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Abstract

AUTOMATIC PROGRAM STATE EXPLORATION TECHNIQUES FOR SECURITY
ANALYSIS OF ANDROID APPS

Ryan Johnson, PhD

George Mason University, 2019

Dissertation Director: Dr. Angelos Stavrou

Dissertation Co-Director: Dr. Sanjeev Setia

The usage and ownership of mobile devices is increasing globally. Our reliance on mobile

devices and the apps they run warrant novel techniques to explore the behavior of both

downloaded and pre-installed apps. Mobile apps are increasing in size and complexity,

making them more challenging to design and test. Focusing on Android, the most popular

mobile platform, I present methodologies to automatically analyze the states of Android

apps without access to source code and from a security perspective. Primarily, my research

suggests approaches to overcome the limitations of current binary code analysis techniques

to also include external and environmental inputs. I explain how utilizing this augmented

set of inputs we can discover unsafe app states that violate end-user security and privacy

when abused by an adversary.

To that end, I designed and implemented a novel program analysis technique for Android

called Forced-Path Execution (FPE). FPE forces execution of code independent of the

program state according to an execution strategy exposing program states that are deemed

safety critical. Applying FPE on Android apps, I was able to discover unsafe use of sensitive

Android Programming Interfaces (APIs) and “leaking” of Personally Identifiable Information



(PII) including access to text messages and system logs, among others. In addition, I explore

the security and reliability of inter-app communications via the Android Inter-Process

Communication (IPC) mechanism, namely the use of Intents. I systematically stress-test this

Android IPC mechanism to uncover design flaws within apps and the Android Operating

System (OS) itself. My approach scales to scan thousands of apps from Google Play and

the official Android Open Source Project (AOSP) code. As a result, I discovered thousands

of Intent input validation faults in apps from Google Play and multiple faults in a critical

AOSP system process for both the smartphone and embedded Android platforms.



Chapter 1: Introduction

Mobile devices are an integral part of daily life. It is estimated that 5 billion people own

mobile devices, and more than half of these mobile devices are smartphones [1]. Over the

past eight years, mobile devices have eclipsed traditional Personal Computers (PC) in the

number of units shipped [2], number of active daily users on Facebook [3], number of Google

searches [4], and volume of web browsing traffic [5]. Furthermore, estimates predict that

in 2019 people will spend more time on mobile devices than on PCs, and by 2025 72.6%

of all users will use solely a mobile device to access the Internet [6]. Greater dependence

on mobile devices is likely to continue [7]. Mobile devices have become so ubiquitous and

integrated with our daily activities to such an extent that research exists to study the effects

of nomophobia, the fear of being without a mobile device [8–10].

Mobile device users can quickly and easily extend the functionality of their device by

downloading and installing software applications (subsequently referred to as apps) to obtain

new content and capabilities. Users have greatly benefited from the large and readily

available corpora of apps that are hosted on app distribution platforms that offer a seamless

experience downloading and installing billions of apps. Globally, 194 billion apps were

downloaded in 2018, and consumers spent $101 billion through in-app purchases, paid app

downloads, and in-app subscriptions [11]. The official app distribution platform for Android,

Google Play, hosted more than 2.7 million apps as of August 2019 [12]. Since 2011 Android

has been the dominant mobile OS and recently surpassed Windows to become the most

widely used OS [13]. Android apps are not just limited to smartphones, they can run on

streaming media players, wearable devices, smart TVs, Internet of Things (IoT) devices,

and infotainment systems [14].

Occasionally, apps downloaded through official and unofficial app stores can cause security

1



and privacy issues [15–20]. These issues can also arise in pre-installed apps in Android

devices that user did not choose to install themselves [21–26]. Pre-installed apps provide

the base functionality for a device, including downloading additional apps. Pre-installed

apps can obtain privileges from the system, which are unavailable to apps that the user

downloads and installs, generally referred to as third-party apps. Since pre-installed apps are

present on the device from the beginning, they present a potent attack vector, especially

since some cannot be disabled or uninstalled by the user.

Mobile apps provide expanded functionality to the user. The degree to which an app has

access to resources on a mobile device is generally regulated by the use of permissions. The

Android platform declares permissions that an app can request to access specific resources,

such as obtaining a list of the user’s contacts. These protected resources include user data

such as the user’s email address, phone number, call log, text messages, Global Positioning

System (GPS) coordinates, unique device identifiers, photos, downloaded files, and more.

Some of these protected resources qualify as Personally Identifiable Information (PII), which

can be used by itself or in concert with other data points to identify the user. User data

can be utilized in an app to provide a rich user experience, but the user data can also be

mishandled, both intentionally and unintentionally.

On devices running Android version 6.0 and higher, the user can decide if an app is

allowed to obtain certain permissions. Permissions that provide access to user data require

the user to directly grant the permission to the app. After the user grants a permission to

an app, the app can then access the corresponding resource directly, such as using the GPS

subsystem to obtain the device’s physical location. Users can see what permissions an app

requests, but they may not understand all the ways that their personal data can be used.

For example, the typical user is likely unaware if or when GPS data is sent from their device

to a remote location; to whom the data was sent and under what conditions; and if the GPS

data is sent only if the user is a member of a certain group of interest. I aim to address

these issues by simultaneously simulating different environments to an app while recording

its behavior.
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Typically, the use of permissions by apps provides a measurable boundary of an app’s

functionality, although this is not always the case. In certain circumstances, a less privileged

app can use an open interface of a more privileged app to have it perform permission-

protected functionality on its behalf, manifesting as a capability leak. Android apps can

provide interfaces for other apps to share data and communicate. Therefore, an app with no

permissions may be able to indirectly access permission-protected resources through an app

that has access to them. This means that resident vulnerabilities in other apps can be locally

exploited by an app co-located on the device. Attacking locally from an Android app greatly

expands its access to the system and other apps, giving leverage to remote attacks, which

can result in privilege escalation [21,23], spyware [22,27], ransomware [28,29], and Denial of

Service (DoS) attacks [30–33]. The proliferation of intentionally and unintentionally insecure

apps warrants novel techniques to detect and thwart these issues using a proactive approach

to security.

1.1 Android App Analysis

A program state is a snapshot of a program during execution that encompasses the program’s

memory, representing the current values of its variables. Currently, the two primary methods

for determining the states that a mobile app can occupy, and thus its behavior, are static

analysis and dynamic analysis. Static analysis examines artifacts of the app and reasons

about its behavior without executing it. Dynamic analysis involves executing the app and

recording aspects of the app’s precise runtime behavior. Recording app behavior is generally

achieved using instrumentation which adds extra code to interpose on an app during its

execution. Numerous dynamic analysis frameworks and techniques exist for Android [34–44].

These approaches are often paired with a tool to programmatically interact with the app

being analyzed to increase code coverage and facilitate automation. The majority of dynamic

analysis platforms for Android depend on leveraging interactions with the app’s Graphical

User Interface (GUI), such as programmatic injection of random user and system events

into a running app.
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Android apps generally use data obtained from the environment, which, in turn, affects

the behavior of an app. By the environment, I mean data that is obtained from outside of

the app code such as from the Android OS, user, file system, or network. The environment

in which an app executes can be expected to vary. I have discovered multiple real-word

apps that require quite specific runtime conditions to exhibit a behavior that is generally

harmful to the user (see Chapter 4). I propose that it is constructive to simulate different

environments to make an Android app exhibit a greater range of behavior than what would

be otherwise displayed in a single environment. In addition, Android apps can employ

anti-analysis techniques in which they change their behavior when they detect that they

are being analyzed [45,46]. Some of the anti-analysis approaches inspect the environment

with the aim of detecting an emulator [45–47], detecting root user management utilities

[48,49], watermarking analysis platforms [50], and detecting the use of automated exploration

techniques [51].

1.2 Forced-Path Execution

To enable full code analysis of Android apps, many challenges have to be addressed. To

that end, I have designed and implemented a novel analysis methodology that relies on a

new custom Android analysis tool using forced-path execution. Forced-path execution (FPE)

explores both branches of selected conditional statements based on execution strategies

in order to enumerate the possible behavior of an Android app in different environments.

A conditional statement contains a mathematical or logical expression that is evaluated

using its input(s) to determine which code branch to execute. A logical or mathematical

expression, known as a predicate, consists of a relation among inputs or a Boolean value

that is evaluated to produce a Boolean result. An execution strategy is a set of rules that

determine which conditional statements should be explored based on a high-level goal (e.g.,

complete exploration, exploring the input domains). Various dynamic analysis approaches

have difficulty achieving code coverage [38,52]. Current tools and frameworks to explore the
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GUI are not sufficient to enter code branches that may require specific external input to

execute. This includes system and network events in addition to conditions that depend on

the configuration of the app execution environment. An app execution environment refers

to external sources of data that an app accesses which can affect the evaluated outcome of

conditional statements within the app. For example, some items comprising the execution

environment are the network, OS version, user input, location, language setting, time, date,

presence and versions of supporting software, to name a few. These externalities naturally

vary and can differ from one environment to the next.

FPE relies on execution strategies to inform the framework under what conditions to

explore all branches of a conditional statement. Depending on the execution strategy, FPE

may track data from the environment to eliminate some infeasible paths from the analysis

that cause false positives, though the problem is formally undecidable. This is accomplished

by limiting the forcing of conditional statements to only when values related to the execution

environment are evaluated in a conditional statement. Since values related to the execution

environment can be expected to vary, all branches of a conditional statement will be taken

to examine an app’s functionality. For example, an app may obtain the current timestamp

and check if a certain amount of time has passed by comparing it to saved timestamp when

making a branching decision. As time passes, the necessary condition will naturally arise for

the branch that is control-dependent on a timestamp comparison to be entered, although

the time threshold to enter this branch can be set by the developer to a longer period than

most dynamic analysis frameworks spend analyzing an app [53].

I also present another research area that focuses on the security and reliability with

regard to the usage of Intent objects. An Intent is an object in the Android Application

Programming Interface (API) that provides a message-like abstraction that is asynchronously

sent within an app or between apps [54]. Android apps are compartmentalized into app

components to encourage code reuse and data sharing. Intent objects are the primary

communication mechanism between app components. A single Intent can support different

information flows, including being sent to multiple destinations using a broadcast Intent.
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Sending Intents require no access permissions; therefore, they can be leveraged by any app

co-located on the Android device.1 Through my research, I have demonstrated that Intents

can be used as an effective medium for launching local DoS attacks against the system

and other apps. By sending Intents at specified rate of transmission, an app can create

memory pressure and cause the system to terminate another app of its choosing. Therefore,

an app can set itself as the gatekeeper that decides if another app can execute. Using Intent

objects, a local app can also cause the device to be unresponsive to the user, denying the

user all productive functionality of the device. In addition, sending Intents at an accelerated

rate can cause a user space system crash.2 A user space system crash occurs when user

space components of the Android OS crash and then restart while the underlying Linux

kernel continues execution. I applied these DoS attacks on a range of embedded Android

devices to evaluate their mechanisms to cope with a persistent, local DoS attack. Although

resiliency to the DoS attacks among the devices were varied, in the most severe cases, a

zero-permission Android app could disable certain embedded Android devices and make

them functionally useless.3 I also proposed some platform defenses and implemented them

in open-source defense apps to mitigate the DoS attacks [55,56].

Furthermore, I demonstrate that many Android apps and the Android OS itself make

assumptions in their code about the presence of certain embedded data in Intents without

first checking to see if the data exists at runtime. Even if apps do perform input validation,

some apps are unable to gracefully handle the absence of anticipated data. The use of Intents

with empty data fields can lead to a program crash, user space system crash, or permission

leaks in privileged pre-installed apps. I developed an open-source tool that systematically

discovers and tests the exposed app components on various Android devices and determines

their effects [57]. If a user space system crash is caused repeatedly by an app, it can result

in a local DoS attack against the availability of the device. A fault occurring within Android

OS code is generally a significant event and some devices will write the system logs to a

1There are some limitations on the Intents that an instant app can send. Instant apps are ephemeral apps
launched by clicking on an HTTP(S) link, which provides a preview of an app without having to install it.

2This is also informally known as a soft reboot, a term that also appears in the research literature.
3I responsibly reported the DoS attacks to Google and the affected vendors for remediation.
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world-readable file, resulting in potential data disclosure.

1.3 Contributions of this Work

1.3.1 Thesis Statement

1. Problem Statement : Current program analysis techniques evaluate the target program

in a single or limited set of execution environments that depend on immutable predicates

and lack modeling of external and environmental inputs and adversarial behavior.

2. Thesis Statement : Exploring and controlling the evaluation of predicates where artifacts

of the execution environment are used as inputs can offer comprehensive analysis of

software in different execution environments and uncover states that may not be

reached under normal execution.

To answer the question, “How can I comprehensively uncover unwanted functionality

that can be expressed as unwanted states or program conditions that can lead to program

exploitation or failure in terms of reliability?” I show that if I attempt to identify these

program states using existing testing techniques, under certain conditions known to an

adversary, it fails to reach them. This can happen for a number of reasons that have to do

with theoretical bounds of existing testing methodologies and the limitations of practical

implementations on actual systems.

The aim of my research is to extend the analysis and testing of programs to eliminate

potential exposure to attacks or corruption. I do so by analyzing the program with FPE,

which identifies states and code paths that are undesirable from a security or reliability

perspective. I then create different and all-encompassing what if scenarios that can lead

to those states that might be reachable from a set of inputs. In some cases, the unwanted

functionality can be triggered with a simple Inter-Process Communication (IPC) message,

which in Android takes place through Intents. In other cases, a simple file change might be

sufficient. Finally, I prune paths by using execution strategies to eliminate paths that are
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truly non-reachable either because their preconditions cannot be met under any condition

or because the changes required are not easy to achieve.

1.3.2 Summary of Contributions

This dissertation introduces a novel program analysis technique for Android that examines

the potential behavior of an Android app under a wide array of input and environmental

conditions. In addition, I examine a commonplace IPC mechanism, Intents, and the methods

in which they can be leveraged to launch local DoS attacks against other apps and the

Android OS. In summary, my contributions are as follows:

• I created and implemented an Android app analysis technique, FPE. This generic

framework can be used for examining behavior and extended for use in other domains.

• I demonstrate the utility of the FPE framework by examining its findings on a sample

of Android apps. I also highlight successful applications of FPE in the following

domains: detecting Android app clones and discovering capability leakages and PII

leakages.

• I developed various Intent-based local DoS attacks. These concrete attacks were

reported to Google, who made changes to the official codebase of Android.4 I also

proposed framework defenses for the DoS attacks and developed open-source apps to

mitigate the attacks [55,56].

• I evaluated the resiliency of a range of embedded Android devices to a persistent, local

system crash DoS attack performed by a low-privilege Android app. I discovered that

this attack, launched from an unprivileged app, can leave certain embedded Android

4Of the seven bug reports I made to Google, only one is publicly available: (https://issuetracker.

google.com/issues/37061958). Many of the issues were marked as infeasible to fix, presumably due to the
engineering effort involved in preventing them systematically. They did fix the following Intent-based DoS
attacks in their current form as presented in Chapter 7. When I inquired if they could be made public, their
response the following: “Thanks for your inquiry. Per our policy, reports filed in this component generally
remain private. However, we have no objection to you publicly disclosing the information in this ticket, as
you choose.”
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devices permanently disabled since it creates a ceaseless crash loop that is inescapable

because they lack any known recovery mechanisms.

• I created open-source software, Daze [57], to test app components for certain classes

of omission errors. I used Daze to test all apps on 32 Android devices. This also

resulted in discovering system crash vulnerabilities in the official codebase of Android

(which affected all vendors) for both the smartphone and Android TV branches. In

total, Daze triggered 4,972 unique app crashes and 64 unique system crashes across

all devices.

• I performed a longitudinal study of Android inter-app vulnerabilities covering 18,583

popular apps from Google Play, which provided meaningful insight into the vulnerability

exposure window in terms of number of versions and time duration. During this study,

Daze discovered 14,413 fatal exceptions in the set of 18,583 popular apps.

Below is a list of published manuscripts stemming from the research in this dissertation:

1. R. Johnson, Z. Wang, C. Gagnon, and A. Stavrou, “Analysis of Android Applications

Permissions,” in 2012 IEEE Sixth International Conference on Software Security and

Reliability Companion, June 2012, pp. 45-46 [58].

2. R. Johnson, Z. Wang, A. Stavrou, and J. Voas, “Exposing Software Security and Avail-

ability Risks for Commercial Mobile Devices,” in 2013 Proceedings Annual Reliability

and Maintainability Symposium (RAMS), Jan 2013, pp. 1-7 [59].

3. R. Johnson and A. Stavrou, “Forced-Path Execution for Android Applications on x86

Platforms,” in 2013 IEEE Seventh International Conference on Software Security and

Reliability Companion, June 2013, pp. 188-197 [60].

4. R. Johnson, M. Elsabagh, A. Stavrou, and V. Sritapan, “Targeted DoS on Android:

How to Disable Android in 10 Seconds or Less,” in 2015 10th International Conference

on Malicious and Unwanted Software (MALWARE), Oct 2015, pp. 136-143 [61].
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5. R. Johnson, M. Elsabagh, and A. Stavrou, “Why Software DoS Is Hard to Fix:

Denying Access in Embedded Android Platforms,” in Applied Cryptography and

Network Security. Springer International Publishing, 2016, pp. 193-211 [32].

6. R. Johnson, M. Elsabagh, A. Stavrou, and J. Offutt, “Dazed Droids: A Longitudinal

Study of Android Inter-App Vulnerabilities,” in Proceedings of the 2018 on Asia

Conference on Computer and Communications Security, ser. ASIACCS 18. New York,

NY, USA: ACM, 2018, pp. 777-791 [33].

7. M. Elsabagh, R. Johnson, and A. Stavrou, “Resilient and scalable cloned app detection

using forced execution and compression trees,” in 2018 IEEE Conference on Dependable

and Secure Computing (DSC), Dec 2018, pp. 1-8 [62].

In addition, the list below contains published manuscripts that were not included in this

dissertation:

1. Z. Wang, R. Johnson, and A. Stavrou, “Attestation & Authentication for USB Com-

munications,” in 2012 IEEE Sixth International Conference on Software Security and

Reliability Companion, 2012, pp. 43-44 [63].

2. R. Johnson, N. Kiourtis, A. Stavrou, and V. Sritapan, “Analysis of Content Copyright

Infringement in Mobile Application Markets,” in 2015 APWG Symposium on Electronic

Crime Research (eCrime), 2015, pp. 1-10 [64].

3. R. Johnson, A. Stavrou, and V. Sritapan, “Improving Traditional Android MDMs with

Non-Traditional Means,” in 2016 IEEE Symposium on Technologies for Homeland

Security (HST), 2016, pp. 1-6 [65].

4. R. Johnson, R. Murmuria, A. Stavrou, and V. Sritapan, “Pairing Continuous Authen-

tication with Proactive Platform Hardening,” in 2017 IEEE International Conference

on Pervasive Computing and Communications Workshops (PerCom Workshops), 2017,

pp. 88-90 [66].
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Lastly, below is a list of information security conferences that I presented at which are

also referenced in this dissertation:

1. R. Johnson and A. Stavrou, “Resurrecting the READ LOGS Permission on Samsung

Devices,” presented at Black Hat Asia 2015 [23].

2. R. Johnson, A. Benameur, and A. Stavrou, “All Your SMS & Contacts Belong to

Adups & Others,” presented at Black Hat USA 2017 [22].

3. R. Johnson and A. Stavrou, “Vulnerable Out of the Box: An Evaluation of Android

Carrier Devices,” presented at DEF CON 26 (2018) [21].

1.4 Dissertation Structure

Chapter 1 of this dissertation provides context and the high-level motivation for the research.

In addition, it also outlines the research questions and summarizes the contributions of the

dissertation. Chapter 2 introduces fundamental concepts of Android apps and the Android

ecosystem. Chapter 3 covers the necessary background on program analysis techniques,

such as symbolic execution, concolic execution, FPE, and the differences between them.

Chapter 3 offers additional details on FPE including a formal high-level definition of the

FPE algorithm using an execution strategy that explores the input domain. Chapter 4

provides theoretical and real-world uses cases where externally defined program inputs

directly control the exfiltration of sensitive user data.

Chapter 5 discusses conceptual and implementation details of FPE for Android. Chapter 6

discusses applications of FPE such as detecting PII leakages, capability leakages, identifying

app clones, and detecting insecure programming practices. Chapter 7 examines the usage

of Intent objects for low-privilege, local DoS attacks and their effects on other apps and

the Android OS itself. These attacks cover the most common IPC mechanism to make the

Android OS unresponsive to the user, target and kill other running apps, and cause a system

crash. I intensified the system crash DoS attack by making it perpetual and investigated its
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effects on a range of Android devices. Notably, embedded Android devices, including an

Android TV device, can be rendered useless by a low-privilege Android app.

Chapter 8 discusses software faults and inadequate error handling present in numerous

Android apps and the Android OS with regard to their processing of received Intents. These

faults, when manifested as errors, result in a system crash and can be leveraged to perform

local DoS attacks. I also discovered that as a side effect, a system crash can also result

in user data disclosure. I provide a method to programmatically detect concrete Intent

input validation faults for apps and the Android OS and perform a longitudinal fault study

involving apps from Google Play. Chapter 9 concludes with a succinct overview of my

approach to answering the research questions posed in Chapter 1.
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Chapter 2: Overview of Android

This chapter introduces and explains fundamental concepts related to Android that serve as

a basis to contextualize the research in this dissertation. Section 2.1 introduces Android, its

architecture, and some of its core software components. Section 2.2 provides details of the

structure and contents of typical Android apps. Section 2.2.3 discusses the permission model

imposed on apps by the Android OS. Section 2.3 briefly explains the primary mechanism that

apps use to communicate within and between apps. Section 2.3.1 outlines some mechanisms

Android uses to increase the overall availability and stability of the platform.

2.1 Android Open Source Project

Google has been the custodian and developer of Android since it purchased it in 2005.

Android is generally considered to be one of Google’s most successful acquisitions [67,68].

Google has further developed Android into the OS with the largest global market share of

any OS, overtaking Windows [13]. Google publicly releases the Android source code via

the Android Open Source Project (AOSP). AOSP is a Google-led project that contains the

source code for different versions of Android and also information on how to build, modify,

and port the software to different platforms. In addition to locally cloning Google’s online

repositories using its repo tool, the source code files can be searched and viewed online via a

web browser through official and unofficial online resources [69,70]. The openness of Android

lends itself to research, innovation, customization, expert users, and a significant diversity of

Original Equipment Manufacturers (OEMs) that create Android devices.1 Android OEMs

create Android devices according to their own design specifications and branding. At the

1Interestingly, some OEMs modify the standard GUI of Android to mimic the experience provided by
that of Apple’s iOS [71]. Effectively, attempting to create an iPhone clone using Android.
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same time, this openness has also resulted in disparate app marketplaces with differing levels

of security vetting of apps [72, 73], pre-installed spyware and malware [22, 74], and many

Android devices running older versions of the OS [75,76].

In addition to OEMs, an Original Device Manufacturer (ODM) creates Android devices

that will be subsequently rebranded or licensed and sold by another organization. Therefore,

an ODM may manufacture a specific device for multiple vendors. An Android vendor is the

entity in the supply chain that is responsible for the branding and direct or indirect selling

of the Android device to the consumer. The Android vendor is generally the OEM that

manufactured the Android device, although this is not always the case due to the presence

of ODMs in the market.2 Google provides a list of OEMs and ODMs that are partners in

their Google Play Protect device initiative [77]. Google Play Protect is a local service on the

device that scans the resident apps and then programmatically uninstalls or disable detected

apps that are deemed by Google to be harmful to the user.

Google created a series of Android smartphone, tablet, and streaming media player

devices under the brand name of Google Nexus [78]. The Nexus device models were

manufactured by various ODMs (i.e., LG, Asus, Samsung, Huawei, Motorola, and HTC) to

showcase a primarily unadulterated version of Android (i.e., AOSP) that contained minimal

modification by the ODMs and carriers, allowing for faster OS updates and thus greater

platform security.3 Google appears to have ceased production of Nexus devices through

external ODMs and has become an OEM itself, purveying a line of tablets and smartphones

with a moniker of Pixel. The Pixel devices, like previous Nexus devices, allow the user to

manually update the Android OS using firmware images. Firmware images contain the

software for the Android OS and its necessary components. Google hosts firmware images for

Nexus and Pixel devices that allow the user to easily upgrade or downgrade the Android OS

version using command line tools that are included with the Android Software Development

Kit (SDK). Some Android devices allow the user to flash unofficial firmware images that are

2In this dissertation, vendor and OEM will be used interchangeably, except where otherwise noted.
3Although these are major Android OEMs, they are acting as ODMs for Google Nexus devices.
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not signed by the OEM. Flashing describes the process of writing a firmware image to a

particular internal memory location on the device, overwriting the current firmware image

to update or change its functionality. This fostered the development of several unofficial

Android distributions that are referred to as custom ROMs. The term ROM, an acronym

for Read Only Memory, is generally used interchangeably with the term firmware images.4

Figure 2.1: Google’s depiction of the Android software stack.5

2.1.1 Android Architecture

The Android architecture can be decomposed into various interacting logical layers in a

software stack where each layer has specific responsibilities. Figure 2.1 depicts Google’s

4Some of the firmware images on an Android device are mounted on read-only partitions.
5This image is borrowed from Google’s AOSP website: https://source.android.com/.
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illustration of the Android software stack. At the top of the Android software stack are apps.

Android apps come pre-installed from the device vendor and can also installed directly by

the user. Android apps are primarily developed in the Java programming language, although

they can also contain native code that is pre-compiled for different Central Processing Unit

(CPU) architectures. Recently, Google has encouraged developers to utilize the Kotlin

programming language instead of Java.6

The user generally spends most of their time using the device’s native hardware (e.g.,

touchscreen) to interact with apps, as the remaining layers are somewhat abstracted from

the user. The general user’s view and understanding of the system may be limited to an

extensible set of apps that provide functionality and utility. Android apps use the Android

API to access device resources and capabilities through the Android framework.7 The

Android framework is primarily written in Java, although it does use native code libraries,

mostly written in C and C++, to interact with the Linux kernel and hardware devices.

During the development of an Android app, a Java jar file, generally named android.jar,

from the Android SDK locally fulfills a compile-time external dependency for the Android

API by containing implementation stubs. The jar file is specific to a particular Android

API level since developers must choose the lowest Android OS version that can support the

app with the required APIs. An API level, in this context, refers to a particular version of

the Android OS and its corresponding API.

Android apps use a runtime environment called Android Runtime (ART) on recent

Android OS versions. ART is the successor to the previous runtime environment named

the Dalvik Virtual Machine (DVM). ART executes the app’s bytecode using Ahead-of-time

(AOT) and Just-in-time (JIT) compilation.8 ART primarily uses AOT and the DVM uses

JIT. The official switch from DVM to ART occurred in Android 5.0 (Lollipop) [79]. There is

6The interested reader can find a comparison of Java and Kotlin here: https://kotlinlang.org/docs/

reference/comparison-to-java.html.
7The current Android API packages are located here: https://developer.android.com/reference/

packages.
8Additional information about how AOT and JIT are used can be found here: https://source.android.

com/devices/tech/dalvik/jit-compiler.
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a trade-off between ART and the DVM. Notably, ART has better runtime performance, as

the app is pre-compiled into native code, although this is at the expense of a larger memory

footprint at runtime and a longer app installation time when compared to DVM.

Some of the API methods employed by apps use Remote Procedure Calls (RPCs) to

interact with service threads residing in system processes using a kernel module named

binder to enable expeditious communication between processes. A Remote Procedure Call is

a Java language feature that allows the caller to obtain an interface to an object in a separate

process and call its methods as if it is a local object in its process. The ActivityManager class

in the Android API provides an illustrative example. When an app uses the ActivityManager

class, it uses binder-enabled RPCs to interact with the ActivityManagerServce service thread

that resides in a system process. Google does not provide extensive documentation for

binder directly since app developers don’t necessarily need to know the implementation of

the underlying IPC mechanism.

The Android framework contains various native C/C++ libraries. The framework classes

written in Java use the Java Native Interface (JNI) to execute native code. JNI provides

a mechanism for managed code to call and execute native code. Many of the software

projects comprising Android are open-source such as Webkit, OpenGL, Bionic Lib C, SQLite,

OpenSSL, the Linux kernel, and others. Some of the Android framework API calls serve

simply as wrappers to JNI calls to native code. In addition, the Android framework can

interact with other processes using domain sockets, shared memory, and files. The Android

framework contains high-level APIs that apps use to initiate communication with low-level

sensors (e.g., camera, fingerprint sensor, GPS subsystem, etc.) on the device. This behavior

is appropriately abstracted from the user of the API.

The native libraries either perform system calls directly or use the wrapper functions in

the Bionic Lib C to interact with the Linux kernel. In addition, the native libraries use defined

interfaces to interact with the Hardware Abstraction Layer (HAL) for accessing hardware

devices.9 Android provides a HAL with defined interfaces that must be implemented by

9Additional information on HAL can be found here: https://source.android.com/devices/

architecture/hal.
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Android vendors. HAL sits above the kernel and hardware and provides a unified interface

for accessing underlying hardware drivers. The native libraries, ART, and HAL serve as

middleware in between apps and the kernel. Middleware has a range of definitions depending

on the context, although a broad definition is software glue residing between the client apps

and the kernel, providing some logical abstraction.

Android uses a modified Linux kernel that contains extra facilities that are not present

in a stock Linux kernel. These differences from the stock Linux kernel that are suited

to the mobile environment are sometimes called Androidisms. Some of the Androidisms

include Anonymous Shared Memory (ASHMEM), binder, Low Memory Killer (LMK), and

Wakelocks [80,81].10

2.1.2 Android Application Framework

The Android platform provides an extensive set of APIs for app developers to use in their

apps. Each major release of Android provides additional features, security improvements,

and changes to the Android API. The overall size of the API typically increases with each

release, although methods and classes can become deprecated. All major releases contain an

integer that denotes the particular Android SDK level, the platform version, and a code

name.11 The code names correspond to a dessert or treat that starts with a letter of the

alphabet that increases with each subsequent version [82]. For example, the previous version

of Android, 9.0, has a code name of Pie. Google announced that they were ending this

tradition and instead of using a treat starting with Q, they will call the next release Android

10 [83]. With each Android OS release, Google provides updates on the major changes to the

Android API.12 The API modifications while providing additional functionality have also

caused compatibility issues when app developers do not update their apps quickly to account

for these changes [75, 84]. In addition to the Android SDK, Google also provides developers

with a Native Development Kit (NDK) to enable developers to include native code in their

10The DoS attack described in Section 7.3.2 leverages LMK to target and kill external apps.
11Code names for Android releases have been provided since Android 1.5.
12For example, see https://developer.android.com/about/versions/pie/android-9.0-changes-all

for the API changes in Android 9.0.
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apps by pre-compiling binaries for different CPU architectures. The Android NDK may be

used for integrating game engines, porting apps, and achieving high-performance.

During the creation of an Android app, a developer explicitly specifies the minimum SDK

level that the app can support. Specifically, the developer declares a numeric value for the

android:minSdkVersion attribute in the app’s manifest file. This value denotes the lowest

version of the SDK that can properly run the app. Each Android device is running a certain

version of the Android OS that has a corresponding API level. If the android:minSdkVersion

of an app is greater than the SDK level of the device, then the device will not be able to

install the app since the app may contain APIs that the Android OS version does not support.

On the other hand, Android devices are backwards compatible so that they can install and

run any app that has an android:minSdkVersion attribute value that is not greater than the

SDK level of the Android device. This behavior ensures that all the APIs used in the app

will be present on the device at runtime.

Table 2.1: Distribution of Android device versions as of May 7, 2019.

OS Version Codename Distribution

2.3.3 - 2.3.7 Gingerbread 0.3%

4.03 - 4.0.4 Ice Cream Sandwich 0.3%

4.1.x - 4.3 Jelly Bean 3.2%

4.4 Kit Kat 6.9%

5.0 - 5.1 Lollipop 14.5%

6.0 Marshmallow 16.9%

7.0 - 7.1 Nougat 19.2%

8.0 - 8.1 Oreo 28.3%

9.0 Pie 10.4%

Due to the Android fragmentation problem [75,76], app developers tend to target lower

versions of the Android SDK to be able to reach the widest number of potential devices [85].

The Android fragmentation problem is illustrated in Table 2.1. This table was created from

data provided by Google’s Distribution dashboard webpage that contained the distribution
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of Android versions as of May 7, 2019.13 The Android fragmentation problem is the result of

having multiple vendors that do not update their devices in a timely manner to the most

recent stable version of the Android OS. Therefore, the devices from different vendors may

be running different major and minor versions of Android depending on the vendor’s level of

support in updating the device OS version and keeping it current. Google provides periodic

snapshots of the current SDK levels of devices that connect to Google servers with their

Distribution dashboard webpage. App developers have a financial incentive to have their

app be compatible with the largest number of devices to maximize any potential ad revenue

and paid downloads. An app with an older (i.e., lower) SDK version running on a device

with a more recent (i.e., higher) SDK version can still use newer features provided by the

device by using Java Reflection APIs to call them at runtime. In practice, this takes effort

to maintain due to the changes in behavior and presence of APIs among the different API

levels and can also cause security weaknesses due to old behavior being utilized [76].

2.1.3 System Server

System server is a critical system process that provides services to apps through the Android

framework.14 The system server process is not well documented on the Android Developers

website since this process is mostly abstracted from the developer. System server executes as

the system user and provides various service threads that are externally exported and available

to local processes on the device.15 System server employs a client-server architecture where

apps interact with its interfaces to obtain functionality. Since the client and server reside

in different processes, Android uses an IPC mechanism named binder (see Section 2.1.1).

Sensitive functionality in Android is guarded by permissions that an app must possess at

runtime to perform certain protected behavior. For the permissions defined by the Android

framework, an app generally uses IPC to interact with the system server process to access

13This table was recreated from the table provided here: https://developer.android.com/about/

dashboards.
14The system server process has a name of system_server in the process status list, so this name is also

used in the dissertation to reference this process.
15The services running within system server can be listed with the following command: service list.
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sensitive functionality. Prior to performing the desired behavior, system server will check

to see if the calling process has been granted the permission(s) required. System server

keeps track of the permissions granted to each app using its package manager (i.e., the

PackageManagerService class).

When apps use the functionality of system server, they generally obtain a handle to a

service interface using the android.content.Context.getSystemService(java.lang.String)

API method call, which returns an IBinder instance, dictated by the String parameter, to

the desired service in system server. Listing 2.1 provides a concrete Java source code example

of an app using RPCs to interact with system server to set an alarm to start an app every 60

seconds. In line 1 of Listing 2.1, the IBinder instance is cast to an object type in the Android

API (e.g. the AlarmManager in the local app that interacts with AlarmManagerService in the

system server process). Then the local app can interact with the system server process using

RPCs, so that it appears that the app is simply making a method call on a local object,

even though it crosses process boundaries.

1 AlarmManager alarmManager = (AlarmManager) getSystemService(ALARM_SERVICE);

2 Intent intent = new Intent(getApplicationContext (), MainActivity.class);

3 PendingIntent pendingIntent = PendingIntent.getActivity(getApplicationContext (), 0,

intent , 0);

4 alarmManager.setRepeating(AlarmManager.RTC_WAKEUP , 1000, 60000, pendingIntent);

Listing 2.1: Example Java source code for using system server functionality.

The system server process is a single point of failure since its termination causes other

critical system processes to be terminated. In addition, since system server provides an

extensive attack surface accessible to local apps, it makes it an attractive target for DoS

attacks. A DoS attack against the system_server process indirectly controls the availability

of the device since a crash of this process results in a user space system crash. During

the boot process, the init process starts the zygote process. The system_server process is

started by the zygote process. All apps are spawned from the zygote process which gives

them a speedy setup time as the resources are already pre-loaded. Various DoS approaches

that I developed against the system_server process, as well as the attack mechanics, are
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provided in Chapters 7 and 8. The base attack methods covered in these chapters do not

require the attacking app to have any permissions; therefore, they can be accomplished to

the lowest-privileged app (i.e., an app that has no granted permissions).

2.2 Android Apps

Apps provide extensible functionality beyond that of the device’s pre-installed software (e.g.,

Android OS, pre-installed apps, etc.). Pre-installed apps are present when the user first

powers on the device. In addition to the apps that come native to the device, apps reach the

device through official and unofficial app distribution channels. On many Android devices,

the default app distribution platform is Google Play. There are notable exceptions where

Android vendors do not include the Google Play app or any other Google apps beyond what

is present in AOSP. Some notable exceptions that don’t use Google Play are Amazon Fire

devices and certain vendors that provide their own app distribution platforms to download

and install apps, such as Xiaomi. Moreover, some vendors include both Google Play and

their own app store such as Samsung’s Galaxy Apps.

During the initial installation of an Android app, the Android OS assigns an app a

specific user ID (UID) that remains constant, even during app updates, until the app is

uninstalled. The assigned Linux UID protects the app’s private directory, subdirectories,

and constituent files. Each installed app is provided with a private directory that is only

accessible to the app itself, by default, due to restrictive file permissions.16 This private

directory currently, as of Android 9, has a path of /data/data/<package name> where this

directory is owned by the app’s UID and also has a Group ID (GID) value that is identical

to that of the UID. Moreover, each app, be default, executes in its own process which

safeguards its memory. These two features sandbox the app’s memory and files by isolating

it from other processes.

16An app can intentionally share its UID and thus files and permissions with other apps by being signed
with the same key and using the same values for the android:sharedUserId attribute in their respective
app manifest files.
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2.2.1 App File Structure

Android Package (APK) is the name of the Android app file format that has a file extension

of apk. The APK file format is a compressed archive that encapsulates all of an app’s files.

Some files and directories that are generally contained within a typical APK file are the

following:

• AndroidManifest.xml - configuration data file

• classes.dex - Dalvik bytecode file

• lib - directory containing native code libraries

• assets - directory containing arbitrary files

• res - resource directory containing images, layout files, string resources, etc.

• resources.arsc - compiled resource file

• META-INF - directory containing version and signature data

2.2.2 App Manifest File

The app’s manifest file, AndroidManifest.xml, serves as a repository for settings and configu-

ration data. Listing 2.2 displays a terse, valid manifest file, illustrating some of the minimal

data that is required by the Android platform. Notably, the manifest contains the package

name of the app which is a string that serves as one of the primary identifiers of an app. On

1 <manifest xmlns:android="http :// schemas.android.com/apk/res/android" android:

sharedUserId="android.uid.system" package="edu.gmu.example"

platformBuildVersionCode="24" platformBuildVersionName="7.0">

2 <uses -permission android:name="android.permission.INTERNET" />

3 <uses -permission android:name="android.permission.BLUETOOTH" />

4
5 <application android:allowBackup="false" android:icon="@mipmap/ic_launcher"

android:label="@string/app_name" android:name="edu.gmu.example.MyApp">

6 <activity

7 android:name=".GenMainActivity"

8 android:label="@string/app_name" >

9 <intent -filter >

10 <action android:name="android.intent.action.MAIN" />

11 <category android:name="android.intent.category.LAUNCHER" />

12 </intent -filter >

13 </activity >

14 <service android:name=".GenService"></service >

15 <meta -data android:name="KEY" android:value="VALUE"/>

16 </application >

17 </manifest >

Listing 2.2: Concrete example of a valid AndroidManifest.xml file.
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an Android device, only one app with a specific package name can be installed at a particular

time. Google Play allows its users to search for an app using its package name. The package

name in the manifest is declared in the manifest element as edu.gmu.example in the package

attribute. For version information, the manifest file includes the android:versionCode and

android:versionName attributes to the manifest element.17

The manifest file contains various information to identify the app and its constituent

app components. Each app component, with the exception of broadcast receivers that are

dynamically registered, must be statically registered in the manifest file. An app component

is a named executable unit of an app or a repository for structured data. For example,

in Listing 2.2, the app statically registers an activity app component named GenMainActivity

and a service app component named GenService. The uses-feature element in the manifest

allows an app to enumerate the required hardware and software features that the device must

have for the app to work properly. In the declaration for each feature, the android:required

attribute allows the app to indicate if the app cannot function without the listed feature.

Some example features are android.hardware.fingerprint and android.software.sip. The

uses-feature element informs app distribution channels, such as Google Play, the required

features and thus determines which apps are available to download to the current device.

The Android OS requires that an app contain a valid AndroidManifest.xml file for it to

be installed on the device. Without a manifest file, the Android OS would not be able to

identify the app, determine its desired capabilities, and locate it entry points with regard

to app components. Each time the device is turned on and boots up, a service thread (i.e.,

PackageManagerService) within the system_server process examines the properly installed

APKs and parses their manifest files. This allows the system to know which apps are

installed and the app components that they contain, allowing it to properly deliver Intents

to their destinations. Moreover, it gives the Android OS awareness of the apps in general

and their capabilities, especially with regard to knowing which apps have been granted

which permissions. The permissions that the app requests can be an important consideration

17Some of the available elements in the AndroidManifest.xml can be found here: https://developer.

android.com/guide/topics/manifest/manifest-intro.
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for the user to inform them of the scope of the app’s behavior. In the manifest, an app

requests a permission with the uses-permission element. In Listing 2.2, the app requests the

android.permission.INTERNET and android.permission.BLUETOOTH permissions which allow

the app to directly access the internet and use Bluetooth functionality. In addition, an app

can declare its own permissions and set the access requirements for external apps to acquire

them.

2.2.3 App Permission Model

The Android platform provides permissions that apps can request to obtain access to

protected functionality and resources on the device.18 A pre-installed core app with a

package name of android declares the platform permissions and sets the requirements for

all other apps to obtain them. Each permission is simply a string that app developers

request in their app’s AndroidManifest.xml file using a specific syntax. The platform-defined

permissions in the AOSP master branch are provided in the core manifest file for the

platform [69]. Once an app has obtained the permission(s) it requests, then it can perform

the behavior associated with the permission(s). In practical terms, this will allow the app to

pass the permission checks associated with permission-protected API calls. For example,

once an app has been granted the permission named android.permission.CALL_PHONE, the

app can programmatically initiate phone calls to non-emergency numbers without user

interaction.

A runtime permission granting mechanism was first introduced in Android 6.0 (API level

23) [86]. This mechanism provides the user with more granular control over app behavior

since permissions are no longer granted on all or nothing basis, as they were in all previous

Android versions (API level 22 and lower). By an all or nothing basis, I mean that the

app could only be installed with all the permissions it requests or the user could deny the

installation but not install the app and selectively grant it permissions. With the runtime

permission granting, the app will prompt the user to grant or deny it some of the permissions

18The AOSP platform-defined permissions are provided here: https://developer.android.com/

reference/android/Manifest.permission.
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it requests. Apps that declare a target API level of 23 or higher are supposed to still be

able to operate even without being granted all of the permissions they request. Certainly,

this can inhibit some of the app’s functionality, but it provides the user the discretion to

deny permissions to an app that seem unnecessary or risky.

The runtime permission granting mechanism is active for an app if two conditions are

met: (1) the Android device running the app has an API level of 23 or higher and (2) the

app’s targetSdkVersion attribute for the uses-sdk element is set to 23 or higher in the app’s

manifest file [87]. If either of the two conditions do not hold for a particular device and

app pair, then all of the permissions will be granted to a third-party app (e.g., normal and

dangerous) when the user installs the app. When apps are installed outside of the standard

app distribution channel (e.g., Google Play), then a list of the permissions that the app

requests is presented to the user as shown in Figure 2.2.

Figure 2.2: Android app installation dialog.
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The installation dialog for the app shown in Figure 2.2 has a targetSdkVersion attribute

value of 22, so all dangerous permissions that app requests are shown to the user. If an

app is subject to runtime permission granting, then the installation dialog may not list the

dangerous permissions in this dialog and present them to the user to grant or deny when the

app requests them at runtime. Installing an app outside of an app store requires that the

user allow an option that is found in the Settings app: installation from unknown sources

[88]. A popular shooting game named Fortnite, provided their own app installer that had to

be downloaded outside of Google Play. An early version of the Fortnite app installer did not

perform any validation of the app that it installs which could allow an attacker with an app

co-located on the device to install an app other than the intended Fortnite app [89].

One of the major assumptions underlying the Android permission model is that users are

informed enough to understand the functionality corresponding to each permission. Felt et

al. [90] found that only 17% of users examined the permissions at install time and that only

3% of respondents in a survey could successfully answer all three permission comprehension

questions. This seminal study examining user behavior and comprehension of Android

permissions was published in 2012. More recent studies show that even when the permissions

are understood, there may be little user comprehension in what they are used for [91,92].

2.2.4 App Components

Android provides four different app components from which an app can be built: activity,

service, broadcast receiver, and content provider [93]. An activity provides a GUI

for direct user interaction via GUI elements. A service runs in the background and tends

to process long running or persistent tasks. A broadcast receiver serves essentially as

an event listener where it is registers for certain types of events and responds to them as

they occur. A content provider provides access to structured data, which is usually in

the form of an SQLite database. Each app component must be statically registered in

the app’s AndroidManifest.xml file, except for broadcast receiver components which can be

dynamically created and registered at runtime. The compartmentalization of an Android
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Figure 2.3: Abstract composition of an Android app.

app divides the app into components so that it is not a monolithic program with a single

entry point. An abstract version of an Android app and its constituent components are

provided in Figure 2.3. Both the activity and service app components have a lifecycle that

is specific to its app component type. By lifecycle, I mean that the app component starts in

a specific state and makes predictable transitions to other states in response to user and

system events. The broadcast receiver and content provider have different use cases and

thus do not have a rigid lifecycle states in which they progress.

2.3 Android Inter-Component Communication

Much of the communication between and within Android apps occurs via Intent objects: a

message-like abstraction provided by the Android framework. Intents are a fundamental

communication mechanism such that all but the most primitive apps will utilize Intent
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messages for communication and data exchange. Figure 2.4 conceptually demonstrates the

information flow between and within apps using Intent objects.

Figure 2.4: Intent usage in Android.

An Intent object requires one necessary item to be of any functional use: a destination.

An explicit destination can be provided by specifying a recipient app component name in the

intent. An explicit app component destination address consists of the package name of an app

and a fully-qualified class name within the app. These two pieces of data provide a unique

recipient location for the delivery of the Intent. When the Intent is delivered, the recipient

app component is started if it is not already executing. The Intent and its embedded data

that is sent to it will be accessible to the destination app component for processing. An Intent

that contains a concrete and unique destination app component is also known as an explicit

intent. An example of an explicit intent is provided in Listing 2.3, which on vulnerable

Essential Android smartphones will cause a programmatic removal of user data (i.e., a

factory reset) without the corresponding access permission.19 Additional vulnerabilities

stemming from insecure access control exhibited by app components of pre-installed apps is

1 Intent i = new Intent ();

2 i.setClassName("com.ts.android.hiddenmenu", "com.ts.android.hiddenmenu.rtn.

RTNResetActivity");

3 startActivity(i);

Listing 2.3: Example source code for sending an explicit Intent.

19This vulnerability was assigned CVE-2018-14994 and is available here: https://nvd.nist.gov/vuln/

detail/CVE-2018-14994.
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provided in Section 8.3.3.

1 Intent intent = new Intent ();

2 intent.setAction("com.tmobile.oem.RESET");

3 sendBroadcast(intent);

Listing 2.4: Example source code for sending an implicit Intent.

In addition to specifying a particular app component, as in Listing 2.3, Android offers

decoupling from using concrete names for target app components, effectively binding them

to a particular app, by specifying an action string. This decoupling allows apps to focus

on an action instead of unique endpoint app components, providing a level of indirection.

The Intent shown in Listing 2.4 contains only a string that denotes the general action of

the Intent (i.e., com.tmobile.oem.RESET), moving to a higher-level of abstraction, as various

components on the device may be able to handle a particular action. Android has provided

various hard-coded string constants that serve as generic actions that apps can choose to

handle by having one or more components in their app register to receive them. There are

many action strings that are reserved for specific known actions on the device. For example,

the android.content.Intent class declares numerous platform-defined actions where the

constant name generally has a prefix of ACTION_ (e.g., ACTION_CALL for programmatically

initiating an outgoing phone call). The platform-defined actions can generally be segmented

into those are intended for activity app components and broadcast receiver app components,

as is done on the Intent API on the Android Developers website.

The actions for activity components can generally be sent and also received by a third-

party app. For example, an app could send an Intent to start an activity app component

with a specific action (e.g. ACTION_DIAL) and that same app could have a different activity

that handles the action that is sends. When the Intent contains an action but lacks a definite

destination component, then the Intent can potentially be delivered to multiple activity app

components on the device that can handle the action. When there is more than one activity

app component that can handle the implicit Intent, the Android OS provides the user with a

chooser that allows them to select the specific app that they would like to handle the Intent.
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For example, an app may send an Intent with an action of ACTION_VIEW which is very general.

The appropriate destination components that can handle the Intent can also be narrowed

down and resolved via Intent filters, where a component can specify various Multipurpose

Internet Mail Extension (MIME) types and protocols that it can handle in addition to just

an action. Intent filters are used to provide more granular detail about the types of intents

that an app component can handle by specifying an action, category, and data type.20

The platform-defined actions for broadcast receiver app components are generally meant

to be sent by the Android OS and received by apps. Broadcast intents can be delivered to

multiple recipient apps, unlike implicit Intents with platform-defined actions for activities.21

Therefore, any app that has registered for an action can receive it assuming it does not

require a permission to receive. Listing 2.4 provides a Java source code snippet to send an

implicit broadcast Intent with an action string of com.tmobile.oem.RESET. This broadcast

Intent will be delivered to any app on the device that statically or dynamically registers for

this particular action string. When the broadcast Intent, shown in Listing 2.4, is sent on

certain versions of the T-Mobile Revvl or the Cooldpad Defiant devices sold by T-Mobile,

the broadcast intent will be received by an app with a package name of app com.qualcomm

.qti.telephony.extcarrierpack which initiates a programmatic factory reset, resulting in

the loss of user data [21].22 The corresponding declaration of a broadcast receiver app

component named UiccReceiver, shown in Listing 2.5, to receive broadcasts with an action

1 <receiver android:name="UiccReceiver">

2 <intent -filter >

3 <action android:name="android.intent.action.SIM_STATE_CHANGED"/>

4 <action android:name="android.intent.action.SHOW_CAP_NO_SUPPORT"/>

5 <action android:name="com.tmobile.oem.RESET"/>

6 <action android:name="org.codeaurora.intent.action.

ACTION_SIMLOCK_TEMP_UNLOCK_EXPIRED"/>

7 </intent -filter >

8 </receiver >

Listing 2.5: UiccReceiver broadcast receiver declaration in its manifest file.

20Additional data about intents and intent-filters can be found here: https://developer.android.com/

guide/components/intents-filters.
21The most commonly sent implicit Intents in a study of 2,644 apps is provided in [94].
22The T-Mobile Revvl Plus is a carrier-branded device that was manufactured by Coolpad.
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string of com.tmobile.oem.RESET.23 The sender of an Intent can explicitly require that a

process possess a permission to successfully receive the intent. For example, when a text

message is received by the phone process, it will send out a broadcast Intent with an action

string of SMS_RECEIVED_ACTION. Any app that registers to receive this broadcast action must

also possess the RECEIVE_SMS permission to actually receive the Intent that has the data

from the received text message.

An app can statically register to receive a specific action in its AndroidManifest.xml or

dynamically register to receive broadcast Intents with specific actions at runtime. Certain

broadcast actions may be of interest to numerous apps such as those with an action of

ACTION_AIRPLANE_MODE_CHANGED that is sent by the system when the device enters or exits

airplane mode. Airplane mode is a configuration on the device that prevents the device from

emitting and receiving any signals using wireless communication. To apps, it may be of

great interest to know when network connectivity is not available.

Unfortunately, developers can unintentionally expose interfaces in their Android apps,

making them accessible to other apps co-located on a mobile device. An exposed interface

offers a potential entry point into an app that can be abused. This can be caused by improper

handling of received Intents, for instance, making assumptions about the presence of certain

data in a received Intent. In addition, inadequate exception handling of inter-app messages

can enable an app to force-crash other apps and services or even the Android Operating

System (OS) itself. System crashes can be intentionally and repeatedly caused by a malicious

app on the device to create local DoS attacks or perhaps a crypto-less ransomware. Although

the Android OS offers mechanisms to force-remove third-party apps, these removal methods

may not be available on all devices or may require wiping all user data on an infected

device [32], as detailed in Section 7.3.3.

23This component declaration is from the AndroidManifest.xml file of app with a package name of
com.qualcomm.qti.telephony.extcarrierpack from the T-Mobile Revvl Plus device.
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2.3.1 Android Availability Model

Android strives to be a stable and secure mobile OS. The Android OS takes numerous steps

to create security boundaries around apps themselves and their interaction with the OS.

Notably, each app is provided with its own Linux UID and GID at install-time that is used

to protect each app’s memory and files. This app sandbox increases security, and it also

increases the availability of an app by reducing the attack surface for external interference.

The Android Developers website states: “By default, apps can’t interact with each other

and have limited access to the operating system.” with regard to the Android app sandbox

[95]. The previous statement is not accurate in all cases and circumstances since the IPC

mechanism allowing communication between apps can be abused to send crafted Intent

messages to another app in order to make it encounter an uncaught exception. Each app

can open external interfaces into its app which can be made available to other apps. When

an Android app encounters an uncaught exception, this generally causes the entire app to

crash.24

The default uncaught thread handler for the app’s main thread will terminate the process

when an uncaught exception occurs. This event shows up in the system log in a defined

format as a FATAL exception with a corresponding stack trace. Listing 2.6 display a fatal

crash in the phone process, com.android.phone, and a fatal system crash occurring in an

Android system process is provided in Appendix D. Inspecting the stack trace shown in

Listing 2.6 reveals that the root cause for the crash was a NullPointerException due to the

phone process derefencing a null object. Line 3 in Listing 2.6 provides the cause of the

fault, highlighted in red and also displayed on line 15, which is that the com.android.phone

process assumes that every Intent it receives will contain a non-null Bundle object without

checking at runtime to see if the Bundle object is null. A Bundle object contains key-value

pairs and can be embedded within an Intent object for data sharing. Since the process

does not perform a null check on the Bundle object prior to derefencing it, it encounters a

NullPointerException, resulting in process termination. I systematically studied the ability

24The crashing of an app is also informally known as a force close.
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1 FATAL EXCEPTION: main

2 Process: com.android.phone , PID: 8584

3 java.lang.RuntimeException: Unable to start activity ComponentInfo{com.android.phone/

com.android.phone.NetworkSelectSettingActivity }: java.lang.NullPointerException:

Attempt to invoke virtual method ’int android.os.Bundle.getInt(java.lang.String)’

on a null object reference at android.app.ActivityThread.performLaunchActivity(

ActivityThread.java :3108)

4 at android.app.ActivityThread.handleLaunchActivity(ActivityThread.java :3251)

5 at android.app.servertransaction.LaunchActivityItem.execute(LaunchActivityItem.java

:78)

6 at android.app.servertransaction.TransactionExecutor.executeCallbacks(

TransactionExecutor.java :108)

7 at android.app.servertransaction.TransactionExecutor.execute(TransactionExecutor.

java :68)

8 at android.app.ActivityThread$H.handleMessage(ActivityThread.java :1948)

9 at android.os.Handler.dispatchMessage(Handler.java :106)

10 at android.os.Looper.loop(Looper.java :214)

11 at android.app.ActivityThread.main(ActivityThread.java :7045)

12 at java.lang.reflect.Method.invoke(Native Method)

13 at com.android.internal.os.RuntimeInit$MethodAndArgsCaller.run(RuntimeInit.java

:493)

14 at com.android.internal.os.ZygoteInit.main(ZygoteInit.java :964)

15 Caused by: java.lang.NullPointerException: Attempt to invoke virtual method ’int

android.os.Bundle.getInt(java.lang.String)’ on a null object reference

16 at com.android.phone.NetworkSelectSettingActivity.onCreate(

NetworkSelectSettingActivity.java :49)

17 at android.app.Activity.performCreate(Activity.java :7327)

18 at android.app.Activity.performCreate(Activity.java :7318)

19 at android.app.Instrumentation.callActivityOnCreate(Instrumentation.java :1271)

20 at android.app.ActivityThread.performLaunchActivity(ActivityThread.java :3088)

21 ... 11 more

Listing 2.6: Fatal exception in the phone process.

of an app to crash other apps and the Android system using Intents in Chapter 8.
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Chapter 3: Exploring States of a Program

Various methods have been developed by researchers in an attempt to execute as many

conditional branches of a program as possible to identify software faults. These methods

include symbolic execution [96,97], concolic execution [98–102], coverage-oriented genetic

algorithms [103,104], model-based GUI testing [42,105], mutation testing [106,107], and fuzz

testing [39,108]. These approaches aim to increase the code coverage of a program under

test to enter execution branches that may remain elusive using other testing methods such

as random testing [109] and primitive ad-hoc testing [110] which are not informed by the

logic of the underlying program under test. Exploring program states can uncover faults

that may only manifest when very specific conditions are met (see Chapter 4). To that

end, Sections 3.1 and 3.2 conceptually describe symbolic execution and concolic execution,

respectively. Section 3.3 introduces FPE and formally defines it in Section 3.3.1. Section 3.3.2

describes the differences between FPE and symbolic execution and concolic execution and

provides motivating examples.

3.1 Symbolic Execution

Symbolic execution was created in the mid-1970s by King [96,111] and Boyer et al. [97] as

a method to perform program verification that went beyond random testing to allow for

dynamic test generation. Random testing involves randomly selecting input values from

the input domains and using them as input in test cases, which can result in redundant

exploration of execution paths and limited code coverage due to the extensive size of the

input domains. For example, the input domain for the integer primitive data type contains

232 different values. Symbolic execution is informed by the constants and derived values from

within a program. Symbolic execution only considers paths that are truly executable for a
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set of concrete inputs during execution and excels at reaching code used in boundary cases.

Symbolic execution can be used to achieve complete branch coverage in smaller programs,

although this can quickly become infeasible with larger programs. Generally, an interpreter

needs to be created to process the target programming language so that the source code

or bytecode can be executed symbolically. The interpreter understands the syntax and

semantics of the program code, which are modified to operate on symbolic values. Executing

a program symbolically can be used to identify a concrete set of inputs that, when executed,

will reach a particular state of a program or program unit [112]. For each feasible path,

a concrete set of inputs is generated as a test case to be executed concretely to identify

bugs during program testing. The generated test cases increase code coverage and evaluate

program correctness during testing.

Using symbolic execution, the program code is executed symbolically where input values

are treated as symbolic values instead of concrete values. A symbolic value can represent any

arbitrary value within an input class domain and operations are performed on the symbolic

value. A path condition is a set of constraints encountered in conditional statements during

symbolic execution that must be satisfied to take a particular execution path through the

program during execution. When a symbolic value is used in a conditional statement, the

constraint (e.g., x < 5) is added to the set of constraints comprising the path condition. In

addition, the symbolic execution is forked so that the alternate path from an encountered

conditional statement can be explored concurrently or subsequently by adding the negation

of the current constraint (e.g., x ≥ 5) to the path condition. Once the termination of the

program or an error is reached, a constraint solver is used to check if the path condition

can be solved. A constraint solver will determine if the path condition is satisfiable. If

the path condition is satisfiable, a concrete set of inputs will be generated that, when

executed concretely, will take the same execution path that was traversed during symbolic

execution. For example, when the constraint solver is provided with a path condition of

x ≥ 5 ∧ x 6= 15 ∧ x < 20, it may determine that a possible value of x that satisfies

each of the three predicate clauses is x = 19. Alternatively, the constraint solver may
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determine that a path condition is not satisfiable since it contains conflicting constraints

(e.g., x = 10 ∧ x 6= 10 ∧ x < 18) or is beyond the solver’s capabilities to solve. The

constraint solver is limited by time and computational resources, its implementation, and

the undecidability of Boolean constraint satisfiability in certain cases [113]. Generally, as

additional constraints are added to the path condition, the complexity of solving the path

condition increases. Various optimizations for symbolic execution have been introduced to

increase performance such as expression rewriting, implied value concretization, constraint

independence, counter-example cache, and coverage-optimized search [114].

A major difficulty of using symbolic execution is the exponential growth of potential

execution paths that occur as the number of conditional statements increase in a program.

General code complexity and loops can lead to a phenomenon known as the path explosion

problem, although this is not exclusive to symbolic execution. The path explosion problem

occurs when the number of paths to explore becomes prohibitively expensive in practice

with regard to time or resources. Due to this phenomenon, the time and memory required

to visit each execution path and use the constraint solver to determine satisfiability can

become infeasible due to potentially infinite paths through a program. In practice, only a

subset of all execution paths is explored using symbolic execution in non-trivial programs. If

the loop condition contains a symbolic value, this can potentially lead to an infinite number

of execution paths. This can also occur for unbounded loops and recursion, which can

result in a symbolic execution tree of theoretically infinite size. Library calls can also be an

issue since it is possible that only the program binary is available and the library binary is

dynamically linked at runtime. The determinism of the code can also complicate symbolic

execution for reproducibility and test generation. Non-determinism can lead to bugs that

are false positives since it may cause a different execution path than the intended one at

runtime. In addition, artifacts of the execution environment affect code coverage due to

how it is handled and modeled by the symbolic execution engine. Symbolic execution has

a difficult time reasoning about arrays [115], pointers [116], and cryptographic and hash

functions [117]. Given these strengths and weaknesses, symbolic execution has been used for
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Android in detecting privacy leaks [118], systematic test case generation [119], and simply

as a proof-of-concept protoype [120].

3.2 Concolic Execution

Concolic execution is a slight refinement to the precursor research by Korel [101,102] and

Offutt et al. [98] on dynamic symbolic execution and dynamic domain reduction, respectively,

to address some of the shortcomings of a pure static symbolic execution approach. Later

works in the mid-2000s [99, 121,122] further refined dynamic symbolic execution and coined

the term concolic as a merger and contraction of the terms concrete and symbolic. Concolic

execution utilizes both symbolic execution and concrete execution to explore the execution

paths of a program or program unit. As with symbolic execution, its general purpose is to

maximize the code coverage of a program under test in order to verify program correctness.

Concolic execution instruments the source code or bytecode to perform symbolic execution,

which alleviates the need of using an interpreter to process the source code or bytecode of a

program. Concolic execution uses symbolic execution to generate concrete sets of inputs

that will cause the execution of the program to reach different states in the program under

test. The bugs that are encountered using concolic execution are true positives (i.e., real

and verified bugs) since they are encountered at runtime with concrete execution. Concolic

execution maintains a concrete state and symbolic state of the program. Some approaches

utilize symbolic execution to solve the path condition as concrete execution occurs and

others wait until the end of an execution path to utilize the constraint solver.

The approach used by CUTE [99], a concolic engine for C programs, traverses paths

iteratively instead of forking at conditional statements. During the initial concrete execution

run, user-selected or random values for the inputs are provided to the program or program

unit under test. A depth-first search approach executes until the program terminates, a bug

is found, a timeout occurs, or a user-selected limit to the depth of the analysis is reached.

During concrete execution, the instrumented code produces an execution trace. A path

38



condition is created based on the constraints present in the trace. Then a constraint in the

path condition (e.g., the last constraint encountered in the path condition) is negated so the

next concrete execution will take a different path through the program.1 A constraint solver

is used to try to generate a set of inputs that solves the modified path condition. If the path

condition is solvable, then the new input values from the constraint solver are used in the

next concrete execution. The new input values will take a new execution path through the

program and create a new trace from which a new path condition will be generated and

modified. This process continues in an iterative fashion until all execution paths have been

taken or a user-selected timeout value is reached.

Concolic execution reduces some of the cost of solely using symbolic execution to solve

the path conditions. There are instances where the constraint solver is not able to generate

concrete values for data and memory addresses for a path condition. In these cases, some

of the symbolic constraints may be replaced by concrete values, which satisfy the path

condition as an approximation. Concolic execution can support the concrete execution of

libraries so that they are treated as black boxes and are not subjected to symbolic execution.

The values used during the initial concrete execution have an effect on the subsequent paths

that will be explored, so the initial values should be carefully selected. Some errors that

symbolic execution and concolic execution can detect are uncaught exceptions, division by 0,

null pointer deference, incorrect computations, and segmentation faults. Concolic execution

is subject to the path explosion problem due to the complexity of non-trivial software, which

can reduce the code coverage of a program. The building of the path condition becomes

more expensive as execution proceeds in terms of storage and complexity for the solver. In

addition, an adversarial program may make an attempt to identify an instrumented analysis

environment and withhold behavior. Concolic execution has been used for Android apps to

explore the GUI [100] and for dynamic analysis [123].

1The constraint being negated is sometimes called the target constraint.
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3.3 Forced-Path Execution

The initial concept of FPE was first introduced in 2005 by Lu et al. [124] in a technical report

as an approach to detect software bugs. This approach has been used to identify software

failures [125, 126] and kernel rootkits [127], examine binaries from a security perspective

[128], and by myself to profile the behavior of Android apps [59, 60]. The FPE framework I

developed aims to elicit and enumerate the potential behavior of a program under test as it

programmatically interacts with the GUI of the program and simulates different environments

and runtime conditions. FPE can force execution into code branches independent of how

the predicate of a conditional statement evaluates to explore both branches. The exact

conditions that dictate when the forcing into a conditional branch depends on the specific

execution strategy that is being used (see Section 3.3.3).

Some program branches within an app may require very specific conditions to be

satisfied for execution. For example, the behavior of an app can depend on its execution

environment. For example, its behavior may depend on system properties, versions of

software, presence of other apps, system clock, network response, location, and user input.

During concrete execution of the program, the execution environment may not contain the

necessary conditions to make the app exhibit certain behaviors. Apps can contain triggers

that, when met, will make the program exhibit exceptional behavior [22, 129]. A trigger

is a specific condition or set of conditions that must be met for a specific event to occur.

For example, there are programs that only display certain behavior after a certain period

of time has elapsed, which is unlikely to be met during a normal analysis time frame. The

FPE framework will enter the time-based branches independent of the amount of time that

has passed to explore its behavior. Chapter 4 provides some theoretical and real-world

motivating uses cases in Android apps that demonstrate the utility of forcing the execution

path in certain circumstances.

40



3.3.1 Formal Definition of Forced-Path Execution

This section introduces some formal definitions to describe a model of the default execution

strategy, named exploring the execution environment (see Section 3.3.3), in which the FPE

framework uses taint analysis to determine when a branching decision should be forced

during predicate evaluation. Taint analysis taints and tracks data throughout a program

when introduced at marked code locations, known as sources, and raises an alarm when any

tainted data enters another set of marked code locations, known as sinks. The selection of

sources and sinks for use in taint analysis depend on its purpose. Section 5.3 contains a more

detailed explanation for how FPE utilizes taint analysis. This formal definition focuses on

FPE using the default execution strategy and it should not be conceived as all-encompassing,

as there are additional execution strategies, as detailed in Section 3.3.3. The primitive

unit of input to be processed during execution using FPE are single instructions from an

Intermediate Representation (IR) of a Dalvik bytecode. An intermediate representation

is a representation of the code where it has been translated to facilitate a task. In this

instance, smali, the IR, is a more human readable version of Dalvik bytecode that is easier

to process. Appendix A contains a sample smali file for reference. On Android devices

that use the Dalvik VM (i.e., Android devices that have an API level of 19 or lower), an

instruction is processed by an interpreter that maps the opcode and operand registers to a

native code routine to execute. The FPE framework acts as an interpreter and controls the

execution of the app using the Dalvik bytecode IR representation in the form of smali [130]

files and app resources files (e.g., string tables, layout files, AndroidManifest.xml, assets, and

arbitrary embedded files). A Dalvik instruction can correspond to a single statement in Java

source code, although a single Java source code statement may translate to multiple Dalvik

instructions depending on the complexity of its semantics.

An executable Android app is composed of one or more app components. Let App denote

the set of app components contained within an Android app where App 6= ∅.2 Each app

2There are Android apps that contain only resource files and lack executable code, but they are omitted
from consideration.
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component is an executable unit of the app with a predefined entry point and possibly an app

component lifecycle. An app component can be viewed as a sequence of Dalvik instructions

where some instructions can alter the control flow of the execution according to inputs,

events, values from the environment, and non-deterministic functions. Let Comp represent

a finite sequence of executable instructions comprising the programming logic of an app

component. Let Insn represent the set of instructions of an app component with IC being

the instruction counter denoting the current position within the sequence of instructions.

A Dalvik instruction necessarily contains an opcode and zero or more operand registers.

Let Opcode represent the set of all 226 Dalvik opcodes and Reg represent the set of active

registers. A register can contain a primitive data type or an object reference with a possible

value of null. Android apps are primarily written in Java, which does not allow direct

memory access. This mostly abstracts memory addresses from the user due to automatic

memory management. Branching instructions contain a label that represents a location

within a smali file. Let Label represent the set of all labels in the app. Each instruction is

uniquely identified by a smali file name and line number offset within the file. Let Opcodec

represent the set of 15 branching opcodes. Each branching instruction contains a label in

the code to branch to using a conditional or unconditional jump. Instructions that invoke a

method call contain the fully-qualified method name and zero or more operand registers

to be passed as arguments to the method call. There are 10 different opcodes for invoking

a method call, which are represented by Opcodei. Method calls are of particular interest,

especially those that invoke sensitive Android APIs, for observing the functionality of an app

and performing taint analysis. Let Meth represent the set of all methods that an app can call

based on its program logic. The FPE framework contains a list of 652 targeted fully-qualified

methods calls from the Android API. The list of targeted methods is user-configurable

to allow the user of the framework to focus on the most relevant behaviors. Let Methi

represent the set of relevant method calls that will be recorded. Let Methi along with their

calling object state (i.e., the receiver object for non-static method calls), parameters and

return value, if any, captured by zero or more register values (r∗i ), a timestamp (time), and
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instruction counter IC form a 4-tuple representing a logging instance. State represents a set

of 4-tuple logging instances(s) encountered during execution.

To allow the forcing of conditional statements only when an artifact of the execution

environment is being considered in predicate evaluation, the FPE framework uses taint

analysis at the register level. Let Meths represent the set of methods that act as a taint

source wherein the register for the return value will be tainted. For example, the java.lang.

System.currentTimeMillis() API is a taint source as it obtains a current timestamp from

the system. For a method to be a taint source, it must have a non-void return type. The

taint source methods obtain data from the external environment and these externalities can

be used in branching decisions. Let Methr represent the set of methods with a non-void

return type. When the FPE framework encounters instructions that invoke a method

call, there are certain Android API method calls that will cause a single execution run

to terminate and restart to explore a new path through the app component if there are

still additional valid execution paths remaining. Let Methe represent the set of method

calls that will terminate a single execution run. This occurs when a single execution run

encounters a known API call that will terminate either the process or the component being

executed, such as java.lang.System.exit(int), java.lang.Runtime.halt(int), android.os.

Process.killProcess(int), android.app.Activity.finish(), etc. These sets and definitions

are formally provided below using set notation:

App := {Comp1, Comp2, ..., Compn}, n ∈ N Application and constituent

components

Comp := [insn+
i ] Component and its sequence

of instructions

Insn := {insn1, insn2, ..., insnn}, n ∈ N All possible Dalvik

instructions

IC := {IC ∈ N} Instruction Counter
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Opcode := {o1, o2, ..., on}, n ∈ N Dalvik opcodes

Opcodec := {oc1 , oc2 , ..., ocn | Opcodec ⊂ Opcode}, n ∈ N Opcodes that alter control flow

Label := {l1, l2, ..., ln}, n ∈ N Labels in code for control flow

Opcodei := {oi1 , oi2 , ..., oin | Opcodei ⊂ Opcode}, n ∈ N Opcodes that invoke a method

call

Reg := {r1, r2, ..., rn}, n ∈ N All Registers

TaintReg := {t1, t2, ..., tn | TaintReg ⊆ Reg}, n ∈ N Tainted registers

Meth := {m1,m2, ...,mn}, n ∈ N All possible methods

Methr := {mr1 ,mr2 , ...,mrn |Methr ⊆Meth}, n ∈ N Methods with a non-void

return type

Meths := {ms1 ,ms2 , ...,msn |Meths ⊆Methr}, n ∈ N Taint source methods

Methe := {me1 ,me2 , ...,men |Methe ⊆Meth}, n ∈ N Methods that will restart an

execution run

Methi := {mi1 ,mi2 , ...,min |Methi ⊂Meth}, n ∈ N Methods of interest to log

State := {s1, s2, ..., sn}, n ∈ N Instances of logged methods

s := <mi, r
∗
i , time, IC>,mi ⊆Meth, r∗i ⊆ Reg, i ∈ N 4-tuple representing a logged

method

These sets and definitions provide the basis for the algorithm that performs forced-path

execution of an Android app using the default execution strategy (e.g., only forcing when

artifacts from the execution environment influence a branching instruction). In addition,
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I have created functions that operate on sets to make the algorithm more concise and

understandable. Some functions take an instruction and parse out some relevant piece of

the instruction (e.g., the second argument register) so it can be operated on independently.

The getMeth(insni) function takes an instruction and returns the fully qualified method

from the set Meth if it is an instruction that invokes a method call and returns an empty

set (∅) if it is not an instruction that invokes a method call. The getReg(insni) function

takes an instruction as an input and returns a set containing the operand registers used

in the instruction. If the instruction does not use any operand registers (e.g., a static

method call with no arguments), then an empty set will be returned. If the instruction

has at least one register operand, it returns the set of register(s) used in the instruction.

The getOpcode(insni) function takes an instruction as a parameter and returns the opcode

contained within the instruction.

The exec(insni) function takes an instruction, executes it, and returns a return register

for executed method calls that have a non-void return type. The underlying implementation

for this function is complex as it acts an interpreter for all the Dalvik instructions. During

interpretation, each Dalvik instruction has a switch case for the opcode where the values

from operand registers, if any, are used as inputs to execute the instruction. Invoking

method calls adds additional processing by using a call stack to store the calling context

and passing any argument registers when invoking the method call. This operates in the

conventional fashion by storing the state of the current method and adding a stack frame

with the relevant data to execute the called method. These implementation details have been

omitted from the algorithm to focus on the forcing of constraints related to the execution

environment and the taint analysis. The timestamp function returns the current timestamp,

which is used for logging purposes. The timeup function has been left undefined, although

it returns true if the time spent analyzing an app component has surpassed the user-set

threshold and returns false otherwise. A timer can be used to constrain the amount of

time executing an app component and to bound the execution time in case an infinite loop

is encountered. The applyTaintRules function is an integral part of the algorithm as it
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applies the taint propagation rules. The taint analysis is applied on the register level and

is described in Section 5.3. The preceding functions are formally defined below using set

notation:

getMeth(insni) =

 mi if getOpcode(insni) ∈ Opcodei

∅ if getOpcode(insni) /∈ Opcodei
Obtains the method from

an instruction

getReg(insni) = {r∗i | r∗i ⊆ Reg}, |r∗i | ≥ 0 Obtain register(s) from the

instruction

getOpcode(insni) = {oi | oi ⊆ Opcode}, |o| = 1 Obtain the opcode from the

instruction

timestamp() = {t}, t ∈ Z+ Returns the current

timestamp

exec(insni) =



ri if getOpcode(insni) ∈ Opcodei
∧ getMeth(insni) ∈Methr

∅ if getOpcode(insni) /∈ Opcodei
∨ getMeth(insni) /∈Methr

Executes the instruction

Algorithm 1 displays the high-level behavior of the FPE framework using taint analysis

on the registers to track inputs from the execution environment which informs the decision

of whether or not to force the outcome of predicate evaluation or use the actual runtime

values during predicate evaluation. Algorithm 1 uses the previously-defined set definitions

and functions to display the logic for processing an Android app and its constituent app

components in order to profile its behavior with regard to invoking Android API calls. Each

app component is processed individually and any data transmitted from one component to

another via Intent objects will be stored and delivered to the app component when it is
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Algorithm 1 General Forced-Path Execution algorithm for an Android app.

Input : Disassembled Android App (App)
Output : The set of targeted Android API calls and their values (State)
State ← ∅

foreach Compi ∈ App do
pathAvailable ← true
IC = 0
insn = Compi[IC]
TaintReg ← ∅
while pathAvailable = true do

if getOpcode(insn) ∈ Opcodec ∧ ∃getReg(insn) ∈ TaintReg then
IC ← findopenpath(insn)

if IC = -1 then
pathAvailable ← false

else
insn ← Compi[IC]
continue

end

else
r ← exec(insn)

if ∃getReg(insn) ∈ TaintReg then
applyTaintRules(insn, r)

end

if getOpcode(insn) ∈ Opcodei then
if getMeth(insn) ∈ Meths then

TaintReg ← TaintReg ∪ r

end

if getMeth(insn) ∈ Methi then
State ← State ∪ <getMeth(insn), getReg(insn) ∪ r, timestamp(), IC>

end

end

end

if timeup() then
pathAvailable ← false

else
if (getOpcode(insn) ∈ Opcodei ∧ getMeth(insn) ∈ Methe) then

IC = 0
else

IC ← IC + 1
end

insn ← Compi[IC]

end

end

end

return State
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executed. Each app component Compi is represented by a finite sequence of instructions.

The IC variable is used an index into Compi to obtain the current instruction. Each

app component is initialized to execute the first instruction in Compi and IC increases

sequentially until a branching instruction alters sequential control flow. The pathAvailable

variable is a Boolean variable acting as the loop control variable in the while loop. The

pathAvailable variable initially has a Boolean value of true, but will become false if the

user-set timer, as determined by the timeup function, for an app component expires. In

addition, the pathAvailable variable will be set to false if enough time is given for all paths

through an app component to be taken.

The findopenpath function is only called when the current instruction has an opcode

that can alter the control flow of the execution and at least one of the operand register(s)

for the instruction have been tainted. The findopenpath function will examine the binary

tree that models the execution paths through the app component and the current node for

the execution module and determine which path the execution should take depending on

which paths are available. There are different execution modules that concurrently execute

different paths and share the binary tree structure by using concurrency controls. The

findopenpath function determines which branch to take and will return the index of the next

instruction to execute within the current app component (Compi) and use it to update the

IC value. Depending on the branching instruction, execution may branch to an instruction

corresponding to a particular label or continue linear execution. Since there can be numerous

execution modules operating concurrently, an execution module may take the last available

path while the other execution modules are executing along the same path since there will

only be one path left through the app component. This information will be encoded in the

binary tree, which is accessed via the findopenpath function. If all the paths for an app

component have been traversed, then the findopenpath function will return a value of -1

indicating that the binary tree is complete and the subsequent app component should be

executed. When this occurs, the pathAvailable variable gets set to false to break out of the

while loop.
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If the instruction has at least one operand register that is tainted and the opcode for the

instruction is not a branching opcode (i.e., getOpcode(insnn) /∈ Opcodec), then the taint

rules will be applied via the applyTaintRules function after the instruction has been executed.

This function will apply rules to propagate the taint and untaint registers depending on the

specific instruction and the placement of the operand registers. If the current instruction has

an opcode that will invoke a method call, then the fully qualified method will be examined

to check if it is a taint source method, taint sink method, or a method that should be logged.

If the method call is a taint source method, then the return value from the method will be

tainted and added to the set of tainted registers TaintReg.

If the current instruction is invoking a method of interest, then the registers containing

its context, location in code, and a timestamp will be added to the set State, which contains

the 4-tuple logging instances. These 4-tuple instances contain the functionality of the app

with regard to its behavior and interaction with the Android framework. For all instructions

encountered, except the branching instructions that contain a tainted operand register, the

algorithm checks to see if it should stop executing an app component. If the conditions are

not met (i.e., time expiration or all paths completed), then the IC will be incremented by 1

and used as an index to obtain the next instruction for the app component from the sequence

of instructions for the app component from Compi. If the execution has returned from its

initial entry point or a halting API call was encountered, the module will be reinitialized and

begin with the initial instruction of the app component and take a different path. Eventually

one of the conditions that will stop the execution of the current app component will arise,

and then the next app component will be executed. The app components in the app will be

iterated over until they have all been processed and the algorithm returning State (a set of

4-tuples containing the targeted methods and their context) and the analysis of the app will

conclude.
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3.3.2 Comparison to Prior Work

Symbolic execution was initially developed to work on non-interactive programs where

the program’s entry point and its required inputs were well defined. Non-determinism,

concurrency, asynchronous behaviors, and the ordering of the events create challenges for

symbolic and concolic execution [118,131]. When analyzing an app, a symbolic execution

engine will likely have difficulty reasoning about control flow obfuscation techniques such as

reflective method calls and dynamic code loading at runtime [119,132,133]. Android apps

that intend to hide their behavior from symbolic execution and static analysis platforms, can

use these obfuscation techniques. Obfuscation of constants using runtime transformations

such as encryption or other reversible transformation (e.g., data compression) can hinder

symbolic execution [133–135]. A major difference between FPE and symbolic execution is

that FPE can obtains the runtime constructs and handles these obfuscation techniques that

can hinder static analysis techniques and static symbolic execution. Illustrating some of these

obfuscation techniques, Listing 3.1 provides a concrete Java source code example containing

indirect flows (lines 2 & 15), dynamic code loading (line 7), basic string obfuscation (line

11), reflective method call (line 15), and a constructed runtime value (line 15). The FPE

framework models the calls to dynamically load a dex file and converts the Dalvik bytecode

to smali files to make them accessible to the framework.

1 // the getString method obtains a String from the app’s strings.xml file

2 String name = getString(R.string.apk_name);

3 // helper method to unpack embedded apk file in app’s assets directory

4 String apkPath = unpackAndCopyAsset(name);

5 File odexDir = getDir("odex", Context.MODE_PRIVATE);

6 // dynamically loads the classes of the embedded apk file

7 DexClassLoader cl = new DexClassLoader(apkPath , odexDir.getAbsolutePath (), null ,

getClass ().getClassLoader ());

8 // loads a class from the embedded apk

9 Class sm = cl.loadClass("ob.fus.cat.e");

10 // avoids using string literal

11 String methName = new String(new char []{’h’,’a’,’j’,’i’,’m’,’e’,’r’,’u’});

12 // obtains a method reference from the dynamically loaded code

13 Method methGetService = sm.getMethod(methName , new Class []{ String.class});

14 // reflectively makes a method call where the name is constructed at runtime

15 Object what = methGetService.invoke(null , new String []{ name.substring(0, name.length

() -(6^2)) + "_entry"});

Listing 3.1: Challenging Java source code for static analysis and static symbolic execution.
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Concolic execution uses concrete execution of programs, but it also maintains a symbolic

state of the program, in addition to the concrete state. Concolic execution uses instrumen-

tation to maintain and update the symbolic state of the program. This can be performed

by directly instrumenting the Android app bytecode via cloning the app and inserting the

instrumentation code. An app clone is an unauthorized copy of an app where the app logic

has been modified (see Section 6.4 for details). Cloning an app can be used for analysis

purposes by injecting code into the original app [123, 136]. Cloning an app breaks the

original signature on the APK files and can be detected at runtime by the app using an

integrity check. An integrity check is a defensive technique by a program to check to see if

the program code or resources have been modified from their original authorized state. For

example, an app may hash the public-key certificate and compare it to an expected value.

It may be difficult to anticipate and handle all of the approaches in which an app tries to

verify that is has not been modified, including performing the integrity check in native code.

FPE marks external data, including the signatures of the apps files, as subject to forcing for

exploration, so this in-app integrity checks will not prevent FPE from analyzing an app. In

addition, FPE does not modify the APK file to instrument the app code. Listing 3.2 shows

a concrete Java source code example where an app examines the signature of its embedded

files and throws an uncaught exception which will terminate the process if the app detects

that it has been modified. When an app is modified, the app’s file signatures will reflect

this, and can be detected by the app.

1 PackageInfo packageInfo = getPackageManager ().getPackageInfo(getPackageName (),

PackageManager.GET_SIGNATURES);

2 MessageDigest messageDigest = MessageDigest.getInstance("SHA -256");

3 for (Signature signature : packageInfo.signatures) {

4 messageDigest.update(signature.toByteArray ());

5 }

6 String encoded = Base64.encodeToString(messageDigest.digest (), Base64.NO_WRAP);

7 if (!"HuBASw6thnX2OGtXfiDjYASnwtmop9K7pzSyzxnHyFXA=".equals(encoded)) {

8 throw new RuntimeException("App has undergone unauthorized modification");

9 }

Listing 3.2: In-app integrity check that detects unauthorized modification of app contents.

Both symbolic and concolic execution have difficulty analyzing the complex structure
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of Intent objects and their embedded data [123, 136]. An Android app can have multiple

entry points due to an app containing one or more app components. These app components

begin execution via an Intent message, which is accessible to the start app component. An

Intent object has some known fields, but it can also contain a Bundle object that can contain

arbitrary data structures including those that implement the Parcelable and Serializable

interfaces. When executing from an app entry point, beyond the standard launcher activity

app component, app components may rigidly expect Intent objects of arbitrary complexity

and nested data. If the Intent is not present with the expected data, then the application may

crash if it performs operations with the missing objects it expects to be present. Chapter 8

focuses on exposing these design flaws within apps and the Android OS and shows that

these faults are common. For example, in Chapter 8 in a single study, the system discovered

10,862 fatal NullPointerExceptions due to operating on missing Intent data in a set of 18,583

Android apps. Listing 3.3 provides a notional example where concolic execution may have

difficulty to solve the complex relationships that exist within the various embedded fields

in the Intent, as prior research has noted [123,136]. For the code in Listing 3.3, dynamic

analysis platforms would also have to provide these Intent inputs correctly, otherwise the

app will crash due to lack null checking in the code. Chapter 4 provides some additional

source code examples that will present difficulty for dynamic analysis and concolic executions

platforms that do not actively try to modify the environment by changing the output of

Android API calls. Even if the app does not crash by using appropriate conditional logic, it

may not make progress due to incorrectly structured Intent contents.

1 protected void onCreate(Bundle savedInstanceState) {

2 Intent intent = getIntent ();

3 Bundle firstBundle = intent.getExtras ();

4 Bundle secondBundle = firstBundle.getBundle("another_one");

5 CharSequence [] charSequences = secondBundle.getCharSequenceArray(firstBundle.

getString(firstBundle.getString("indirect")));

6 Bundle thirdBundle = secondBundle.getBundle("one_more");

7 int[] indexes = thirdBundle.getIntArray(thirdBundle.getString("indexes"));

8 String str1 = (String) charSequences[indexes[secondBundle.getInt("a")]];

9 String str2 = (String) charSequences[indexes[firstBundle.getInt("b")]];

10 String str3 = (String) charSequences[indexes[thirdBundle.getInt("c")]];

11 ...

Listing 3.3: Challenging Java source code for dynamic analysis and concolic execution.
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Therefore, to test app components that are not started directly by any other app

components in the app (such as an event listener for a received text message or a service only

accessible to the system), then the concolic execution engine will have to attempt to reason

about the internal data contents of the Intent objects these app components are expecting

to receive. In certain cases, mentioned in Chapter 8, an app will encounter an uncaught

fatal exception that terminates the app when there is missing data in the Intent due to a

NullPointerException. This can be difficult to embed data beyond simply providing the

default constructor for an object in an automated way, although the well-known Intent

fields can be populated. FPE does not try to populate the Intent when executing exported

and accessible app components. Exported and accessible components can be started from

any app co-located on the device and have arbitrary contents in the Intent. If there is an

Intent sent from another app component, then it will be delivered to the destination app

component. If the app component to be analyzed by FPE does not have an Intent waiting

for it to be consumed, then the data it is looking for from the Intent will be created at

runtime when it can be inferred. Even if the data cannot be exactly inferred, FPE controls

the interpreter and deals with missing data by reducing the precision of the analysis to get

code coverage instead of immediately crashing. Since FPE uses its own interpreter, it can

control when the app crashes and can continue when needed.

FPE simulates different environmental data that would be difficult to recreate or to be

forced to occur at runtime for a concolic execution engine or dynamic analysis. Manually

creating these events may be impractical to cover all cases. Concolic execution identifies

the initial inputs to programs and can identify event input data that is present in path

conditions. For example, the path condition may require that a notional system property

named sys.debug.modem have a value of 1. This system property is from the environment

is not strictly part of the initial inputs to the program. For concolic execution, these

events would need to occur at runtime to be considered by the constraint solver after a

concrete execution of the program. The constraint solver will correctly be able to identify the

appropriate input to satisfy the predicate, but it may not attempt to satisfy it automatically
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at runtime since this would require some form of interposition where the output of framework

API calls are also controlled by the concolic execution engine. While Anand et al. [100]

and CATE [137] do not control the outcome of framework API calls, ConDroid [123] does

by means of overwriting calls with modeled values in a recreated instrumented Android

app. Using this approach, the app will need to be recreated for each difference in the Intent

being sent to a component and for each different output from an overwritten API call. This

approach can encounter difficulty when there is a requirement for a more complex Intent

message (e.g., Intent for a received text message) or for an in-app integrity check that can

detect that the original app file has been tampered with. An in-app integrity check in native

presents great difficulty, as modifying app binaries is more difficult that modifying managed

code. In addition, symbolic execution and concolic execution, to some degree, will be limited

by the effectiveness of the constraint solver to solve path conditions.

While constraint solvers are powerful and have undergone many improvements over

the years, analyzing large apps can result in complex path conditions that may require

significant resources or stress the solver’s practical or theoretical limitations [115–117,138–

140]. Underlying some of the limitations of the constraint solver is that some types of

constraints present decision problems that are undecidable [113, 139]. Xu et al. [138] tested

some concolic execution engines and identified issues that they encountered even on small

binaries. This study identified scalability issues, although it is not known if the results

generalize beyond the tested binaries. A well-known problem with both symbolic and

concolic execution is the path explosion problem [112,139,141]. The path explosion problem

is due to programming constructs such as loops (e.g., loop predicate contains symbolic value)

and general code complexity with regard to the number of conditional statements which can

cause an exponential increase in the number of paths to explore. Issues of scalability arise

as the size of the program increases. An adversary that is aware of these limitations can

include code at numerous locations that intentionally create the conditions leading to path

explosion, wherein these operations to cause path explosion have no real underlying effect

on the core functionality of the program. This can seriously inhibit symbolic and concolic
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execution using diversionary tactics. FPE uses execution strategies, detailed in Section 3.3.3,

that have varying levels of path exploration. FPE uses a configurable threshold to limit loop

iterations and the allowed depth of recursive calls. While artificially limiting the execution in

this way can result in failure to explore interesting paths resulting from this approximation,

it also partially limits the impact of path explosion. If a conditional statement is selected to

be explored, as determined by the specific execution strategy, then the branch to be taken

at a conditional statement is selected at random if both the branches will lead to a complete

execution path that has not been previously taken.

FPE does not provide an absolute guarantee that a path from an app entry point to

another code point (e.g., sensitive API call) is indeed feasible in all cases. This can result in

infeasible paths that cannot be realized at runtime. This can result from traversing a path

where there are two conflicting constraints on the same path. This is a trade-off in terms

of precision for practicality with regard to path exploration and removing the overhead in

validating the satisfiability of each execution path with a constraint solver. The constraint

solver itself can also become a point of attack by apps employing anti-analysis techniques.

Banescu et al. [140] discovered some attacks against both symbolic and concolic execution.

Most of these obfuscation transformations resulted in at least a 100% slowdown versus

symbolically executing the same non-obfuscated code. As FPE does not utilize a constraint

solver and limits loop iterations even to embedded loops, it should not be significantly

affected. Path divergence is known issue in concolic execution [142, 143], including for

Android [100]. Path divergence occurs when a different execution path is taken at runtime

instead of the intended execution path, resulting from a divergence of the symbolic state

from the concrete state of the program due to implicit control flow.

A current practical limitation of FPE is that is does not handle the execution of native

code. While this is not uncommon in analysis platforms that focus on managed code and

omit native code from the analysis [123,132,136], it still limits the precision of the analysis

for an app that uses native code. Not handling and executing native code can result in

incorrect states, potentially affecting subsequent states. Nonetheless, not handling native
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code, other than logging the parameters to native method calls, can prevent anti-analysis

techniques from occurring in native code which an app may not be able to prevent. In

addition, the FPE framework automatically enumerates and interacts with identified GUI

elements and GUI widgets, which symbolic execution and concolic execution may or may not

handle. Malware may attempt to withhold its behavior [22] unless the app detects that its

is executing on a known-vulnerable device from a particular OEM [23] or it does not detect

that it is executing in an emulator [144]. FPE does use modeling for certain functionality

and this manual emulating certain behavior can be time consuming to create and maintain.

3.3.3 Execution Strategies

The FPE framework is modular and uses different execution strategies for different high-level

goals. An execution strategy is a mode of operation where the amount of forcing through

conditional statements and concrete execution of conditional statements is moderated

depending on some criteria to achieve a specific goal. The higher the amount of concrete

execution of conditional statements according to the actual runtime conditions should allow

for higher confidence that the path taken through an app is indeed feasible. On the other

hand, exploring all branches of a conditional statement, including all switch cases, when

data from a particular origin (e.g., data from the execution environment such as user input,

network responses, timestamps, etc.) allows the exploration of paths using a wide range

of valid data according to its type for a fuller sample of behavior based on the logic of the

app being analyzed. Some contrived and real-world use cases are provided in Chapter 4,

displaying the value of exploring the different paths that can be taken at runtime based on

values extracted from the execution environment. The list below provides some execution

strategies:

• Complete exploration: A strategy providing a what-if analysis that attempts to

explore every path through an app without any consideration for path feasibility.

Exploring every path in a non-trivial program is generally infeasible.
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• Exploring the execution environment: A strategy that primarily uses concrete

evaluation of conditional statements except when a value is, directly or indirectly,

derived from the execution environment. In this case, all branches of a conditional

statement will be taken and explored. The values obtained from the input environment

are tracked using taint analysis (see Section 5.3). Values from the environment are

obtained using known APIs allowing for this data to be tracked through the program.

Any control dependencies on this data are explored when environment data flows into

conditional statements to account for the variability in different environments.

• Capability leak identification: A strategy that helps to discover concerning data

flows where externally-controlled input (e.g., user, system, other processes, etc.) flows

from the entry point of an exported and accessible app component to a concerning

API call. This strategy focuses on the range of possible external input values and

forces and explores conditional statements when these values, indirectly or directly, are

evaluated in an expression for a conditional statement. The input data is generally in

the form of Intent messages with arbitrary contents or exported methods of a service

interface.

• Additional techniques: Additional execution strategies can be created based on a

particular use case where the forcing of constraints is limited to certain classes of inputs

and outputs from selected APIs. Moreover, additional program analysis techniques

can be integrated for a more thorough analysis.

In the future, I plan to bridge the two different research areas of this dissertation, by

modifying the FPE framework to automatically discover faults stemming from incomplete

handling of user input that can result in abnormal process termination. Chapter 8 provides

various methods in which common developer errors can cause app crashes, as well as system

crashes. This specific testing logic could be added as a module to the FPE framework to

check if both adequate checks are made on user input prior to their use (e.g., checking if

an input value is null prior to using it) and determining if adequate exception handling is
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present.

3.3.4 Execution Environment

Values from the environment generally affect the behavior of non-trivial Android apps. Data

from the execution environment is obtained from sources outside of the program and is

introduced into the program code. Some of these data values from the environment will

naturally vary due to inputs and runtime conditions external to the app. Some artifacts

of the execution environment particular to an Android device are the following: system

properties, presence of other apps, presence of a root user management utility, Android OS

version, language setting, device vendor, device model, presence of a Subscriber Identity

Module (SIM) card, physical location as determined by GPS, system clock, and user input

(e.g., entered data, screen touches, and gestures). If an app accesses the Internet or local

network, network responses can affect the behavior of an app. In certain instances, the

network may not be available, which generally constrains a program’s behavior (e.g., no

dynamic content, online collaboration, and presence of advertisements). Non-determinism

such as using the output of a pseudo-random number generator will also affect an execution

path when used in a conditional statement. Chapter 4 provides various contrived and

real-world use cases where the environment affects the branching decisions of Android apps.

There are many additional ways in which the environment can affect the behavior of an app

when there is an adversarial presence on the device or the network and various examples are

provided below in which unexpected app behavior can occur.

Intercepting and Modifying Network Responses

Some of these externalities may be able to be leveraged by an attacker either locally from

an app co-located on the device or remotely by using a wireless communication mechanism.

If an Hypertext Transport Protocol (HTTP) network connection does not use Transport

Layer Security (TLS), then an attacker on the local network or upstream may be able to

perform a Man-In-The-Middle (MITM) attack on the connection to maliciously modify data
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to perform a specific action or inject a software fault. This allows the attacker to control the

server response that will be consumed by the app and potentially affect its runtime behavior.

For example, vulnerable versions of Adups software that came pre-installed on a range of

Android vendor devices had an active Command and Control (C&C) channel that solely

used HTTP, allowing external attackers to perform MITM attacks to inject shell commands

to be executed as the system user on the device. Section 4.1.2 contains additional details

about the behavior of the Adups software.

Insecure File Storage

External access to an app’s files can be obtained in certain instances on both external and

internal storage. Early Android devices supported an external Secure Digital (SD) card

for additional storage. Some current devices do not provide an interface for a physical SD

card, but do provide an emulated SD card that is located on internal storage for backwards

compatibility. Both the emulated and non-emulated SD card storage area is also referred to

as external storage. Internal storage is an integrated solid-state storage device, generally

an embedded Multi-Media Controller (eMMC) device. It is recommended that apps do not

store sensitive files on external storage [145]. If an app stores a file on external storage,

then the contents of files can be modified by any app on the device that has been granted

the WRITE_EXTERNAL_STORAGE permission. If an app reads an externally modified file from

external storage, it is possible that an external app can modify the file to inject a fault

that causes a fatal crash or affects the behavior of the app. There have been cases where

pre-installed apps have installed apps residing on external storage and this process has been

subverted by another party to install a different app than the one that was intended by the

party that initiated the app install process [89,146].

During the installation of an Android app, the Android platform assigns the app a static

Linux UID. This UID is used to sandbox the app and enforce access control by creating a

security boundary for the app’s files and memory. Each file created by the app on internal

storage has an owner and a group that is set to the UID of the app. Each app has a private
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directory on internal storage to store their files with a path of /data/data/<package name>.

By default, the files created by the app on internal storage are not readable, executable, or

writable by other users (e.g., apps) on the device. Nonetheless, the developer can still create

world-readable and world-writable files on internal storage by using specific flags to the

android.content.Context.openFileOutput(String, int) API method call when creating a

file. The second parameter is an integer, which controls the mode. Two integer constants,

MODE_WORLD_READABLE and MODE_WORLD_WRITEABLE, have been deprecated, but are still usable

as the mode for compatibility and can expose an app’s files to external apps. In addition,

the app can obtain references to its own files and directly call the java.io.File.setWritable

(boolean, boolean) and java.io.File.setReabadble(boolean, boolean) API methods to

modify the permissions of a file or directory. This can result in data disclosure if a file

is world-readable, which would allow any other process aware of its existence to read its

contents. In addition, if a file is world-writable, this can lead to data modification, since

other processes can modify the contents of the file in certain circumstances. If the device is

rooted, then an app cannot depend on the integrity of the files that it stores locally on the

device. An adversary with root access would be able to modify any files in the app’s private

directory and even the app binary itself.

Providing Data to Exported Components

In an adversarial model, an attacker that has an app co-located on the device may try

to affect the app’s runtime behavior or corrupt the app’s data by sending Intent objects

embedded with crafted data. The Android OS can export app components within an app

by default, even when the app does not explicitly declare that the app components should

be exported. An exported app component is an app component that can be receive Intent

messages or data from an external app (i.e., any app other than itself). This is a conscious

design decision Google made that favors openness and data sharing, sometimes at the expense

of security [21,147]. The Android OS will automatically export an app component if it has at

least one intent-filter and the app developer has not explicitly set the android:exported
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attribute to false for the component in the app’s manifest file. For example, the broadcast

receiver shown in Listing 3.4 will be automatically exported by Android even though its

declaration does not explicitly indicate that it should be exported. An intent-filter is a

specification of the set of action values that an app component can handle. An action is a

string that denotes a specific event that an app component can handle. For example, an

Android app may want to be alerted when the user is actively using the device, so they

would register to receive the action with a name of android.intent.action.SCREEN_ON to

know when the user is actively using the device. The Android OS sends a broadcast intent

with an action string of android.intent.action.SCREEN_ON when the device screen is turned

on to all apps that have registered to receive this particular action. Listing 3.4 displays

a broadcast receiver that statically declares the actions that it can receive in the app’s

AndroidManifest.xml file. In addition to platform-declared action strings, an app can create,

use, and register for its own action strings. An intent-filter must be associated with

an activity, service, or broadcast receiver app component. Intentionally or unintentionally

exported components can lead to privilege escalation [21,147,148]. Apps can restrict access

to exported app components by using signature-level custom permissions.

1 <receiver android:enabled="true" android:name="Adventurer">
2 <intent -filter android:priority="1000">
3 <action android:name="android.intent.action.USER_PRESENT"/>
4 <action android:name="android.intent.action.SCREEN_ON"/>
5 <action android:name="android.intent.action.PHONE_STATE"/>
6 </intent -filter >
7 </receiver >

Listing 3.4: Declaring actions in a broadcast receiver.

A content provider app component provides access to structured data. Generally, the

content provider utilizes an SQLite database. If the content provider is exported, then

an external app can read, write, and modify the underlying data contained in the SQLite

database [149]. This can result in data disclosure and data modification if the app developer

did not intend for the content provider to be accessible to other apps. This may allow

an external app to possibly affect the control flow of an app by modifying values in an
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accessible content provider. Up to Android version 4.1, content providers app components

were exported by default if the developer did not explicitly set whether it should be exported

or not [150]. This allows an external app to read, write, and modify underlying data using

the content provider [151, 152], which may alter its branching decisions or result in fatal

errors if the data has an unexpected type or format.

Interacting with IPC Channels

Android apps can create UNIX domain sockets to perform IPC. If the domain socket does

not properly check credentials and perform authentication when accepting connections, then

this may allow an attacker to inject data into the program and alter its state. Previously,

the Android OS was vulnerable to a DoS attack by having a domain socket used by the

zygote process open to any app on the device in versions of Android up to 4.0.3 [153]. In

addition, a pre-installed Adups app allowed command injection via a domain socket that

could be used by third-party apps to execute commands with system user level privileges

[154].

Apps can collude with other apps using IPC or covert channels [155, 156]. In certain

instances, apps can aggregate their permissions over two or more apps and share the same

UID. Android enables apps to share their resources and permissions with another app if

they are signed with the same private asymmetric key and use the same value in the android

:sharedUserId attribute in each of their AndroidManifest.xml files [157]. The appropriate

behavior may not be performed unless the accompanying app is installed on the device.

An ordered broadcast can be modified by an app that receives it before being subsequently

delivered to other apps. This was a design choice by the developers of the Android OS

that can be abused. An ordered broadcast is delivered to apps eligible to receive it in an

order that depends on the android:priority attribute integer value that they have set for

the specific intent-filter element of a broadcast receiver in their AndroidManifest.xml file.

The android:priority can range from -999 to 999 using a linear scale where -999 represents

the lowest priority and 999 represents the highest priority. Apps with a higher priority
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get access to the broadcast Intent prior to apps with a lower priority, so they can modify

the data contained in the Intent before it is passed on to broadcast receivers with a lower

priority or simply abort the broadcast so that it will not be received by broadcast receivers

with a lower priority [158].

Android apps can dynamically load Dalvik Executable (dex) files, containing Dalvik

bytecode, to extend their inherent functionality. Dynamic code loading is necessary for

apps that have exceeded the 65,536 method or field limit in a single dex file. This generally

occurs with complex apps such as Facebook and Google Play Services. Android introduced

MultiDex [159] to facilitate dynamic class loading in large and complex apps. In addition,

apps can perform dynamic class loading by using the facilities provided by the dalvik.system

.DexClassLoader class. If an attacker can interpose on this file either due to an MITM attack

or the dex file being stored on insecure storage (e.g., external storage), then the attacker

can achieve code execution in the context of the process with its complete set of permissions

and corresponding capabilities. Samsung [160] made this mistake by retrieving an Android

app over HTTP and then using the app to update a pre-installed app. Since the network

connection used HTTP, it was vulnerable to MITM attacks, resulting in code execution in a

privileged process. Section 6.2 contains details for 3 apps that FPE detected leaking the

capability to inject arbitrary commands into pre-installed apps to be executed as the system

user.
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Chapter 4: Motivating Use Cases

This chapter provides motivating use cases from both real-world Android software and

theoretical examples. Section 4.1 illustrates the utility of the FPE framework to simulate

different environments to observe behaviors from apps that may not be readily apparent,

depending on the particular analysis technique and runtime environment. Section 4.2 details

some of the challenges that can manifest when analyzing Android apps that employ anti-

analysis techniques and how the FPE framework overcomes them. Section 4.3 provides

concrete examples of DoS attacks that illustrate the potential risks of executing a third-party

app, that can have devastating effects on the system. These behaviors can be particularly

dangerous because they may be outside the user’s mental model of what an unprivileged

app can accomplish such as permanently disabling an embedded Android device in the worst

case.

4.1 Exposing Concealed Functionality

This section provides examples where concerning app behavior is not immediately exhibited

by an Android app, although the behavior is predicated on certain conditions that may not

be easily or immediately satisfied in a single or limited number of analysis environments.

The specificity of the conditions may be by design to make the behavior more difficult to

detect.

4.1.1 Fine-grained Targeting

Using a discriminating set of conditions can allow an app to target a constrained set of users

that share common attributes. Listing 4.1 provides a theoretical Java source code example

where the body of the if statement, containing a single method call on line 4, only executes
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when three specific conditions are simultaneously true: (1) the user has their locale set to

the country of Kyrgyzstan; (2) their locale language is set to Kyrgyz (as opposed to other

languages spoken in Kyrgyzstan); and (3) the user has a SIM card for the Kyrgyz carrier

named MegaCom.1 According to the Android Developers webpage for the Locale class [161],

a locale is used to represent “a specific geographical, political, or cultural region.” The

constant value of 43705 on line 3 in Listing 4.1 is composed of the Mobile Country Code

(MCC), 437 for Kyrgyzstan, followed by the Mobile Network Code (MNC) with a value of

05 denoting the carrier MegaCom [162].

1 TelephonyManager telephonyManager = (TelephonyManager)
getSystemService(TELEPHONY_SERVICE);

2 Locale locale = getResources ().getConfiguration ().locale;
3 if (locale.getLanguage ().equals("ky") && locale.getCountry ().equals(

"KG") && telephonyManager.getSimOperator ().equals("43705")) {
4 showtime ();
5 }

Listing 4.1: Targeting users living in Kyrgyzstan that primarily use the Kyrgyz language
and also use MegaCom as their carrier.

Targeting users according to some criteria can have multiple applications, including

malicious purposes where the intended target is a subgroup of a population. There are

many attributes that software can use to differentiate users such as Android’s GeoFencing

API.2 The GeoFencing API allows developers to easily constrain functionality to a certain

geographical area by creating a geofence using a set of GPS coordinates and a selected

radius in meters. While the example in Listing 4.1 is a contrived example meant to illustrate

intentional targeting, this behavior is not limited to the theoretical domain. Section 4.1.2

discusses how certain versions of pre-installed Android apps developed by a company named

Adups could remotely regulate which text messages to exfiltrate via a network response.

Specifically, Adups could remotely instruct devices to only select and exfiltrate text messages

that contained a specified search term or involved a specific phone number as a sender or

receiver. In addition, another concrete real-world example is provided in Section 4.1.3 where

1MegaCom’s website is located here: https://www.megacom.kg/.
2Android GeoFencing documentation is provided here: https://developer.android.com/training/

location/geofencing.
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a pre-installed app on a Panasonic Android device would only send a text message containing

user PII if the device has a SIM with an MCC corresponding to the country of India.

4.1.2 Adups: Guarding Malicious Behavior

Adups is a Chinese company that provides Firmware Over the Air (FOTA) services to

Android device vendors [163]. In this context, the FOTA process involves the remote

administration, transmission, and execution of updating an Android device’s firmware to

update the Android OS. Android vendors that do not have the sophistication or desire to

directly manage the FOTA process of their devices can outsource this process to a company

such as Adups. To manage the FOTA process, the managing entity requires a presence

on the device in terms of software, generally manifesting as at least one pre-installed app.

The pre-installed software must be privileged in order to initiate a firmware update. The

privileged position of pre-installed apps on the device, which is not exclusive to FOTA

app(s), can have significant consequences if the pre-installed app is malicious or contains

vulnerabilities that allow local or remote privilege escalation. Various examples of pre-

installed apps that are insecure in that they allow local apps co-located on the device to use

their capabilities without the corresponding access permissions [21,22,147,160].

In 2016, I discovered that certain versions of pre-installed apps from Adups were secretly

obtaining the user’s text messages, call log, unique device identifiers, and browser history

without the user’s consent or awareness and sending the PII to a server located in China

[22,164]. Google listed this discovery as one of the four vulnerabilities in the Noteworthy

Vulnerabilities section of their official Android Security 2016 Year in Review document [165].

On the affected devices, the PII exfiltration was accomplished by a set of two interacting

apps with package names of com.adups.fota (versionCode = 22, versionName = 5.1.0.0.0)
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and com.adups.fota.sysoper (versionCode = 505, versionName = 5.0.5).3 The com.adups.

fota.sysoper app was a pre-installed platform app that executed as the system user.4 The

pre-installed com.adups.fota app scheduled and performed the network communication and

leveraged the open app components of the com.adups.fota.sysoper app to perform actions

it was not privileged enough to carry out itself (e.g., obtaining text messages, command

execution as system user, obtaining browser history, etc.). The com.adups.fota.sysoper app

exported an app component which allowed local apps to also inject arbitrary commands to

be executed as the system user. The Adups apps that contained spyware did not immediately

display their data collection and exfiltration behavior, which can confound some analysis

platforms since they likely analyze apps for a brief and pre-determined time period. Spyware

is software that secretly obtains data about the user without their knowledge.

The two distinct capabilities, data exfiltration and an active C&C channel, have different

time-based requirements that ensure their functionality is not immediately performed

and thus visible to dynamic analysis platforms. A C&C channel uses communication

infrastructure to allow a remote entity to exert control over an entity by instructing

it to perform certain actions. The data collection and exfiltration functionality in the

com.adups.fota app has an entry point that is the com.msg.analytics.AnalyticsReceiver

broadcast receiver app component which statically registers for the CONNECTIVITY_CHANGE

and ACTION_POWER_CONNECTED broadcast actions. The former is sent by the system when the

device joins or leaves a known network, while the latter is sent by the system when the

user plugs in the device to charge. The initial condition that needs to be fulfilled is that

the device needs to be powered-on for at least 10 minutes the first time the app is run.

Listing 4.2 contains Java source code for the isOverActive(Context) static method from the

com.msg.analytics.AnalyticsService class which regulates whether the AnalyticsService

service app component should be started or not.5 The AnalyticsService app component is

3Adups used alternate versions of these apps and also has different package names for their apps as well:
com.data.acquisition, com.fw.upgrade, and com.fw.upgrade.sysoper.

4To be a platform app, an app must be signed with the platform key and also set the android:

sharedUserId attribute to android.uid.system in its manifest file.
5This Java source code example and the others in this dissertation are the product of examining apps’

disassembled Dalvik bytecode and manually creating the source code with the same logic.
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1 private static boolean isOverActive(Context con) {
2 try {
3 // SAVE_SETTING_NAME has a value of ‘analytics ’
4 SharedPreferences sp = con.getSharedPreferences(Const.

SAVE_SETTING_NAME , 0);
5 boolean ft = sp.getBoolean("ft", 0);
6 if (ft == true)
7 return false;
8 long time = android.os.SystemClock.elapsedRealtime ();
9 // ANALYTICS_FIRST_TIME has a value of 600000

10 if (time < Const.ANALYTICS_FIRST_TIME) {
11 return false;
12 } else {
13 SharedPreferences$Editor editor = sp.edit();
14 editor.putBoolean("ft", true);
15 editor.commit ();
16 return true;
17 }
18 } catch (Exception e) {
19 return true;
20 }
21 }

Listing 4.2: Adups time-based trigger for app’s first execution.

the entry point that performs the exfiltration of PII and determines when it should occur.

Therefore, the device will need to have an uptime of at least 10 minutes the first time it

is run prior to even starting the app component that performs the exfiltration, unless it is

coaxed to do so with some manipulation via a program analysis technique such as FPE.

Once the uptime condition has been met, the AnalyticsService class calls the com.msg.

analytics.AnalyticsReport.report() method which manages the collection and exfiltration

of PII. There are actually two different time checks that occur serially, one for PII collection

(i.e., isOverDCTime()) and the second for uploading the PII to a server in China (i.e.,

isOverDCUploadTime()). Listing 4.3 shows a method named isOverDCUploadTime() from

the AnalyticsReport class where the Boolean return value determines if the uploading

of user PII, after it has been collected, should proceed. Both of the methods, one for

PII collection and the one for PII exfiltration, use the constant named com.msg.analytics

.Const.ANALYTICS_SCHEDULE_DEF that has a long value of 259,200,000. In the context of

these methods, the value of 259,200,000 corresponds to the number of milliseconds in a

3 day period, wherein the method checks to see if at least 3 days (72 hours) have passed
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since the previous exfiltration or since the AnalyticsService component first executed.

When the isOverDCUploadTime() method, displayed in Listing 4.3, returns a Boolean value

of true, the PII that has been collected will be uploaded to the following URL: https:

//bigdata.adups.com/fota5/mobileupload.action.

1 private boolean isOverDCUploadTime () {
2 long currentTimeMillis = System.currentTimeMillis ();
3 // PREF_DATA_DC_UPLOAD_TIME has a value of ‘dupt’
4 long j = this.prefs.getLong(Const.PREF_DATA_DC_UPLOAD_TIME , -1);
5 if (j >= 0) {
6 // ANALYTICS_SCHEDULE_DEF has a value of 259200000
7 return currentTimeMillis - j >= Const.ANALYTICS_SCHEDULE_DEF

;
8 } else {
9 saveLastTime(Const.PREF_DATA_DC_UPLOAD_TIME ,

currentTimeMillis);
10 return false;
11 }
12 }

Listing 4.3: Adups time-based trigger that controls PII exfiltration.

The Adups app with a package name of com.adups.fota.sysoper contained a C&C

channel that becomes active after the device has been used for at least 20 days. An

analysis time duration of 20 days seems unlikely to be met in most Android analysis

systems. The TaskReceiver broadcast receiver app component, in the com.adups.fota.

sysoper app, is started by the system whenever the user unplugs their device from charging

(i.e., ACTION_POWER_DISCONNECTED broadcast intent was sent) and this component would start

the TaskService service app component. The TaskService used the com.adups.fota.sysoper

.k class to check to see if the app has executed on at least 20 different, not necessarily

consecutive, days. I manually recreated the Java source code for the com.adups.fota.sysoper

.k.c(Context) method, shown in Listing 4.4, that checks to see if the conditions have been

met to make a connection to the C&C server to poll for commands. The C&C channel

uses the following URL to check to see if any commands are available to be retrieved and

executed: http://rebootv5.adsunflower.com/ps/fetch.do. If any commands are pulled

from the server, they are faithfully executed by the com.adups.fota.sysoper platform app

which executes them with system user privileges.
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1 public static boolean c(Context con) {
2 String package_name = con.getPackageName ();
3 SharedPreferences sp = con.getSharedPreferences(package_name , 0)

;
4 long time = java.lang.System.currentTimeMillis ();
5 long lt = sp.getLong("LastTime", 0);
6 int count = sp.getInt("count", 0);
7 StringBuilder sb = new StringBuilder ();
8 sb.append("isOverSumTime count = ");
9 sb.append(count);

10 com.adups.fota.sysoper.n.b("task", sb.toString ());
11 if (count >= 20) {
12 return true;
13 }
14 else {
15 SimpleDateFormat sdf = SimpleDateFormat("yyyy -MM -dd");
16 Date date = new Date(time);
17 String ds = sdf.format(date);
18 Date date2 = new Date(lt);
19 String ds2 = sdf.format(date2);
20 sb = new StringBuilder ();
21 sb.append("isOverSumTime nowDate = ");
22 sb.append(ds);
23 sb.append(" preDate = ");
24 sb.append(ds2);
25 com.adups.fota.sysoper.n.b("task", sb.toString ());
26 if (ds.equals(ds2)) {
27 SharedPreferences$Editor editor = sp.edit();
28 editor.putLong("LastTime", time);
29 int newCount = count + 1;
30 editor.putInt("count", newCount);
31 editor.commit ();
32 }
33 return false;
34 }
35 }

Listing 4.4: Adups time-based trigger the C&C channel.

4.1.3 SalesTracker: Time and SIM-based Conditions

Panasonic sells Android smartphones and a key market of theirs appears to be India [166].6

I processed a firmware image using FPE for the Panasonic Eluga X1 device running Android

8.1.7 This particular build for the Eluga X1 device contains a pre-installed app with

a package name of com.staqu.panasalestracker (versionCode = 8, versionName = 1.3.5).

6The server that hosts Panasonic’s webpage featuring their mobile devices redirects requests for the
https://mobile.panasonic.com URL to https://mobile.panasonic.com/in.

7Panasonic/ELUGA_X1/ELUGA_X1:8.1.0/O11019/1536216693:user/release-keys is the build
fingerprint for the Panasonic Eluga X1 device.
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This app is not a platform app; therefore, it generally will not be automatically granted the

permissions declared by the Android platform with a android:protectionLevel of dangerous

by default [167]. According to the manifest of the com.staqu.panasalestracker app, it has

its android:targetSdkVersion attribute set to a value of 23. Therefore, the app will not be

granted all its requested permissions by virtue of it not being developed prior to Android 6.

I have not examined a Panasonic Eluga X1 device to test the app’s behavior at runtime,

but the com.staqu.panasalestracker app has been granted three permissions by white-listing

them in the device’s /system/etc/permissions/privapp-permissions-platform.xml file by

default, as shown in Listing 4.5. White-listing privileged permissions to apps without the

user explicitly granting them was introduced in Android 8.0 (Oreo) and is explained in [168].

The permissions provided in Listing 4.5 have a protection level of signature or privileged

and will be granted to the app [169]. I am unsure if the app will be granted the permissions

of GET_ACCOUNTS and ACCESS_COARSE_LOCATION permissions to obtain the user’s email address

and cell tower ID that the device is using. Independent of whether these two permissions are

granted to the app or not, the code where the PII is obtained corresponding to these two

permissions is contained with try-catch blocks, so the app will not crash if it encounters a

SecurityException due to insufficient permissions.

1 <privapp -permissions package="com.staqu.panasalestracker">

2 <permission name="android.permission.READ_PRIVILEGED_PHONE_STATE" />

3 <permission name="android.permission.SEND_SMS_NO_CONFIRMATION" />

4 <permission name="android.permission.WRITE_SECURE_SETTINGS" />

5 </privapp -permissions >

Listing 4.5: Modified platform.xml file to grant permissions by default.

I discovered a special exception for the com.staqu.panasalestracker app where it bypasses

the standard permission check when sending a text message as shown in Listing 4.6.8 The

Java source code in Listing 4.6 was recreated by manually examining the disassembled

/system/framework/arm/boot-telephony-common.vdex file from the device firmware. The com

.staqu.panasalestracker app contains triggers that are dependent on time and the MCC

8The exemption for the app appears to be superfluous, and potentially a vestige from previous ver-
sions, since the app has been white-listed for the SEND_SMS_NO_CONFIRMATION permission as displayed
in Listing 4.6.
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1 public void sendText(String callingPackage , String destAddr , String scAddr ,

String text , PendingIntent sendIntent , PendingIntent deliveryIntent ,

boolean persistMessageForNonDefaultSmsApp) {

2 if (callingPackage == null || (callingPackage != null && !callingPackage

.equals("com.staqu.salestracker"))) {

3 com.android.internal.telephony.Phone phone = IccSmsInterfaceManager.

mPhone;

4 Context context = phone.getContext ();

5 context.enforceCallingPermission(

6 "android.permission.SEND_SMS", "Sending SMS message");

7 }

8 IccSmsInterfaceManager.sendTextInternal(callingPackage , destAddr , scAddr

, text , sendIntent , deliveryIntent ,

persistMessageForNonDefaultSmsApp);

9 }

Listing 4.6: Source code for the sendText method of the com.android.internal.telephony.

IccSmsInterfaceManager class.

present on any SIM cards inserted in the device.9 The app initially obtains user PII, and

then attempts to send it over a network connection via Hypertext Transfer Protocol Secure

(HTTPS) to the following URL: https://stapp.panasonicarbo.com.10 If the app fails to

send the user’s PII 13 times over HTTPS, it will attempt to send a text message with a

lesser amount of the user’s PII only if the user has a SIM card with an MCC corresponding

to the country of India. The app only sends out the PII once and the app logic internally

refers to it as an activation. The value controlling whether the device is activated is the

device_activated key in the global settings that are accessed via the android.provider.

Settings$Global class. It is possible that another app with the permission to modify the

global settings can make it so that the activation message is sent each time the device is

turned on by modifying the value of the device_activated key, but I have not found any

evidence to indicate that it is occurring.

The com.staqu.panasalestracker app contains a broadcast receiver app component

named com.staqu.salestracker.SalesTrackerReceiver. Listing 4.7 shows the declaration of

9The device supports dual SIM cards.
10A slightly different version of the app with a package name of com.staqu.salestracker is present

in the Panasonic Eluga Ray 700 device and sends the data over HTTP to the following URL: http://p.

salestrackr.info (query string omitted).
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1 <receiver android:name="com.staqu.salestracker.SalesTrackerReceiver">

2 <intent -filter >

3 <action android:name="android.intent.action.BOOT_COMPLETED"/>

4 </intent -filter >

5 <intent -filter >

6 <action android:name="ACTION_SMS_SENT"/>

7 <action android:name="ACTION_SMS_SENT_SIM2"/>

8 <action android:name="ACTION_SMS_DELIVERED"/>

9 <action android:name="ACTION_INTERNET_THRESHOLD_CROSSED"/>

10 </intent -filter >

11 <intent -filter android:priority="1000">

12 <action android:name="android.provider.Telephony.SMS_RECEIVED"/>

13 </intent -filter >

14 </receiver >

Listing 4.7: Declaration of the SalesTrackerReceiver broadcast receiver app component.

the SalesTrackerReceiver app component in the app’s manifest file. When the SalesTracker

Receiver broadcast receiver app component first receives the BOOT_COMPLETED broadcast

intent and if the device has not been activated, it creates a PendingIntent object to send an

Intent to itself with an action string of action_activation_received with a repeating time

interval that is dependent on how many times it has tried to activate the device previously.

The FPE framework will execute each app component in the app, independent of whether it

is externally accessible. Therefore, any app component that statically registers for broadcast

actions that are only sent by the system will be executed by the FPE framework, simulating

the range of possible system events.

If the com.staqu.salestracker app has tried to register the device using HTTPS less

than 13 times, then it will set an alarm that will expire in 6 hours. When the alarm activates,

the app will then try to send the user’s PII over HTTPS. If the app has tried to register

the device at least 13 times using HTTPS, then it will set the alarm for 30 minutes and

also try to activate the device using Short Message Service (SMS) if the user has at least

one inserted SIM card that has an MCC corresponding to India. SMS is responsible for

the sending and receiving of text messages on many mobile devices. The app checks if the

device has a SIM that is registered to any of the following country codes: 404, 405, and 406.

The MCC codes of 404 and 405 both are assigned to India, while 406 is unassigned [170].
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1 public static boolean isOperatorSupported(String mcc) {
2 if (mcc.equals("404") || mcc.equals("405") || mcc.equals("406"))
3 {
4 return true;
5 }
6 return false;
7 }

Listing 4.8: Filtering the MCC for Indian carriers.

The recreated Java source code for the com.staqu.salestracker.Util.isOperatorSupported

(String) method that determines if the device is applicable for device activation using SMS

instead of HTTPS is provided in Listing 4.8. This preceding method takes a string parameter

that contains the attempt to query both SIM card slots for the MCC of either SIM. The MCC

is obtained by using the TelephonyManager.getNetworkOperatorForPhone(int) method call

for both SIM cards. If the device has a SIM card that is registered to an Indian carrier, then

it will register the device over SMS if registration over HTTPS fails at least 13 times. This

occurs in the com.staqu.salestracker.SalesTrackerService.activateViaServer() method.

The PII that can be sent out by the com.staqu.panasalestracker app, using both HTTPS

and SMS, is shown in Table 4.1 where the gray rows indicate certain PII that the app

attempts to obtain, but may be denied due to insufficient access permissions.

Table 4.1: PII transmitted by the com.staqu.panasalestracker app using HTTPS and SMS.

PII HTTPS SMS

IMEI 1 X X
IMEI 2 X X

Email Address X
Cell Tower ID X
Phone Number X

Android ID X X
Local Area Code X X

MCC 1 X X
MCC 2 X X
MNC 1 X X
MNC 2 X X

Country Code X X
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1 {
2 "call": "java.net.URL.openConnection ()",
3 "component ": "com.staqu.salestracker.
4 SalesTrackerInternetConnectivityReceiver",
5 "arguments ": ["URL:https :// stapp.panasonicarbo.com?brand =&model=
6 STARHSTARTSTARCSTAR+STARDSTAReSTARsSTARiSTARrSTAReSTAR&
7 imei1 =1234567890123456&imei2 =1234567890123456&android_id=
8 9b1587bf3b1d8fc&mcc1 =310&mnc1 =660&mcc2 =310&mnc2 =660&date=
9 12 -03 -2019& time =12%3 A35%3A27&key=&typ=&ver=&ram=1MB&

10 country_code=in&app_version =& manufacturer=HTC&lac =454&
11 cid =454&eml=feelsgoodman %40 gmail.com&android_version =0
12 &build =""],
13 "lineNumber ": "716" ,
14 "taint ": "|136|" ,
15 "category ": "network_events",
16 "smaliFile ": "SalesTracker/smali/com/staqu/salestracker/
17 SalesTrackerAsyncTask.smali"
18 }

Listing 4.9: Raw JSON event for sending PII in the querystring using HTTPS (PII highlighted
in red text).

Listing 4.9 provides the raw output from the FPE framework showing a network request

to the https://stapp.panasonicarbo.com URL where the PII contained in the querystring

is highlighted in red text. A querystring is part of a URL that provides information by using

key-value pairs. The raw output includes the fully-qualified API method call, its arguments,

component, file name, category, taint values, and line number on which the API method

occurs. In addition to making the network call in Listing 4.9, the entire URL, query string

included, is written to the logcat log and the raw JavaScript Object Notation (JSON) output

from the framework is provided in Listing B.1 of Appendix B. JSON is a format for data

storage and transmission that supports arrays and can represent objects with key-value pairs.

While leaking PII to the logcat log may seem like a minor issue due to third-party apps not

being able to access the system-wide logcat log, I discovered that various vendors contained

certain pre-installed apps that could be induced to leak the contents of the system-wide

logcat log (see Section 6.1.2) [21]. Listing B.2 of Appendix B provides the raw JSON output

from the framework when the app sends user PII over text message. The FPE framework

will enter the conditional branch that simulates the device having a SIM card with an

MCC that corresponds to India and also defeat the time-based requirement to obtain the
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destination number of the text message and its message body containing PII since they both

come from the environment.

4.2 Detecting an Analysis Environment

Using the Android emulator provides an economical method for analyzing apps at scale

by increasing automation and reducing hardware costs. The Android SDK provides a free

emulator that can emulate different devices, platforms (e.g., Android TV, Wear OS, etc.),

and API levels. Using the Android emulator is a common approach to perform dynamic

analysis of Android apps [35,37–39]. The Android emulator is amenable to modifications

such as Virtual Machine Introspection (VMI) [37,38] and modifying ART [171,172]. Despite

the utility of the Android emulator, it also has idiosyncrasies that are detectable by apps.

Petsas et al. [45] provided three methods in which an Android app can detect that its

executing within an emulator and subsequently withhold behavior. The methods they listed

were checking for (1) static system properties that indicate an emulator, (2) the inaccurate

modeling of the sensor data by the emulator, and (3) peculiarities of the VM itself with

binary translation and cache coherence. They found that all the available online dynamic

analysis platforms were vulnerable to some combination of these VM-detection heuristics.

Malicious apps can detect the emulator and then use evasion techniques to thwart external

attempts to be analyzed. Vidas et al. [46] presented some approaches that can be used by an

Android app to detect that it is executing within an emulator. They focused on the emulation

of the Android API, the network, performance differences, and differences in software and

hardware components. Maier et al. [173] developed a tool named Sand-Finger that was

able to develop a fingerprint composed of almost 100 different attributes for 10 different

online analysis environments. By fingerprint, I mean a set of attributes that can be used to

uniquely identify the analysis environments due to aggregating their distinguishing features.

They examined artifacts of the environment such as uptime, Wi-Fi connectivity, mobile

connectivity, CPU architecture, ability to send Internet Control Message Protocol (ICMP)
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packets, and the correctness of the system timestamp, to name a few. These approaches

can be used by malware to identify popular online dynamic analysis platforms and withhold

their behavior when being analyzed.

The FPE framework can expose dichotomous behavior by forcing into execution branches

containing malicious code that an app dissembles when it is being analyzed. Listing 4.10

shows a contrived Java source code example that contains various known techniques to

probe if an Android app is executing within an emulator. The count of emulator artifacts is

aggregated to increase confidence in the assessment. The detection methods in Listing 4.10

are tailored to the emulator from the Android SDK running API level 28 (Android 9.0).

For a systematic approach in emulator detection, each emulator image can be examined for

artifacts that entail or are indicative of an Android emulator to create fingerprints, so apps

can identify a virtualized environment at runtime.

1 TelephonyManager telephonyManager = (TelephonyManager)
getSystemService(TELEPHONY_SERVICE);

2 int indicators =0
3 if (new File("/system/xbin/su").exists ())
4 indicators ++;
5 if (telephonyManager.getImei ().equals("000000000000000"))
6 indicators ++;
7 if (android.os.Build.getSerial ().equals("unknown"))
8 indicators ++;
9 ...

10 if (android.os.Build.DEVICE.equals("generic_x86"))
11 indicators ++;
12 if (android.os.Build.TAGS.equals("dev -keys"))
13 indicators ++;
14 if (indicators > EMULATOR_THRESHOLD_CONSTANT)
15 return "emulated";
16 else
17 return "not -emulated"

Listing 4.10: Android emulator detection for API level 28 (9.0).

An artifact common to both the Android SDK emulator and some analysis environments

is the presence of root access or a root management utility on the device. The Android SDK

provides root access by default on the emulator via Android Debug Bridge (ADB). ADB is

a facility in the Android SDK that allows a computer to perform actions on the Android

device such as installing apps, transferring files, injecting events, backing up data, and more.

Using a rooted device is generally required for some instrumentation techniques. A rooted
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device is one that provides the user with the discretion to allow processes to execute as the

root user, bypassing Android’s security model. The root user is a special user in Unix-like

OSs with a UID of 0 that is generally used for the administration of the system. Executing

a process as the root user allows a process to access all files, remount the read-only system

partition as readable and writable to make persistent changes, execute binaries requiring

elevated privileges, make administrative changes, and use sensitive capabilities (e.g., reading

the raw device file containing the coordinates of the touches and gestures on the screen).

Apps that deal with financial data generally perform root detection to determine if the device

is compromised. If they detect that a device is compromised, then program may terminate

in an attempt to proactively prevent data disclosure and modification. Listing 4.11 shows

some methods for gathering evidence that the device is rooted. For readability, some of the

method calls in Listing 4.11 have been named to indicate their functionality. Malware apps

may or may not be discouraged due to the presence of a rooted device depending on their

goal. Sun et al. [49] noted that the battle between the processes who hide root and those

who wish to detect it is asymmetric since the processes trying to hide root have root access

and can interpose on a sandboxed process that is trying to detect it. Sun et al. suggested

that Google provide a trusted API for root detection that is built into the OS, which they

later provided with the SafetyNet Attestation API [174]. Hooking frameworks that intercept

method calls require root access to modify Android OS files to perform the interposition.

1 int indicators = 0;
2 if (new File("/system/xbin/su").exists ())
3 indicators ++;
4 if (ro_debuggable_prop_is_true ())
5 indicators ++;
6 if (busy_box_binaries_present ())
7 indicators ++;
8 ...
9 if (su_in_path_which_command ())

10 indicators ++;
11 if (indicators > ROOT_THRESHOLD_CONSTANT)
12 return "root";
13 else
14 return "noroot"

Listing 4.11: Examining for indicators of root access.
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In addition, Bionic Lib C interposition using LD_PRELOAD generally requires root access to

modify an environment variable to enable the analysis.

4.3 Local Denial of Service Attacks

Researchers have previously shown that the Android OS is vulnerable to local DoS attacks

[30–33, 175, 176]. As the Android codebase becomes larger and more complex over time,

additional local DoS attacks will likely be discovered. The Android framework provides a

large attack surface through its rich set of APIs available to third-party apps. Third-party

apps can provide input via the APIs that are processed by the system. In addition, a system

process, named system_server, exposes app components directly to other apps co-located

on the device. When the system does not perform adequate input validation, this can result

in a fatal fault in a system process, leading to a system crash. A system crash directly

affects the user by reducing the availability of the device. The state of all current apps is

lost and the device will be unavailable while it restarts. Listing 4.12 provides an example of

a fatal exception occurring in a system process that leads to a system crash. A local app

1 Shutting down VM

2 *** FATAL EXCEPTION IN SYSTEM PROCESS: main

3 java.lang.RuntimeException: Error receiving broadcast Intent { act=com.sec.android.

intent.action.SSRM_MDNIE_CHANGED flg=0x10 bqHint =4 } in com.samsung.android.mdnie

.AdaptiveDisplayColorService$ScreenWatchingReceiver@e5dbce5

4 at android.app.LoadedApk$ReceiverDispatcher$Args.run(LoadedApk.java :1003)

5 at android.os.Handler.handleCallback(Handler.java :739)

6 at android.os.Handler.dispatchMessage(Handler.java :95)

7 at android.os.Looper.loop(Looper.java :158)

8 at com.android.server.SystemServer.run(SystemServer.java :508)

9 at com.android.server.SystemServer.main(SystemServer.java :363)

10 at java.lang.reflect.Method.invoke(Native Method)

11 at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java :1230)

12 at com.android.internal.os.ZygoteInit.main(ZygoteInit.java :1120)

13 Caused by: java.lang.NullPointerException: Attempt to invoke virtual method ’int

android.os.Bundle.getInt(java.lang.String)’ on a null object reference

14 at com.samsung.android.mdnie.AdaptiveDisplayColorService$ScreenWatchingReceiver

15 .onReceive(AdaptiveDisplayColorService.java :419)

16 at android.app.LoadedApk$ReceiverDispatcher$Args.run(LoadedApk.java :993)

17 ... 8 more

18 ...............

19 THIS IS SYSTEM_SERVER .. store dumpState !!

20 Sending signal. PID: 3514 SIG: 9

Listing 4.12: Logcat log containing a fatal exception in a system process.
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can repeatedly cause a system crash on the device to make the local DoS attack persistent.

Therefore, the device will continually crash, denying access to the user, until the attacking

third-party app is uninstalled from the device.

Android has a diverse ecosystem and each device provides a specific set of mechanisms

to remove a third-party app that interferes with normal usage. Android has been ported to

various embedded devices and they do not all offer the same recovery mechanisms that are

provided by Android smartphones. These limitations may be due to physical attributes of

the device or a lack of certain system software components. For example, some Android

devices do not contain any physical buttons which prevents them from booting into an

alternate mode from a powered-off state. Certain alternate modes provide the user with

different options to remove a misbehaving third-party app. When recovery facilities are

absent or incomplete on embedded Android devices, this leaves the user with fewer options

to remove the app. Depending on the Android device, there may be cases where the user is

unable to remove the app and the device becomes functionally useless (see Section 7.4). In

other cases, the user may have to endure complete data loss to regain proper functionality

of the device.
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Chapter 5: Forced-Path Execution Framework for Android

The FPE framework addresses two problems simultaneously: programmatically interacting

with an Android app and enumerating its possible behaviors. Section 5.1 provides high-level

implementation details about the FPE framework and its workflow. Section 5.2 discusses

discovering and interacting with the app’s GUI and simulating different environments.

Section 5.3 describes how taint analysis is used to discover when to explore all branches of a

conditional statement.

5.1 Framework Implementation

The FPE framework can be generalized and ported to analyze the binaries of programming

languages instead of being limited to modeling the various aspects of the Android OS. I

have implemented the forced-path execution framework for Android [59, 60] as an exemplar.

A generic approach can be used to explore the different states of a binary developed in an

arbitrary programming language. The FPE framework code should be developed in the same

programming language of the binaries that it analyzes in order to obtain access to the core

library functions, specific language features, and the ability to easily integrate third-party

libraries. A parser needs to be created for the disassembly of the target language if one is

not readily available. Each instruction in the target language requires an implementation

for the FPE framework. A set of targeted functions specific from core libraries and relevant

third-party libraries need to be identified that are of interest so that they can be intercepted

and recorded. For example, if FPE were being developed for Python, various methods from

the subprocess module [177] would be strong candidates for logging due to their ability to

execute commands on the host system and also for the possibility of command injection.

Some abstraction is required for the functions to obtain user input and exercise the app
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under test. To accomplish this, special attention is required to identify and model GUI usage

and asynchronous events that do not have direct links in the code such as threads, callbacks,

handlers, GUI elements, etc. Identifying and modeling these behaviors is a manual process

and can be time-intensive to implement.

The FPE framework takes an Android app as an input, programmatically executes it,

and provides the behavior of the app as an output. The primary output is the app’s usage of

the Android API, although the framework can also report interesting data flows with regard

to capability leakages and PII leakages. The FPE framework is primarily implemented in

the Java programming language. This allows the framework to easily access Java language

features as well as the Java API that is composed of the Java Class Libraries (JCL). Android

apps are primarily developed using Java. Recently, support for Kotlin development has been

added. The Java bytecode is converted to Dalvik bytecode, a dex file, using the dx binary

belonging to the Android SDK.

A standalone Android app in encapsulated in an APK file should contain a valid classes

.dex file, which contains the Dalvik byte code of the app.1 The framework converts the

classes.dex file contained within the APK file using a program named baksmali to obtain

an IR called smali [130], which is more human-readable than the Dalvik bytecode and is

similar to assembly for other languages that use bytecode. Smali is also the name of an

assembler to the accompanying baksmali disassembler. These two tools, baksmali and smali,

are open-source and can disassemble and reassemble the bytecode in the classes.dex file.

Together they can be used to repackage Android apps after the smali files have been modified

to alter the native functionality of an app. App repackaging, also known as app cloning, is a

popular tactic employed by malware authors and countermeasures to detect and prevent app

repacking are actively being researched [72,178,179]. The FPE framework was successfully

used to generate app traces in a system to detect repackaged apps, which is detailed in

Section 6.4.2

The framework directly utilizes the smali files resulting from disassembling an Android

1Android APK files simply containing resource files with no executable code are ignored by FPE.
2Google refers to app repackaging as app impersonation [180].
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app. The output of the baksmali tool is a directory containing the smali files where each file

is arranged hierarchically corresponding to its package. Each smali file roughly corresponds

to a Java source code file except that nested classes and anonymous classes each have their

own smali file. This behavior is similar to Java bytecode where nested and anonymous

class files can be identified due to them containing a $ character in their class file name

(e.g., PhoneService$3). Listing 5.1 provides a small method in smali format. The framework

has an interpreter that parses and correspondingly executes the assembly in the smali files.

There are 226 instructions in the Dalvik bytecode, which have the same format [181] as they

do in smali.

1 .method public onCreate(Landroid/os/Bundle ;)V
2 invoke -super {p0 , p1}, Lcom/phonegap/DroidGap;->onCreate(

Landroid/os/Bundle ;)V
3 const -string v0 , "file :/// android_asset/www/index.html"
4 invoke -super {p0 , v0}, Lcom/phonegap/DroidGap;->loadUrl(Ljava/

lang/String ;)V
5 return -void
6 .end method

Listing 5.1: Smali Method Snippet.

The interpreter in the FPE framework contains a Java implementation for each Dalvik

instruction. The instruction can contain operands, which are referenced by a register number.

Android devices primarily use the ARM CPU architecture, which is register-based and uses

a Reduced Instruction Set Computing (RISC) CPU. The register-based architecture, as

opposed to a stack-based architecture, is an optimization for the mobile platform. As an

instruction is encountered, the operand(s) are obtained and the instruction is executed using

the Java-based implementation in the FPE framework. If the instruction does not initiate

a control transfer or invoke a method call, then linear execution continues and the next

instruction is fetched and executed.

The linear execution of a basic block continues until an instruction is encountered that

alters the control flow. A basic block is a sequence of code instructions that does not contain

any instructions that could cause a control transfer. Android apps tend to be event-driven

with user interaction playing a prominent role in determining the functionality that an
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app executes. In addition, there are asynchronous behaviors, that are modeled in the FPE

framework. I used the dataset provided by Cao et al. [182] from their EdgeMiner tool

that uncovered indirect control transfers in Android app code. Additional behavior of the

execution of an Android app has to be modeled, such as loading the static variables of a

class (i.e., executing a class static initialization block) the first time the class is referenced in

the code. The semantics of the language should be investigated and the framework should

mimic the same runtime behavior.

Inter-Component Communication (ICC) is the process of an app component communi-

cating with another component where the two communicating app components may belong

to the same app or different apps. ICC is performed by sending an Intent message from one

app component to at least one destination app component. Performing ICC with a broadcast

Intent message has a single source app component and potentially multiple destination

app components. The sending of Intent messages from an app is recorded by the FPE

framework since this data is relevant to understand what messages an app sends to itself,

other apps, and the system. In certain circumstances an app can send PII via broadcast

Intent messages that can be received any app on the device that has registered to receive the

action string that is being used in broadcast Intents (see Section 6.3). The FPE framework

models ICC communication by obtaining the Intent message from the sender app component

and delivering it to the destination app component, so the destination app component can

obtain data from the Intent. Currently, the FPE framework only handles ICC when the

sender and receiver app components reside in the same app, although inter-app ICC will be

logged. This current limitation is due to the FPE framework only analyzing a single app

at a time. With some engineering effort, two or more apps could be analyzed concurrently

and an Intent message sent from one app to another app could be properly delivered and

processed.

The arguments to instructions and the return value, if any, are stored in a custom Java

data type representing a register, it contents, and additional attributes for processing. The

custom Java data type for registers contains the actual value for primitive data types, a
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reference to the actual runtime object for objects, or a modeled representation of the object

for certain object references. The register custom object data type also contains the runtime

type of an object, the register number, fields and elements for modeled data types, taint

information, variable name, and the source of the data. The data types defined in the app

code (e.g., not part of the Android API) are modeled using the custom Java register data

type. Most of the objects in the Android API and Java API use an actual runtime object

instead of a modeled representation of it. The actual runtime object from the custom register

data type is used to perform method calls via the Java Reflection API.

Smali has various branching instructions to jump to a separate code location within

the current method. Unconditional jumps are represented by the goto_<label> instruction,

which are often used to construct loops. The label portion of a goto instruction is followed

by a hexadecimal number. Smali has two instructions for switch statements, sparse-switch

and packed-switch, which will branch to a particular switch case, including the default

case, depending on the input value being evaluated. Another set of conditional jumps is

represented by 12 different instructions that evaluate a predicate. These twelve conditional

jumps all have an if- prefix. For example, the if-nez v1, :cond_8 smali instruction will

branch to the :cond_8 label if the value contained in v1 register is not equal to zero. If the

value contained in v1 register has a value of zero (numerical value of 0 or a null Java object

reference), then linear execution continues.

Figure 5.1 shows a small execution tree for a broadcast receiver app component named

TaskReceiver that contains three conditional statements. The accompanying smali file for

TaskReceiver is provided in Appendix A. The path with the red arrows represents the only

path through the TaskReceiver app component that starts the TaskService app component

to initiate communication with a C&C channel within a pre-installed app (see Section 4.1.2

for details). Each node contains the type of node, file name (which has been shortened in the

figure for readability), line number, and node ID. The nodes that have a type starting with

finished represent returning from the onReceive entry point method for broadcast receivers

(i.e., a completed path through the app component) or a program exit (e.g., encountering
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Type: finished-if-nez, File: TaskReceiver, Line: 19, NID: 1

Type: if-nez, File: TaskReceiver, Line: 19, NID: 0

Type: if-nez, File: TaskReceiver, Line: 56, NID: 2

Type: if-eqz, File: TaskReceiver, Line: 64, NID: 4 Type: finished-if-eqz, File: TaskReceiver, Line: 56, NID: 3

Type: finished-if-eqz, File: TaskReceiver, Line: 64, NID: 5 Type: if-eqz, File: TaskReceiver, Line: 64, NID: 6

           False Case
           True Case
           Start TaskService Path

Figure 5.1: Execution tree for the TaskReceiver app component.

java.lang.System.exit(int)).

The execution paths taken are modeled using a binary tree. The root node is the first

conditional statement encountered during execution and its two children represent the two

Boolean outcomes of predicate evaluation (i.e., true and false). When a switch statement is

first encountered during the traversal of an execution path, the possible switch cases are

enumerated and inserted into the binary tree where each switch case has a switch case as

its left child node except for the default switch case, which has no left child node. When a

switch case is executed, the next conditional statement encountered will be the right child

node of the chosen node representing the switch case. The enumeration of switch cases that

belong to a switch statement only occurs the first time it is encountered during a particular

execution path. During a subsequent execution along the same path, thus far, the switch

cases will be in place and execution will proceed to any switch case that has not had all

execution paths stemming from the switch case already completed.

The final node in the execution path will have either its left or right child node, a leaf

node, be marked as a completed path (e.g., a finished node in Figure 5.1). The Java data

type for each node in the binary tree has Boolean values indicating if there is an untaken

execution path stemming from the node in general and also for both of its direct child
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nodes. The FPE framework uses a depth-first search exploration method to take execution

paths through an app component. A user-selected number of execution modules operate

concurrently as they execute through the code and share a binary tree structure modeling

the visited execution paths. In the general case, a node in the tree represents an if statement,

switch case, GUI element, or a catch block.

After each execution run, an in-order traversal of the tree will examine each node and

update its references to determine if all execution paths stemming from its child nodes have

been traversed. The propagation of this information will initially start with leaf nodes and

work its way up towards the root of the binary tree as execution proceeds. The in-order

traversal of the binary tree continues iteratively until no references are updated (i.e., all

references of a node being finished in the tree have been propagated and updated). This is

to inform the execution modules of which paths are open and have not been taken so no

execution is duplicated. The purpose of the binary tree is to model the execution paths that

have been executed by the framework and also to indicate paths that have not been fully

traversed. Depending on the execution strategy, the framework may attempt to execute all

execution paths through the app without regard to their feasibility. In practice, visiting all

execution paths is generally infeasible in a complex app due to time and resource constraints.

The FPE framework uses certain approximations during analysis for practical reasons

that reduce the precision of the analysis. Specifically, the number of iterations through a

loop is bounded to a user-configurable amount of loop iterations. Without a loop iteration

limit, the execution of a single path through an unbounded loop could theoretically continue

indefinitely. Therefore, to prevent indefinite iteration through an unbounded loop, FPE

limits loop iterations to a maximum limit. Additionally, the depth of recursive calls is also

limited to avoid theoretically unbounded recursion. Practically speaking, the recursion

depth will be limited by the memory of the computer running the analysis. Since FPE is

primarily implemented in Java, unbounded recursion results in the following error: java.lang

.StackOverflowError. These two approximations, bounding loop iterations and recursion,

are not an uncommon method to bound the analysis in symbolic execution [183–185], static
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analysis [186,187], and model checking [188,189].

Android apps use the Java API, which is used heavily by the Android API. Since the

FPE framework operates within a Java VM, it has access to the entire Java API using

the Java Reflection API [190]. For coverage of the Android API that is not contained in

the Java API, the framework utilizes a Java jar file from Robolectric project [191] that is

accessed at runtime using the Java Reflection API. Robolectric is an open-source project

that facilitates quick testing of Android apps within the Java VM instead of using the

Android emulator from the Android SDK.3 The FPE framework relies on modeling of some

classes and methods instead of relying on the implementation in the Robolectric jar file.

In addition, I created a blacklist for certain Android API calls so they are not concretely

invoked on the host machine for security purposes, although the attempted behavior is

logged.

When an instruction to invoke a method call is encountered (i.e., invoke- family of

instructions), the fully-qualified method call is parsed from the smali file and the parameter(s),

if any, are obtained by register number. This allows the framework to build and execute the

reflective call at runtime. The FPE framework can pinpoint the exact location (i.e., line

number and smali file) of a concerning API call or an insecure programming practice in the

source code an app. The smali format generally supports and preserves the .line <number>

directives in the Dalvik bytecode, which is used to populate the line numbers in stack traces

when an exception occurs at runtime to facilitate debugging. The line in the smali file

generally can be converted to the .line directive value to reflect the actual line in the source

code file to allow a developer to address an issue. There are cases when the .line directive

is stripped and the corresponding line in the Java source code file cannot be identified.

Android apps can be composed of four different app components: activity, broadcast

receiver, service, and content provider and the FPE framework can process each of them.

Android apps are compartmentalized into app components for easy code reuse and loose

code-coupling of the components. This design allows external apps to utilize app components

3The Robolectric source code is available here: https://github.com/robolectric/robolectric.
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of separate apps, in a sense sharing a segment of code. When an app is analyzed by the

FPE framework, each app component within an app is executed. The launcher component,

if present, is executed first. The launcher component is an activity app component that is

executed when the user clicks on the app’s icon in the launcher. For most apps, the launcher

component must be exported and have an intent-filter that has an action string of android

.intent.action.MAIN and a category of android.intent.category.LAUNCHER. There are some

apps that do not have a launcher component and in this case, the first app component listed

in the manifest is executed.4 An intent-filter describes the type of actions that an app

component can handle and a category allows an app component to be classified with a

particular purpose. The analysis focuses on a single app component at a time and launches

a user-selected number of execution modules to explore the app component. A binary tree

modeling the execution paths is created on a per-component basis to limit the scope of the

exploration to a manageable size. Any data sent from one app component to another app

component in an Intent is saved and is provided to the destination app component when it

is processed.

When the FPE framework uses an execution strategy that is biased towards exploration,

it will enter each catch block that is associated with a try block. This is done to explore

the app’s code for code segments that may intentionally throw an exception. Each try block

and associated catch block(s) are modeled in the binary tree. An app can contain malicious

code that is contained within a catch block, which can be triggered at a point chosen by

an attacker or a timer to influence variable selection. Method calls for file and network

Input/Output (I/O) generally utilize checked exceptions since it is distinctly possible that

an exception can occur during an I/O operation. If the app connects to a server that the

attacker controls, the server can send a response to the app that can remotely cause an

exception and cause a control transfer to a catch statement that will perform malicious

actions. Graa et al. [192] provide a notional example where a try/catch block is used to

leak sensitive data. Artz et al. [193] introduced a benchmark named DroidBench consisting

4Apps without a launcher component tend to be pre-installed system apps that execute without user
awareness on Android devices.
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of test cases for Android taint analysis systems. In this benchmark, there are four test cases

where the sink of a data leak occurs in a catch block [194].

5.2 GUI and App Component Exploration

Of the four Android app components, only an activity app component has a GUI that allows

the user to directly interact with the app. Each app component that is declared in the

app’s AndroidManifest.xml file is executed by the FPE framework. A description of each

app component type is provided in Section 2.2.4.

5.2.1 Simulating System Events

The user does not interact directly with broadcast receiver app components. Their primary

behavior is to “listen” for events and the system will start the app components once one

of the events occur. The broadcast receiver decides what events they will respond to by

registering to receive them by name using action strings. For example, a broadcast receiver

app component may only become activated when external system events occur such as

joining a network, receiving a text message, placing an outgoing phone call, system reboot,

etc. These external actions can occur normally during regular usage, although in an analysis

environment, they must either occur naturally or be intentionally created to activate the

broadcast receiver. All FPE framework execution strategies will explore the various possible

execution paths where branching decisions are based on input from the broadcast Intent

since it can be externally controlled (e.g., by an attacker for example). This stress tests the

component by testing the different code paths that the app component can handle from

external events it expects to occur based on the received broadcast Intent and its embedded

data.

5.2.2 App Component Lifecycles

Both the activity and service app components have a defined lifecycle. An app component

moves through its lifecycle callback methods as the app component executes and can also
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move into different lifecycle methods in response to user actions and system events. The

lifecycle is imposed on these two app component types due to the parent classes that they

extend. The lifecycle contains an initial method that is the entry point for the component

after its class constructor and an instance constructor that extends the particular app

component has been executed. For activities and services, the framework forces execution

into the callback methods corresponding to known transitions in the app component’s

lifecycle. The broadcast receiver has a known entry point method, onReceive(Context,

Intent), which executes with the received Intent as a parameter. The content provider has

various abstract methods from its parent class that must implemented, and these methods

are known and called by the FPE framework. Each app component also contains callbacks

that it can receive in regard to specific events. The FPE framework identifies the callbacks

in the code and executes them.

When an activity is created, the GUI elements are generally loaded from an eXtensible

Markup Language (XML) file that dictates the layout of the GUI elements. When the

activity is loaded, the FPE framework examines the layout XML file to determine which

GUI elements can be exercised. Certain GUI elements (e.g., buttons, images, lists, etc.) can

statically declare the code to execute when clicked using the android:onClick attribute in a

layout XML file. When this occurs, the FPE framework will programmatically interact with

each GUI element to simulate a user interacting with the app. In addition to being declared

statically in a layout XML file, GUI elements can also be created at runtime and dynamically

added to the layout of the activity. When a clickable GUI element is dynamically registered,

it also registers a handler containing the code to execute. When this occurs, the FPE

framework immediately locates and executes the callback handler code to explore the actions

it performs.

5.2.3 Activity GUI Layout

Activity app components are necessary for directly interacting with the user. Once an

activity is started, it will progress through a series of callbacks mediated by the system
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Figure 5.2: Android activity lifecycle diagram.5

and influenced by the user’s interaction with the app and system events. Figure 5.2 shows

Google’s depiction of the activity lifecycle for the activity app component. The first lifecycle

callback method to be executed for an app is the onCreate(Bundle) method when it is first

created and the final callback in the lifecycle is onDestroy() when the system removes the

activity and frees resources that were allocated to it. Generally, developers override the

onCreate(Bundle) method and provide their own initialization routines for the app, create

the layout, obtain dynamic content, and populate its GUI elements.

The Activity.setContentView(int) method will inflate the layout that is identified by

5This image is borrowed from Google’s Android Developers website: https://developer.android.com/

guide/components/activities/activity-lifecycle.
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1 <?xml version ="1.0" encoding ="utf -8"?>
2 <ScrollView xmlns:android="http :// schemas.android.com/apk/res/

android"
3 android:layout_width="match_parent"
4 android:layout_height="match_parent"
5 android:id="@+id/display_results_scrollable_layout"
6 android:orientation="vertical" >
7
8 <LinearLayout
9 android:layout_width="match_parent"

10 android:layout_height="match_parent"
11 android:id="@+id/display_result_layout"
12 android:orientation="vertical" >
13 <Button
14 android:id="@+id/buttonActionString"
15 android:layout_width="wrap_content"
16 android:layout_height="wrap_content"
17 android:onClick="sendIntent"
18 android:text="" />
19 <TextView
20 android:id="@+id/logResultsTextView"
21 android:layout_width="wrap_content"
22 android:layout_height="wrap_content"
23 android:maxLines="400"
24 android:scrollbars="vertical"
25 android:text="" />
26 </LinearLayout >
27 </ScrollView >

Listing 5.2: Example Activity Layout XML File.

the integer parameter to the API call which is a resource identifier corresponding to the name

of a layout XML file. The layout file dictates the structure and dimensions of GUI elements

that the user interacts with. The layout file itself must contain a root element. This element

generally acts as a container for the other elements and dictates the placing of its constituent

elements (e.g., LinearLayout, ScrollView, ListView, etc.). Listing 5.2 provides a layout file

named activity_displayresult.xml belonging to an activity in my open-source tool named,

Daze (see Chapter 8). This layout file contains a Button tag that registers the code to

executed when it is clicked. Specifically, when the button with an id of buttonActionString

is clicked, it will execute the sendIntent(View) method of the activity that loads the layout

file. In the source code for Daze project, this layout file is loaded in the ITA_DisplayResult

activity.6

6Source code is available here: https://github.com/Kryptowire/daze/blob/master/app/src/main/

java/com/kryptowire/daze/activity/ITA_DisplayResult.java.

93



5.3 Taint Analysis

Taint analysis is a technique to track data flows within a program. The code point in which

the data of interest is introduced into the program is called a source. Data originating from

a source is marked as tainted and is tracked throughout its lifetime in the program. When

tainted data from a source reaches a sink, an alarm is raised as this represents a complete

data flow originating from a source flowing to a sink. The determination of the sources and

sinks in a program is context-dependent and depends on the overall purpose of taint analysis.

There are three different methods in which taint analysis is used in conjunction with FPE

framework:

• Tracking data from the execution environment to determine when it is used in a

branching decision. Depending on the executing strategy used, once data from the

environment is evaluated as part of a predicate, then all branches of a conditional

statement will be explored.

• Discovering data flows where an app obtains user PII and subsequently sends the

PII outside of the app boundary where it may be obtained or observed by an entity

external to the app.

• Finding input from app component boundaries that reach concerning API calls,

resulting in a capability leak. Primarily, this is used to detect an external app sending

data, generally via an Intent to another app, where the external app controls one or

more parameters to a sensitive API call.

The underlying mechanisms for performing the taint analysis is common among these

three approaches except for the respective sources and sinks. The taint propagation rules

operate on the register level. As the FPE framework operates on smali, a register is used to

represent primitive data types and object references. The taint of an object is modeled as a

bit-vector where each bit represents a different taint type. The two primary mechanisms in

which a taint is introduced into the program is the return value from Android API calls and

94



external input that enters the app boundary and is available to it as an object (e.g., Intents,

Parcel objects for bound services, etc.).

5.3.1 Detecting PII Leaks

The FPE framework uses taint analysis is to identify PII leaks within Android apps. A PII

leakage occurs when user PII is obtained by an app and is used or transmitted in a way

that makes the PII data directly or indirectly available to a local entity on the device or

a remote entity via means of wired or wireless network communication. The selection of

sources and sinks for PII are based on SuSi [195] and is augmented based on my knowledge

of the Android API. A common PII leakage involves leaking the unique identifiers of the

device to the network for advertising purposes.

Detecting privacy leaks in Android apps is an active research are where both static

[193, 196] and dynamic [197] approaches have been developed. Enck et al. [197] developed a

dynamic taint analysis engine, named TaintDroid, that detects PII leaks in Android apps.

This solution, by design, needs to be built into Android OS to be able to track the data flows

through an app, JNI interfaces, and the file system. A group of researchers updated the

TaintDroid open-source codebase to support Android 4.3, but it is currently unsupported

beyond that version [198]. Artz et al. [193] developed an open-source static taint analysis

solution named FlowDroid for detecting PII leaks in Android apps.

Discovering PII leakage involves tainting the output of various API calls that obtain PII

from the device (sources) and then tracking their usage and reporting if tainted data from

the sources reach an API call that will make the PII be sent over a communication channel

or be exposed to other local processes on the device (sinks). Listing 5.3 provides a Java

source code example of a simple PII leak where the user’s phone number is obtained (i.e.,

source) and is leaked to the logcat log (i.e., sink). This local PII leak enables another entity

(e.g., pre-installed app or third-party app using an exploit to obtain the system-wide logcat

log) to obtain this PII. Alternatively, the sink on line 4 could have been the tainted data

being written to an external host over a network socket.
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1 private String getPhoneNumber () {
2 TelephonyManager tm = (TelephonyManager) getSystemService(

TELEPHONY_SERVICE);
3 String number = tm.getLine1Number (); // source
4 Log.i(TAG , "phone num=" + number); // sink
5 return number;
6 }

Listing 5.3: Contrived source code example of a PII leak.

5.3.2 Detecting Capability Leaks

FPE also uses taint analysis to discover capability leaks involving concerning data flows

within an app. A capability leak occurs when an app can interact with another app to

perform some action on its behalf, effectively leveraging an open interface in another app to

obtain a capability. Primarily, these will likely manifest as data flows where an external app

provides an Intent message and certain embedded data from the Intent enters into an app

component and ultimately flows into a sensitive API call as parameter(s).

When FPE uses the exploring the execution environment execution strategy, it uses taint

analysis to determine when environment data affects branching decisions. The sources are

data that comes from the execution environment as explained in Section 3.3.4. The sinks

are conditional statements. This allows controlling the outcome of branch evaluation on a

selective basis that allows the exploration of branches that can be reached depending on

external inputs to the app.

A severe vulnerability manifests when an app can provide arbitrary commands to be

executed by a pre-installed app that has system user privileges. Listing 5.4 provides a

concrete example of a privileged pre-installed app on an Oppo F5 Android device exposing

the capability to execute commands as the system user [21].7 In Listing 5.4, the source

is located on line 2 where externally-provided data residing within an Intent enters the

program and the sink is on line 9 where a string originating from the Intent is executed.

The command string to be executed can be obtained from the Intent on either line 9 or line

11. FPE will explore both branches of the conditional statements on lines 5, 10, and 14

7I discovered this vulnerability and Mitre assigned it CVE-2018-14996 [199].
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1 @Override
2 public int onStartCommand(final Intent intent , int flags , int

startId) {
3 new Thread () {
4 public void run() {
5 if (intent == null) {
6 stopSelf ();
7 return;
8 }
9 String action = intent.getStringExtra("action");

10 if (action.isEmpty ()) {
11 action = intent.getAction ();
12 }
13 Log.i("DropboxChmodService", "action = [" + action + "]");
14 if (action.isEmpty ()) {
15 stopSelf ();
16 return;
17 }
18 try {
19 Process process = Runtime.getRuntime ().exec(action);
20 Log.i("DropboxChmodService", "wait begin");
21 process.waitFor ();
22 Log.i("DropboxChmodService", "wait end");
23 } catch (Exception e) {
24 e.printStackTrace ();
25 }
26 }
27 }. start();
28 return super.onStartCommand(intent , flags , startId);
29 }

Listing 5.4: Concrete example of leaking arbitrary command execution as the system user.

since they directly operate on the Intent or its embedded data. Since the outcome of the

evaluation of the conditional statements are all influenced externally, then they will all be

explored including paths that contain line 19 where externally supplied data from the Intent

object reaches the Runtime.exec(String) API call as a parameter, resulting in command

execution in a privileged process.

5.3.3 Taint Propagation Rules

Within the FPE framework, the primitive execution unit is a smali instruction.8 Each

instruction takes zero or more registers as operands. The taint is applied to the custom register

data type that can represent a primitive data type or object reference (see Section 5.1). For

8Google provides the Dalvik bytecode instructions here: https://source.android.com/devices/tech/

dalvik/dalvik-bytecode.
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modeled data types, the fields are represented as named embedded register data types within

the register data type for the base object. For modeled arrays, each element is represented

as an indexed register data type allowing for individual tainting of elements. When the

array is not modeled and the concrete object is present, then the taint is conservatively

applied to the entire array if a tainted object is inserted into the array, which can introduce

imprecision.

The primary mechanism for introducing taint information is via the return value for

selected Android API calls. The custom register data type contains a bit-vector to support

different types of taint simultaneously. When a selected API call returns a value into the

program, the bit-vector will contain taint information depending on its source. For example,

it may contain a specific bit marking it as PII in the form of unique device identifiers. In

addition, certain fields can also introduce taint into the program. The complete set of

instructions that can introduce taint are the following: return, return-wide, return-object,

sget-wide, sget-object, sget-boolean, sget-byte, sget-char, sget-short, iget-wide, iget

-object, iget-boolean, iget-byte, iget-char, and iget-short. For the return family of

instructions, whether or not taint is applied to a return value depends on the specific API

call that was just invoked. For tracking capability leaks, certain objects that are external

inputs to an app entry point are marked as tainted.

Whenever a register data type in an instruction is copied or moved, it maintains it taint

information. With regard to the invoke family of instructions, some of the API calls are

modeled where the behavior is known. Since I have not modeled the semantics of each API

call, I apply a partially-conservative approach to propagating the taint for those API calls

that are not modeled. In this circumstance, the return value, if any, will be tainted with

each applicable taint type, if any of the parameters to the method call are tainted or the

receiver object for the method call is tainted. Therefore, the taint is primarily propagated

through inputs and outputs to the invoke family of instructions for invoking method calls.

Beyond method calls and the storing and retrieving of member and static fields, arithmetic

operations propagate taint to the resulting value if at least one of the operands is tainted.
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In Listing 5.4, an externally controlled tainted object, the Intent, has its taint propagated

through the return objects of invoke instructions that obtain embedded data until it reaches

the sensitive java.lang.Runtime.exec(String) API call.

While FPE primarily focuses on introducing taints and tracking them throughout a

program, there are some circumstances where it removes taint from certain types of objects.

Specifically, certain types of container classes can have their taint removed. For example, if

a non-modeled data structure, such as java.util.ArrayList, has its clear() method called,

then the taint from the entire object will be removed. This logic has been applied for all

objects that implement the java.util.Collection interface or one of its subinterfaces.

5.3.4 Exploring the Input Domain

When FPE uses the exploring the execution environment execution strategy, taints are

primarily introduced through the return values of API calls that obtain data from the

execution environment. This execution strategy utilizes taint analysis to have a sounder

approach due to primarily relying on the concrete runtime values during conditional statement

evaluation, as opposed to exploring both the true and false branches of every conditional

statement.

1 private void checkDevice () {
2 String model = Build.MODEL; // source
3 int sdk_version = Build.VERSION.SDK_INT; // source
4 String country = Locale.getDefault ().getCountry (); // source
5 if (model.equals("SM -G955U") && sdk_version == 28 && country.

equals("US")) { // sink
6 samsungSpecificExploit ();
7 }
8 }

Listing 5.5: Source Code Example to Check Device Attributes.

Listing 5.5 provides an example where a specific method, samsungSpecificExploit(),

contains control dependencies on values from the execution environment. While the example

provided in Listing 5.5 is specifically created for illustrative purposes, I have discovered

Samsung specific exploits in the past (see Section 8.3.4 and [23,200,201]). In Listing 5.5,
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Table 5.1: Sink statements for the Exploring the Execution Environment execution strategy.

Sink Instructions

if statements (unary) if-eqz, if-nez, if-ltz, if-gez, if-gtz, if-lez

if statements (binary) if-eq, if-ne, if-lt, if-ge, if-gt, if-le

switch statements packed-switch, sparse-switch

there are multiple sources that obtain data from the environment (lines 2-4) which flow

into a single sink on line 5. Since the values from the API calls, serving as sources, on

line 2-4, will vary from device to device, the if conditional statement on line 5 will be

forced to evaluate to true, to execute the code in the true branch and also the false branch.

Although sink conditional statement residing on line 5 occupies a single line in Java source

code, it will be decomposed into multiple smali instructions. In this context, the sinks are

conditional statements. Specifically, the conditional statements are sources from the if

family of instructions and the two switch instructions as shown in Table 5.1.

100



Chapter 6: Applications of FPE Framework

This chapter highlights areas where the FPE framework has shown utility. Section 6.1

provides instances where the FPE framework discovered instances of insecure programming

practices within Android apps. Section 6.2 provides various examples of capability leaks it

detected in pre-installed Android apps. Section 6.3 contains examples of detected PII leaks.

Section 6.4 contains details of FPE being used to generate execution traces for a system

named Dexsim to detect cloned Android apps.

6.1 Exposing App Network, File Storage, and Logging

Free development software (e.g., Integrated Development Environments (IDEs), SDKs, emu-

lators, etc.) and the Google Play infrastructure have democratized mobile app development

by facilitating the creation and distribution of Android apps [202, 203]. While this has

resulted in a greater diversity of apps available to the user, this has also resulted in mistakes

being made by inexperienced developers that are not familiar with generally-accepted secure

programming practices for Android [204,205]. Google provides security tips for app devel-

opers on their Android Developers website which provides guidance on network usage, file

storage practices, and logging [145]. These are common functionalities that many Android

apps tend to use. This section examines each of these behaviors and provides real-world

examples of insecure usage of these facilities.

6.1.1 Insecure HTTP Usage

Despite its known shortcomings, HTTP is a commonly used network protocol among mobile

apps [206]. Networking APIs offered by the Android platform allow a developer to use

an HTTP client to transfer data. HTTP is not a secure method to use when transferring
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sensitive information, and its usage is considered be a software weakness by Mitre [207].

HTTP does not natively provide any encryption, so the data is transferred in plaintext by

default. This makes it incumbent on the developer to encrypt sensitive data prior to its

transmission using HTTP. While this may be an appropriate approach for some developers,

others may not have the sophistication in cryptography, potentially resulting in operational

mistakes (e.g., hard-coding symmetric keys, using keying material with insufficient entropy,

exercising improper key management, choosing weak cryptographic algorithms, etc.). The

Android Developers website does provide security tips covering HTTPS usage and other

topics [208].

HTTPS uses TLS, the successor to the Secure Sockets Layer (SSL) protocol, to provide

authentication and encryption. In June 2015, the Internet Engineering Task Force (IETF)

deprecated SSL v3.0 in Request for Comments (RFC) 7568 [209]. The primary benefits of

using TLS is that it can protect against eavesdropping and provide authentication of the

server.1 TLS is commonly used for eCommerce, personal finance, messaging, and to protect

login credentials and cookies. TLS relies on public-key certificates and certificate chains to

establish chains of trust to authenticate the server.

The app named OnCourse - boating & sailing [210] with a version of 1.1 was available

on Google Play with a package name of com.marinetraffic.iais.2 The results of the FPE

framework showed that the app was sending the user’s login and password credentials over

HTTP. This is an insecure programming practice since the login credentials are not encrypted

and can be intercepted on the network [207]. The FPE framework showed that the app

made a HTTP GET request to http://mob0.marinetraffic.com/ais/loginxml.aspx?

email=USER_INPUT&password=USER_INPUT. The FPE framework uses the text USER_INPUT

to indicate that the input values were obtained from the user. I confirmed this behav-

ior at runtime by running the app on an Android device and used a proxy to capture

the HTTP traffic. The app visited the http://mob0.marinetraffic.com/ais/loginxml.

1TLS can be used to authenticate both the client and the server by means of public-key infrastructure,
although this configuration is not the standard mode of operation in practice.

2This app has since been updated and is on version 2.2.0 which uses HTTPS for the login.
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aspx?email=test@email.com&password=e8dhr78wh URL and the username and password

were sent in plaintext as part of the URL querystring.

6.1.2 The Significance of Log Leak

Android provides a system-wide log for development, diagnostic, and debugging purposes.

This log is generally accessed, for reading, using a binary called logcat that is present on

Android devices, so I refer to this log as the logcat log.3 The logcat log contains five different

log buffers where each contains different types of data: system, main, radio, events, and

crash. When reading from the logcat log, any single log buffer or a combination of the log

buffers can be read using the appropriate command-line parameters to the logcat command.

The Android framework provides various classes in the android.util package that allow an

app to write to the logcat log. The primary class used for writing to the logcat log is simply

called Log, but there additional classes to write to the logcat log (e.g., EventLog, LogPrinter,

etc.).4

When writing a message to the logcat log, a log message is composed of a tag and a

message. The tag is a short string that can be used to group certain types of messages

based on a shared attribute (e.g., messages from a certain class, module, or circumstance),

and the message is the information that the developer intends to communicate via the

log message. In addition, processes written in native code can link against the logging

library provided with the Android NDK to write to the logcat log. Both Android apps and

system processes commonly use the logcat log to write messages. Logging is exceptionally

helpful in discovering the cause of faults or unexpected behavior since it contains a trace of

log messages and also a stack trace for uncaught exceptions. The logcat log provides the

following log levels: verbose, debug, info, warn, error, and assert. Each of these log levels

has a priority level with verbose being the lowest and assert being the highest. When using

the logcat command, specific log levels and log tags can be passed in as parameters to

3In this dissertation, I refer to this log as the logcat log to differentiate it from other logs (e.g., bluetooth

snoop log, modem log, etc.) on the device.
4Interestingly, the commonly used print and println methods of java.lang.System.out static field

will write the output to the logcat log with a log tag of System.out.
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filter the output. If the user is only interested in logcat messages with a specific tag, these

can be filtered by silencing the log messages from all other log tags.5 When a log level is

provided, either with the wildcard operator for all tags (e.g., logcat *:E) or a single tag (e.g.

logcat Zygote:E -s), all messages at that log level or higher will be present in the log. So if

a value of verbose is used in conjunction with a log tag of generic_tag, then all log messages

with a log level of verbose (the lowest level) and higher (all other levels) will appear in the

output, effectively providing all levels for log messages with a tag of generic_tag.

The capability to read from the logcat log has evolved over different versions of Android.

Since AOSP code is open source, I determined the exact version in which Google changed

the access requirements for apps to obtain the READ_LOGS permission from the Android OS.

As of Android version 4.0.4, the READ_LOGS permission had a android:protectionLevel of

dangerous, which allowed any app, including third-party apps, to read the system-wide logcat

log if it was granted the READ_LOGS permission [211]. This behavior changed in Android

4.1, so that the READ_LOGS permission had a android:protectionLevel of signature|system|

development so that third-party apps could no longer read from the system-wide logcat log

[212]. On Android devices running Android 4.1 and higher, an app can obtain its own log

messages that they write to the logcat log even if they have not been granted the READ_LOGS

permission by the Android OS. Apps can simply execute the logcat command to capture the

log messages that the app itself writes and log messages from other processes will be filtered

out. This capability is useful for software testing and maintenance since a log trace may

contain helpful data with regard to identifying the cause of a bug or fatal app crash. App

developers can easily integrate a library that will capture log messages and crash reports.

This enables the developer to investigate and address issues experienced by users of their

app, potentially stemming from Android version compatibility issues or faulty app logic.

Although third-party apps installed on recent versions of Android cannot directly access

the system-wide logcat log, there have been various vulnerabilities discovered in which a

pre-installed app leaks the logcat log to a location accessible to third-party apps. This is not

5Silencing all other log tags other than those explicitly provided is done with the -s command line
argument.
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simply a theoretical vulnerability, I found numerous instances where this vulnerability has

been introduced by different Android OEMs (e.g., Samsung, LG, ZTE, Asus). I discovered

a method to obtain the logcat logs from a local third-party app executing in the background

without awareness of the user on Samsung Android devices [23]. Moreover, certain of these

Samsung Android devices were also writing the text of the notifications that the user receives

to the logcat log. Therefore, an adversary using this technique would be able to secretly

monitor the system-wide logcat log containing the content of each notification received such

as text messages, Facebook messages, WhatsApp messages, partial emails, and all other

notifications. In 2018, I identified 11 different Android devices spanning 5 vendors that

allowed a third-party app on the device to cause a pre-installed app to leak the logcat log to

a location on the file system that it can access [21]. Table 6.1 provides the Android device

models and carrier, if any, of the Android devices that were found to leak the logcat log.

For the vendors LG and ZTE, the vulnerability that leaks the logcat log was present on all

the models, 4 for each vendor, I examined.

Table 6.1: Android devices that exposed the logcat log.

Device Carrier

ZTE Blade Spark AT&T

ZTE Blade Vantage Verizon

ZTE ZMAX Pro Total Wireless

ZTE ZMAX Champ Multiple Carriers

LG G6 AT&T

LG Phoenix 2 Unlocked

LG X Power Unlocked

LG Q6 Unlocked

Vivo V7 Unlocked

Asus ZenFone 3 Max Unlocked

Orbic Wonder Unlocked

The FPE frameworks discovered that an app with a package name of com.mmt.salesTracker

(versionCode = 1, versionName = 1.5) obtains the destination phone number from outgoing

phone calls and writes them to the logcat log. Specifically, the CallReceiver broadcast
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receiver component registers for the android.intent.action.NEW_OUTGOING_CALL action string

and extracts the android.intent.extra.PHONE_NUMBER value from the broadcast Intent it

receives and then writes the following message to the logcat log: Dialled Number is:

<dialed number> with a log tag of CallReceiver.6 In addition, the FPE framework de-

tected that an app with a package name of gn.com.android.salestrackgi (versionCode = 1,

versionName = 1.0) executes with system privileges and writes the body of received SMS

messages to the logcat log. The app has a broadcast receiver app component named

gn.com.android.salestrackgi.SMSServerReceiver that registers for the android.provider

.Telephony.SMS_RECEIVED action string. Whenever the device receives an incoming SMS

message, the Android OS sends a broadcast intent to all apps that meet the following two

conditions: (1) the app has been granted the RECEIVE_SMS permission and (2) the app has

a broadcast receiver app component that registers for the SMS_RECEIVED action. The gn.

com.android.salestrackgi app meets both of these conditions, and the SMSServerReceiver

obtains the SMS message body and then write it to the logcat log for each received SMS

message.

6.1.3 Leaking Sensitive Data to External Storage

External storage is a location on the file system serving as a shared resource that is

accessible to all apps on the device that have the corresponding access permissions. Storing

sensitive data on Android is generally considered an insecure programming practice [213].

Access to external storage is controlled by a read permission (READ_EXTERNAL_STORAGE)

and a write permission (WRITE_EXTERNAL_STORAGE). In the AndroidManifest.xml file of the

Android framework, both of these permissions have a value of dangerous for their android

:protectionLevel attribute in their declarations [69]. If the app is subject to runtime

permission granting (explained in Section 2.2.3), which is dependent on both the app version

and the Android OS version, then the app will not be granted these two permissions,

READ_EXTERNAL_STORAGE and WRITE_EXTERNAL_STORAGE by default. Due to these permissions

6The word Dialled is misspelled in the app code.
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having a android:protectionLevel of dangerous, the app will have to request the permissions

from the user at runtime. Based on my research, I found the following data being leaked

to external storage, making them accessible to other apps on the device that have the

READ_EXTERNAL_STORAGE permission:

• Logcat log - Various LG devices (CVE-2018-14982), Orbic Wonder (CVE-2018-6599),

Coolpad Canvas (CVE-2018-15004), Vivo V7 (CVE-2018-15001), Asus ZenFone 3 Max

(CVE-2018-14979), & numerous devices with a MediaTek chipset (CVE-2016-10135)

• Screenshot - Leagoo P1 (CVE-2018-14997), Sony Xperia L1 (CVE-2018-14983),

various ZTE devices (CVE-2018-14995), & Asus ZenFone 3 Max (CVE-2018-14980)

• Modem log - Various ZTE devices (CVE-2018-14995) & numerous devices with a

MediaTek chipset (CVE-2016-10135)

This is concerning since users might not be aware that allowing an app to access external

storage may also allow an app to exploit the PII leaks shown above. Andriotis et al. [214]

performed a study measuring users’ adaption to the new permission runtime granting model,

and they found that the majority of users in their study granted the storage permissions

to the apps that requested them. External storage contains potentially sensitive personal

data such as the user’s photos, downloads, and screenshots. It seems that apps write files

to external storage so that they can easily be retrieved when using the ADB program that

comes with the Android SDK.

Based on examining a report from the FPE framework, it showed that a pre-installed

app in various Xiaomi Android devices was leaking a file containing the logcat log to exter-

nal storage. This pre-installed app has a package name of org.codeaurora.gps.gpslogsave

(versionCode = 27, versionName = 8.1.0). The name indicates that the Code Aurora project

developed the app, but Code Aurora was not able to directly answer the question if they

were responsible for developing the app when asked on two separate occasions. Nonetheless,
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I have only ever encountered this app on the Xiaomi devices. In the report, it showed two fol-

lowing two commands being executed: /system/bin/sh -c logcat -v threadtime -f /data

/data/org.codeaurora.gps.gpslogsave/files/log.txt and mv /data/data/org.codeaurora.

gps.gpslogsave/files/log.txt /sdcard/GPSLogKit/08-28-12-12-16-887_log.txt. The first

command initiates the recording of the system-wide logcat log to the app’s private directory

on internal storage. The second command, mv, moves this log file to external storage on the

file system, making it accessible to any app that has the READ_EXTERNAL_STORAGE permission.

Upon manual inspection of the app on a live Xiaomi device, I verified this behavior and also

that is can be controlled by an external app to obtain the system-wide logcat log.

6.2 Detecting Capability Leaks

Taint analysis is used as the primary mechanism for detecting the capability leaks by tainting

input at the app component boundaries and recording the event when the tainted data

reaches a sensitive API call. Table 6.2 displays instances where FPE framework detected

a capability leak where an external app can influence a sensitive behavior.7 The app with

a package name of com.lovelyfont.defcontainer (versionCode = 5, versionName = 5.0.1)

that executes as the system user has an exported and accessible service app component name

com.lovelyfont.manager.FontCoverService that allows external apps to execute arbitrary

commands with elevated privileges.

Table 6.2: Capability leaks detected in pre-installed Android apps.

Package Name vCode Behavior

com.lovelyfont.defcontainer 5 Arbitrary Command Execution

com.asus.splendidcommandagent 1510200090 Arbitrary Command Execution

com.fw.upgrade.sysoper 3 Arbitrary Command Execution

org.codeaurora.gps.gpslogsave 27 Leaks logcat log to external storage

This com.lovelyfont.defcontainer app is actually present as a pre-installed app on

7In Table 6.2, the vCode column represents app version code.
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multiple vendors such as Tecno and Infinix. An external app simply needs to send an Intent

to this service with (1) an action string that contains the string ‘form’ and (2) contains the

command to be executed stored in the Intent with key name of ‘form’. The capabilities that

can be achieved by executing commands as the system user vary depending on the Android

version of the device, but they generally provide the following capabilities: read/write SMS

messages, read/write call log, wipe the device (i.e., factory reset), change the keyboard to a

malicious version with keylogging functionality, call emergency numbers such as 911, record

a video of the screen, obtain the logcat log, take screenshots, and more. The system user is

the most powerful user on the device except for the root user.

Service app components on Android can optionally export an interface to external apps.

A service that passes back an interface and allows binding to it is called a bound service.

The FPE framework explores bound services by discovering the interface they return in

their onBind(Intent) method. If a service returns a non-null IBinder object, then the FPE

framework will call each of the accessible methods in the interface. The FPE framework

detected that a pre-installed app with a package name of com.asus.splendidcommandagent

(versionCode = 1510200090, versionName = 1.2.0.18_160928) in various Asus devices al-

lowed other apps on the device to execute commands as the system user. This app contains a

bound service named SplendidCommandAgentService that exposes a method named doCommand

(String) that executes the String parameter that is passed to it from external processes.

The Adups apps are present as the FOTA solution for various low-end Android devices.

The FPE framework discovered that an old version of Adups software allowed external app

to execute arbitrary commands as the system user. Assuming the timestamp from the device

build information is accurate, then a vulnerable version of Adups software was shipping as a

pre-installed app as early as July 2nd, 2015. The pre-installed app was present on an Android

4.4.2 device has a package name of com.fw.upgrade.sysoper (versionCode = 3, versionName

= 1.3).8 This app has a broadcast receiver app component named WriteCommandReceiver

that expects the commands to be present in an Intent string extra named cmd. The receiver

8This is the pre-cursor app to the com.adups.fota.sysoper app referenced in Section 4.1.2.
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obtains this string value and executes it using a java.lang.ProcessBuilder object.

6.3 Detecting PII Leaks

PII leaks that the FPE framework detected are provided in Table 6.3. By a PII leak,

I mean that PII was obtained by an app and was subsequently left the app boundary

where it can be obtained by another entity or process. The app with a package name of

com.aeon.salesstatistics (versionCode = 3, versionName = 1.3) uses the AlarmManager to

set a time for 6 hours later to execute the SalesStatistics service app component after the

device completes the boot process. This service sends an SMS containing the device IMEI

to the following number: 008801795942968. Whether or not to send the SMS message is

controlled by a Non-volatile Random Access Memory (NVRAM) setting which the FPE

framework detects as external, so it explores both cases.

Table 6.3: PII leaks detected in Android apps.

Package Name vCode Behavior

com.mmt.salesTracker 1 Writes outgoing calls to the logcat log

com.reverie.phonebook 5 Sends SMS messages via implicit broadcast

org.codeaurora.gps.gpslogsave 27 Leaks logcat log to external storage

com.aeon.salesstatistics 3 Sends IMEI over SMS

com.staqu.panasalestracker 8 PII leakage over SMS and HTTPS

com.marinetraffic.iais 3 Sends login credentials over HTTP

gn.com.android.salestrackgi 1 Leaks incoming SMS messages to logcat log

com.sts 8 Leaks device identifiers over SMS

The app with a package name of com.reverie.phonebook (versionCode = 5, versionName

= 2.1.2) contains a broadcast receiver app component named in.co.Reverie.Helpers.

SmsReceiver.9 When this component receives an SMS message, it will leak the sending

number of the received SMS to the logcat log with a log tag of Sender and then leaks the

body of the SMS message to the logcat log with a log tag of Message. Just after leaking the

9This app is no longer available on Google Play.
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contents of the received SMS message to the logcat log, it takes these two values, sender

and text message body from the SMS message, and then puts them into an implicit Intent

and then broadcasts it. Therefore, any app on the device that registers for the action

of SmsMessage.intent.MAIN can receive the broadcast Intents its sends which contain the

received SMS message contents. The SMS body and the sender can be obtained from the

Intent using the following key names: get_msg and number, respectively.

The app with a package name of com.sts (versionCode = 8, versionName = 2.0), as

shown in Table 6.3, obtains user PII (i.e., IMSI, SIM serial, SIM operator, and the cell tower

ID) and sends it in an SMS message to a phone number in India: 00919870932094. This

initially only occurs once and then will subsequently occur any time a new SIM is inserted

in the device. In addition, the app will sleep 150 seconds prior to doing anything, and it will

check to ensure that a SIM is inserted into the device. This occurs programmatically by the

app without any user intervention.

6.4 Generating Execution Traces for App Clone Detection

The FPE framework was used in a novel way to aid in the detection of Android app clones.

An app clone is an unauthorized copy of an app where the app logic has been modified.

The cloned app may have modified code or resources. Some potential reasons to modify

an app are the following: obviate Digital Rights Management (DRM), introduce malware,

replace advertisement IDs for financial gain, introduction of ad libraries, etc. App cloning

is a known problem in the Android ecosystem and various research approaches to identify

cloned apps have been proposed [73, 179, 215–221]. The existing approaches did not perform

well at detecting apps clones after obfuscation techniques were used to transform the app.

The Android app format, APK, lends itself to easy modification and also various open

source tools exist to facilitate app cloning. Notably, the open-source software named apktool

[222] provides facilities to easily disassemble and reassemble Android apps. Internally,

apktool uses the facilities provided by the smali project started by JesusFreke [130]. The
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smali project is so widely used, that is also being mirrored by Google’s git repositories for

Android [223]. The Android OS necessitates that installed apps must be signed with an

asymmetric private key. Android apps contain a X.509 public key certificate that the OS

allows to be self-signed. As the Android APK file format is easily malleable, modifications

can be made in a well-understood, straightforward process.

6.4.1 Android App Clone Detection Techniques

App cloning is a known-problem in the Android ecosystem, and researchers have developed

various approaches to detect app clones among the various app marketplaces. Some research

approaches focus on comparing GUI elements [215,216], examining resource files [217–219],

inserting app watermarks [220,221], fuzzy hashing Dalvik bytecode segments [179], comparing

Program Dependence Graphs (PDGs) [73], inspecting semantic information and resource

features [224], and screenshot analysis [225]. Although not a strict repackaging approach,

Aresu et al. [226] used HTTP traffic to cluster Android malware into families. Scalability is

a limitation of certain approaches that make them impractical for real-world use. Specifically,

pair-wise comparison becomes prohibitively expensive as the app repository grows in size.

6.4.2 FPE Trace Collection

A few modifications were made to the way the FPE framework generally operates. FPE

generates the execution traces that are used to create depth-bounded LZ78 compression trees.

The general output of FPE is a list of behaviors and data flows. FPE was modified to output

the stream of opcodes that it encounters while processing an Android app. Dalvik bytecode

encodes each instruction as a single byte, allowing for 255 different Dalvik instructions

[181]. The FPE framework examines the AndroidManifest.xml of the app to be processed

to extract the statically-declared app components from the app. A time limit is assigned to

bound the execution of the FPE framework. I found 30 seconds to provide a good trade-off

between accuracy and execution time. The allotted 30 second time interval for an app was

split evenly among its app components to ensure some coverage among all components.
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From each app component entry point, FPE first executes the static initialization methods,

constructor method for the component’s class, and then the app component specific lifecycle

methods. The taken execution paths are recorded in a tree structure on a per-component

basis. Recursion depth and loop iterations are limited to a single iteration.

6.4.3 DEXSIM Workflow

The system, Dexsim, begins an initial indexing phase where it processes apps to generate

traces and build a corpus of LZ78 compression trees [227]. During app processing, the app

has its classes.dex file converted into an IR named smali and its AndroidManifest.xml file is

parsed to obtain the app’s entry points. After the app has been converted to an appropriate

format, FPE will begin and start generating the opcode traces through all available app

components. Each execution trace is a concatenation of each encountered opcode, encoded

as integer, from an execution path through the app component. The set of traces from an

app T := {t1, t2, t3, ...tn}, n ∈ N are divided into non-overlapping segments of constant size

w. Using the traces in T , an LZ78 prediction tree, also known as a dictionary, is generated

and stored for the app along with its identifying material. The LZ78 compression trees can

be used for making predictions [228]. The workflow for Dexsim is provided in Figure 6.1.

(2) App Clone Detection

(1) App Indexing

Preprocess and
convert to IR

Force
Execution

IR Construct LZ78
Prediction Trees

traces

IRPreprocess and
convert to IR

Force
Execution

Compute
Similarity

traces

LZ78 trees

Figure 6.1: An overview of Dexsim which works in two phases. First, an indexing phase to
build a database of LZ78 trees of opcode traces. Second, a detection phase that finds the
nearest trees in the database to an incoming app.
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The complete approach to determine an app’s similarity to itself and other apps to detect

clones can be found in [62].

6.4.4 App Clone Detection Evaluation

Dexsim outperformed all other current research approaches when detecting app clones that

had undergone obfuscation transformations. The obfuscations of apps in the sample were

performed using SandMark [229]. The first experiment used a set of 3,000 benign apps. From

these apps, 18,000 clones were generated where each clone had undergone one obfuscation

algorithm using SandMark. Using the 3,000 app benign dataset (BEN), Dexsim was run in

indexing mode to build a dictionary for each app. Then Dexsim was run in detection mode

to find the apps that had the closest similarity score to each app in the 18,000 obfuscated

app clone dataset (BEN-O). For each clone in the BEN-O dataset, I considered Dexsim to

properly identify an app clone if it matched its pre-obfuscated app in the BEN dataset using

various values of k for its k-nearest neighbors. In the ideal case, Dexsim would provide the

pre-obfuscated app from the BEN dataset as the nearest neighbor to its post-obfuscated app

clone from the BEN-O dataset when k is set to 1. Using k-nearest neighbors with varying

levels of k, I provide the detection accuracy of Dexsim on the BEN-O dataset when detecting

their pre-obfuscated versions as displayed in Figure 6.2.
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Figure 6.2: Detection accuracy for clones in the BEN-O dataset against their source apps in
the BEN dataset. w is the window size.

114



The next experiment contained a dataset consisting of 20 apps that had highest rate

of successful obfuscations among the various algorithms. This dataset (CTR) was used to

generate a dataset of 510 app clones (CTR-OS) where each app underwent two or three

successful serial obfuscations using SandMark. The initial CTR dataset was curated since

certain obfuscation algorithms failed on apps. The CTR-OS dataset contains 150 app clones

that underwent two different obfuscation algorithms and 300 app clones that were subject

to three serial obfuscations. Dexsim provided the original app from the CTR dataset as

the nearest neighbor, with an accuracy of 90.1% for three serial obfuscations, 92.5% for

two serial obfuscations, and 96.8% for a single obfuscation as show in Figure 6.3. The rate

of successful detection to a strict criterion, k=1, goes down as the number of obfuscators

applied serially increases, but Dexsim displays resilience to obfuscation algorithms even

when applied serially.
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Figure 6.3: Detection accuracy of all clones in the CTR-OS dataset against their source
counterparts in the CTR dataset.

Lastly, Dexsim evaluated a dataset of 7,000 malware samples (MAL). For each app in

the MAL sample, I uploaded the sample to VirusTotal [230] and recorded the malware

family name that the anti-virus engines converged (i.e., majority) on, assuming it was not

generic. The malware families contain iterations of a sample that has undergone iterative
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Figure 6.4: Family detection accuracy of all malware samples in the MAL dataset.

development and possibly repackaging. For the MAL dataset, Dexsim was considered to

be accurate for a malware app if the list of nearest neighbors contained the same family

classification as the app under test. Figure 6.4 shows the detection accuracy with regard to

the malware family for various levels of k-nearest neighbors. Even with the direct nearest

neighbor, Dexsim accurately detected the malware family for 97.5% of the samples.
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Chapter 7: Intent-Based Denial of Service Attacks on

Android

In this chapter, I examine a common communication mechanism in Android, the Intent

messaging object [54], and discuss how it can be abused to affect the security and availability

of an Android device. I discovered various local DoS attacks that can be launched from a

local app that has not been granted any permissions: making the Android OS unresponsive

(see Section 7.3.1), selectively targeting and killing other apps co-located on the device

(see Section 7.3.2), and causing the Android OS to crash and reboot (see Section 7.3.3).

I explain the mechanics of the DoS attacks with regard to an app launching DoS attacks

and its interaction with the Android framework in Section 7.3.4. I made the attack more

aggressive by programmatically disabling wireless communication mechanisms (i.e., Wi-Fi

and Bluetooth) that are used to communicate with certain embedded Android devices. I

tested the aggressive DoS attack on a range of Android devices and the results are provided

in Section 7.4. I discovered that the DoS attack was particularly severe on certain Android

embedded systems that lacked many of the traditional recovery mechanisms that are present

on Android smartphones. In certain cases, these DoS attacks can be leveraged to perform a

ransomware attack that does not involve cryptography. To counter these attacks, I developed

and tested open-source solutions that successfully defended against the local DoS attacks

described in Section 7.5.2.

7.1 Threat Model

The threat model is that I assume a low privilege Android app is installed on the device from

which it will launch local DoS attacks. This app can reach the device through app repacking,

social engineering, unpatched vulnerability, remote exploit, etc. A local presence on the
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Android device allows the app to execute code to perform the attacks. Specifically, the

attacks I discovered all use the sending of Intent objects as the attack vector. An Intent is

an abstraction for a IPC message that apps can send between or within apps. Alternatively,

an Intent can be sent by an app to communicate between different app components within

the same app. Intent objects are available to developers via a class in the Android API [54].

Sending an Intent does not require any permission defined by the Android platform. This

enables the least privileged Android app, a third-party app that requests no permissions,

to use Intents to perform most of the DoS attacks introduced in this chapter. These DoS

attacks were discovered and tested on devices running Android 5.0. After the DoS attacks

were responsibly disclosed to Google, they have mostly fixed the issues in their AOSP code

base.1

7.2 Related Work

Researchers have discovered various local DoS attacks affecting the Android platform. For

instance, Armando et al. [30] discovered that the UNIX domain socket to fork processes from

zygote was world-readable, so a local app could cause excessive process forking from the

zygote process to overload the device so it becomes unresponsive and eventually crashes and

reboots. Arzt et al. [175] found a method to prevent the installation of another app package

that relied on a vulnerability introduced by the dexopt tool.2 However, to be useful to an

attacker, their attack depended on user interaction, root access, or a separate vulnerability to

work surreptitiously since third-party apps cannot programmatically install an app. Ratazzi

et al. [176] discovered various DoS attacks that prevent the installation of Android apps by

leveraging Android OS limitations. One attack exploited a limitation in the upper limit for

the maximum number of app UIDs on a Nexus 10 by installing so many apps that no new

apps could be installed. They also noted that Android has a uniqueness requirement for each

package name such that no two apps can reside on the device with the same package name.

1For testing the attacks in this chapter, please use an appropriate Android version (≤ 5.0) that lacks
Google’s fixes for the issues.

2The dexopt tool verifies Dalvik bytecode during app installation.
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Chin et al. [158] presented various DoS attacks against apps by intercepting Intents bound

for other activity, service, or broadcast receiver app components. This research focuses

on the security of app components and the ability to intercept Intents bound for another

app. Brand et al. [231] made various modifications to the Android OS source code and

environment to automate the sending of Near Field Communication (NFC) messages for

fuzz testing and DoS attacks. The NFC DoS attacks focus on battery exhaustion, storage

exhaustion, and forcing the NFC subsystem to crash. Huang et al. [31] discovered that

invoking computationally heavy API calls in a system process can result in the system

process freezing and eventual system reboot. The authors developed a tool that identifies

risky method calls to a system process using heuristics to examine the AOSP source code.

Pink et al. [232] recognized that sending Intents at a rapid rate can turn into a DoS against

the device, but they did not go into more detail beyond that. I explain how the usage of

Intents can be used to reboot the device by causing a system crash, make the Android OS

unresponsive, and selectively kill other running apps on the device.

7.3 Intent-based DoS Attacks

Sending intents very rapidly from a local app can have adverse effects on the Android OS.

If intents are sent as quickly as possible, this will cause a user space system crash and

subsequent reboot. If the intents are sent at a slightly slower pace, then the device will

become unresponsive to user interaction. If the intents are sent rapidly for a controlled period

of time, the Android OS will start killing off running apps due to the large amount of Random

Access Memory (RAM) that is required to process and service the Intents. The most reliable

method to perform Intent-based attacks is from a service app component that returns the

START_STICKY constant in its onStartCommand method so it will be restarted automatically if

it crashes or is terminated. For all of the Intent-based attacks, an app component must be

selected as the destination to where the intents will be sent. This app component can be

external to the attacking app, so as to partially obfuscate the app that is actively performing

the attack. Many Android devices will contain a set of pre-installed Google apps that are

119



resident on the device. Therefore, an app such as Gmail or Chrome can be targeted since

they have exported activities app components that can be launched externally. The most

reliable method is to use an app component within the attacking app. The attack to kill other

running apps and the attack to reboot the device require that the Intents being sent use the

following two flags from the android.content.Intent class: FLAG_ACTIVITY_MULTIPLE_TASK

and FLAG_ACTIVITY_NEW_TASK. These intent flags, when used together, make it so that a

new task is allocated and started in the target app even if a matching task already exists

[233]. The following flags can be used to prevent an activity app component within an

app from showing up in the recent apps list: FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS and

FLAG_ACTIVITY_NO_HISTORY. The app component that will receive the influx of intents needs

to have a value of standard for its android:launchMode attribute which is the default launch

mode if one is not provided explicitly. The standard launch mode creates a new instance

of the activity and pushes it on top of the current task stack [234]. In addition to the

standard launch mode, an activity can have one of the following launch modes: singleTop,

singleInstance, and singleTask. The singleTop launch mode reuses an activity if it is at

the top of the task stack, rather than creating a new instance. The singleInstance and

singleTask launch modes do not allow multiple instances of an activity. The attacks to

reboot the device and kill other running apps will work significantly faster if the device’s

screen is on at the time of the attack. A service app component can turn the screen on from

the background by acquiring a wake lock that was created with the ACQUIRE_CAUSES_WAKEUP

and SCREEN_BRIGHT_WAKE_LOCK flags. The Android OS sends broadcast intents when the

screen is turned on and turned off, so an app can determine whether or not the screen is

on or not by creating a broadcast receiver app component that receivers these broadcast

Intents.

7.3.1 Making the Android OS Unresponsive

The Android OS can be made unresponsive to the user if an app sends Intent objects rapidly

and continuously. The source code to make the Android OS functionally unresponsive
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is simple and straightforward. First, an Intent is created for an activity app component

that is contained within the attacking app or an external app. Then an android.app.

PendingIntent object is created with the app’s context, the request code, the Intent, and

the FLAG_CANCEL_CURRENT constant. The FLAG_CANCEL_CURRENT flag makes it so that if any

PendingIntent objects of this type already exist, then they should be canceled and the newest

PendingIntent object will be used. A PendingIntent takes an Intent object and allows another

app to send the Intent, potentially at a later point in time. The android.app.AlarmManager

is retrieved and used to make the PendingIntent be launched every 100 milliseconds starting

1 millisecond after the android.app.AlarmManager.setInexactRepeating(...) API method

call. The AlarmManager class interacts with the system’s alarm manager which allows an app

to send Intents at scheduled times and intervals.

1 Intent i = new Intent(this , DisplayText.class);

2 PendingIntent pi = PendingIntent.getActivity(getApplicationContext (), 0, i,

PendingIntent.FLAG_CANCEL_CURRENT);

3 AlarmManager am = (AlarmManager) this.getSystemService(Context.ALARM_SERVICE);

4 am.setInexactRepeating(AlarmManager.ELAPSED_REALTIME , 1, 100, pi);

Listing 7.1: Java source code for the DoS attack on device responsiveness.

The Java source code provided in Listing 7.1 will leave the GUI mostly unresponsive.

The GUI may be able to switch between screens in the launcher, but it will not be able

to launch any apps or perform any meaningful tasks. Therefore, the Settings app cannot

be launched to uninstall the attacking app. The device will usually stay in a persistently

unusable state until the device is rebooted or the attacking app is uninstalled via ADB. The

logcat log will contain numerous instances of the activity being launched and the UID of the

app that launched the activity on Android 5.0 builds. The UID can be used to identify the

attacking app through the use of the Android API or ADB.

7.3.2 Killing External Apps

I discovered a method to kill other running apps on an Android device from a locally installed

app. By the word kill, I mean that the process for an app will be terminated. This is

accomplished by sending a large number of intents with specific intent flags to an app on
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the device. Receiving and handling incessant intents requires a large amount of RAM and

causes the Low Memory Killer (LMK) [235] mechanism to start killing running processes

to free up RAM. This is a blunt approach that generally kills many other processes on the

device in addition to the targeted app. The approach to kill another running app is to first

use the android.app.AlarmManager.setRepeating(...) API call to launch a PendingIntent

every 10 milliseconds. The value of 10 milliseconds may need to be increased for faster

Android devices. The processing of these intents will require a large amount of RAM. When

the device crosses a threshold for the minimum amount of free RAM available, this activates

LMK which will start killing processes based on their priority groups [236]. Processes with

the lowest priority are killed first, then those with the next lowest priority, and so on, until

sufficient memory is available for the system. The following are the main priority groups, in

order of importance:

1. Foreground. This is a process that the user is currently interacting with through

some foreground component. It has the highest priority, and therefore is killed last.

2. Visible. A process moves to the visible group if it does not have any foreground

components, but is still running. For example, calling the onPause() method of an

activity moves the process from the foreground to the visible group.

3. Service. A process that is running a service with no foreground components, e.g., a

background music player.

4. Background. Here, the process onStop() method has been called. The process’

foreground components are not visible to the user.

5. Empty. A cached terminated process. LMK eliminates empty processes first.

To narrow the attack down on a single app, I leverage the priority groups by forcing the

victim process to be moved to the Background group if it is in the foreground. I achieve this

by launching a foreground activity in front of the victim app, which obscures all foreground

components of the victim process, resulting in the system moving it from the Foreground
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(or Visible) to the Background group. Being in the Background group, the process now

will be killed by the LMK before any other visible app on the system. To monitor when

the process gets killed, I run the process status (ps) command in a loop from a foreground

service until the target process no longer exists in the process status output. Once the

target process is terminated, the attacking app ceases the sending of the Intents using the

android.app.AlarmManager.cancel(PendingIntent) API method call and breaks out of the

loop. When LMK kills processes, there is no system message alerting the user that the

targeted app has been terminated. In addition, the activities of the killed process are not

recreated. The killed services will be scheduled to restart as long as they do not return

the android.app.Service.START_NO_STICKY constant in their onStartCommand method. Even

if the service returns START_STICKY or START_REDELIVER_INTENT, it is common for the service

to be restarted after some delay due to the low memory condition that activated LMK.

Therefore, the attack can take place at certain intervals to ensure that the service is killed

repeatedly.

7.3.3 System Crash DoS Attack

The same mechanism, sending intents rapidly, that is used to make the device unresponsive

and kill external apps can be made more aggressive to overload the Android OS and force

the system to crash and reboot. Sending a large amount of intents rapidly generally leads

to an uncaught exception in one of the service threads in the system_server process. Once

this occurs, all the services residing in the system_server process start to die. Once the

system_server process itself terminates, zygote will terminate and the system will reboot.

Listing 7.2 shows the source code to reboot an Android device. Additional information on

the system_server process is provided in Section 2.1.3.

The system_server process can be terminated, causing the system reboot, in a number

of different ways. Prior to the device rebooting, uncaught exceptions tend to occur in

the com.android.server.am.ActivityManagerService class since it is responsible for starting

activities. A fatal runtime exception can occur when the ActivityManagerService fails
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1 Intent i = new Intent(this , DisplayText.class);

2 i.setFlags(Intent.FLAG_ACTIVITY_MULTIPLE_TASK | Intent.FLAG_ACTIVITY_NEW_TASK);

3 PendingIntent pi = PendingIntent.getActivity(getApplicationContext (), 0, i,

PendingIntent.FLAG_CANCEL_CURRENT);

4 AlarmManager am = (AlarmManager) this.getSystemService(Context.ALARM_SERVICE);

5 am.setInexactRepeating(AlarmManager.ELAPSED_REALTIME , 1, 1, pi);

6 TaskStackBuilder tsb = TaskStackBuilder.create(this);

7 for (int a = 0; a < 400; a++)

8 tsb.addNextIntent(i);

9 tsb.startActivities ();

Listing 7.2: Java source code for the system crash DoS attack

to generate a pair of android.view.InputChannel objects since the OS runs out of file

descriptors for available files, sockets, and pipes due to limits on open file descriptors

imposed by the kernel. A fatal exception can also occur when an object of type android

.view.DisplayEventReceiver fails to initialize. In addition, the system_server process can

be killed by the watchdog daemon process due to unresponsiveness or a deadlock in the

com.android.server.am.ActivityManagerService class. An out of memory error can occur

in the com.android.server.AlarmManagerService class when it fails to allocate a contiguous

buffer for additional alarms. Using AlarmManager to launch an Intent every millisecond

requires that it create an alarm for each of these events.

Table 7.1: System crash DoS Attack on various Android devices and versions.

Device OS Version Build Number Sec. to reboot

Nexus 9 5.0.1 LRX22C 3.4
Samsung Galaxy S4 4.4.4 KTU84P.I337UCUFNJ4 12.2
Samsung Galaxy S6 Edge 5.0.2 LRX22G.G925AUCU1AOE2 10.9
Nexus 5 4.4.2 KOT49H 9.4
Motorola Moto 360 5.0.2 LWX49L 74.1
Fire TV 4.2.2 51.1.5.3 user 515040320 10.5
Mini-PC 4.0.4 RKM-emg4.0.4IMM76D 9.8
Emulator (Nexus 5) 5.0.2 LSY66D-1797986 8.3

This attack works on various Android platforms and versions. Table 7.1 shows the time to
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reboot different Android devices using this attack. According to the core manifest file for An-

droid 5.0 (/frameworks/base/core/res/AndroidManifest.xml) [237], the android.permission

.REBOOT permission has a value of signature|system for the android:protectionLevel at-

tribute [69]. Being granted this permission on Android 5.0 requires that an app reside on

the system partition (i.e., a pre-installed app) or be signed with the device platform key.

Therefore, a third-party app should not be able to directly obtain this permission. An

zero-permission third-party app by using this DoS attack can regain the functional equivalent

of the REBOOT permission.

7.3.4 Most Common Underlying Cause for the System Crash

Various potential causes of the system crash were mentioned in Section 7.3.3. Figure 7.1 pro-

vides the most common cause of the system crash I witnessed during testing. During the DoS

attack, the Intents sent by the attacking app must have the FLAG_ACTIVITY_MULTIPLE_TASK

and FLAG_ACTIVITY_NEW_TASK flags set, so that a new starting window with a new task

stack will be required for each activity. In this subsection, the classes that end with

“Service” are contained within the system_server process. The com.android.server.wm.

WindowManagerService class [238] creates a window for the activity and each window requires

a pair of android.view.InputChannel objects to be created so that the input events from

the input device files can be delivered to the activity window. Third-party apps cannot

directly read from the input device files which are contained in the /dev/input direc-

tory, but system_server has permission to read from them since it belongs to the input

group. Therefore, WindowManagerService creates a pair of sockets using the socketpair()

system call, registers the input channel with the window via the com.android.server.input

.InputManagerService class, and transfers the output channel to the app. This allows the

app to consume and process input events from the user via system_server.

A socket pair requires a file descriptor for each end of the socket pair. Each created

activity will initially make system_server use two file descriptors. It will then transfer one

socket to the attacking app, although during the attack system_server is processing a deluge
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Figure 7.1: Interaction between a third-party app and the Android OS to cause a system
crash.

of Intents and does not get a chance to transfer the socket. This results in system_server

using two file descriptors per activity created which makes system_server get closer to

approaching the soft limit of 1,024 per-process file descriptors set by the kernel.3 Once the

soft limit is reached, system_server cannot open or create any new files, pipes, or sockets,

and WindowManagerService will fail to create the starting window for each activity.

The attacking app will encounter an uncaught exception once its activities cannot be

created. The attacking app uses an android.view.InputChannel object received from the

WindowManagerService as a parameter to the android.view.InputEventReceiver constructor.

The InputEventReceiver object is used to queue the received user events so that they can

3This was the limit on Android 5.0 and has since increased in subsequent Android versions.
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be stored while waiting to be consumed by the app. The InputChannel object that the

app received will be null. So an exception will be thrown by the InputEventReceiver.

nativeInit() native method in the attacking app which goes uncaught and causes it to

terminate.

When the attacking app crashes, ActivityManagerService tries to display an android.

app.Dialog object indicating that the attacking app has crashed. A socket will be required

to deliver the user input to the window of the Dialog system message. system_server will

not be able to create the socket, and an uncaught exception occurs. The zygote daemon

process contains pre-loaded classes and resources and forks itself to create other apps quickly.

zygote [239] starts system_server with the --runtime-args flag which provides the threads of

system_server with an UncaughtExceptionHandler interface object of the type com.android.

internal.os.RuntimeInit.UncaughtHandler [240]. It receives uncaught exceptions occurring

within the threads of system_server. It only has one method and all of its code is within

try-catch-finally blocks. The finally block calls the android.os.Process.killProcess

(int) API call with an integer parameter that is the result of the Process.myPid() API

call. Since the thread that has the uncaught exception occurs within system_server, this

results in system_server both sending and receiving the SIGKILL signal, which results in its

termination.

zygote is the parent process of system_server, so it will receive a SIGCHLD signal when

system_server terminates. For each SIGCHLD signal that zygote receives, it will specifically

check if the terminated child process is system_server. If system_server terminates, then

zygote will send the SIGKILL signal to itself [241] which results in a system crash. The init

process will then restart zygote since it is declared as a service in the init.rc file [242].

zygote will then restart system_server.
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7.4 System Crash DoS Attack Evaluation

The local system crash DoS attack can be performed repeatedly to persistently deny the

user meaningful usage of their Android device. When the DoS attack recurs each time the

system boots, I refer to it as the system crash cycle DoS attack. I tested the system crash

cycle DoS attack on various Android devices. Some of the embedded Android platforms

tend not have safe mode and some do not have easy access to recovery mode, so I focused

on these devices. Safe mode is an alternate mode of operation that prevents the execution

of third-party apps. Safe mode is useful when a third-party app is interfering with normal

usage of the device and allows the user to more easily uninstall apps. Recovery mode is a

special mode of operation that the user can enter by pressing a sequence of buttons during

the boot sequence. Recovery mode allows the user to wipe the cache partition, apply an

update, and perform a factory reset which will remove all apps that the user has installed.

All of the test devices were running a non-rooted stock version of the Android OS that came

pre-installed on the device. All of these devices had ADB over USB disabled by default.

Table 7.2 aggregates the results of the experimental data.

Table 7.2: Results summary for the tested devices.

Device Build No.
Android
Version

Vulnerable Recoverable

Sony Bravia XBR-43X830C TV LMY48E.S63 5.1.1 Yes No
Moto 360 1st Gen. Smartwatch LDZ22O 5.1.1 Yes Yeso

Amazon Fire TV Stick 1st Gen. JDQ39 4.2.2 Yes No†

Xiaomi Mi Mini TV Box KOT49H 4.4.2 No Yes
Nvidia Shield Android TV LMY47D 5.1 Yes Yes‡

Amazon Fire 7′′ Tablet LMY47O 5.1.1 Yes Yes‡

Devices prior to Android 4.1 - <4.1 Yes Yes‡

o Recovering requires crafting a special USB cable and flashing firmware images.
† Recovering requires ADB over USB, which is disabled by default, to be enabled prior to

the attack.
‡ Recovering requires a full factory reset in recovery mode or flashing firmware images.
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7.4.1 Sony Bravia XBR-43X830C Android TV

The Sony Bravia XBR-43X830C Android TV is vulnerable to the system crash cycle DoS

attack, and there is no known way to recover. During testing, the device was running

Android 5.1.1 with a build fingerprint of Sony/SVP4KDTV15_UC/SVP-DTV15:5.1.1/LMY48E.S63

/2.473:user/release-keys. The only way to perform a factory reset of the device is through

the Settings app [243]. During the attack, the GUI becomes unresponsive to the infrared

remote which prevents the user from reaching the Settings app to perform a factory reset.

The device does have ADB over Wi-Fi, but this can be subverted since the attacking app

programmatically disables Wi-Fi. This device does not have the ADB over USB capability.

The device also does not have safe mode, recovery mode, or fastboot mode. Therefore, the

user is unable to uninstall the attacking app, perform a factory reset, or flash firmware

images. Booting to fastboot mode via ADB over Wi-Fi will show a black screen, but it

will also soft brick the device as it will not boot properly after that.4 The device comes

pre-installed with Google Play so the user can download apps, and they can also be installed

via ADB over Wi-Fi for the attacking app to reach the device.

7.4.2 Moto 360 1st Generation Smartwatch

The Moto 360 1st generation smartwatch is vulnerable to the system crash cycle DoS attack,

although there is a way to recover via a modified USB cable that can be used to unlock the

bootloader and flash firmware images to the device [244].5 During testing, the device was

running Android 5.1.1 with a build fingerprint of motorola/metallica/minnow:5.1.1/LDZ22O

/2006643:user/release-keys. The device allows the user to directly install or uninstall

apps using ADB over Bluetooth. When a user installs or uninstalls an app on an Android

smartphone or tablet, which is paired with an Android Wear device, the accompanying

Android Wear app, if present, will also be installed or uninstalled from the Android Wear

device. The Moto 360 does not have a direct way to uninstall a particular app through its

4This occurred when I was testing the device, and I am unsure if it will occur on all versions of the device.
5The modified USB cable involves stripping the cable and creating an adapter. Instructions are provided

here: https://www.rootjunky.com/moto-360-adapter-usb-cable/.
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GUI. Based on my testing, the user has about 8 seconds to perform some action on the

device before the GUI becomes unresponsive. The user can initiate a factory reset through

the GUI, but it will not have enough time to complete and be successful before the device

encounters a system crash due to the DoS attack. The Moto 360 lacks a standard USB

interface, so only ADB over Bluetooth is available. The attack app will disable Bluetooth to

prevent communication with paired devices.

7.4.3 Amazon Fire TV Stick 1st Generation

The Amazon Fire TV Stick 1st generation is vulnerable to the system crash cycle DoS attack

and can leave the device in an unusable state if ADB over USB is not enabled prior to

the attack. The device runs Amazon Fire OS 3.0, which is a modified version of Android

4.2.2. The device I tested had a build fingerprint of: BRCM/montoya:4.2.2/JDQ39/54.1.2.2

_user_122066120:user/release-keys. If ADB over USB is enabled prior the attack, the user

can list the installed third-party apps and uninstall them as the device is booting. The

malicious app programmatically disables both Bluetooth and Wi-Fi. This renders any paired

remotes ineffective and precludes ADB over Wi-Fi. There are no hardware buttons to force

the device to boot into recovery mode or bootloader mode from a powered-off or booting

state. This will effectively preclude the user from removing the app if ADB over USB is not

enabled prior to the attack, making the device effectively useless.

7.4.4 Xiaomi Mi TV Box Mini

The Xiaomi Mi TV Box Mini is not vulnerable to the system crash cycle DoS attack. The

device I tested was running Android 4.4.2 and had a build fingerprint of Xiaomi/forrestgump

/forrestgump:4.4.2/KOT49H/566:user/release-keys. Apps can be installed through the

browser or a network-connected device. Communication with the device is performed via

a Bluetooth remote, and it contains no USB interfaces. The device does not send the

BOOT_COMPLETED broadcast Intent to third-party apps, so the app is unable to system crash

the device after the devices completes the boot process.

130



7.4.5 Amazon Fire 7′′ Tablet

The Amazon Fire 7′′ Tablet is vulnerable to the system crash cycle DoS attack if ADB

over USB is not enabled prior to the attack. If ADB over USB is not enabled prior to the

attack, then the user must perform a factory reset of the device or flash firmware images

to the device to recover it. The device I tested was running Amazon Fire OS 5.0, which is

a modified version of Android 5.1.1 and had a build fingerprint of Amazon/full_ford/ford

:5.1.1/LMY47O/37.5.4.1_user_541112720:user/release-keys. The attacking app receives

the android.hardware.usb.action.USB_STATE broadcast Intent because it is sent prior to the

BOOT_COMPLETED broadcast Intent and does not require any permissions to be able to receive

it. This broadcast Intent is received by the attacking app prior to the Amazon launcher

being displayed, so the user is precluded from uninstalling the app via the GUI. The device

provides easy access to recovery mode from a powered-off state by holding the volume down

and power buttons during boot. In recovery mode, the user can perform a factory reset of

the device.

7.4.6 Nvidia Shield Android TV

The Nvidia Shield Android TV device is vulnerable to the system crash cycle DoS attack

if ADB over USB is not enabled prior to the attack. The device I tested was running

Android 5.1.1 and had a build fingerprint of NVIDIA/foster_e/foster:5.1/LMY47D/35739_609

.6420:user/release-keys. The device does not have safe mode and ADB over Wi-Fi can

be programmatically disabled. The only way to recover is by performing a factory reset or

flashing firmware images to the device. There is a method to perform a factory reset that

is not published on Nvidia’s website [245]. Alternatively, the user can access the fastboot

menu and flash firmware images.

7.4.7 General Android mini PC Devices

Android mini PC devices are somewhat vulnerable to the system crash cycle DoS attack

since they generally lack safe mode. Some devices allow the user to push a button during
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boot to enter recovery mode. In addition, some devices can utilize the SD card to flash

firmware images to the device. Whether the attack is effective or not depends on the specific

device and the mechanisms for recovery it provides.

7.4.8 Android Devices Prior to Android 4.1

Safe mode was introduced in Android 4.1. Prior to Android 4.1, the user was forced to

perform a factory reset via recovery mode or flash firmware images to remove an app that

persistently causes a system crash on the device. According to the Android Dashboard

webpage, devices running a version of Android prior to Android 4.1 made up 5.0% of all

Android devices as of March 7, 2016 [246].6

7.5 Defending Against the Attack

7.5.1 Attack Mitigation App

I developed an anti-reboot app (source code available at [55]) that passively monitors Intents

sent by third-party apps on the system, and disables or uninstalls apps that attempt to

flood the system with Intents. The anti-reboot app observes Intents by reading the system

log buffer using logcat on the device, and parsing the log messages searching for Intents.

The app filters log messages using relevant log tags to reduce the amount of log messages

it processes. For every observed Intent, the sender’s package name is logged and its total

outbound Intents count n is incremented. The anti-reboot app only considers Intents that

create new tasks, i.e., the FLAG_ACTIVITY_NEW_TASK and FLAG_ACTIVITY_MULTIPLE_TASK Intent

flags are set. It also ignores Intents sent by system apps by filtering on the process UID

since system apps are assigned UIDs that are less than 10,000. Anti-reboot uses a one-level

decay, where the Intent count n is decreased by a constant c every second. This is intended

to simulate the time a user would interact with a new activity before dismissing it. In other

words, the value of c controls the tolerable persistence level of an offending app. For a period

6As an update, as of July 2019, only 0.6% of Android devices are running a version of Android prior to
4.1.
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of t seconds, this results in an effective Intent count n′ = n− ct, and an effective sending

rate ρ = n′

t = n
t − c. Finally, a monitored app is disabled or uninstalled if its corresponding

n′ exceeds a preset threshold (θ), which indicates that the monitored app has more than θ

active task stacks.

Parameters Selection

There are two parameters that control the detection performance of the anti-reboot app: the

Intent decay c, and the cutoff threshold θ at which an app is disabled or uninstalled. The

value of c controls the tolerance level of the defense to apps that persistently send multiple

Intents over time. While benign apps may create new tasks, such behavior typically lasts for

only a very short period of time (i.e., short bursts) compared to attacking apps which need

to be highly persistent in order to adversely affect the system. Therefore, the higher the

value of c, the higher the tolerance and the more likely an attack may go undetected. A

reasonable value of c would mimic the time it takes a user to click the recent tasks button

and dismiss an activity off the screen, which takes about 2 seconds. Therefore, I set c to one

Intent every 2 seconds, i.e., c = 0.5.

Avoiding False Positives The cutoff threshold θ controls when an attack is detected,

based on the number of active task stacks s the attack app has created. Note that s ≤ n′,

since each task stack would hold at least one activity. Since an attack is detected if n′ ≥ θ,

setting θ to a very small value may result in faster detection at the expense of false positives

(i.e., false alarms). Conversely, a very large value of θ results in lower detection rate. I can

pick a reasonable value of θ by estimating an upper bound on n′ for benign apps. Studies

(e.g., [42, 247]) have shown that the total number of activities declared in an app’s manifest

is less than 110 for the top 30 apps in the market, with a total of 60 foreground activities

created on the device per day from the top 800 apps on the market. Therefore, I set θ = 200,

which allows 200 task stacks to be created at any point in time. This is more than three

times the number (60) of task stacks that would be created, in the worst case, by benign
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apps if I assume each of the benign 60 activities was created in a new task stack and was

never terminated.

In versions of Android earlier than 6.0, where AlarmManager does not have a minimum

recurrence interval of 60 seconds, attacking apps can flood the system with activities using

pending Intents with short repeat intervals. To mitigate this, and in addition to observing

Intents, the anti-reboot app monitors the count and repeat interval of active pending Intents

being processed by the AlarmManager. It periodically retrieves a snapshot of the AlarmManager

state by executing the dumpsys alarm command. Note that excessively running dumpsys can

harm the overall system performance, while very long query periods can cause the attacks to

go undetected. I empirically found that executing dumpsys every 500 milliseconds is suitable

on the test devices used in this study. For each pending Intent record, the anti-reboot app

extracts the package name of the source app and the repeat interval. If the interval is less

than a predefined threshold (set to 60 seconds as in Android 6.0), or the number of active

pending Intents of a source app is more than θ, the source app is flagged and is either

disabled or uninstalled.

Detection Results

The anti-reboot app detected the system crash DoS attack and identified the source of the

attack 100% of the time during testing, even when the attack was in its most aggressive

form. In many cases, I observed that the device reboots before the anti-reboot app gets

a chance to disable or uninstall the attacking app. This is mainly due to the fact that

the attacking app can request to start up to 5, 500 new tasks in a single transaction using

Service.startActivities(Intent[]) API call. This quickly depletes the file descriptors of

system_server which inhibits its capabilities and renders system_server unresponsive to any

requests to disable or uninstall the offending app. To mitigate this, the anti-reboot app

records the package name of offending apps along with a time stamp of when the attack was

detected in persistent memory. It then checks when the system last encountered a system

crash, and if an offending app was detected within a 60 second period before the system
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crash, it disables the offending app after the system crash and informs the user. In addition,

I confirm a system crash by checking to see if the Process ID of system_server has changed,

which occurs during a system crash. The user can re-enable disabled apps through the GUI

of the anti-reboot app.

I emphasize that it is not possible to rate-limit the Intents sent by processes, without

changes to the OS itself. Even then, a balance has to be struck between usability and

security. If the system sets overly strict limits on the sending rate of Intents, apps may become

unresponsive or sluggish, resulting in an overall degradation of the system performance

and user experience. In addition, it is not straightforward to implement rate-limiting in a

system that is heavily event-driven such as Android. If the system decides to silently drop

Intents, apps are likely to malfunction as a result of lost Intents. Notifying apps that they

are exceeding the rate-limit would require a back channel from system_server to the app,

besides requiring the app to anticipate and handle the notification, which further complicates

the design of both the OS and the apps. I am unaware if this attack has been used in the

wild. After informing Amazon of the DoS attack, they created a detection mechanism for it

in the Amazon AppStore. Google did not respond to my question whether or not the attack

app would make it through their vetting process to be available on Google Play.

Performance Evaluation

I tested the overhead introduced by the anti-reboot defense app by using the following

two benchmarks: AnTuTu Benchmark v6.0.1 and BenchmarkPI v1.1. AnTuTu Benchmark

provides an aggregate score that combines both multitasking, user experience, CPU and

memory speeds, and 3D rendering performance. BenchmarkPI is a CPU time benchmark

that computes π to the nth digit. I tested the defense app on the following devices: Nexus 5

running AOSP Android 6.0.1, Nvidia Shield Android TV running Android 5.1.1, Amazon

Fire TV 1st generation running Android 4.2.2, and Amazon Fire 7
′′

tablet running Android

5.1.1. Under each scenario, I performed 20 runs and took the average of the resulting

benchmark scores. I report the overhead as the percentage degradation in the aggregated

135



Figure 7.2: Performance overhead based on AnTuTu Benchmark and BenchmarkPI scores.

average of the benchmark scores.

Figure 7.2 shows the overhead in the benchmark scores of AnTuTu Benchmark and

BenchmarkPI. The overhead ranged from 0.8% to 1.51% for AnTuTu Benchmark and 0.14%

to 1.15% for BenchmarkPI. The overhead from the defense app is mainly due to the threads

it spawns to continuously monitor the logcat log and process the output of the dumpsys alarm

command to record Intent usage and attribute them to the app that sent them. Overall,

the defense app introduced a small amount of overhead (less than 1.6%) which I believe is

acceptable for the service it provides.

7.5.2 Proposed Platform Defenses

I suggest changes be made to the ActivityManagerService class in the Android framework

to prevent a single app from starting an arbitrarily large amount of activities. Currently,

the amount of Intents that can be sent to be processed by ActivityManagerService is only

limited by the Android Binder transaction buffer size. On Android 6, this enables an app to

send around 5,500 Intents to be processed by ActivityManagerService in a single transaction
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using the Service.startActivities(Intent[]) API call. I believe that a limit of less than

400 concurrent activities should be imposed on each app to preclude it from causing a

system crash. Alternatively, a proper rate for rate-limiting of Intents can be established

from empirical analysis of Intent usage among third-party apps. I recommend that once the

user selects to perform a factory reset of an Android Wear device, that all third-party apps

should be terminated so they cannot attempt to interfere with the factory reset process. In

addition, introducing some delay before sending the BOOT_COMPLETED broadcast Intent and

similar Intents to third-party apps can provide the user additional time to perform a factory

reset through the Settings app without having to race against a misbehaving app.

7.6 Summary

By introducing a novel system crash cycle DoS attack, I show that installing a third-party

app, even with a limited set of permissions, can render certain Android devices unusable. In

other cases, the user needed to perform a factory reset or flash firmware images to recover

the victim device. Furthermore, I provide a detailed explanation as to the underlying cause

of the system crash that occurs in the Android framework. To support my claims, I reference

the actual Android 6 source code and describe the mechanics of the attack strategy. To

mitigate the attack, I leverage the existing Android framework to suggest changes that would

either significantly reduce or eliminate the effects of the attacks. As a proof-of-concept, I

implemented an open-source Android app that provides concrete countermeasures to prevent

the attack and can be utilized by device manufacturers without modifying the device or the

Android framework. As a final note, to ensure that my research is not misused, I informed

Google and all of the affected device manufacturers so that Android devices can be made

more secure.
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Chapter 8: Large Scale Testing for Android Inter-App

Vulnerabilities

This chapter expands upon the previous chapter in continuing the examination of the security

and availability implications involved in the usage of the Intents. I developed an open-source

system, named Daze, that identifies common developer errors in stand-alone apps and

entire Android devices. The workflow for Daze is explained in Section 8.2. I investigate the

prevalence of these errors on 32 different devices in Section 8.3. As part of device testing, I

tested all the available AOSP builds of two different devices: Nexus 5 and Nexus Player.

Section 8.4 describes a longitudinal study I performed to obtain insights into how long

inter-app vulnerabilities tend to exist in different versions of an app with regard to the time

duration in which it existed and the number of versions in which it persisted. Based on

AOSP testing, I discovered vulnerable app components in AOSP base code that have been

propagated to Android vendors. Section 8.5 discusses the root causes of the vulnerabilities

Daze discovered in AOSP code. Lastly, Section 8.5.3 describes a generic system crash DoS

that works on all Android devices.

8.1 Errors of Omission

Once an Intent is sent to an app component (see Section 2.2), various errors of omission

can occur. If the destination app component is declared but not actually implemented,

the receiving app will crash due to an uncaught ClassNotFoundException. An undefined

app component is a component that has a valid entry in the app’s manifest file, but the

component itself is not implemented in the app’s code. If the app component receiving

an Intent is implemented in code, there are various exceptions that can be encountered by

further errors of omission resulting in an uncaught exception and process termination if
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appropriate error handling is not present. Even before an app processes the received Intent,

an app component may encounter an UnsatisfiedLinkError if a required native library is

missing. When an Intent is received by an app component, one or more callback methods

specific to the app component type are executed. During the processing of a received Intent,

the most common error of omission manifests as a NullPointerException due to accessing

null objects. Certain apps do not gracefully handle the absence of expected data, resulting

in an unexpected crash. Most of the exceptions can be addressed through proper input

validation and thoughtful exception handling at runtime.

1 public void onReceive(Context context , Intent intent) {

2 String action = intent.getAction ();

3 Bundle bundle = intent.getExtras ();

4 ...

5 if (action.equals("com.sec.android.intent.action.APP_HQM_SEND_REQ")) {

6 int type = bundle.getInt("Type", 0);

7 // NullPointerException happens above when the ‘bundle ’ object is

null

8 ...

9 }

10 }

Listing 8.1: Recreated source code of a vulnerable broadcast receiver.

Internally, most embedded data within an Intent is stored in a Bundle object, which is a

map data structure that allows the storage and retrieval of key-value pairs. A recipient app

component may also extract the action string or embedded Uniform Resource Identifier (URI)

of an Intent. When an app component with inadequate error handling and null-checking

assumes these values will not be null, a NullPointerException can occur. The Android

OS itself declares app components that are accessible to third-party apps.1 An uncaught

exception occurring in a component within the Android OS can lead to the crashing of

critical system processes, which triggers the OS to reboot in an attempt to recover. I provide

a motivating example in Listing 8.1 that shows a source code snippet from a broadcast

receiver app component within the Android OS that will encounter a system crash if the

received Intent does not carry a Bundle object. The snippet was recreated from disassembled

1The app components declared by the Android framework can be viewed in [69].
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bytecode from a Samsung Galaxy S8+ running Android 8.0 with a build number of R16NW

.G955USQS5CRL1. Appendix D provides the corresponding stack trace produced when this

system crash occurs.

In addition to inadequate error handling, certain app components will themselves throw

a RuntimeException if an unexpected data item is not present in the Intent. Various other

exceptions can occur, such as errors in handling the app lifecycle (IllegalStateException),

forgetting to call a base method (SuperNotCalledException), and referencing classes that

are not defined (NoClassDefFoundError). The full list of exceptions encountered in my

experiments are provided in Tables 8.5 and 8.7.

8.2 Daze Overview

Figure 8.1 illustrates the workflow of Daze. I developed Daze to automatically determine if

certain classes of concrete failures or unexpected behaviors exist in Android apps and the

Android OS on a given device.2 Daze tests all four types of app components and provides

the user with a list of faulty processes, stack traces, discovered behaviors, and an exploit

composed of a trace of events and API calls that can be replayed to trigger a discovered

vulnerability.

Figure 8.1: Workflow of Daze.

2Daze is open-source and available at: https://github.com/Kryptowire/daze.
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Figure 8.2: Dialog box for an app crash, taking away the input focus from underlying GUI
elements.

Furthermore, going beyond discovery, Daze automatically generates zero-permission

exploits that give direct control over the victim device availability and usability. This can

be exploited to craft ransomware via crypto-less attack vectors. Having the ability to crash

an app may seem low-risk, but it can enable a malicious app to set itself as the gatekeeper

to a vulnerable app, determining when and if a vulnerable app gets to execute. Even worse,

persistently exploiting a known fault in an app enables a controlled crash-loop DoS attack

on Android devices where the Android OS recurrently pops up the app crash dialog (see

Figure 8.2) and restarts the crashing app in the background, and then the attacker crashes

it again. This allows the attacker to control overall device usability since the recurring OS

app crash dialog box takes the input focus away from other GUI elements, hindering the

user from productively interacting with the device.

8.2.1 Identifying App Components

Identifying Statically Registered Components

Daze extracts statically registered components from an app by querying the OS package

manager for all installed packages, then iterating through each package information looking

for components declared with the activities, services, receivers and providers tags. The

141



package manager fills in this information from the app’s manifest file, which cannot be

modified once the app has been installed. Daze ignores components that are not exported or

that require a permission to access. The focus is for zero-permission reproducible test cases

to crash apps or the system so only open components with no permission requirements are

considered. In addition, users may be more willing to download an app with no permissions.

Since Daze is open-source, it can be easily modified to request all available third-party

permissions and test components that are protected with permissions declared by the Android

OS.

Identifying Dynamically Registered Broadcast Receivers

Broadcast receivers are the only app components that can be both statically registered and

dynamically registered. At runtime, an app can create and register a broadcast receiver

to be eligible to receive one or more action strings. Dynamically registered broadcast

receivers can be addressed only by using an action string. Daze enumerates dynamically

registered broadcast receivers by executing the command dumpsys activity broadcasts. For

security reasons, third-party apps are not allowed to obtain this list of dynamically registered

broadcast receivers or read from the system-wide logcat log. To work around this limitation,

Daze is granted the system development permissions using the ADB command: adb pm

grant <package> <permission>.3 The READ_LOGS and DUMP permissions can be externally

granted only via ADB for development or testing. After these two development permissions

are granted to Daze, it can obtain a listing of the active broadcast receivers, including those

that are dynamically registered, and access the system-wide logcat log. Daze parses the

logcat log to detect app crashes, native crashes, and system crashes.

8.2.2 Testing App Components

Daze identifies statically and dynamically registered components residing within all apps

on a device and sends intents to all discovered components that are exported and not

3ADB is an Android SDK tool that allows a computer to interact with Android devices.
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permission-protected. For all components except content providers, the system sends up to

four intents. First, it sends an intent containing the minimum data required to be delivered

to the target component — namely, the package name and class for an activity, broadcast

receiver, or service, or the action string for dynamically registered broadcast receivers. If

a crash is not encountered due to this intent, then Daze adds an empty Bundle object

to the intent and sends it again. If an error is still not encountered for components that

are not dynamically registered, it adds an empty action string and sends the intent again.

Lastly, an Intent with a schemeless URI is sent. I chose to focus on the action string,

Bundle, and URI since, based on my experience, these are commonly used data items in

Intents. To cover all code sites reachable by an Intent, the system sends Intents with the

FLAG_ACTIVITY_SINGLE_TOP flag to also force the delivery of the Intent to the onNewIntent

method of activity components. Daze also calls the stopService method to trigger cleanup

routines that may access the Intent that started the service.

Daze monitors the logcat log to record the system-wide effects of issued intents. Once it

finishes sending Intents to all exported components, it examines the log file recorded for each

sent Intent. To avoid side-effects and to isolate different runs, Daze separately replays each

Intent that resulted in a fatal exception or a system crash to verify that it indeed triggers a

failure condition to provide accurate attribution to individual Intents.

Testing Content Providers

Unlike other app components, content providers are not directly accessed via Intents. Any

content provider has to implement a set of methods from the abstract ContentProvider class

provided by the platform. Apps can read and write data to a content provider using a

platform-managed content resolver that has the most safeguards with regard to handling

null object references and invalid input. In addition, content providers are not exported by

default and tend to be protected by permissions since they act as data repositories. Content

providers are generally backed by an SQLite database and must implement the following

operations: Delete, Insert, Query, and Update. Daze tests content providers by null-fuzzing
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all callable methods in their classes.

Testing content providers leads to some difficulty as a crash in a content provider causes

any app connected to the crashing provider to be killed. Specifically, ActivityManagerService

within the Android OS will terminate any process with an ongoing connection to a crashing

content provider. Daze will stop testing a content provider after this occurs three (3) times

and note that the content provider encounters a fatal error during testing.

8.2.3 Monitoring System State

Prior to the sending of each Intent, Daze enumerates all the files on external storage (i.e.,

SD card) to obtain a snapshot of the current state. After sending Intents to a component, it

will again take a snapshot of the files and compare. If a file has been removed or added, the

change will be detected and the file path and file size will be recorded. External storage

can be read by any app that requests the READ_EXTERNAL_STORAGE permission, so sensitive

data should not be written to it. At the end of the analysis, the changes are presented to

the user, who can view the newly added files to examine their contents. This capability can

detect the taking of screen snapshots and dumping of log files to external storage, which

was observed during the testing of devices (see Section 8.3.3 for details). Screen snapshots

are flagged since they are stored in a known set of directories on external storage with a

known file extension.

Changes to device settings are also recorded before and after testing each component to

determine if a privileged process modifies them during its execution. This is accomplished

by querying system properties and the secure, global, and system settings.4 The capability

shows whether the tested component has made changes, such as enabling or disabling

various communication capabilities. For example, the enabling and disabling of Wi-Fi is

automatically detected by monitoring changes to the value of wifi_on key in global settings.5

In addition, a component may extract an expected field from an incoming intent and write

4Secure settings are present only on devices running API level 17 and higher.
5Additional items in global settings are found in https://developer.android.com/reference/android/

provider/Settings.Global.html.
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its value to device settings. This may be observed when a value of null or an empty string is

written to system settings instead of a concrete value.

Once an app encounters a fatal exception, the Android OS displays a dialog box to the

user indicating that an app has crashed. Once this dialog box is present, no additional

components can be launched within the crashed app until the dialog box is dismissed or until

a crashed service in the app restarts. To be able to quickly launch additional components in

a crashed process, Daze obtains the current window handle by using the dumpsys command

and uses the input command via ADB to inject key events to programmatically dismiss the

dialog box. This allows for the crashed process to be restarted when testing a different app

component, without requiring user intervention.

8.3 Device Evaluation

I tested Daze on a representative set of 32 low-end to flagship Android devices from 21

vendors covering Android 4.4 to Android 8.0. In this section, I discuss the findings for the

number of concrete process crashes, system crashes on specific Android devices, instances of

privilege escalation, and data disclosure on the tested devices.6 Seventy two percent (72%)

of the tested devices contained at least one system crash vulnerability. I tested all of the

pre-installed apps present on the 32 Android devices. Table 8.3 provides the total number of

process and system crashes on the tested devices. Daze triggered 4,972 unique app crashes

and 64 unique system crashes across all devices, taking about three hours on average to scan

an entire device.

I attributed each of the vulnerabilities discovered in the tested devices to either vendor

apps or AOSP apps (see Table 8.3; ratios are plotted in Figure 8.3).7 I identified AOSP

apps by recording the package names of the apps present in AOSP builds for smartphones,

tablets, and Android TV. I attributed a fault to an AOSP app if it occurred within an app

in the AOSP apps list. For attributing system crashes, I manually examined the stack trace

6All findings have been responsibly disclosed to Google and affected vendors prior to the publication of
this dissertation.

7I made no distinction between GApps (i.e., Google apps) and AOSP apps in this study.
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Figure 8.3: Attribution of device vulnerabilities to AOSP or vendor customization.

and checked whether it occurred in AOSP or vendor code by examining AOSP source code.

8.3.1 App Crashes

I discovered that more than 50% of fatal exceptions were present in AOSP apps. Amazon

devices were an exception since Amazon maintains its own Android version, called Fire OS,
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Table 8.1: Processes with the highest number of crashes during testing.
Process Name # of Crashes
com.google.android.gms.ui 1011
com.android.settings 611
com.android.phone 572
com.google.android.setupwizard 228
com.android.contacts 111
com.google.android.gms 104
com.google.android.gms.persistent 94
com.android.mms 84
com.android.cts.priv.ctsshim 84
com.google.android.gm 81
com.android.bluetooth 67
android.process.media 66

which primarily uses Amazon’s own apps instead of GApps [248]. For the Google Pixel

device, I consider all apps on the device to be AOSP/GApps. Table 8.1 shows the top 12

crashed processes across all devices. These were either Google or AOSP processes, with

Google com.google.android.gms.ui (a process within the Google Play Services app) topping

the list with a total of 1,011 crashes. A particularly important process, com.android.phone,

is surprisingly vulnerable to being crashed by an external app with 572 crashes. A crash of

the com.android.phone process can deny telephony functionalities, including the ability to

receive or make calls, which can have dire consequences in times of emergency. There were,

on average, 17.87 vulnerable components on each device that crashed the com.android.phone

process. These ranged from the Google Pixel running Android 8.0 with two vulnerable

components to the Yuntab running Android 4.4.2 with a total of 54 distinct components

or broadcast actions to crash the com.android.phone process. The com.android.bluetooth

process has the 11th most crashes, with 67. Launching continual DoS attacks using intents

can restrict the user’s access to wireless communication capabilities on the device, or hinder

the usability of the device by causing an app crash-loop.
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8.3.2 System Crashes

For each system crash that Daze uncovered, I investigated the cause to attribute it to

either AOSP code or vendor code. All of the devices were running the most recent Android

versions available to them at the time of testing. The majority of system crashes were

caused by vendor modifications (62.5%). If the system crashes from Samsung were excluded,

AOSP code would be responsible for 85% of the system crashes. Vendor modification was

responsible for system crashes in three component types: broadcast receiver (34 crashes),

service (1 crash), and content provider (1 crash). AOSP code was responsible for crashes

in two component types: activity (22 crashes) and broadcast receiver (6 crashes). This

breakdown is provided in Table 8.2. All of the reported system crashes were triggered by a

zero-permission third-party app.

Table 8.2: Discovered components by type that will trigger a system crash DoS vulnerability
in common Android devices.

Type System Crash Instances Cause
Receiver 34 Vendor
Activity 22 AOSP
Receiver 6 AOSP
Service 1 Vendor
Provider 1 Vendor

Implementation errors in AOSP code are particularly based on their ubiquitous nature

due to code inheritance. I tested all 27 factory builds for Nexus 5 and discovered two

app components that did not properly perform null-checking before operating on data.

I discovered that all AOSP 5.1 to 6.0.1 builds contain a vulnerable activity, named com.

android.internal.app.IntentForwarderActivity, in the android package that crashes the

system when the Intent contains a null action string. In addition, I discovered that all Nexus

5 AOSP 6.0.1 builds contain a vulnerable broadcast receiver that will crash the system when

receiving a broadcast intent with an action of android.net.conn.CONNECTIVITY_CHANGE_SUPL

and an empty body. These two components are explained in more detail in Section 8.5.
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Table 8.3: Unique app and system crashes per device. Æ indicates the vulnerability was
introduced by the vendor. ð indicates it was introduced by AOSP.

Device
OS

Ver-
sion

App

Crashes

Sys

Crashes

Æ ð Æ ð
Alcatel A30 7.0 66 146 0 0

Alcatel A30 Plus 7.0 77 135 0 0

Amazon Fire 7.0 Inch Tablet 5.1.1 66 34 0 1

Amazon Fire TV Stick 2 5.1 18 2 0 1

BLU Advance 5.0 5.1 41 76 0 1

BLU Grand M 6.0 36 94 0 1

BLU Grand XL 7.0 34 135 0 0

BLU R1 HD 6.0 43 139 1 1

Cubot X16S 6.0 66 113 0 1

Doogee X5 6.0 59 102 0 1

Figo Atrium 5.5 5.1 37 90 1 1

Figo Virtue 4.0 6.0 33 133 0 1

Google Pixel 8.0 0 137 0 0

Juning TV Box 5.1.1 22 78 2 1

Juning Z8 5.1.1 69 102 0 1

Kata C2 6.0 75 125 0 1

Leagoo Z5C 6.0 13 88 0 1

LG Phoenix 2 6.0 112 160 1 0

NPOLE Tablet 5.1.1 14 35 0 1

Nvidia Shield Android TV 7.0 39 74 0 1

Plum Axe Plus 2 6.0 51 125 0 1

Plum Compass 6.0 21 84 0 1

RCA Q1 6.0 55 117 0 1

RCA Voyager Tablet 2 5.0 28 121 1 0

Samsung Galaxy S5 6.0.1 57 145 14 1

Samsung Galaxy S6 Edge 6.0.1 98 98 17 1

Samsung S8+ 7.0 45 70 0 0

Sony Bravia Android TV 6.0.1 86 65 0 2

Ulefone Power 2.0 7.0 43 128 0 0

Xiaomi Redmi 4 6.0.1 100 82 0 2

Yuntab 4.4.2 92 145 0 0

ZTE Maven 2 6.0.1 74 124 1 2

TOTAL 1,670 3,302 26 38

These vulnerabilities have been propagated to the vendors’ implementations of Android as

shown in Table 8.3.
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Of all the devices I tested, Samsung contained the most exposed interfaces that can be

used to make the device encounter a failure state via a system crash. I initially reported

to Samsung that the Samsung Galaxy S6 Edge (AT&T) running Android 6.0.1 with a

build number of MMB29K.G925AUCS5DPK5 contained 18 different vulnerable components. I

received 6 Samsung Vulnerabilities and Exposures (SVEs) for vulnerabilities discovered

using Daze. I sent another disclosure to Samsung for the Samsung Galaxy S8+ running

Android 7.0 with a build number of NRD90M.G955USQU1AQD9 containing 7 vulnerable broadcast

receivers. Samsung fixed all the vulnerable components in their current Android devices.

This is particularly relevant since Samsung Android devices were also disclosing user data

during a system crash as discussed in Section 8.3.4 and also held the greatest global market

share of smartphones in Q3 2017 [249]. Interestingly, despite null-checks present in content

providers, Daze crashed Juning TV running Android 5.1.1 with a null pointer exception in

the HdmiControlService$SettingsObserver class of the com.android.server.hdmi package.

I discovered that various components on the tested devices could be used for privilege

escalation in the form of a confused deputy attack [250]. This occurs when a process uses the

exposed interface of a privileged process to perform an action on its behalf. The confused

deputy attack is well-known on Android and research has been conducted to mitigate its

impact [148,251,252]. My findings show that this issue still persists in Android on a range

of devices.

The Android OS will export an app component in certain circumstances even if this is

not what the developer has intended. Correspondingly, even if an app component does not

have the android:exported attribute set to true, the OS will still export the component if

it contains at least one Intent-filter. An intent-filter is used by an app component to

register for action(s) that it expects to receive. An exported component will be accessible

to all external apps if the component does not use the android:permission attribute in

its manifest file. The android:permission attribute creates an access requirement that

only allows processes with the specified permission to interact with the app component.

Android app developers have a tendency to unintentionally export app components, which
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makes them accessible to third-party apps [158]. Exported components can lead to privilege

escalation and local DoS attacks [148,253].

8.3.3 Privilege Escalation

Of particular concern are devices that can be “factory reset” simply by sending an Intent,

a capability that is supposed to be reserved for system apps and enabled Mobile Device

Management (MDM) apps. A factory reset will wipe all user data. The most severe privilege

escalation I noticed occurred in the MXQ TV Box, which has an exported broadcast

receiver named SystemRestoreReceiver that when called will “brick” the device, making it

nonfunctional even after a factory reset. This component modifies the system partition so

that the device will not boot properly. Table 8.4 displays my findings showing the device,

Android version, and the capability obtained by sending an Intent.

Table 8.4: Discovered privilege escalation vulnerabilities in common Android devices and
Android OS versions.

Device OS Build ID Privilege Escalation Action
Alcatel A30 7.0 NRD90M Take screenshot
Alcatel A30 Plus 7.0 NRD90M Take screenshot
Amazon Fire TV Stick 2nd Gen. 5.1 LMY47O Enable/disable Wi-Fi
BLU Grand XL 7.0 NRD90M Device shutdown
Doogee X5 6.0 MRA58K Video record screen
Juning TV Box 5.1.1 LMY49F Take screenshot
Leagoo Z5C 6.0 MRA58K Factory reset
LG Phoenix 2 6.0 MRA58K Device shutdown
MXQ TV Box 4.4.2 KOT49H Factory reset; brick the device
Plum Compass 6.0 MRA58K Factory reset
Samsung S6 Edge (AT&T) 6.0.1 MMB29K Forget Wi-Fi networks; device shutdown
Ulefone Power 2 7.0 NRD90M Device shutdown; kill foreground app
Xiaomi Redmi 4 6.0.1 MMB29M Take screenshot; leak bug report

Certain components can cause data leakage when receiving an Intent. For example, via

an Intent with only an action string, the Xiaomi Redmi 4 device will dump the text of active

notifications and logcat log into a bug report on external storage. The Xiaomi Redmi 4

device and three other devices contained an open interface to a privileged process that will
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take a screenshot and write it to external storage when it receives an Intent with a specific

action string. Obtaining the contents of the screen is regarded as sensitive and not granted

to third-party apps. Using this vulnerability, a malicious app can, for example, send an

Intent to open a messaging app or an email app, then take a screenshot and dismiss the app

by sending an Intent requesting the home screen. If needed, the malicious app can cause a

system reboot to remove any notifications that a screenshot was taken.

8.3.4 Data Disclosure

A system crash is an exceptional event since a fatal error occurs within a critical Android

OS process. Vendors may be interested in recording the cause so it can be identified and

fixed in future releases. Certain vendors record the logcat log and write it to a file during or

after a system crash. Information such as unique device identifiers, the user’s email address,

phone number, Global Positioning System (GPS) coordinates, the body of text messages,

and sensitive log messages from other apps can be present in the logcat log [23]. A system

crash can result in an information leak of sensitive data if the log file is not adequately

protected. Therefore, any app on a vulnerable device can deliberately cause a system crash

to obtain and process the log file for sensitive user data.

I discovered that Samsung devices running Android 5.0 to 7.0 create a world-readable

file that contains the kernel log and logcat log whenever a system crash occurs.8 Samsung

introduced a special system process called bootchecker to ease the collection of needed

debugging information after a system crash. However, bootchecker failed at setting the

proper file permissions of the file in which it collects the logs, leaving it world-readable to

any app on the device. Some Android devices with a MediaTek chipset have a modified

debuggerd binary and non-AOSP system binaries such as aee_dumpstate and aee_archive.

The debuggerd process sets the signal handlers for each process and will obtain debugging

information by attaching to the process before it terminates. When a system crash occurs,

it will attach to the system_server process. The system_server process is a critical system

8More information about the vulnerability can be found here: https://nvd.nist.gov/vuln/detail/CVE-
2017-7978.
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process that provides services to apps. On certain devices with a MediaTek chipset, it will

write a world-readable archive file containing the logcat log, the kernel log, and various

other logs to the /data/aee_exp directory or to the /sdcard/mtklog/aee_exp directory. The

generated archive file is password protected, but the password was hard-coded in the

debuggerd binary as X4rLa8f3. Examples of vendors that exhibited this behavior are BLU,

RCA, Kata, Yuntab, Ulefone, and Figo. The two information disclosure vulnerabilities I

discovered and reported have been fixed by Samsung and MediaTek.

8.4 Google Play Testing

Google Play is the official app distribution channel for the Android platform, facilitating the

installation of apps. To determine the prevalence of inadequate exception handling during

inter-app communication within Android apps, I tested a representative sample of 18,583

free Android apps from Google Play. These apps were the most popular apps from each app

category on Google Play that were downloaded once every four weeks between March 2016

and April 2017. The 18,583 apps comprised 4,972 unique package names, each of which

had four different versions on average (rounded up). Figure 8.4 shows the distribution of
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apps in the dataset grouped by unique package name (apps with multiple versions were

counted once). I also separately tested the top 300 most popular free apps on Google Play

to determine the exposure of the apps that have the largest number of users. The top 300

apps were downloaded on November 27, 2017.

Daze tested 18,583 apps and discovered that 34.7% of the apps (6,463) in the sample

could be crashed externally by a zero-permission Android app co-located on the device.

Daze found a total of 14,413 fatal exceptions covering 53 types of exceptions. Table 8.5

presents a count of all fatal exceptions by type. The most common exception encountered

during testing was NullPointerException with 10,862 instances, accounting for 75.3% of

all fatal exceptions. During testing, Daze leaves various intent fields set to null, causing

a receiving process to crash if it does not perform proper null-checking. The next most

common reason for fatal exceptions (7.5%) was the failure of the developer to implement

a particular class (ClassNotFoundException and NoClassDefFoundError), which causes an

uncaught exception when the class loader fails to find the class. This is generally caused by

an app component that was registered in the app’s manifest, but it was not implemented

in the app’s code. The third most common reason is that the developer failed to call the

appropriate superclass method when executing an app component life-cycle method, resulting

in a SuperNotCalledException, occurring 650 times (4.5%). The 126 instances (0.8%) of

SecurityException were due to apps performing permission-protected functionality without

the corresponding permission.

Components form the skeleton of an Android app where the developers implement

components to perform specific functions. Table 8.6 presents the aggregate number of

crashes by component type and the corresponding ratio of externally crashable components

to the total number of exported components. Activity components were the most numerous

and also the most vulnerable (12.0%) to fatal exceptions. Content providers were the least

vulnerable (2.2%). The 18,583 apps had a total of 143,790 total exported components with

14,413 app components being vulnerable (10.0%) to having an external app crash the process

containing the vulnerable component.
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Table 8.5: Exceptions in the 18K apps dataset.
Exception Name Freq.
java.lang.NullPointerException 10,862
android.util.SuperNotCalledException 650
java.lang.ClassNotFoundException 583
java.lang.NoClassDefFoundError 492
java.lang.IllegalArgumentException 322
java.lang.RuntimeException 252
java.lang.IllegalStateException 211
java.lang.IndexOutOfBoundsException 161
java.lang.UnsatisfiedLinkError 140
java.lang.SecurityException 126
java.lang.ClassCastException 83
content provider crash 82
android.content.res.Resources$NotFoundException 63
java.lang.NumberFormatException 52
java.lang.InternalError 46
java.lang.UnsupportedOperationException 42
android.content.ActivityNotFoundException 35
android.view.WindowManager$BadTokenException 29
java.lang.ArrayIndexOutOfBoundsException 24
android.database.CursorIndexOutOfBoundsException 24
android.database.sqlite.SQLiteException 16
java.lang.InstantiationException 15
java.lang.NoSuchFieldError 14
java.lang.StringIndexOutOfBoundsException 12
android.util.AndroidRuntimeException 10
java.lang.AssertionError 9
android.content.ReceiverCallNotAllowedException 8
java.security.InvalidParameterException 7
android.view.InflateException 5
java.lang.NoSuchMethodError 4
java.lang.IllegalAccessException 4
java.util.MissingFormatArgumentException 3
java.io.FileNotFoundException 3
android.view.ViewRootImpl$CalledFromWrongThreadException 3
signal 6 (SIGABRT) 2
java.lang.AbstractMethodError 2
android.runtime.JavaProxyThrowable 2
java.lang.ExceptionInInitializerError 2
signal 11 (SIGSEGV) 1
org.json.JSONException 1
java.lang.VerifyError 1
java.lang.NoSuchFieldException 1
java.lang.IncompatibleClassChangeError 1
java.lang.IllegalAccessError 1
java.lang.Exception 1
java.lang.ArithmeticException 1
android.support.v4.app.SuperNotCalledException 1
android.database.sqlite.SQLiteCantOpenDatabaseException 1
android.content.pm.PackageManager$NameNotFoundException 1
android.app.RemoteServiceException 1
android.app.Fragment$InstantiationException 1
TOTAL 14,413
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Table 8.6: Breakdown of the number of vulnerable components for the Google Play study.
Type #Exported #Vulnerable %Vulnerable
Activity 62328 7483 12.0
Static Receiver 50453 4625 9.2
Dynamic Receiver 16041 1449 9.0
Provider 3749 82 2.2
Service 11219 774 6.9
TOTAL 143790 14413 10.0

To my knowledge, Daze is the only system that tests dynamically registered broadcast

receivers. Of the 14,413 fatal exceptions Daze identified, 1,449 were due to a dynamically

registered broadcast receivers registered by a component. Certain dynamically registered

broadcast receivers register for actions that can only be sent by the Android OS itself, which

Daze is not able to send.

8.4.1 Apps Dataset Fidelity

The reported exposure measurements for the 18k dataset might be conservative (under-

approximations) in some cases due to potentially missing versions of apps that were updated

outside the market sampling interval. Compared to the version updates history on AppBrain,

I found that 119 apps had two to three missing updates between the last vulnerable version

and the fixed version in the dataset.9 This may lead to under-approximation of the number

of consecutively vulnerable versions and the exposure time window if any of these missing

versions are still vulnerable. Though I was unable to find download links for these missing

versions, these 119 apps comprised about 30% of fixed vulnerabilities that persisted in a

single app version in the dataset (total 50% of all fixed vulnerabilities existed in a single app

version; see Figure 8.6). If I assume an equal probability that one of the missing versions

were still vulnerable, it would drop the percentage of fixed vulnerabilities existing in only

one app version from 56% to around 26%, and the difference would be redistributed over

vulnerabilities that existed in two and three consecutively vulnerable versions.

9AppBrain can be accessed at: https://www.appbrain.com.
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8.4.2 Longitudinal Vulnerability Analysis

I examined all apps that had between three and eight (inclusive) different versions with

the same package name — a total of 1,451 package names comprising 5,491 app versions. I

determined, in each version of an app, whether identified exceptions were introduced in that

version or inherited from the previous version of the app. I consider all exceptions found in

the first version (lowest version code) of an app to be introduced in this version. Note that

results reported in this section are conservative (see Section 8.4.1).

I considered a recurring exception to be a specific exception introduced in a particular

version of an app that propagates to a subsequent version. Within the 5,491 apps subset,

Daze discovered 6,427 fatal exceptions. Of these exceptions, 2,706 were unique and the

remaining were recurrences of the same exception in different versions of the same app. I

found that the majority of the exceptions were inherited from previous app versions instead

of being newly introduced as shown in Figure 8.5. Of all apps with at least three versions in

the sample, 2,085 apps (37.9%) contained at least one recurring exception and 1,008 apps

(18.3%) contained at least one fatal exception that was non-recurring. There were 1,580

apps (28.7%) in the sample that contained the same exception recurring through all versions
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(covering 419 apps with 1,580 different versions).

I categorized the 2,706 exceptions into those that had been fixed (1,241) and those that

were still vulnerable (1,465 as of the last app versions available in the sample). Figure 8.6

illustrates the number of consecutive versions a vulnerability persisted through in the dataset.

Around 40% of the vulnerabilities were present in a single version and then fixed in the

subsequent version of an app. An open vulnerability is a vulnerability that is still present in

the last version (most recent) of an app contained in the sample. More than 50% of the

open vulnerabilities persisted in at least the latest two app versions in the sample and about

10% of vulnerabilities persisted without patching through at least the latest four versions of

the same app. Interestingly, 16% of the vulnerabilities were introduced in the last version of

apps in the sample (about 30% of open vulnerabilities).
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Figure 8.6: Distribution of the exposure window in terms of the number of consecutively
vulnerable versions to fixed and open vulnerabilities (till April 2017).

I also examined the exposure window of vulnerabilities with respect to time. I used

AppBrain to determine when an app version was updated on Google Play. AppBrain did
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not contain data for all versions, so in those cases I relied on the date I downloaded the app.

The exposure window started when a vulnerable app version was uploaded to Google Play.

Certain apps that were infrequently updated increased the size of the exposure window since

the available app version at the time of downloading may have been uploaded prior to the

beginning of the collection period. For fixed vulnerabilities, the time window ended when

the vulnerability was first fixed in a subsequent app version contained within the sample.

For open vulnerabilities, I conservatively assumed that the vulnerability would be fixed in

the version released after the last version in the sample. If the last vulnerable version in the

sample was the current version on Google Play, I set the end date of the exposure window

to December 10, 2017.
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Figure 8.7: Distribution of the exposure time of fixed and open vulnerabilities (till April
2017).

Figure 8.7 provides the exposure window of fixed and open vulnerabilities in days. About

35% of the vulnerabilities were fixed with a subsequent update occurring within 60 days, and

about 15% of the vulnerabilities persisted for 60 to 600 days before being fixed. More than

30% of the vulnerabilities remained unpatched for 60 or more days in the sample, about

159



30% of these have been unpatched for more than 100 days, and 5% remained unpatched for

more than 360 days (about 15% of the open vulnerabilities).

8.4.3 Top 300 Most Popular Android Apps

The top 300 free apps on Google Play are the most widely used apps available to Android

devices with some apps having billions of installations. One might presume that the top 300

apps would be more carefully coded to be resilient to inter-app vulnerabilities due to their

popularity and user base from which to obtain feedback. Daze tested the top 300 free apps

and found that 149 of the 300 apps (49.6%) contained at least one vulnerable component

that could be crashed externally. There were a total of 310 fatal exceptions in the 300 most

popular apps on Google Play. Table 8.7 provides all the fatal exceptions in the 300-app

sample ranked by the number of occurrences. The top 300 apps have a higher ratio of apps

contain at least on vulnerable component than the 18,583 app sample (34.7%). This is likely

because the top 300 free apps have a higher average number of exported app components

(14.84) than the 18,583 app sample (7.75). The larger attack surface due to a higher average

Table 8.7: Exceptions in the top 300 Google Play apps.
Exception Name Frequency
java.lang.NullPointerException 237
java.lang.ClassNotFoundException 44
java.lang.IllegalArgumentException 5
java.lang.ClassCastException 5
java.lang.IllegalStateException 4
java.lang.RuntimeException 4
android.util.SuperNotCalledException 3
java.lang.SecurityException 2
org.xmlpull.v1.XmlPullParserException 1
Signal 11 (SIGSEGV) 1
java.lang.UnsatisfiedLinkError 1
java.io.FileNotFoundException 1
android.view.InflateException 1
android.os.FileUriExposedException 1
TOTAL 310
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number of exported components in the top 300 free apps may result in additional chances

for developer error. The larger number of components to be tested also affected the time to

test each app for the two samples as discussed in Section 8.4.4.

The most popular app (as of November 30, 2017) named Rules Of Survival (com.netease.

chiji, version code 221929) had five fatal exceptions. Two components (PushServiceReceiver

and PushService) encountered a SecurityException when creating a shared preferences file

with a mode of MODE_WORLD_READABLE. This is an issue with Android version compatibility

since the API call that threw the exception has behavior dependent on the Android version of

the device in which it runs. It is also a security issue since the shared preferences file the app

tries to create is world-readable and may contain sensitive data. Google Photos (com.google

.android.apps.photos, version code 1992480) contained four fatal NullPointerException

exceptions. In the top 300 apps, there were 43 instances of ClassNotFoundException

due to not implementing a particular class. This occurred in 32 apps (10.7% of the

sample) with AdVenture Capitalist (com.kongregate.mobile.adventurecapitalist, version

code 2040016345) encountering the ClassNotFoundException five times.

8.4.4 Performance Overhead

The primary factor influencing the amount of time Daze takes to test an app is the number

of exported components that it contains. Android apps have a wide variance with regard

to complexity and the number of interfaces it exposes externally. Basic apps can contain a

single exported activity component, whereas more complex apps can contain hundreds of

components. The number of dynamically registered broadcast components also increases

overhead since each will be tested. The average time to test an individual app for the 18,583

app sample was 76.5 seconds, whereas the average time to test an app in the top 300 free

app sample was 126.1 seconds. The apps in the top 300 free apps on Google Play had 14.84

exported components per app on average and the 18,583 had an average of 7.75 exported

components per app. Figure 8.8 shows the analysis time for the two samples. The 18,583

app sample contained outliers that were due to apps with numerous components to test and
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Figure 8.8: Analysis time statistics of the 18K apps and the top 300 apps datasets.

retest. There were more than 101 apps that contained 60 or more exported components.

Some of the apps in the both samples trigger the system to kill background processes to free

up resources, collaterally terminating Daze and causing it to incur delays in retesting the

component to attribute this behavior to the responsible component.

I have witnessed some cases where testing an app component will result in the analysis

app getting killed. If this happens five times, the component is skipped. Skipping of an app

component is fairly uncommon except with content providers that crash during testing. Of

143,790 tested components in the 18,583 apps, only 105 components needed to be skipped

due to the analysis app being terminated. I manually examined the logs to determine the

cause of the Daze being terminated. This was due to crashing content providers, apps

killing background processes, and apps creating the conditions necessary to activate the Low

Memory Killer module which terminates processes to free memory.

There may be additional faults in the components exported by the system_server process

that can be found by additional fuzzing of the inputs in intent objects. This analysis can

be extended to provide a more complete analysis using static analysis to determine the key

names and value types stored in intents to provide aid with the fuzzing of inputs. Daze

can be configured to propagate content provider faults into calling apps by exporting a

content provider that throws a null pointer exception when queried. Therefore, if the SQLite
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operation on the client app side is not caught (i.e., not within a try-catch block), the client

app will itself crash.

8.5 Testing the Stability of AOSP Builds

To determine the robustness of AOSP builds and, by extension, the vendors that modify them,

I tested all available AOSP factory images (i.e., builds) for the Nexus 5 and Nexus Player

devices.10 The 27 builds for the Nexus 5 ranged from Android 4.4 (KRT16M) to Android

6.0.1 (M4B30Z). I installed each available firmware for Nexus 5, and used Daze to determine

the exposed interfaces of the core Android package (i.e., system_server). According to

Google’s Android Dashboards, as of November 2017, 51.7% of all Android devices (i.e.,

5.1 to pre-7.0) contain a core component that allows any app co-located on the device to

quickly crash the system by sending a single intent message.11 Although some of these

vulnerabilities have been fixed in later Android releases, a majority of current Android

devices are vulnerable due to the Android fragmentation problem [75,76].

8.5.1 Faults in Android 5.1 to 6.0.1 (Smartphones)

I discovered that the activity IntentForwarderActivity in the com.android.internal.app

package of the system_server process can crash the system in all Android versions from 5.1

to versions prior to 7.0 (20 builds in total for the Nexus 5). This occurs since the component

blindly operates on the action string from the intent without null checking, which causes an

uncaught exception by calling the equals method on a null string reference.

I discovered that all 13 AOSP 6.0.1 builds for Nexus 5 were vulnerable to a system crash

when an app broadcasts an Intent for the action android.net.conn.CONNECTIVITY_CHANGE_SUPL

without supplying any embedded data in the Intent. The root issue resides in the

10Factory images for Nexus devices can be downloaded from: https://developers.google.com/android/
images.

11Google Dashboards can be accessed at: https://developer.android.com/about/dashboards/index.

html.
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GpsLocationProvider class in system_server, which dynamically registers a broadcast re-

ceiver that assumes every broadcast intent it receives will not contain a null Bundle object,

resulting in a null pointer exception when it tries to handle an intent with no data. The vul-

nerable broadcast receiver is dynamically registered in the GpsLocationProvider constructor

and an object of this type will be created in the LocationManagerService.

Table 8.8: Broadcast actions causing a system crash for AOSP Android TV.

Broadcast Action

Vulnerable

TV Version

5.x 6.x 7.0 8.0

android.bluetooth.input.profile.action.HANDSHAKE • •

android.bluetooth.input.profile.action.REPORT • •

android.intent.action.SIM STATE CHANGED •

android.intent.action.EMERGENCY CALLBACK MODE CHANGED • •

8.5.2 Faults in Android 5.0 to 8.0 (Android TV)

Daze tested all 31 AOSP factory images for the Asus Nexus Player device to determine the

prevalence of vulnerable system components within the Android TV device. I discovered that

each of the 31 factory images from Android 5.0 (LRX21M) to 8.0 (OPR6.170623.021) had at

least one vulnerable broadcast receiver. The results are presented in Table 8.8. The primary

cause of the system crashes in Android TV were inadequate input validation and error

handling for Bluetooth and telephony-related intents. The Bluetooth-related Intents caused

uncaught exceptions in the RemoteControlService class due to inadequate null-checking and

the assumption a Bundle will be not be null in the received intent. All the Android TV

devices I tested (i.e., Sony Bravia XBR-43X830C, Nexus Player, and Nvidia Shield) would

crash when certain Bluetooth or telephony-related broadcast Intents were sent without an

embedded Bundle object.
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I examined the AOSP code and found that system_server had registered broadcast

receivers to listen for specific telephony-related broadcast Intents, even though the device

does not have telephony capabilities. Generally, the phone app (com.android.phone) uses

the protected-broadcast tag in its manifest file so that only the system can send these

telephony-related Intents. Since the phone app is not installed on Android TV devices

starting with Android 6.0, a third-party app can send these broadcast Intents and cause

system_server, and thus the device, to crash. Android TV devices usually lack safe mode,

so a persistent local DoS attack against system_server can result in the user having to

perform a factory reset to recover the device if ADB was not enabled prior to the DoS attack,

possibly resulting in data loss.

8.5.3 Generic Android DoS Attack

Certain Android devices will not have exposed system components that allow a single

intent to crash the system. I discovered a novel approach to trigger a controlled boot

loop attack on Android by making the system_server process in the Android OS encounter

an OutOfMemoryError condition, leading to a system restart. This is accomplished by a

zero-permission app repeatedly using a specific API method call where a parameter to the

method call will end up being stored on the heap of the system_server process. When a

process is started in Android, including system_server, it is allocated a fixed maximum

heap size. Once system_server allocates all of its heap memory, it will eventually crash if it

cannot free any additional memory.

Apps can dynamically register a broadcast receiver by providing an object that in-

herits from the BroadcastReceiver class and an IntentFilter object that contains one

or more action strings. The system_server process manages all app components in the

ActivityManagerService class. When an action string is provided during broadcast receiver

registration, it is stored in a variable that can hold an arbitrary amount of data (a HashSet

instance variable named mfilters in the IntentResolver class). Therefore, the app can

provide large strings to be stored on the heap of the system_server process to exhaust its
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memory, consequentially causing a system crash. The app registers broadcast receivers

that have an IntentFilter with a unique action string containing 55,405 characters and

a integer value that is incremented and appended to the end of the string to ensure the

action is unique. The registration of broadcast receivers is quickly repeated and eventually

the system_server process throws an OutOfMemoryError as it tries to allocate more memory

while aggressively performing garbage collection.

Most of the OutOfMemoryErrors that repeatedly occur will be caught by the underlying

Binder implementation. Binder is part of the Android architecture that enables IPC via

a kernel module. Once the heap memory of system_server is exhausted, the app can wait

for an uncaught error to occur or perform additional action(s) to facilitate an uncaught

exception, such as starting a large number of activities using the startActivities(Intent[])

API method call. An app can determine the maximum heap size for apps by obtaining

the value for the dalvik.vm.heapsize system property. system_server will generally have

a maximum heap size of either 256 MB or 512 MB. Although the current heap size of

system_server varies depending on its current workload, the maximum heap size multiplied

by a factor of 17.7 generally yields the appropriate number of actions to register to exhaust

its heap.

8.5.4 Comparison to Prior Work

It has been shown that vendor customization can introduce vulnerabilities via their pre-

installed apps [254], hanging attribute references [255], and device driver customization [256].

Previous studies have found that apps and ad libraries tend to be over-privileged, with more

unneeded permissions often added to updates without regard to the increased risk these

permissions pose [257–259].

Previous approaches that generated reproducible crash test-cases have relied on two

methods to obtain the statically registered app components: parsing the apps’ manifest

directly [253,260–262] or relying on the OS package manager [263,264]. Unfortunately, these

approaches inherently suffer from poor inter-app coverage as they overlook dynamically
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registered components in apps and those declared by the Android OS. As shown in Section 8.3,

more than 62% of system crash DoS vulnerabilities detected by Daze in the 32 devices resided

in dynamically-registered components. Sasnauskas et al. [253] compared null-intent fuzzing

to data fuzzing of intents and discovered that data fuzzing only yielded a 1% increase in

code coverage in their evaluation. Ye et al. [260] focused exclusively on fuzzing the category,

data, and action fields of activity components. Yang et al. [265] created a system to detect

privilege escalation events. This approach overcomes key limitations of the other approaches

for null-intent testing in regard to completeness (covering all types of app components),

automation (e.g., clearing the crash dialogue and restarting the app), and settings and file

system monitoring. Maji et al. [263] proposed a semi-manual approach to test exported app

activities on three specific versions of Android.

Recently, Garcia et al. [262] created LetterBomb to detect inter-app vulnerabilities.

They used complex backward data-flow analysis algorithms to discover DoS vulnerabilities

due to missing null-checks when accessing intent fields, then dynamically generated Intents

to see if the discovered vulnerabilities were indeed exploitable. They tested 10,000 apps and

discovered only 104 exploitable DoS vulnerabilities, taking three minutes per app on average.

Similarly, Hay et al. [266] proposed IntentDroid as a full data-fuzzing approach to detect

inter-app vulnerabilities. IntentDroid identified 31 intent-related DoS vulnerabilities in 55

apps among the top-rated apps on Google Play in 2014, taking an average of 25 minutes

per app. The work in [262] also compared LetterBomb to IntentDroid and found that

IntentDroid detected only two thirds of the DoS vulnerabilities detected by LetterBomb in

a sample of 40 apps. In contrast, Daze detected 219 vulnerabilities for the oldest versions in

the dataset for the same 55 vulnerable apps reported in [266] compared to only 108 detected

by IntentDroid (presuming IntentDroid successfully detected all Java and native crashes in

Table 1 in [266]).

Although I did not measure code coverage during testing (mainly since collecting coverage

metrics from stock firmware images and apps requires tampering with their packaged code

and resigning them, which could influence the outcomes of the study), I argue that the
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main difficulty of inter-app data-fuzzing on Android is that Android enforces type-safety

on Intent fields by returning a null-like value when a field is accessed using the wrong

value type. This type-safe access means that data-fuzzing approaches must use only correct

value types in order to achieve any meaningful coverage beyond null-fuzzing. However, the

overhead incurred by data-fuzzing prohibits large-scale vetting due to the large input space

and complex algorithms involved. Daze differs from these solutions in that it approaches the

problem directly by null-fuzzing exported components, allowing it to discover significantly

more vulnerabilities in significantly less time: 14,413 exploitable vulnerabilities in 18,583

apps, taking two minutes per app on average.

8.5.5 Summary

I presented Daze, an automated system to identify fatal exceptions within Android apps

and the Android OS. Using Daze, I discovered that more than 50% of the current Android

devices are vulnerable to a persistent system crash DoS attack, enabled by inadequate

exception handling in the Android base code. Daze created reproducible test cases for more

than 20,000 fatal errors within the three datasets spanning 13 months across 59 versions of

AOSP from the smartphone to Android TV distributions. Furthermore, the longitudinal

analysis quantified the exposure period of fatal exceptions in consecutive versions of apps.

The results showed that the majority of fatal exceptions in an app were inherited from the

previous app version, and 20% of unpatched vulnerabilities existed more than 100 days.

Moreover, 10% of app components tested were susceptible to attacks, causing fatal crashes

by an external app. Beyond DoS attacks, I discovered that system crashes facilitated data

disclosure vulnerabilities on certain popular Android devices. Lastly, I presented a novel

and universal attack to force any Android device to encounter a system crash by exhausting

its heap memory using standard APIs from a zero-permission app.
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Chapter 9: Conclusion and Future Work

This dissertation introduced a novel program analysis technique for the Android platform,

Forced-Path Execution (FPE), and investigated the effects of failure states stemming from

various DoS attacks against the Android OS and apps. These research areas aim to make

the Android ecosystem more secure by focusing on two primary features of the Android:

apps and the OS. Android apps provide a rich user experience, although they can also

be malicious or unintentionally insecure. The potential consequences are more severe for

pre-installed apps due to their privileged position on the device. Some potential undesirable

behaviors range from leaking PII to unintentionally exposing capabilities to other processes.

To simultaneously investigate the possible states of the program under numerous execution

environments, I developed the FPE framework for Android.

Although I used Android as an exemplar, the methodology underlying FPE can be

applied to different programming languages and contexts. FPE provides benefit by exploring

program states that may be difficult to reach using other program analysis techniques.

Different execution strategies can be used to limit the amount of forcing through constraints,

allowing activities ranging from exploration to verification. Pairing FPE with taint analysis

can discover interesting data flows within apps, especially pre-installed apps. In addition, to

simply theoretical and contrived apps, I used FPE on a set of real world pre-installed apps

from a number of Android firmware images.

I displayed the extensibility of the FPE framework by including a module for data flow

analysis that allows for different execution modes to limit the exploration of conditional

statements and for discovering vulnerabilities where an attacker can provide untrusted input

to a third-party app or pre-installed app for privilege escalation. I highlight the risks of

insecure pre-installed apps due to their extensive capabilities in the system through my

independent research referenced in this dissertation.
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I developed various DoS attacks for Android, investigated their consequences, and

implemented defenses for the attacks I discovered. Although DoS attacks may appear

crude and rudimentary, I refined the DoS attacks so that they resulted in devastating

effects on certain embedded Android devices. I studied these attacks and their effects on a

multitude of Android devices and platforms. These effects resulting from the attacks ranged

from temporarily reducing the availability of the device to making certain Android-based

devices permanently unusable. These DoS attacks were reported to Google and resulted in

modifications to AOSP source code. In addition, some of the bugs were marked as infeasible

to fix.

I discovered an attack where a third-party app indirectly affect separate third-party

apps by selectively killing them while solely using IPC behavior that does not require any

permissions and is available to all apps. By exploring failure states of the system processes,

I discovered two universal DoS attacks that can cause a system crash in Android. I also

gained various insights on inter-app vulnerabilities by performing a Google Play longitudinal

app study over multiple app versions and discovered thousands of inter-app vulnerabilities

and dozens of system crashes among a range of vendors.

In conclusion, my research from these two research branches will ideally provide insights

and potential research directions for current and future Android researchers. As Android is

currently the most popular OS, additional research should be undertaken to make it more

secure for the end-user.
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Appendix A: Smali format for the TaskReceiver component.

1 .class public Lcom/adups/fota/sysoper/TaskReceiver;
2 .super Landroid/content/BroadcastReceiver;
3
4 # direct methods
5 .method public constructor <init >()V
6 .registers 1
7
8 invoke -direct {p0}, Landroid/content/BroadcastReceiver;-><init >()V
9

10 return -void
11 .end method
12
13 # virtual methods
14 .method public onReceive(Landroid/content/Context;Landroid/content/Intent ;)V
15 .registers 7
16
17 if-nez p2, :cond_3
18
19 :cond_2
20 :goto_2
21 return -void
22
23 :cond_3
24 invoke -virtual {p2}, Landroid/content/Intent;->getAction () Ljava/lang/String;
25
26 move -result -object v0
27
28 const -string v1 , "sys"
29
30 new -instance v2, Ljava/lang/StringBuilder;
31
32 invoke -direct {v2}, Ljava/lang/StringBuilder;-><init >()V
33
34 const -string v3 , "TaskReceiver action = "
35
36 invoke -virtual {v2 , v3}, Ljava/lang/StringBuilder;->append(Ljava/lang/String ;)

Ljava/lang/StringBuilder;
37
38 move -result -object v2
39
40 invoke -virtual {v2 , v0}, Ljava/lang/StringBuilder;->append(Ljava/lang/String ;)

Ljava/lang/StringBuilder;
41
42 move -result -object v2
43
44 invoke -virtual {v2}, Ljava/lang/StringBuilder;->toString ()Ljava/lang/String;
45
46 move -result -object v2
47
48 invoke -static {v1, v2}, Lcom/adups/fota/sysoper/n;->a(Ljava/lang/String;Ljava/

lang/String ;)V
49
50 invoke -static {v0}, Landroid/text/TextUtils;->isEmpty(Ljava/lang/CharSequence ;)Z
51
52 move -result v1
53
54 if-nez v1, :cond_2
55
56 const -string v1 , "android.intent.action.ACTION_POWER_DISCONNECTED"
57
58 invoke -virtual {v0 , v1}, Ljava/lang/String;->equals(Ljava/lang/Object ;)Z
59
60 move -result v1
61
62 if-eqz v1, :cond_2
63
64 new -instance v1, Landroid/content/Intent;
65
66 const -class v2 , Lcom/adups/fota/sysoper/TaskService;
67
68 invoke -direct {v1, p1, v2}, Landroid/content/Intent;-><init >( Landroid/content/

Context;Ljava/lang/Class;)V
69
70 invoke -virtual {v1 , v0}, Landroid/content/Intent;->setAction(Ljava/lang/String ;)

Landroid/content/Intent;
71
72 invoke -virtual {p1 , v1}, Landroid/content/Context;->startService(Landroid/content

/Intent ;) Landroid/content/ComponentName;
73
74 goto :goto_2
75 .end method
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Appendix B: The com.staqu.panasalestracker

(versionCode = 8, versionName = 1.3.5) app behavior

captured by the FPE framework.

1 {
2 "call": "android.util.Log.d(java.lang.String , java.lang.String)",
3 "component ": "com.staqu.salestracker.SalesTrackerService",
4 "arguments ": ["Tag:STracker", "Message:Activation url ==>
5 https :// stapp.panasonicarbo.com?brand =&model=
6 STARHSTARTSTARCSTAR+STARDSTAReSTARsSTARiSTARrSTAReSTAR&
7 imei1 =1234567890123456&imei2 =1234567890123456&android_id=
8 9b1587bf3b1d8fc&mcc1 =310&mnc1 =660&mcc2 =310&mnc2 =660&date=
9 12 -03 -2019& time =12%3 A35%3A27&key=&typ=&ver=&ram=1MB&

10 country_code=in&app_version =& manufacturer=HTC&lac =454&
11 cid =454&eml=feelsgoodman %40 gmail.com&android_version =0
12 &build =""],
13 "lineNumber ": "54",
14 "taint ": "|0|136|" ,
15 "category ": "logging",
16 "smaliFile ": "SalesTracker/smali/com/staqu/salestracker/SLog.smali
17 "
18 }

Listing B.1: Raw JSON event for writing PII to the logcat log (PII highlighted in red text).

1 {
2 "call": "android.telephony.SmsManager.sendTextMessage(
3 java.lang.String , java.lang.String , java.lang.String , android.app.

PendingIntent , android.app.PendingIntent)",
4 "component ": "com.staqu.salestracker.SalesTrackerReceiver",
5 "arguments ": [" Destination number :+919220092200" ,
6 "Service center number :0", "Text message body:PTRACR
7 || STARHSTARTSTARCSTARSTARDSTAReSTARsSTARiSTARrSTAReSTAR|
8 1234567890123456|1234567890123456|9b1587bf3b1d8fc ||||
9 310|660|310|660|1GB"],

10 "lineNumber ": "3244" ,
11 "taint ": "|0|0|136|0|0|" ,
12 "category ": "telephony_events",
13 "smaliFile ": "SalesTracker/smali/com/staqu/salestracker/
14 Util.smali"
15 }

Listing B.2: Raw JSON event for sending a text message (PII highlighted in red text).
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Appendix C: Broadcast Intent actions to crash the Samsung

Galaxy S6 Edge and Galaxy Tab A Android devices.

Table C.1: Broadcast actions that will cause a system crash on the Galaxy S6 Edge and
Galaxy Tab A.

Broarcast Action S6 Edge Tab A
com.sec.intent.action.SARDEVICE CP X X

com.sec.android.intent.action.SSRM MDNIE CHANGED X X
com.sec.android.intent.action.REQUEST BACKUP WALLPAPER X

com.samsung.android.net.wifi.SEC NETWORK STATE CHANGED X
com.samsung.action.HOTSPOT EXEC COMMAND X X

android.net.ethernet.STATE CONNECTOR REMOVE X X
com.samsung.action.REDIRECT STATUS X

android.dirEncryption.DirEncryptionManager.UNMOUNT POLICY X
action wfc switch profile broadcast X

com.sec.android.intent.action.REQUEST RESTORE WALLPAPER X
android.intent.action.AGPS UDP RECEIVED X

android.net.conn.CONNECTIVITY CHANGE SUPL X X
android.intent.WIDGETSSR.WIDGETADD X X

android.net.wifi.hs20.TEST START OSU PROCESS NOSIGMA X X
android.net.ethernet.STATE CHANGE X X

com.samsung.android.net.wifi.NETWORK OXYGEN STATE CHANGE X X
com.sec.location.nsflp.locblacklist X

android.net.wifi.hs20.TEST TRIGGER INSTALL FILE X X
com.sec.android.inputmethod.Subtype X X

MARS AUTO RUN POLICY TRAFFIC STAT ALARM X
MARS AUTO RUN TRAFFIC STAT REPEAT ALARM X
android.content.jobscheduler.JOB DEADLINE EXPIRED X

com.samsung.selfhealing.abusivedetected X
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Appendix D: System crash from faulty Intent tnput handling.

1 !@*** FATAL EXCEPTION IN SYSTEM PROCESS: main
2 java.lang.RuntimeException: Error receiving broadcast Intent { act=com.sec.android.

intent.action.APP_HQM_SEND_REQ flg=0x10 } in com.samsung.android.hqm.
BigDataModule$1@a9bbc0c

3 at android.app.LoadedApk$ReceiverDispatcher$Args.lambda$ -
android_app_LoadedApk$ReceiverDispatcher$Args_52225(LoadedApk.java :1329)

4 at android.app.-$Lambda$FilBqgnXJrN9Mgyks1XHeAxzSTk.$m$0(Unknown Source :4)
5 at android.app.-$Lambda$FilBqgnXJrN9Mgyks1XHeAxzSTk.run(Unknown Source :0)
6 at android.os.Handler.handleCallback(Handler.java :789)
7 at android.os.Handler.dispatchMessage(Handler.java :98)
8 at android.os.Looper.loop(Looper.java :164)
9 at com.android.server.SystemServer.run(SystemServer.java :724)

10 at com.android.server.SystemServer.main(SystemServer.java :543)
11 at java.lang.reflect.Method.invoke(Native Method)
12 at com.android.internal.os.Zygote$MethodAndArgsCaller.run(Zygote.java :327)
13 at com.android.internal.os.ZygoteInit.main(ZygoteInit.java :1374)
14 Caused by: java.lang.NullPointerException: Attempt to invoke virtual method ’int

android.os.Bundle.getInt(java.lang.String , int)’ on a null object reference
15 at com.samsung.android.hqm.BigDataModule$1.onReceive(BigDataModule.java :606)
16 at android.app.LoadedApk$ReceiverDispatcher$Args.lambda$ -

android_app_LoadedApk$ReceiverDispatcher$Args_52225(LoadedApk.java :1319)
17 ... 10 more

Listing D.1: Example system crash occuring on a Samsung Android device.
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