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Abstract 

 

To apply a symbolic learning method to learning in a continuous representation space, the variables 

spanning the space need to be discretized. When the space is very large, a problem arises as to how to 

determine a discretization scheme for each variable that is both efficient and effective. This task is 

particularly important when applying Learnable Evolution Model to optimization problems with very 

large number of continuous variables. The presented method, called ANCHOR, starts with a low 

discretization precision of the variables, and then increases the discretization precision in the 

subranges indicated by the analysis of the descriptions learned using a lower precision. The method 

has been incorporated in the LEM2 system implementing the Learnable Evolution Model. 

Experiments with ANCHOR have demonstrated a significant advantage of the method over a fixed 

discretization method, and enabled LEM2 to optimize functions of large number of continuous 

variables very effectively. 
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1 Introduction 

The recently introduced Learnable Evolution Model (LEM) employs Machine Learning to guide evolutionary 

computation (Michalski, 2000). Specifically, at each step of the evolutionary computation, it employs a machine 

learning system to generate hypotheses discriminating between groups of high and low fitness individuals, and 

then uses these hypotheses to generate new individuals. Although LEM does not impose any restriction on what 

kind machine learning method is used, in the current implementations we have chosen the AQ learning method 

due to several features particularly useful for LEM. One such feature is the ability to induce attributional rules 

that are more general than atomic rules typically generated by rule learning methods While atomic rules use only 

conditions in the form <attribute relation value>, attributional rules can use more elaborate conditions, such as: 

<attribute relation subset-of-values) or <attribute relation attribute> (Michalski, 2001). Another feature useful for 

LEM is that AQ can control the level of generality of the learned rules (Kaufman and Michalski, 2000).  

If LEM is used for problems in which individuals are represented in terms of continuous variables, the machine 

learning program must be able to cope with such variables. In the AQ learning method, there are two approaches 

to handling continuous variables:  (1) discretization, and (2) interval representation. The first approach requires 

continuous variables to be discretized. The second method handles continuous variables by creating conditions in 

the form [attribute = lb..ub] , where lb and ub are the lower bound and upper bound, respectively, of the interval 

of variable values. To satisfy the condition, the variable must take a value within such an interval.  

The discretization method is easier to implement and can be more efficient if discretized domains are relatively 

small. The interval method may be more appropriate if the conditions on variables have to delineate very precise 

borders. It is however more difficult to implement. Moreover, since many problems include different types of 

variables, both metric (absolute and ratio represented as continuous), and non-metric (nominal or ordinal), then 

an AQ program using interval representation must simultaneously handle two representations, one for metric and 

one for non-metric variables. Such two-prong representation is required for handling internal disjunctions in the 

case of nominal variables, and is desirable for the sake of efficiency. 

The discretization approach has been implemented in most of the AQ learning programs, in particular in AQ18 

(Kaufman and Michalski, 2000) that has been employed in LEM2 system. The interval representation has been 

employed in AQ20 (Cervone, Panait, and Michalski, 2001).  It is, however, an open problem which approach is 

most appropriate for LEM in which application domains. 

This paper describes a discretization method that has been specifically developed for applying AQ18  program in 

the Learnable Evolution model. The method specifically addresses the problem of applying LEM to the 

optimization of functions of a very large number of continuous variables that can vary in arbitrary ranges. 

Clearly, if the problem solution requires a representation of one or more variables with high precision, then such 

a precision must be used in LEM/AQ for these variables.  It is not known a priori, however, which variables must 

be represented with high precision and what this precision must be.   
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A straightforward solution to this problem would be to discretize all the variables with the maximal possible  

precision that one expects is needed for the given task domain.  There are two problems with such a solution. One 

is that the guess regarding the needed precision may be incorrect, and the chosen precision will be insufficient. In 

this case, it may be impossible to determine the correct solution no matter how long the evolution process is 

continued. The second problem is that such a method may lead to unnecessary large variable domains, and by this 

can significantly impede the performance of the AQ learning system.  

To avoid these problems, a new discretization method has been developed, called Adaptive Anchoring 

Discretization or ANCHOR. The term adaptive indicates that the precision of discretization is dynamically 

adapted to the problem during the process of evolution. The term anchoring signifies that the domains of 

attributes consist of consecutively more precise discrete values that are rounded to the nearest whole numbers 

(anchors).  This feature is reflective of human preference for representing numbers/measurements simply, that is, 

with the minimum number of digits that is sufficient for a given problem.    

The ANCHOR method proceeds by making discretizations that are consecutively more precise, but only in the 

ranges that are hypothesized to require a higher precision. This way, ANCHOR avoids excessive precision, and 

by that decreases the computational complexity of the learning process.  

2 Method 

The description of the ANCHOR method is split into three cases. One, when the domain of a variable contains 

only positive numbers; second, when the domain contains only negative numbers; and third, then the domain 

contains both types of numbers.  Assume that a continuous variable xi ranges over the interval  [min,…,max], 

where min  is the smallest  possible  real value, and  max is the largest possible real value in the domain of  xi. 

Case 1:  Positive  Numbers  Only        (min   � 0)  

(1) Determine  1st order  approximation  (FOA):  

A. Determine  LB = MIN   and UB = MAX    (where LB stands for the lower bound and UB for upper bound) 

of the currently considered range.   

B. Replace values of xi    by the nearest  first order anchor  (FOA), defined as the best  single digit 

approximation of  xi , which are called the first order units or FOU. 

     C. Determine  FOU    

  If  MAX  >  1, then  FOU(xi )  is defined as  the  digit 1 followed by the number of zeroes equal the 

number  of digits  in xi    before  “ .”    minus   1. For example, FOU(2359. 98)  =  1000. 

If  MAX  �    1, then  FOU(xi)  is defined as   0.1.  For example:  FOU(0. 3897638)   =   0.1.  

 D.  Replace  xi   by  FOA(xi ) = Round(xi / FOU), where  

             Round(xi  /FOU) =   
�
 xi /FOU � ,  if     xi /FOU  -   

�
 xi / FOU�      <     0.5 

             Round (xi /FOU) =  �  xi /FOU � ,  if    xi  /FOU  -   
�
 xi   / FOU�      �     0.5 

 E.  Create a normalized  first order approximation  of   xi , NFOA(xi),  by  isomorphically mapping   the 

domain of FOA(xi ) into the range  { 0,1,…,di} . 
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The last step if done because AQ18 assumes that all variables have domains normalized to a set of 
consecutive non-negative integers starting with 0. Let us assume now that AQ18 has been applied to a 
training set, which in the case of LEM consists of high- and low-performing individuals (H-group and L-
group, respectively). The resulting hypothesis discriminating between the H- and L-group is in the form 
of an attributional ruleset (Kaufman and Michalski, 2001; Michalski, 2001).  According to the LEM 
method, the ruleset is then instantiated in different ways to generate new individuals (e.g., Cervone, 2000; 
Michalski, 2000). The individuals are used to create a new population, e.g., through an intergenerational 
truncation survival method (original and newly created individuals compete with each other and the k best 
are selected for the next population, where k is the population size parameter). Individuals in the 
population are arranged to create a fitness profile function. 

F. If the range of the fitness profile function becomes delta-small (which is a parameter of the method) and 

the LEM  termination condition has been satisfied, EXIT; otherwise,  identify values of variables in the 

learned rules that need to be discretize further. These are NFOA(xi) values that occur in atomic 

conditions of the ruleset (that is, occur as single values in the reference of a condition).   

(2)   Determine 2nd order approximation   (SOA): 

A. For each value, v, identified above, determine the second order LB and UB, as the lower bound and the 

upper bound, respectively:  

 LB is defined  as:  if MAX > 1, then LB= v – 0.5;  if MAX �  1, then  LB = v  - 00.5. 

 UB is defined  as:  if MAX > 1, then UB= v + 0.5;  if MAX �  1, then UB = v  + 00.5. 

 The expanded range of values is defined as [LB …UB).  

B.  Determine the second order unit  (SOU) for the expanded range defined in A. 

If  MAX  >  1, then  SOU(xi )  is defined as  the  digit  1 followed by the number of   zeroes  equal the 

number  of digits  in xi    before  “ .”    minus   2 .  For example, SOU(2359. 98)   =     100.  

If  MAX  �   1, then  SOU(xi )  is defined as  .01. For example, SOU(0. 358798)   =    0.01.  

C.  Replace  values of  FOA(xi) in the ranges defined by the second order LB and UB,  by the nearest  

second  order anchor (SOA), which is the best double  digit  approximation  of  xi  (i.e., in terms of the 

second order units or SOU) in these ranges. The resulting domain is SOA(xi ) of the original domain of xi.   

As an example, consider the case of expanding the value xi  = 3000.  In this case:   

SOA(xi) ={ 2000, (2500, 2600, 2700, 2800, 2900, 3000, 3100, 3200, 3300, 3400), 4000, 5000}  

D. Create a normalized second order approximation of   xi,  NSOA(xi),  by mapping  isomorphically    

FOA(xi ) and  SOA(xi)  in corresponding ranges  into one range   { 1,…,di} . 

     Considering the previous example, NSOA(xi) = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11, 12} . 

E. Continue  executing  LEM until the  range of the  fitness profile function becomes delta-small. If the 

LEM  termination condition is satisfied, EXIT;  otherwise,  go to 3. 
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(3)   Determine consecutively  higher order approximations  in a similar fashion as above, until the LEM 

stopping  condition is satisfied. 

Case 2:  Negative numbers only    (MAX   �    0) 

Transform    xi     to   - xi   and  apply  the same procedure as  above  to  the transformed  xi.  The order of values 

in the domain of NSOA(xi)  will be opposite to the order of negative numbers, that is the higher value of NSOA 

represent a higher negative value.  

Case 3:  Positive and negative numbers      (MIN  <  0   and   MAX  >   0) 

Apply the procedure described in Case  1 to the positive  numbers  and procedure  described in Case  2 to the 

negative  numbers. Assume that anchors for negative values are negative integers and anchors for positive values, 

are positive integers.  Map the whole range isomorphically into { 0,1…,di). The real  “0”  value of xi    is thus 

mapped into an integer  between 0 and di. 

3  An example 

Suppose that the domain  of   xI   is  a range  defined  by  MIN  =  -2.3   and    MAX  =  14.7. 

FOA(xI)   ranges over:   { -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}  

NFOA(xI)  ranges over  { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17}  

The original  0  is thus  represented by  2.  

Suppose that it was found that  FOA(xi) needs  to be  approximated  more precisely for values of NFOA(xI)  

equal  5 and 6.   In this case, SOA(xi)  ranges over:        

{ -2, -1, 0, 1, 2, (2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4), (3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4), 5, 6, 

7, 8, 9, 10, 11, 12, 13, 14, 15}     and  

NSOA(xi)  ranges over  { 0, 1, 2, 3, 4,   …….. , 33, 34, 35, 36}  

Suppose  now  that  it was found that values of NSOA(xi) equal  4,  14, 15   (values  2,   3.4  and  3.5  of SOA)  

need  to be approximated more precisely.  The third order approximation, TOA(xi), would then range over the 

domain:   

{ -2, -1, 0, 1, (1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4), (2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3) (3.35, 3.36, 

3.37, 3.38, 3.39, 3.40, 3.41, 3.42, 3.43, 3.44), (3.45, 3.46, 3.47, 3.48, 3.49, 3.50, 3.51, 3.52, 3.53, 3.54), (3.6, 3.7, 

3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4), (5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}    and 

NTOA(xI)  would range  over  { 0, 1, 2, 3, 4,   …….. , 51, 62, 63} . 

As this example indicates, the growth of the domain size of a variable is adjusted to the needs of the problem. 
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4 Implementation 

The Anchor method was implemented using the dynamically resizable vector class found in the C++ STL. 

(Stroustroup, 1997).  The vector is defined as  

std::vector <double>  

that indicates that each cell of the vector is a double precision floating point.  The std::vector indexes each cell 

sequentially using an integer.  The discretization process involves using the index of the cell containing the real 

value being discretized. The vector representation was chosen because it is fast and it allows one to insert or 

delete elements at real time. Consider Figure 1 that shows a fitness landscape spanned over a single variable.  

 

Figure 1. A fitness landscape over the range of a single variable.  

At generation 1, the range of the variable [0-5] is discretized into 5 values by taking only the integer part of the 

real values. At this step, original integer values and discretized values are identical, as shown in Table 1. 

Original values 0 1 2 3 4 5 

Discretized values 0 1 2 3 4 5 

A correspondence between original integer values and discretized values. 

Table 1. 

The original value is stored in the cells of the vector, and the discretized value is the index of each cell. Suppose 

now that AQ-learned rules indicate a need for representing the discretized value “1”  with a higher precision. A 

new sequence of values [0.5 .. 1.4] around value “1” , that represents the first order approximation (Table 2). 

Original values 0 0.1 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 2 3 4 5 

Discretized values 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

An example of second order approximation. 

Table 2. 
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New cells are inserted for the new range, and the discretized value, which is the cell index, is automatically 

adjusted to reflect the new change. The vector representation facilitates cell removal, if the inverse operation is 

desired, that is, when some range is represented with an excessive precision.  

5  Experiments: Comparing ANCHOR with χχχχ2-based discretization 

To test the ANCHOR method, it was experimentally compared with a χ2-based method (Kerber, 1992).  Results 

below illustrate its performance in comparison to theχ2-based method on the problem of minimizing the sphere 

function: 

 

 

where each of 100 variables is bound between –5.123 and 5.123. The function has two maxima for each 

dimension, one at xi = -5.123 and second at 5.123.  Thus, there are in total 2100 possible solutions. Every solution 

requires three decimals of accuracy. 

Six experiments were performed, each consisting of five runs that differed in their initial population.  In each run, 

the population consisted of 100 individuals, and each experiment lasted for 10,000 births.  Out of six 

experiments, five used the χ2 –based method (with 5, 10, 50, 100 and 1000 discretization units for each of 100 

variables), and the sixth experiment used ANCHOR. The results are presented in Figure 5.  

The vertical axis represents the total elapsed time to find the solution in seconds, while the horizontal axis 

indicates the average accuracy of the solutions from five runs. The accuracy of each solution was measured here 

by the ratio of the highest fitness solution found in the given run and the globally maximum solution, expressed in 

percentage. As shown in Figure 5, increasing the number of discretization units in the χ2 method yields a more 

accurate solution, but at the expense of the execution time. The execution time grew very rapidly with the number 

of discretization units.  

For example, for 25 units the process took about 15 seconds, giving accuracy of 78%; and for 1000 units, it took 

about 240 seconds, giving the accuracy of 99% (these are averages of five runs).  The best accuracy, 100%, was 

obtained by ANCHOR, in about 20 seconds. This means that ANCHOR’s accuracy was 100% in all five runs.  
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Figure 2.  Accuracy and elapsed time for ANCHOR, and χ2  method using 5, 10, 50, 100 and 1000 

discretization units for each of 100 variables. 

As shown in Figure 2, ANCHOR outperformed the χ2 discretization method in accuracy, regardless of the 

precision of discretization (the number of discrete units). When the number of discretization units was 1000, 

which is sufficient to capture the exact value of the solution, the χ2  method still did not produce the 100% 

accuracy, while its execution time was much longer than that of ANCHOR achieving 100% accuracy (240s vs 20 

sec). ANCHOR is implemented  in C++ (like the entire LEM2), and the experiments were performed on a SUN 

Sparc20 with 64MB of RAM, running Solaris 5.7. LEM2 implements both ANCHOR and χ2–based method to 

facilitate experimentation.  

4 Related Work 

Discretization of continuous variables has been investigated extensively both in Machine Learning and in 

Statistics.  Some methods are widely used, for example χ2-based, which partitions ranges of variables into equal 

intervals (Kerber, 1992). The χ2-based method was used in LEM 1. Experiments have shown that the method 

affects significantly the LEM1’s execution efficiency when variables are discretized with high precision.   

Ho and Scott (1997; 1998) proposed a method for discretization of continuous variables based on a measure of 

strength of association between nominal variables, called zeta.  The zeta measure is based on minimization of the 

error rate when each value of an independent variable predicts a different value of a dependent variable. 

Grzymala and Stefanowski (2001) proposed two methods: MODLEM-entropy and MOLEM-Laplacian.  These 

methods are integrated into the rule induction algorithm based on rough set theory. The methods differ in the way 

they find the cut points. The first method uses an entropy function, while the second methods calculates the 

Laplacian accuracy. The error rate of rules learned by both methods was similar. 

Main differences between ANCHOR and other known methods are that it is an iterative method in which the 

splits the variable range at a given iteration is based on the feedback from the previous iteration, and the 

discretization employs anchor points. Initially, the discretization precision is very low. 



 

 

 

8 

 After rules have been learned using so discretized variables, they are used to identify subranges of the variable 

domain to be selectively discretized with a higher precision. These subranges are identified based on the rules 

learned with the lower discretization precision. Another important characteristic of ANCHOR is that splits are 

defined by anchors representing consecutively more precise intervals that are equal within given subranges.   

5. Conclusion 

The version of the ANCHOR method presented above and implemented in LEM2 is called ANCHOR/E 

(ANCHOR with entire domain representation). This version always maintains a representation of the entire 

domain of the original variable. An alternative method is ANCHOR/S  (ANCHOR with selective domain 

representation) which represents only the subranges of the original domain that are hypothesized as likely 

containing the target solution.   

A modification of ANCHOR/E needed to turn it into ANCHOR/S is straightforward: the ranges that are found not 

relevant in a given iteration of LEM/AQ would be ignored in the next iteration. This way, only ranges that are 

found relevant undergo a more precise discretization.  

An advantage of the ANCHOR/E version is that allows the system to handle situations in which higher order 

discretization has been applied to inappropriate ranges, and to locally backtrack. The price for this advantage is 

the need to maintain larger domains, which makes the method more costly computationally.  In contrast, 

ANCHOR/S uses reduced ranges, which increases its efficiency, but at the cost of preventing local backtracking.  

If it appears that backtracking is needed, LEM would invoke a start-over operation, repeating evolutionary 

computation with a different initial population using the first order discretization.  To get a more precise 

evaluation of the relative merits of ANCHOR/E and ANCHOR/S versions, this issue needs to be investigated 

experimentally. An interesting problem for further research is to investigate the possibility of using ANCHOR 

method for other applications than LEM. 
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