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This paper presents initial results of a study on the application of evolutionary multi-
objective optimization methods in the design of the steel structural systems of tall buildings.
In the paper, a brief overview of the state-of-the-art in evolutionary multi-objective
optimization in structural engineering is provided. Next, conceptual design of steel
structural systems in tall buildings is overviewed and the representations of steel structural
systems used in the paper are discussed. Furthermore, Emergent Designer, a unique
evolutionary design tool developed at George Mason University, is briefly described. It is an
integrated research and design support tool which applies models of complex adaptive
systems to represent engineering systems and to analyze design processes and their results.
The paper also presents the results of several multi-objective structural design experiments
conducted with Emergent Designer in which steel structural systems in tall buildings were
optimized with respect to their total weight and maximum deflection (two-objective
minimization problem). The goal of these experiments was to determine feasibility of
evolutionary multi-objective optimization of steel structural systems of tall buildings as well
as to qualitatively and quantitatively compare the results with the previous findings obtained
with single-objective evolutionary optimization methods.  Finally, initial research
conclusions are presented as well as promising research directions.

l. Introduction

N a vast majority of evolutionary design applications, including authors’ previous studies®, the fitness function

was based on a single evaluation criterion. For example, the total weight of a steel structural system has been
frequently employed as the evaluation criterion in structural engineering applications. In many cases, however, such
an approach is not sufficient because other relevant aspects of designs’ performance are omitted. In this paper, we
extend the previous evaluation model by considering a second evaluation criterion, namely the maximum horizontal
displacement of the structural system. Such a displacement is called ‘sway’ and is considered a good measure of
deformations of a structural system under a given combination of horizontal and vertical loads. We subsequently
combine both objectives in a single fitness function using a set of arbitrarily assigned weights. By considering
several combinations of the weights we attempt to identify the changes of the optimal topology of a steel structural
system in a tall building when the importance of each of the two objectives is modified. We also try to determine
the approximate shape of the Pareto front in this two-objective performance space.
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Il.  Background

A. Evolutionary Computation

Evolutionary algorithms (EA) have been used to solve problems in various disciplines of science and
engineering®. They have also been applied to many structural design problems, especially those related to complex
optimization issues where traditional optimization methods were generally unsatisfactory.

From the engineering perspective, evolutionary computation (EC) can be understood as a search and
optimization process in which a population of solutions (designs) undergoes a process of gradual changes. This
process is guided by the fitness (a measure of perceived performance) of the individual solutions as defined by the
environment (objective function(s)). Hence, one of the most important issues in a successful application of EA is
the choice of an adequate fitness evaluation function for a given problem. Evaluation functions provide EA with
feedback about the fitness of each design in the population. This feedback is subsequently used to bias the search
process in order to improve the population’s average fitness.

In many problems, including structural design problems, a fitness function based on a single evaluation criterion
is generally not sufficient. Hence, significant research efforts in the field of evolutionary computation have been
recently focused on evolutionary multiobjective optimization (EMOO) methods.  Several multiobjective
evolutionary algorithms have been proposed, including aggregating functions®, vector evaluated genetic algorithm
(VEGA)*, target vector approaches®, multiobjective genetic algorithm (MOGA)®, non-dominated sorting genetic
algorithgn (NSGA)’, niched Pareto genetic algorithm (NPGA)®, and strength Pareto evolutionary algorithm
(SPEA)".

In this paper, we employ the simplest multiobjective evolutionary algorithms based on aggregating functions in
which the objectives are multiplied by weighting coefficients representing the relative importance of the objectives.

B. Design Representations

A representation of an engineering design is as a computational description of an engineering system (that
usually does not yet exist) expressed in terms of attributes™. In the most straightforward evolutionary computation
representation, each gene corresponds to an attribute and represents a dimension of the search space. Each such
dimension can have an appropriate set of values (discrete or continuous) that a feature represented by this dimension
can take on. In the simplest case, these representations use binary genes denoting the presence, or absence, of a
feature. In such representations each individual consists of a fixed-length binary string of genes, or a genotype,
representing some subset of agiven set of features. Often, in complex engineering applications, multi-valued
attributes are more natural to use™.

A representation space for an engineering design is a multidimensional space spanned over attributes that are
used to describe an engineering design®. Attributes can be symbolic (when they take values from an unordered or
partially ordered set) or numerical (when they take numerical values representing quantities or measurements).
Symbolic attributes that take values from an unordered set are called nominal attributes; when they take values from
a partially ordered set, they are called structured. Design concepts are typically described in terms of symbolic
attributes. Numerical attributes are used for a detailed description of a design.

Appropriate representation of an engineering system is one of the most crucial elements of evolutionary design.
The process of creating an efficient and adequate representation of an engineering system for evolutionary design is
complicated and involves elements of both science and art. One has to take into account not only important aspects
of understanding traditional modeling of an engineering system, but also relevant computational issues that include
search efficiency, scalability, and mapping between a search space (genotypic space) and a space of actual designs
(phenotypic space).

C. Evolutionary Optimization in Structural Engineering

Evolutionary methods have relatively long history in structural design. Initial applications considered sizing and
shape optimization of relatively simple structural systems, including trusses'®** and frames™. Later, more complex
structural design problems were investigated including topology optimization of discrete-member trusses™, topology
optimization of truss structures in pylons™, and topology, shape, and sizing optimization of truss structures’.
Topological optimum design of steel structural systems in tall buildings was initially studied in Ref. 18,19 and later
extended in Ref. 1.

Several applications of multiobjective evolutionary methods have been also conducted. Several variations of the
original VEGA have been proposed and applied to the conceptual design of airframes®. The weighted min-max
algorithm (target vector approach) has been used in Ref. 21 to optimize a 10-bar plane truss, and in Ref. 22 and Ref.
23 to optimize I-beams and truss designs. MOGA has been used in many engineering design applications including
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gas turbine controller® and supersonic wings”?. A variation of MOGA (called MGA) was applied to conceptual

design of office buildings®’. NSGA-II has been recently applied to a topological optimum design problem?®. In this
approach, both the weight and the maximal displacement of a cantilever plate were minimized. A hybrid approach,
NSGA-II and a hill climber, was employed to solve several engineering shape optimization problems®.

Comprehensive surveys of various evolutionary multiobjective optimization methods, including detailed
discussion on their strengths and weaknesses can be found in Ref. 5,30-34.

D. Conceptual Design of Steel Structural Systems in Tall Buildings

Steel skeleton structures in tall buildings are considered ones of the most complicated structures designed and
built. Their conceptual and physical complexity can only be compared to such complex structural systems as, for
example, large span bridges or large span space structures. Usually, steel structural systems in tall buildings are
designed as a system of vertical members called columns, horizontal members called beams, and various diagonal
members called wind bracings, since they are added to columns and beams to increase the flexural rigidity of the
entire system and that is driven mostly by stiffness requirements related to wind forces.

Skeleton structures are designed to provide a structural support for tall buildings. They have to satisfy numerous
requirements regarding the building’s stability, transfer of loads, including gravity, wind and earthquake loads,
deformations, vibrations, etc. For this reason, the design of structural systems in tall buildings requires the analysis
of their behavior under various combinations of loading and the determination of an optimal configuration of
structural members. It is difficult, complex, and still not fully understood domain of structural engineering,
particularly as the generation/development of novel structural concepts is concerned.

I11.  Evolutionary Multiobjective Structural Design

A. Topological Structural Design

In this paper, multiobjective topological optimum design of steel structural systems in tall buildings is
investigated. It is considered as a two-stage process. In the first stage, an evolutionary algorithm produces a design
concept, which is understood here as an abstract description of a future structural system represented in terms of
symbolic attributes. It identifies the configuration of the following members of a structural system: wind bracings,
beams, and column supports. The configuration of columns is assumed constant (the location and nature of columns
do not change) and is not evolved. In the second stage, sizing optimization of all structural members, including
wind bracings, beams, and columns, is conducted for the design configuration determined in the first stage.

The sizing optimization is conducted by SODA. It is a commercial computer program for the analysis of internal
forces, dimensioning and numerical optimization of steel structural systems. In the project, a modified SODA
program developed by the Waterloo Systems in Waterloo, Ontario, Canada, has been used. The optimization
method used in SODA is described in Ref. 35. In the structural analysis conducted by SODA, dead, live, and wind
loads as well as their combinations are considered. The structural elements are designed using several groups of
sections for beams, columns, and bracings. In the performed experiments the first order analysis was used (P-Delta
effects were not considered).

As stated earlier, in this paper a simple multiobjective evolutionary algorithm based on aggregating functions
was employed. The two performance measures considered in the design experiments included the total weight of
the steel structural system and its maximum horizontal displacement. The total weight of a steel structure provides a
good estimate of the cost of a steel structural system while the maximum horizontal displacement estimates its
stiffness. Each of the two performance measures can be used as an objective with respect to which the produced
design concepts are optimized (minimized). However, the two objectives are usually conflicting. The reduction of
the weight of a steel structure increases its maximum horizontal displacement (and thus reduces its stiffness) and
vice versa. The perceived importance of each of the two objectives was determined by applying appropriate
weighting coefficients.

B. Emergent Designer

Multiobjective evolutionary optimization experiments reported in this paper were conducted using Emergent
Designer, an experimental research and design tool developed at George Mason University. It is an integrated Java-
based system intended for conducting design experiments in the area of structural design and for the analysis of their
results. It implements state-of-the-art representations supporting generation of novel design concepts and efficient
mechanisms for their subsequent optimization at the topology and member sizing level. It also implements advanced
methods, models, and tools from statistics and from the linear as well as nonlinear time series analysis to conduct the
analysis of the design processes. The system has ten major components:
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Problem Definition Component
Representation and Decomposition Component
Concept Generation and Optimization Component
Evaluation and Simulation Component
Basic Statistical Analysis Component
Basic Dynamical Systems Analysis Component
Advanced Statistical Analysis Component
Advanced Time Series Analysis Component

9. Visualization Component

10. Report Generation Component
A detailed description of the system can be found in Ref. 36.

N~ wWNE

C. Representations of Steel Structural Systems in Tall Buildings

In the design experiments reported in this paper, a structural system of a tall building is considered as a system of
identical parallel planar transverse structures, which are the subject of design. The representation space has been
developed using the concept of division of the structural grid of the building (the system of vertical and horizontal
lines of columns and beams, respectively) into units, or cells. A cell can be described as a part of the structural grid
contained within the adjacent vertical and horizontal grid lines™.

a)l
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Figure 1. a) Phenotypic, b) symbolic, ¢) genotypic values of attributes representing wind bracing.

Representations of steel structural systems in tall buildings encoded the following types of structural members:
bracings, beams, and supports. Figure 1 shows | Lo
the values of attributes representing bracing

| | |
elements in a steel structural system at the © c % E ! I
phenotypic, symbolic, and genotypic level. Each : : ‘ - === — =
d

such attribute can have up to seven symbolic
values (see Figure 1b)) encoding various types of

bracings (no bracing, diagonal bracing \, Pinned beam Fixed beam Pinned support  Fixed support
diagonal bracing /, K bracing, V bracing, simple b) e)

X bracing, and X bracing). Their phenotypic, or 0 1 0 1
design, representation is presented in Figure 1a). c) Y/

Figure 1c) shows genotypic values of the
attributes representing bracing elements. Each
such attribute has 7 possible values encoded as
integers 0 to 6.

Figure 2. a) Phenotypic, b) symbolic, ¢) genotypic values of
attributes representing beams and d) phenotypic, e)
symbolic, f) genotypic values of attributes representing
supports.

In Figure 2 values of attributes representing beams and supports are presented. Each attribute representing a
beam in a steel structural system had two symbolic values (binary attributes) (see Figure 2c)) encoding two types of
beams (a pinned beam and a fixed beam) (see Figure 2a) and Figure 2b)). Similarly, each attribute representing a
support in a steel structural system was binary (see Figure 2f)) and encoded two types of supports (a pinned support,
and a fixed support) (see Figure 2d) and Figure 2e)).

The actual genotypic representation, or genome, that was manipulated by an evolutionary algorithm, was
encoded as a string of integer values. In the design experiments reported in this paper, fixed-length genomes were
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used as representations of steel structural systems.

The length of a genome used in a given design situation

depended on the number of cells in the structural system being considered, and that is obviously related to the
number of stories and the number of bays in a tall building.

V.

Experimental Design

Initial multiobjective design experiments reported in this paper were aimed to determine how the optimal
topologies of steel structural systems in tall buildings change when the perceived importance of each of the two

objectives, i.e. the total weight of the
structural system and its maximum
horizontal displacement, is varied.
This goal has been realized through
the analysis of the results of a number
of design experiments in which
several combinations of weighting
coefficients were used to determine
the importance of the two objectives.

D. Problem Parameters

Table 1. Problem parameters and their values.

Problem Parameter Value(s)
Number of stories 36
Number of bays 3

Bay width

Story height

Distance between transverse systems
Types of bracing elements

Types of beam elements

Types of column elements

Types of supports

20 feet (6.01 m)

14 feet (4.27 m)

20 feet (6.01 m)

No, Diagonal \, Diagonal /, K, V, Simple X, and X
Pinned-Pinned, and Fixed-Fixed

Fixed-Fixed (only)

Pinned, and Fixed

The parameters of the design problem and their values are presented in Table 1. It shows that 36-story buildings
with 3 bays were studied here. The height of each story was equal to 14 ft (4.27 m) while the bay widths were equal

to 20 ft (6.01 m).

As discussed in the previous section, 7 types of wind bracing elements (see Figure 1), 2 types of beams, and 2
types of supports were considered (see Figure 2).

In  the structural  analysis
conducted by SODA, dead, live, and
wind loads were considered. The
magnitudes of the loads used in the
design experiments reported in this
paper are provided in Table 2. Five
load combinations were considered,
following the design specifications
for steel, concrete, and composite
structures in tall buildings given in
Ref. 37. They included the following

» Dead + Live

= 0.75(Dead + Live + Wind)

= 0.75(Dead + Live — Wind)

= 0.75(Dead + Wind)

= 0.75(Dead — Wind)

The negative sign placed in front
of the wind loads indicates that the
wind forces considered in a given
load combination act in the opposite
direction, i.e. wind pressure is
replaced by wind suction and vice
versa, when compared to the case
when the plus sign is used.

E. Evolutionary
Parameters

In Table 3  evolutionary
computation parameters and their
values which were used in the design

Computation

Table 2. Magnitudes of dead, live, and wind loads.

Load Parameter

Value(s)

Dead load magnitude
Live load magnitude:
- building
- roof
Wind load:
- Wind speed
- Wind importance factor
- Wind exposure category

50 psf (2.39 kN/m2)

100 psf (4.78 kN/m2)
30 psf (1.43 kN/m2)

100 mph (160.9 km/h)
1.0
c

combinations of loads:

Table 3. Evolutionary computation parameters and their values.

EA Parameter Value(s)
EA ES
Pop. sizes (parent, offspring) (12,60)

Generational model
Selection (parent, survival)
Mutation rate

Crossover (type, rate)
Genome length

Fitness

Weighting coefficients
Initialization method

Termination criterion

Number of runs

Overlapping ES(u+1)
(uniform stochastic, truncation)
0.05,0.1,0.3,0r0.5
(uniform, 0.0), (uniform, 0.2), (uniform, 0.5)
220 genes
Weighted average involving two objectives:
- the total weight of the structural system
-the maximum horizontal displacement of
the structural system (‘sway’)
0.0,0.2,0.4,0.6,0.8,0r1.0
Random, or arbitrarily selected initial parents (see
Appendix)
1,000 fitness evaluations (short-term)
10,000 fitness evaluations (long-term)
5 (in each experiment)
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experiments are presented. In the experiments, evolution strategies (ES) were employed to perform evolutionary
optimization processes. The overlapping generational model was used, i.e. ES(u+A), which means that the survival
selection acted on a combined population of parents and offspring.

Two groups of evolutionary optimization experiments were conducted: short-term experiments and long-term
experiments. The short-term optimization runs were terminated after the generation of 1,000 designs. On the other
hand, the long-term processes were significantly longer and involved 10,000 structural designs.

As discussed earlier, the fitness of a design concept was calculated as a weighted average of the normalized total
weight of a structural system and the related normalized maximum horizontal displacement. 6 combinations of
weighting coefficients (shown in Table 3) were used in the multiobjective design experiments, including
0.0-wW+1.0-D, 0.2-W+0.8-D, etc., where W denotes the total weight of the structural system and D its maximum
horizontal displacement.

An exhaustive parameter search involving 12 combinations of mutation and crossover rates (see Table 3) was
conducted during the short-term evolutionary optimization processes. It was aimed to identify the ‘optimal’ rates
that generated the best evolutionary optimization progress. The experiments were repeated 5 times for each
combination of parameter values using a different value of a random seed each time. The optimal values were
subsequently used in the long-term evolutionary optimization experiments.

Two methods of initialization of evolutionary optimization processes were employed. First, the ES was started
with randomly generated design concept, as it is traditionally done in EC. Second, a set of 12 known design
concepts (see Appendix) was used as initial parents. The results of both initialization methods were later compared.

Each design concept was represented by a fixed-length genome consisting of 220 genes. 108 genes encoded
attributes defining types of wind bracing elements. These genes had 7 possible values representing 7 types of wind
bracing elements. 108 genes encoded attributes representing beams. These genes had binary values. Finally, 4
genes encoded types of supports and also had binary values.

The experimental results are presented in the following section.

V. Experimental Results

The sensitivity analyses conducted during the short-term optimization processes revealed that the best
evolutionary optimization progress was achieved for the mutation rate equal to 0.1 and the crossover rate equal to
0.2. It was also discovered .

that the mutation rate has [ Random A T

Known Designs 0O

much higher impact of the
fitness of produced design
concepts than the
crossover rate. Hence,
these  ‘optimal’  values
were subsequently used in
the long-term
multiobjective
evolutionary optimization
experiments.

0205
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Mormalized Avarage Best-So-Far Fitness

A. Impact of the
Initialization Method
Figure 3 shows the otmor
normalized average best-
so-far  fithess  curves
obtained in two multi- .| ' T T
objective evolutionary m
optimization experiments 000 005 010 015 020 025 030 035 040 045 050 055 060 065 070 075 080 085 090 095 100
with randomly initialized Birth count
parents and known designs Figure 3. Comparison of the normalized average best-so-far fitness obtained in the
used as initial parents. The multiobjective evolutionary optimization experiments with randomly initialized
vertical lines represent Parents (Random) and known designs used as initial parents (Known Designs)
95% confidence intervals (here the fitness was calculated using the formula: 0.2W+0.8D).

calculated using the modified Johnson’s t test. In this case, the fitness of the design concepts was calculated using

o
]

0185
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the following coefficients
that in this case the
evolutionary  processes
initialized with known

design concepts
outperformed the ones
initialized randomly.
However, evolutionary
optimization  processes

initialized with known
parents did not always
produce superior results.
Figure 4 shows the
normalized average best-
so-far curves for another
combination of weighting
coefficients. Here, both
multiobjective

evolutionary design
processes produced
similar  results. In

general, the following
pattern has been observed
in the conducted
experiments.  For low
values of the weighting
coefficient associated
with the total weight of

: 0.2 for the total weight and 0.8 for the maximum displacement. Figure 3 clearly shows
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Figure 4. Comparison of the normalized average best-so-far fitness obtained in the
multiobjective evolutionary optimization experiments with randomly initialized
parents (Random) and known designs used as initial parents (Known Designs)

(here the fitness was calculated using the formula: 0.6W+0.4D).

the steel structural system, the evolutionary optimization processes initialized with known design concepts
significantly outperformed the ones initialized randomly. However, when the value of this coefficient was increased
(and the value of the coefficient associated with the maximum displacement was decreased) then both initialization
methods produced similar results. In some cases, random initialization slightly outperformed the initialization with

known designs.

B. Approximate Shape
of the Pareto Front

The  best design
concepts of steel
structural systems
produced in all design
experiments  involving
various combinations of
weighting  coefficients
were analyzed  with
respect to the values of
both objectives. The
results of this analysis are
presented in Figure 5. It
shows an approximate
shape of the Pareto front
spanned over the
performance space
formed by the total
weight of the structural
system and its maximum
horizontal displacement.
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Figure 5. Approximate shape of the Pareto front in the performance space
spanned over of the total weight of the steel structural system and its maximum

horizontal displacement.
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It clearly shows that the total weight of the optimal structural designs varies from about 500,000 Ibs. to more than
6,500,000 Ibs. At the same time, the maximum horizontal displacements of the structural systems range from 4
inches to almost 22 inches. Figure 5 also shows that there is a strong trade-off between the two objectives.

C. Optimal Topologies of Steel Structural Systems

The best design concepts shown in Figure 5 were also analyzed qualitatively for changes in their topologies
occurring when the importance of each of the two objectives was modified. Figure 6 shows the topologies of the
structural systems associated with approximate Pareto front which was discussed in the previous section.

wo®

6.5

6.0

- o o
o o i
T T T

-
o
T

Total weight of the structural system, Ibs

4 5 ] T 8 9 10 1" 12 13 14 15 16 17 18 19 20 b4 | 72
Maximum horizontal displacement, inch
Figure 6. Topologies of the optimal structural systems associated with the approximate Pareto front.

Figure 6 clearly shows that there are significant qualitative differences among the topologies of the structural
systems located in various parts of the Pareto front. The leftmost design in Figure 6 corresponding to the region of
the Pareto front with the smallest horizontal displacements and the largest total weight exhibits dramatically
different structural shaping pattern than the second design shown to the left. In the former case, a fairly uniform
pattern of K bracings can be identified with occasional occurrences of X bracings. In the latter case, wind bracing
elements appear only occasionally and the stiffness of the structural system is provided by the increased cross-
sections of beams and columns. The three rightmost designs in Figure 6 are again different than the previously
described designs. Here, combinations of relatively large numbers of X and K bracings can be identified. The
topologies of the three rightmost design concepts are much more similar than the leftmost designs.

When we compare the design concepts shown in Figure 6 to the ones generated in the design experiments in
which the total weight of the structural system was used as the only objective and the maximum horizontal
displacement was imposed as a constraint (see Figure 7), we can identify significant qualitative and quantitative
differences. The designs shown in Figure 7 are almost 50% heavier than the rightmost designs shown in Figure 6.
At the same time they exhibit substantially smaller (also by about 50%) horizontal displacements.

The quantitative characteristics of the structural systems shown in Figure 7, i.e. their total weights and the
maximum horizontal displacements, show that these designs are located close to the central region of the Pareto
front.
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Figure 7. Topologies of the optimal structural systems generated in the single-objective des

Research reported in th

structural systems in tall buildings. Here, the prel

multiobjective evolutionary algorithm. The initial findings are encouraging and provide new insights and broader

understanding of this complex structural design problem.

The conducted research will be continued. Specifically, more advanced multiobjective evolutionary algorithms

will be implemented and applied to this complex design problem. Also, the shape of the Pareto front in this two-

objective design performance space will be further investigated.



Appendix

In this appendix, a set of 12 design concepts of steel structural systems in tall building is presented. These
designs were used as initial parents in the design experiments reported in this paper. The two values placed below
each design represent the total weight of the structural system (top) and its maximum horizontal displacement

(bottom) calculated using the first-order structural analysis.
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