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1.	Summary

This	paper	explores	one	interpretation	of	quantum	mechanics:	that	perhaps	the	waves	of
quantum	mechanics	are	real	and	the	particles,	i.e.	the	quanta,	are	merely	properties	of
atoms,	the	atoms	which	are	responsible	for	launching	and	absorbing	the	waves.	In	this
interpretation,	the	waves	of	quantum	mechanics	are	emitted	in	discrete	quanta,	but	after
emission	they	spread	out	as	waves	do.	A	detector's	atoms	are	continuously	bathed	in	a	sea
of	zero	point	noise	which	is	in	equilibrium	with	these	atoms.	An	outside	wave,	even	if	faint,
will	throw	off	this	equilibrium	which	results	in	one	or	more	atoms	in	a	particle	detector
absorbing	a	quantum	partially	from	the	wave	and	partially	from	the	zero	point	noise	field.
In	this	article	we	show	that	the	number	of	atoms	absorbing	a	quantum	will	be	proportional
to	the	energy	density	of	the	external	wave

2.	Introduction

All	things	in	quantum	mechanics	propagate	as	waves	but	are	emitted	and	absorbed	as
particles.

In	quantum	mechanics	all	entities	are	considered	to	have	both	particle-like	and	wave-like
attributes.	This	is	often	summed	up	as:	entities	propagate	as	waves	but	are	emitted	and
absorbed	as	particles.	The	standard	interpretation	of	quantum	mechanics,	i.e.	the
Copenhagen	interpretation,	puts	more	emphasis	on	the	particle	side,	implying	that	these
tiny	entities	are	basically	particles	but	somehow	magically	propagate	as	waves.	The	current
paper	explores	the	obvious	other	interpretation,	that	elementary	"particles"	really	are
waves,	not	particles,	but	these	waves	are	emitted	and	absorbed	in	such	a	way	as	to	mimic
particle	emission	and	absorption.	For	other,	non-conventional	interpretations	see	wikipedia.

The	particles:	In	this	paper	the	"particles"	that	we	wish	to	consider	as	waves	are	those
truly	elementary	particles	that	are	not	composites	of	smaller	entities.	Possibilities	are
electrons,	quarks,	photons,	phonons,	etc.	Composites	such	as	atoms	are	localized	entities,
i.e.	particles,	that	are	composed	of	waves	internally.	We	will	put	off	dealing	with	composites
to	a	future	paper.	While	we	will	not	be	concerned	with	atoms	as	particles	(as	in	interfering
beams	of	atoms),	we	will	be	very	interested	in	them	playing	another	very	important	role	as
wave	emitters	and	absorbers	as	discussed	in	Section	3	below.

The	waves:	We	envision	these	waves	to	be	fairly	complicated,	similar	to	the	waves	that	can
exist	in	some	solid	state	materials	so	as	to	allow	the	waves	to	carry	properties	that	are
conventionally	associated	with	elementary	particles.	That	is	to	say	that	electron	waves	will
carry	charge	and	spin.	The	spin	aspect	would	be	similar	to	spin	waves	that	exist	in
magnetic	materials.	Quark	waves	would	be	even	more	complex	with	more	properties	in	the
waves.	Viewing	elementary	particles	as	waves	amounts	to	assuming	that	space	is	a	medium
that	supports	these	various	complicated	waves.	The	inclusion	of	charge	as	a	wave	property
makes	electron	and	quark	waves	non-linear;	that	is,	the	wave	trajectories,	wavelength,
etc.	can	depend	on	the	amplitude	of	the	waves.

The	atom:	In	this	interpretation	an	atom	is	considered	to	have	a	central	positive	core
which	traps	electron	waves	in	various	excitation	modes,	i.e.	orbitals.	Thus	atoms	are
solitons	of	a	sort.	The	non-linearity	of	the	waves	opens	up	the	possibility	that	stable
electron	waves	in	an	atom	only	exist	at	one	select	excitation	level	for	each	mode.	If	we
assume	such	discrete	excitation	levels	then	whenever	a	mode	is	to	be	excited,	an	atom	will
absorb	one	quantum	of	energy	and	when	it	radiates	energy,	it	will	radiate	one	quantum	of



Examples	of	“measurements”

An	atom	on	a	photographic	film	absorbing	a
quantum	of	energy.	In	the	process,	the	atom
changes	state	and	changes	the	chemical	bonds
with	nearby	atoms	and	thus	becomes	“exposed”.
An	atom	in	a	solid	state	particle	detector
becoming	excited	and	ejecting	a	quantum	of
charge	into	the	detector’s	conduction	band
where	it	will	be	registered	as	an	electronic
event.
An	atom	in	a	bubble	chamber	absorbing	a
quantum	of	energy,	part	of	which	it	releases	to
the	surrounding	atoms	and	causes	nucleation	of
a	bubble.
A	neutron	in	a	cold	neutron	experiment	is
absorbed	by	a	3He	nucleus	of	a	neutron	detector
which	results	in	the	production	of	two	hydrogen
atoms	and	0.764	MeV	of	energy.	The	0.764	MeV
of	energy	creates	a	charge	cloud	which	is	picked
up	by	the	Geiger-Muller	tube	which	contains	the
3He.

energy.	This	makes	absorption	and	emission	of	radiation	occur	in	quanta.	We	deal	more
with	absorption	in	the	next	section.

Emission:	If	an	atom	emits	a	quantum	of	electromagnetic	energy	or	an	electron,	that	wave
will	spread	and	flow	outwards	away	from	the	atom	in	a	normal	wave	fashion	as	dictated	by
the	Maxwell	or	Schroedinger	equations	modified	to	carry	spin	and	charge	as	appropriate.

3.	Absorption

In	quantum	mechanics	"measurements"	are	the	only	way	we	know	what	is	happening.	That
is	to	say	we	envision	quantum	mechanical	waves	propagating	here	and	there	but	until	we
make	a	"measurement"	we	can	be	sure	of	nothing.	But	a	measurement	is	a	drastic	step
because	in	the	conventional	interpretation	when	a	measurement	is	performed,	the	waves,
spread	out	as	they	may	be,	instantaneously	collapse	onto	the	site	of	the	measurement	and
propagate	no	more.	The	instantaneous	collapse	violates	relativistic	causality,	but	is
accepted	as	one	of	the	mysteries	of	quantum	mechanics.

What	constitutes	a	measurement?	Our
view	is	that	a	“measurement”	consists	of
absorption	of	the	wave	by	an	atom.	(See
examples	listed	at	right.)	Whenever	an
atom	absorbs	a	quantum	mechanical	wave
and	undergoes	a	change	as	a	result,	we
can,	if	we	choose,	deduce	something
about	what	the	quantum	mechanical	wave
was	doing	before	the	absorption.	The
atomic	absorption	scrambles	the	quantum
mechanical	wave	and	is	usually
considered	irreversible,	that	is,	the	initial
wave	cannot	be	reconstructed.

Just	how	does	the	spread	out	wave	field
concentrate	itself	to	allow	one	quantum	of
energy	or	a	whole	electron	to	be	absorbed
by	an	atom?	As	we	stated	above,	the
conventional	interpretation	resorts	to
magic	to	explain	this	effect.	In	the	wave-
centric	interpretation	we	hope	to	get	rid
of	the	magic	and	restore	causality	to	the
understanding	of	quantum	mechanics.

In	the	wave-centric	interpretation,	absorption	can	be	explained	in	terms	of	a	background
noise,	most	likely	the	zero-point	energy.	In	this	interpretation	we	assume	there	is	an
undetectable	noise	field	filling	space	in	equilibrium	with	the	atoms.	This	is	in	addition	to
any	thermal	(temperature	related)	noise.	This	noise	field	is	undetectable	because	we
interpret	zero	point	effects	as	due	to	quantum	mechanics.

In	the	next	section	we	will	show	that	a	noise	field	which	provides	energy	around	and
available	to	every	atom	can	cause	the	quantum	mechanical	particle-like	energy	absorption.
This	does	not	mean	every	particle	will	see	the	same	level	of	noise	energy	at	all	times.	Being
chaotic	as	noise	fields	are,	at	any	instant	around	some	atoms	there	will	be	more	noise
energy	and	around	other	atoms	there	will	be	less	noise	energy.	It	is	also	true	that	at	any
instant	the	noise	around	some	atom	will	be	phased	just	right	to	best	add	to	whatever
external	wave	is	arriving.	If	no	external	radiation	is	present,	this	noise	will	be	in
equilibrium	with	the	atoms	and	will	result	in	very	few	if	any	actual	transitions.

When	there	is	an	external	wave	present	and	this	wave	combines	with	the	noise	field,	some
lucky	atom	or	atoms	will	be	in	just	the	right	place	and	have	just	the	right	phase	to	use	the
noise	energy	plus	the	external	radiation	to	absorb	a	quantum	and	make	a	transition.	During
the	transition,	the	atom	will,	as	all	wave	receivers	do,	emit	a	canceling	wave	which	will
cancel	the	nearby	combined	noise	and	external	wave	fields	and	thereby	deny	other	nearby
atoms	the	opportunity	to	make	a	transition.	This	emission	of	a	canceling	wave	allows	the
atom	to	have	an	effective	cross	section	for	absorption	much,	much	bigger	than	its	physical
size.	This	is	the	same	effect	that	also	allows	small	AM	and	FM	radios	to	similarly	have	a
very	enhanced	absorption	cross	section,	again	much	larger	than	their	physical	sizes.

The	larger	the	external	wave	is,	the	more	atoms	will	happen	to	have	sufficient	surrounding
noise	fields	to	allow	them	to	effect	a	transition.	If	we	count	each	transition	as	a	"particle"
then	we	will	"detect"	(via	transitions)	more	"particles"	in	regions	of	stronger	external	wave
fields.	In	the	next	section	we	do	the	math	to	derive	the	distribution	of	noise	amplitude
required	to	make	the	number	of	transitions	be	proportional	to	the	energy	in	the	external
wave.



Fig.	1.Triangular	noise	distribution.	This	curve
shows	the	probability	(per	amplitude)	that	noise
will	be	able	to	impart	a	given	amplitude	to	a
resonator	(such	as	an	atom).	Later	we	will	explore
possible	sources	of	this	noise	distribution.	On	the
horizontal	axis	is	the	component	of	noise
amplitude	that	is	in	phase	with	a	particular
external	wave.	Negative	noise	amplitudes	indicate
that	the	noise	is	phased	to	subtract	energy	from
the	atom.	We	will	be	primarily	interested	in	the
right	half	of	the	distribution	which	has	has	a	total
probability	of	one	(area	under	the	right	side	of	the
distribution).

To	summarize	absorption:	the	wave-centric	interpretation	hypothesizes	that	atoms	are
surrounded	by	a	noise	field	and	that	this	noise	field	allows	even	weak	external	waves	to
cause	an	occasional	atomic	transition	as	expected	in	quantum	mechanics.	We	might	view
the	atoms	as	popcorn	kernels	on	a	hot	frying	pan	just	waiting	for	an	extra	bit	of	heat	to
make	them	pop;	the	stronger	this	"external	heat"	the	more	kernels	will	pop.

4.	Required	distribution	of	noise	amplitudes:

In	this	section	we	assume	a	triangular	distribution	of	noise	amplitudes.	We	then	go	on	to
show	that	this	results	in	the	probability	of	a	detection	being	proportional	to	the	external
wave	energy.	We	also	show	that	random	phases	in	the	various	waves	making	up	the	noise
result	in	a	total	amplitude	having	a	distribution	that	is	nearly	triangular.

Suppose	we	pick	a	point	at	which	to	examine
the	noise	and	repeatedly	measure	the	noise
amplitude	at	this	point	over	a	period	of	time.
Because	of	the	ever	changing	nature	of	noise
fields	we	expect	to	see	a	variation	in
amplitudes	of	our	measurements.	This
variation	is	due	to	the	mix	of	waves	in	the
noise	field	having	various	frequencies	and
beating	with	each	other.	The	resulting	time-
varying	field	will,	at	times,	add	to	any
particular	external	wave	and	at	other	times
will	subtract	from	it.

Triangular	noise	distribution:	Fig.	1	shows
a	triangular	noise	amplitude	distribution.	This
represents	one	possible	distribution	of
amplitudes.	It	shows	the	relative	fraction	of
time	a	certain	amount	of	noise	amplitude	will
be	available	to	an	atom	for	the	purpose	of
making	a	transition.

For	convenience,	we	assume	amplitude	units
such	that	an	amplitude	of	+1	(plotted	on	the
horizontal	axis	of	the	graph)	is	the	amplitude
required	to	cause	a	transition	without	any	external	wave.	According	to	the	graph	in	Fig.	1,
there	is	zero	probability	of	such	a	+1	amplitude.

At	this	point	in	our	explanation	we	are	only	interested	in	positive	amplitudes,	those	which
will	potentially	add	to	a	particular	external	wave's	amplitude	and	be	involved	with	a
quantum	absorption.	These	positive	amplitudes	are	on	the	right	side	of	Fig.	1.	We	can
express	the	linear	region	on	the	positive	side	of	Fig.	1	as:

									.					(1)

For	larger	noise	amplitudes	where	Anoise	>	1	,		the	probability	P1	=	0		.

Resulting	transitions:

We	need	to	determine	the	probability	that	the	noise	as	specified	in	Fig.	1	will	be	available
to	participate	in	a	transition.	That	is,	given	an	external	wave	of	amplitude	Aext	,	we	need	to
calculate	the	probability	that	the	sum	of	the	noise	amplitude	and	the	external	wave
amplitude	will	be	greater	or	equal	to	the	amplitude	for	a	transition.

For	this	we	need	the	probability	P2	that	the	noise	will	be	greater	or	equal	to	a	given
minimum	value	Amin	.	This	can	be	calculated	from	(1):

.

Doing	the	final	evaluation,	we	get:

									,					(2)

which	we	plot	in	Fig.	2.

In	Fig.	3	we	have	changed	the	horizontal	axis
from	the	minimum	noise	amplitude	into	the



Fig.	2.	Parabolic	noise	distribution.	This	is	the
shape	of	the	noise	amplitude	distribution	when	the
horizontal	axis	represents	the	minimum	amplitude.

Fig.	5.	Typical	histogram	showing	the	frequency	of
occurrence	of	various	total	amplitudes	resulting	from
summing	many	waveforms	with	random	phases,
frequencies,	and	amplitudes.	The	waveform	amplitudes

external	wave	amplitude	required	to	make	the
total	amplitude	available	to	the	atom	to	be
equal	to	or	greater	than	+1		(i.e.	one
quantum).	That	is	to	say	such	that			
Amin	+	Aext	=	+1			.

We	can	turn	this	last	equation	around	and
solve	for	the	amplitude	of	the	external	wave,
i.e.		Aext	=	1	−	Amin	.	Looking	at	Eqn.	(2)	we
see	this	makes	the	probability

P2	=	(Aext)2						.					(3)

Thus	we	now	have	the	probability	of	transition
as	a	function	of	the	amplitude	of	the	external
wave,	as	plotted	in	Fig.	3	below.

Equation	(3)	indicates	that	the	transition	probability	equals	the	external	wave	amplitude
squared.	We	know	that	the	wave	energy	Eext	is	also	proportional	to	the	wave	amplitude
squared.	We	can	now	write:

P2	∝	Eext					.					(4)

Thus	the	probability	of	detection	is	proportional	to	the	energy	of	the	external	wave	as
shown	in	Fig.	4.

This	is	consistent	with	conventional	quantum	mechanics.	Note	again	that	this	is	for	a
background	noise	with	a	triangular	amplitude	distribution	as	shown	in	Fig.	1	.	As	a	final
cross	check	we	note	that	Fig.	3	shows	that	an	external	wave	with	an	amplitude	of	+1	which
we	defined	earlier	to	be	equivalent	to	one	quantum	(available	energy	to	an	atom)	which	will
have	100%	chance	of	causing	a	transition.

Fig.	3.	Probability	of	transition	versus	amplitude	of
external	wave	adding	to	the	noise	amplitude.

Fig.	4.	Probability	of	transition	versus	external
wave	energy.

5.	Distribution	resulting	from	random	phases	incident	on	atoms:

We	used	Octave	to	calculate	the
distribution	of	amplitudes	of	a
particular	phase	(to	match	the	phase	of
a	specific	external	wave)	that	might	be
expected	in	a	linear	resonator	(our
atom).	We	summed	waves	with	random
phases,	amplitudes	and	frequencies.
Fig.	5	shows	the	resulting	distribution
with	a	fitted	Gaussian.	We	see	the	fit	is
good.

Fig.	6	shows	a	Gaussian	as	compared
with	a	triangular	distribution.	The	two
curves	differ	at	the	peak	around
Anoise	=	0	and	also	around	the	edges,
i.e.	around	Anoise	=	±1.	If	an	atom	did
experience	an	amplitude	with	an
absolute	value	greater	than	1,	this
amplitude	would	cause	a	transition
without	any	extra	outside	wave.	This



were	multiplied	by	a	resonator	response	function.	Also
shown	is	a	fitted	Gaussian	distribution.

means	that	the	atom	would
instantaneously	absorb	all	the
amplitudes	with	an	absolute	value	in
excess	of	1	and	leave	small	amplitudes	remaining.	The	small	amplitude	"clippings"	would
add	to	the	center	part	of	the	distribution	curve	making	the	Gaussian	more	triangular	as
shown	in	Fig.	7.	As	we	can	see	the	results	are	a	nearly	triangular	amplitude	distribution.	A
better	modeling	of	this	process	would	require	modeling	of	the	atom	as	a	non-linear
resonator	surrounded	by	a	noise	field	which	is	in	equilibrium	with	other	non-linear
atom/resonators.	Hopefully	with	more	complete	modeling	a	truly	triangular	noise
distribution	would	be	achieved.

Fig.	6.	Comparison	of	triangular	and	Gaussian
distributions.

Fig.	7.	Result	of	clipping	amplitudes	outside	the	±1
quantum	region	to	crudely	simulate	atoms	quickly
absorbing	one	quantum	of	these	amplitudes.	The	remains
of	these	clippings	are	added	to	the	distribution	increasing
the	center	peak	region.	Also	shown	is	a	fitted	triangular
distribution	(in	black)	which	now	is	a	moderately	good	fit.

6.	Questions	and	brief	answers	concerning	specific	applications	of	the
wave-centric	interpretation

1.	 What	about	particle	tracks	such	as	those	in	a	cloud	chamber?	Are	these	not	very
compelling	evidence	that	there	really	are	subatomic	particles?	Answer:	these	are	just
as	much	compelling	evidence	that	there	really	are	waves.	As	explained	many	years	ago
[see	Schiff,	Quantum	Mechanics,	2nd	Ed.	p.209-210,	McGraw-Hill	1955]	each	spot	on
a	cloud	chamber	or	bubble	chamber,	etc	is	due	to	an	atomic	absorption	or	excitation
and	results	in	the	collapse	of	the	wave	function	(or	atomic	transition	in	our
interpretation),	a	re-concentrating	of	the	energy	and	a	re-emission	of	most	of	the
energy	in	the	direction	of	momentum.	This	re-concentration	makes	it	extremely	likely
that	another	measurement	event	will	happen	just	down	stream	from	the	first,	and	that
will	result	in	another	re-concentration	and	re-emission,	and	so	on,	resulting	in	a	trail	of
events,	i.e.	a	track.	The	tracks	are	due	to	successive	``measurement"	events	of	the
waves	and	not	necessarily	due	to	the	presence	of	a	localized	particle.	In	the	wave-
centric	interpretation	zero	point	noise	is	integrally	involved	in	each	measurement.

2.	 Which-way	experiments	have	been	popular	in	the	last	several	decades.	In	these	a	non-
linear	element	splits	a	very	dilute	beam	of	photons	and	sends	the	two	halves	on
different	paths	which	eventually	recombine	at	a	detector	which	sees	an	interference
pattern	of	one	type	or	another.	The	beam	is	made	dilute	enough	so	that	there	is	only
one	photon	in	the	setup	at	a	time.	If	we	add	a	detector	along	one	path	to	try	to
determine	which	path	a	particular	photon	is	traveling,	the	interference	pattern	goes
away.	Since	conventional	quantum	mechanics	considers	a	single	photon	unsplittable	it
is	not	clear	how	a	single	photon	can	sample	both	routes	and	interfere	with	itself.	It	is
also	unclear	how	a	single	photon	knows	when	a	detector	is	placed	in	the	path	it
doesn't	take.

Answer:	In	the	wave-centric	interpretation,	there	are	actual	waves	traveling	both
routes	simultaneously	and	they	recombine	and	interfere	at	the	final	measuring	point
as	waves	would.	If	we	block	the	waves	in	one	path	with	an	additional	measurement
device,	the	interference	is	destroyed	just	as	it	would	be	in	classical	wave	experiments.
If	we	partially	block	a	path,	the	interference	is	reduced.



3.	 What	about	quantum	entanglement	experiments?	In	these	experiments	twin	pairs	of
"particles"	are	produced	and	separate.	Before	measurement,	these	particles	can	have
a	wide	range	of	properties.	Measurement	of	one	particle	seems	to	fix	the	properties	of
the	other	particle	instantaneously	even	if	the	two	are	separated	by	very	large
distances.	These	experiments	are	cited	as	proof	that	quantum	mechanics	is	strange
and	cannot	be	explained	by	a	deterministic	interpretation.

Wave-centric	answer:	Most	likely	any	particular	pair	of	wave	packets	sent	out	were	a
lot	more	limited	in	space,	time	and/or	other	properties	than	many	physicists	assume,
even	though	the	ensemble	of	all	the	particles	(i.e.	all	the	wave	packets)	under
consideration	involve	greatly	varying	properties.	For	example,	consider	the	decay	of
positronium	which	often	results	in	two	oppositely	traveling	gamma	rays.	Probably	the
wave	packets	of	a	specific	pair	of	"photons"	were	directed	oppositely	along	a	specific
axis	during	creation	due	to	the	internal	dynamics	of	the	decay	process.	It	is	then	no
mystery	that	later	detection	of	the	two	would	reveal	them	to	be	traveling	in	opposite
directions.

4.	 Bell's	hidden	variable	theorem.	This	applies	to	particles	trying	to	mimic	waves.	We	are
proposing	that	only	waves	carry	all	the	measurable	properties.	This	purely	wave
approach	is	not	in	conflict	with	Bell's	theorem.

5.	 Electron-electron	collisions.	Our	model	would	set	up	the	calculation	with	two	uniform
electron	waves	colliding	with	each	other.	With	no	tiny	particles	of	very	localized	strong
forces	how	can	we	have	large	angle	scattering?	This	is	also	a	question	in	conventional
quantum	mechanics.	In	conventional	quantum	mechanics	we	convert	to	a	center	of
mass	reference	frame	then	proceed	to	calculate	the	results	of	two	quantum
mechanical	plane	waves	passing	through	each	other.	This	wave	math	would	be	the
same	as	in	the	wave-centric	approach.	In	both,	the	specifics	of	the	quantum
mechanical	wave	equation	lead	to	a	certain	amount	of	large	angle	scattering.

7.	Conclusion

In	this	article	we	have	briefly	examined	the	possibility	that	the	waves	in	the	wave-particle
duality	of	quantum	mechanics	be	elevated	to	"real"	and	the	"particles"	be	considered	as
artifacts	of	the	way	the	waves	behave.	More	specifically	we	show	that	waves	in	the
presence	of	zero	point	noise	could	be	responsible	for	the	particle-like	aspects	of	electrons,
photons,	etc.	Unlike	the	conventional	Copenhagen	interpretation,	the	interpretation
presented	here	has	the	advantage	of	preserving	causality.	At	the	same	time,	this
interpretation	needs	a	lots	of	additional	refinement,	extension	and	detailed	modeling.
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