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Multiobjective Evolutionary Design  

of Steel Structures in Tall Buildings 

Rafal Kicinger* and Tomasz Arciszewski† 
George Mason University, Fairfax, VA, 22030 

This paper presents initial results of a study on the application of evolutionary multi-
objective optimization methods in the design of the steel structural systems of tall buildings.  
In the paper, a brief overview of the state-of-the-art in evolutionary multi-objective 
optimization in structural engineering is provided.   Next, conceptual design of steel 
structural systems in tall buildings is overviewed and the representations of steel structural 
systems used in the paper are discussed.  Furthermore, Emergent Designer, a unique 
evolutionary design tool developed at George Mason University, is briefly described.  It is an 
integrated research and design support tool which applies models of complex adaptive 
systems to represent engineering systems and to analyze design processes and their results.  
The paper also presents the results of several multi-objective structural design experiments 
conducted with Emergent Designer in which steel structural systems in tall buildings were 
optimized with respect to their total weight and maximum deflection (two-objective 
minimization problem).  The goal of these experiments was to determine feasibility of 
evolutionary multi-objective optimization of steel structural systems of tall buildings as well 
as to qualitatively and quantitatively compare the results with the previous findings obtained 
with single-objective evolutionary optimization methods.  Finally, initial research 
conclusions are presented as well as promising research directions. 

I. Introduction 
N a vast majority of evolutionary design applications, including authors’ previous studies1, the fitness function 
was based on a single evaluation criterion.  For example, the total weight of a steel structural system has been 

frequently employed as the evaluation criterion in structural engineering applications.  In many cases, however, such 
an approach is not sufficient because other relevant aspects of designs’ performance are omitted.  In this paper, we 
extend the previous evaluation model by considering a second evaluation criterion, namely the maximum horizontal 
displacement of the structural system.  Such a displacement is called ‘sway’ and is considered a good measure of 
deformations of a structural system under a given combination of horizontal and vertical loads.  We subsequently 
combine both objectives in a single fitness function using a set of arbitrarily assigned weights.  By considering 
several combinations of the weights we attempt to identify the changes of the optimal topology of a steel structural 
system in a tall building when the importance of each of the two objectives is modified.  We also try to determine 
the approximate shape of the Pareto front in this two-objective performance space. 
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II. Background 

A. Evolutionary Computation 
Evolutionary algorithms (EA) have been used to solve problems in various disciplines of science and 

engineering2.  They have also been applied to many structural design problems, especially those related to complex 
optimization issues where traditional optimization methods were generally unsatisfactory.  

From the engineering perspective, evolutionary computation (EC) can be understood as a search and 
optimization process in which a population of solutions (designs) undergoes a process of gradual changes.  This 
process is guided by the fitness (a measure of perceived performance) of the individual solutions as defined by the 
environment (objective function(s)).  Hence, one of the most important issues in a successful application of EA is 
the choice of an adequate fitness evaluation function for a given problem.  Evaluation functions provide EA with 
feedback about the fitness of each design in the population. This feedback is subsequently used to bias the search 
process in order to improve the population’s average fitness. 

In many problems, including structural design problems, a fitness function based on a single evaluation criterion 
is generally not sufficient.  Hence, significant research efforts in the field of evolutionary computation have been 
recently focused on evolutionary multiobjective optimization (EMOO) methods.  Several multiobjective 
evolutionary algorithms have been proposed, including aggregating functions3, vector evaluated genetic algorithm 
(VEGA)4, target vector approaches5, multiobjective genetic algorithm (MOGA)6, non-dominated sorting genetic 
algorithm (NSGA)7, niched Pareto genetic algorithm (NPGA)8,  and strength Pareto evolutionary algorithm 
(SPEA)9. 

In this paper, we employ the simplest multiobjective evolutionary algorithms based on aggregating functions in 
which the objectives are multiplied by weighting coefficients representing the relative importance of the objectives. 

B. Design Representations 
A representation of an engineering design is as a computational description of an engineering system (that 

usually does not yet exist) expressed in terms of attributes10.  In the most straightforward evolutionary computation 
representation, each gene corresponds to an attribute and represents a dimension of the search space.  Each such 
dimension can have an appropriate set of values (discrete or continuous) that a feature represented by this dimension 
can take on.  In the simplest case, these representations use binary genes denoting the presence, or absence, of a 
feature. In such representations each individual consists of a fixed-length binary string of genes, or a genotype, 
representing some subset of a given set of features.  Often, in complex engineering applications, multi-valued 
attributes are more natural to use11.   

A representation space for an engineering design is a multidimensional space spanned over attributes that are 
used to describe an engineering design10.  Attributes can be symbolic (when they take values from an unordered or 
partially ordered set) or numerical (when they take numerical values representing quantities or measurements).  
Symbolic attributes that take values from an unordered set are called nominal attributes; when they take values from 
a partially ordered set, they are called structured.  Design concepts are typically described in terms of symbolic 
attributes.  Numerical attributes are used for a detailed description of a design. 

Appropriate representation of an engineering system is one of the most crucial elements of evolutionary design.  
The process of creating an efficient and adequate representation of an engineering system for evolutionary design is 
complicated and involves elements of both science and art.  One has to take into account not only important aspects 
of understanding traditional modeling of an engineering system, but also relevant computational issues that include 
search efficiency, scalability, and mapping between a search space (genotypic space) and a space of actual designs 
(phenotypic space). 

C. Evolutionary Optimization in Structural Engineering 
Evolutionary methods have relatively long history in structural design.  Initial applications considered sizing and 

shape optimization of relatively simple structural systems, including trusses12,13 and frames14. Later, more complex 
structural design problems were investigated including topology optimization of discrete-member trusses15, topology 
optimization of truss structures in pylons16, and topology, shape, and sizing optimization of truss structures17.  
Topological optimum design of steel structural systems in tall buildings was initially studied in Ref. 18,19 and later 
extended in Ref. 1. 

Several applications of multiobjective evolutionary methods have been also conducted.  Several variations of the 
original VEGA have been proposed and applied to the conceptual design of airframes20.  The weighted min-max 
algorithm (target vector approach) has been used in Ref. 21 to optimize a 10-bar plane truss, and in Ref. 22 and Ref. 
23 to optimize I-beams and truss designs.  MOGA has been used in many engineering design applications including 
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gas turbine controller24 and supersonic wings25,26.  A variation of MOGA (called MGA) was applied to conceptual 
design of office buildings27.  NSGA-II has been recently applied to a topological optimum design problem28.  In this 
approach, both the weight and the maximal displacement of a cantilever plate were minimized.  A hybrid approach, 
NSGA-II and a hill climber, was employed to solve several engineering shape optimization problems29.  

Comprehensive surveys of various evolutionary multiobjective optimization methods, including detailed 
discussion on their strengths and weaknesses can be found in Ref. 5,30-34. 

D. Conceptual Design of Steel Structural Systems in Tall Buildings 
Steel skeleton structures in tall buildings are considered ones of the most complicated structures designed and 

built.  Their conceptual and physical complexity can only be compared to such complex structural systems as, for 
example, large span bridges or large span space structures.  Usually, steel structural systems in tall buildings are 
designed as a system of vertical members called columns, horizontal members called beams, and various diagonal 
members called wind bracings, since they are added to columns and beams to increase the flexural rigidity of the 
entire system and that is driven mostly by stiffness requirements related to wind forces. 

Skeleton structures are designed to provide a structural support for tall buildings.  They have to satisfy numerous 
requirements regarding the building’s stability, transfer of loads, including gravity, wind and earthquake loads, 
deformations, vibrations, etc.  For this reason, the design of structural systems in tall buildings requires the analysis 
of their behavior under various combinations of loading and the determination of an optimal configuration of 
structural members.  It is difficult, complex, and still not fully understood domain of structural engineering, 
particularly as the generation/development of novel structural concepts is concerned. 

III. Evolutionary Multiobjective Structural Design 

A. Topological Structural Design 
In this paper, multiobjective topological optimum design of steel structural systems in tall buildings is 

investigated.  It is considered as a two-stage process.  In the first stage, an evolutionary algorithm produces a design 
concept, which is understood here as an abstract description of a future structural system represented in terms of 
symbolic attributes.  It identifies the configuration of the following members of a structural system: wind bracings, 
beams, and column supports.  The configuration of columns is assumed constant (the location and nature of columns 
do not change) and is not evolved.  In the second stage, sizing optimization of all structural members, including 
wind bracings, beams, and columns, is conducted for the design configuration determined in the first stage.  

The sizing optimization is conducted by SODA.  It is a commercial computer program for the analysis of internal 
forces, dimensioning and numerical optimization of steel structural systems.  In the project, a modified SODA 
program developed by the Waterloo Systems in Waterloo, Ontario, Canada, has been used.  The optimization 
method used in SODA is described in Ref. 35.  In the structural analysis conducted by SODA, dead, live, and wind 
loads as well as their combinations are considered.  The structural elements are designed using several groups of 
sections for beams, columns, and bracings.  In the performed experiments the first order analysis was used (P-Delta 
effects were not considered). 

As stated earlier, in this paper a simple multiobjective evolutionary algorithm based on aggregating functions 
was employed.  The two performance measures considered in the design experiments included the total weight of 
the steel structural system and its maximum horizontal displacement.  The total weight of a steel structure provides a 
good estimate of the cost of a steel structural system while the maximum horizontal displacement estimates its 
stiffness.  Each of the two performance measures can be used as an objective with respect to which the produced 
design concepts are optimized (minimized).  However, the two objectives are usually conflicting.  The reduction of 
the weight of a steel structure increases its maximum horizontal displacement (and thus reduces its stiffness) and 
vice versa.  The perceived importance of each of the two objectives was determined by applying appropriate 
weighting coefficients.   

B. Emergent Designer 
Multiobjective evolutionary optimization experiments reported in this paper were conducted using Emergent 

Designer, an experimental research and design tool developed at George Mason University.  It is an integrated Java-
based system intended for conducting design experiments in the area of structural design and for the analysis of their 
results.  It implements state-of-the-art representations supporting generation of novel design concepts and efficient 
mechanisms for their subsequent optimization at the topology and member sizing level. It also implements advanced 
methods, models, and tools from statistics and from the linear as well as nonlinear time series analysis to conduct the 
analysis of the design processes.  The system has ten major components: 
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1. Problem Definition Component 
2. Representation and Decomposition Component 
3. Concept Generation and Optimization Component 
4. Evaluation and Simulation Component 
5. Basic Statistical Analysis Component 
6. Basic Dynamical Systems Analysis Component 
7. Advanced Statistical Analysis Component 
8. Advanced Time Series Analysis Component 
9. Visualization Component 
10. Report Generation Component 

A detailed description of the system can be found in Ref. 36. 

C. Representations of Steel Structural Systems in Tall Buildings 
In the design experiments reported in this paper, a structural system of a tall building is considered as a system of 

identical parallel planar transverse structures, which are the subject of design.  The representation space has been 
developed using the concept of division of the structural grid of the building (the system of vertical and horizontal 
lines of columns and beams, respectively) into units, or cells.  A cell can be described as a part of the structural grid 
contained within the adjacent vertical and horizontal grid lines19. 

Representations of steel structural systems in tall buildings encoded the following types of structural members: 
bracings, beams, and supports.  Figure 1 shows 
the values of attributes representing bracing 
elements in a steel structural system at the 
phenotypic, symbolic, and genotypic level.  Each 
such attribute can have up to seven symbolic 
values (see Figure 1b)) encoding various types of 
bracings (no bracing, diagonal bracing \, 
diagonal bracing /, K bracing, V bracing, simple 
X bracing, and X bracing).  Their phenotypic, or 
design, representation is presented in Figure 1a).  
Figure 1c) shows genotypic values of the 
attributes representing bracing elements.  Each 
such attribute has 7 possible values encoded as 
integers 0 to 6.  

 
In Figure 2 values of attributes representing beams and supports are presented.  Each attribute representing a 

beam in a steel structural system had two symbolic values (binary attributes) (see Figure 2c)) encoding two types of 
beams (a pinned beam and a fixed beam) (see Figure 2a) and Figure 2b)).  Similarly, each attribute representing a 
support in a steel structural system was binary (see Figure 2f)) and encoded two types of supports (a pinned support, 
and a fixed support) (see Figure 2d) and Figure 2e)). 

The actual genotypic representation, or genome, that was manipulated by an evolutionary algorithm, was 
encoded as a string of integer values.  In the design experiments reported in this paper, fixed-length genomes were 

 
Figure 1. a) Phenotypic, b) symbolic, c) genotypic values of attributes representing wind bracing. 

Figure 2. a) Phenotypic, b) symbolic, c) genotypic values of 
attributes representing beams and d) phenotypic, e) 
symbolic, f) genotypic values of attributes representing 
supports. 



 
American Institute of Aeronautics and Astronautics 

 

5

used as representations of steel structural systems.  The length of a genome used in a given design situation 
depended on the number of cells in the structural system being considered, and that is obviously related to the 
number of stories and the number of bays in a tall building. 

IV. Experimental Design 
Initial multiobjective design experiments reported in this paper were aimed to determine how the optimal 

topologies of steel structural systems in tall buildings change when the perceived importance of each of the two 
objectives, i.e. the total weight of the 
structural system and its maximum 
horizontal displacement, is varied.  
This goal has been realized through 
the analysis of the results of a number 
of design experiments in which 
several combinations of weighting 
coefficients were used to determine 
the importance of the two objectives. 

D. Problem Parameters 
The parameters of the design problem and their values are presented in Table 1.  It shows that 36-story buildings 

with 3 bays were studied here.  The height of each story was equal to 14 ft (4.27 m) while the bay widths were equal 
to 20 ft (6.01 m).   

As discussed in the previous section, 7 types of wind bracing elements (see Figure 1), 2 types of beams, and 2 
types of supports were considered (see Figure 2).   

In the structural analysis 
conducted by SODA, dead, live, and 
wind loads were considered.  The 
magnitudes of the loads used in the 
design experiments reported in this 
paper are provided in Table 2.  Five 
load combinations were considered, 
following the design specifications 
for steel, concrete, and composite 
structures in tall buildings given in 
Ref. 37.   They included the following combinations of loads: 

 Dead + Live 
 0.75(Dead + Live + Wind) 
 0.75(Dead + Live – Wind) 
 0.75(Dead + Wind) 
 0.75(Dead – Wind) 

The negative sign placed in front 
of the wind loads indicates that the 
wind forces considered in a given 
load combination act in the opposite 
direction, i.e. wind pressure is 
replaced by wind suction and vice 
versa, when compared to the case 
when the plus sign is used. 

E. Evolutionary Computation 
Parameters 

In Table 3 evolutionary 
computation parameters and their 
values which were used in the design 

Table 1. Problem parameters and their values. 
Problem Parameter Value(s) 
Number of stories 36 
Number of bays 3 
Bay width 20 feet (6.01 m) 
Story height 14 feet (4.27 m) 
Distance between transverse systems 20 feet (6.01 m) 
Types of bracing elements No, Diagonal \, Diagonal /, K, V, Simple X, and X 
Types of beam elements Pinned-Pinned, and Fixed-Fixed 
Types of column elements Fixed-Fixed (only) 
Types of supports Pinned, and Fixed 

Table 3 . Evolutionary computation parameters and their values. 
EA Parameter Value(s) 
EA ES 
Pop. sizes (parent, offspring) (12,60) 
Generational model Overlapping ES(μ+λ) 
Selection (parent, survival) (uniform stochastic, truncation) 
Mutation rate 0.05, 0.1, 0.3, or 0.5 
Crossover (type, rate) (uniform, 0.0), (uniform, 0.2), (uniform, 0.5) 
Genome length 220 genes 
Fitness Weighted average involving two objectives: 

- the total weight of the structural system 
- the maximum horizontal displacement of 
the structural system (‘sway’) 

Weighting coefficients 0.0, 0.2, 0.4, 0.6, 0.8, or 1.0 
Initialization method Random, or arbitrarily selected initial parents (see 

Appendix) 
Termination criterion  1,000 fitness evaluations (short-term) 

10,000 fitness evaluations (long-term) 
Number of runs 5 (in each experiment) 

Table 2. Magnitudes of dead, live, and wind loads. 
Load Parameter Value(s) 
Dead load magnitude 50 psf (2.39 kN/m2) 
Live load magnitude:  
   -  building 100 psf (4.78 kN/m2) 
   -  roof 30 psf (1.43 kN/m2) 
Wind load:  
   -  Wind speed 100 mph (160.9 km/h) 
   -  Wind importance factor 1.0 
   -  Wind exposure category C 
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experiments are presented.  In the experiments, evolution strategies (ES) were employed to perform evolutionary 
optimization processes.  The overlapping generational model was used, i.e. ES(μ+λ), which means that the survival 
selection acted on a combined population of parents and offspring.   

Two groups of evolutionary optimization experiments were conducted: short-term experiments and long-term 
experiments.  The short-term optimization runs were terminated after the generation of 1,000 designs.  On the other 
hand, the long-term processes were significantly longer and involved 10,000 structural designs.   

As discussed earlier, the fitness of a design concept was calculated as a weighted average of the normalized total 
weight of a structural system and the related normalized maximum horizontal displacement.  6 combinations of 
weighting coefficients (shown in Table 3) were used in the multiobjective design experiments, including 
0.0⋅W+1.0⋅D, 0.2⋅W+0.8⋅D, etc., where W denotes the total weight of the structural system and D its maximum 
horizontal displacement. 

An exhaustive parameter search involving 12 combinations of mutation and crossover rates (see Table 3) was 
conducted during the short-term evolutionary optimization processes.  It was aimed to identify the ‘optimal’ rates 
that generated the best evolutionary optimization progress. The experiments were repeated 5 times for each 
combination of parameter values using a different value of a random seed each time.  The optimal values were 
subsequently used in the long-term evolutionary optimization experiments. 

Two methods of initialization of evolutionary optimization processes were employed.  First, the ES was started 
with randomly generated design concept, as it is traditionally done in EC.  Second, a set of 12 known design 
concepts (see Appendix) was used as initial parents.  The results of both initialization methods were later compared. 

Each design concept was represented by a fixed-length genome consisting of 220 genes.  108 genes encoded 
attributes defining types of wind bracing elements.  These genes had 7 possible values representing 7 types of wind 
bracing elements.  108 genes encoded attributes representing beams.  These genes had binary values.  Finally, 4 
genes encoded types of supports and also had binary values. 

The experimental results are presented in the following section. 

V. Experimental Results 
The sensitivity analyses conducted during the short-term optimization processes revealed that the best 

evolutionary optimization progress was achieved for the mutation rate equal to 0.1 and the crossover rate equal to 
0.2.  It was also discovered 
that the mutation rate has 
much higher impact of the 
fitness of produced design 
concepts than the 
crossover rate.  Hence, 
these ‘optimal’ values 
were subsequently used in 
the long-term 
multiobjective 
evolutionary optimization 
experiments. 

A. Impact of the 
Initialization Method 

Figure 3 shows the 
normalized average best-
so-far fitness curves 
obtained in two multi-
objective evolutionary 
optimization experiments 
with randomly initialized 
parents and known designs 
used as initial parents.  The 
vertical lines represent 
95% confidence intervals 
calculated using the modified Johnson’s t test. In this case, the fitness of the design concepts was calculated using 

Figure 3. Comparison of the normalized average best-so-far fitness obtained in the 
multiobjective evolutionary optimization experiments with randomly initialized
parents (Random) and known designs used as initial parents (Known Designs) 
(here the fitness was calculated using the formula:  0.2W+0.8D). 
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the following coefficients: 0.2 for the total weight and 0.8 for the maximum displacement.  Figure 3 clearly shows 
that in this case the 
evolutionary processes 
initialized with known 
design concepts 
outperformed the ones 
initialized randomly.  
However, evolutionary 
optimization processes 
initialized with known 
parents did not always 
produce superior results. 

Figure 4 shows the 
normalized average best-
so-far curves for another 
combination of weighting 
coefficients.  Here, both 
multiobjective 
evolutionary design 
processes produced 
similar results.  In 
general, the following 
pattern has been observed 
in the conducted 
experiments.  For low 
values of the weighting 
coefficient associated 
with the total weight of 
the steel structural system, the evolutionary optimization processes initialized with known design concepts 
significantly outperformed the ones initialized randomly.  However, when the value of this coefficient was increased 
(and the value of the coefficient associated with the maximum displacement was decreased) then both initialization 
methods produced similar results.  In some cases, random initialization slightly outperformed the initialization with 
known designs. 

B. Approximate Shape 
of the Pareto Front 

The best design 
concepts of steel 
structural systems 
produced in all design 
experiments involving 
various combinations of 
weighting coefficients 
were analyzed with 
respect to the values of 
both objectives.  The 
results of this analysis are 
presented in Figure 5.  It 
shows an approximate 
shape of the Pareto front 
spanned over the 
performance space 
formed by the total 
weight of the structural 
system and its maximum 
horizontal displacement.  

Figure 4. Comparison of the normalized average best-so-far fitness obtained in the 
multiobjective evolutionary optimization experiments with randomly initialized 
parents (Random) and known designs used as initial parents (Known Designs) 
(here the fitness was calculated using the formula:  0.6W+0.4D). 

Figure 5. Approximate shape of the Pareto front in the performance space 
spanned over of the total weight of the steel structural system and its maximum
horizontal displacement.
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It clearly shows that the total weight of the optimal structural designs varies from about 500,000 lbs. to more than 
6,500,000 lbs.  At the same time, the maximum horizontal displacements of the structural systems range from 4 
inches to almost 22 inches.  Figure 5 also shows that there is a strong trade-off between the two objectives.  

C. Optimal Topologies of Steel Structural Systems 
The best design concepts shown in Figure 5 were also analyzed qualitatively for changes in their topologies 

occurring when the importance of each of the two objectives was modified.  Figure 6 shows the topologies of the 
structural systems associated with approximate Pareto front which was discussed in the previous section. 

Figure 6 clearly shows that there are significant qualitative differences among the topologies of the structural 
systems located in various parts of the Pareto front.  The leftmost design in Figure 6 corresponding to the region of 
the Pareto front with the smallest horizontal displacements and the largest total weight exhibits dramatically 
different structural shaping pattern than the second design shown to the left.  In the former case, a fairly uniform 
pattern of K bracings can be identified with occasional occurrences of X bracings.  In the latter case, wind bracing 
elements appear only occasionally and the stiffness of the structural system is provided by the increased cross-
sections of beams and columns.   The three rightmost designs in Figure 6 are again different than the previously 
described designs.  Here, combinations of relatively large numbers of X and K bracings can be identified.  The 
topologies of the three rightmost design concepts are much more similar than the leftmost designs. 

When we compare the design concepts shown in Figure 6 to the ones generated in the design experiments in 
which the total weight of the structural system was used as the only objective and the maximum horizontal 
displacement was imposed as a constraint (see Figure 7), we can identify significant qualitative and quantitative 
differences.  The designs shown in Figure 7 are almost 50% heavier than the rightmost designs shown in Figure 6.  
At the same time they exhibit substantially smaller (also by about 50%) horizontal displacements.   

The quantitative characteristics of the structural systems shown in Figure 7, i.e. their total weights and the 
maximum horizontal displacements, show that these designs are located close to the central region of the Pareto 
front. 

 

Figure 6. Topologies of the optimal structural systems associated with the approximate Pareto front. 
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VI. Conclusion 
Research reported in this paper is the continuation of the previous work on evolutionary optimization of steel 

structural systems in tall buildings. Here, the preliminary results are provided concerning the use of a simple 
multiobjective evolutionary algorithm. The initial findings are encouraging and provide new insights and broader 
understanding of this complex structural design problem.  

The conducted research will be continued.  Specifically, more advanced multiobjective evolutionary algorithms 
will be implemented and applied to this complex design problem.  Also, the shape of the Pareto front in this two-
objective design performance space will be further investigated. 

 
Figure 7. Topologies of the optimal structural systems generated in the single-objective design experiments. 
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Appendix 
In this appendix, a set of 12 design concepts of steel structural systems in tall building is presented.  These 

designs were used as initial parents in the design experiments reported in this paper.  The two values placed below 
each design represent the total weight of the structural system (top) and its maximum horizontal displacement 
(bottom) calculated using the first-order structural analysis. 
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