SC RC4 RC5 RC6
SI SO

(b) The Scan Chain Configuration when SE=1. (d = 2)

- - - 1 ki 0 - -
(c) Shift-in the leaky condition (d-bit reverse-shifted) based on d=2.

- - - - - 1 ki 0
(d) shift all FFs, including SCs and RCs, in Mode M2, to put the ki into the LC.

Figure 8.2: Example of shift-and-leak attack on R-DFS.

1. Extract the combinational fan-in cones of the PO.

2. Obtain a Discriminating Input (DIP) from the SAT tool on the extracted circuit.

3. Power on the IC in mode M0 (SCs capture the actual key).

4. Switch to M1a (SCs hold their values), and shift in the obtained DIP from the SAT

tool to the RCs.

5. Clocklessly switch to mode M0 and observe the PO (eval of the SAT attack). Then,

go to step 2 until no more DIP found.

8.1.3 mR-DFS: Resisting Shift-and-Leak

As a countermeasure to the shift-and-leak attack, the work in [57] proposes a modified

version of robust design-for-security architecture (denoted as mR-DFS in this paper) with

a slight modification to the R-DFS. Since mode M1a is used in the shift-and-leak attack

99

Delay Unit
D Q

Q
_

1

Test

SE
SD

D Q

Q
_

00
01
10
11

Secure
Cell
(SC)

K

SI

Test

Clk

D Q

Q
_

0
1

SI

gClk

MSSD Circuitry

Figure 8.3: Mode Switch Shift Disable (MSSD) in mR-DFS.

to shift-in the known patterns (leak condition or DIP) to RCs, in mR-DFS, this mode is

blocked. Also, to avoid any other form of leakage, after switching to mode M0, it is not

possible to re-enable any shift mode in the scan chain. To do that, as shown in Fig. 8.3,

they build a shift disable (SD) signal, such that when Test = 1, SD follows SE. But, after

the first capture of the actual key, i.e. when the Test is low or when there is a positive

transition on the Test, SD becomes ALWAYS ZERO, thereby blocking the shift operation.

Hence, there is no longer a mode where SCs can be bypassed, retaining their values, while

RCs can be loaded/shifted.

8.2 mR-DFS Architectural Drawbacks

Although mR-DFS addresses the leakage problem in R-DFS using shift disable (SD), the

introduction of this shift disable (SD) signal in mR-DFS poses some new challenges for

design and implementation flow, as well as test and debug process. These challenges are

discussed next:

8.2.1 High Functional Test Time

Since there is no longer mode M1a in mR-DFS architecture, the tester has to rely on mode

M2 to shift in and load the RCs. Also, since the shift is disabled when Test=0 or after the

first positive transition on the Test, Test must be high during power ON. Hence, the tester

should use M2 as the initial mode to shift in and load the initial state into the RCs. After

100

loading the initial state, the tester switches the mode to M0 to load the actual key. Since

it is not possible to re-enable the shift process after switching to mode M0, the tester has

to rely on the responses on PO. For the next test pattern, the tester needs to switch back

to the mode M2 to shift in and re-load the initial state corresponded to the next pattern.

However, due to the blockage of the shift operation after switching to mode M0 (Test =

0), the tester cannot use shift-in anymore for shifting in the next initial state. Hence, the

tester has to reset the FF of MSSD circuitry to re-enable shift-in. This reset re-enables the

SD to follow SE, thereby, the tester can shift in the next initial state. However this reset

(sys rst) will clear all storage elements, including SCs. So, it forces the tester to re-load the

keys for the next test pattern. Hence, the actual key must be loaded again from tpNVM

to accomplish the functional test, and this key reloading process (with each test pattern)

significantly increases the functional test time. It should be noted that the initial state

could be chosen to be used for a group of test patterns; however, choosing a specific initial

state to be used for a group of patterns would increase the complexity of the functional test

significantly. Besides, the designer cannot separate the reset pins for MSSD. Assuming that

this reset pin is separated, the adversary can engage it to re-enable shift operation while

the actual key is in place.

8.2.2 Necessity of Duplicating the SCs

In mR-DFS, after shifting in the initial state to the RCs using mode M2, the tester switches

to mode M0 for only one cycle to load the actual key. However, during this one cycle,

the RCs (loaded by initial state) would be updated. To avoid this problem, a clock gating

circuitry has been introduced in mR-DFS to disable the clock for one clock cycle after

switching from M2 to M0.

Without any consideration for this requirement in mR-DFS architecture, there are two

possible methods to load the actual key from tpNVM in one clock cycle, however, both of

them incurs considerable performance/area overhead: (1) engaging an ultra-wide memory

that provides all bits of logic obfuscation key at once using only one read operation, (2)

101

engaging temporary registers (FFs) to load the key into them at power ON, then connecting

each SC to its corresponding temporary register to be loaded in one clock cycle.

Regarding the former solution, it is required to have direct wiring from tpNVM to each

SC (per each key gate). Hence, the ultra-wide memory must have an extremely high fanout

to provide this direct connection. This ultra-high fanout wiring increases the complexity of

placement and routing (PnR) process, and it would significantly decrease the performance

of the design, and due to optimization constraints in each design, using this scheme is almost

impractical.

By choosing the latter method, the incurred overhead is more reasonable. However,

the required reset (sys rst) for loading the next initial state will clear whole registers in

the chip. So, a key re-loading from tpNVM to the temporary register is required for each

(group of) test pattern. It raises two big problems in mR-DFS: (1) It significantly increases

the required time for functional test, and (2) Since key re-loading takes more than one clock

cycle, it violates the assumption of mR-DFS, where clock-gating disables the clock signal

only for one clock cycle to preserve the value of the RCs. So, after only one clock cycle,

during the key re-loading, the RCs would be updated, and the functional test will fail.

8.2.3 Re-enabling Shift using Leaky Glitches

In mR-DFS, as shown in Fig. 8.3, the selector of MUX21 in RCs is controlled by SD, which

becomes ALWAYS ZERO immediately after the first attempt of switching back from mode

M0 to M2 (re-enabling shift process). Switching from mode M0 to M2 means that there is

a positive transition on the Test pin, and this positive transition allows the FF in MSSD

circuitry to capture its input (CONSTANT ONE). However, there is still a possibility to

switch back from mode M0 to M2 (positive transition on the Test pin) while the FF does

not capture its input (CONSTANT ONE) to make SD to be ALWAYS ZERO. To show

that, we draw a timing diagram of the post-synthesis timing simulation of all internal wires

of MSSD circuitry.

102

Delay Unit (DU)
D Q

Q
_

1

Test

SE

SD

Testnot

Testd clk

QFF mask

MSSD Circuitry

(a) MSSD (Blockage) Circuitry in mR-DFS.

tpulse

dDU
Test

Testd

clk
QFF

always ZERO
Testnot

tpulse

dDU

tpulse

dDU

tpulse

dDU

tpulse dDU<

mask

SD
SE always ONE

dnot dnot dnot dnot

always ZERO

dnor dnor dnor dnor

dand dand dand dand

sysclk
(b) Glitches in Post-Synthesis Timing Simulation of MSSD Circuitry.

Figure 8.4: Re-enabling Shift after Actual Key Load.

As shown in Fig. 8.4(a), a delay unit (DU) has been used as a part of the fan-in-

cone of the FF in MSSD circuitry, which is built using 10 inverters [57]. Assuming that

the adversary is aware of timing information of the circuit, as shown in Fig. 8.4(b), she

generates a stimuli for Test pin in which the duration of high pulses is less than the delay of

DU (tpulse < dDU). Hence, the inputs of the first AND gate, i.e. Test and Testd, have no

overlap when both signals are high, and accordingly, DFF’s clk would be ALWAYS ZERO.

Since it is assumed that the DFF sets to 0 on reset, QFF would also be ALWAYS ZERO. So,

the function of NOR gate is similar to NOT gate, whose input is Testnot. Consequently,

mask follows Test with a delay of dnot + dnor, and similarly, if we suppose that SE is

ALWAYS ONE, SD follows Test with a delay of dnot + dnor + dand. Since SD controls the

shift operation in mR-DFS, using these potential glitches, the SD can re-enable the shift

operation after mode M0.

103

8.3 Proposed kt-DFS Architecture

When the logic obfuscation is in place, to introduce a secure and robust scan chain archi-

tecture, three requirements must be met:

1. There must be no possibility of key leakage during the test.

2. Both structural test and functional test must be carried out in a reasonable time (low

test time overhead compared to the test time of the original design) without significant

loss of coverage.

3. The complexity of test flow (structural and functional) and the overhead of secure

scan chain architecture must be minimized.

In our proposed key-trapped DFS (kt-DFS), the scan chain(s) of the SCs are completely

decoupled from the scan chain(s) of the RCs. In fact, there is no reason for stitching

the RC and SC cells in one chain, which has been the source of vulnerability

in both R-DFS and mR-DFS. As illustrated in Fig. 8.5(a), there is no common path

between RCs and SCs in our proposed kt-DFS architecture. Also, considering that the SCs

are only responsible to store the key value, none of the internal operations/computations

overwrites the content of the SCs. So, when the scan chain is in place for the SCs, only

the shift-in through SI is available for them to load the keys, and the SO is permanently

blocked for scan chain(s) of the SCs.

To guarantee the security of SCs against any form of leakage, we re-design and introduce

a new secure cell, called 1-way secure cell (1wSC). Fig. 8.5(b) depicts the details of 1wSC.

Each 1wSC has two internal storage elements: a scan-connected storage (denoted as FF1),

and a trap storage (denoted as FF2). The scan-connected storage could be used to shift

values in and out of the 1wSC or into the trap storage. However, the value of the trap

storage cannot be shifted out, and is only connected to its corresponded key gate. The

transfer of key value from FF1 to FF2 takes place after setting REG = 1 and SE = 0,

which is called register mode. Registration of the key into trap storage takes place on the

104

D Q
Q
_

1

KSE

(a) Decoupling SCs from RCs

one-way
Secure

Cell (1wSC)

D Q

clr
D Q

Fan in
Cone

Key
Gateki

wi w’i

0
1

KSE
tp

NVM

KSI ki kj

REG
SE

FF1

FF2

(b) One-way Secure Cell (1wSC)

Figure 8.5: Proposed kt-DFS Overall Architecture.

rising edge of the clock input of the FF2, which is a function of REG and SE. Also,

this condition is used as the RESET condition of all FF1s to clear their values. Hence,

AND(Test, SE) is used as the clock source of FF2s, and its toggled is used as the RESET

for FF1s.

Also, the trap storage does not have a reset, and upon power-up randomly initialized

to 0 or 1. So, upon transition of the key from scan-connected storage to the trap storage,

since the storage is initialized randomly, the adversary cannot determine the previous value

of the trap storage. This prevents the back-side imaging attack based on the captured heat

map as described in [111] (e.g. when the activity is observed on heat map for a specific

storage element, the adversary cannot determine if the transition is {0 → 1} or {1 → 0},
and if NO activity is observed, the adversary cannot determine if the transition is {0 → 1}
or {1 → 1}).

In our proposed kt-DFS, the keys could be loaded into 1wSC from either tpNVM or

scan-in (SI). Hence, the tester would be able to carry out the structural test by loading the

desired key using SI. But, since the scan chain(s) of 1wSCs are decoupled in kt-DFS, two

dedicated scan-enable and scan-in are used for the scan chain(s) of the SCs, called KSE

105

and KSI respectively.

The behavior of 1wSC is controlled using two pins, here called REG and SE. As

captured in Table 8.3, based on these two pins, a 1wSC can be operated in three main

modes:

1. Functional Mode (M0): {REG, SE}={0,0}, and the RCs are in capture mode.

Trap storage (FF2s) must have the key. However, scan-connected storage (FF1s) is

able to capture a new key.

2. Shift Mode (M1,3): {REG, SE}={X,1}, and the RCs are in shift mode. Scan-

connected storage (FF1s) is able to capture the key simultaneously, and there is no

action on trap storage (FF2s).

3. Register Mode (M2): {REG, SE}={1,0}, and the pre-loaded key in scan-connected

storage (FF1s) would be written to trap storage (FF2s), and scan-connected storage

(FF1s) will be cleared.

Similar to R-DFS and mR-DFS, a blockage circuitry is required to block the SO after the

first attempt of key loading from the tpNVM. To support our proposed operational modes

in the kt-DFS, a new blockage circuitry is designed. In kt-DFS, the SO must be blocked

after loading the actual keys into FF2s. When KSE is low, the FF1 is fed using tpNVM.

Hence, KSE is used to mask the SO. Note that the actual key would be loaded into FF2

when REG = 1 and SE = 0 (register mode). However, before this condition, the tester has

to load the actual key into FF1s while the KSE is low. Hence, by only considering KSE

= 0 as the blocking condition, we also cover the register-mode. Accordingly, the SO would

be no longer available when KSE becomes low.

8.3.1 No Possibility of Key Leakage in kt-DFS

Considering that the leakage problem in R-DFS and mR-DFS is for unnecessary stitching

of the RC and SC in the same scan chain, we fully decouple the SCs and RCs scan chains

106

Table 8.3: Modes of Operation in kt-DFS.

REG SE Mode Description

0 0
M0 FF2 must have the key*.

(Functional Mode) FF1 could capture the key*.

0 1
M1 FF1 could capture the key*.

(Shift Mode)

1 0
M2 FF2 are fed from FF1.

(Register Mode) FF1 will be reset to ZERO. Chain is erased.

1 1
M3 FF1 could capture the key*.

(Shift Mode)

* Based on KSE, actual/dummy key could be loaded from tpNVM/KSI

in kt-DFS, and the output of the scan chain(s) of SCs is permanently blocked. The values

stored in the scan-connected storage (FF1s) will be cleared with the transfer of the key to

the trap storage (FF2s). This guarantees that key values are trapped and no either regular

or glitch-based shift can leak the key values to the SO.

8.3.2 Functional/Structural Test in kt-DFS

In kt-DFS architecture, the functional test and the structural test could be done without

any significant limitation or any substantial overhead. For the structural test, since the SCs

are equipped with new KSE and KSI pins, it could be accomplished using the following

steps:

1. Set KSE → 1 and mode to M0. Shift in a dummy key via KSI.

2. Switch to mode M2 to write the key into FF2, and to clear FF1.

3. Switch to mode M1 to shift in the initial state into RCs.

4. Switch to mode M0 for one clock cycle for capturing new state.

5. Switch again to mode M1 to shift out the RCs to SO.

Unlike the structural test, the functional test requires the actual key. Hence, loading

107

the key from tpNVM followed by register mode will block the SO. Considering the blockage

of the SO, the steps of the functional test is as follows:

1. Set KSE → 0 and mode to M0. Shift in the actual key from tpNVM. (When KSE

= 0, the SO is blocked.)

2. Switch to mode M2 to write the key into FF2, and to clear FF1. (Once KSE = 0

and mode is M2, the SO will no longer available.)

3. Switch to mode M1 to shift in the initial state into the RCs.

4. Switch to mode M0 for one clock cycle for capturing new state, and clocklessly observe

the PO.

It should be noted that similar to R-DFS and mR-DFS, the tester accomplishes the

functional test through observing the PO with negligible loss of coverage.

8.3.3 Test Complexity and Scan Chain Overhead

Decoupling the scan chain(s) of SCs from that of RCs helps to facilitate the test flow for the

tester compared to the test flow in mR-DFS. Despite mR-DFS with a mandatory sys rst

for each (group of) test pattern, no additional operation is required in kt-DFS for any

form of the test. No sys rst is required, and none of the operations is blocked after the

first attempt of the actual key loading from tpNVM, and similar to R-DFS, only the SO

is blocked to break the SAT attack. However, unlike R-DFS, it is fully secure against any

form of leakage-based attacks, such as shift-and-leak.

The 1wSC in our proposed kt-DFS has two storage units and has a larger footprint

compared to the SCs used in R-DFS and mR-DFS. However, the R-DFS and mR-DFS also

need to transfer the key values from tpNVM to SCs. Using a very wide memory to derive

thousands of keys is quite demanding in terms of area, and it imposes higher complexity

during PnR. Hence, the R-DFS and mR-DFS also need to resort to a chain of temporary

registers to transfer the keys. This means there is also a duplicated register per each SC in

108

Table 8.4: Specifications of the Benchmark Circuits in kt-DFS.

Circuit s15850 s35932 s38584 b17 b18 b19

of Inputs 77 35 38 37 37 24
of Outputs 150 320 304 97 23 30
of Gates ∼10K ∼16K ∼20K ∼28K ∼95K ∼190K
of FFs ∼0.5K ∼1.7K ∼1.5K ∼1.5K ∼3.3K 6.6K

Area (mm2) 0.025 0.031 0.041 0.055 0.238 0.539
Power (mW) 1.37 1.98 2.91 3.27 9.08 19.4

both R-DFS and mR-DFS. Furthermore, compared to MUX41 in both R-DFS and mR-

DFS, only one AND gate and one NOT have been used in each 1wSC, which slightly

improves the area overhead.

8.4 kt-DFS vs. other DFS Architectures

To analyze the security of the kt-DFS, and to provide better comparative results, with

engaging the largest ISCAS-89 and ITC-99 benchmark circuits, as shown in Table 8.4, we

re-produce the results for R-DFS+SLL [54], mR-DFS+RLL [57]. Also, for the proposed kt-

DFS, we engage strong logic locking (SLL) [15] in all experiments to determine the location

of key gates, and the number of key bits is set to 128/256. All the experiments have

been accomplished on a Dell PowerEdge R620 equipped with Intel Xeon E5-2670 2.50GHz

and 64GB of RAM, using Synopsys Design Compiler 2017.09, Tetramax 2017.09, and VCS

2017.12 tools along with the Synopsys generic 32nm library.

Table 8.5 demonstrates the area/power overhead mitigation of the proposed kt-DFS

architecture compared to the state-of-the-art techniques. We achieved this improvement

because we could remove multiplexers (MUX21 or MUX41) from our new proposed secure

cell structure. Since we fully decoupled the SCs from SFFs, it allows us to remove the

MUXes that were required to control the inputs of SCs when SCs and SFFs are in the same

scan chain. It is worth mentioning that to avoid facing drastic area/delay overhead in the

existing approaches, we use temporary registers used for temporary loading the key from

109

Table 8.5: PPA Overhead Comparison between Different DFS Architectures.

Circuit
R-DFS+SLL [56] mR-DFS+RLL [57] kt-DFS+SLL

Area Power Area Power Area Power
(%) (%) (%) (%) (%) (%)

s15850 17.85% 24.76% 15.02% 21.77% 12.68% 16.27%
s35932 15.99% 19.39% 11.54% 16.54% 8.52% 10.28%
s38584 15.52% 18.95% 12.37% 15.28% 8.76% 9.92%

b17 7.31% 10.21% 6.33% 9.17% 2.76% 6.24%
b18 3.89% 6.71% 2.85% 5.51% 0.97% 3.38%
b19 2.53% 4.55% 1.28% 4.06% 0.51% 1.75%

the tpNVM. Without this mechanism, we cannot have the keys in existing techniques at

once as claimed.

Table 8.6 reflects the impact of a varying number of scan chains as well as the key

size when the proposed kt-DFS is in place. Since the chains of SCs are fully decoupled,

varying the number of scan chains has a minimal impact on the overhead of the proposed

architecture. For chains of SCs, we assume that when key size is 128, it is one chain of SCs,

and when the key size is 256, it is two chains of SCs. In terms of power overhead, since

dividing the scan chain into multiple ones always incur more power overhead, the impact

ratio is a bit higher. Also, as demonstrated in Table 8.6, when we increase the key size (128

→ 256), since the main part of the overhead is the extra FFs added for key storage (This is

the same for all existing techniques), for larger circuits, due to decreasing the ratio of SCs

to SFFs, the overhead is less, and in general, it is small enough as expected.

Unlike state-of-the-art techniques, in the proposed kt-DFS, we fully decoupled SCs from

SFFs. However, this separation will affect the placement and routing of chains to get the

most benefit of optimization steps during DFT synthesis (based on the locality of storage

cells). Table 8.7 shows the area overhead after placement-and-routing (post-PnR) of our

proposed kt-DFS when SCs are decoupled from SFFs versus when SCs are stitched with

SFFs. As shown, when the number of scan chains for SFFs is increased, due to breaking

SFFs into sub-domains (sub-locality), post-PnR area overhead is much closer to the stitched

110

Table 8.6: kt-DFS PPA Overhead with Different {Key Sizes, Number of Scan Chains}∗.

Area Overhead

Circuit {128, 1}∗ {128, 2} {128, 4} {128, 8} {256, 1} {256, 2} {256, 4} {256, 8}
s15850 12.68% 12.71% 12.75% 12.95% 18.82% 18.89% 18.98% 18.08%
s35932 8.52% 8.65% 8.72% 8.95% 11.22% 11.26% 11.32% 11.42%
s38584 8.76% 8.81% 8.86% 8.97% 10.79% 10.86% 10.91% 11.03%

b17 2.76% 2.78% 2.81% 2.83% 5.92% 5.94% 5.97% 5.99%
b18 0.97% 0.98% 0.98% 0.99% 1.43% 1.46% 1.46% 1.46%
b19 0.51% 0.51% 0.51% 0.52% 1.01% 1.02% 1.02% 1.02%

Power Overhead

Circuit {128, 1}∗ {128, 2} {128, 4} {128, 8} {256, 1} {256, 2} {256, 4} {256, 8}
s15850 16.27% 17.36% 18.24% 19.52% 23.54% 23.68% 25.15% 26.77%
s35932 10.28% 10.43% 11.63% 12.71% 13.28% 13.13% 14.26% 15.82%
s38584 9.92% 9.86% 10.71% 12.33% 12.88% 12.91% 14.09% 15.67%

b17 6.24% 6.26% 7.15% 7.75% 9.81% 10.23% 12.08% 13.25%
b18 3.38% 3.36% 3.74% 3.91% 5.16% 5.83% 6.17% 6.44%
b19 1.71% 1.74% 1.95% 1.97% 2.09% 2.01% 2.34% 2.69%

version. On the other hand, when the number of scan chains is also few (like 1), the impact

of decoupling is also minimal. Hence, to summarize, decoupling SCs from SFFs has minimal

impact on post-PnR overhead.

Table 8.8 represents the structural test coverage and the leakage of R-DFS, mR-DFS,

and our proposed kt-DFS when the number of scan chains is set to be 1. For almost all

techniques, the manufacturing test works perfectly fine, and the test coverage is roughly

the same for all cases. However, for R-DFS and mR-DFs with stitching architecture, shift-

and-leak and glitch-based shift-and-leak attack can recover the key of the locked circuit.

However, our proposed architecture, with decoupled structure, helps keeping the locked

circuit secure against leakage possibilities.

Since access to the scan chains is restricted in these techniques, the SAT attack cannot

be deployed. This does not prevent an attacker from deploying the unrolling or bounded-

model-checking (BMC) [60] attack that only needs PI/PO. However, this group of attacks

runs into scalability issues as they rely on two sub-routines which are in PSPACE and NP

[57]. Even the accelerated version of this attack (described in [62]) fails to terminate for

111

Table 8.7: SCs and SFFs Decoupling vs Stitching in kt-DFS.

Circuit
Decoupling SCs and SFFs Stitching SCs with SFFs

{128, 1}∗ {128, 2} {128, 4} {128, 8} {128, 1} {128, 2} {128, 4} {128, 8}
s15850 13.53% 13.72% 13.81% 13.97% 12.86% 13.22% 13.28% 13.72%
s35932 9.13% 9.22% 9.41% 9.55% 8.56% 8.65% 9.12% 9.32%
s38584 9.07% 9.54% 9.38% 9.66% 8.67% 9.01% 9.18% 9.23%

b17 3.01% 2.96% 3.22% 3.18% 2.76% 2.64% 2.89% 3.09%
b18 1.05% 1.06% 1.06% 1.06% 0.94% 0.97% 0.98% 1.01%
b19 0.68% 0.67% 0.69% 0.69% 0.65% 0.66% 0.66% 0.66%

Table 8.8: Test Coverage and Key Leakage Comparison between DFS Architectures.

Circuit
Original R-DFS [56] mR-DFS [57] Proposed kt-DFS

Test Test Key Test Key Test Key
(%) (%) Leak (#) (%) Leak (#) (%) Leak (#)

s15850 100% 100% 127 100% 127 100% 0
s35932 100% 100% 128 100% 128 100% 0
s38584 100% 100% 128 100% 128 100% 0

b17 99.91% 99.72% 127 99.69% 127 99.67% 0
b18 99.77% 99.78% 126 99.73% 126 99.73% 0
b19 99.81% 99.78% 127 99.78% 127 99.78% 0

even small designs. Besides, new techniques such as DFSSD [50] shows how low overhead

techniques, like deep faults and shallow state duality, could be used to break the state-of-

the-art sequential SAT attacks. To show the lack of scalability of the BMC or unrolling-

based SAT attacks, we apply KC2 [62] on kt-DFS+SLL locked circuits, and the results are

reflected in Table 8.9. As shown, this attack could only work for the two smallest circuits

with the key size equal to 100, and for all other cases, it fails to reach the result before the

time-out (105 Seconds).

112

Table 8.9: KC2 Execution Time on kt-DFS+SSL.

Circuit
Key Size = 100 Key Size = 200

Iterations Execution Time (s) Iterations Execution Time (s)

s15850 31 2666 timeout timeout
s35932 184 15328 timeout timeout
s38584 timeout timeout timeout timeout

b17 timeout timeout timeout timeout
b18 timeout timeout timeout timeout
b19 timeout timeout timeout timeout

- timeout: 105 Seconds ≈ one day (Stop the attack when time reaches timeout)

113

Chapter 9: Discussion and Opportunities

In this thesis, we introduced and evaluated different logic locking countermeasures, including

non-XOR-based (LUT-based and MUX-based) techniques, MUX-based and memory-based

scan logic locking, and scan blockage technique. We now enumerate some substantial concise

outcomes and conclusions that may help us drawing the next steps as the open research

studies:

1. LUT-based logic locking could provide high resiliency when the key attributes of

locking are determined appropriately.

2. The key attributes of LUT-based logic locking could be (1) size of the LUT, (2) number

of LUTs inserted into the circuit, and (3) the replacement strategy.

3. LUT-Lock and other state-of-the-art LUT-based locking techniques suffer from huge

overhead, which currently makes this direction unappealing.

4. The replacement strategy could considerably affect the size of the LUTs and the

numbers of LUTs required to be inserted to guarantee the SAT resiliency. However,

none of the existing approaches could help us to reduce the overhead of LUT to a

reasonable threshold.

5. Routing-based locking solutions could provide the desired resiliency at a much lower

overhead ratio compared to LUT-based locking.

6. Routing-based locking could be implemented at different levels of abstraction with

much more flexibility compared to LUT-based locking solution.

7. Pure routing-based techniques, such as Full-Lock and Cross-lock are vulnerable against

satisfiability-based routing optimization techniques, such as numerical bound prob-

lems, eventually allowed us to break them using canonical pruning & SAT attack.

114

8. To still get the benefit of routing-based locking solution, and to avoid the efficiency

of satisfiability-based routing optimization techniques on them, intertwining logic and

routing modules is the best solution.

9. Embedding actual timing paths as the logic within the routing blocks will also help

to minimize the possibility of applying attacks like removal and bypass attacks.

10. The routing-based (MUX-based) locking technique could be engaged for scan, sequen-

tial, and FSM locking at much lower overhead.

11. The concept of in-memory computation could be engaged as a means of logic locking,

helping the designers to add explicit black boxes within the design, making the de-

obfuscation flow much harder.

12. Compared to scan-based logic locking, scan blockage techniques could provide robust-

ness against the SAT and its derivatives at much lower overhead.

13. The scan blockage techniques required to be implemented to meet two important

criteria: (a) providing resilience against the existing de-obfuscation attacks with no

possibility of leakage, and (b) having no compromising, including test complexity,

high test time, or reduced test coverage.

With this in mind, some open challenges in these directions are as follows:

1. More investigation could be inevitable in case of improving LUT-based logic locking

towards (a) to design and build a customized LUT structure, (b) to have more explo-

ration on the combination of MUX-based and LUT-based locking, (c) to find better

LUT placement strategies required less LUT insertion, and to move from LUT-per-

gate replacement which incurs significant overhead to LUT-per-cone replacement.

2. The introduction of newer attacks on logic locking, especially recent machine-learning-

based attacks, such as NNgSAT [112], shows complex modules like routing modules

might need more improvement. Hence, the security evaluation of InterLock on newer

attacks is required.

115

3. A very recent study has been introduced the new concept oracle dishonesty in DisORC

[59], which could be considered as a scan blockage technique that is featured by the

capability of turning into a dishonest reference whenever a potential attack is detected.

By turning the oracle into a dishonest one, the adversary will lose many of the basic

assumptions known as the basics of different threat models, which makes the de-

obfuscation process much harder. However, the implementation of the dishonesty with

an advanced architecture like DisORC could be an open direction for further studies,

which provides enhanced security at lower overhead and less test compromising.

4. Having direct access and reading the electrical signals on a chip is a big challenge

against any security countermeasures, which recently received a lot of attention [111].

One approach to combat these threats is the exploit of randomness, such as random-

izing initialization and using register with random initial values within the test/scan

components. Hence, the design and implementation of test/scan components that

support such randomization to combat physical accesses require more evaluation.

Similarly, hardware Trojan insertion could undermine logic obfuscation techniques.

Few recent studies have investigated hardware Trojan attacks on logic obfuscation

[113]. Designing a new test/scan structure that could detect unauthorized test access

(such as test access by activated hardware Trojan) is mandatory in this case. This is

an open research area that requires more attention to combat this breed of threats.

116

Chapter 10: Conclusion

Due to the high cost of building IC manufacturing fab, with huge recurring maintenance

costs, many manufacturing and fabrication are pushed offshore. However, due to lack

of reliable monitoring on outsourced stages, results in emerging security vulnerabilities,

including but not limited to reverse-engineering, hardware Trojan insertion, counterfeiting,

IP piracy, and over-production.

Logic obfuscation, a.k.a. logic locking, is a proactive design-for-trust (DfTr) technique

that could combat all the aforementioned threats. Logic locking could add ambiguity to

the circuit by adding limited post-fabrication programmability into the circuit. This pro-

grammability could be achieved by adding/inserting some specific gates, known as key gates.

The key gates will be fed using programming value, referred to as the key, and the key would

be initiated via a trusted party, and in most cases, it would be stored within a tamper-proof

non-volatile memory (tpNVM).

Unlike most logic locking solutions that rely on XOR gates as the key gate, in this thesis

we first tried to open a new direction in this topic with the investigation of non-XOR-based

logic locking techniques. We introduced one LUT-based logic locking, called LUT-lock, and

to the best of our knowledge, it is the first SAT resilient LUT-based logic solution. We

also comprehensively evaluated LUT-based locking solutions in terms of LUT size, number

of LUTs, and replacement strategy, and our experimental results demonstrate a very high

overhead rate in this group of techniques.

We also introduced Full-Lock, as a new routing-based locking solution, which builds

SAT-hard instances at lower overhead compared to LUT-based locking solutions. However,

our further investigation revealed that the complexity of the pure routing-based locking

could be reduced significantly using the satisfiability-based routing optimization techniques.

Then, we introduced a more advanced routing-based locking technique, called InterLock, in

117

which by embedding logic within the routing block, we show none of the satisfiability-based

routing optimization techniques could provide enough size/complexity reduction. We also

evaluated routing-based locking in different technologies and different levels of abstractions

to show the efficiency of this new logic locking category.

After the introduction of robust and efficient MUX-based (routing-based) logic locking

technique, we exploited such structures for scan-based, sequential, or FSM logic locking. As

a new study, called SCRAMBLE, we showed how routing modules with much smaller sizes

could provide robustness when they target the scan chain structure within an IC. We also

evaluated the possibility of using simple in-memory computation as a means of logic locking.

Using in-memory computation, part(s) of the logic could be modeled and re-mapped using

a one-cycle memory, and the content of the memory will be initiated after the fabrication

as the secret of the logic locking. We showed that with a very small size of memory, the

locked circuit could be resilient against a wide range of the existing threats, including the

SAT and its derivatives.

Furthermore, by revealing the architectural drawbacks of the existing scan blockage

techniques, we introduce a key-trapped design-for-security (kt-DFS) architecture. In kt-

DFS, we propose a new secure scan chain cell that is robust against any form of logical

leakage once the key is initiated into the circuit. Also, we introduce a simple and lightweight

scan blockage circuitry that can block and limit access to the scan chain architecture while

any unauthorized access is recognized. We showed that scan blockage techniques could be

known as a requirement for the circuits while the logic locking is in place to guarantee

that the locked circuit provides acceptable robustness against the existing de-obfuscation

attacks.

118

Appendix A: List of Publications

[ISVLSI’18] Hadi Mardani Kamali, Kimia Zamiri Azar, Kris Gaj, Houman Homayoun,

Avesta Sasan, ”LUT-Lock: A Novel LUT-based Logic Obfuscation for FPGA-bitstream and

ASIC-hardware Protection,” 2018 IEEE Computer Society Annual Symposium on VLSI

(ISVLSI), pp. 405-410, 2018.

[GLSVLSI’18] Shervin Roshanisefat, Hadi Mardani Kamali, Avesta Sasan, ”SRCLock:

SAT-resistant cyclic logic locking for protecting the hardware,” Proceedings of the 2018 on

Great Lakes Symposium on VLSI (GLSVLSI), pp. 153-158, 2018.

[GLSVLSI’18] Hadi Mardani Kamali, Avesta Sasan, ”MUCH-SWIFT: A High-Throughput

Multi-Core HW/SW Co-design K-means Clustering Architecture,” Proceedings of the 2018

on Great Lakes Symposium on VLSI (GLSVLSI), pp. 459-462, 2018.

[TCHES’19] Kimia Zamiri Azar, Hadi Mardani Kamali, Houman Homayoun, Avesta

Sasan, ”SMT Attack: Next Generation Attack on Obfuscated Circuits with Capabilities and

Performance beyond the SAT Attacks,” IACR Transactions on Cryptographic Hardware

and Embedded Systems, vol. 2019, no. 1, pp. 97-122, 2019.

[RAID’19] Kimia Zamiri Azar, Farnoud Farahmand, Hadi Mardani Kamali, Shervin

Roshanisefat, Houman Homayoun, William Diehl, Kris Gaj, Avesta Sasan, ”COMA: Com-

munication and Obfuscation Management Architecture,” International Symposium on Re-

search in Attacks, Intrusions and Defenses, pp. 181-195, 2019.

[GLSVLSI’19] Kimia Zamiri Azar, Hadi Mardani Kamali, Houman Homayoun, Avesta

Sasan, ”Threats on logic locking: A decade later,” Proceedings of the 2019 on Great Lakes

Symposium on VLSI, pp. 471-476, 2019.

[DAC’19] Hadi Mardani Kamali, Kimia Zamiri Azar, Houman Homayoun, Avesta

Sasan, ”Full-lock: Hard distributions of sat instances for obfuscating circuits using fully

configurable logic and routing blocks,” Proceedings of the 56th Annual Design Automation

Conference, pp. 1-6, 2019.

119

[ICCAD’19] Gaurav Kolhe, Hadi Mardani Kamali, Miklesh Naicker, Tyler David

Sheaves, Hamid Mahmoodi, PD Sai Manoj, Houman Homayoun, Setareh Rafatirad, Avesta

Sasan, ”Security and complexity analysis of lut-based obfuscation: From blueprint to re-

ality,” 2019 IEEE/ACM International Conference On Computer Aided Design, pp. 1-8,

2019.

[VTS’20] Shervin Roshanisefat, Hadi Mardani Kamali, Kimia Zamiri Azar, Sai Manoj

Pudukotai Dinakarrao, Naghmeh Karimi, Houman Homayoun, Avesta Sasan, ”Dfssd: Deep

faults and shallow state duality, a provably strong obfuscation solution for circuits with

restricted access to scan chain,” 2020 IEEE 38th VLSI Test Symposium (VTS), pp. 1-6,

2020.

[DCAS’20] Hadi Mardani Kamali, Kimia Zamiri Azar, Shervin Roshanisefat, Ashkan

Vakil, Houman Homayoun, Avesta Sasan, ”Extru: A lightweight, fast, and secure expirable

trust for the internet of things,” 2020 IEEE 14th Dallas Circuits and Systems Conference

(DCAS), pp. 1-8, 2020.

[GLSVLSI’20] Hadi Mardani Kamali, Kimia Zamiri Azar, Houman Homayoun, Avesta

Sasan, ”On designing secure and robust scan chain for protecting obfuscated logic,” Proceed-

ings of the 2020 on Great Lakes Symposium on VLSI, pp. 1-7, 2020.

[TVLSI’20] Shervin Roshanisefat, Hadi Mardani Kamali, Houman Homayoun, Avesta

Sasan, ”Sat-hard cyclic logic obfuscation for protecting the ip in the manufacturing supply

chain,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, pp. 954-967,

2020.

[ISVLSI’20] Hadi Mardani Kamali, Kimia Zamiri Azar, Houman Homayoun, Avesta

Sasan, ”SCRAMBLE: The state, connectivity and routing augmentation model for building

logic encryption,” 2020 IEEE Computer Society Annual Symposium on VLSI, pp. 153-159.

[ICCAD’20n] Kimia Zamiri Azar, Hadi Mardani Kamali, Houman Homayoun, Avesta

Sasan, ”NNgSAT: Neural Network guided SAT Attack on Logic Locked Complex Structures,”

2020 IEEE/ACM International Conference On Computer Aided Design, pp. 1-9, 2020.

[ICCAD’20i] Hadi Mardani Kamali, Kimia Zamiri Azar, Houman Homayoun, Avesta

120

Sasan, ”InterLock: An Intercorrelated Logic and Routing Locking,” 2020 IEEE/ACM Inter-

national Conference On Computer Aided Design, pp. 1-9, 2020.

[TVLSI’21] Kimia Zamiri Azar, Hadi Mardani Kamali, Shervin Roshanisefat, Houman

Homayoun, Christos P Sotiriou, Avesta Sasan, ”Data Flow Obfuscation: A New Paradigm

for Obfuscating Circuits,” IEEE Transactions on Very Large Scale Integration (VLSI) Sys-

tems, pp. 1-14, 2021.

[ISQED’21] Hadi Mardani Kamali, Kimia Zamiri Azar, Houman Homayoun, Avesta

Sasan, ”ChaoLock: Yet Another SAT-hard Logic Locking using Chaos Computing,” IEEE

International Symposium on Quality Electronic Design (ISQED), pp. 1-7, 2021.

[Frontier’21] Zhiqian Chen, Lei Zhang, Gaurav Kolhe, Hadi Mardani Kamali, Setareh

Rafatirad, Sai Manoj Pudukotai Dinakarrao, Houman Homayoun, Chang-Tien Lu, Liang

Zhao, ”Deep Graph Learning for Circuit Deobfuscation,” Frontiers in Big Data, pp. 1-12,

2021.

[IEEE ACCESS’21] Kimia Zamiri Azar, Hadi Mardani Kamali, Houman Homayoun,

Avesta Sasan, ”From Cryptography to Logic Locking: A Survey on The Architecture Evolu-

tion of Secure Scan Chains,” IEEE Access, pp. 1-18, 2021.

[GLSVLSI’21] Shervin Roshanisefat,Hadi Mardani Kamali, Houman Homayoun, Avesta

Sasan, ”RANE: An Open-Source Formal De-obfuscation Attack

for Reverse Engineering of Logic Encrypted Circuits,” Proceedings of the 2021 on Great

Lakes Symposium on VLSI, pp. 1-8, 2021.

121

Bibliography

122

Bibliography

[1] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the Security of Logic Encryption
Algorithms,” in Int’l Symp. on Hardware Oriented Security and Trust (HOST), 2015,
pp. 137–143.

[2] M. El Massad, S. Garg, M. Tripunitara, “Integrated Circuit (IC) Decamouflaging:
Reverse Engineering Camouflaged ICs within Minutes,” in NDSS, 2015, pp. 1–14.

[3] S. Roshanisefat, H. K. Thirumala, K. Gaj, H. Homayoun, and A. Sasan, “Bench-
marking the Capabilities and Limitations of SAT Solvers in Defeating Obfuscation
Schemes,” in IEEE International Symposium on On-Line Testing And Robust System
Design (IOLTS), 2018, pp. 275–280.

[4] Y. Xie and A. Srivastava, “Delay Locking: Security Enhancement of Logic Locking
against IC Counterfeiting,” in Proceedings of Design Automation Conference (DAC),
2017, pp. 1–9.

[5] K. Shamsi, M. Li, D. Z. Pan, Y. Jin, “Cross-lock: Dense layout-level interconnect
locking using cross-bar architectures,” in Proceedings of the on Great Lakes Symposium
on VLSI (GLSVLSI), 2018, pp. 147–152.

[6] D. Mitchell, B. Selman, H. Levesque, “Hard and Easy Distributions of SAT Problems,”
in Association for the Advancement of Artificial Intelligence (AAAI), vol. 92, 1992,
pp. 459–465.

[7] F. Aloul, A. Ramani, I. L. Markov, K. A. Sakallah, “Solving Difficult SAT Instances in
the Presence of Symmetry,” in Proceeding of Design Automation conference (DAC),
2002, pp. 731–736.

[8] A. Yeh, “Trends in the Global IC Design Service Market,” DIGITIMES, 2012.

[9] M. Tehranipoor, C. Wang, Introduction to hardware security and trust. Springer
Science & Business Media, 2011.

[10] M. Rostami, F. Koushanfar, R. Karri et al., “A Primer on Hardware Security: Models,
Methods, and Metrics,” Proceedings of the IEEE, vol. 102, no. 8, pp. 1283–1295, 2014.

[11] A. B. Kahng, J. Lach, W. Mangione-Smith, S. Mantik, I. L. Markov, M. Potkonjak,
P. Tucker, H. Wang, and G. Wolfe, “Constraint-based Watermarking Techniques for
Design IP protection,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 20, no. 10, pp. 1236–1252, 2001.

123

[12] Y. Alkabani and F. Koushanfar, “Active Hardware Metering for Intellectual Property
Protection and Security,” in USENIX Security Symposium, 2007, pp. 291–306.

[13] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri, “Security Analysis of Integrated
Circuit Camouflaging,” in Proceedings of the ACM SIGSAC conference on Computer
& communications security, 2013, pp. 709–720.

[14] J. Roy F. Koushanfar, and I. L. Markov, “EPIC: Ending Piracy of Integrated Cir-
cuits,” in Design, Automation & Test in Europe Conf. (DATE), 2008, pp. 1069–1074.

[15] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security Analysis of Logic Ob-
fuscation,” in Design Automation Conference (DAC), 2012, pp. 83–89.

[16] P. Tuyls, G. Schrijen, B. Škorić, J. Van Geloven, N. Verhaegh, and R. Wolters, “Read-
proof Hardware from Protective Coatings,” in International Workshop on Crypto-
graphic Hardware and Embedded Systems (CHES), 2006, pp. 369–383.

[17] H. M. Kamali, K. Z. Azar, K. Gaj, H. Homayoun, and A. Sasan, “LUT-Lock: A Novel
LUT-based Logic Obfuscation for FPGA-bitstream and ASIC-hardware Protection,”
in IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2018, pp. 405–410.

[18] H. M. Kamali, K. Z. Azar, K. Gaj, H. Homayoun, A. Sasan, “Full-lock: Hard Dis-
tributions of SAT Instances for Obfuscating Circuits using Fully Configurable Logic
and Routing Blocks,” in 56th Annual Design Automation Conference 2019, 2019, pp.
1–6.

[19] H. M. Kamali, K. Z. Azar, K. Gaj, H. Homayoun, and A. Sasan, “Interlock: An
Intercorrelated Logic and Routing Locking,” in IEEE/ACM International Conference
On Computer Aided Design (ICCAD), 2020, pp. 1–9.

[20] H. M. Kamali, K. Z. Azar, H. Homayoun, and A. Sasan, “SCRAMBLE: The State,
Connectivity and Routing Augmentation Model for Building Logic Encryption,” in
IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2020, pp. 153–159.

[21] Actel Corporation, “Design Security in Nonvolatile Flash and Antifuse FPGAs - Se-
curity Backgrounder,” Technical Report on Quick Logic FPGAs, 2002.

[22] K. Z. Azar, H. M. Kamali, H. Homayoun, and A. Sasan, Avesta, “Threats on Logic
Locking: A Decade Later,” in Proceedings of the Great Lakes Symposium on VLSI,
2019, pp. 471–476.

[23] J. Rajendran, H. Zhang, C. Zhang, G. S. Rose, Y. Pino, O. Sinanoglu, and R. Karri,
“Fault analysis-based logic encryption,” IEEE Transactions on Computers, vol. 64,
no. 2, pp. 410–424, 2015.

[24] A. Baumgarten, A. Tyagi, and J. Zambreno, “Preventing IC Piracy using Reconfig-
urable Logic Barriers,” IEEE Design & Test of Computers, vol. 27, no. 1, pp. 66–75,
2010.

[25] Y. Xie and A. Srivastava, “Mitigating SAT Attack on Logic Locking,” in International
Conference on Cryptographic Hardware and Embedded Systems (CHES), 2016, pp.
127–146.

124

[26] M. Yasin, B. Mazumdar, J. Rajendran, and O. Sinanoglu, “SARLock: SAT Attack
Resistant Logic Locking,” in Hardware Oriented Security and Trust (HOST) Sympo-
sium, 2016, pp. 236–241.

[27] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. Rajendran, and O. Sinanoglu,
“Provably-Secure Logic Locking: From Theory to Practice,” in Proceedings of ACM
SIGSAC Conference on Computer and Communications Security (CCS), 2017, pp.
1601–1618.

[28] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, Y. Jin, “Cyclic Obfuscation for
Creating SAT-unresolvable Circuits,” in Proceedings of the on Great Lakes Symposium
on VLSI (GLSVLSI), 2017, pp. 173–178.

[29] S. Roshanisefat, H. M. Kamali, A. Sasan, “SRCLock: SAT-resistant cyclic logic lock-
ing for protecting the hardware,” in Proceedings of the on Great Lakes Symposium on
VLSI (GLSVLSI), 2018, pp. 153–158.

[30] A. Rezaei, Y. Shen, S. Kong, J. Gu, and H. Zhou, “Cyclic Locking and Memristor-
based Obfuscation against CycSAT and inside Foundry Attacks,” in Proceedings of
the Conference on Design, Automation and Test in Europe (DATE), 2018, pp. 85–90.

[31] A. Rezaei, Y. Li, Y. Shen, S. Kong, and H. Zhou, “CycSAT-unresolvable Cyclic Logic
Encryption using Unreachable States,” in Asia and South Pacific Design Automation
Conference (ASP-DAC), 2019, pp. 358–363.

[32] S. Roshanisefat, H. M. Kamali, H. Homayoun, and A. Sasan, “SAT-Hard Cyclic
Logic Obfuscation for Protecting the IP in the Manufacturing Supply Chain,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 4, pp.
954–967, 2020.

[33] K. Z. Azar, H. M. Kamali, S. Roshanisefat, H. Homayoun, C. P. Sotiriou, and A.
Sasan, “Data Flow Obfuscation: A New Paradigm for Obfuscating Circuits,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, no. 01, pp. 1–14, 2021.

[34] M. Yasin, B. Mazumdar, O. Sinanoglu, J. Rajendran, “Security Analysis of Anti-
SAT,” in Asia and South Pacific Design Automation Conference (ASP-DAC), 2017,
pp. 342–347.

[35] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “Removal Attacks on Logic
Locking and Camouflaging Techniques,” IEEE Transactions on Emerging Topics in
Computing, 2017.

[36] X. Xu, B. Shakya, M. Tehranipoor, D. Forte, “Novel Bypass Attack and BDD-based
Tradeoff Analysis against all Known Logic Locking Attacks,” in CHES, 2017, pp.
189–210.

[37] D. Sirone and P. Subramanayan, “Functional Analysis Attacks on Logic Locking,”
IEEE Transactions on Information Forensics and Security, vol. 15, pp. 2514–2527,
2020.

125

[38] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “AppSAT: Approximately
Deobfuscating Integrated Circuits,” in IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), 2017, pp. 95–100.

[39] Y. Shen and H. Zhou, “Double-Dip: Re-evaluating Security of Logic Encryption Al-
gorithms,” in Proceedings of the on Great Lakes Symposium on VLSI (GLSVLSI),
2017, pp. 179–184.

[40] H. Chiang, Y. Chen, D. Ji, X. Yang, C. Lin, C. Wang, “LOOPLock: Logic
Optimization-Based Cyclic Logic Locking,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 39, no. 10, pp. 2178–2191, 2019.

[41] H. Zhou, R. Jiang, and S. Kong, “CycSAT: SAT-based Attack on Cyclic Logic En-
cryptions,” in IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), 2017, pp. 49–56.

[42] Y. Shen, Y. Li, A. Rezaei, S. Kong, D. Dlott, and H. Zhou, “BeSAT: Behavioral
SAT-based Attack on Cyclic Logic Encryption,” in Asia and South Pacific Design
Automation Conference (ASP-DAC), 2019, pp. 657–662.

[43] K. Shamsi, D. Z. Pan, and Y. Jin, “IcySAT: Improved SAT-based Attacks on Cyclic
Locked Circuits,” in Int’l Conference on Computer-Aided Design (ICCAD), 2019, pp.
1–7.

[44] K. Z. Azar, H. M. Kamali, H. Homayoun, and A. Sasan, “SMT Attack: Next Gen-
eration Attack on Obfuscated Circuits with Capabilities and Performance Beyond
the SAT Attacks,” IACR Transactions on Cryptographic Hardware and Embedded
Systems (TCHES), pp. 97–122, 2019.

[45] A. Chakraborty, Y. Liu, and A. Srivastava, “TimingSAT: timing profile embedded
SAT attack,” in ICCAD, 2018, p. 6.

[46] K. Z. Azar, F. Farahmand, H. M. Kamali, S. Roshanisefat, H. Homayoun, W. Diehl,
K. Gaj, and A. Sasan, “Coma: Communication and obfuscation management archi-
tecture,” in International Symposium on Research in Attacks, Intrusions and Defenses
(RAID 2019), 2019, pp. 181–195.

[47] H. M. Kamali, K. Z. Azar, S. Roshanisefat, A. Vakil, A. Sasan, “ExTru: A
Lightweight, Fast, and Secure Expirable Trust for the Internet of Things,” IEEE
14th Dallas Circuits and Systems Conference (DCAS), 2020.

[48] R. Karmakar, S. Chatopadhyay, and R. Kapur, “Encrypt Flip-Flop: A Novel Logic
Encryption Technique for Sequential Circuits,” arXiv preprint arXiv:1801.04961,
2018.

[49] S. Potluri, A. Aysu, A. Kumar, “Seql: Secure Scan-locking for IP Protection,” in
International Symposium on Quality Electronic Design (ISQED), 2020, pp. 7–13.

[50] S. Roshanisefat, H. M. Kamali, K. Z. Azar, S. M. P. Dinakarrao, N. Karimi, H.
Homayoun, and A. Sasan, “Dfssd: Deep Faults and Shallow State Duality, a Provably
Strong Obfuscation Solution for Circuits with Restricted Access to Scan Chain,” in
IEEE VLSI Test Symposium (VTS), 2020, pp. 1–6.

126

[51] D. Zhang, M. He, X. Wang, and M. Tehranipoor, “Dynamically Obfuscated Scan for
Protecting IPs against Scan-based Attacks throughout Supply Chain,” in VLSI Test
Symposium (VTS), 2017, pp. 1–6.

[52] R. Karmakar, H. Kumar, and S. Chattopadhyay, “Efficient Key-gate Placement And
Dynamic Scan Obfuscation Towards Robust Logic Encryption,” IEEE Transactions
on Emerging Topics in Computing, 2019.

[53] R. Karmakar, S. Chattopadhyay, and R. Kapur, Rohit, “A Scan Obfuscation guided
Design-for-Security Approach for Sequential Circuits,” IEEE Transactions on Circuits
and Systems II: Express Briefs, 2019.

[54] X. Wang et al., “Secure Scan and Test using Obfuscation throughout Supply Chain,”
IEEE Trans. on CAD, vol. 37, no. 9, pp. 1867–1880, 2017.

[55] W. Wang et al., “A Secure DFT Architecture Protecting Crypto Chips Against Scan-
Based Attacks,” IEEE Access, vol. 7, pp. 22 206–22 213, 2019.

[56] U. Guin, Z. Zhou, and A. Singh, “Robust Design-for-Security Architecture for enabling
Trust in IC Manufacturing and Test,” IEEE Transactions on VLSI, vol. 26, no. 5, pp.
818–830, 2018.

[57] N. Limaye, A. Sengupta, M. Nabeel, and O. Sinanoglu, “Is Robust Design-for-Security
Robust Enough? Attack on Locked Circuits with Restricted Scan Chain Access,” Int’l
Conference on CAD (ICCAD), pp. 1–8, 2019.

[58] H. M. Kamali, K. Z. Azar, H. Homayoun, A. Sasan, “On Designing Secure and Robust
Scan Chain for Protecting Obfuscated Logic,” in Great Lakes Symposium on VLSI
(GLSVLSI), 2020, pp. 1–6.

[59] N. Limaye, E. Kalligeros, N. Karousos, I. G. Karybali, and O. Sinanoglu, “Thwarting
All Logic Locking Attacks: Dishonest Oracle with Truly Random Logic Locking,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
2020.

[60] M. El Massad, S. Garg, and M. Tripunitara, “Reverse Engineering Camouflaged Se-
quential Circuits without Scan Access,” in IEEE/ACM International Conference On
Computer Aided Design (ICCAD), 2017, pp. 33–40.

[61] L. Alrahis, M. Yasin, N. Limaye, H. Saleh, B. Mohammad, M. Alqutayri, and O.
Sinanoglu, “Scansat: Unlocking Static and Dynamic Scan Obfuscation,” IEEE Trans-
actions on Emerging Topics in Computing, 2019.

[62] K. Shamsi, M. Li, D. Z. Pan, and Y. Jinr, “KC2: Key-condition Crunching for Se-
quential Circuit Deobfuscation,” in Design, Automation & Test in Europe Conference
(DATE), 2019, pp. 534–539.

[63] N. Limaye and O. Sinanoglu, “DynUnlock: Unlocking Scan Chains Obfuscated using
Dynamic Keys,” in Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2020, pp. 270–273.

127

[64] T. Winograd, H. Salmani, H. Mahmoodi, K. Gaj, and H. Homayoun, “Hybrid STT-
CMOS Designs for Reverse-Engineering Prevention,” in Annual Design Automation
Conference (DAC), 2016, pp. 1–6.

[65] R. Karam, T. Hoque, S. Ray, M. Tehranipoor, and S. Bhunia, “Robust Bitstream
Protection in FPGA-based Systems through Low-overhead Obfuscation,” in Interna-
tional Conference on ReConFigurable Computing and FPGAs (ReConFig), 2016, pp.
1–8.

[66] R. S. Chakraborty, I. Saha, A. Palchaudhuri, and G. K. Naik, “Hardware Trojan
Insertion by Direct Modification of FPGA Configuration Bitstream,” IEEE Design &
Test, vol. 30, no. 2, pp. 45–54, 2013.

[67] N. Benhadjyoussef, H. Mestiri, M. Machhout, and R. Tourki, “Implementation of
CPA Analysis against AES Design on FPGA,” in International Conference on Com-
munications and Information Technology (ICCIT), 2012, pp. 124–128.

[68] G. E. Suh and S. Devadas, “Physical Unclonable Functions for Device Authentication
and Secret Key Generation,” in ACM/IEEE Design Automation Conference (DAC),
2007, pp. 9–14.

[69] W. Zhao, E. Belhaire, C. Chappert, and P. Mazoyer, “Spin Transfer Torque (STT)-
MRAM–based Runtime Reconfiguration FPGA Circuit,” ACM Transactions on Em-
bedded Computing Systems (TECS), vol. 9, no. 2, pp. 1–16, 2009.

[70] W. Zhao, J. Duval, J. Klein, and C. Chappert, “A compact model for magnetic tunnel
junction (MTJ) switched by thermally assisted Spin transfer torque (TAS+ STT),”
Nanoscale Research Letters, vol. 6, no. 1, pp. 1–4, 2011.

[71] P. C. Cheeseman, B. Kanefsky, and W. M. Taylor, “Where the Really Hard Problems
Are,” in IJCAI, vol. 91, 1991, pp. 331–340.

[72] H. M. Kamali, “Using Multi-core HW/SW Co-design Architecture for Accelerating
K-means Clustering Algorithm,” arXiv preprint arXiv:1807.09250, 2018.

[73] G. Tseitin, “On the Complexity of Derivation in Propositional Calculus,” Studies in
Constructive Mathematics and Mathematical Logic, pp. 115–125, 1968.

[74] H. M. Kamali and A. Sasan, “MUCH-SWIFT: A High-throughput Multi-core
HW/SW Co-design K-means Clustering Architecture,” in Proceedings of the Great
Lakes Symposium on VLSI (GLSVLSI), 2018, pp. 459–462.

[75] M. Soos, K. Nohl, and C. Castelluccia, “Extending SAT Solvers to Cryptographic
Problems,” in Int’l Conf. on Theory and Applications of Satisfiability Testing (SAT),
2009, pp. 244–257.

[76] G-J. Nam, F. Aloul, K. Sakallah, and R. A. Rutenbar, “A comparative study of two
Boolean formulations of FPGA detailed routing constraints,” IEEE Transactions on
Computers, vol. 53, no. 6, pp. 688–696, 2004.

[77] H. S. Stone, “Parallel Processing with the Perfect Shuffle,” IEEE transactions on
Computers, vol. 100, no. 2, pp. 153–161, 1971.

128

[78] D.-J. Shyy and C.-T. Lea, “Log/sub 2/(N, m, p) Strictly Nonblocking Networks,”
IEEE Transactions on Communications, vol. 39, no. 10, pp. 1502–1510, 1991.

[79] G. Kolhe, H. M. Kamali, M. Naicker, T. Sheaves, H. Mahmoodi, Sai Manoj PD, H.
Homayoun, Houman, S. Rafatirad, and A. Sasan, “Security and Complexity Analysis
of LUT-based Obfuscation: from Blueprint to Reality,” in 2019 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD), 2019, pp. 1–8.

[80] D. Chai and A. Kuehlmann, “A Fast Pseudo-Boolean Constraint Solver,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 3,
pp. 305–317, 2005.

[81] M. Velev and P. Gao, “Comparison of Boolean Satisfiability Encodings on FPGA
detailed Routing Problems,” in Design, Automation and Test in Europe, 2008, pp.
1268–1273.

[82] M. Velev . and P. Gao, “Efficient SAT Techniques for Absolute Encoding of Per-
mutation Problems: Application to Hamiltonian Cycles,” in Eighth Symposium on
Abstraction, Reformulation, and Approximation, 2009.

[83] N. Manthey, M. Heule, and A. Biere, “Automated Reencoding of Boolean Formulas,”
in Haifa Verification Conference, 2012, pp. 102–117.

[84] M. Davis and H. Putnam, “A Computing Procedure for Quantification Theory,”
Journal of the ACM (JACM), vol. 7, no. 3, pp. 201–215, 1960.

[85] A. Biere, “Resolve and Expand,” in Int’l Conference on Theory and Applications of
Satisfiability Testing, 2004, pp. 59–70.

[86] N. Eén and A. Biere, “Effective Preprocessing in SAT through Variable and Clause
Elimination,” in Int’l conference on theory and applications of satisfiability testing,
2005, pp. 61–75.

[87] A. Biere, D. Le Berre, E. Lonca, and N. Manthey, “Detecting Cardinality Constraints
in CNF,” in International Conference on Theory and Applications of Satisfiability
Testing, 2014, pp. 285–301.

[88] O. Bailleux and Y. Boufkhad, “Efficient CNF Encoding of Boolean Cardinality Con-
straints,” in International conference on principles and practice of constraint program-
ming, 2003, pp. 108–122.

[89] C. Sinz, “Towards an Optimal CNF Encoding of Boolean Cardinality Constraints,” in
International conference on principles and practice of constraint programming, 2005,
pp. 827–831.

[90] J. Marques-Silva and I. Lynce, “Towards Robust CNF Encodings of Cardinality Con-
straints,” in International Conference on Principles and Practice of Constraint Pro-
gramming, 2007, pp. 483–497.

[91] R. Aśın, R. Nieuwenhuis, A. Oliveras, E. Rodŕıguez-Carbonell, “Cardinality Networks:
a Theoretical and Empirical Study,” Constraints, vol. 16, no. 2, pp. 195–221, 2011.

129

[92] M. Koshimura, T. Zhang, H. Fujita, and R. Hasegawa, “QMaxSAT: A Partial Max-
SAT Solver,” Journal on Satisfiability, Boolean Modeling and Computation, vol. 8,
no. 1-2, pp. 95–100, 2012.

[93] D. Le Berre and A. Parrain, “The Sat4j Library, Release 2.2,” Journal on Satisfiability,
Boolean Modeling and Computation, vol. 7, no. 2-3, pp. 59–64, 2010.

[94] M. Gebser, B. Kaufmann, T. Schaub, “The Conflict-Driven Answer Set Solver Clasp:
Progress Report,” in International conference on logic programming and nonmono-
tonic reasoning, 2009, pp. 509–514.

[95] N. Eén and N Sörensson, “An Extensible SAT-solver,” in International conference on
theory and applications of satisfiability testing, 2003, pp. 502–518.

[96] E. Lee, G. Lemieux, and S. Mirabbasi, “Interconnect Driver Design for Long Wires
in Field-Programmable Gate Arrays,” Journal of Signal Processing Systems, vol. 51,
no. 1, pp. 57–76, 2008.

[97] J. Luu et al., “VTR 7.0: Next Generation Architecture and CAD System for FPGAs,”
ACM Transactions on Reconfigurable Technology and Systems (TRETS), vol. 7, no. 2,
pp. 1–30, 2014.

[98] J. Zhang, X. Tang, P. Gaillardon, and G. De Micheli, “Configurable Circuits Featur-
ing Dual-Threshold-Voltage Design with Three-Independent-Gate Silicon Nanowire
FETs,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 10,
pp. 2851–2861, 2014.

[99] E. Giacomin, J. Gonzalez, and P. Gaillardon, “Low-power Multiplexer Designs us-
ing Three-Independent-Gate Field Effect Transistors,” in IEEE/ACM International
Symposium on Nanoscale Architectures (NANOARCH), 2017, pp. 33–38.

[100] T. Meade et al., “Revisit sequential logic obfuscation: Attacks and defenses,” in IEEE
Int’l Symp. on Circuits and Systems (ISCAS), 2017, pp. 1–4.

[101] L. Li et al., “Structural Transformation for Best-possible Obfuscation of Sequential
Circuits,” in IEEE Int’l Symp. on Hardware Oriented Security and Trust (HOST),
2013, pp. 55–60.

[102] R. Chakraborty et al., “HARPOON: An Obfuscation-based SoC Design Methodol-
ogy for Hardware Protection,” IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 28, no. 10, pp. 1493–1502, 2009.

[103] F. Koushanfar, “Active Hardware Metering by Finite State Machine Obfuscation,” in
Hardware Protection through Obfuscation, 2017, pp. 161–187.

[104] J. Dofe and Q. Yu, “Novel Dynamic State-Deflection Method for Gate-Level Design
Obfuscation,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, vol. 37, no. 2, pp. 273–285, 2018.

[105] M. Fyrbiak et al., “On the Difficulty of FSM-based Hardware Obfuscation,” IACR
Trans. on Crypto Hardware and Embedded Systems (TCHES), pp. 293–330, 2018.

130

[106] A. R. Desai et al., “Interlocking Obfuscation for Anti-Tamper Hardware,” in Proc. of
the Cyber Security and Information Research Workshop, 2013, pp. 1–8.

[107] Y. Shi et al., “A Highly Efficient Method for Extracting FSMs from Flattened Gate-
level Netlist,” in IEEE Int’l Symp. on Circuits and Systems (ISCAS), 2010, pp. 2610–
2613.

[108] R. Tarjan, “Depth-First Search and Linear Graph Algorithms,” SIAM journal on
computing, vol. 1, no. 2, pp. 146–160, 1972.

[109] T. Meade et al., “Netlist Reverse Engineering for High-Level Functionality Recon-
struction,” in Asia and South Pacific Design Automation Conf. (ASP-DAC), 2016,
pp. 655–660.

[110] I. G. Vargas et al., “ROM-based Finite State Machine Implementation in Low Cost
FPGAs,” in IEEE Int’l Symp. on Industrial Electronics, 2007, pp. 2342–2347.

[111] M. T. Rahman et al., “The Key is Left under the Mat: On the Inappropriate Security
Assumption of Logic Locking Schemes,” Int’l Symp. on Hardware Oriented Security
and Trust (HOST), pp. 1–10, 2018.

[112] K. Z. Azar, H. M. Kamali, H. Homayoun, and A. Sasan, “NNgSAT: Neural Network
guided SAT Attack on Logic Locked Complex Structures,” in IEEE/ACM Interna-
tional Conference On Computer Aided Design (ICCAD), 2020, pp. 1–9.

[113] A. Jain, Z. Zhou, and U. Guin, “TAAL: Tampering Attack on Any Key-based Logic
Locked Circuits,” ACM Transactions on Design Automation of Electronic Systems
(TODAES), vol. 26, no. 4, pp. 1–22, 2021.

131

Biography

Hadi Mardani Kamali has been a Ph. D. student in the Department of Electrical and
Computer Engineering (ECE) at George Mason University, Fairfax, VA from 2017 to 2021.
He was a member of Green, Accelerated, and Trustworthy Engineering (GATE) Lab, advised
by Dr. Avesta Sasan. Hadi’s main research interest lies in the areas of hardware security
and trust, security for supply chain, and VLSI design and test. He received his Master’s
Degree in Computer Engineering from Sharif University of Technology, Tehran, Iran in
2013. Furthermore, He obtained his Bachelor’s Degree in Computer Engineering from K.
N. Toosi University of Technology, Tehran, Iran in 2011.

132

	2 - FInal PhD Dissertation Signature Page - Hadi Mardani Kamali
	PhD_Dissertation_p2

