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ABSTRACT 

 

 

IMPROVED SPACE TARGET TRACKING THROUGH BIAS ESTIMATION FROM 

IN-SITU CELESTIAL OBSERVATIONS 

 

Thomas M. Clemons III, PhD 

George Mason University, 2010 

Dissertation Director: Dr. KC Chang 

 

This dissertation provides a new methodology of using star observations and advanced 

nonlinear estimation algorithms to improve the ability of a space based Infrared tracking 

system to track cold body targets in space.  Typically, the tracking system consists of two 

satellites flying in a lead-follower formation tracking a ballistic or space target.  Each 

satellite is equipped with a narrow-view IR sensor that provides azimuth and elevation 

measurements to the target.  The tracking problem is made more difficult due to a 

constant, non-varying or slowly varying bias error present in each sensor‟s line of sight 

measurements.  The conventional sensor calibration process occurs prior to the start of 

the tracking process and does not account for subsequent changes in the sensor bias.  This 

dissertation develops a technique to estimate the sensor bias from celestial observations 

while simultaneously tracking the target.  As stars are detected during the target tracking 

process the instantaneous sensor pointing error can be calculated as the difference 

between a measurement of the celestial observation and the known position of the star.  



 

 

The system then utilizes a separate bias filter to estimate the bias value based on these 

measurements and correct the target line of sight measurements.  The study develops and 

compares the ability of three advanced nonlinear state estimators:  A Linearized Kalman 

Filter; an Extended Kalman Filter; and an Unscented Kalman Filter, to update the state 

vector.  The bias correction-state estimation algorithm is validated using a number of 

scenarios that were created using The Satellite Toolkit
©

.  The variance of the target 

position error resulting from the nonlinear estimation filters is compared to the posterior 

Cramer-Rao lower bound and a filter consistency check.  The results of this research 

provide a potential solution to sensor calibration while simultaneously tracking a space 

borne target with a space based sensor system. 
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1. INTRODUCTION 

 

In this dissertation we provide a new methodology of using star observations and 

advanced nonlinear estimation algorithms to improve the ability of a space based Infrared 

tracking system to track cold body targets in space.  The methodology uses the stars seen 

in the sensor field of view to estimate the sensor‟s bias and calibrate the sensor while 

simultaneously tracking the target.  Once bias error is removed from the target 

measurement an advanced nonlinear estimation filter improves the target state vector 

estimate.  

1.1. Motivation 

Missile defense and space situational awareness are becoming critical in today‟s 

military operations and improving these capabilities is an important area of study.  One 

limitation of today‟s systems in these missions is that land based radar systems are not 

always in a position to continuously track space and ballistic missile targets.  Due to 

geographic limitations space objects and ballistic missiles are not continuously visible 

during long portions of their trajectories.  This shortfall decreases the effectiveness of 

missile defense and space situational awareness.  To help overcome this challenge 

aggressive design and testing is underway on space-based sensors that will provide 

tracking of space objects and ballistic missiles where the ground radars are not able to 

provide. 
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Using higher altitude to gain advantage in surveillance is a fundamental part of 

military theory.  Prior to the advent of flight militaries attempted to gain this advantage 

by placing observation posts on a hill or mountain side.  In the 1800‟s militaries began 

using balloons to observe enemy activities.  One of the primary purposes of the airplane 

during WWI was to act as an observation platform.  Evolution of flight led to higher and 

faster aircraft until, during the latter half of the 20
th

 century, space became the ultimate 

high ground with spy satellites providing access to denied areas for reconnaissance and 

early warning.  At the dawning of this century there is an effort to use the advantage of 

this space “high-ground” to provide tracking of other space-borne objects such as ballistic 

missiles and other satellites. 

A space-based tracking system provides many advantages for missile defense and 

space situational awareness.  As a part of a greater ballistic missile defense system of 

systems that contribute to an overall picture, an in-situ system utilizing an IR sensor will 

cover gaps in terrestrial radar coverage, allow interceptors to engage enemy missiles 

earlier in their trajectories, discriminate between warheads and decoys, and provide 

warhead hit assessment.  However, systemic errors in sensing systems hinder accurate 

threat identification and target location, and, in this way, the space-based tracking 

systems present some unique challenges. 

An example of such a system is the Missile Defense Agency‟s Space Tracking and 

Surveillance System (STSS).  The STSS test bed, recently launched in September 2009, 

consists of two spacecraft in a lead/trail configuration in the same low earth orbit (1000 – 

1500 km).  The STSS will test the ability of tracking threat missiles against the cold 
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background of space, one of the biggest challenges of ballistic missile defense.  To 

accomplish this mission, each spacecraft will consist of three main components: a wide-

view acquisition sensor, a narrow-view tracking sensor, and a signal and data processor 

subsystem. 

In a ballistic missile tracking scenario, the wide-view acquisition sensor provides 

high-resolution horizon-to-horizon surveillance capability to detect an enemy ballistic 

missile just after launch - when its rocket engines are burning hot.  The STSS may also 

receive cues from other sensors in the missile defense architecture.  Once the enemy 

missile has completed its boost phase and passed into its midcourse phase, the narrow-

view tracking sensor will pick up the threat and follow it through the cold vacuum of 

space.  Even though a midcourse phase ballistic missile will not have heat producing 

rocket plumes, the cryogenically cooled narrow-view tracking sensor will detect the 

thermally dim warhead [1].  In a space situational awareness scenario, the STSS will use 

externally provided ephemeris data to direct the narrow-view sensor for target detection.  

Figure 1 shows how the STSS will fit into the overall Ballistic Missile Defense System 

(BMDS) architecture.  (See Appendix C for a description of basic orbits and the phases of 

ballistic missile flight). 

1.2. Significance of the Problem 

In addition to the tasks listed in Figure 1, to accurately track and report targets the 

sensing spacecrafts and BMDS must also perform the following functions: 

 Transfer tracks from the wide-view acquisition sensor to the narrow-view tracking 

sensor. 
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 Associate tracks from other elements of the BMDS including Space Based 

Infrared Sensor (SBIRS) system and Defense Support Program (DSP) spacecrafts 

with its own tracks. 

 Estimate and remove bias errors inherent in the spacecraft and its sensor (sensor 

calibration). 

 Provide a quantitative measure of the track quality through covariance data. 

 

 
Figure 1. The Space Tracking and Surveillance System as part of the BMDS architecture 

[2]. 

 

Of the items listed above, sensor calibration is a common requirement to adequately 

perform the others and is an area of limited research.  Bias error in a spacecraft and 

sensors can result from a number of different sources, including: 

 Errors in spacecraft position  (spacecraft navigation bias)  
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 Errors in spacecraft attitude (wheel assembly controller error, coordinate system 

translation round-off error) 

 Errors in sensor calibration (residual pointing error, degradation of sensor 

alignment) 

 Errors in timing caused by bias in the clocks of the sensors 

An analysis of sensor pointing and timing bias contributions to errors in target 

location is shown in Figure 2 and Table 1 for a nominal scenario.  Here we see the 

magnitude of the mean error from the true target position caused by bias error.  The plot 

shows the mean error over time for four constant bias values in the sensor azimuth 

reading of the lead satellite in a typical tracking scenario.  In general, as bias increases, 

the position error of the target increases proportionally to the range from the target. 

 
Figure 2. Mean error of target position for .02, .2, and 2 mrads bias error.   

(Sensor error = 10 rad, Process error = 10 meters) 
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For the nominal scenario Table 1 provides a comparison of error measurements for 

various values of bias and filter sensor error.  As sensor error increases it becomes the 

dominating factor. 

 

Table 1. Mean error in target position for various bias and sensor noise values. 
Bias s = 5 rad s = 10 rad s = 20 rad s = 1mrad 

None 21.6 m 33.8 m 62.2 m 3.01 km 

.02 mrad 42.5 m 49.6 m 72.6 m 3.01 km 

.2   mrad 373.6 m 374.5 m 377.5 m 3.02 km 

 2   mrad 3.72 km 3.72 km 3.72 km 4.72 km 

 

To explore the effect of timing error, a typical delay of 10 ms in the first satellites 

measurements was introduced.  Table 2 shows the effect of this error compared with the 

error from Table 1.  It is seen here that timing bias error increases the position error, but 

to a lesser extent than bias in the observation. One can see that for a given bias error, the 

timing bias has less effect than an increased measurement angle bias. 

 

Table 2. Mean error in target position for various bias errors with constant sensor timing 

and position error. 

Bias s = 10 rad t = 10 ms 

None 33.8 m 61.6 m 

.02 mrad 49.6 m 66.1 m 

.2   mrad 374.5 m 383.7 m 

 2   mrad 3.72 km 3.73 km 

 

These numbers show that beyond the most minor sensor bias error tested (.02 mrad) 

the significance of the error in target position is of great concern to the ability of the 

system to reliably locate the target.  The ability of the missile defense system to 

accurately map the target cluster for the warhead, or to associate tracks, would be 
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hampered by this magnitude of error.  Additionally, in a space situational awareness 

scenario, a 375 meter error in the case of .2 mrad sensor bias may result in a miss-leading 

conjunction analysis that could lead to a satellite collision. 

Figure 3 shows the results from an attempt to use nonlinear estimation to improve the 

target state estimate without correcting for bias error.  The black line represents the target 

position error without bias correction or nonlinear estimation.  The colored lines 

represent the error after filtering the uncorrected observations.  As one can see there is 

some improvement in target tracking accuracy, but significant error still exists.  For 

instance, the EKF and UKF begin to improve the target position around the 600 and 1200 

second points, but eventually degrade back toward the uncorrected values.  The LKF 

provides only marginal improvement in reducing the magnitude of the error variance.  

  
Figure 3. Mean error of target position using various nonlinear state estimators without 

bias correction as compared to non-corrected, non-filtered measurements. 
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1.3. Purpose of the Study 

The current method of calibrating the narrow view sensor occurs prior to target 

tracking.  Sometime prior to starting the tracking process the narrow view sensor is 

directed to focus on an identified star.  The system then attempts to measure and correct 

the bias present at that time.  Once this calibration is complete, the sensor begins tracking 

the target with no further updates to the bias measurements.  Some systems perform this 

calibration on a periodic basis. These methods are relatively short-lived and do not 

account for continued changes to the sensor bias due to effects such as heating and 

cooling of the spacecraft. 

The purpose of this dissertation is to assist in the improvement of space-based 

tracking of space objects, particularly ballistic missiles in un-powered mid-course phase 

of flight and unidentified satellites and space debris that could lead to collisions with 

other active satellites.  To achieve our goal, we develop a methodology that will 

simultaneously track a target and correct for bias errors.  Specifically, this research was 

conducted to answer the following questions: 

1. How do error sources affect target tracking? 

2. Can bias error be removed through background star observations? 

3. Which state of the art methodology will provide best estimation of target state 

and accommodate sensor bias error? 

4. What is the performance bound of the algorithm under the influence of 

various degrees of biases? 
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1.4. Theoretical Framework 

A single-target tracking IR system will typically attempt to keep the target centered of 

the sensor field of view and provide measurements of target line of sight (LOS) angles to 

an algorithm that estimates a target state such as position, velocity, and acceleration. 

Limitations on using infrared sensors for tracking include: 1) false target detection 

requires resolution of „ghost‟ tracks; 2) very accurate sensor pointing is required for 

single-target tracking and sensor and platform bias error greatly affect target state 

determination; and 3) bearing only measurements make it difficult to determine target 

state and changes to the state vector. Methods to enhance sensor LOS accuracy and 

resolution of target state dynamics will minimize track uncertainties and enhance track 

state estimation. Systemic errors in sensing systems hinder accurate threat identification 

and target location, in this way the space based tracking systems present some unique 

challenges. 

Typically two sources of error exist in a target tracking problem.  The first is error 

due to random processes in the space tracking system and are commonly called system 

dynamic and measurement error.  These errors are typically Gaussian with zero mean and 

certain variance.  The second source is a systemic error that causes all measured values to 

deviate from the true value by a consistent or slowly varying amount in a constant or 

near-constant direction.  This error is what we refer to as the bias error. 

Both these errors, if uncorrected or insufficiently characterized, can lead to significant 

deviations in the perceived location of the target object.  Bias error in a spacecraft sensor 

can result from a number of different sources include those discussed in the previous 
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section.  In a missile defense scenario, an interceptor must know the location of the target 

with sufficient accuracy so the onboard terminal homing sensor can locate the target 

within its field of view. When one considers that the target and sensor are both moving at 

orbital speeds this becomes a stressing problem. 

 Using a space-based IR system to track another space object involves the following 

areas of concern: 

1. Accurate spacecraft position determination:  The space tracking mission requires 

real-time knowledge of spacecraft position and the baseline between two or more 

spacecraft for precise formation of target location. 

2. Accurate spacecraft attitude determination:   The attitude control system (ACS) of 

the spacecraft must know the present attitude of the spacecraft to allow 

transformation of the sensor azimuth and bearing measurements into a common 

coordinate frame for calculation of the target position. 

3. Sensor pointing accuracy:  The sensor pointing control requirements are driven by 

the need to ensure that a target warhead falls within the field of view of the narrow-

view sensor and that the sensor provides true, unbiased, error-limited bearings to 

the target.  The sensor pointing accuracy is a function of the spacecraft pointing 

accuracy described above, the calibration and alignment of the sensor, and changes 

caused by spacecraft dynamics such as thermal distortion, flutter and vibration. 

4. Modeling of spacecraft dynamics:  Effects on the spacecraft from various sources 

such as thermal distortions in the bus, slew induced structural vibration, reaction 

wheel assembly (RWA) controller error, RWA-induced vibration, thermal flutter, 
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and others dependent upon spacecraft design.  In general these effects can be 

considered sources of error in the pointing accuracy of the payload sensors.  Efforts 

are made in design of the spacecraft to reduce these effects to very small values.  

However, residual effects might not be insignificant.  These errors are assumed to 

be slowly varying with a zero mean and part of the residual errors they affect. 

5. Coordinate frame translation:  There are a number of coordinate frames involved in 

tracking targets with a space-borne sensor system [3].  A typical observation by the 

spacecraft sensors will require a number of transformations through these 

coordinate systems to arrive at a common position in the inertial reference frame.   

Transformation between these reference frames result in nonlinearities and round-

off errors. 

1.5. Assumptions and Limitations 

This study is limited to characterizing and correcting errors associated with targets 

that are already in track.  It does not attempt to deal with the problem of target detection, 

track initiation, track identification, or transition from detection to tracking.  We assume 

that the target is already in track and that it was identified as a target of interest.  Further, 

although the system is part of a greater missile defense and space situational awareness 

system, in this study the system does not include tracking data from other sensors such as 

terrestrial radars.  Finally, although the results could represent any bearing only tracking 

system, the algorithms and techniques in this study are optimized for a spacecraft 

mounted sensor tracking ballistic missiles or other space objects. 



 

12 

As mentioned above, errors in satellite attitude will contribute to target location error 

in much the same way as bias error.  This occurs through the coordinate transformations 

required to transfer observations from the sensor frame into the inertial reference frame.  

However, attitude control error detection and correction has been studied extensively and 

control systems using gyro rate measurements along with star sensors provide 

outstanding correction to attitude errors such that their contribution to this problem is 

assumed to be negligible. 

1.6. Dissertation Organization 

This dissertation presents the results of the study as follows.  Chapter 2 discusses the 

current state of the art and literature relevant to our research.  The chapter consists of five 

sections. The first section provides a general overview of the target tracking and 

estimation including a description of the Kalman Filter and some nonlinear techniques. 

The second is an overview of sensor fusion.  The third section reviews some bearing only 

tracking methodologies applicable to the space-based tracking problem.  The fourth 

section focuses on bias estimation and correction.  The chapter is concluded with a 

description of the coordinate frames used in the study. 

Chapter 3 is an outline of our approach to solving the problem of improving space 

based target tracking.  We begin with a broad overview of the six steps in our approach to 

developing the bias correction and track improvement algorithms.  The second section 

provides an overview of the simulation models used to test the algorithms. 

Chapter 4 provides the bias measurement and correction algorithm development and 

testing.  First is an explanation of the impact that bias plays in space based target tracking 
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with results from the first phase of the study.  The second section details the function of 

the IR sensor.  Next we develop the methodology used to determine if a star observation 

is expected and how the error is measured using the stars.  In section 4 a bias model is 

constructed and a comparison of solutions to finding the bias estimate from the bias 

measurements is undertaken using a simple sample and hold method and an Extended 

Kalman Filter.  The bias estimate is then used to correct the observations.   

Chapter 5 focuses on using these corrected observations to obtain a refined target 

estimate through three methods of nonlinear target state estimation; a Linearized Kalman 

Fitler (LKF), an Extended Kalman Filter (EKF), and an Unscented Kalman Filter (UKF).  

The theory behind each of these filters is developed and tested with a comparison 

scenario. 

Chapter 6 focuses on performance analysis of the tracking algorithm.  It reviews two 

theoretical performance measures and provides an analysis of our system in performing 

improved target tracking.  The second part of the chapter discusses the experimental 

design as well as our results.  Twelve different scenarios involving missile and satellite 

tracking validate the developed methodology.  Results for these scenarios are 

summarized and compared. 

Chapter 7 concludes the study with a summary of the key insights learned as well as 

future work. 
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2. STATE OF THE ART 

 

From the early sixties there has been increasingly steady progress in the tracking of 

orbital spacecraft and ballistic objects using both radar and optical systems.  Most 

previous study involved the use of terrestrial systems for civil and military applications.  

The civil space program required a world-wide network of tracking stations to maintain 

inventory of satellites and manned spacecraft.  However, the Cold War with the Soviet 

Union and the treat of Inter-Continental Ballistic Missile (ICBM) attack lead both 

countries to develop anti-ballistic missile defenses and warning networks.  The efforts 

made in both these areas contributed to significant advances in tracking capability.   Most 

of this work was in tracking of ballistic missile re-entry vehicle (RV), or warhead, and re-

entry of satellites and debris.  RV tracking involves tracking a target as it departs the exo-

atmospheric phase of flight and enters the drag-inducing atmosphere where deceleration 

from aerodynamic effects takes over [4].  In this study, our concern is with tracking while 

the target is still in the exo-atmosphere where the atmospheric effects are small and the 

target is difficult to track. 

2.1. Kinematic State Estimation 

The objective of target tracking is the collection of “sensor data from a field of view 

containing one or more potential targets of interest and then partition the sensor data into 

sets of observations, or tracks that are produced by the same sources.” [5] Modern sensor 
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systems include electro-magnetic (such as radar and radio direction finding), electro-

optical (visual and infrared (IR)), and acoustic (such as sonar).  These systems can be 

either single-target trackers, or multiple-target trackers as required.  A single-target 

tracking IR system will typically attempt to keep the target centered of the sensor field of 

view and provide measurements of the line of sight (LOS) angles to an algorithm that 

attempts to estimate the target state such as position, velocity, and acceleration [5].   

Limitations on using infrared sensors for tracking include: 1) false target detection 

requires resolution of „ghost‟ tracks, 2) very accurate sensor pointing is required for 

single-target tracking sensors [5] and sensor and platform bias error greatly affect target 

state determination, and, 3) bearing only measurements make it difficult to determine 

target state and changes to the state vector.  Methods to enhance sensor LOS accuracy 

and resolution of target state dynamics will minimize track uncertainties and enhance 

track state estimation. 

State estimation of a missile target has been the subject of intense study for over four 

decades.  Tracking filters of various types have been used for this purpose since the early 

days of the discovery of the Kalman Filter [6].  A good overview of tracking techniques 

as they apply to ballistic missile targets was presented by Farina et al in [7].  They 

specifically used the Kalman Filter, Extended Kalman Filter, and Particle Filter to the 

problem of a ballistic object during reentry phase of flight using radar measurements.  In 

some cases, the problem is the subject of large sections of numerous texts including [5] 

and [8, 9]. 



 

16 

2.1.1. The Kalman Filter 

The Kalman filter is the optimal linear filter for recursive estimation of a state in the 

presence of Gaussian noise [10].  The discrete Kalman filter begins with a model of the 

system and measurement processes.  In its generalized form, the system model is 

described by: 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐺𝑤𝑘     (2-1) 

where xk is the state vector at time k, A is the state transition matrix, u is an external force 

acting on the system, and w is the white process noise with covariance Q.  The 

measurements of the system are modeled by: 

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘 .       (2-2) 

where kv is the white measurement noise with covariance R. 

Given a set of initial state conditions x0, and an initial state covariance matrix P0, a 

prediction of the next state and its covariance is given by 

𝑥 𝑘|𝑘−1 = 𝐴𝑥 𝑘−1|𝑘−1     (2-3) 

𝑃𝑘|𝑘−1 = 𝐴𝑃𝑘−1|𝑘−1𝐴
𝑇 + 𝑄.    (2-4) 

The state estimate is updated by  

𝑥 𝑘|𝑘 = 𝑥 𝑘|𝑘−1 + 𝐾𝑘 𝑧𝑘|𝑘−1 − 𝐻𝑘𝑥 𝑘|𝑘−1    
(2-5)

 

𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1 − 𝐾𝑘𝐻𝑃𝑘|𝑘−1    (2-6) 

Where K is the Kalman gain matrix 

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻
𝑇 𝐻𝑃𝑘|𝑘−1𝐻

𝑇 + 𝑅 
−1

.        (2-7) 
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However, because the space tracking problem is nonlinear both the state and 

measurement models, the Kalman Filter is not the optimal filter for this problem.  

2.1.2. The Linearized Kalman Filter (LKF) 

The conversion of object measurements from one coordinate system to another requires 

the conversion of the measurement equations from a nonlinear format to a linear format, 

much the same way one transforms spherical coordinates into Cartesian coordinates.  

This conversion effort essentially linearizes the measurement error covariance matrix and 

requires that the matrix be conditioned by the coordinate transformation.  This 

methodology is further explored in section 3.7.1 

2.1.3. The Extended Kalman Filter (EKF) 

The EKF is widely used in nonlinear vector-observation such as the system explored 

here.  The EKF approach applies the standard Kalman Filter (for linear systems) to 

nonlinear systems with additive white noise by continually updating a 

linearization around the previous state estimate, starting with a given initial estimate.  In 

this way the nonlinear equation is linearized by ignoring or approximating high-order 

terms.  This is accomplished through partial derivatives of the state transition matrix f(x), 

and the measurement matrix h(x) with respect to the state x, in an attempt to linearize the 

nonlinear dynamic observation equations.  The derivative is performed at each time step, 

k, resulting in the Jacobian matrix, designated F(xk) and H(xk).  Once the partial 

derivatives are found, standard Kalman Filtering procedures are used to determine the 

predicted state and its covariance.  
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2.1.4. The Unscented Kalman Filter 

The concept behind the UKF algorithm is the estimation of the mean and covariance 

through propagation of the state and covariance matrix and a state update with 

observation information, similar to the standard Kalman filter [11].  However, in the 

UKF, a set of sigma points, approximating the distribution of the state, are propagated 

through the state transition and observation functions and averaged to find a new mean 

and covariance.  In this way, the UKF avoids the requirement to calculate the Jacobians 

and achieve second-order approximation of the nonlinear equations.  Figure 4 shows a 

comparison of EKF and UKF estimation filters. 

 

 
Figure 4. Comparison of estimation filters in a nonlinear system. 
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2.2. Sensor Fusion 

Another study exploring nonlinear estimation for ballistic missile tracking looked at 

fusing tracks from multiple sensors [12].  This fusion technique is applicable to the 

current problem since there may be two or more satellites in the tracking architecture, 

which would be centralized or distributed.  Two basic forms of sensor fusion are fusion 

with and without feedback.  In our system we assume that the sensor fusion is occurring 

far from the sensor satellites and that feedback will not occur.  Additionally, sensors such 

as radars could be included into the fusion architecture as they are available to provide an 

even more refined picture. 

2.3. Other Linear Least Squares Estimation 

There are a number of studies that used iterative versions of a linear least square 

estimation for target tracking.  One such technique for angle only measurements of 

ballistic missiles in exo-atmospheric flight is presented in [13].  In that study Chang 

determined that the least square filter better achieves the Cramer-Rao bound than the 

EKF.  The iterative algorithm processes a batch (N points) of data in an attempt to 

minimize the weighted least square error.  In this way it is different from the recursive 

EKF.  This technique is computationally difficult to apply due to the iterative nature of 

the problem and the sensitivity of the initial guess. 

Murali Yeddanapudi et al in [14] also studied state estimation of a target in exo-

atmospheric flight using space-based line of sight measurements.  Their effort uses a 

more sophisticated Levenberg-Marquardt iterative algorithm to estimate the initial state 

from LOS observations in place of a simpler Gauss-Newton algorithm, which is limited 
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by accuracy of an initial guess of the target state.  This algorithm uses a six-dimensional 

state vector and is limited in that it assumes there are no accelerations other than gravity 

acting on the target. 

Limitations of the Extended Kalman Filter in Target Motion Analysis (TMA) for 

general bearings-only tracking applications are explored by Ailada in [15].  His research 

determined that interaction between bearing inaccuracy can cause covariance matrix 

collapse and subsequent filter divergence.  He suggested that substantial improvements in 

filtering stability can be realized by employing alternative initiation and relinearization 

procedures.  He suggests several methods to decouple the covariance computations from 

the estimated state vector to prevent feedback and amplification of errors.  The effect of 

his proposal forms a pseudolinear TMA algorithm.   

Alfonso Farina in [16] and Rao in [17, 18] present some fundamental target tracking 

algorithms required for estimation of target position and velocity for bearings only 

tracking.  The use of Maximum Likelihood estimation is used in [19] to find target 

acceleration and position and velocity estimation for bearings only observations from a 

single observer are found in [20] where a linear least squares estimator with a closed-

form solution was proposed but results in severe bias problems.  While the techniques 

used in [15-20] are related to this study, they all deal with tracking non-maneuvering 

targets in two dimensions in an undersea environment using Target Motion Analysis 

techniques.  The observer must make a number of significant maneuvers to change aspect 

and target bearing rate to achieve stable results.  This is not the case with space systems 
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and limits their applicability to our problem; however, they do provide some useful 

insight into the mathematical models involved.  

2.4. Bias Estimation and Correction 

 There are several methods of bias correction in the literature that apply to tracking 

systems.  A particular problem involves estimating the state of a linear dynamic system 

influenced by a constant, but unknown bias vector.  As long as the bias is measurable in 

some respect, a method of handling this problem is through state augmentation, where the 

bias vector is appended to the state vector.  This method, however, may result in 

computations involving large matrices if the number of bias terms is greater than the 

number of state terms with the inaccuracies associated with computations of large 

matrices.  Another technique to estimate a state affected by a bias vector separates the 

estimation of the bias from the estimation of the dynamic state in a two-stage estimation 

filter as described in [21].  Therein, the author, Bernard Friedland, provides a method of 

determining the state of a linear process in the presence of a constant, but unknown bias 

vector.  In this technique, two separate, uncoupled, Kalman Filters run in parallel to 

generate the estimate of the “bias-free state” and the bias estimate.  The estimated state is 

then corrected using the simultaneously calculated bias estimate.  This bias estimation 

concept is further explored by Friedland and others in [22-25].  The first paper modifies 

the process to allow infrequent observations of the bias.  The second and third papers 

consider the case of a slowly varying, Gaussian, white noise random bias.  The final 

paper, Friedland looks at bias correction when there are noise-free measurements.  These 

bias correction techniques appear to be applicable for systems where the bias operates on 
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the state vector in some additive manor, such as attitude control or inertial navigation 

systems.  Although these systems are present in the satellite tracking problem we are 

considering, we are more concerned with correction of bias in the observations.   

The correction of bias in space-based tracking utilizing two satellites in formation is 

similar to the sensor registration problem associated with more traditional terrestrial 

based radar multi-sensor integration problem.  There has been a significant amount of 

work in this area and a few recent studies provide some related concepts [see 7, 26-30].  

Of these, two techniques for bias modeling and estimation for airborne Ground Moving 

Target Indicator radar sensors are given in [29] and [30].  In the first, the authors 

incorporate a bias filter that uses an EKF bias estimation algorithm that takes the 

measurements from the Multiple Hypothesis Tracker (MHT) detections of „static‟ 

reference point to estimate and correct the biases associated with platform location, 

heading, and velocity errors.  The second paper uses non-moving static targets of 

unknown locations to correct for sensor platform location errors.  Bar Shalom in [27] 

develops an algorithm for sensor registration of two 3-D sensors prior to track 

integration.  Although the paper provides worthwhile mathematical development of 

sensor/target registration geometry, its application is limited to the special case of closely 

located sensors (on the same platform) with no position error.  In addition, the sensors 

must be able to correlate the target being used for bias estimation, which may not be the 

case in a multi-target environment.  
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2.5. Coordinate Frame Transformation 

There are several other studies that involve correction of error bias that are unrelated 

to missile tracking, yet provide beneficial insight into the problem.  Foremost among 

these is the paper by Kistosturian in [31] where he describes in detail the errors 

associated with a spacecraft antenna pointing system.  He also discusses the many 

coordinate frame transformations required in the tracking of space based objects.  The 

goal is to transform the measured azimuth and elevation of the target as read by the 

tracking sensor into a common reference frame that can be used by the system to locate 

the target and fuse that location estimate with other systems.  The errors in the spacecraft 

attitude and sensor pointing angles are transformed along with the observation as a 

function of an incremental rotation matrix.  Spatial orientations of coordinate frames 

associated with a satellite tracker and its orbit are defined by their respective coordinate 

transform matrices as explained in [31] for a communications antenna.  We modify them 

here for the case of an optical sensor.  Their definitions and transformation matrices are: 

a. Earth Center Inertial (ECI) Coordinate Frame (I-Frame):  A non-rotating, 

earth-based coordinate frame fixed at the center of the earth with its X-axis 

defined by a celestial point in space.  This system provides the frame for 

celestial  observations and is used as the baseline coordinate frame that all 

others are referenced to.  Its UX,I /U Y,I/UZ.,I  unit vectors point as follows: 

UX,I    :  in the direction of the vernal equinox or first point of Aries. 

UZ.,I   :   in the direction of the Earth‟s North Pole 

UY,I   = UZ.,I  x UX,I    
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b. Orbital Coordination Frame (O-Frame):  Also known as the Peri-focal 

coordinate frame, the orbital coordinate frame is centered on the satellite center 

of gravity and has the corresponding unit vectors defined as follows: 

UZO,I   :   to the center of the Earth 

UYO.,I  :   opposite to the direction of the satellite angular momentum 

UXO,I  =  UYO.,I  x UZO,I   (tangential to the orbit in direction of the satellite 

velocity) 

The orbits associated with space tracking systems are explained in Appendix C. 

Orbital Elements: The location of the satellite in the orbit is determined by six 

classical orbital elements defined as follows: 

1. a, semi-major axis - a constant defining the size of the orbit 

2. e, eccentricity – a constant defining the shape of the orbit.  A circular orbit has 

e=0.   

3. i, inclination – the angle between the equatorial plane and the orbital plane.  

4.  longitude of the ascending node – the angle, in the equatorial plane 

between the X-axis and the point where the satellite crosses through the 

equatorial plane in a northerly direction. 

5. argument of periapsis – the angle, in the orbital plane, between the 

ascending node and the periapsis point, measured in the direction of the 

satellites motion. 

6. p, time of periapsis passage – the time when the satellite was at periapsis. 
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From these elements the transformation matrix from the O-Frame to the I-Frame 

is computed [32].  

𝐶𝑂𝑟𝑏
𝐸𝐶𝐼 =  

𝑅11 𝑅12 𝑅13

𝑅21 𝑅22 𝑅23

𝑅31 𝑅32 𝑅33

     (2-8) 
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c. Satellite Body Coordinate Frame (B-Frame):  This coordinate frame has the 

same origin as the O-Frame, but is fixed to the body of the satellite.  It rotates 

about the origin in accordance with the satellite attitude.  Typically the attitude 

of the B-Frame referenced to the O-Frame is defined by roll, pitch, and yaw and 

is controlled by the satellite‟s attitude control system.  The rates of rotation are 

measured by the rate gyros fixed to the satellite body.  

d. Sensor Coordinate Frame (S-Frame).  Equivalent to as the A-Frame in [31], the 

S-Frame is the sensor coordinate frame.  It is the reference frame to measure the 

sensor pointing angles, elevation and azimuth.  Generally it is fixed to the B-

Frame and its transformation matrix is computed from its location and 

orientation of the sensor support structure on the satellite body. 



 

26 

e. Telescope Pointing Frame (T-frame).  The T-Frame represents the line of sight 

(LOS) of the narrow view sensor.  The telescope ZT unit vector, UT,Z, points in 

the same direction as the sensor boresight axis.  When azimuth and elevation are 

zero it aligns with the S-Frame. Target locations within the field of view of the 

sensor are computed based on this coordinate frame. 

f. The Earth-Centered, Earth-Fixed Coordinate Frame (ECEF).  A geocentric 

system that rotates with the earth.   This system is usually used to represent 

terrestrial-based sensor locations and to report target position for fusion with 

other sensor. 

g. Satellite Coordinate System.  The coordinate frame with respect to which the 

sensor pointing requirements are derived.  This system moves with the satellite.  

When multiple spacecraft are used to determine target position, each spacecraft 

has its own coordinate frame. 

h. Topocentric Horizon Coordinate System.  This system is typically used to 

represent the location of a target with respect to a terrestrial sensor system and 

is usually translated into Cartesian coordinates from azimuth and elevation 

angles. 
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3. OVERALL APPROACH TO THE PROBLEM 

 

The goal of this research is to develop a methodology to improve the target tracking 

capability of a space-based sensor through dynamic bias correction.  The combined 

tracking and error correction algorithm will 1) measure and estimate the sensor bias, 2) 

correct this bias, 3) improve track estimation quality, and 4) provide a comprehensive 

covariance of the target state estimate.  This chapter develops our approach to this 

problem.  As a sensor tracks a target against the cold background of space, the narrow-

view tracking sensor will occasionally detect background stars in its field of view.  These 

stars can be used to measure the observation error associated with the sensor.  This error 

measurement can then be used to calibrate the sensor while tracking is occurring to 

improve the target state estimate. 

3.1. Bias correction algorithm development 

Figure 5 presents a nominal architecture to accomplish improved target tracking 

through bias correction and nonlinear state estimation.  The space based IR tracking 

system comprises one or more tracking spacecraft and a ground processing system.  The 

individual spacecraft provides distributed sensor readings to a centralized bias correction 

and state estimation processing system on the ground.  A focal plane array captures 

infrared energy and an onboard processor performs pre-processing through threshold 

detection.  The signals that exceed the threshold are reported to the ground processor in 
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an object sighting message (OSM).  The satellites also provide other data required to 

determine target location.  This data includes spacecraft position determined by onboard 

Global Positioning System GPS and inertial navigation system, the spacecraft attitude, 

and timing data.  The ground processor uses this information to estimate the sensor error 

and target position. 
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Figure 5. Nominal target estimation and tracking architecture 

 

The system designed to accomplish this goal performs the following steps: 

1. Obtain Object Sighting Messages (OSM) from the sensor.  The sensor system or 

a pre-processing system on board the sensing satellite performs pre-analysis of 

the sensor detections and eliminates detections that do not meet threshold 

requirements.  Detections of the target and other light sources that meet this 
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threshold are provided along with spacecraft attitude and position in an OSM to 

the ground station.   

2. Determine background star observations.  Prior to receiving a new object 

sighting message, the ground processor will attempt to determine if a star will 

be within the narrow sensor field of view.  Highly accurate star maps consisting 

of tens of thousands of stars are available for use by the attitude control system 

[33].  The track processing system utilizes this catalog of stars within a star map 

database that identifies each star‟s magnitude and absolute location relative to 

the inertial reference coordinate system.  If needed, star intensity is available to 

differentiate between stars or other objects.  

3. Measure and estimate sensor bias.  These true star positions are compared 

against the observations captured by the tracking sensor.  If a star is expected, 

the processor will associate one of the objects reported in the object sighting 

message.  The difference in the expected vector to the star and the measured 

observation represents the sensor bias.  Correlations between stars and 

observations are made using a simple proximity association between the 

expected bearing and the star location.  Adjacent stars should not cause 

confusion since the separation between the stars in the database is expected to 

be greater than the maximum sensor bias. 

4. Correct observation vector.  The individual sensor bias error observations are 

used to estimate the sensor bias. Two methods estimate sensor bias were tested; 

a sample and hold technique that used the last measured bias to correct the LOS 
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vector until a new measurement is made, and an Extended Kalman Filter (EKF) 

approach that attempts to provide an estimate of the bias in between bias 

measurements. If no star is detected in the field of view during a particular time 

step the last bias estimate is used until the next star is sighted when the bias 

error estimate can be updated. The bias error estimate is then used to correct the 

LOS vector to determine target location. 

5. Determine target location.  By combining target bearing with corrected LOS 

vector from another space sensor we can determine target locations.  With the 

exception of the LKF that uses a intersection of the two observation vectors to 

determine final target position estimate, independent target estimates from the 

two individual sensors are fused to provide a refined estimate. 

6. Post correction state estimation.  As further observations are made the stereo 

track processor uses nonlinear estimation filter to propagate the target 

covariance matrix and estimated state vector. Following correction of the sensor 

observations of the target a nonlinear filter is used to determine the estimate of 

the target state and covariance.  In this study we compared three different 

methodologies; a LKF, an EKF, and an UKF.  A covariance matrix is also 

calculated as part of the state vector and compared to the Posterior Cramer Rho 

Lower Bound (PCRLB).  This corrected target estimate is fed back to the 

spacecrafts for adjusting the sensor tracking calculations. 

As shown in Figure 5, each spacecraft sends an object sighting message to the ground 

processor.  The flow chart in Figure 6 breaks down the steps involved in the target 
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tracking algorithm.  These steps are those performed in the ground processing system 

described above.  The portions within the dashed lines are the steps involved in the 

approach.  As mentioned earlier, new track initiation is not considered in the research. 
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Figure 6. Bias Correction and Tracking Algorithm Flow Chart 

 

3.2. Simulation modeling 

The development and testing of dynamic bias correction and tracking algorithm 

proceeded in four phases.  Phase I tested the effect of bias on the space tracking system.  

Phase II included testing of the star detection and sorting algorithm.  The third phase 

compared the performance of the three nonlinear estimation filters following bias 

correction.  Additionally, we tested the estimator‟s performance against the Cramer-Rao 

lower bound (CLRB) and check for filter consistency.  Finally, in Phase IV we tested the 
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bias correction and tracking algorithm against a number of different long and short range 

missile scenarios and a low earth orbit satellite using two different sensor satellite 

trajectories. 

3.2.1. Satellite Tool Kit® 

The missile and satellite trajectories for all scenarios were generated using the 

Satellite Tool Kit® (STK) [34].  The STK is a MATLAB based simulator produced by 

Analytical Graphics, Inc. (AGI) that models satellite and missile orbits and trajectories to 

a very high fidelity.  The software provides users with the tools they need to perform such 

analysis with accurate modeling and visualization of missile defense systems.  Figures 7 

and 8 include screen shots of the STK application that displays some of the sensor 

satellites and ballistic missile targets used in this dissertation and a depiction of the 

scenario in three dimensions.  There are other display capabilities showing tabular and 

graphical data associated with the dynamics of the sensor/target system.  The STK 

software enables the following missile defense capabilities of the software [34]:  

 Analyze simultaneous positions, relative geometries, and attitude motion  

 Process post-burnout tracking data to predict trajectory, re-entry, and target 

coordinates  

 Measure proposed systems with physics-based tracking data simulator  

 Calculate missile intercept points  

 Design custom missiles  

 Perform automated trade studies  
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 Parametrically examine hundreds of missile trajectories reporting detection and 

tracking times from radars and other sensors. 

  

 
Figure 7. Screen shot of STK test scenario. 

 

 
Figure 8. STK 3D display of tracking scenario. 



 

34 

3.2.2. Target model 

For this study we used a predetermined scenario to aid in algorithm development and 

testing. This test scenario the target missile model represented a long range ballistic 

missile launched from Northeast Asia toward a target at the west coast of the United 

States.  The STK simulation provided ECI reference frame track data for the target 

missile.  The missile trajectory was adjusted to provide a flight time of approximately 30 

minutes.  The missile trajectory is displayed as the solid black line in Figure 9.  A number 

of other threat scenarios were used for final evaluation and performance analysis and are 

explained in Chapter 6 and shown in Appendix A. 

3.2.3. Satellite and sensor model 

The STK model provided satellite position data, attitude data (quaternions), and 

sensor to target azimuth and elevation target observation measurements for two satellites 

and their IR sensors.  The observation measurements were in reference to the satellite‟s 

instantaneous body frame attitude and were converted to the ECI frame using the satellite 

attitude quaternion measurements.  The quaternion describes the orientation between the 

ECI frame and the satellite‟s current internal attitude reference (IAR).  The two sensor 

satellites have a circular orbit of 600km altitude and 60 degree inclination.  The 

constellation is a lead-follower configuration with the trail satellite about 5 minutes 

behind.  The target launch time was selected so that the satellite sensors were able to 

follow the missile trajectory throughout most of its flight path.  These satellite orbits 

enabled maximum visibility of the missile trajectory from multiple angles.  As shown in 

Figure 9, as the sensor satellites cross the target track they experience constantly 
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changing ranges and bearings to the target, and view the target from multiple angles, thus 

the effect of multiple scenarios are included in this one instance.  Like the target model a 

number of satellite configurations and orbits were used for final evaluation and 

performance analysis and are explained in Chapter 6 and shown in Appendix A. 

 

 

Figure 9. Target and satellite trajectories 
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4. BIAS MEASUREMENT AND CORRECTION 

 

In this chapter we develop the theory and processes to use background stars in 

correcting bias error.  We begin with an overview of how bias effects target tracking 

using a space based IR sensor.  We then review how the IR sensor measures objects 

within its field of view.  In the third section we develop an algorithm to quickly 

determine if a star is observable during an observation measurement epoch.   If there is an 

observable star, we show how that star observation is transposed into the sensor reference 

frame to measure the bias.  Next we use two bias models that represent the theoretical 

observation bias and propose two methods of bias estimation, a simple sample and hold 

technique, and an EKF bias estimator.  We conclude the chapter with a comparison of 

both techniques to determine how well the celestial measurements correct the bias. 

4.1. Effect of sensor bias on target tracking 

To determine the effect of sensor bias on target tracking we made a number of 

simulation runs using various values for process, sensor, and bias error [35].  Table 3 

provides a summary of the variables explored in the simulation.   

Table 3. Research Variables 

Variable Minimum Middle Maximum 

Azimuth Bias .02 mrad .2 mrad 2 mrad 

Sensor error (s) 5 rad 10 rad 20 rad 

Process error 10 m  100 m 

Time Bias 0 sec 10 ms  

Target range 650 km  3000 km 
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The affect on target location error due to observation bias error and timing bias error 

were shown in Figure 2 of the introduction.  In this early version of testing we used a 

Linearized Kalman Filter (LKF) as a means of improving target position estimates after 

target position was found via observation vector intercepts.  The LKF is fully explained 

in the next chapter and is only used here as a starting reference.  Table 4 below provides a 

comparison of mean error measurements of target position for various values of bias and 

filter sensor variance for a process noise of 10 meters standard deviation (STD).  Results 

are shown for both the LKF and when the intercept position taken without filtering 

(represented by the No filter columns in the table).   

The most significant result is the inability of the LKF to overcome the effect of bias 

error.  As shown in the columns for s = 20 rad and 1 mrad, the filter only provides an 

improvement over the unfiltered observations when the filter variance error is of the same 

magnitude, or greater than, the bias error.  For example, with s = 20 rad, and bias = 

200 rad, we have an improvement in target error to 233.6 meters from 377.5 meters.  

This is expected since the sensor error in the LKF calculation for the Kalman gain is 

dominated by the inaccuracy of the measurement due to the bias error.  When the filter 

sensor variance is the same or greater than the bias error, the sensor variance subsumes 

the bias error in the observations and is dominant in driving the target error.  In other 

words, the filter assumes the sensor provides a better measurement than is actually 

possible. 
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Table 4. Mean error in target position for various sensor noise values. 

p=10 m s = 5 rad s = 10 rad s = 20 rad s = 1mrad 

Bias No filter LKF No filter LKF No filter LKF No filter LKF 

None 21.6 m 19.2 m 33.8 m 28.1 m 62.2 m 42.5 m 3.01 km 1.51 km 

.02 mrad 42.5 m 41.9 m 49.6 m 47.1 m 72.6 m 48.8 m 3.02 km 1.51 km 

.2   mrad 373.6 m 373.8 m 374.5 m 374.9 m 377.5 m 233.6 m 3.03 km 1.57 km 

 2   mrad 3.73 km 3.73 km 3.73 km 3.73 km 3.73 km 3.73 km 4.72 km 4.08 km 

 

To explore the effect of timing error, we introduced a 10 ms delay in the first 

satellite‟s observation time.  This result is shown along with two values for process noise 

STD in Table 5.  Here we see that process noise has little effect on the filter performance 

in cases of large bias error.  When process noise is on the order of 100 meters, the LKF 

provides no improvement over the intercept measurements.  However, timing bias error 

increases the error for both the filtered and unfiltered results.  Essentially, the timing bias 

has the same effect as an increased measurement angle bias. 

 

Table 5. Mean error in target position for constant sensor error 

s = 10 rad p = 10 m p = 100 m t = 10 ms 

Sensor Bias No filter LKF No filter LKF No filter LKF 

None 33.8 m 28.1 m 33.8 m 33.1 m 61.6 m 60.1 m 

.02 mrad 49.6 m 47.1 m 49.5 m 49.2 m 66.1 m 64.7 m 

.2   mrad 374.5 m 374.9 m 374.4 m 374.4 m 383.7 m 384.6 m 

 2   mrad 3.73 km 3.73 km 3.73 km 3.73 km 3.74 km 3.74 km 

 

We also found that bias in different sensor planes had no major effect on target 

estimation.  As seen in Figure 10, target position error remains at the same order of 

magnitude when bias is modeled in the azimuth and elevation measurements for each 

satellite in turn.  The major difference between scenarios is how geometrical 

configuration of satellite position and orientation with respect to the target affect the 
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shape of the error curves over time.  This effect also would be reflected in different 

satellite/target orientations.  

 

 
Figure 10. Mean error of target position for .2 mrads bias error in azimuth and elevation 

for each sensor. 

 

4.2. Measuring sensor line of sight  

The IR sensor consists of an optical system and a planar measurement device.  

Optical measurement is normally expressed in terms of elevation and azimuth to the 

target from some sensor defined reference point. The light from the target and stars is 

focused on the detector plane.  The focal plane and the sensor bore sight make up the 

sensor coordinate frame (CSk) as shown in Figure 11.  The x-axis points along the sensor 

bore sight vector and has a focal length F.  The z-axis points along the gimble elevation 
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rotation axis and measures azimuth distance, and the y-axis points along the gimble 

azimuth rotation axis and measures elevation.   

 

 
Figure 11. Optical sensor measurement 

 

The measured target LOS at time tk is represented by a vector 
CskL  defined as [36]; 

𝐿  𝐶𝑠𝑘 =   1 −
Δ𝑦𝑘

𝐹 −
Δ𝑧𝑘

𝐹  

𝑇

,    (4-1) 

and the unit vector of the sensor boresight is 

𝑙 =  𝑠𝑖𝑛𝜃𝑘𝑐𝑜𝑠𝜙𝑘 𝑐𝑜𝑠𝜃𝑘𝑐𝑜𝑠𝜙𝑘 𝑠𝑖𝑛𝜙𝑘 ,   (4-2) 

where k and k  are the azimuth and elevation of the sensor in the satellite‟s body frame, 

respectively.  

In this study we assume the use of subpixel centrioding as a methodology to increase 

the accuracy of a detected object in a photoelectronic array.  An object viewed by the 

sensor will occupy several pixels.  Once a pixel is detected, a region of interest window is 

aligned with the detected pixel in the center.  An intensity value of all the pixels 

surrounding the pixel(s) with peak intensity is measured. The centroid and brightness are 

then calculated from the averaging of these pixel values [37]. 
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4.3. Determining background star observations  

Since stars are extremely distant from Earth they appear fixed from the Earth within 

the ECI reference frame.  Thus, they have long served as a stable reference for spacecraft 

attitude control [38] and sensor calibration in high altitude systems [39].  For attitude 

control star sensors periodically measure the deflection of a number of stars from their 

expected positions as provided by the spacecraft‟s attitude control system.  This 

measurement consists of both rotational and directional information and provides an 

input into the attitude control algorithms.  Here, we discuss how we can use the same 

information to correct sensor bias. 

4.3.1. Star catalog and star detection 

A star map catalog, called SKYMAP, containing the precise location and magnitudes 

of over 300,000 stars are available from NASA for use in spacecraft attitude control.  

Various satellite missions use portions of the catalog for their attitude control star 

database.  We choose to use one of these databases for this study; specifically our 

database is derived from the SKYMAP Sub-catalog for the star sensors aboard NASA‟s 

Aura Constellation satellites.  The Aura database contains over 25,000 stars with 

magnitudes above +7.25 [40].  These stars are distributed randomly across the celestial 

sphere.  Stars do move in relation to the each other and the earth, but this movement is 

known and is compensated by applying a correction factor that is also available in the star 

catalog.  The earth‟s gravitational field does not have an appreciable effect on the 

starlight and is discounted. 
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For this study, the Aura catalog was modified to include only the x, y, z components 

of the star location and then normalized to present a unit vector.  Although the star 

magnitude is available for helping with star identification, it was not used in this study.  

Another method of identifying a stars‟ location is through its right ascension and 

declination.  Right ascension is a measurement clockwise around the equator (0 to 360 

degrees) of the celestial sphere from the First Point of Aires, which defines the x-axis in 

the celestial sphere.  Declination is measured in degrees above and below the celestial 

equator (-90 to 90 degrees).  These values are found through a standard Cartesian to 

Spherical conversion.  Figure 12 is a graphical representation of star positions 

represented by right ascensions and declination from the Aura star database for a 20 

degree by 10 degree area of the celestial sphere. 

A critical issue in using celestial observations for sensor calibration is to determine 

whether a star will appear in the narrow view sensors field of view while it is tracking the 

target, and whether there will be enough star observations during the tracking period to 

estimate the sensor bias.  The double line through the background represents a sensor 

with a 0.5 degree field of view.  As seen, there are a number of opportunities for the 

sensor to detect background stars and make measurements that can be used to make 

correct the sensor bias.   
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Figure 12. Star map of 20 x 10 degree portion of the sky. 

 

4.3.2. Rapid star identification algorithm 

As seen in Figure 12, only a small number of the stars within the catalog of stars will 

be near the sensor line of sight as it projects a track through the space background.  

Therefore, we do not need to search the entire star catalog to find the stars that are 

candidates to be within this sensor field of view.  Since we anticipate using star 

observations about once a second for bias correction we could not afford to perform a 

real-time search of the entire star catalog.  Therefore, we developed a search algorithm to 

speed up the star identification [41] and [42]. 

We must first determine if the sensors‟ line of sight to the star is blocked by the 

earth.  We accomplish this by calculating the angle between the satellite position vector 

in reference to the center of the earth (the negative component of the position in the ECI 

reference frame normalized into a unit vector) and the earth limb based on the current 
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position of the satellite.  This angle is compared to the angle between the earth vector and 

the sensor LOS.  Figure 13 shows a diagram of the geometry involved.  Here we define ve 

as the satellites position vector and then with a dot product between the vectors we have 

𝜃𝑙𝑜𝑠 = cos−1 𝑣𝑒 ∙ 𝑙 ,     (4-3) 

and 

𝜃𝑒 = sin−1  
𝑅𝑒

𝑎𝑙𝑡  ,     (4-4) 

where Re is the radius of the earth and alt is the altitude of the satellite.  If los is greater 

than e, a star may be observed.  The same holds true for an attempt to observe the target, 

although, at that range, the target is probably too dim to be seen. 
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Figure 13. Star observation geometry 
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During the initial observation the entire star catalog is compared to the sensor line of 

sight.  Following identification of the star nearest the LOS in the next time step each star 

in the nearest neighbor table is compared with the sensor LOS vector to determine if the 

star is within view.  If the star is within view, its number is stored for catalog lookup 

during the error measurement step.  When a different star is identified as the nearest to 

the LOS it becomes the entry into the nearest neighbor table to begin the next search.   

To more rapidly determine if a star was within a sensor‟s field of view we 

constructed a table of each star and its 11 closest neighbors off-line.  A portion of this 

table is shown in Table 6 where each number represents a unique star ID.  This method makes 

use of the knowledge from a previous time step to initiate the current time star search 

[43].  At the beginning of narrow band tracking the entire star catalog is compared to the 

sensor line of sight.  In the next time step only the stars in the nearest neighbor table 

associated with the previous nearest star are compared with the sensor LOS vector to 

determine if the star is within view.  If the star is within view, its number is stored for 

catalog lookup during the next error measurement step.  When a different star is 

identified as the nearest to the LOS it becomes the entry into the nearest neighbor table to 

begin the next search. 

 

Table 6. Portion of nearest neighbor star catalog 
Star # 1 2 3 4 5 6 7 8 9 10 11 

. 
: 

. 
: 

. 
: 

. 
: 

. 
: 

. 
: 

. 
: 

. 
: 

. 
: 

. 
: 

. 
: 

. 
: 

8637 8547 8704 8725 8497 8514 8499 8707 8634 8739 8438 8707 

8638 8575 8554 8501 8709 8633 8691 8699 8795 8604 8733 8699 

8639 8450 8669 8673 8732 8656 8504 8619 8653 8539 8886 8619 

8640 8692 8807 8560 8528 8508 8503 8659 8586 8805 8624 8659 

8641 8752 8660 8696 8690 8736 8492 8583 8603 8563 8705 8583 

8642 8652 8470 8722 8616 8406 8786 8494 8814 8866 8286 8494 
. 
: 

. 
: 

. 
: 

. 
: 

. 
: 

. 
: 

. 
: 

. 
: 

. 
: 

. 
: 

. 
: 

. 
: 
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As target tracking proceeds there will be periods when stars are not within the field 

of view.  If no star is detected within the field of view over a 60 second period, the 

algorithm resorts to an entire table search again to find the star nearest the line of sight.  

This is important when the sensor is blocked by the earth or moves rapidly across the sky 

as the sensor LOS can move away from the previously calculated 11 closest stars.  Figure 

14 shows a flow diagram of the algorithm. 
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Figure 14. Star detection algorithm 

 

4.3.3. Star vector rotation and field of view measurement 

The known star vector is rotated from the ECI frame onto the sensor frame by using 

the satellite‟s attitude quaternion.  For example, a rotation about the unit vector n  by an 

angle  is computed using the quaternion 
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𝑞 =  cos 𝜃 2  , sin 𝜃 2   = 𝑞𝑤 + 𝑖𝑞𝑥 + 𝑗𝑞𝑦 + 𝑘𝑞𝑧  ,   (4-5) 

which can be used to describe a rotation matrix, 

𝐶𝐸𝐶𝐼
𝐼𝑀𝑈 =  

1 − 2𝑞𝑦
2 − 2𝑞𝑧

2 2𝑞𝑥𝑞𝑦 − 2𝑞𝑧𝑞𝑤 2𝑞𝑥𝑞𝑧 + 2𝑞𝑦𝑞𝑤

2𝑞𝑥𝑞𝑦 + 2𝑞𝑧𝑞𝑤 1 − 2𝑞𝑥
2 − 2𝑞𝑧

2 2𝑞𝑦𝑞𝑧 + 2𝑞𝑥𝑞𝑤

2𝑞𝑥𝑞𝑧 − 2𝑞𝑦𝑞𝑤 2𝑞𝑦𝑞𝑧 − 2𝑞𝑥𝑞𝑤 1 − 2𝑞𝑥
2 − 2𝑞𝑦

2

 .  (4-6) 

We can then rotate the star vector from ECI to body frame as 𝑠 𝐼𝑀𝑈 = 𝐶𝐸𝐶𝐼
𝐼𝑀𝑈𝑠 𝐸𝐶𝐼, which 

can be further rotated to the sensor frame via the sensor azimuth and elevation from 

𝐶𝐼𝑀𝑈
𝑆𝑒𝑛𝑠𝑜𝑟 =  

cos 𝜃𝑠 cos 𝜙𝑠

sin 𝜃𝑠 cos 𝜙𝑠

sin 𝜙𝑠

 ,        (4-7) 

where s and s are the sensor azimuth and elevation measurements respectively.  

Therefore, the star vector rotation to the sensor frame can be found from 

𝑠 𝑠𝑒𝑛𝑠𝑜𝑟 = 𝐶𝐼𝑀𝑈
𝑠𝑒𝑛𝑠𝑜𝑟 𝐶𝐸𝐶𝐼

𝐼𝑀𝑈𝑠 𝐸𝐶𝐼 .          (4-8) 

We determine if a star will be within the field of view by taking the dot product of each 

star vector and the anticipated sensor LOS vector, namely, 

𝜃𝑠𝑡𝑎𝑟 = cos−1 𝑠 ⋅ 𝑙  ,    (4-9) 

where s is the vector of the star position in the sensor coordinate frame, and l is the sensor 

vector of the sensor LOS.  If the angle star is within the sensor field of view the detector 

is assumed to be able to see the star. 

For example, Figure 15 presents a scenario where two IR sensor trajectories and the 

respective detected stars are shown. The arrows represent the direction of sensor 

movement. In this scenario, the sensor aboard Satellite 1 made 357 star detections and the 

sensor aboard Satellite 2 made 836 star detections in 1500 seconds of tracking time with 
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about a 0.25 and 0.5 Hertz detection rate respectively.  The narrow band sensors do not 

track the target during the first 300 seconds of flight.  This is the period where the wide-

band sensor is tracking the target which is too bright for the narrow view sensor.  The 

sensor field of view in this scenario is one degree in diameter.  In comparing the two 

sensor trajectories, one can see that the number of stars detected is partially determined 

by the length of the path traced by the sensor.  Sensor 1‟s trajectory is about two thirds 

the length of sensor 2.  However, in some cases, the same star will remain in the sensor 

field of view for a number of time steps.  This will typically occur when the sensor trace 

moves slowly across the celestial sphere. 

 

 
Figure 15. Sensor trajectories with detected stars. 
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4.3.4. Effect of aperture size 

To determine the effect of the number of stars observed on the accuracy of the target 

track we measured the number of stars versus the sensor aperture.  One can see from 

Table 7 and Figure 16 that as the aperture decreased the number of detected stars 

decreased, and correspondingly, the mean error also increased almost linearly with the 

sensor field of view.  The method of measuring mean error is discussed in detail later. 

 

Table 7. Mean error and number of stars with respect to aperture size 

Aperture size 

(diameter in 

degrees) 

Stars seen by 

Sensor 1 

Stars seen by 

Sensor 2 

Mean Error 

(EKF with 

LKF) 

.6 102 306 56.4 m 

.8 210 510 43.4 m 

1.0 328 799 28.8 m 

 

 

 
Figure 16. Mean error with respect to aperture size 

0.6 0.8 1
25

30

35

40

45

50

55

60
Mean Error with respect to aperture size

Aperture size (degrees)

M
e
a
n
 e

rr
o
r 

(m
)



 

50 

4.4. Bias modeling and measurement 

Sensor bias can be measured as the difference of the expected LOS and the actual 

LOS in the z-y plane. Each star sighting allows comparison with cataloged right 

ascension and declination angles with payload line of sight measurements to produce 

celestial residuals that are input to a filter to produce an estimate of the bias in the sensor 

pointing vector.  This bias can be removed from the target line of sight vector to produce 

a corrected target observation. 

4.4.1. Bias model 

As discussed by Kristosturian in [31], a satellite undergoes a cyclical heating and 

cooling due to its orbit around the earth and most sensor bias error is due to the effects of 

thermal distortions as the satellite enters and comes out of Earth eclipse.  This cycle has a 

period of about 90 to 120 minutes.  In his paper Kristosturian provides reasonable 

characterization of the bias as 

𝜓 =  

𝜓𝑥

𝜓𝑦

𝜓𝑧

 =

 

 
 
𝑏𝑥 + 𝑆𝑥 sin

2𝜋

𝑇
 𝑡 − 𝜑 + 𝜂𝑥

𝑏𝑦 + 𝑆𝑦 sin
2𝜋

𝑇
 𝑡 − 𝜑 + 𝜂𝑦

𝑏𝑧 + 𝑆𝑧 sin
2𝜋

𝑇
 𝑡 − 𝜑 + 𝜂𝑧  

 
 

   (4-10) 

where 

bx, by, bz are the indeterminate angular components of considered to be 

normally distributed random constants, and 

Sx, Sy, Sz are the indeterminate amplitudes of the sinusoidal varying components 

of induced by thermal variation defined by period T and phase They are also 

assumed to be normally distributed, random constants. 



 

51 

xyz = random disturbance components that are assumed to be zero-mean 

normally distributed, random variables each with known variance. 

If we translate this Cartesian representation into an azimuth and elevation polar form 

we can describe the bias associated with the circular orbit of the sensor satellites as 

constant bias with a sinusoidal changing component that can be represented by 

𝛽 𝑡 = 𝛽𝑠 + 𝛽0 cos(𝜛𝑡 + 𝜑) + 𝑣(𝑡)    (4-11) 

where s is the steady state bias value, and is the amplitude of the sinusoidal 

component with a constant or near constant frequency and phase  This bias is 

present in both azimuth and elevation, and since they are orthogonal, the phase difference 

between the components is 90 degrees.  The zero mean Gaussian bias process noise (t) 

accounts for other random bias error sources and has a variance .   

Taking the first and second derivatives of the bias we have 

𝛽  𝑡 = −𝛽0𝜛 sin 𝜛𝑡,     (4-12) 

 and,  

𝛽  𝑡 = −𝛽0𝜛
2 cos 𝜛𝑡 = − 𝛽0𝜛

2𝛽(𝑡).   (4-13) 

4.4.2. Measuring sensor bias 

To measure the instantaneous bias the expected star position is compared to the 

actual measured star position in the sensor frame to determine the azimuth and elevation 

bias components [41] and [42].  Figure 17 shows how these measurements are made.  

Given a sensor focal length F the difference in the expected position and the actual 

position is related to the measured bias as 
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𝛽𝑎𝑧 = tan−1 Δ𝑧𝑒𝑥 − Δ𝑧𝑎𝑐𝑡 /𝐹         (4-14) 

𝛽𝑒𝑙 = tan−1 Δ𝑧𝑒𝑥 − Δ𝑧𝑎𝑐𝑡 /𝐹  

Expected star position

True star position

Sensor LOS 

(going out of page)

Elevation (y)

Azimuth (z)

yexp

zexp

zact

yact

 
Figure 17. Bias measurement in sensor field of view 

 

Sometimes there may be more than one star in the field of view that are in the 

catalog of stars. In these cases, all the known stars are measured and an average of the 

measurements is calculated to determine the bias for that time step.   

4.4.3. Filtering the bias measurements 

A three state EKF produces a refined estimate of the bias state for each sensor prior to 

target LOS vector correction.  Since the bias assumed sinusoidal in nature [31], a bias 

state vector for each sensor axis describes bias magnitude, bias rate of change and the 

frequency of the sinusoidal in both azimuth and elevation in the sensor frame at each time 

step k, such that   
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𝛽 𝑘 =  𝛽𝑘 𝛽 𝑘 𝜛𝑘 .    (4-15) 

The estimate of the bias state is determined by the standard EKF equation 

𝛽 𝑘 = A𝛽𝛽 𝑘−1 + 𝐾𝛽 𝑧 𝛽 𝑘 − 𝐻𝛽A𝛽𝛽 𝑘−1 ,   (4-16) 

where the fundamental matrix derived from the preceding differential equations (4-11), 

(4-12) and (4-13) can be approximated by [44]: 

Φ𝛽 ≈  

1 𝑇𝑠 0

−𝜛 𝑘−1
2 𝑇𝑠 1 −2𝜛 𝑘−1𝛽 𝑘−1𝑇𝑠
0 0 1

    (4-17) 

and the corresponding process noise matrix of  

𝑄𝛽 =  

0 0 0
0 1.333𝜛 𝑘−1

2 𝑇𝑠
3𝜍𝛽

2 −2𝜛 𝑘−1𝛽 𝑘−1𝑇𝑠
2𝜍𝛽

2

0 −2𝜛 𝑘−1𝛽 𝑘−1𝑇𝑠
2𝜍𝛽

2 𝑇𝑠𝜍𝛽
2

         (4-18) 

where 𝛽  and 𝜛  are the estimated bias and bias frequency, 𝜍𝛽
2 is the variance of the bias 

process noise, and Ts is the time step interval of the measurements.  Since star 

observations are not made at every time step the Kalman prediction will require taking 

the time difference into account so there may be a different Ts at each measurement. 

The EKF uses only the observation of bias magnitude at times when stars are 

observed and the observation matrix Honly accounts for the magnitude of the bias.  

Thus we have 

𝑧 𝛽 𝑘 = 𝛽𝑘 ,    and   𝐻𝛽 =  1 0 0 .       (4-19) 

The standard EKF equations for the bias estimate are, 

𝑀 = A𝛽𝑃 𝛽 𝑘−1A𝛽
𝑇 + 𝑄𝛽  

𝐾𝛽 = 𝑀𝐻𝛽
𝑇 𝐻𝛽𝑀𝐻𝛽

𝑇 + 𝑅𝛽 
−1

   (4-20) 
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and 

𝛽 𝑘 = 𝛽 𝑘−1 + 𝐾𝛽 𝑧 𝛽 𝑘 − 𝛽 𝑘−1  

𝑃 𝛽 𝑘 =  𝐼 − 𝐾𝛽𝐻𝛽 𝑀     (4-21) 

where Kis the Kalman gain, 𝑅𝛽 =  𝜍𝜎
2  is the bias measurement error variance, and 𝛽  is 

the projection of the state vector 𝛽  calculated by numerical integration.  Between star 

detections, the filter propagates the last to the next observation.   

4.4.4. Target observation correction 

Line of sight correction is performed by subtracting the bias estimate obtained above 

from the observed target line of sight as represented by the azimuth, 𝜃 𝑖  and elevation, 𝜙 𝑖 .  

This correction is performed in the sensor frame and results in new azimuth and elevation 

measurements  

𝜃𝑖 = 𝜃 𝑖 − 𝛽 𝜃  

𝜙𝑖 = 𝜙 𝑖 − 𝛽 𝜙 .           (4-22) 

These new values are then used to estimate the target location. 

4.5. Bias error scenario development and validation  

To better test the bias estimation methodology, we define two cases of sensor bias 

error modeled by equation (4-11).  The first case (shown in Figure 18) involves a purely 

sinusoidal bias error with s and 0 = .2 radsm  as given in eqn. (4-11) and is 

representative of the cyclical thermal effects of the satellite‟s orbit.  The second case 

(Figure 19) represents a constant bias error with a small sinusoidal component, or s 

radsm  and 0 = .02 radsm .  In this second case a constant bias is representative of a bias 
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error due to misalignment of sensors.  Each figure shows both the azimuth bias (upper 

curve) and the orthogonal elevation bias (lower curve) for one satellite.  In the model, 

sensor error is added to the sensor measurements while they are still in the satellite body-

oriented reference frame. This error includes both zero-mean Gaussian measurement 

noise, and the bias error. 

 

 
Figure 18. Case 1 - Pure sinusoidal bias model 

 

Two methodologies for estimating the bias were compared – use of direct bias 

measurements without an EKF (simple bias correction) and derived bias estimates with 

an EKF.  When using the first method (without the EKF) the last bias obtained from a 

star measurement was used as the measurement bias in the time interval between star 

observations to correct the target line of sight.  The second methodology utilized the EKF 

developed in section 4.4.3 to predict the bias estimate at each time step. 
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Figure 19. Case 2 - Constant bias with sinusoidal component model 

 

Figures 20 and 21 show the measured bias compared to the filtered bias in both 

cases.  In both plots the initial bias estimate is zero until a measurement is obtained when 

the sensors can begin detecting stars (t = 300 seconds).  The dashed lines show the true 

sensor bias, the dotted lines show the simple bias measurement and the solid lines show 

the bias estimates from the EKF.  The simple bias estimate diverges greatly from the true 

bias between star measurements for the sinusoidal bias, but does a reasonable job in the 

near-constant bias case.  However, one can see that the EKF does well in estimating both 

bias trajectories.  The filter was initialized with zero bias and zero bias rate, but with an 

initial estimate for the frequency based on a priori knowledge. In the mostly constant 

bias case, 0 = 0, and for the pure sinusoidal case, 0 = 001 [42]. 
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Figure 20. Case 1 - Bias measurements and estimates for pure sinusoidal bias 

 

 
Figure 21. Case 2 - Bias measurements and estimates for constant bias with sinusoidal 

component 
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Using a test scenario we studied the effect on tracking accuracy for the two cases of 

bias error, corresponding to the bias waveforms shown in Figures 18 and 19 above was 

analyzed with and without a bias filter for 500 Monte Carlo runs.  In the first case, bias 

error was modeled using a sinusoidal bias in both the azimuth and elevation axis of both 

satellites using equation (4-11) with s = 0 and 0 = 0.0, 0.02, 0.2 and 2.0 mrads.  The 

model assumed a target process noise of 10 meters STD, sensor observation noise of 10 

rads STD in both azimuth and elevation, and a bias process noise of 2 rads STD.   

Figure 22 illustrates the estimate error from the true target position for the 0 = 0.2 

mrads case using the bias correction algorithms developed earlier.  One can see the 

significant reduction in position error when the sensor is able to begin detecting stars and 

correcting for bias error at t = 300 seconds into target flight.  The error begins to increase 

near the end of the tracking period when stars are not detected by the sensor and the 

simple bias correction diverges from the true bias.  Table 8 provides a comparison of 

mean error for various values of 0 with and without bias corrections. 

The second bias case uses the larger constant bias with a small sinusoidal overlay 

described in Figure 19.  In this case s = 0.0, 0.02, 0.2 and 2.0 mrads, 0 = 0.1s for the 

azimuth measurement, and s = 0 for the elevation measurement.  As in Figure 22, Figure 

23 shows that the correction of the error is also significant.  However, the simple bias 

does not diverge as much in this scenario since the bias changes little, but estimating the 

bias using the EKF still provides a more accurate tracking of the target.  Table 9 provides 

a comparison similar to Table 8. 
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Figure 22. Case 1 - Mean error of target position for sinusoidal bias (0 = 0.2 mrads) 

 

Table 8. Mean error in target position for pure sinusoidal bias 

(s = 10 rad, p = 10 m,  = 2 rad,  = 10 rad) 

Bias (0) No bias  

correction 

Simple bias  

correction 

With EKF 

bias filter  

None 40.6 m  47.7 m  41.0 m  

.02 mrad 52.9 m  46.2 m  41.1 m  

.2   mrad 489 m  65.3 m  41.8 m  

2   mrad 4.88 km  374 m  55.3 m  
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Figure 23. Case 2 - Mean error of target position for a constant bias with a sinusoidal 

component (0 = 0.2 mrads) 

 

Table 9. Mean error in target position for constant bias with sinusoidal component 

(s = 10 rad, p = 10 m,  = 2 rad,  = 10 rad) 

Bias (0) No bias  

correction 

Simple bias  

correction 

With EKF 

bias filter  

None 32.5 m  35.8 m  32.9 m  

.02 mrad 53.5 m  36.3 m  33.1 m  

.2   mrad 445m  37.0 m  34.0m  

2   mrad 4.44 km  46.7 m  49.4 m  
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5. TARGET TRACKING AND ESTIMATION 

 

In this chapter we develop and compare three nonlinear algorithms to estimate the 

target state vector and its covariance.  The first method uses an intercept calculation of 

the two target observation vectors to produce a three-dimensional position measurement 

of the target.  This position provides a linear input measurement into a Linearized 

Kalman Filter (LKF) to produce a target state estimate. The second method uses the two 

dimensional nonlinear measurements of sensor azimuth and elevation as inputs to an 

Extended Kalman Filter (EKF). The third technique uses an Unscented Kalman Filter 

(UKF) for the target state estimate. Using the EKF and UKF we find individual state 

estimates from each sensor‟s data and then fuse them for a global estimate. These latter 

two methods allow the system to calculate the target location with only one satellite 

observation, whereas the LKF method requires that both satellites observe the target. 

5.1. Target location by vector intercept 

The first method of target location approximates the intercept point of the two three-

dimensional line of sight vectors expressed in Cartesian coordinates as shown in Figure 

24 [35].  In Figure 24 the x, y, and z axes represent the ECI reference frame. The target‟s 

position is denoted by X = [X, Y, Z]‟, and the sensors, Si, i = 1,2 are at position Si = [X
S
, 

Y
S
, Z

S
]‟.  
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Figure 24. Target position from the intercept of two vectors 

 

If we define  

𝑑𝑖 =  𝑑𝑖𝑥 𝑑𝑖𝑦 𝑑𝑖𝑧  𝑇 =  𝑋 − 𝑋𝑖
𝑆 𝑌 − 𝑌𝑖

𝑆 𝑍 − 𝑍𝑖
𝑆 𝑇   (5-1) 

as the distance between the target and sensor i then the line of sight is represented by a 

two-dimensional vector of azimuth, i, and elevation, , such that  

 
𝜃𝑖

𝜙𝑖
 =

 
 
 
 
 
 
 
 
 

tan−1  
𝑑𝑖𝑦

𝑑𝑖𝑥
  

tan−1

 

  
 𝑑𝑖𝑧

 𝑑𝑖𝑥
2 + 𝑑𝑖𝑦

2 

 

  
 

 
 
 
 
 
 
 
 
 

  .   (5-2) 

This two-dimensional sensor line of sight measurement from the sensor to the target is 

converted to a three-dimensional unit vector through a polar to Cartesian conversion, or 
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𝑣𝑖 =  

𝑣𝑥𝑖

𝑣𝑦𝑖

𝑣𝑧𝑖

 =  

cos 𝜃𝑖 cos 𝜙𝑖

sin 𝜃𝑖 cos 𝜙𝑖

sin 𝜙𝑖

     (5-3) 

Assuming we have two sensors tracking the same target from locations S1 and S2 one can 

find a point along each vector with the following equations. 

𝑋1 = 𝑆1 + 𝑎𝑣1 

𝑋2 = 𝑆2 + 𝑎𝑣2         (5-4) 

Where these vectors intercept we can set X1 = X2 and solve for a, which results in   

𝑎 =
  𝑆2−𝑆1 ×𝑣2 

 𝑣1×𝑣2 
.        (5-5) 

Then we can find the approximation of the target position as 

𝑋 = 𝑆1 +
  𝑆2−𝑆1 ×𝑣2 

 𝑣1×𝑣2 
∙ 𝑣1.    (5-6) 

However, the line of sight vectors may not intercept due to the bias errors mentioned 

above.  We found, however, that this process still provided a close approximation of 

target location proportional to the amount of the error and the range of the target.  If more 

than two sensor satellites observe the target, a fused target location is calculated from 

sensor pairs with the individual pairs averaged. 

5.2. Post correction target state estimation 

Once bias is removed from the target line of sight a more accurate estimate of the 

target position can be obtained through the use of a nonlinear Kalman Filter.  Here we 

develop three advanced methods of nonlinear filtering to estimate the target state.  When 

measuring target position using the vector intercept method described above, we must use 

a Linearized Kalman Filter (LKF) to estimate target position.  We can also obtain an 
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independent estimate from each sensor using the EKF or UKF and then fuse these 

estimates into a single system estimate.  These two methods of target estimation also 

allow the system to calculate the target location with only one satellite observation 

available, whereas the LKF method requires that both satellites observe the target.  The 

use of each of these techniques is described in the following sections. 

5.2.1. Space target dynamics 

The state space model for a discrete-time stochastic system is of the general form 

𝑥𝑘+1 = 𝑓[𝑘, 𝑥𝑘 , 𝑢𝑘 , 𝑤𝑘].          (5-7) 

The motion of objects in orbit about the earth including ballistic missiles are modeled by 

the discrete-time linear dynamic equation  

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐺𝑤𝑘     (5-8) 

where xk is the 6 dimensional state vector at time k represented as [𝑋𝑘  𝑋 𝑘  𝑌𝑘  𝑌 𝑘  𝑍𝑘  𝑍 𝑘]′, A 

is the state transition matrix, u is a known input representing the gravitational effects 

acting on the target, and w is the process noise with covariance Q.  The state transition 

matrices for a constant acceleration target are given as 

A =

 
 
 
 
 
 
1 Δ𝑡
0 1

0 0

0
1 Δ𝑡
0 1

0

0 0
1 Δ𝑡
0 1  

 
 
 
 
 

, 
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Β =

 
 
 
 
 
 
 
 
 
 
Δ𝑡2

2 Δ𝑡

0 1

0 0

0
Δ𝑡2

2 Δ𝑡

0 1

0

0 0
Δ𝑡2

2 Δ𝑡

0 1  
 
 
 
 
 
 
 
 
 

 , 

and     𝐺 =

 
 
 
 
 
 
 
 
 
 
Δ𝑡2

2 

Δ𝑡

0 0

0
Δ𝑡2

2 

Δ𝑡

0

0 0
Δ𝑡2

2 

Δ𝑡  
 
 
 
 
 
 
 
 
 

,    (5-9) 

where t is the sampling interval. The gravity term is given by u = g/alt, where g = 9.8 

m/s
2
, and alt is the altitude of the target and provides the scaling factor for the gravity 

term.  The process noise, w, accounts for the inaccurate modeling of the true system 

dynamics and is added to the state to model the missile accelerations due to maneuvers 

with a covariance matrix Q,  

Q = diag[ (X)
2
    (Y)

2 
   (Z)

2
].     (5-10) 

5.2.2. Infrared sensor measurement model 

The general observation equation of the target‟s position corrupted by additive noise 

is 

𝑧𝑘 = 𝑕[𝑘, 𝑥𝑘 , 𝑣𝑘 ],     (5-11) 

or 
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𝑧𝑘 = 𝑕(𝑥𝑘) + 𝑣𝑘          (5-12) 

where h(xk) is the observation matrix and vk is the observation noise with variance R 

consisting of azimuth and elevation error variance, 

and 


.  In our model, the 

assumption is made that the azimuth and elevation of the sensor drive motors align with 

the y,z grid of the sensor array.  If not, an additional rotational conversion is required.   

5.2.3. Linearized Kalman Filter 

We will apply the LKF to estimate the target state when using the observation vector 

intercept method of target location discussed in section 5.1.  The measurement associated 

with the intercept position is a three-dimensional coordinates in the ECI reference frame.  

To properly express this observation in the linearized case the measurement matrix and 

error covariance must be transformed into a Cartesian coordinate frame.  We begin this 

transformation by expressing the estimate of the state vector in this LKF as a derivation 

from the nonlinear Kalman Filter such that 

𝑥 𝑘|𝑘 = 𝑥 𝑘|𝑘−1 + 𝐾  𝑧𝑘 − 𝑕 𝑥 𝑘|𝑘−1   

𝑥 𝑘|𝑘 = 𝑥 𝑘|𝑘−1 + 𝐾  𝑕  𝑥 𝑘 + 𝑣𝑘 − 𝑕 𝑥 𝑘|𝑘−1      (5-13) 

or 

𝑥 𝑘|𝑘 = 𝑥 𝑘|𝑘−1 + 𝐾1 𝑕
−1 𝑧𝑘 − 𝑥 𝑘|𝑘−1     (5-14) 

where  

𝐾1 = 𝑃𝑘|𝑘−1𝐻1𝑆`1
−1,  𝑆1 = 𝐻1𝑃𝑘|𝑘−1𝐻1

−1 + 𝑅1 

𝐻1 =  
1 0 0
0 0 1
0 0 0

0 0 0
0 0 0
0 1 0

 ,       (5-15) 
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𝑕−1 𝑧𝑘 =  𝑟 cos 𝜃 cos 𝜙 𝑟 sin 𝜃 cos 𝜙 𝑟 sin 𝜙 , and R1 is the transformed 

measurement error covariance 

𝑅1 =

 
 
 
 
 
𝜕𝑥

𝜕𝑟

𝜕𝑥

𝜕𝜃

𝜕𝑥

𝜕𝜙

𝜕𝑦

𝜕𝑟

𝜕𝑦

𝜕𝜃

𝜕𝑦

𝜕𝜙

𝜕𝑧

𝜕𝑟

𝜕𝑧

𝜕𝜃

𝜕𝑧

𝜕𝜙  
 
 
 
 

 

𝜍𝑟
2 0 0

0 𝜍𝜃
2 0

0 0 𝜍𝜙
2

 

 
 
 
 
 
𝜕𝑥

𝜕𝑟

𝜕𝑥

𝜕𝜃

𝜕𝑥

𝜕𝜙

𝜕𝑦

𝜕𝑟

𝜕𝑦

𝜕𝜃

𝜕𝑦

𝜕𝜙

𝜕𝑧

𝜕𝑟

𝜕𝑧

𝜕𝜃

𝜕𝑧

𝜕𝜙  
 
 
 
 
𝑇

   (5-16) 

with 

 
 
 
 
 
𝜕𝑥

𝜕𝑟

𝜕𝑥

𝜕𝜃

𝜕𝑥

𝜕𝜙

𝜕𝑦

𝜕𝑟

𝜕𝑦

𝜕𝜃

𝜕𝑦

𝜕𝜙

𝜕𝑧

𝜕𝑟

𝜕𝑧

𝜕𝜃

𝜕𝑧

𝜕𝜙  
 
 
 
 

=  

cos 𝜃 cos 𝜙 −𝑟 sin 𝜃 cos 𝜙 −𝑟 sin 𝜃 cos 𝜙
sin 𝜃 cos 𝜙 𝑟 cos 𝜃 cos 𝜙 −𝑟 sin 𝜃 sin 𝜙

cos 𝜙 0 𝑟 cos 𝜙
 .  (5-17) 

The transformation of the error covariance from R to R1 requires an estimate of 

the range error variance r
2
.  However, the bearing only tracking system does not 

measure range directly.  Therefore, a value must be determined either through an estimate 

of the accuracy of intercept point calculation, or directly from the two bearing 

measurements.  

Figure 25 shows a two dimensional representation of the bearing measurements of 

the IR sensors where the error in the angle of the measurement is given by the angle 

standard deviation  or .  The parallelogram like shape resulting from the overlap of 

the observation errors can be approximated by an ellipse, as shown.  The minor axis of 

this ellipse remains relatively constant and is represented by the bearing accuracy of the 

referenced sensor.  The bearing accuracy of the cross-LOS sensor determines the major-

axis length and is proportional to the angle  between the sensor lines of sight.  When 
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the  = 90 degrees, the ellipse becomes near circular depending upon the range to the 

individual sensors [35]. 

 



d2

Sensor 2

LOS

Sensor 1

LOS

r

d1

 
Figure 25. Line of sight intercept geometry. 

 

It can be shown that the length of the semi-major axis r can be approximated by: 

𝜍𝑟 =
𝑑2𝜍𝜃

cos 𝛼 2   ,        (5-18) 

As  goes to zero the ellipse becomes infinitely long.  Thus the satellites must have a 

baseline separation with the optimal at 90 degrees to give the smallest ellipse volume.  

The true orientation and size of the ellipse represents the cross-correlation of the sensor 

measurement errors but this method provides a close approximation.  For the 3 

dimensional case is given by 

𝛼 = cos−1 𝜈1 ⋅ 𝑣2 .      (5-19) 



 

69 

Figure 26 plots the value for the range variance over time for the test algorithm.  As 

expected the magnitude is proportional to the range of the sensor to the target due to the 

𝑑𝑖𝜍𝜃  term.   

 

 

Figure 26. Range standard deviation (𝜍𝑟) over time 

 

5.2.4. Extended Kalman Filter (EKF) 

As stated above, the state space model for a discrete-time stochastic system is of the 

general form 

𝑥𝑘+1 = 𝑓[𝑘, 𝑥𝑘 , 𝑢𝑘 , 𝑣𝑘 ],    (5-20) 

with a measurement model 

𝑧𝑘 = 𝑕[𝑘, 𝑥𝑘 , 𝑤𝑘],     (5-21) 

where u(k) is a known input, v(k) is process noise with covariance Q(k), and w(k) is the 

measurement noise with covariance R(k).  In a nonlinear system at least one of the two 

functions in nonlinear.  As with the linear Kalman Filter, all noise sequences are assumed 
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to be white and independent with respect to each other and the initial state has a known 

probability distribution function that is also independent of the noise. 

A first-order Taylor series expansion of (5-18) provides a linear representation of the 

nonlinear system such that 

𝑥𝑘+1 = 𝑓 𝑘, 𝑥  𝑘 𝑘  + 𝑓 𝑥𝑘  𝑥𝑘 − 𝑥  𝑘 𝑘  + 𝐻𝑂𝑇 + 𝑣𝑘 ,  (5-22) 

where 

𝑓 𝑥𝑘 ≝  ∇x𝑓 𝑥, 𝑘 ′  ′ |𝑥=𝑥 (𝑘|𝑘)
=

 
 
 
 
𝜕𝑓1

𝜕𝑥1
⋯

𝜕𝑓1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑚

𝜕𝑥1
⋯

𝜕𝑓𝑚

𝜕𝑥𝑛  
 
 
 

≝ 𝐹𝑘 ,  (5-23) 

and HOT are the higher order terms.  The predicted state is 

𝑥  𝑘+1 𝑘 = 𝑓[𝑘, 𝑥  𝑘 𝑘 ],    (5-24) 

and predicted state covariance is 

𝑃 𝑘 𝑘+1 = 𝑓 𝑥𝑘 𝑃𝑘|𝑘𝑓 𝑥𝑘 
′ + 𝑄𝑘 .   (5-25) 

The measurement prediction follows a similar expansion of (5-22) to  

𝑧𝑘+1 = 𝑕 𝑘 + 1, 𝑥  𝑘+1 𝑘  + 𝑕 𝑥𝑘+1  𝑥𝑘+1 − 𝑥  𝑘+1 𝑘  + 𝐻𝑂𝑇 + 𝑤𝑘   (5-26) 

where 

𝑕 𝑥𝑘+1 ≝  ∇x𝑕 𝑥, 𝑘 + 1 ′  ′ |𝑥=𝑥 (𝑘+1|𝑘)
=

 
 
 
 
𝜕𝑕1

𝜕𝑥1
⋯

𝜕𝑕1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑕𝑚

𝜕𝑥1
⋯

𝜕𝑕𝑚

𝜕𝑥𝑛  
 
 
 

≝ 𝐻𝑘+1.      (5-27) 

The predicted measurement is 

𝑧  𝑘+1 𝑘 = 𝑕[𝑘 + 1, 𝑥  𝑘+1 𝑘 ],    (5-28) 

and predicted measurement covariance is 
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𝑆𝑘+1 = 𝑓 𝑥𝑘+1 𝑃𝑘+1|𝑘𝑓 𝑥𝑘+1 
′ + 𝑅𝑘+1.   (5-29) 

Some difficulties in using the EKF is that the nonlinear transformations may introduce 

bias and the predicted state may not be accurate since only the first order terms are used 

in the prediction and measurements.   

5.2.5. The Unscented Kalman Filter (UKF) 

The UKF uses a small set of carefully chosen sample points to represent the Gaussian 

state distribution.  The sample points are then propagated forward in time using the actual 

nonlinear transformation matrix.  The mean and the covariance of these transformed 

points provide an estimate with the accuracy of the 3
rd

 order Taylor series expansion.  

The sample points are selected by using a Gaussian distribution with a weighted sample 

mean and covariance [11]. 

To calculate the estimation of the state vector x(k+1) using the UKF one begins by 

developing a matrix  of 2L+1 sigma vectors  , each with a weight Wi, where L is the 

dimension of the state vector x.  The sigma vectors and their weights are calculated by 

𝜒0 = 𝑥  

𝜒𝑖 = 𝑥 −   (𝐿 + 𝜆)𝑃𝑥 𝑖   i=1…,L  (5-30) 

𝜒𝑖 = 𝑥 −   (𝐿 + 𝜆)𝑃𝑥 𝑖    i=L+1, …, 2L    

  

𝑊0
(𝑚)

= 𝜆 (𝐿 + 𝜆)  

𝑊0
(𝑐)

= 𝜆 (𝐿 + 𝜆) + (1 − 𝛼2 + 𝛽)    (5-31) 

𝑊0𝑖
(𝑚)

= 𝑊𝑖
𝑐 = 1 [2 𝐿 + 𝜆 ] 

, 
i = 1,…,2L ,
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where (𝐿 + 𝜆)𝑃𝑥  is the ith row or column of the matrix square root of (nx + k)Px.  The 

weights are normalized. 

Each sigma point is propagated through the nonlinear function  

xi (k+1)= f(xi(k)), i=0,…, 2L.   (5-32) 

The estimated mean and covariance of x are computed as the sum of the propagated 

points 

𝑥 =  𝑊𝑖𝜒𝑖
2𝐿
𝑖=0      (5-33) 

𝑃𝑥 =  𝑊𝑖(𝜒𝑖 − 𝑥 )2𝐿
𝑖=0 (𝜒𝑖 − 𝑥 )𝑇.   (5-34) 

Implementation of the above algorithm to find the next estimate at 𝑥 (𝑘 + 1) with the 

current estimate and its covariance 𝑥 (𝑘) and 𝑃𝑥(𝑘|𝑘)follows as  

1) Compute sigma points i and their weights Wi , (i= 0,…2L) using (5-30) and (5-31) 

with =1 , =2, and =0, using 𝑥 (𝑘) and 𝑃𝑥 𝑘 𝑘 .  The matrix square root in (5-30) is 

found using Cholesky factorization.    

2) The sigma points are propagated using the state equation such that 

𝜒𝑖(𝑘 + 1|𝑘) = 𝑓 𝜒𝑖 𝑘 𝑘  + 𝑄(𝑘)    (5-35) 

3) From these new points, compute the predicted state and covariance 

𝑥  𝑘 + 1 𝑘 =  𝑊𝑖𝜒𝑖
2𝐿
𝑖=0 (𝑘 + 1|𝑘)    (5-36) 

𝑃 𝑘 + 1 𝑘 =  𝑊𝑖[(𝜒𝑖 𝑘 + 1 − 𝑥  𝑘 + 1 𝑘 
2𝐿

𝑖=0
] ∙ 

[(𝜒𝑖 𝑘 + 1 − 𝑥 (𝑘 + |𝑘)]𝑇 + 𝑄(𝑘)    (5-37) 
 

4) Next predict the observation sigma points  

𝜁𝑖 𝑘 + 1 𝑘 = 𝑕[𝜁𝑖 𝑘 𝑘 ],   (5-38) 
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5) and the observation estimate and covariance follows 

𝑦  𝑘 + 1 𝑘 =  𝑊𝑖𝜁𝑖
2𝐿
𝑖=0 (𝑘 + 1|𝑘)    (5-39) 

𝑃𝑦𝑦  𝑘 + 1 𝑘 =  𝑊𝑖[(𝜁𝑖 𝑘 + 1 − 𝑦  𝑘 + 1 𝑘 
2𝐿

𝑖=0
] ∙ 

[(𝜁𝑖 𝑘 + 1 − 𝑦 (𝑘 + |𝑘)]𝑇 + 𝑅(𝑘 + 1) (5-40) 

𝑃𝑥𝑦  𝑘 + 1 𝑘 =  𝑊𝑖[(𝜒𝑖 𝑘 + 1 − 𝑥  𝑘 + 1 𝑘 
2𝐿

𝑖=0
] ∙ 

[(𝜁𝑖 𝑘 + 1 − 𝑦 (𝑘 + |𝑘)]𝑇   (5-41)

 6) Compute the UKF gain and updated state and state covariance similar to the 

standard Kalman Filter 

𝐾 𝑘 + 1 = 𝑃𝑥𝑦𝑃𝑦𝑦
−1 

𝑥  𝑘 + 1 𝑘 + 1 = 𝑥  𝑘 + 1 𝑘 + 𝐾 𝑘 + 1 [𝑦 𝑘 + 1 − 𝑦  𝑘 + 1 𝑘 ] (5-42) 

𝑃 𝑘 + 1 𝑘 + 1 = 𝑃 𝑘 + 1 𝑘 − 𝐾 𝑘 + 1 𝑃𝑦𝑦𝐾
𝑇(𝑘 + 1) 

As mentioned above, the primary difference in using the EKF and UKF filters is in 

the observation matrix h, which is described by equation (5-2), or 

𝑕𝑖(𝑥) =  
𝜃𝑖

𝜙𝑖
 =

 
 
 
 
 
 
 
 
 

tan−1  
𝑑𝑖𝑦

𝑑𝑖𝑥
  

tan−1

 

  
 𝑑𝑖𝑧

 𝑑𝑖𝑥
2 + 𝑑𝑖𝑦

2 

 

  
 

 
 
 
 
 
 
 
 
 

  ,           (5-43) 

where i is the respective sensor.   Additionally, the sensor error covariance matrix, Ri 

becomes  

𝑅𝑖 =  
𝜍𝜃𝑖

2 0

0 𝜍𝜙𝑖

2  .    (5-44) 
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5.2.6. Sensor Fusion 

Following the use of the EKF, and UKF, if more than one satellite observation is 

available, the target state estimate is improved by fusing the observations as described in 

[12].  Figure 27 shows the general update and estimation cycle for a two sensor fusion 

system without feedback.  Integration of other sensor, such as radars would follow the 

same techniques.  Other sensor fusion options include feedback and cyclical fusion that 

are not explored in this study. 

 

Sensor 
2

Sensor 
1

Sensor 
1

Sensor 
2

Fuse 
Estimate

Fuse 
Estimate

k - 1 k

Xg(k-2)

X1(k-1)

X2(k-1)

Xg(k-1)

X1(k)

X2(k)

Xg(k)

Predict x1(k|k-1)

Predict x2(k|k-1)

Predict xg(k|k-1)

Update z1(k-1) Update z1(k)

Update z2(k-1) Update z2(k)

 
Figure 27. Two sensor fusion without feedback example. 

 

The general fusion equations for two sensors without feedback are 

𝑃𝑔𝑘|𝑘−1
= A𝑃𝑔𝑘−1|𝑘−1

A𝑇 + 𝑄   (5-45) 

𝑥 𝑔𝑘|𝑘−1
= A𝑥 𝑔𝑘−1|𝑘−1

  (5-46) 
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𝑃𝑔𝑘|𝑘
=  𝑃1

−1
𝑘|𝑘

+ 𝑃2
−1

𝑘|𝑘
− 𝑃𝑔

−1
𝑘|𝑘−1

 
−1

   (5-47) 

𝑥 𝑔𝑘|𝑘
= 𝑃𝑔𝑘|𝑘

𝑃𝑔
−1

𝑘|𝑘−1
𝑥 𝑔𝑘|𝑘−1

+ 𝑃𝑔𝑘|𝑘
 𝑃1

−1
𝑘|𝑘

𝑥 1𝑘|𝑘
+ 𝑃2

−1
𝑘|𝑘

𝑥 2𝑘|𝑘
 .  (5-48) 

5.3. Post-correction target state estimator results 

Following the correction of the target LOS described in Chapter 4, the resulting 

target observations were used as measurement inputs to the three nonlinear filters 

discussed above.  We adapted the MATLAB Recursive Bayesian Estimation Laboratory 

(ReBEL) Toolkit
©

 [45] developed by R. van der Merwe for performing the simulations 

used in this study.  The underlying filter subroutines for the EKF and UKF were 

unaltered from the baseline program.  For the EKF, in place of finding the Jacobian 

matrices for the state and measurement functions, the ReBEL program used in this study 

approximates linearization of the state function, by propagating the state and 

measurements in 10
6
 steps per time interval.  The results, mean error (top value) and 

standard deviation are shown below in Tables 10 and 11 for the two bias cases 

respectively.   

 

Table 10. Mean error in target position for pure sinusoidal bias 

(s = 10 rad, p = 10 m,  = 2 rad,  = 10 rad) 

Bias (0) No bias 

correction 

With EKF 

bias filter 

and LKF 

With EKF 

bias filter 

and EKF 

With EKF 

bias filter 

and UKF 

None 40.6 m  32.0 m 25.6 m 25.6 m 

.02 mrad 52.9 m  32.0 m 25.8 m 25.4 m 

.2   mrad 489 m  33.5 m 27.1 m 26.9 m 

2   mrad 4.88 km  49.4 m 44.1 m 43.9 m 
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Table 11. Mean error in target position for constant bias with sinusoidal component 

(s = 10 rad, p = 10 m,  = 2 rad,  = 10 rad) 

Bias (0) No bias 

correction 

With EKF 

bias filter 

and LKF 

With EKF 

bias filter 

and EKF 

With EKF 

bias filter 

and UKF 

None 32.5 m 26.5 m 21.8 m 21.8 m 

.02 mrad 53.3 m 26.6 m 22.0 m 21.8 m 

.2   mrad 445.0 m 27.8 m 23.3 m 23.2 m 

2   mrad 4.44 km 46.1 m 44.3 m 44.1 m 

 

The little difference between the filters is evident in Figure 28.  The individual 

sensor state estimates from the EKF and UKF estimators were fused to provide a 

common state estimate as described above. 

 

 
Figure 28. Comparison of mean error of target position using LKF, EKF, and UKF 

estimation after EKF filter bias correction. 
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To understand the impact of the bias removal process, one question to consider is 

whether the nonlinear estimators can provide adequate target position estimates without 

bias correction.  If an estimator can provide enough improvement and bring the target 

error within prescribed amounts, we may not need to perform bias correction after all.  

Therefore, we performed nonlinear estimation on the sensor observations using the LKF, 

EKF and UKF prior to bias correction.  As can be seen in Figures 29-31, the nonlinear 

filters do not provide much improvement.  We can see how in Figure 29 the LKF 

provides very little improvement and is consistent in what we found in section 4.2.  

Additionally, the EKF (Figure 30) and UKF (Figure 31) do provide a bit of improvement 

during a short period of the missile flight, but the target position error is still significant 

compared to the corrected values.  The fact that there is not much difference between the 

three filters is somewhat surprising.  This similarity between filters might be caused by 

the chosen scenario (i.e., nonlinearity, sampling interval, sensor accuracy, etc).  In our 

case the scenario is very well behaved.  For instance, the sampling interval is small (1 

second), this means that there is not much movement of the target or the corresponding 

observations between time steps to make the problem highly nonlinear.  Also, the sensor 

error is relatively small compared to the bias error.  This allows for very small target 

position errors when the bias error is removed. 
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Figure 29. Mean error of target position with and without bias correction using LKF filter 

 

 
Figure 30. Mean error of target position with and without bias correction using EKF filter 
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Figure 31. Mean error of target position with and without bias correction using UKF filter 

 

Table 12. Mean error in target position for 50 rad sensor error (pure sinusoidal bias). 

(s = 50 rad, p = 10 m,  = 2 rad,  = 10 rad) 

Bias (0) LKF EKF UKF 

None 103 m 83.7 m 81.3 m 

.02 mrad 104 m 82.9 m 81.1 m 

.2 mrad 104m 85.0 m 83.3 m 

2 mrad 117m 101 m 100 m 

 

We also varied the sensor errors and sampling intervals in order to understand their 

impacts on the estimation performance. For instance, when sensor error ( ), or the 

time step between observations are increased we begin to see separation in the 

performance of the nonlinear filters.  Figures 32 and 33 show the mean error in target 

position when sensor error is 50 rad and 100 rad respectively.  In the case of a 100 

rad sensor error, the bias estimate is greatly affected by the sensor error and this poorer  
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Figure 32. Comparison of mean error of target position using LKF, EKF, and UKF 

estimation after EKF filter bias correction for 50 rad sensor error. 

 

 

 
Figure 33. Comparison of mean error of target position using LKF, EKF, and UKF 

estimation after EKF filter bias correction for 100 rad sensor error. 
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estimate contributes greatly to the position error.  These results can be seen in the 

diagrams of bias estimation shown in Appendix A, specifically figures A-11 and A-12.  

We also can see in Figures 34 and 35 the significant change in performance of the 

LKF when the observation time step is increased to 5 seconds and 10 seconds.  Table 13 

shows the mean error for the four different parameters as compared to the standard 

development case for sensor bias (0) of .2 mrad.  Essentially, we found the resulting 

performance somewhat expected and they seem to indicate that LKF is not as robust as 

others.  However, even with the poorer performance, from Table 14 we can see that the 

nonlinear UKF filter still provide an improved condition over the non-filtered solution, 

especially with increased senor error (A more complete table of results can be found in 

Tables A-3 and A-4 of Appendix A).  In Table 14 we can also see how the senor error has 

a greater effect on target position estimation than the time step difference.  This is also 

expected whereas the time step mostly impacts relative nonlinearity of the system and the 

number of detected stars. 
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Figure 34. Comparison of mean error of target position using LKF, EKF, and UKF 

estimation after EKF filter bias correction for 5 second measurement time step. 

 

 

 
Figure 35. Comparison of mean error of target position using LKF, EKF, and UKF 

estimation after EKF filter bias correction for 10 second measurement time step. 
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Table 13. Comparison of mean error in target position for various system variables for 

common bias (0) = 0.2 mrad (p = 10 m,  = 2 rad,  = 10 rad). 

 s = 10 rad 

Ts = 1 sec

s = 50 rad 

Ts = 1 sec 

s = 100 rad 

Ts = 1 sec 

Ts = 5 sec 

s = 10 rad 

Ts = 10 sec 

s = 10 rad 

LKF 33.9 m 104m 237 m 185 m 519 m 

EKF 27.1 m 85.0 m 180 m 113 m 139 m 

UKF 26.9 m 83.3 m 172 m 114 m 137 m 

 

Table 14. Comparison of mean error in target position for non-filtered and filtered 

estimates. 

Bias 

s = 50 rad 

Ts = 1 sec 

s = 100 rad 

Ts = 1 sec 

Ts = 5 sec 

s = 10 rad 

Ts = 10 sec 

s = 10 rad 
No filter UKF No filter UKF No filter UKF No filter UKF 

None 148 m 81.3 m 368 m 171 m 41 m 35.2 m 42.1 m 37.1 m 

.02 mrad 148 m 81.1 m 368 m 169 m 43.6 m 38.1 m 46.1 m 41.2 m 

.2 mrad 149 m 83.3 m 368 m 171 m 118 m 114 m 140 m 137 m 

2 mrad 156 m 100 m 377 m 197 m 959 m 958 m 1.22 km 1.22 km 
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6. FILTER PERFORMANCE MEASURES 

 

In this chapter we analyze how well the nonlinear filters perform against two 

performance measures, the Posterior Cramer-Rao Lower Bound (PCLRB) and a filter 

consistency metric.  We then test the correction and estimation algorithm against a 

number of different scenarios representing various missile trajectories and sensor satellite 

orbits using a quantitative MATLAB simulation. 

6.1. Posterior Cramer-Rao lower bound (PCLRB) performance 

The PCRLB provides a mean square error bound on the performance of an unbiased 

estimator.  For a tracking estimator, the PCRLB enables one to determine a lower bound 

on the optimal performance on the achievable accuracy of the target state estimate.  Let 

Ck be the error covariance of an unknown and random target state xk, which is estimated 

by an unbiased estimator 𝑥 𝑘 .  The PCRLB is defined as the inverse of the Fisher 

Information matrix Jk, or 

𝐶𝑘 ≜ 𝔼  𝑥𝑘 − 𝑥 𝑘  𝑥𝑘 − 𝑥 𝑘 
𝑇 ≥ 𝐽𝑘

−1,   (6-1) 

where Jk as defined as a n x n matrix with the elements [46]. 

𝐽𝑖𝑗 = 𝔼  −
𝜕2 log 𝑃𝑥,𝑥 

(𝑥,𝑥 )

𝜕𝑥 𝑖𝜕𝑥 𝑗
  i,j = 1, …, n.   (6-2) 
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The bound is referred to as the „posterior CRLB‟ due to the non-zero process noise in the 

state dynamics.  The Fisher information matrix can be shown to represent a system with 

linear target dynamics at time k+1 by the following recursion [47]: 

𝐽𝑘+1 = 𝐷𝑘
22 − 𝐷𝑘

21 𝐽𝑘 + 𝐷𝑘
11 −1𝐷𝑘

12 , (k>0)   (6-3) 

where, for the additive Gaussian form of the process and measurement noise have the 

following components: 

𝐷𝑘
11 = 𝔼 𝐹𝑘

𝑇𝑄𝑘
−1𝐹𝑘  

𝐷𝑘
12 = 𝔼 𝐹𝑘

𝑇 𝑄𝑘
−1 =  𝐷𝑘

21 𝑇     (6-4) 

𝐷𝑘
22 = 𝑄𝑘

−1 + 𝔼 𝐻𝑘+1
𝑇 𝑅𝑘+1

−1 𝐻𝑘+1 . 

where 

𝐹𝑘 =  ∇𝑥𝑘
𝑓𝑘

𝑇(𝑥𝑘) 
𝑇
     (6-5) 

𝐻𝑘 =  ∇𝑥𝑘
𝑕𝑘
𝑇(𝑥𝑘) 

𝑇
     (6-6) 

are Jacobians of the nonlinear functions fk(xk) and hk(xk) respectively, evaluated at the true 

value of xk.  The expectations above are with respect to xk.  Since our target dynamics are 

nearly linear we can assume that fk(xk)=Ak,  and (6-3) is simplified to [48]: 

𝐽𝑘+1 =  Σ𝑘 + 𝐴𝑘𝐽𝑘
−1𝐴𝑘

𝑇 −1 +  𝐽𝑍 𝑘 + 1 .   (6-7) 

Where Jz(k+1) is the measurement contribution, Ak is the state process transformation 

matrix and k = GQG
T
 is the process noise covariance.  For more than one sensor 

contribute to the ultimate state estimate, we must consider the contribution of all these 

sensors.  Thus, if we have M sensors providing measurements at time k, this contribution 

is formulated as 
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𝐽𝑧 𝑘 = 𝔼𝑀 𝐽𝑧 𝑘: 𝑀  =  𝑝 𝑀 𝐽𝑧(𝑘: 𝑀)𝑀    (6-8) 

where p(M) is the probability mass function of M and Jz(k:M) is the measurement 

contribution [48].  Jz(k:M) is found from the Jacobian of the observation matrix 𝐻𝑘 =

∇𝑥𝑘
𝑕(𝑥𝑘), where ∇𝑥𝑘

𝑕(𝑥𝑘) represents the matrix of the first partial derivatives of the 

vector hk with respect to the state vector Xk at time k, such that [7]: 

𝐽𝑧(𝑘: 𝑀) = 𝐻𝑀𝑘

𝑇 𝑅𝑀𝑘

−1𝐻𝑀𝑘
.    (6-9) 

In our case, we have two identical sensors providing measurements at each time step, and 

therefore p(M)=.5, and from (6-8) and (6-9) we get 

𝐽𝑧(𝑘) =  . 5 ∗2
𝑙=1 𝐻𝑙𝑘

𝑇 𝑅−1𝐻𝑙𝑘 ,    (6-10) 

where 𝑕(𝑥𝑘) is given by (5-43) and R by (5-44).  The Jacobian of h(xk), at each time step, 

k, given by 

 𝐻𝑘 𝑖𝑗 =  
𝜕𝑕𝑖(𝑥𝑘)

𝜕𝑥𝑘(𝑗 )
     (6-11) 

has components 

 𝐻𝑘 11 =
− 𝑌𝑘 − 𝑌𝑘

𝑆 

  𝑋𝑘 − 𝑋𝑘
𝑆 2 +  𝑌𝑘 − 𝑌𝑘

𝑆 2 
 

 𝐻𝑘 13 =
 𝑋𝑘 − 𝑋𝑘

𝑆 

  𝑋𝑘 − 𝑋𝑘
𝑆 2 +  𝑌𝑘 − 𝑌𝑘

𝑆 2 
 

 𝐻𝑘 12 =  𝐻𝑘 14 =  𝐻𝑘 15 =  𝐻𝑘  16 = 0 

 𝐻𝑘 21 =
− 𝑋𝑘 − 𝑋𝑘

𝑆  𝑍𝑘 − 𝑍𝑘
𝑆 

𝜌𝑘
2  𝑋𝑘 − 𝑋𝑘

𝑆 2 +  𝑌𝑘 − 𝑌𝑘
𝑆 2 1/2

 

 𝐻𝑘 23 =
− 𝑌𝑘 − 𝑌𝑘

𝑆  𝑍𝑘 − 𝑍𝑘
𝑆 

𝜌𝑘
2  𝑋𝑘 − 𝑋𝑘

𝑆 2 +  𝑌𝑘 − 𝑌𝑘
𝑆 2 1/2
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 𝐻𝑘 25 =
  𝑋𝑘 − 𝑋𝑘

𝑆 2 +  𝑌𝑘 − 𝑌𝑘
𝑆 2 1/2

𝜌𝑘
2  

 𝐻𝑘 22 =  𝐻𝑘 24 =  𝐻𝑘 26 = 0.    (6-12) 

In the above equations, k is the distance between the target and the sensor at the 

sampling time k, X, Y, Z are the target position components, and X
S
, Y

S
, and Z

S
 are the 

sensor position components. 

When we compare the resulting PCRLB with the error variance in Figures 32 and 33 

we can see how the variance closely follows the lower bound but does not quite match 

the bound.  This discrepancy is most likely due to non-Gaussian errors introduced as a 

result of coordinate frame transformations and bias correction.  In figure 33 we can see 

the transition at t=300 seconds when the system begins observing stars and correcting for 

observation bias.  This step results from the celestial observations helping correct for the 

sensor Gaussian observation error in addition to the bias error. 
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Figure 36. Error variance vs PCRLB for no bias case. 

 

 
Figure 37. Error variance vs PCRLB for .2 mrads bias error. 
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6.2. Filter Consistency 

Another measure of filter consistency involves weighting the estimate error by the 

inverse of the covariance matrix such that the normalized (state) estimation error squared 

(NEES) [8] can be obtained by: 

𝜖 𝑘 =  𝑥 𝑘 − 𝑥  𝑘|𝑘  
𝑇
𝑃 𝑘 𝑘 −1 𝑥(𝑘) − 𝑥 (𝑘│𝑘) ,  (6-13) 

With a sufficiently large, number of Monte Carlo runs, N, the value of  𝜖 𝑘  converges to 

a mean, 𝜖  𝑘 .  Therefore, a consistent filter will meet the following condition: 

𝔼 𝜖 𝑘  ≅ 𝜖  𝑘 =
1

𝑁
 𝜖𝑖(𝑘)𝑁

𝑖=1 ≅ 𝑛𝑥 ,   (6-14) 

where 𝑛𝑥  is the dimension of the state, x.   

For our study nx = 6.  Figures 34 to 36 show the values of epsilon for N=200 as the 

three estimators refine the target state vector.  The results for the EKF and UKF 

estimators are consistent with the expected result.  Specifically 𝜖  = 6.9 for the UKF and 𝜖  

= 6.8 for the EKF.  However, we can see in Figure 33 how the LKF estimator is well off 

the expected NEES value.  The reason for this result is that the velocity components of 

the covariance matrix, P, are ill conditioned due to the Polar to Cartesian conversion of 

the measurements in order to linearlize the filter.  We also notice that there are spikes in 

the NEES values at t = 300 seconds in the EKF and UKF cases.  This is spike is the result 

of beginning error correction using star observations. 
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Figure 38. Normalized estimation error squared (𝜖) for LKF. 

 

 
Figure 39. Normalized estimation error squared (𝜖) for EKF. 
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Figure 40. Normalized estimation error squared (𝜖) for UKF. 

 

6.3. Test scenarios and validation process 

Figure 37 provides a flow diagram of the MATLAB based program used to validate 

the bias correction and filtering algorithm.  Selected MATLAB files used in the 

simulations are located in Appendix B.  The algorithm was tested against eight scenarios 

involving three different target missile trajectories and a low earth orbit satellite 

trajectory.  Each scenario involved two different sensor satellite trajectories.  Both 

satellite trajectories were in a lead follower configuration at a 58 degree inclination at an 

altitude of 1300km and the lead satellite is 10 minutes ahead of the second.  One 

trajectory was in an ascending orbit (away from the equator), the other was in a 

descending orbit (toward the equator).  These different scenarios are described in Table 

12.  Graphical and numeric results of the individual scenarios are shown in Appendix A.  
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Each scenario test, with the exception of the Iridium satellite, included both bias cases as 

described in section 4.5 and used the bias EKF estimator.  The Iridium scenario only 

tested the pure sinusoidal bias case.  Table 13 lists the variables associated with all the 

test scenarios.  For the EKF and UKF the individual sensor estimates were fused as 

described in Chapter 5. 

 

Table 15. Target tracking scenarios 

Scenario Name Launch Point Impact Point Time of Flight 

NEA_SF North Korea San Francisco 1800 sec 

NEA_HI North Korea Hawaii 1500 sec 

NEA_GU North Korea Guam 1000 sec 

NEA_IR LEO Iridium satellite 1800 sec 
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Figure 41. Bias correction test program flow chart 
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Table 16. Common test variables 

Process 

noise (p) 

Observation 

error ( 

Bias noise 

error ( 

Field of 

view 

Time 

step (Ts) 

Number 

of runs 

10 m 10 rad 2 rad 0.8
o 

1 sec 25 

 

In every scenario, the bias correction algorithm improved the tracking accuracy of 

the sensor system.  This result was independent of target range, the time spent tracking 

the target, which varied from 1000 seconds to 1800 seconds, the portion of the celestial 

sphere traced out by the sensors, or the number of stars observed. In many cases the 

target flew under the sensors and the earth blocked any star observations.  Since 

algorithm was designed to reset the nearest star table pointer after 60 seconds of track 

without a star detection, the system was able to re-acquire the appropriate star from 

which to obtain a bias error observation measurement.   Furthermore, although we saw a 

difference in results between the two bias cases, this difference was minor since the bias 

estimator was able to closely estimate the bias characteristic even with gaps in star 

observations.  The quality of the bias estimate was dependent on the number of star 

observations before a gap appeared. 

To measure the overall performance of the three nonlinear filters with the bias 

correction algorithm we compared the aggregate percentage improvement of the target 

position error for all the scenarios and bias cases.  As we can see in Table 14, there is 

only a slight difference between the filter types with the EKF being only slightly better.  

One can see that there is significant improvement in the target position estimation as a 

result of bias error correction and non-linear filtering for smaller values of bias error, but 

as bias error increases the effectiveness of the nonlinear filters is not as great.  
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Furthermore, the bias correction has a negative effect on error when there is no post 

correction filtering.  This is likely due to the random sensor errors involved with both the 

star observation and the target observation combining to produce a larger error effect.  In 

the case of larger bias errors, the small improvement between the different filters is most 

likely due to the fact that with the bias correction, the error is reduced significantly before 

filtering and the filter cannot provide much improvement. 

 

Table 17. Average percent error improvement for all test scenarios 

Bias (0) No filter LKF EKF UKF 

None -13.83 8.94 23.12 24.08 

.02 mrad 31.90 45.09 54.16 53.20 

.2   mrad 90.04 91.75 92.67 92.55 

2   mrad 95.12 95.19 95.25 95.22 
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7. SUMMARY AND FUTURE RESEARCH DIRECTIONS 

 

7.1. Dissertation Summary 

In this study we set out to improve target tracking of a space-based Infrared tracking 

system through bias estimation from in-situ celestial observations and nonlinear 

estimation of the target state.  The objective of the study was to focus the problem on 

solving bias issues in a space-based infrared tracking system based on the Missile 

Defense Agency‟s Space Tracking and Surveillance System.   

We conducted the study in three phases.  First we determined the magnitude of target 

position error for various amounts of bias in the system.  Both spatial error in azimuth 

and elevation of the sensor, which contributed to line of sight errors, and in sampling 

time, where one sensor sampled the elevation and azimuth readings a short time after the 

first.  It was discovered that the error in the observation line of sight contributed 

significantly to the location error of the target and that this error was proportional to the 

range from the target.  The timing bias also contributed to target position error, but it was 

insignificant compared to the effect of the line of sight bias.  

In the second phase of the study we developed a star detection and sorting algorithm 

that allowed the system to determine if a star would be seen in the sensor field of view.  

When a star was expected to appear, the algorithm used the difference of the measured 

star position and the expected star position to obtain a LOS bias measurement.  After the 
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sampling, we tested two different bias estimation techniques on two different bias 

waveforms to estimate bias values between star observations.  This was necessary 

because there were periods of time when stars were not in the line of sight.  The first used 

a simple sample and hold method.  The second utilized an Extended Kalman Filter to 

estimate the sinusoidal bias vector.  The EKF method provided better performance for the 

two types of bias waveforms tested.  We also determined that the bias sampling and 

correction algorithm provided a substantial improvement in target location.  Variable 

aperture sizes allowed us to see how the algorithm‟s performance depended upon the 

number of stars observed.  We found that even with the smallest aperture size, the 

algorithm provided significant improvement in performance. 

The aperture size of the sensor had a near linear relationship between the number of 

stars detected and the target mean error.  Even with a sensor as small as .3 degrees radius 

there were ample stars detected and target error was within acceptable limits.  This effect 

was confirmed in the multiple scenario testing where aperture size was set to .4 degrees 

radius and produced good mean error values for all the scenarios. 

The third phase of the study compared the performance of three nonlinear estimation 

filters to provide a final state estimate.  The first is a Linearized Kalman Filter that used 

the intercept point of the line of sight vectors to the target for the filter measurements.  

The second was a standard Extended Kalman Filter, and the third was an Unscented 

Kalman Filter.  In the latter two filters a distributed fusion approach was used where a 

separate target estimate was calculated for each sensor.  These estimates were then fused 

to provide a common target estimate.  The performance of these nonlinear filters was 
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compared to the Cramer-Rao lower bound and a measure of filter consistency, the 

normalized (state) estimation error squared.  The filters tended to approach the PCLRB, 

but were generally a factor of 10-20 away from the bound.  This is most likely due to the 

number of coordinate frame transformations adding additional error to the results.  

Additionally, it is known that the EKF will add bias to the state estimation, see [49].  In 

the test scenario there was little difference found in the performance of the three filters.  

However, the difference in consistency varied greatly from the LKF to the EKF and 

UKF.  We found that the LKF was very inconsistent in the NEES measurement, yet the 

EKF and UKF were very close to the expected value. 

After the algorithm development phases, in the final phase we ran tracking 

simulations against a number of different scenarios involving different ballistic missile 

and space target trajectories using different sensor satellite orbits.  In all cases, the bias 

correction algorithm showed significant improvement in target tracking with as much as 

95 percent improvement in the worst scenarios.  Of the three nonlinear filters, the EKF 

slightly out-performed the UKF and LKF.  However, in many scenarios, when there was 

no bias input into the line of sight measurements, the bias correction algorithm performed 

worse than if there was no bias correction.  This was more consistently true when using 

the LKF estimator. 

7.2. Implications of the results 

The results of this study demonstrate the effectiveness of utilizing stellar 

observations for bias correction when tracking ballistic targets with space-based IR 

sensors.  We showed that it did not matter where the bias occurs - in the sensor pointing, 
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spacecraft attitude, or the measurement timing – that without bias correction, position 

error overwhelmed the ability of a nonlinear filter to make an adequate estimate of the 

target state.  Furthermore, the greater the bias, the more significant the impact on the 

sensor‟s ability to discern the target position from the noisy observations. 

The ability to correct target observations with in-situ observations while tracking 

increases the effectiveness of pre-tracking calibration by accounting for slowly varying 

bias as a result of spacecraft thermal distortion.  From the findings of this study, we 

conclude that in-situ celestial observations made during the tracking of a target will 

provide a superior method of bias correction and improve tracking accuracy.  We also 

found that there was little difference between the EKF and UKF in improving the target 

state estimate.  The estimation filters used in the study all approached the PCRLB and 

proved adequate in providing an estimate of the target state 

Although the accuracy of the target estimates depended upon the number of stars 

detected, we found that even with a small sensor aperture size there were sufficient 

measurements to provide an estimate of the bias using both the sample and hold method 

or the more sophisticated, yet very accurate, EKF method.  The accuracy of the bias 

estimate using the EKF led to better results in both cases of the bias models used in the 

study. 

We also adapted a unique star search algorithm to rapidly determine if a star was 

within the field of view.  This allowed for measuring bias in each time step if there were 

a star available.  The algorithm also enabled us to locate stars quickly when the sensor 

was shielded by the earth or encountered sunlight and moonlight. 
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7.3. Contributions 

The results of this study are consistent with the previous work done in this area.  In 

this study we extended currently developed techniques of state estimation to a new 

problem of space-based IR tracking of a ballistic missile.  We showed how background 

stars can provide a means for measuring and correcting bias in a space-based IR tracking 

system.  Most importantly we showed how target location significantly improved from 

the uncorrected state.  Even when bias is relatively small, the improvement in target 

tracking accuracy is on the order of tens of percent.  Earlier versions of error correction 

only allowed for calibration prior to the start of target tracking, or during the tracking 

phase when the sensor had to break track and to calibrate.  This old method fails to 

account for any bias fluctuations that occur following the sensor calibration.  The new 

method shown here enables real-time bias correction while the target is in track, 

correcting for any errors that result from thermal or dynamic effects on the system. 

A second contribution from this work is the formulation of a separate bias filter to 

estimate the bias error from the non-synchronous measurements.  Although other 

researched showed how one can use a separate bias filter to estimate the bias, those 

methods were restricted to linear processes, and did not use a model of the bias to 

accurately estimate the bias in between observations.  Our method more accurately 

models the bias and uses a nonlinear EKF to estimate the bias waveform accurately.  This 

technique enables better bias estimates during periods when no stars are observable. 

Another contribution of this study was the comparison of the nonlinear filters to the 

target estimation problem.  Here we used three different methods of target location.  The 
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first was using the intercept point of two vectors coupled with a LKF.  Two new 

techniques were developed for using the LKF for target state estimation.  The first was in 

calculating an estimated intercept point from the two target line of sight vectors.  The 

second was estimating the range variance from the intercept geometry associated with the 

target line of sight and their measurement variances.  We were unable to find any use of 

this methodology in the literature.  Although it did not significantly improve the state 

estimate over the EKF or UKF methodologies, it did provide a simpler method.  The 

study also showed that the other two methods, the EKF and UKF were not appreciably 

different in their effectiveness. 

A final contribution of our work was the development of a fast search algorithm 

based on the use of the nearest neighbor table to this problem of sensor calibration.  

Previous work had applied this technique for rapid identification of stars for spacecraft 

attitude control [43].  This study extended the methodology to allow rapid determination 

if a star was within a field of view. 

7.4. Study limitations 

The obvious limitations associated with this work, was the simulative nature of using 

a MATLAB program with data provided from the STK simulation.  Several assumptions 

and simplifications were required to replicate the actual conditions expected.  For 

instance, the bias model, although representative of real world conditions, may not 

exactly match the conditions found in the spacecraft.  Similarly, the absence of actual 

measurements provides a much “cleaner” picture than real data would allow.  This is 

especially true with the assumption that there was only one target object and that track 
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association issues were not considered in the study.  Finally, we must mention that some 

simplifications and approximations were made to avoid security classification issues 

associated with the actual system hardware characteristics that could also affect the 

fidelity of the results. 

7.5. Recommendations for Future Research 

Although the derivations, analysis, and results of this study captured issues associated 

with improving the target tracking capability of a space based IR sensor using 

background stars and advanced estimation algorithms, a number of areas remain for 

future research.  The analyses here established the theoretical understanding of the 

algorithm‟s performance and related issues but were subject to the limitations discussed 

above.  To fully understand the capability offered here requires extending these findings 

into more detailed and sophisticated real life environments. 

A first area to explore would be to extend the results to include multiple targets and 

false alarms and to increase the noise and uncertainty of target detection.  False alarms 

would make identification of a star more complicated.  To help resolve this problem, the 

algorithm may be adjusted to measure a star‟s intensity and compare it with the intensity 

found in the star catalog to aid in matching.  Additionally, multiple targets would require 

the algorithm to perform data association hypothesis testing such as the nearest neighbor 

or Multiple Hypothesis Tests.  This area of research would be of great benefit for Space 

Situational Awareness where many closely-spaced objects require identification and 

tracking.  Bias removal could be critical to the success of the process.  Bias removal in 

the track-to-track association problem is explored by Ferry in [50].  The algorithm could 
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also be tested on maneuvering targets and targets that are lost and require reacquisition.  

The models tested here assumed continuous tracking of a target only under the influence 

of gravity.  A maneuvering warhead or satellite may make the algorithm less effective.  

Also, widely spaced multiple targets in a mass missile attack or in space tracking would 

require the sensor to break track on one object and look at another. 

Another area that may require further development is to include multiple bias models 

in the bias estimate.  In this study we assumed only one model present at a time.  A more 

inclusive set of models would use at least the two models explored here plus possibly a 

steady state bias where the sinusoidal component is zero.  A direction that this research 

might take is to input the bias measurements into a separate Multiple Mixture Model 

estimator containing the different bias models [51] and [52].  Appling this technique 

would account for different effects of the space environment on the spacecraft and sensor.   

A significant extension of this work would include adding the attitude control system 

into the model and perform simultaneous nonlinear estimation of sensor and attitude 

control bias using celestial observations.  This would provide a fully integrated system 

along the lines presented by Wu in [39] but with simultaneous tracking.  The correction 

of errors in the gyro bias from the observations would assist in ensuring accurate attitude 

references for coordinate frame transformation and spacecraft navigation. 

Most desirable would be the use of data from the actual STSS system to validate the 

true nature of the bias error and to test the performance of the algorithm.  The STSS 

system is now in orbit undergoing post-launch testing.  It will acquire its first missile 

tracking data from a test scheduled in 2010.  Actual data will allow the algorithm to be 
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tested with false alarms and ghost tracks, multiple targets, and detected stars that are not 

in the Aura catalog.  Initial testing could be done with this algorithm, but would probably 

need to be simplified and optimized for real time operation.  This optimization would be 

especially necessary when trying to start multiple targets that might be generated from a 

target missile deploying decoys or rocket associated debris such as payload fairings and 

tanks. 

Lastly, although not directly related to bias correction, since the STSS is only one of 

the systems in the missile defense and space tracking architecture, fusing the space based 

sensor tracking results with other sensor measurements is an area of interest worth 

pursuing.  This could take the form of other sensors providing observations to help refine 

the space sensor track estimates, especially if there was missing observations, or vice 

versa.  With only a few sensors in orbit, the STSS may not be present during the entire 

flight of a threat ballistic missile.  Being able to receive a cue from other sensors is an 

important capability.  Bias estimates from other systems also justify a bias removal 

methodology in either a centralized or distributed manner.  This concept of estimation of 

bias errors of active and passive sensors used in connection with multisensory multitarget 

tracking is discussed by Sviestins in [53]. 
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APPENDIX A:  SIMULATION RESULTS 

Scenario: Northeast Asia to San Francisco development scenario 

 

This scenario utilizes two sensor satellites in a 600 nm altitude 60 degree inclination 

ascending node orbit.  The target missile is an ICBM class missile launched from 

Northeast Asia targeting San Francisco.  The missile flight time is 30 minutes.  Figure A-

1 is a diagram of the sensor satellites and target trajectories. Table A-1 provides 

numerical results for the scenario with sensor bias s = 10 rad.  Table A-2 provides 

numerical results for the scenario with sensor bias s = 50 rad and s = 100 rad.  Table 

A-3 provides results for the scenario with time step Ts = 5 sec and 10 sec. 

 

 
Figure A-1 Satellite and target trajectories for SEA-SF-development scenario. 
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Figure A-2. Case 1: Sensor 1 bias measurements and estimates with and without bias 

EKF for pure sinusoidal bias 

 

 
Figure A-3. Case 2: Sensor 1 bias measurements and estimates with and without bias 

EKF for pure sinusoidal bias 
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Figure A-4. Case 1: Mean error of target position for sinusoidal bias ( = .2 mrads) 

 

 
Figure A-5. Case 1: Mean error of target position for sinusoidal bias ( = .2 mrads) 
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Figure A-6. Sensor trajectories with detected stars for NEA-SF-development scenario. 

 

 

 
Figure A-7. Mean error of target position for sensor error (s) = 50 rad with sinusoidal 

bias ( = .2 mrads)\ 
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Figure A-8. Sensor 1 bias measurements and estimates with and without bias EKF for 

pure sinusoidal bias and sensor error () = 50 rad 

 

 

 
Figure A-9. Sensor 2 bias measurements and estimates with and without bias EKF for 

pure sinusoidal bias and sensor error () = 50 rad  

0 200 400 600 800 1000 1200 1400 1600
-2

0

2

4
x 10

-4

Time (secs)

B
ia

s
 (

ra
d
s
)

Sensor 1 Bias measurements without and with Kalman Filtering

0 200 400 600 800 1000 1200 1400 1600
-0.5

0

0.5

1

1.5

2

2.5
x 10

-3 Sensor 2 Bias measurements without and with Kalman Filtering

Time (secs)

B
ia

s
 (

ra
d
s
)

S&H

EKF

True Bias



 

109 

 
Figure A-10. Mean error of target position for sensor error (s) = 100 rad with 

sinusoidal bias ( = .2 mrads) 

 

 

 
Figure A-11. Sensor 1 bias measurements and estimates with and without bias EKF for 

pure sinusoidal bias and sensor error () = 100 rad 
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Figure A-12. Sensor 2 bias measurements and estimates with and without bias EKF for 

pure sinusoidal bias and sensor error () = 100 rad  

 

 

 
Figure A-13. Mean error of target position for time step (Ts) = 5 seconds with sinusoidal 

bias ( = .2 mrads)\ 
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Figure A-14. Sensor 1 bias measurements and estimates with and without bias EKF for 

pure sinusoidal bias and time step (Ts)  = 5 seconds. 

 

 
Figure A-15. Sensor 2 bias measurements and estimates with and without bias EKF for 

pure sinusoidal bias and time step (Ts)  = 5 seconds. 
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Figure A-16. Mean error of target position for time step (Ts) = 10 seconds with sinusoidal 

bias ( = .2 mrads). 

 

 

 
Figure A-17. Sensor 1 bias measurements and estimates with and without bias EKF for 

pure sinusoidal bias and time step (Ts)  = 10 seconds. 
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Figure A-18. Sensor 2 bias measurements and estimates with and without bias EKF for 

pure sinusoidal bias and time step (Ts)  = 10 seconds. 
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1
4
 

Filter 

type

bias Mean Err STD Mean Err STD Pct Impr Mean Err STD Pct Impr Mean Err STD Pct Impr Sensor 1 Sensor 2

LKF 0 4.06E-02 5.67E-04 4.10E-02 7.97E-04 -1.17 4.77E-02 4.14E-03 -17.74 3.20E-02 9.94E-04 21.18 408 800

2.00E-05 6.21E-02 6.69E-04 4.11E-02 7.81E-04 33.90 4.62E-02 3.51E-03 25.68 3.20E-02 7.06E-04 48.42 406 801

2.00E-04 4.89E-01 5.62E-04 4.18E-02 8.20E-04 91.44 6.53E-02 8.61E-03 86.63 3.35E-02 8.25E-04 93.14 412 799

2.00E-03 4.88E+00 7.95E-04 5.53E-02 9.32E-04 98.87 3.74E-01 1.27E-02 92.33 5.06E-02 1.04E-03 98.96 466 795

EKF 0.00E+00 4.06E-02 5.98E-04 4.11E-02 7.04E-04 -1.11 4.69E-02 3.68E-03 -15.64 2.56E-02 8.22E-04 36.87 406 800

2.00E-05 6.21E-02 7.04E-04 4.12E-02 7.38E-04 33.59 4.72E-02 3.05E-03 23.96 2.58E-02 8.45E-04 58.45 407 801

2.00E-04 4.89E-01 6.24E-04 4.18E-02 8.12E-04 91.44 6.42E-02 6.85E-03 86.87 2.71E-02 6.19E-04 94.46 413 800

2.00E-03 4.88E+00 6.11E-04 5.53E-02 9.29E-04 98.87 3.72E-01 1.06E-02 92.37 4.41E-02 1.22E-03 99.10 468 797

UKF 0.00E+00 4.07E-02 5.33E-04 4.11E-02 6.14E-04 -0.86 4.68E-02 3.47E-03 -14.94 2.56E-02 7.40E-04 37.01 406 801

2.00E-05 6.20E-02 6.38E-04 4.08E-02 6.80E-04 34.14 4.58E-02 3.50E-03 26.16 2.54E-02 6.99E-04 58.95 407 799

2.00E-04 4.89E-01 6.71E-04 4.19E-02 8.25E-04 91.42 6.27E-02 7.25E-03 87.17 2.69E-02 7.45E-04 94.49 412 799

2.00E-03 4.88E+00 7.64E-04 5.51E-02 8.82E-04 98.87 3.73E-01 1.07E-02 92.35 4.39E-02 1.06E-03 99.10 467 794

LKF 0.00E+00 3.25E-02 4.46E-04 3.29E-02 6.32E-04 -1.44 3.58E-02 2.45E-03 -10.25 2.65E-02 7.21E-04 18.43 406 801

2.00E-05 5.34E-02 6.42E-04 3.31E-02 8.18E-04 38.10 3.63E-02 2.66E-03 32.14 2.66E-02 8.50E-04 50.22 406 801

2.00E-04 4.45E-01 7.22E-04 3.40E-02 9.16E-04 92.35 3.70E-02 2.46E-03 91.67 2.78E-02 1.04E-03 93.76 397 790

2.00E-03 4.44E+00 7.70E-04 4.94E-02 1.46E-03 98.89 4.67E-02 3.38E-03 98.95 4.61E-02 1.51E-03 98.96 383 768

EKF 0.00E+00 3.25E-02 5.62E-04 3.30E-02 7.23E-04 -1.33 3.63E-02 3.21E-03 -11.60 2.18E-02 9.19E-04 32.88 409 800

2.00E-05 5.35E-02 6.55E-04 3.31E-02 7.53E-04 38.16 3.60E-02 2.60E-03 32.62 2.20E-02 1.04E-03 58.90 405 801

2.00E-04 4.44E-01 7.10E-04 3.37E-02 7.84E-04 92.41 3.75E-02 3.13E-03 91.56 2.33E-02 1.08E-03 94.76 397 792

2.00E-03 4.44E+00 8.50E-04 4.93E-02 1.35E-03 98.89 4.70E-02 3.48E-03 98.94 4.43E-02 1.69E-03 99.00 383 770

UKF 0.00E+00 3.25E-02 4.55E-04 3.30E-02 6.48E-04 -1.26 3.59E-02 2.59E-03 -10.35 2.18E-02 8.32E-04 33.14 406 801

2.00E-05 5.34E-02 7.04E-04 3.30E-02 8.93E-04 38.20 3.62E-02 2.83E-03 32.15 2.18E-02 9.24E-04 59.20 405 800

2.00E-04 4.45E-01 5.73E-04 3.38E-02 8.37E-04 92.40 3.68E-02 2.35E-03 91.71 2.32E-02 9.80E-04 94.77 397 791
2.00E-03 4.44E+00 6.22E-04 4.93E-02 1.22E-03 98.89 4.68E-02 3.15E-03 98.95 4.41E-02 1.48E-03 99.01 383 767

NEA-SF-DEVELOP Case 1

NEA-SF-DEVELOP Case 2

With EKF bias correction and 

post filtering Numbe of stars

without bias 

correction with EKF bias correction

with Sample and Hold 

correction

Table A-1. Performance results from NEA-SF-development.  Number of runs = 50, Field of view = 1.0
o
, Start time 0 s, End time 1800 s
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1
5
 

Filter 

type

bias Mean Err RMS Err Mean Err RMS Err Pct Impr Mean Err RMS Err Pct Impr Mean Err RMS Err Pct Impr Sensor 1 Sensor 2

LKF 0 1.45E-01 1.62E-01 1.48E-01 1.66E-01 -2.18 1.60E-01 1.81E-01 -10.41 1.03E-01 1.14E-01 28.98 410 798

2.00E-05 1.50E-01 1.67E-01 1.48E-01 1.66E-01 0.94 1.57E-01 1.77E-01 -4.75 1.04E-01 1.15E-01 30.55 412 798

2.00E-04 4.55E-01 4.67E-01 1.49E-01 1.67E-01 67.20 1.54E-01 1.74E-01 66.09 1.04E-01 1.14E-01 77.23 412 802

2.00E-03 4.37E+00 4.37E+00 1.56E-01 1.74E-01 96.43 2.57E-01 2.79E-01 94.12 1.17E-01 1.28E-01 97.32 470 793

EKF 0.00E+00 1.45E-01 1.62E-01 1.49E-01 1.66E-01 -2.44 1.60E-01 1.81E-01 -10.27 8.37E-02 9.41E-02 42.39 403 802

2.00E-05 1.52E-01 1.69E-01 1.48E-01 1.66E-01 2.29 1.61E-01 1.81E-01 -5.90 8.29E-02 9.34E-02 45.29 405 802

2.00E-04 4.56E-01 4.67E-01 1.49E-01 1.67E-01 67.22 1.64E-01 1.86E-01 63.94 8.50E-02 9.57E-02 81.35 408 797

2.00E-03 4.37E+00 4.37E+00 1.54E-01 1.72E-01 96.47 2.55E-01 2.76E-01 94.16 1.01E-01 1.12E-01 97.69 469 794

UKF 0.00E+00 1.46E-01 1.63E-01 1.48E-01 1.66E-01 -1.70 1.58E-01 1.79E-01 -8.80 8.13E-02 9.16E-02 44.14 408 803

2.00E-05 1.52E-01 1.70E-01 1.48E-01 1.65E-01 2.66 1.57E-01 1.77E-01 -2.97 8.11E-02 9.13E-02 46.68 409 800

2.00E-04 4.55E-01 4.67E-01 1.48E-01 1.65E-01 67.54 1.60E-01 1.82E-01 64.96 8.33E-02 9.35E-02 81.70 415 799

2.00E-03 4.37E+00 4.37E+00 1.55E-01 1.73E-01 96.45 2.50E-01 2.70E-01 94.28 1.00E-01 1.11E-01 97.71 465 794

LKF 0.00E+00 3.62E-01 4.07E-01 3.68E-01 4.14E-01 -1.43 4.25E-01 4.84E-01 -17.16 2.37E-01 2.60E-01 34.69 410 804

2.00E-05 3.65E-01 4.10E-01 3.67E-01 4.12E-01 -0.57 4.13E-01 4.71E-01 -13.40 2.35E-01 2.58E-01 35.42 407 800

2.00E-04 5.94E-01 6.37E-01 3.69E-01 4.15E-01 37.93 4.23E-01 4.83E-01 28.83 2.41E-01 2.64E-01 59.39 409 800

2.00E-03 4.89E+00 4.89E+00 3.77E-01 4.24E-01 92.28 5.69E-01 6.32E-01 88.36 2.64E-01 2.87E-01 94.59 467 799

EKF 0.00E+00 3.61E-01 4.06E-01 3.67E-01 4.12E-01 -1.45 4.25E-01 4.84E-01 -17.57 1.79E-01 2.01E-01 50.45 405 801

2.00E-05 3.66E-01 4.11E-01 3.69E-01 4.14E-01 -0.74 4.26E-01 4.85E-01 -16.44 1.80E-01 2.02E-01 50.73 413 797

2.00E-04 5.97E-01 6.41E-01 3.67E-01 4.13E-01 38.51 4.27E-01 4.89E-01 28.52 1.78E-01 2.00E-01 70.13 407 806

2.00E-03 4.89E+00 4.89E+00 3.77E-01 4.24E-01 92.29 5.72E-01 6.34E-01 88.29 2.06E-01 2.29E-01 95.79 471 795

UKF 0.00E+00 3.64E-01 4.08E-01 3.68E-01 4.13E-01 -1.08 4.21E-01 4.78E-01 -15.89 1.71E-01 1.92E-01 52.95 408 798

2.00E-05 3.64E-01 4.10E-01 3.65E-01 4.11E-01 -0.23 4.21E-01 4.81E-01 -15.72 1.69E-01 1.89E-01 53.69 408 791

2.00E-04 5.98E-01 6.41E-01 3.69E-01 4.15E-01 38.23 4.18E-01 4.77E-01 29.99 1.71E-01 1.91E-01 71.41 411 799
2.00E-03 4.89E+00 4.89E+00 3.74E-01 4.20E-01 92.35 5.88E-01 6.49E-01 87.97 1.97E-01 2.18E-01 95.96 469 790

NEA-SF-DEVELOP sensor bias = 50 urad

NEA-SF-DEVELOP sensor bias = 100 urad

With EKF bias correction and 

post filtering Numbe of stars

without bias 

correction with EKF bias correction

with Sample and Hold 

correction

Table A-2. Performance results from NEA-SF-development with increased sensor bias.  Number of runs = 50, Field of view = 1.0
o
. 
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Filter 

type

bias Mean Err RMS Err Mean Err RMS Err Pct Impr Mean Err RMS Err Pct Impr Mean Err RMS Err Pct Impr Sensor 1 Sensor 2

LKF 0 4.02E-02 4.51E-02 4.10E-02 4.59E-02 -1.97 4.51E-02 5.08E-02 -12.32 1.27E-01 1.29E-01 -215.35 81 157

2.00E-05 6.18E-02 6.61E-02 4.35E-02 4.82E-02 29.71 4.88E-02 5.43E-02 21.16 1.27E-01 1.29E-01 -105.79 80 157

2.00E-04 4.90E-01 4.91E-01 1.17E-01 1.22E-01 76.08 1.24E-01 1.29E-01 74.69 1.85E-01 1.88E-01 62.15 81 159

2.00E-03 4.89E+00 4.89E+00 9.58E-01 9.60E-01 80.40 1.01E+00 1.01E+00 79.32 1.00E+00 1.01E+00 79.46 96 152

EKF 0.00E+00 4.06E-02 4.53E-02 4.14E-02 4.62E-02 -1.88 4.47E-02 5.02E-02 -10.12 3.69E-02 4.22E-02 9.09 80 157

2.00E-05 6.20E-02 6.63E-02 4.35E-02 4.85E-02 29.86 4.72E-02 5.26E-02 23.81 3.90E-02 4.43E-02 37.05 80 157

2.00E-04 4.90E-01 4.90E-01 1.17E-01 1.21E-01 76.21 1.22E-01 1.27E-01 75.05 1.13E-01 1.18E-01 76.91 81 157

2.00E-03 4.89E+00 4.89E+00 9.58E-01 9.60E-01 80.41 1.01E+00 1.01E+00 79.34 9.57E-01 9.60E-01 80.43 96 151

UKF 0.00E+00 4.02E-02 4.51E-02 4.10E-02 4.60E-02 -2.05 4.64E-02 5.24E-02 -15.58 3.52E-02 4.05E-02 12.27 80 157

2.00E-05 6.18E-02 6.61E-02 4.36E-02 4.84E-02 29.43 4.85E-02 5.37E-02 21.51 3.81E-02 4.32E-02 38.25 80 158

2.00E-04 4.90E-01 4.91E-01 1.18E-01 1.22E-01 76.03 1.25E-01 1.31E-01 74.49 1.14E-01 1.18E-01 76.81 81 158

2.00E-03 4.89E+00 4.89E+00 9.59E-01 9.61E-01 80.39 1.01E+00 1.01E+00 79.38 9.58E-01 9.60E-01 80.41 96 151

LKF 0.00E+00 4.07E-02 4.57E-02 4.23E-02 4.73E-02 -3.83 4.51E-02 5.07E-02 -10.77 4.81E-01 4.81E-01 -1080.94 34 75

2.00E-05 6.13E-02 6.56E-02 4.62E-02 5.09E-02 24.63 4.96E-02 5.49E-02 19.08 4.81E-01 4.81E-01 -685.00 32 75

2.00E-04 4.90E-01 4.91E-01 1.41E-01 1.45E-01 71.27 1.46E-01 1.50E-01 70.31 5.19E-01 5.20E-01 -5.84 32 75

2.00E-03 4.89E+00 4.89E+00 1.22E+00 1.22E+00 75.10 1.25E+00 1.25E+00 74.41 1.47E+00 1.47E+00 69.93 43 70

EKF 0.00E+00 4.11E-02 4.58E-02 4.24E-02 4.73E-02 -3.39 4.62E-02 5.21E-02 -12.63 4.77E-02 5.81E-02 -16.31 32 75

2.00E-05 6.23E-02 6.66E-02 4.58E-02 5.06E-02 26.43 4.98E-02 5.52E-02 19.95 5.05E-02 6.08E-02 18.87 32 75

2.00E-04 4.90E-01 4.91E-01 1.38E-01 1.42E-01 71.76 1.42E-01 1.46E-01 71.11 1.39E-01 1.46E-01 71.65 32 74

2.00E-03 4.90E+00 4.90E+00 1.22E+00 1.22E+00 75.12 1.25E+00 1.25E+00 74.48 1.23E+00 1.23E+00 74.97 43 70

UKF 0.00E+00 4.07E-02 4.58E-02 4.21E-02 4.73E-02 -3.38 4.60E-02 5.19E-02 -13.02 3.71E-02 4.27E-02 8.93 32 75

2.00E-05 6.16E-02 6.59E-02 4.61E-02 5.10E-02 25.14 5.01E-02 5.55E-02 18.63 4.12E-02 4.65E-02 33.02 32 76

2.00E-04 4.91E-01 4.91E-01 1.40E-01 1.44E-01 71.39 1.46E-01 1.51E-01 70.18 1.37E-01 1.41E-01 72.10 32 74
2.00E-03 4.90E+00 4.90E+00 1.22E+00 1.22E+00 75.07 1.25E+00 1.25E+00 74.48 1.22E+00 1.22E+00 75.10 43 70

NEA-SF-DEVELOP Time step = 5 sec

NEA-SF-DEVELOP Time step = 10 sec

With EKF bias correction and post 

filtering Numbe of stars

without bias 

correction with EKF bias correction

with Sample and Hold 

correction

Table A-3. Performance results from NEA-SF-development with increased time step.  Number of runs = 50, Field of view = 1.0
o
. 
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Scenario: Northeast Asia to San Francisco with ascending orbit (NEA-SF-A) 

 

 

This scenario utilizes two sensor satellites in a 1350 km altitude 58 degree inclination 

ascending node orbit.  The target missile is an ICBM class missile launched from 

Northeast Asia targeting San Francisco.  The missile flight time is 30 minutes.  Figure A-

19 is a diagram of the sensor satellites and target trajectories.   

 

 
Figure A-19. Satellite and target trajectories for SEA-SF-A scenario 
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Figure A-20. Case 1: Sensor 1 bias measurements and estimates with and without bias 

EKF for pure sinusoidal bias 

 

 
Figure A-21. Case 2: Sensor 1 bias measurements and estimates with and without bias 

EKF for constant bias with sinusoidal component. 
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Figure A-22. Case 1: Mean error of target position for sinusoidal bias ( = .2 mrads) 

 

 
Figure A-23. Case 2: Mean error of target position for a constant bias with a sinusoidal 

component ( = .2 mrads) 
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Figure A-24. Sensor trajectories with detected stars for NEA-SF-A scenario 
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Filter 

type

bias Mean Err STD Mean Err STD Pct Impr Mean Err STD Pct Impr Mean Err STD Pct Impr Sensor 1 Sensor 2

LKF 0.00E+00 5.22E-02 8.33E-04 6.64E-02 1.48E-02 -27.22 5.97E-02 6.62E-03 -14.51 6.04E-02 1.55E-02 -15.77 313 359

2.00E-05 6.86E-02 1.15E-03 6.79E-02 1.29E-02 1.07 6.10E-02 5.60E-03 11.10 6.21E-02 1.34E-02 9.51 314 361

2.00E-04 4.51E-01 1.51E-03 7.04E-02 1.15E-02 84.41 7.46E-02 5.75E-03 83.48 6.49E-02 1.20E-02 85.61 316 360

2.00E-03 4.50E+00 1.15E-03 1.30E-01 6.48E-03 97.12 3.89E-01 1.19E-02 91.35 1.30E-01 6.64E-03 97.12 280 353

EKF 0.00E+00 5.19E-02 1.03E-03 7.02E-02 1.39E-02 -35.28 5.82E-02 4.49E-03 -12.15 5.48E-02 1.55E-02 -5.66 312 361

2.00E-05 6.87E-02 1.13E-03 6.34E-02 7.85E-03 7.71 6.00E-02 3.98E-03 12.66 4.88E-02 8.53E-03 28.98 314 359

2.00E-04 4.51E-01 1.53E-03 7.39E-02 1.44E-02 83.62 7.49E-02 6.18E-03 83.39 6.19E-02 1.51E-02 86.27 314 361

2.00E-03 4.50E+00 1.36E-03 1.34E-01 6.74E-03 97.02 3.85E-01 9.65E-03 91.44 1.54E-01 7.17E-03 96.59 279 350

UKF 0.00E+00 5.25E-02 8.88E-04 6.53E-02 1.19E-02 -24.29 5.97E-02 4.73E-03 -13.66 4.92E-02 1.24E-02 6.31 313 360

2.00E-05 6.90E-02 1.50E-03 6.83E-02 1.25E-02 1.08 5.78E-02 5.46E-03 16.31 5.33E-02 1.42E-02 22.87 312 360

2.00E-04 4.51E-01 1.59E-03 8.11E-02 1.64E-02 82.01 7.90E-02 1.02E-02 82.48 6.94E-02 1.77E-02 84.62 316 360

2.00E-03 4.50E+00 1.39E-03 1.36E-01 6.96E-03 96.97 3.88E-01 1.34E-02 91.39 1.56E-01 7.09E-03 96.53 280 351

LKF 0.00E+00 5.22E-02 8.33E-04 6.64E-02 1.49E-02 -27.31 5.97E-02 6.62E-03 -14.51 6.05E-02 1.55E-02 -15.87 313 359

2.00E-05 9.51E-02 1.61E-03 6.83E-02 1.29E-02 28.17 6.13E-02 6.07E-03 35.55 6.26E-02 1.34E-02 34.15 315 361

2.00E-04 8.62E-01 1.69E-03 7.59E-02 1.16E-02 91.20 6.89E-02 3.43E-03 92.01 7.08E-02 1.21E-02 91.78 312 364

2.00E-03 8.60E+00 1.44E-03 3.01E-01 5.41E-02 96.49 1.93E-01 3.83E-03 97.76 3.06E-01 5.38E-02 96.44 253 383

EKF 0.00E+00 5.19E-02 1.03E-03 7.02E-02 1.39E-02 -35.40 5.82E-02 4.49E-03 -12.15 5.49E-02 1.55E-02 -5.77 312 361

2.00E-05 9.49E-02 1.65E-03 6.42E-02 7.93E-03 32.35 6.04E-02 3.89E-03 36.36 4.99E-02 8.73E-03 47.45 313 359

2.00E-04 8.62E-01 1.75E-03 7.93E-02 1.43E-02 90.80 7.10E-02 4.63E-03 91.76 6.78E-02 1.51E-02 92.13 312 364

2.00E-03 8.60E+00 1.37E-03 2.76E-01 6.41E-02 96.79 1.94E-01 3.85E-03 97.74 3.00E-01 5.93E-02 96.51 253 384

UKF 0.00E+00 5.25E-02 8.88E-04 6.53E-02 1.20E-02 -24.38 5.97E-02 4.73E-03 -13.66 4.92E-02 1.25E-02 6.21 313 360

2.00E-05 9.52E-02 1.64E-03 6.87E-02 1.25E-02 27.83 5.83E-02 4.93E-03 38.79 5.38E-02 1.43E-02 43.47 313 360

2.00E-04 8.62E-01 2.01E-03 8.64E-02 1.64E-02 89.97 7.20E-02 6.88E-03 91.64 7.50E-02 1.77E-02 91.30 311 363
2.00E-03 8.60E+00 1.23E-03 2.90E-01 6.57E-02 96.62 1.94E-01 4.20E-03 97.75 3.15E-01 6.51E-02 96.34 253 383

NEA-SF-A Case 1

NEA-SF-A Case 2

With EKF bias correction and 

post filtering Numbe of stars

without bias 

correction with EKF bias correction

with Sample and Hold 

correction

Table A-4. Performance results from NEA-SF-A.  Number of runs = 25, Field of view = 0.8
o
, Start time 21 s, End time 1800 s 

 

 

1
2
1
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Scenario: Northeast Asia to San Francisco with descending orbit (NEA-SF-D) 

 

 

 

This scenario utilizes two sensor satellites in a 1350 km altitude 58 degree inclination 

descending node orbit.  The target missile is an ICBM class missile launched from 

Northeast Asia targeting San Francisco.  The missile flight time is 30 minutes.  Figure A-

25 is a diagram of the sensor satellites and target trajectories. 

 

 

 
Figure A-25. Satellite and target trajectories for NEA-SF-D scenario 
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Figure A-26. Case 1: Sensor 1 bias measurements and estimates with and without bias 

EKF for pure sinusoidal bias 

 

 

 
Figure A-27. Case 2: Sensor 1 bias measurements and estimates with and without bias 

EKF for constant bias with sinusoidal component. 
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.  

Figure A-28. Case 1: Mean error of target position for sinusoidal bias ( = .2 mrads) 

 

 
Figure A-29. Case 2: Bias measurements and estimates with and without bias EKF for 

constant bias with sinusoidal component. 
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Figure A-30. Sensor trajectories with detected stars for NEA-SF-D scenario 
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Filter 

type

bias Mean Err STD Mean Err STD Pct Impr Mean Err STD Pct Impr Mean Err STD Pct Impr Sensor 1 Sensor 2

LKF 0.00E+00 7.91E-02 2.58E-03 8.01E-02 3.38E-03 -1.28 8.29E-02 5.33E-03 -4.73 6.06E-02 2.80E-03 23.43 408 429

2.00E-05 1.53E-01 3.14E-03 8.17E-02 3.49E-03 46.53 8.60E-02 7.75E-03 43.69 6.16E-02 3.13E-03 59.68 408 429

2.00E-04 1.38E+00 2.84E-03 9.86E-02 1.91E-03 92.84 1.12E-01 5.77E-03 91.90 7.93E-02 1.95E-03 94.24 409 428

2.00E-03 1.36E+01 3.43E-03 2.98E-01 2.61E-03 97.81 5.52E-01 1.18E-02 95.94 2.84E-01 3.15E-03 97.92 402 421

EKF 0.00E+00 7.97E-02 2.76E-03 8.06E-02 2.77E-03 -1.16 8.63E-02 6.25E-03 -8.27 4.60E-02 2.61E-03 42.31 408 427

2.00E-05 1.51E-01 3.27E-03 8.06E-02 2.89E-03 46.68 8.38E-02 4.26E-03 44.61 4.48E-02 3.20E-03 70.36 407 428

2.00E-04 1.38E+00 3.14E-03 9.85E-02 2.60E-03 92.85 1.11E-01 6.52E-03 91.94 6.34E-02 2.73E-03 95.40 410 425

2.00E-03 1.36E+01 4.52E-03 2.97E-01 2.30E-03 97.82 5.58E-01 1.19E-02 95.90 2.68E-01 3.24E-03 98.03 402 421

UKF 0.00E+00 7.94E-02 2.33E-03 8.04E-02 2.55E-03 -1.25 8.23E-02 3.50E-03 -3.57 4.50E-02 2.97E-03 43.41 407 429

2.00E-05 1.51E-01 3.56E-03 8.10E-02 2.66E-03 46.31 8.54E-02 4.42E-03 43.44 4.56E-02 3.15E-03 69.77 407 428

2.00E-04 1.38E+00 4.60E-03 9.80E-02 2.65E-03 92.88 1.12E-01 8.13E-03 91.86 6.36E-02 2.06E-03 95.38 409 425

2.00E-03 1.36E+01 4.80E-03 2.97E-01 3.59E-03 97.82 5.51E-01 8.46E-03 95.95 2.69E-01 4.24E-03 98.03 402 420

LKF 0.00E+00 7.98E-02 2.54E-03 8.05E-02 2.60E-03 -0.92 8.53E-02 7.37E-03 -6.86 6.03E-02 2.37E-03 24.46 407 428

2.00E-05 1.79E-01 4.42E-03 8.10E-02 2.60E-03 54.84 8.66E-02 5.98E-03 51.75 6.10E-02 2.55E-03 66.00 406 427

2.00E-04 1.69E+00 4.07E-03 9.90E-02 2.69E-03 94.16 1.03E-01 3.99E-03 93.94 8.03E-02 2.89E-03 95.26 407 427

2.00E-03 1.69E+01 3.58E-03 3.18E-01 2.39E-03 98.12 3.17E-01 6.13E-03 98.13 3.07E-01 2.59E-03 98.19 421 437

EKF 0.00E+00 7.92E-02 2.46E-03 8.05E-02 2.85E-03 -1.73 8.45E-02 5.85E-03 -6.74 4.60E-02 4.34E-03 41.87 408 428

2.00E-05 1.80E-01 2.55E-03 8.09E-02 2.33E-03 55.18 8.37E-02 3.41E-03 53.61 4.52E-02 3.01E-03 74.93 407 428

2.00E-04 1.70E+00 4.43E-03 1.00E-01 2.38E-03 94.11 1.04E-01 5.47E-03 93.89 6.55E-02 3.19E-03 96.14 407 428

2.00E-03 1.69E+01 4.14E-03 3.20E-01 2.96E-03 98.11 3.17E-01 7.14E-03 98.12 2.92E-01 3.53E-03 98.27 422 432

UKF 0.00E+00 7.94E-02 2.44E-03 8.04E-02 2.50E-03 -1.33 8.25E-02 5.28E-03 -3.92 4.56E-02 2.36E-03 42.49 408 430

2.00E-05 1.79E-01 3.30E-03 8.17E-02 2.48E-03 54.41 8.41E-02 4.98E-03 53.03 4.65E-02 2.57E-03 74.02 409 428

2.00E-04 1.70E+00 4.53E-03 9.96E-02 3.18E-03 94.13 1.02E-01 4.70E-03 93.99 6.57E-02 3.20E-03 96.12 408 428
2.00E-03 1.69E+01 3.37E-03 3.21E-01 4.14E-03 98.10 3.21E-01 6.42E-03 98.11 2.95E-01 5.08E-03 98.25 422 431

NEA-SF-D Case 1

NEA-SF-D Case 2

With EKF bias correction and 

post filtering Numbe of stars

without bias 

correction with EKF bias correction

with Sample and Hold 

correction

Table A-5: Performance results from NEA-SF-D.  Number of runs = 25, Field of view = 0.8
o
, Start time 0 s, End time 1800 s 

 

1
2
6
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Scenario: Northeast Asia to Hawaii with ascending orbit (NEA-HI-A) 

 

 

 

This scenario utilizes two sensor satellites in a 1350 km altitude 58 degree inclination 

ascending node orbit.  The target missile is an ICBM class missile launched from 

Northeast Asia targeting Hawaii.  The missile flight time is 25 minutes.  Figure A-31 is a 

diagram of the sensor satellites and target trajectories. 

 

 

 
Figure A-31. Satellite and target trajectories for NEA-HI-A scenario 
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Figure A-32. Case 1: Sensor 1 bias measurements and estimates with and without bias 

EKF for pure sinusoidal bias 

 

 
Figure A-33. Case 2: Sensor 1 bias measurements and estimates with and without bias 

EKF for constant bias with sinusoidal component. 
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Figure A-34. Case 1: Mean error of target position for sinusoidal bias ( = .2 mrads) 

 

 

 
Figure A-35. Case 2: Bias measurements and estimates with and without bias EKF for 

constant bias with sinusoidal component. 
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Figure A-36. Sensor trajectories with detected stars for NEA-HI-A scenario 
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Filter 

type

bias Mean Err STD Mean Err STD Pct Impr Mean Err STD Pct Impr Mean Err STD Pct Impr Sensor 1 Sensor 2

LKF 0.00E+00 4.84E-02 9.59E-04 5.45E-02 5.08E-03 -12.75 5.32E-02 2.72E-03 -9.96 4.48E-02 5.22E-03 7.43 460 212

2.00E-05 8.08E-02 7.45E-04 5.30E-02 3.24E-03 34.49 5.43E-02 3.38E-03 32.84 4.30E-02 3.42E-03 46.83 461 212

2.00E-04 6.84E-01 1.23E-03 6.43E-02 2.99E-03 90.60 7.04E-02 3.53E-03 89.72 5.48E-02 3.17E-03 91.99 458 216

2.00E-03 6.85E+00 1.33E-03 2.28E-01 2.04E-03 96.67 4.34E-01 6.35E-03 93.66 2.22E-01 2.56E-03 96.76 426 214

EKF 0.00E+00 4.86E-02 6.72E-04 5.14E-02 2.32E-03 -5.61 5.35E-02 2.41E-03 -10.04 3.75E-02 3.67E-03 22.84 462 212

2.00E-05 8.02E-02 1.19E-03 5.40E-02 4.33E-03 32.65 5.38E-02 4.00E-03 32.89 4.02E-02 5.58E-03 49.92 461 212

2.00E-04 6.85E-01 1.43E-03 6.53E-02 3.50E-03 90.46 7.10E-02 3.84E-03 89.63 5.14E-02 3.64E-03 92.50 459 214

2.00E-03 6.85E+00 8.74E-04 2.28E-01 1.53E-03 96.68 4.34E-01 7.57E-03 93.67 2.18E-01 1.47E-03 96.82 468 215

UKF 0.00E+00 4.83E-02 7.43E-04 5.34E-02 4.55E-03 -10.63 5.25E-02 2.84E-03 -8.74 3.90E-02 4.42E-03 19.31 461 212

2.00E-05 8.08E-02 8.56E-04 5.55E-02 5.67E-03 31.34 5.35E-02 3.19E-03 33.78 4.15E-02 6.49E-03 48.66 462 212

2.00E-04 6.85E-01 8.29E-04 6.54E-02 3.47E-03 90.46 7.09E-02 3.74E-03 89.65 5.15E-02 3.54E-03 92.47 457 215

2.00E-03 6.85E+00 9.99E-04 2.28E-01 1.73E-03 96.67 4.34E-01 7.64E-03 93.66 2.18E-01 2.31E-03 96.82 468 214

LKF 0.00E+00 4.85E-02 7.32E-04 5.51E-02 5.20E-03 -13.64 5.31E-02 4.34E-03 -9.58 4.56E-02 5.33E-03 5.98 460 212

2.00E-05 8.77E-02 7.88E-04 5.43E-02 5.56E-03 38.05 5.28E-02 3.46E-03 39.84 4.48E-02 5.53E-03 48.94 461 213

2.00E-04 7.64E-01 9.20E-04 6.61E-02 5.22E-03 91.35 6.39E-02 2.78E-03 91.63 5.64E-02 5.47E-03 92.62 458 217

2.00E-03 7.64E+00 8.84E-04 2.14E-01 2.48E-03 97.20 2.20E-01 5.73E-03 97.12 2.08E-01 3.13E-03 97.27 434 216

EKF 0.00E+00 4.83E-02 1.08E-03 5.39E-02 4.34E-03 -11.45 5.39E-02 3.11E-03 -11.45 3.99E-02 4.93E-03 17.48 462 213

2.00E-05 8.81E-02 1.07E-03 5.42E-02 3.89E-03 38.41 5.28E-02 3.01E-03 40.00 4.01E-02 4.59E-03 54.42 460 213

2.00E-04 7.64E-01 7.95E-04 6.44E-02 3.57E-03 91.57 6.56E-02 3.44E-03 91.42 5.04E-02 4.29E-03 93.41 460 217

2.00E-03 7.64E+00 1.08E-03 2.13E-01 1.74E-03 97.21 2.19E-01 3.87E-03 97.13 2.05E-01 2.26E-03 97.32 434 216

UKF 0.00E+00 4.83E-02 6.90E-04 5.44E-02 6.01E-03 -12.63 5.18E-02 3.13E-03 -7.30 4.06E-02 6.63E-03 15.98 458 212

2.00E-05 8.83E-02 1.06E-03 5.42E-02 3.70E-03 38.67 5.36E-02 2.26E-03 39.27 3.98E-02 3.42E-03 54.92 460 213

2.00E-04 7.65E-01 9.99E-04 6.34E-02 3.13E-03 91.70 6.43E-02 3.63E-03 91.59 4.92E-02 3.05E-03 93.56 458 218
2.00E-03 7.64E+00 9.99E-04 2.14E-01 2.81E-03 97.20 2.20E-01 4.06E-03 97.12 2.06E-01 2.75E-03 97.31 435 216

NEA-HI-A Case 1

NEA-HI-A Case 2

With EKF bias correction and 

post filtering Numbe of stars

without bias 

correction with EKF bias correction

with Sample and Hold 

correction

Table A-6. Performance results from NEA-HI-A.  Number of runs = 25, Field of view = 0.8
o
, Start time 17 s, End time 1482 s 

 

1
3
1
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Scenario: Northeast Asia to Hawaii with descending orbit (NEA-HI-D) 

 

 

 

This scenario utilizes two sensor satellites in a 1350 km altitude 58 degree inclination 

descending node orbit.  The target missile is an ICBM class missile launched from 

Northeast Asia targeting Hawaii.  The missile flight time is 30 minutes.  Figure A-37 is a 

diagram of the sensor satellites and target trajectories. 

 

 
Figure A-37. Satellite and target for NEA-HI-D scenario 
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Figure A-38. Case 1: Sensor 1 bias measurements and estimates with and without bias 

EKF for pure sinusoidal bias 

 

 

 
Figure A-39. Case 2: Sensor 1 bias measurements and estimates with and without bias 

EKF for constant bias with sinusoidal component. 
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Figure A-40. Case 1: Mean error of target position for sinusoidal bias ( = .2 mrads) 

 

 

 
Figure A-41. Case 2: Bias measurements and estimates with and without bias EKF for 

constant bias with sinusoidal component. 
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Figure A-42. Sensor trajectories with detected stars for NEA-HI-D scenario 
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Filter 

type

bias Mean Err STD Mean Err STD Pct Impr Mean Err STD Pct Impr Mean Err STD Pct Impr Sensor 1 Sensor 2

LKF 0.00E+00 4.73E-02 8.54E-04 6.54E-02 9.36E-03 -38.16 5.41E-02 3.73E-03 -14.26 5.67E-02 9.50E-03 -19.76 396 281

2.00E-05 7.80E-02 1.01E-03 6.65E-02 9.00E-03 14.68 5.40E-02 4.04E-03 30.79 5.77E-02 9.45E-03 25.93 396 282

2.00E-04 6.48E-01 1.24E-03 6.58E-02 8.90E-03 89.85 6.12E-02 5.07E-03 90.55 5.76E-02 9.21E-03 91.11 395 284

2.00E-03 6.47E+00 1.01E-03 9.04E-02 2.12E-02 98.60 2.55E-01 8.93E-03 96.06 8.99E-02 2.20E-02 98.61 380 285

EKF 0.00E+00 4.75E-02 6.08E-04 6.47E-02 7.09E-03 -36.26 5.37E-02 3.31E-03 -13.11 5.01E-02 6.23E-03 -5.45 395 281

2.00E-05 7.79E-02 8.04E-04 6.48E-02 7.95E-03 16.76 5.39E-02 3.76E-03 30.84 5.04E-02 7.79E-03 35.27 397 282

2.00E-04 6.47E-01 8.16E-04 6.93E-02 8.74E-03 89.30 6.20E-02 5.07E-03 90.42 5.46E-02 7.27E-03 91.56 396 282

2.00E-03 6.46E+00 1.09E-03 8.67E-02 1.69E-02 98.66 2.56E-01 1.12E-02 96.04 8.27E-02 1.49E-02 98.72 382 281

UKF 0.00E+00 4.75E-02 6.69E-04 6.56E-02 1.20E-02 -38.03 5.45E-02 4.27E-03 -14.74 5.03E-02 1.14E-02 -5.75 397 281

2.00E-05 7.81E-02 7.35E-04 6.67E-02 8.66E-03 14.61 5.50E-02 4.45E-03 29.62 5.22E-02 7.82E-03 33.17 396 282

2.00E-04 6.47E-01 1.04E-03 6.66E-02 1.19E-02 89.71 6.01E-02 4.14E-03 90.72 5.24E-02 1.01E-02 91.91 397 283

2.00E-03 6.47E+00 8.89E-04 8.53E-02 1.83E-02 98.68 2.54E-01 8.72E-03 96.07 8.14E-02 1.64E-02 98.74 380 285

LKF 0.00E+00 4.72E-02 6.89E-04 6.68E-02 1.14E-02 -41.48 5.52E-02 3.55E-03 -16.93 5.78E-02 1.21E-02 -22.53 396 281

2.00E-05 9.27E-02 8.84E-04 6.22E-02 9.03E-03 32.93 5.39E-02 3.47E-03 41.85 5.32E-02 9.50E-03 42.64 395 282

2.00E-04 8.29E-01 1.05E-03 6.67E-02 9.25E-03 91.95 5.44E-02 3.15E-03 93.44 5.83E-02 9.61E-03 92.96 400 283

2.00E-03 8.28E+00 1.06E-03 2.25E+00 9.77E-03 72.77 5.73E-02 3.63E-03 99.31 2.32E+00 9.85E-03 71.92 406 296

EKF 0.00E+00 4.73E-02 6.09E-04 6.38E-02 1.06E-02 -34.93 5.51E-02 4.37E-03 -16.66 4.90E-02 8.98E-03 -3.66 397 281

2.00E-05 9.26E-02 8.38E-04 6.41E-02 8.83E-03 30.79 5.47E-02 4.45E-03 40.94 4.95E-02 7.96E-03 46.61 395 282

2.00E-04 8.29E-01 8.43E-04 6.75E-02 8.56E-03 91.86 5.37E-02 3.62E-03 93.52 5.41E-02 8.49E-03 93.47 400 284

2.00E-03 8.28E+00 9.60E-04 2.25E+00 1.07E-02 72.79 5.63E-02 4.47E-03 99.32 2.32E+00 1.11E-02 71.98 406 296

UKF 0.00E+00 4.74E-02 6.48E-04 6.73E-02 1.01E-02 -41.93 5.47E-02 3.87E-03 -15.26 5.26E-02 1.00E-02 -10.82 397 282

2.00E-05 9.23E-02 7.62E-04 6.30E-02 9.04E-03 31.75 5.52E-02 2.81E-03 40.21 4.83E-02 9.06E-03 47.71 397 282

2.00E-04 8.28E-01 1.25E-03 6.62E-02 1.10E-02 92.01 5.52E-02 5.09E-03 93.34 5.32E-02 1.05E-02 93.58 402 283
2.00E-03 8.28E+00 8.80E-04 2.25E+00 1.11E-02 72.78 5.86E-02 4.00E-03 99.29 2.32E+00 1.14E-02 71.97 408 296

NEA-HI-D Case 1

NEA-HI-D Case 2

With EKF bias correction and 

post filtering Numbe of stars

without bias 

correction with EKF bias correction

with Sample and Hold 

correction

Table A-7. Performance results from NEA-HI-D.  Number of runs = 25, Field of view = 0.8
o
, Start time 0 s, End time 1500 s 

 

1
3
6
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Scenario: Northeast Asia to Guam with ascending orbit (NEA-GU-A) 

 

 

 

This scenario utilizes two sensor satellites in a 1350 km altitude 58 degree inclination 

ascending node orbit.  The target missile is an ICBM class missile launched from 

Northeast Asia targeting Guam.  The missile flight time is 20 minutes.  Figure A-43 is a 

diagram of the sensor satellites and target trajectories. 

 

 
Figure A-43. Satellite and target for NEA-GU-A scenario 
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Figure A-44. Case 1: Sensor 1 bias measurements and estimates with and without bias 

EKF for pure sinusoidal bias 

 

 

 
Figure A-45. Case 2: Sensor 1 bias measurements and estimates with and without bias 

EKF for constant bias with sinusoidal component. 
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Figure A-46. Case 1: Mean error of target position for sinusoidal bias ( = .2 mrads) 

 

 

 
Figure A-47. Case 2: Bias measurements and estimates with and without bias EKF for 

constant bias with sinusoidal component. 
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Figure A-48. Sensor trajectories with detected stars for NEA-GU-A scenario 
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Filter 

type

bias Mean Err STD Mean Err STD Pct Impr Mean Err STD Pct Impr Mean Err STD Pct Impr Sensor 1 Sensor 2

LKF 0.00E+00 1.01E-01 2.47E-03 1.05E-01 5.23E-03 -4.03 1.17E-01 6.17E-03 -15.64 7.83E-02 6.61E-03 22.71 174 157

2.00E-05 1.70E-01 3.10E-03 1.11E-01 7.53E-03 34.46 1.23E-01 9.83E-03 27.58 8.50E-02 9.62E-03 49.90 174 156

2.00E-04 1.46E+00 2.55E-03 1.56E-01 7.03E-03 89.33 1.74E-01 1.36E-02 88.03 1.32E-01 8.24E-03 90.96 176 151

2.00E-03 1.45E+01 3.66E-03 5.71E-01 5.58E-03 96.07 9.34E-01 2.49E-02 93.58 5.63E-01 6.39E-03 96.13 186 151

EKF 0.00E+00 1.02E-01 2.65E-03 1.07E-01 6.32E-03 -5.11 1.19E-01 1.22E-02 -16.62 6.13E-02 8.21E-03 39.71 176 157

2.00E-05 1.70E-01 3.96E-03 1.08E-01 5.32E-03 36.64 1.19E-01 1.11E-02 30.08 6.42E-02 7.79E-03 62.18 176 156

2.00E-04 1.46E+00 4.08E-03 1.55E-01 7.10E-03 89.40 1.74E-01 1.40E-02 88.09 1.10E-01 9.22E-03 92.49 175 151

2.00E-03 1.45E+01 3.61E-03 5.70E-01 5.79E-03 96.08 9.24E-01 2.84E-02 93.65 5.13E-01 7.46E-03 96.47 185 151

UKF 0.00E+00 1.01E-01 2.99E-03 1.07E-01 5.72E-03 -5.87 1.14E-01 9.89E-03 -12.90 6.27E-02 8.80E-03 37.87 175 157

2.00E-05 1.70E-01 3.85E-03 1.08E-01 5.27E-03 36.55 1.26E-01 1.58E-02 25.73 6.44E-02 9.18E-03 62.10 175 156

2.00E-04 1.46E+00 2.47E-03 1.53E-01 6.51E-03 89.54 1.75E-01 1.32E-02 88.01 1.07E-01 9.65E-03 92.65 175 151

2.00E-03 1.45E+01 3.77E-03 5.71E-01 6.32E-03 96.07 9.34E-01 3.17E-02 93.57 5.15E-01 1.08E-02 96.46 186 151

LKF 0.00E+00 1.02E-01 3.00E-03 1.06E-01 4.70E-03 -4.22 1.18E-01 9.64E-03 -15.99 7.84E-02 6.03E-03 22.84 176 158

2.00E-05 1.85E-01 3.72E-03 1.09E-01 6.40E-03 41.00 1.21E-01 9.58E-03 34.58 8.32E-02 7.54E-03 55.01 175 156

2.00E-04 1.64E+00 3.99E-03 1.71E-01 7.24E-03 89.56 1.82E-01 1.69E-02 88.93 1.48E-01 8.83E-03 91.00 177 154

2.00E-03 1.64E+01 3.42E-03 7.67E-01 6.56E-03 95.32 7.81E-01 1.11E-02 95.24 7.54E-01 7.37E-03 95.40 185 144

EKF 0.00E+00 1.02E-01 3.24E-03 1.06E-01 4.15E-03 -4.28 1.18E-01 9.21E-03 -15.78 6.37E-02 5.39E-03 37.46 176 157

2.00E-05 1.86E-01 3.42E-03 1.11E-01 6.62E-03 40.42 1.22E-01 1.14E-02 34.56 6.77E-02 9.27E-03 63.55 175 157

2.00E-04 1.64E+00 3.21E-03 1.71E-01 7.82E-03 89.58 1.79E-01 1.15E-02 89.10 1.29E-01 1.18E-02 92.17 178 154

2.00E-03 1.64E+01 3.53E-03 7.68E-01 5.71E-03 95.32 7.87E-01 1.48E-02 95.20 7.17E-01 1.05E-02 95.63 185 144

UKF 0.00E+00 1.03E-01 2.59E-03 1.08E-01 4.33E-03 -4.85 1.22E-01 1.28E-02 -18.46 6.29E-02 5.61E-03 38.69 176 158

2.00E-05 1.86E-01 2.93E-03 1.11E-01 6.47E-03 40.63 1.18E-01 7.81E-03 36.63 6.83E-02 1.03E-02 63.28 175 157

2.00E-04 1.64E+00 3.26E-03 1.70E-01 6.81E-03 89.63 1.79E-01 1.19E-02 89.11 1.26E-01 1.02E-02 92.31 176 154
2.00E-03 1.64E+01 3.73E-03 7.68E-01 6.65E-03 95.32 7.80E-01 9.28E-03 95.24 7.17E-01 9.82E-03 95.63 187 144

NEA-GU-A Case 1

NEA-GU-A Case 2

With EKF bias correction and 

post filtering Numbe of stars

without bias 

correction with EKF bias correction

with Sample and Hold 

correction

Table A-8. Performance results from NEA-GU-A.  Number of runs = 25, Field of view = 0.8
o
, Start time 11 s, End time 1037 s

1
4
1
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Scenario: Northeast Asia to Guam with descending orbit (NEA-GU-D) 

 

 

 

This scenario utilizes two sensor satellites in a 1350 km altitude 58 degree inclination 

descending node orbit.  The target missile is an ICBM class missile launched from 

Northeast Asia targeting Guam.  The missile flight time is 20 minutes.  Figure A-49 is a 

diagram of the sensor satellites and target trajectories. 

 

 
Figure A-49. Satellite and target for NEA-GU-D scenario 
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Figure A-50. Case 1: Sensor 1 bias measurements and estimates with and without bias 

EKF for pure sinusoidal bias 

 

 

 
Figure A-51. Case 2: Sensor 1 bias measurements and estimates with and without bias 

EKF for constant bias with sinusoidal component. 
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Figure A-52. Case 1: Mean error of target position for sinusoidal bias ( = .2 mrads) 

 

 

 
Figure A-53. Case 2: Bias measurements and estimates with and without bias EKF for 

constant bias with sinusoidal component. 
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Figure A-54. Sensor trajectories with detected stars for NEA-GU-D scenario 
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Filter 

type

bias Mean Err STD Mean Err STD Pct Impr Mean Err STD Pct Impr Mean Err STD Pct Impr Sensor 1 Sensor 2

LKF 0.00E+00 9.37E-02 1.54E-03 1.00E-01 3.64E-03 -6.91 1.10E-01 9.67E-03 -17.62 7.68E-02 4.77E-03 18.07 175 326

2.00E-05 1.35E-01 2.14E-03 1.01E-01 3.35E-03 24.88 1.13E-01 1.36E-02 16.21 7.79E-02 3.54E-03 42.21 174 326

2.00E-04 9.85E-01 2.31E-03 1.17E-01 4.71E-03 88.16 1.50E-01 1.07E-02 84.80 9.23E-02 6.71E-03 90.63 176 326

2.00E-03 9.80E+00 1.92E-03 2.53E-01 2.91E-03 97.42 8.65E-01 2.80E-02 91.17 2.36E-01 3.39E-03 97.59 178 309

EKF 0.00E+00 9.40E-02 1.38E-03 1.03E-01 4.87E-03 -9.08 1.15E-01 1.38E-02 -22.66 6.57E-02 6.71E-03 30.09 174 326

2.00E-05 1.35E-01 1.89E-03 1.03E-01 3.23E-03 23.93 1.13E-01 1.22E-02 16.40 6.47E-02 4.22E-03 52.05 174 326

2.00E-04 9.85E-01 1.55E-03 1.17E-01 3.96E-03 88.12 1.52E-01 1.35E-02 84.56 7.96E-02 4.79E-03 91.92 176 326

2.00E-03 9.80E+00 1.80E-03 2.53E-01 4.28E-03 97.41 8.68E-01 2.71E-02 91.14 2.33E-01 5.26E-03 97.62 177 310

UKF 0.00E+00 9.45E-02 2.19E-03 1.03E-01 4.36E-03 -8.68 1.11E-01 1.22E-02 -17.45 6.42E-02 4.82E-03 32.02 175 325

2.00E-05 1.34E-01 1.70E-03 1.02E-01 4.65E-03 24.28 1.12E-01 9.88E-03 16.44 6.44E-02 4.81E-03 52.02 175 327

2.00E-04 9.85E-01 1.78E-03 1.16E-01 4.37E-03 88.24 1.49E-01 1.44E-02 84.89 7.99E-02 5.35E-03 91.89 176 327

2.00E-03 9.80E+00 1.72E-03 2.52E-01 2.71E-03 97.43 8.63E-01 2.74E-02 91.19 2.31E-01 3.18E-03 97.64 178 310

LKF 0.00E+00 9.41E-02 1.50E-03 1.01E-01 2.77E-03 -6.88 1.11E-01 1.35E-02 -18.42 7.67E-02 3.52E-03 18.52 174 326

2.00E-05 1.41E-01 1.84E-03 1.02E-01 3.86E-03 27.17 1.12E-01 1.01E-02 20.60 7.92E-02 4.62E-03 43.67 175 326

2.00E-04 1.04E+00 1.74E-03 1.19E-01 5.12E-03 88.53 1.28E-01 1.09E-02 87.64 9.63E-02 7.05E-03 90.73 177 327

2.00E-03 1.03E+01 1.75E-03 2.56E-01 3.90E-03 97.52 2.88E-01 1.39E-02 97.21 2.43E-01 5.89E-03 97.65 185 352

EKF 0.00E+00 9.46E-02 2.15E-03 1.02E-01 4.59E-03 -8.06 1.12E-01 1.10E-02 -18.48 6.39E-02 6.00E-03 32.41 175 325

2.00E-05 1.41E-01 2.24E-03 1.03E-01 3.43E-03 27.00 1.12E-01 9.53E-03 20.21 6.37E-02 3.85E-03 54.64 175 326

2.00E-04 1.04E+00 2.09E-03 1.17E-01 2.76E-03 88.75 1.27E-01 9.49E-03 87.78 8.08E-02 3.65E-03 92.22 177 327

2.00E-03 1.03E+01 1.77E-03 2.54E-01 3.33E-03 97.54 2.91E-01 1.68E-02 97.18 2.36E-01 3.61E-03 97.72 185 353

UKF 0.00E+00 9.45E-02 1.91E-03 1.02E-01 4.27E-03 -7.99 1.13E-01 9.20E-03 -19.98 6.46E-02 3.95E-03 31.68 175 326

2.00E-05 1.40E-01 1.42E-03 1.04E-01 4.22E-03 25.96 1.13E-01 1.05E-02 19.21 6.52E-02 5.60E-03 53.46 175 325

2.00E-04 1.04E+00 1.59E-03 1.17E-01 2.56E-03 88.71 1.28E-01 9.25E-03 87.68 8.04E-02 3.45E-03 92.26 177 327
2.00E-03 1.03E+01 1.63E-03 2.56E-01 3.22E-03 97.52 2.89E-01 1.46E-02 97.21 2.38E-01 5.49E-03 97.70 185 352

NEA-GU-D Case 1

NEA-GU-D Case 2

With EKF bias correction and 

post filtering Numbe of stars

without bias 

correction with EKF bias correction

with Sample and Hold 

correction

Table A-9. Performance results from NEA-GU-D.  Number of runs = 25, Field of view = 0.8
o
, Start time 0 s, End time 1060 s 

 

1
4
6
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Scenario: Iridium Satellite tracking with ascending orbit (NEA-IR-A) 

 

 

 

This scenario utilizes two sensor satellites in a 1350 km altitude 58 degree inclination 

ascending node orbit.  The target is an Iridium communications satellite in a low earth 

orbit..  The satellite is tracked for 30 minutes.  Figure A-55 is a diagram of the sensor and 

target satellite trajectories. 

 

 

 
Figure A-55. Satellite and target trajectories for NEA-IR-A scenario 
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Figure A-56. Case 1: Sensor 1 bias measurements and estimates with and without bias 

EKF for pure sinusoidal bias 

 

 

 
Figure A-57. Case 1: Mean error of target position for sinusoidal bias ( = .2 mrads) 
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Figure A-58. Sensor trajectories with detected stars for NEA-IR-A scenario 
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Scenario: Iridium Satellite tracking with descending orbit (NEA-IR-D) 

 

 

 

This scenario utilizes two sensor satellites in a 1350 km altitude 58 degree inclination 

descending node orbit.  The target is an Iridium communications satellite in a low earth 

orbit..  The satellite is tracked for 30 minutes.  Figure A-59 is a diagram of the sensor and 

target satellite trajectories. 

 

 
Figure A-59. Satellite and target trajectories for NEA-IR-D scenario 
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Figure A-60. Case 1: Sensor 1 bias measurements and estimates with and without bias 

EKF for pure sinusoidal bias 

 

 

 
Figure A-61. Case 1: Sensor 2 bias measurements and estimates with and without bias 

EKF for pure sinusoidal bias 
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Figure A-62. Case 1: Mean error of target position for sinusoidal bias ( = .2 mrads) 

 

 

 
Figure A-63. Sensor trajectories with detected stars for NEA-IR-D scenario 

 

 

 

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Mean Error of target with EKF bias correction

Time (seconds)

M
e
a
n
 E

rr
o
r 

K
m

With LKF

With EKF

With UKF

Without bias correction

0 50 100 150 200 250 300 350

-80

-60

-40

-20

0

20

40

60

80

Longitude

L
a
ti
tu

d
e

Sensor tracks and star detections

Sensor 1 track

Sensor 2 track

Detected star



 

 

Filter 

type

bias Mean Err STD Mean Err STD Pct Impr Mean Err STD Pct Impr Mean Err STD Pct Impr Sensor 1 Sensor 2

LKF 0.00E+00 7.45E-02 7.96E-04 7.56E-02 1.15E-03 -1.53 8.46E-02 6.11E-03 -13.61 5.82E-02 1.87E-03 21.86 319 679

2.00E-05 1.05E-01 9.43E-04 7.56E-02 1.55E-03 28.09 8.54E-02 8.29E-03 18.72 5.77E-02 1.06E-03 45.05 321 681

2.00E-04 7.59E-01 9.03E-04 8.39E-02 1.41E-03 88.94 2.36E-01 1.64E-02 68.97 6.86E-02 1.83E-03 90.96 316 669

2.00E-03 7.55E+00 7.89E-04 1.97E-01 3.73E-03 97.39 2.10E+00 2.12E-02 72.22 1.95E-01 4.25E-03 97.42 265 628

EKF 0.00E+00 7.45E-02 8.66E-04 7.57E-02 1.24E-03 -1.58 8.45E-02 7.16E-03 -13.43 4.87E-02 1.94E-03 34.63 320 680

2.00E-05 1.05E-01 9.57E-04 7.55E-02 1.22E-03 27.98 8.85E-02 7.87E-03 15.62 4.89E-02 1.67E-03 53.39 320 679

2.00E-04 7.59E-01 1.05E-03 8.36E-02 1.14E-03 88.99 2.33E-01 1.75E-02 69.37 5.94E-02 1.63E-03 92.18 316 667

2.00E-03 7.55E+00 8.92E-04 1.99E-01 5.27E-03 97.37 2.09E+00 2.28E-02 72.31 1.86E-01 4.32E-03 97.54 266 628

UKF 0.00E+00 7.41E-02 8.56E-04 7.52E-02 1.26E-03 -1.47 8.46E-02 7.89E-03 -14.24 4.79E-02 1.68E-03 35.31 320 679

2.00E-05 1.05E-01 8.30E-04 7.57E-02 9.91E-04 27.96 8.63E-02 9.08E-03 17.91 4.88E-02 1.67E-03 53.60 319 679

2.00E-04 7.59E-01 8.13E-04 8.36E-02 1.40E-03 88.98 2.37E-01 1.58E-02 68.80 5.93E-02 1.92E-03 92.19 316 228

2.00E-03 7.55E+00 8.76E-04 1.99E-01 3.69E-03 97.37 2.09E+00 1.96E-02 72.30 1.86E-01 3.28E-03 97.54 266 628

LKF 0.00E+00 9.98E-02 1.55E-03 1.03E-01 1.71E-03 -3.32 1.15E-01 1.05E-02 -15.11 7.02E-02 3.18E-03 29.71 181 774

2.00E-05 1.45E-01 1.92E-03 1.04E-01 2.80E-03 28.51 1.19E-01 9.22E-03 17.94 7.10E-02 3.91E-03 51.09 181 774

2.00E-04 1.08E+00 1.79E-03 1.18E-01 2.41E-03 89.08 1.53E-01 1.15E-02 85.81 8.67E-02 4.89E-03 91.97 177 767

2.00E-03 1.08E+01 1.57E-03 2.77E-01 4.39E-03 97.42 8.14E-01 1.70E-02 92.43 2.57E-01 5.53E-03 97.61 185 702

EKF 0.00E+00 9.92E-02 1.66E-03 1.03E-01 2.94E-03 -3.33 1.15E-01 8.39E-03 -16.32 5.61E-02 4.71E-03 43.43 182 775

2.00E-05 1.45E-01 1.71E-03 1.04E-01 2.44E-03 27.88 1.16E-01 8.26E-03 19.75 5.80E-02 3.92E-03 59.91 182 775

2.00E-04 1.08E+00 1.55E-03 1.17E-01 1.86E-03 89.15 1.54E-01 1.15E-02 85.77 7.23E-02 2.86E-03 93.30 177 768

2.00E-03 1.08E+01 1.73E-03 2.78E-01 3.20E-03 97.42 8.16E-01 2.05E-02 92.42 2.43E-01 5.44E-03 97.74 185 698

UKF 0.00E+00 9.95E-02 1.71E-03 1.03E-01 2.46E-03 -3.04 1.15E-01 7.15E-03 -15.26 5.68E-02 4.15E-03 42.91 181 775

2.00E-05 1.44E-01 1.86E-03 1.03E-01 2.76E-03 28.56 1.13E-01 6.23E-03 21.77 5.75E-02 3.44E-03 60.16 181 771

2.00E-04 1.08E+00 1.41E-03 1.18E-01 2.67E-03 89.11 1.58E-01 1.08E-02 85.42 7.32E-02 3.81E-03 93.22 177 768
2.00E-03 1.08E+01 1.57E-03 2.78E-01 3.99E-03 97.41 8.12E-01 1.76E-02 92.45 2.45E-01 5.71E-03 97.72 185 698

NEA-IR-A Case 1

NEA-IR-D Case 1

With EKF bias correction and 

post filtering Numbe of stars

without bias 

correction with EKF bias correction

with Sample and Hold 

correction

Table A-10. Performance results from NEA-IR-A/D.  Number of runs = 25, Field of view = 0.8
o
, Start time  s, End time  

1
5
3
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APPENDIX B:  SELECTED MATLAB PROGRAM FILES 

 
 

Base Tracking Program 
 

%--- Initialize GSSM and variables 

format short e; 

global TS 

global covsen 

global covp 

 

TS = 1;                   % time step  

Nruns = 50               % input('Enter number of runs : ') 

theatercase = 'NEA_SF_old' 

 

covsen = (100.0e-6);      % sensor covarance 

covbias = (2.0e-6);       % bias covariance 

covp = .010;              % process error 

process_error = 1000*covp;     

 

bias_senario_case = 1;   % Set bias scenario case: 1 = sinusoidal, 2 = constant w/sinusoid 

 

biasvect = [0.00 20e-6 200e-6 2e-3]';      %Vector of bias values 

 

w = 2*pi/6000;           % orbit frequency 

fov = .5;                % sensor field of view in degrees 

fovrad = fov*pi/180;     % sensor field of view in radians 

app = cos(fovrad);       % cosine of apature size 

Rearth = 6500;           % Earth radius in Km 

 

QB = covbias^2; 

RB = covsen^2 ; 

 

savefile = fopen('C:/matlab_sv13/work/STproj_1/Output_Data/NEA_SF_old.txt', 'wt'); 

 

% write initial conditions to file 

fprintf(savefile, 'Theater case:  %s\n', theatercase); 

fprintf(savefile, 'Scenario case:  %s\n', scenario); 

fprintf(savefile, 'Number of runs: %4.0f\n', Nruns); 

fprintf(savefile, „Time Step: %4.0f\n', TS); 

fprintf(savefile, 'Field of view: %6.2f\n', fov); 

fprintf(savefile, 'Sensor covariance: %12.2e\n', covsen); 

fprintf(savefile, 'Bias covariance: %12.2e\n', covsen); 

 

%--- Generate inference data structure 

model = gssm_tracking_8('init'); 

Arg.model = model;                                   % embed GSSM 

Arg.type = 'state';                                  % estimation type 

Arg.tag = 'State estimation for bearings-only tracking problem';  % info tag (not required) 

InfDS = geninfds(Arg);                               % call generate function 

  

% get data 
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% read star database 

aura_norm;           % read star database normalized vectors (star  x, y, z) 

NNtableindex;     % read nearest neighbor table Nearneigh  

Nstars =  size(star.vector, 2);          % size of star database 

 

% read target and satelite data 

[target, Sat, Sensor] = get_NEA_data(theatercase); 

 

target.true_state =       [target.posit(1,:); 

                          target.vel(1,:); 

                          target.posit(2,:); 

                          target.vel(2,:); 

                          target.posit(3,:); 

                          target.vel(3,:)]; 

                      

T = size(target.posit,2);           % Time span of track 

Sensor(1).trktm = Sensor(1).trkend - Sensor(1).trkst + 1;        % Time span of observations 

Sensor(2).trktm = Sensor(2).trkend - Sensor(2).trkst + 1; 

 

kstart = max(Sensor(1).trkst, Sensor(2).trkst);          % observation start and end time 

kend = min(Sensor(1).trkend, Sensor(2).trkend); 

 

Tplot = kend-300;               % plot length 

 

fprintf(savefile, 'Start time: %4.0f, End time: %4.0f\n', kstart, kend); % write to file 

 

% ----------------------------------  

 

% Convert sensor LOS to radians 

 

Sensor(1).los_rad = (pi/180.0).*Sensor(1).los_deg; 

Sensor(2).los_rad = (pi/180.0).*Sensor(2).los_deg; 

 

star.RAdec = vectobrg2(star.vector);  % Convert star ECI vector to right ascension and declination 

 

% ------------ calculate bias waveform --------------- 

 

if  bias_senario_case == 1 

    scenario = 'sinusoidal' 

      w0 = 0.001; 

      for t = 1:T 

         bsaz(:,t) =   biasvect*cos(w*t);            % azimuth bias 

         bsel(:,t) =   biasvect*cos(w*t + 3*pi/2);  % elevation bias 

      end   % t 

end      %bias_senario_case = 1 

 

if  bias_senario_case == 2 

    scenario = 'const w/sinusoid' 

     w0 = 0.00; 

        for t = 1:T 

          bsaz(:,t) =   biasvect + .1*biasvect*cos(w*t); 

          bsel(:,t) =   .1*biasvect*cos(w*t + 3*pi/2); 
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       end % t 

end  % bias_senario_case = 2 

 

Sensor(1).bias_true = zeros(4,T); 

Sensor(2).bias_true = zeros(4,T); 

 

% ---------------------  vary filter type   --------------------- 

 

litype = {'r:','g-', 'b-.', 'k--'};     % line type for different graphs 

lftype = {'kf','ekf', 'ukf'}; 

 

for kk =1:1      % kk = input('Enter filter case (1 = kf, 2 = EKF, 3 = UKF : ') 

   

  lk = litype{kk};       % line type by filter type     

  ftype = lftype{kk}     

  fprintf(savefile, '\r Filter type:%s\n', ftype); 

 

[pNoise, oNoise, InfDS] = gensysnoiseds(InfDS, ftype);     % call system noise sources generation function  

 

% --------------------  % vary bias value  ---------------------- 

   

for b = 3:3      % b = input('Enter bias value 1 = 0.0, 2 = 20e-6, 3 = 200e-6, 4 = 2e-3 : ') 

 bias_amount = biasvect(b) 

  

    Sensor(1).bias_true = [bsaz(b,:); bsel(b,:)]; 

    Sensor(2).bias_true = [bsaz(b,:); bsel(b,:)]; 

         

    li = litype{b};      % line type by bias value      

 

% -------------------------------------------------------------------------  

% -------------------  Cycle through number of runs  ---------------------- 

% -------------------------------------------------------------------------  

for nr = 1:Nruns 

     

nstars_1=0;                % initialize star counter for sensor 1 

nstars_2=0;                % initialize star counter for sensor 2 

Tfirst1 = 1;                % initialize star interval counter flags 

Tfirst2 = 1; 

newtrack = 1;            % set newtrack flag 

 

target.state_est = zeros(InfDS.statedim, T);      % initialize state estimate arrays 

target.sen1_state_est = target.state_est; 

target.sen2_state_est = target.state_est; 

Xh_ = target.state_est; 

Px = eye(InfDS.statedim);           % initial state covariances    

Px_1 = Px; 

Px_2 = Px; 

 

V = feval(model.pNoise.sample, model.pNoise, T);          % generate process noise 

Sensor(1).noise = feval(model.oNoise.sample, model.oNoise, Sensor(1).trktm);     % generate observation 

noise sensor 1 

Sensor(2).noise = feval(model.oNoise.sample, model.oNoise, Sensor(2).trktm);     % generate observation    

noise sensor 2 
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% -------------------- Calculate noisy measurements ---------------------------------- 

 

% add bias 

y1biased(:,:) = addangle(Sensor(1).los_rad(:,:), Sensor(1).bias_true(:,Sensor(1).trkst:Sensor(1).trkend)); 

y2biased(:,:) = addangle(Sensor(2).los_rad(:,:), Sensor(2).bias_true(:,Sensor(2).trkst:Sensor(2).trkend)); 

 

% add observation noise to sensor measurements 

Sensor(1).obs_bodyang_noisy(:,:) = addangle(y1biased(:,:), Sensor(1).noise(:,:));   

Sensor(2).obs_bodyang_noisy(:,:) = addangle(y2biased(:,:), Sensor(2).noise(:,:)); 

 

% Convert azimuth and elevation measurements to boresight vectors 

Sensor(1).obs_bodyvec_noisy(:,:) = brngtovec(Sensor(1).obs_bodyang_noisy(:,:)); 

Sensor(2).obs_bodyvec_noisy(:,:) = brngtovec(Sensor(2).obs_bodyang_noisy(:,:)); 

test = Sensor(1).obs_bodyvec_noisy(:,:); 

 

% convert boresight vectors to ECI coordinate frame using satellite attitude quaterons 

Sensor(1).obs_ECIvec_noisy(:,:) = quatxfrm(Sat(1).att(:,Sensor(1).trkst:Sensor(1).trkend), … 

Sensor(1).obs_bodyvec_noisy(:,:)); 

Sensor(2).obs_ECIvec_noisy(:,:) = quatxfrm(Sat(2).att(:,Sensor(2).trkst:Sensor(2).trkend),  … 

Sensor(2).obs_bodyvec_noisy(:,:)); 

 

% convert ECI vector to ECI azimuth and elevation in degrees 

Sensor(1).obs_ECIae_noisy(:,:) = vectobrg2(Sensor(1).obs_ECIvec_noisy(:,:)); 

Sensor(2).obs_ECIae_noisy(:,:) = vectobrg2(Sensor(2).obs_ECIvec_noisy(:,:)); 

 

%------------------- initial bias estimate ------------------------ 

Sensor(1).bias_sh(:,1) = [0 0]';     

Sensor(2).bias_sh(:,1) = [0 0]'; 

 

% initialize bias filter state vectors 

xBh1a = zeros(3,T);     % sensor 1 azimuth 

xBh1e = zeros(3,T);     % sensor 1 elevation 

xBh2a = zeros(3,T);     % sensor 2 azimuth 

xBh2e = zeros(3,T);     % sensor 2 elevation      

 

xBh1a(:,1) = [0 0 w0]'; 

xBh1e(:,1) = [0 0 w0]'; 

xBh2a(:,1) = [0 0 w0]'; 

xBh2e(:,1) = [0 0 w0]'; 

 

PB1a = eye(3);      % initial bias state vector covariance matricies 

PB1e = eye(3); 

PB2a = eye(3); 

PB2e = eye(3);   

     

Sensor(1).bias_est = zeros(2,T);   % initial bias estimates 

Sensor(2).bias_est = zeros(2,T); 

     

Sensor(1).intrack = 0;  % set sensor track flag 

Sensor(2).intrack = 0; 

 

Tcount1 = 0;        % initialize time between star observation counters             
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Tcount2 = 0;     

 

% ----------------------------------------------------------------- 

% -------------------Step through time ------------------------ 

% ----------------------------------------------------------------- 

for t = 1:TS:T 

time = t ;  

star_case = [0 0]';     % reset star detection flag 

 

% ----------------------------------------------------------------------- 

% ---------------------- Sensor 1 tracking --------------------------- 

% ----------------------------------------------------------------------- 

if (t >= Sensor(1).trkst) && (t <= Sensor(1).trkend)   % determine if sensor is tracking target 

    Sensor(1).intrack = 1;              % sensor 1 is tracking 

    k1 = t - Sensor(1).trkst + 1;       % update sensor tracking counter 

 

% ---------------------- Star Check for sensor 1 ------------------------------- 

if t > 299   

 

% ------------ check if sensor LOS is blocked by earth ---------------- 

 

Sat(1).alt = sqrt(Sat(1).posit(1,t)^2 + Sat(1).posit(2,t)^2 + Sat(1).posit(3,t)^2); % sat altitude 

Sat(1).earthvect = -Sat(1).posit(:,t)/Sat(1).alt;       % unit vector from sat to earth center  

thetaLOS1 = acos(dot(Sensor(1).obs_ECIvec_noisy(:,k1), Sat(1).earthvect));       % angle between satellite 

fov and earth center 

thetaearth1 = asin(Rearth/Sat(1).alt);                    % angle between satellite and earth rim 

 R1 = Sat(1).alt*cos(thetaearth1); 

 

if thetaearth1 > thetaLOS1       % if LOS is within earth radius  

    star_case(1) = 0;                   % then cannot see star 

else 

%--------------------------------------------------------------------------  

% if not blocked find nearest star  

%--------------------------------------------------------------------------  

if Tcount1 >= 60/TS         % if a star hasn't been seen in 60 seconds 

    Tfirst1 = 1;         % set nearest star algorithm flag 

end 

 

if Tfirst1 == 1       % if first time through 

    for i1 = 1:Nstars          % calculate distance from observation vector to each star in catalog 

       dist1(i1) = dot(star.vector(:,i1),Sensor(1).obs_ECIvec_noisy(:,t));   % distance = dot product of vectors  

    end  % end i1 

 

    % sort distances. Index number = star number in star catalog 

    [sort_dist1, S_index_1] = sort(dist1); 

 

    % Select nearest star (greatest value of distance is closest) 

    nearest_1 = S_index_1(Nstars); 

 

    % clear unneeded arrays 

    clear sort_dist1; 

    clear dist1; 

    clear S_index_1;  
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    Tfirst1 = 0;    % reset flag 

    Tcount1 = 0;    % and counter 

end     % end if Tfirst = 1 

 

% ---------------------------------------------- 

% compare star vector to observation vector for 11 nearest stars 

% ------------------------------------------------ 

j1=0;  % reset observed star counter 

 

for i = 1:11    % for each star in nearest neighbor table assign NNs1 as star number 

     

    NNs1 = Nearneigh(i,nearest_1); 

     

% calculate distance from observation vector to each star 

    dist1 = dot(star.vector(:,NNs1),Sensor(1).obs_ECIvec_noisy(:,k1)); 

     

% build tables of stars and distances to vectors 

    NNtable_1(:,i) = [NNs1, dist1]';     

     

% ---  Check if star is in sensor 1 view  --------     

    if dist1 > app 

        star_case(1) = 1;   % a star is detected 

        nstars_1 = nstars_1+1;            % running number of stars detected 

        j1=j1+1;            % number of stars detected in this time step 

        t1(nstars_1) = t;          % time of detection 

        starplot1(:,nstars_1) = [star.RAdec(1,NNs1) star.RAdec(2,NNs1) NNs1 t]'; % detected star location ID 

number and time 

 

% ------- Find bias from expected and actual star observations --------- 

% find true star position in sensor frame (azimuth and elevation) 

star_vec_bf = invquatxfrm(Sat(1).att(:,t), star.vector(:,NNs1));  % Rotate star vector to sensor frame 

star_azel_bf = vectobrg(star_vec_bf)*pi/180;  % express in azimuth and elevation in radians 

 

% calculate actual observed star azimuth and elevation  

angledelta_1(:,nstars_1) = subangle(star_azel_bf, Sensor(1).obs_bodyang_noisy(:,k1));      

% Calculate expected star observation 

angledelta_exp_1(:,nstars_1) = subangle(star_azel_bf, Sensor(1).los_rad(:,k1)); 

 

% calculate observed bias 

Sensor(1).bias_obs(:,nstars_1) = subangle(angledelta_exp_1(:,nstars_1), angledelta_1(:,nstars_1));   % 

azimuth 

% Sensor(1).bias_obs(2,nstars_1) = subangle(angledelta_exp_1(2,nstars_1), angledelta_1(2,nstars_1));   % 

elevation 

 

    end     % end dist1 

     

end     % end i  

 

%  ---------------------------------- 

 

% reset nearest stars by sorting by distance 

 

[newNNtable_1, Q] = sort(NNtable_1(2,:)); 
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nearest_1 = NNtable_1(1,Q(11)); 

 

end     % end earth interference check 

 

end     % end if t > 299 

else  

    Sensor(1).intrack = 0;      % sensor 1 is not in track 

end     % end intrack 

 

% ------------------------------------------------------------- 

% ----------------- Bias Filter ----------------------- 

% -------------------------------------------------------------- 

if t > 1 

    S1 = 0; 

 

if star_case(1) == 0    % no star detected 

    %  for simple bias estimate -  use previous bias observation  

    Sensor(1).bias_sh(:,t) = Sensor(1).bias_sh(:,t-TS);   

     

    xBh1a(:,t) = project2(1, xBh1a(:,t-TS), 100);    % project azimuth estimate forward 

    xBh1e(:,t) = project2(1, xBh1e(:,t-TS), 100);    % project elevation estimate forward 

     

    % for EKF bias - use predicted bias estimate  

    Sensor(1).bias_est(1,t) =  xBh1a(1,t);   

    Sensor(1).bias_est(2,t) =  xBh1e(1,t); 

     

    Tcount1 = Tcount1 + 1;      % increment observation interval counter 

     

elseif star_case(1) == 1    % star is detected 

        Tcount1 = 0;        % reset observation interval counter 

      for j = 1:j1 

        S1 = S1 + Sensor(1).bias_obs(:,nstars_1-j+1);     % if more than one star is identified in view, average 

the bias observations 

      end     %end j 

    Sensor(1).bias_sh(:,t) = S1/j1;   % average bias measurement 

     ZB1 = S1/j1; 

     

         dn = nstars_1-j1; 

      if dn == 0; 

          dt1 = TS; 

      else 

        dt1 = t1(nstars_1) - t1(dn); 

    end 

            

  % run bias EKF   

   [xBh1a(:,t), PB1a_] = Bias_KF(dt1, xBh1a(:,t-dt1), PB1a, RB, ZB1(1), QB); 

 

   [xBh1e(:,t), PB1e_] = Bias_KF(dt1, xBh1e(:,t-dt1), PB1e, RB, ZB1(2), QB); 

   Sensor(1).bias_est(1,t) = xBh1a(1,t);    % EKF azimuth bias estimate 

   Sensor(1).bias_est(2,t) = xBh1e(1,t);    % EKF elevation bias estimate 

   PB1a = PB1a_; 

   PB1e = PB1e_; 
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else 

    errorstatement = 'star_case error' 

end     % end if star_case == 1 

 

end     % end if t>1 

 

% ----------------------------------------------------------------------- 

% -------------------------- Sensor 2 tracking  ------------------------- 

% ----------------------------------------------------------------------- 

if (t >= Sensor(2).trkst) && (t <= Sensor(2).trkend) 

    Sensor(2).intrack = 1; 

    k2 = t - Sensor(2).trkst + 1; 

 

% ---------------------- Star Check for sensor 2 ------------------------------- 

if t > 299   

     

% check if sensor LOS is blocked by earth 

 

Sat(2).alt = sqrt(Sat(2).posit(1,t)^2 + Sat(2).posit(2,t)^2 + Sat(2).posit(3,t)^2);  % sat altitude 

Sat(2).earthvect = -Sat(2).posit(:,t)/Sat(2).alt;       % unit vector from sat to earth center 

thetaLOS2 = acos(dot(Sensor(2).obs_ECIvec_noisy(:,k2), Sat(2).earthvect));       % angle between satellite 

fov and earth center 

thetaearth2 = asin(Rearth/Sat(2).alt);                    % angle between satellite and earth rim 

 

if thetaearth2 > thetaLOS2        % if LOS is within earth radius  

    star_case(2) = 0;                   % then cannot see star 

     

else 

   

%--------------------------------------------------------------------------  

% find nearest star for first observation 

%-------------------------------------------------------------------------- 

if Tcount2 >= 60/TS 

    Tfirst2 = 1; 

%     timecount60_2 = t; 

end 

 

if Tfirst2 == 1 

for i2 = 1:Nstars         % calculate distance from observation vector to each star in catalog 

       % distance = dot product of vectors 

    dist2(i2) = dot(star.vector(:,i2),Sensor(2).obs_ECIvec_noisy(:,k2)); 

end % end i2 

 

% sort distances. Index number = star number in star catalog 

[sort_dist2, S_index_2] = sort(dist2); 

 

% Select nearest star (greatest value of distance is closest) 

nearest_2=  S_index_2(Nstars); 

 

% clear unneeded arrays 

clear sort_dist2; 

clear dist2; 

clear S_index_2; 
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Tfirst2 = 0; 

Tcount2 = 0; 

end     % end if Tfirst2 = 1 

 

% ---------------------------------------------- 

% compare star vector to observation vector for 11 nearest stars 

% ------------------------------------------------ 

 

j2=0;  % reset observed star counter 

 

for i = 1:11    % for each star in nearest neighbor table assign NNs1,2 as star number 

     

    NNs2 = Nearneigh(i,nearest_2); 

     

% calculate distance from observation vector to each star 

    dist2 = dot(star.vector(:,NNs2),Sensor(2).obs_ECIvec_noisy(:,k2)); 

     

% build tables of stars and distances to vectors 

    NNtable_2(:,i) = [NNs2, dist2]'; 

     

% ---  Check if stars are in sensor 2 view  --------     

    if dist2 > app 

        star_case(2) = 1;      % a star is detected 

        nstars_2 = nstars_2+1;               % running number of stars detected 

        j2 = j2+1;            % number of stars detected in this time step 

        t2(nstars_2) = t;            

       starplot2(:,nstars_2) = [star.RAdec(1,NNs2) star.RAdec(2,NNs2) NNs2 t]';  % detected star location ID 

number and time 

         

 % ------- Find bias from expected and actual star observations --------- 

                

star_vec_bf = invquatxfrm(Sat(2).att(:,t), star.vector(:,NNs2));  % Rotate star vector to sensor frame 

star_azel_bf = vectobrg(star_vec_bf)*pi/180; % express in azimuth and elevation in radians 

 

% calculate actual observed star azimuth and elevation  

angledelta_2(:,nstars_2) = subangle(star_azel_bf, Sensor(2).obs_bodyang_noisy(:,k2));  

 

% Calculate expected star observation 

angledelta_exp_2(:,nstars_2) = subangle(star_azel_bf, Sensor(2).los_rad(:,k2)); 

 

% calculate observed bias 

Sensor(2).bias_obs(:,nstars_2) = subangle(angledelta_exp_2(:,nstars_2), angledelta_2(:,nstars_2)); % 

azimuth 

% bias_obs_2(2,nstars_2) = subangle(angledelta_exp_2(2,nstars_2), angledelta_2(2,nstars_2)); % elevation 

 

    end   % end dist2 

 

end % end i 

 

% ------------------------------------------------------------- 

 

% reset nearest stars by sorting by distance 
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[newNNtable_2, Q] = sort(NNtable_2(2,:)); 

nearest_2 = NNtable_2(1,Q(11)); 

 

end     % end earth interference check 

end     % end if t > 299 

else  

    Sensor(2).intrack = 0; 

end     % end intrack 

% ------------------------------------------------------------- 

% ----------------- Bias Filter ----------------------- 

% -------------------------------------------------------------- 

 

if t > 1 

    S2 = 0; 

     

if star_case(2) == 0  % no star detected     

     

    %  for simple bias estimate -  use previous bias observation  

    Sensor(2).bias_sh(:,t) = Sensor(2).bias_sh(:,t-TS);  

     

    xBh2a(:,t) = project2(1, xBh2a(:,t-TS), 100);    % project azimuth estimate forward 

    xBh2e(:,t) = project2(1, xBh2e(:,t-TS), 100);    % project elevation estimate forward 

 

    % for EKF bias - use predicted bias estimate  

    Sensor(2).bias_est(1,t) =  xBh2a(1,t);  

    Sensor(2).bias_est(2,t) =  xBh2e(1,t); 

    Tcount2 = Tcount2 + 1;  

     

elseif star_case(2) == 1 

    Tcount2 = 0;     

      for j = 1:j2 

        S2 = S2 + Sensor(2).bias_obs(1:2,nstars_2-j+1);  % if more than one star is identified in view, average 

the bias observations 

      end     %end j 

      Sensor(2).bias_sh(:,t) = S2/j2; 

      ZB2 = S2/j2; 

     

         dm = nstars_2-j2; 

      if dm == 0; 

          dt2 = TS; 

      else 

        dt2 = t2(nstars_2) - t2(dm); 

    end 

     

   % run bias EKF   

   [xBh2a(:,t), PB2a_] = Bias_KF(dt2, xBh2a(:,t-dt2), PB2a, RB, ZB2(1), QB); 

   [xBh2e(:,t), PB2e_] = Bias_KF(dt2, xBh2e(:,t-dt2), PB2e, RB, ZB2(2), QB); 

   Sensor(2).bias_est(1,t) = xBh2a(1,t); 

   Sensor(2).bias_est(2,t) = xBh2e(1,t); 

   PB2a = PB2a_; 

   PB2e = PB2e_; 
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else 

    errorstatement = 'star_case error' 

end     % end if star_case == 1 

 

end     % end if t>1 

 

% ---------------------------------------------- 

% correct observation vectors with bias estimate 

% --------------------------------------------- 

 

if Sensor(1).intrack == 1 

% EKF bias  

    Sensor(1).obs_bodyang_correct_EKF(:,k1) = subangle(Sensor(1).obs_bodyang_noisy(:,k1), 

Sensor(1).bias_est(:,t));  

    Sensor(1).obs_bodyvec_correct_EKF(:,k1) = brngtovec(Sensor(1).obs_bodyang_correct_EKF(:,k1));     

% Put observation in Sensor vector form 

    Sensor(1).obs_ECIvec_correct_EKF(:,k1) = quatxfrm(Sat(1).att(:,t), 

Sensor(1).obs_bodyvec_correct_EKF(:,k1)); % Put observation in ECF vector form 

    Sensor(1).obs_ECIang_correct_EKF(:,k1) = vectobrg2(Sensor(1).obs_ECIvec_correct_EKF(:,k1));    % 

ECF bearing in radians 

 

% sample and hold bias 

 

    Sensor(1).obs_bodyang_correct_sh(:,k1) = subangle(Sensor(1).obs_bodyang_noisy(:,k1), 

Sensor(1).bias_sh(:,t));  

    Sensor(1).obs_bodyvec_correct_sh(:,k1) = brngtovec(Sensor(1).obs_bodyang_correct_sh(:,k1));          % 

translate to vector form 

    Sensor(1).obs_ECIvec_correct_sh(:,k1) = quatxfrm(Sat(1).att(:,t), 

Sensor(1).obs_bodyvec_correct_sh(:,k1));   % rotate to ECF vector 

 

end 

 

if Sensor(2).intrack == 1 

% EKF Bias 

    Sensor(2).obs_bodyang_correct_EKF(:,k2) = subangle(Sensor(2).obs_bodyang_noisy(:,k2), 

Sensor(2).bias_est(:,t));  

    Sensor(2).obs_bodyvec_correct_EKF(:,k2) = brngtovec(Sensor(2).obs_bodyang_correct_EKF(:,k2)); 

    Sensor(2).obs_ECIvec_correct_EKF(:,k2) = quatxfrm(Sat(2).att(:,t), 

Sensor(2).obs_bodyvec_correct_EKF(:,k2)); 

    Sensor(2).obs_ECIang_correct_EKF(:,k2) = vectobrg2(Sensor(2).obs_ECIvec_correct_EKF(:,k2)); 

 

% sample and hold bias 

 

    Sensor(2).obs_bodyang_correct_sh(:,k2) = subangle(Sensor(2).obs_bodyang_noisy(:,k2), 

Sensor(2).bias_sh(:,t));  

    Sensor(2).obs_bodyvec_correct_sh(:,k2) = brngtovec(Sensor(2).obs_bodyang_correct_sh(:,k2)); 

    Sensor(2).obs_ECIvec_correct_sh(:,k2) = quatxfrm(Sat(2).att(:,t), 

Sensor(2).obs_bodyvec_correct_sh(:,k2)); 

 

end 

% ----------------------------------------------------- 

 

bothintrack = Sensor(1).intrack + Sensor(2).intrack;   



 

165 

 

% ----------------------------------------------------------------- 

% --------------------- Filter Setup  ------------------------------ 

% ------------------------------------------------------------------ 

 

    A = model.A; 

    G = model.G; 

     

if bothintrack == 2 

     

 

% calculate intercept point of the two vectors 

target.intercept_nocorr(:,t) = intercept(Sensor(1).obs_ECIvec_noisy(:,k1), 

Sensor(2).obs_ECIvec_noisy(:,k2), Sat(1).posit(:,t), Sat(2).posit(:,t));   % no bias correction 

target.intercept_EKF(:,t) = intercept(Sensor(1).obs_ECIvec_correct_EKF(:,k1), 

Sensor(2).obs_ECIvec_correct_EKF(:,k2), Sat(1).posit(:,t), Sat(2).posit(:,t));  % with EKF bias correction 

target.intercept_sh(:,t) = intercept(Sensor(1).obs_ECIvec_correct_sh(:,k1), 

Sensor(2).obs_ECIvec_correct_sh(:,k2), Sat(1).posit(:,t), Sat(2).posit(:,t));  % with simple bias correction 

 

% random initial estimate 

if newtrack == 1 

    newtrack = 0; 

% range to target from sensor 2 

a2 = sqrt((target.intercept_EKF(1,1)-Sat(2).posit(1,1)).^2 + (target.intercept_EKF(2,1)-Sat(2).posit(2,1)).^2 

+ (target.intercept_EKF(3,1)-Sat(2).posit(3,1)).^2);   

 

target.state_est(1,t) = target.intercept_EKF(1,t) + 10*covsen*a2*randn(1); 

target.state_est(3,t) = target.intercept_EKF(2,t) + 10*covsen*a2*randn(1); 

target.state_est(5,t) = target.intercept_EKF(3,t) + 10*covsen*a2*randn(1); 

 

target.sen1_state_est(:,t) = target.state_est(:,t); 

target.sen2_state_est(:,t) = target.state_est(:,t); 

 

% Initial covariance matrix for plotting 

% P(1,1) = Px(1,1); 

% P(2,1) = Px(3,3); 

% P(3,1) = Px(5,5); 

 

else 

     

switch ftype 

%-------------------  Linearized Kalman Filter ----------------------------------- 

 

case 'kf'        % kk = 1 

 

[target.state_est(:,t), Px] = LKFts(model, pNoise, target.state_est(:,t-TS), Px, covsen, 

Sensor(1).obs_bodyang_correct_EKF(:,k1), Sensor(2).obs_bodyang_correct_EKF(:,k2), Sat(1).posit(:,t), 

Sat(2).posit(:,t), target.intercept_EKF(:,t)); 

         

 

%------------------- Extended Kalman Filter ------------------------------------ 

    case 'ekf'  % kk = 2 

% find EKF estimate for each satellite sensor given corrected LOS 
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% observation and Satellite positions, using fused estimate from earlier time step 

[target.sen1_state_est(:,t), Px_1] = ekf(target.state_est(:,t-TS), Px, pNoise, oNoise, 

Sensor(1).obs_ECIang_correct_EKF(:,k1), [], Sat(1).posit(:,t), InfDS); 

[target.sen2_state_est(:,t), Px_2] = ekf(target.state_est(:,t-TS), Px, pNoise, oNoise, 

Sensor(2).obs_ECIang_correct_EKF(:,k2), [], Sat(2).posit(:,t), InfDS); 

 

%------------------- Unscented Kalman Filter ----------------------------------- 

    case 'ukf'  % kk = 3 

 

[pNoise, oNoise, InfDS] = gensysnoiseds(InfDS, ftype);     % call system noise sources generation function 

         

        alpha = 1;         % scale factor (UKF parameter) 

        beta  = 2;         % optimal setting for Gaussian priors (UKF parameter) 

        kappa = 2;         % optimal for state dimension=2 (UKF parameter) 

 

InfDS.spkfParams = [alpha beta kappa]; 

 

% find UKF estimate for each satellite sensor given corrected LOS 

% observation and Satellite positions, using fused estimate from earlier time step 

 

[target.sen1_state_est(:,t), Px_1] = ukf(target.state_est(:,t-TS), Px, pNoise, oNoise, 

Sensor(1).obs_ECIang_correct_EKF(:,k1), [], Sat(1).posit(:,t), InfDS); 

[target.sen2_state_est(:,t), Px_2] = ukf(target.state_est(:,t-TS), Px, pNoise, oNoise, 

Sensor(2).obs_ECIang_correct_EKF(:,k2), [], Sat(2).posit(:,t), InfDS); 

 

end     % end case 

 

% ---------------- fuse estimates for EKF and UKF tracking ---------------- 

if kk > 1 

    Px_ = feval(model.prior, model, Px, pNoise);   % update state covariance 

    Xh_ = feval(model.ffun, model, target.state_est(:,t-TS), pNoise.mu, []);  % project last estimate forward 

 

    Px = inv(inv(Px_1) + inv(Px_2)-inv(Px_));       % fused covariance 

    target.state_est(:,t) = Px*(inv(Px_1)*target.sen1_state_est(:,t) + inv(Px_2)*target.sen2_state_est(:,t)-

inv(Px_)*Xh_);  % new fused estimate 

end  % if kk > 1 

 

% -------------------------------------------------------------------------  

end % end intrack 

 

% figure(1); 

% hold on;    

% grid on; 

% plot3(target.posit(1,t), target.posit(2,t), target.posit(3,t),'k*'); 

% plot3(target.sen1_state_est(1,t), target.sen1_state_est(3,t), target.sen1_state_est(5,t),'b*'); 

% plot3(target.sen2_state_est(1,t), target.sen2_state_est(3,t), target.sen2_state_est(5,t),'r*'); 

% plot3(target.state_est(1,t), target.state_est(3,t), target.state_est(5,t),'g*'); 

% drawnow 

%  time = t 

 

end     % end if t > newtrack 

 

% ----------------------------------- 
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% Filter consistency check 

target.state_pk(nr,t) = sqrt(Px(1,1)^2 + Px(3,3)^2 + Px(5,5)^2); 

 

est_error(:,t) = target.true_state(:,t) - target.state_est(:,t); 

epsilon(nr,t) = est_error(:,t)' * inv(Px) * est_error(:,t); 

 

% -------------------------------------------------------------------- 

end     % end t 

 

avest = round((300+TS)/TS); 

aveend = round((kend-kstart)/TS+1); 

 

%  ---------------------- calculate errors ------------------------------ 

target.vel_est = sqrt(target.state_est(2,:).^2 + target.state_est(4,:).^2 + target.state_est(6,:).^2);  % velocity 

error 

 

% error.int_nocorr = error w/out bias correction or LKF 

error(kk, b).int_nocorr(nr,:) = sqrt((target.intercept_nocorr(1,kstart:kend) - target.posit(1,kstart:kend)).^2 + 

(target.intercept_nocorr(2,kstart:kend) - target.posit(2,kstart:kend)).^2 + 

(target.intercept_nocorr(3,kstart:kend) - target.posit(3,kstart:kend)).^2); 

 

% error.int_EKF = error w/bias correction EKF no LKF 

error(kk, b).int_EKF(nr,:) = sqrt((target.intercept_EKF(1,kstart:kend) - target.posit(1,kstart:kend)).^2 + 

(target.intercept_EKF(2,kstart:kend) - target.posit(2,kstart:kend)).^2 + (target.intercept_EKF(3,kstart:kend) 

- target.posit(3,kstart:kend)).^2); 

 

% error.int_sh = error w/ sample and hold bias correction EKF no LKF 

error(kk, b).int_sh(nr,:) = sqrt((target.intercept_sh(1,kstart:kend) - target.posit(1,kstart:kend)).^2 + 

(target.intercept_sh(2,kstart:kend) - target.posit(2,kstart:kend)).^2 + (target.intercept_sh(3,kstart:kend) - 

target.posit(3,kstart:kend)).^2); 

 

% error.state_est = error w/bias correction EKF and State Estimator 

error(kk, b).state_est(nr,:) = sqrt((target.state_est(1,kstart:kend) - target.posit(1,kstart:kend)).^2 + 

(target.state_est(3,kstart:kend) - target.posit(2,kstart:kend)).^2 + (target.state_est(5,kstart:kend) - 

target.posit(3,kstart:kend)).^2);     

 

% determine error for run nr over tracked time period t = 300 to Tplot 

error(kk, b).int_nocorr_ave(nr) = mean(error(kk, b).int_nocorr(nr,avest:TS:kend)); 

error(kk, b).int_EKF_ave(nr) = mean(error(kk, b).int_EKF(nr,avest:TS:kend)); 

error(kk, b).int_sh_ave(nr) = mean(error(kk, b).int_sh(nr,avest:TS:kend)); 

error(kk, b).state_est_ave(nr) = mean(error(kk, b).state_est(nr,avest:TS:kend)); 

number = nr 

end     % end Nruns 

 

error(kk, b).state_pk_ave = sum(target.state_pk)/nr; 

 

% average error over number of runs at each time step 

error(kk, b).state_est_timeave = sum(error(kk, b).state_est)/nr; 

error(kk, b).int_EKF_timeave = sum(error(kk, b).int_EKF)/nr; 

error(kk, b).int_sh_timeave = sum(error(kk, b).int_sh)/nr; 

error(kk, b).int_nocorr_timeave =sum(error(kk, b).int_nocorr)/nr; 

 

error(kk, b).state_est_MSE = sum(error(kk, b).state_est.^2)/nr; 
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error(kk, b).int_EKF_MSE = sum(error(kk, b).int_EKF.^2)/nr; 

error(kk, b).int_sh_MSE = sum(error(kk, b).int_sh.^2)/nr; 

error(kk, b).int_nocorr_MSE = sum(error(kk, b).int_nocorr.^2)/nr; 

 

error(kk, b).state_est_RMS = mean(sqrt(sum(error(kk, b).state_est(:,avest:TS:kend).^2)/nr)); 

error(kk, b).int_EKF_RMS = mean(sqrt(sum(error(kk, b).int_EKF(:,avest:TS:kend).^2)/nr)); 

error(kk, b).int_sh_RMS = mean(sqrt(sum(error(kk, b).int_sh(:,avest:TS:kend).^2)/nr)); 

error(kk, b).int_nocorr_RMS = mean(sqrt(sum(error(kk, b).int_nocorr(:,avest:TS:kend).^2)/nr)); 

 

error(kk, b).state_est_Mean_MSE = mean(error(kk, b).state_est_MSE(avest:TS:kend)); 

error(kk, b).int_EKF_Mean_MSE = mean(error(kk, b).int_EKF_MSE(avest:TS:kend)); 

error(kk, b).int_sh_MSE = mean(error(kk, b).int_sh_MSE(avest:TS:kend)); 

error(kk, b).int_nocorr_MSE = mean(error(kk, b).int_nocorr_MSE(avest:TS:kend)); 

 

if b==3 

epsilon_ave(kk,:) = sum(epsilon)/nr; 

figure(20) 

hold on 

plot(501:TS:kend, epsilon_ave(kk,501:TS:kend), lk) 

xlabel('Time (seconds)'); 

ylabel('epsilon'); 

legend('LKF','EKF','UKF'); 

end  

     

% for CRLB estimate, error standard deviation for time average 

error(kk, b).state_est_STD = std(error(kk, b).state_est,0,1); 

 

% determine mean of error over entire run 

error(kk, b).state_est_runave = mean(error(kk, b).state_est_ave); 

error(kk, b).int_EKF_runave = mean(error(kk, b).int_EKF_ave); 

error(kk, b).int_sh_runave = mean(error(kk, b).int_sh_ave); 

error(kk, b).int_nocorr_runave = mean(error(kk, b).int_nocorr_ave); 

 

% determine Standard deviation of error over run 

error(kk, b).state_est_runSTD = std(error(kk, b).state_est_ave); 

error(kk, b).int_EKF_runSTD = std(error(kk, b).int_EKF_ave); 

error(kk, b).int_sh_runSTD = std(error(kk, b).int_sh_ave); 

error(kk, b).int_nocorr_runSTD = std(error(kk, b).int_nocorr_ave);   

 

MSE(kk,b) = sqrt(error(kk, b).state_est_Mean_MSE); 

RMS(kk,b) = error(kk, b).state_est_RMS; 

Mean_error(kk,b) = error(kk, b).state_est_runave; 

 

improv(kk, b).int_EKF = (1 - error(kk, b).int_EKF_runave/error(kk, b).int_nocorr_runave)*100; 

improv(kk, b).int_sh =  (1 - error(kk, b).int_sh_runave/error(kk, b).int_nocorr_runave)*100; 

improv(kk, b).state_est = (1 - error(kk, b).state_est_runave/error(kk, b).int_nocorr_runave)*100; 

 

if  (b == 3) && (kk == 3) 

%     % Plot average error 

% figure(3); 

% grid on 

% p32 = plot(1:10:Tplot, 1000*error(kk, b).int_nocorr_timeave(1:10:Tplot), 'k-');hold on 

% p33 = plot(1:10:Tplot, 1000*error(kk, b).int_EKF_timeave(1:10:Tplot), 'b-'); 
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% p34 = plot(1:10:Tplot, 1000*error(kk, b).int_sh_timeave(1:10:Tplot), 'r-'); 

% % p35 = plot(1:10:Tplot, 1000*error(kk, b).state_est_timeave(1:10:Tplot), 'g-'); 

% title('Mean Error of target with and without bias correction'); 

% xlabel('Time (seconds)'); 

% ylabel('Mean Error (m)'); 

% legend('Without bias correction','Bias EKF correction','Bias sample and hold correction');  %, 'Bias EKF 

and State LKF' 

%  

figure(5); 

hold on; 

p55 = plot(1:Tplot, bsaz(b,1:Tplot), 'b-.'); 

P56 = plot(1:Tplot, bsel(b,1:Tplot), 'r-.'); 

p51 = plot(1:TS:Tplot, Sensor(1).bias_sh(2,1:TS:Tplot), 'k:'); 

p52 = plot(1:TS:Tplot, Sensor(1).bias_est(2,1:TS:Tplot), 'k-'); 

%  p53 = plot(1:TS:Tplot, Sensor(2).bias_sh(1,1:TS:Tplot), 'b:'); 

%  p54 = plot(1:TS:Tplot, Sensor(2).bias_sh(2,1:TS:Tplot), 'k:'); 

p57 = plot(1:TS:Tplot, Sensor(1).bias_sh(1,1:TS:Tplot), 'k:'); 

p58 = plot(1:TS:Tplot, Sensor(1).bias_est(1,1:TS:Tplot), 'k-'); 

xlabel('Time (secs)'); 

ylabel('Bias (rads)'); 

% legend('Without bias filter', 'With bias filter', 'True bias'); 

title('Sensor 1 Bias measurements without and with Kalman Filtering'); 

 

figure(4); 

hold on;  

p45 = plot(1:Tplot, bsaz(b,1:Tplot), 'b-.'); 

P46 = plot(1:Tplot, bsel(b,1:Tplot), 'r-.'); 

p41 = plot(1:TS:Tplot, Sensor(2).bias_sh(2,1:TS:Tplot), 'k:'); 

p42 = plot(1:TS:Tplot, Sensor(2).bias_est(2,1:TS:Tplot), 'k-'); 

%  p43 = plot(1:TS:Tplot, Sensor(2).bias_sh(1,1:TS:Tplot), 'b:'); 

%  p44 = plot(1:TS:Tplot, Sensor(2).bias_sh(2,1:TS:Tplot), 'k:'); 

p47 = plot(1:TS:Tplot, Sensor(2).bias_sh(1,1:TS:Tplot), 'k:'); 

p48 = plot(1:TS:Tplot, Sensor(2).bias_est(1,1:TS:Tplot), 'k-'); 

title('Sensor 2 Bias measurements without and with Kalman Filtering'); 

xlabel('Time (secs)'); 

ylabel('Bias (rads)'); 

 

end   % b==3 

     

% Print results 

results.error(b+1,1) = biasvect(b)'; 

results.error(b+1,2) = error(kk, b).int_nocorr_runave; 

results.error(b+1,3) = error(kk, b).int_nocorr_RMS; 

results.error(b+1,4) = error(kk, b).int_EKF_runave; 

results.error(b+1,5) = error(kk, b).int_EKF_RMS; 

results.error(b+1,6) = improv(kk, b).int_EKF; 

results.error(b+1,7) = error(kk, b).int_sh_runave; 

results.error(b+1,8) = error(kk, b).int_sh_RMS; 

results.error(b+1,9) = improv(kk, b).int_sh; 

results.error(b+1,10) = error(kk, b).state_est_runave; 

results.error(b+1,11) = error(kk, b).state_est_RMS; 

results.error(b+1,12) = improv(kk, b).state_est; 
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data = results.error(b+1,:) 

stars = [nstars_1 nstars_2] 

fprintf(savefile, '%12.6e\t', data); 

fprintf(savefile, '\r Number of stars: Sensor 1: %6.0f\t, Sensor 2: %6.0f\n', stars); 

fprintf(savefile, 'MSE: \t'); 

fprintf(savefile, '%12.6e\t', MSE(kk,:)); 

fprintf(savefile, 'RMS: \t'); 

fprintf(savefile, '%12.6e\t', RMS(kk,:)); 

fprintf(savefile, 'Mean Error: \t'); 

fprintf(savefile, '%12.6e\t', Mean_error(kk,:)); 

 

if b == 3 

figure(6); 

hold on; 

p64 = plot(kstart:10:kend, error(kk, b).state_est_timeave(1:10:kend-kstart+1), lk); 

title('Mean Error of target with EKF bias correction'); 

xlabel('Time (seconds)'); 

ylabel('Mean Error Km'); 

axis([0 1800 0 1]); 

end 

 

end     % end bias 

 

end     % end kk 

 

% ------------------------------ Calculate and plot PCRLB ----------------------- 

 

tcrb = 600; 

 

Qn = [1/3 1/2 0 0 0 0; 

      1/2 1   0 0 0 0; 

      0 0    1/3 1/2 0 0; 

      0 0    1/2 1   0 0; 

      0 0 0 0       1/3 1/2; 

      0 0 0 0       1/2  1]; 

   

  Qcrb = process_error*Qn/1000; 

 

for t = 1:tcrb 

Jz_1 = PCRLB(target.posit(:,t), Sat(1).posit(:,t), oNoise); 

Jz_2 = PCRLB(target.posit(:,t), Sat(2).posit(:,t), oNoise); 

 

if t == 1 

    J(:,:,t) = eye(6); 

else 

J(:,:,t) = inv(Qcrb+ A*inv(J(:,:,t-1))*A') + .5*Jz_1 + .5*Jz_2; 

end     % if t==0 

 

CRLB(:,:,t) = inv(J(:,:,t)); 

CRLBave(t) = CRLB(1,1,t)^2 + CRLB(3,3,t)^2 + CRLB(5,5,t)^2;  

end     % end t 1-50 

 

figure(8) 



 

171 

hold on; 

p81 = plot(101:10:tcrb, CRLBave(101:10:tcrb), 'k-'); 

p82 = plot(101:10:tcrb, error(1,3).state_est_STD(101:10:tcrb).^2, 'r-'); 

p83 = plot(101:10:tcrb, error(2,3).state_est_STD(101:10:tcrb).^2, 'b-'); 

p84 = plot(101:10:tcrb, error(3,3).state_est_STD(101:10:tcrb).^2, 'g-'); 

p85 = plot(101:10:tcrb, error(3,3).state_pk_ave(1,101:10:tcrb),'r-'); 

ylabel('Error variance (km)2'); 

xlabel('time (seconds)'); 

legend('PCRLB', 'LKF', 'EKF', 'UKF'); 

 

% ------------------------------------------------------------------------ 

 

figure(6); 

hold on 

p61 = plot(kstart:10:kend, error(2,3).int_nocorr_timeave(1:10:kend-kstart+1), 'k-'); 

legend('With LKF','With EKF', 'With UKF','Without bias correction'); 

 

% % plot observation vector trace 

figure(2) 

hold on 

grid on 

xlabel('Longitude') 

ylabel('Latitude') 

title('Sensor tracks and star detections'); 

% drawnow 

p21 = plot((180/pi)*Sensor(1).obs_ECIae_noisy(1,300:Tplot), 

(180/pi)*Sensor(1).obs_ECIae_noisy(2,300:Tplot), 'r:'); 

p22 = plot((180/pi)*Sensor(2).obs_ECIae_noisy(1,300:Tplot), 

(180/pi)*Sensor(2).obs_ECIae_noisy(2,300:Tplot), 'b-') ; 

p23 = plot((180/pi)*starplot1(1,:), (180/pi)*starplot1(2,:), 'k*'); 

p24 = plot((180/pi)*starplot2(1,:), (180/pi)*starplot2(2,:), 'k*'); 

axis([0 360 -90 90]) 

legend('Sensor 1 track', 'Sensor 2 track', 'Detected star'); 

 

% fprintf(savefile, 'MSE: %12.6e\n', MSE); 

% fprintf(savefile, 'RMS: %12.6e\n', RMS); 

% fprintf(savefile, 'Mean_error: %12.6e\n', Mean_error); 

 

 

fclose(savefile) 
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Bias Extended Kalman Filter 
 

function [xBhnext, PBnext] = Bias_KF(dt, xBh, PB, RB, ZB, QB) 

% produces bias state estimate and covariance matrix based on bias 

% measurement over the time step dt. 

% inputs 

% dt = time step 

% xBh = previous state 

% PB = previous state cov matrix 

% ZB = bias measurement 

% RB = measurement error variance 

% QB = bias process variance 

% Outputs 

% xBhnext = Bias state estimate 

% PBnext = bias state cov matrix 

 

wh = xBh(3); 

xh = xBh(1); 

 

HB = [1 0 0];  % measurement matrix 

    

for t = 1:dt; 

     

    THB = [1  dt  0; 

           -wh*wh*dt  1   -2*wh*xh*dt; 

            0   1   0]; 

       

    GB = [ 0   0   0; 

             0   4*wh*wh*xh*xh*dt*dt*dt/3   -2*wh*xh*dt*dt; 

             0   -2*wh*xh*dt*dt       dt]; 

                

  % Ricati equations 

   

    M = THB*PB*THB' + GB*QB;                 

    K = M*HB'*inv(HB*M*HB' + RB);           % Kalman gain 

    PBnext = (eye(3)-K*HB)*M;               % update state covariance 

    xBh_ = project2(dt, xBh, 100);       % numerical propagate state vector 

    inov = ZB-HB*xBh_; 

    xBhnext = xBh_ + K*inov;                % update state 

     

        end 
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Quateron transfer function 
 

function B = quatxfrm(q, A) 

 

% Quaternion transform 

% This program provides quaternion conversion.  

% Given a matrix of vectors, A in 3 dimensions, and the attitude quaternons, 

% q and returns the output vector, B in the new coordinate frame 

 

nov = size(q,2); 

B = zeros(3,nov); 

D = zeros(3,3,nov); 

D(1,1,:) = 2*(q(1,:).^2 + q(4,:).^2 - 0.5); 

D(1,2,:) = 2*(q(1,:).*q(2,:) + q(3,:).*q(4,:)); 

D(1,3,:) = 2*(q(1,:).*q(3,:) - q(2,:).*q(4,:)); 

D(2,1,:) = 2*(q(1,:).*q(2,:) - q(3,:).*q(4,:)); 

D(2,2,:) = 2*(q(2,:).^2 + q(4,:).^2 - 0.5); 

D(2,3,:) = 2*(q(2,:).*q(3,:) + q(1,:).*q(4,:)); 

D(3,1,:) = 2*(q(1,:).*q(3,:) + q(2,:).*q(4,:)); 

D(3,2,:) = 2*(q(2,:).*q(3,:) - q(1,:).*q(4,:)); 

D(3,3,:) = 2*(q(3,:).^2 + q(4,:).^2 - 0.5); 

 

for i = 1:nov 

  B(:,i) = D(:,:,i)^-1*A(:,i); 

end 

 

Posterior Cramer-Rao Lower Bound Function 

 

function Jz = PCRLB(target, Sat, oNoise) 

 

R = oNoise.cov; 

r = sqrt((target(1) - Sat(1))^2 + (target(2) - Sat(2))^2 + (target(3) - Sat(3))^2); 

 

H(1,1) = -(target(2) - Sat(2))/((target(1) - Sat(1))^2 + (target(2) - Sat(2))^2); 

H(1,3) = (target(1) - Sat(1))/((target(1) - Sat(1))^2 + (target(2) - Sat(2))^2); 

H(1,5) = 0; 

H(1,2) = 0; 

H(1,4) = 0; 

H(1,6) = 0; 

H(2,1) = -((target(1) - Sat(1))*(target(3) - Sat(3)))/(r^2 * sqrt(((target(1) - Sat(1))^2 + (target(2) - 

Sat(2))^2))); 

H(2,3) = -((target(2) - Sat(2))*(target(3) - Sat(3)))/(r^2 * sqrt(((target(1) - Sat(1))^2 + (target(2) - 

Sat(2))^2))); 

H(2,5) = sqrt((target(1) - Sat(1))^2 + (target(2) - Sat(2))^2)/r^2; 

H(2,2) = 0; 

H(2,4) = 0; 

H(2,6) = 0; 

 

Jz = H'*inv(R)*H; 
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Linearized Kalman Filter Function 
 

 

function [Xh, Px] = LKFts(model, pNoise, state, P, covsen, obs_1, obs_2, sat_1, sat_2, intercept_)     

global TS 

% inputs 

% model =  

% pNoise = process noise covariance 

% state = target state estimate at time t-1 

% P = state covariance at t-1 

% covsen = sensor covariance 

% obs_1 = sensor 1 observation at time t 

% obs_2 = sensor 2 observation at time t 

% sat_1 = satellite 1 position 

% sat_2 = satellite 2 position 

% intercept_ = the intercept point of the observation vectors in ECI 

 

% outputs 

% Xh = state estimate at time t 

% Px = state estimate covariance at time t 

 

 

    A = model.A; 

    G = model.G; 

    B = model.B; 

 

    H = [1 0 0 0 0 0;       % observation vector 

         0 0 1 0 0 0; 

         0 0 0 0 1 0]; 

      

   %------------------------------------------------------ 

    %--- TIME UPDATE 

    alt = sqrt(state(1)^2 + state(3)^2 + state(5)^2);    % target altitude 

 

    Xh_ = feval(model.ffun, model, state, pNoise.mu, []); 

    Px_      = A*P*A' + G*pNoise.cov*G'; 

 

    %--- MEASUREMENT UPDATE 

    % range from satellite 1 to target positiion estimate 

    a = sqrt((Xh_(1)-sat_1(1)).^2 + (Xh_(3)-sat_1(2)).^2 + (Xh_(5)-sat_1(3)).^2); 

    % range from satellite 2 to target positiion estimate 

    a2 = sqrt((Xh_(1)-sat_2(1)).^2 + (Xh_(3)-sat_2(2)).^2 + (Xh_(5)-sat_2(3)).^2); 

 

     

    alpha = cos(dot(obs_1,obs_2));  % cross angle between observation vectors 

     

    if alpha > 2*pi/4 

       alpha = alpha - 2*pi/4; 

            if alpha > pi/4 

                alpha = alpha - pi/4; 

            end 

    end 
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    covrange = a2*covsen/cos(alpha/2);      % range covariance based on satellite cross angle 

      

    % Adjust for conversion from polar to vector measurements    

     

    Tm = [cos(obs_1(2)).*cos(obs_1(1))  (-a)*cos(obs_1(2)).*sin(obs_1(1)) (-a) *… 

sin(obs_1(2)) .*cos(obs_1(1)); 

      sin(obs_1(2)).*cos(obs_1(1))       a*cos(obs_1(2)).*cos(obs_1(1)) (-a)*sin(obs_1(2)).*sin(obs_1(1));   

      sin(obs_1(2))                      0                               a*cos(obs_1(2))]; 

     

    C = [covrange^2 0 0;        % Cartesian error matrix 

         0   covsen^2 0; 

         0   0 covsen^2];   

   

    R1 = Tm*C*Tm' ; 

 

    Py        = H*Px_*H' + R1; 

    KG        = Px_ * H' * inv(Py); 

 

  % calculate projected azimuth and elevation angles 

  y1_(1) = azimuth(Xh_(1)-sat_1(1), Xh_(3)-sat_1(2)); 

  y1_(2) = atan2(Xh_(5)-sat_1(3),sqrt((Xh_(1)-sat_1(1)).^2 + (Xh_(3)-sat_1(2)).^2)); 

  y2_(1) = azimuth(Xh_(1)-sat_2(1), Xh_(3)-sat_2(2)); 

  y2_(2) = atan2(Xh_(5)-sat_2(3),sqrt((Xh_(1)-sat_2(1)).^2 + (Xh_(3)-sat_2(2)).^2)); 

   

  % convert angles to vectors 

    y1_v = brngtovec(y1_(:)); 

    y2_v = brngtovec(y2_(:)); 

     

  % calculate projected intercept point (this becomes projected observation) 

    yh_ = intercept(y1_v, y2_v, sat_1, sat_2); 

     

    inov = intercept_ - yh_ - H*(9.6e-3)*B*state/alt ;  % observsation inovation 

     

    Xh   = Xh_ + KG * inov;   % new LKF state estimate 

    Px   = Px_ - KG*Py*KG';   % new LKF state covariance matrix 
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APPENDIX C:  ORBITOLOGY BASICS 

 

 

The four basic orbits associated with space based tracking systems are described here and 

shown in Figure C-1. 

 

Low Earth Orbit (LEO): The primary orbit of the space based sensor satellites is the Low 

Earth Orbit (LEO).  This orbit is in the 100 – 1000 mile altitude range.  Satellites in this 

orbit move rapidly with respect to the earth‟s surface and complete an orbit in a period of 

90-120 minutes.   

 

Ballistic Flight:  The next significant orbit associated with this study is the ballistic flight.  

In reality a ballistic missile is a low earth orbit satellite where the perigee (lowest point of 

approach) of the orbit is less than the earth‟s radius.  

 

Geostationary Orbit (GEO):  In the GEO orbit the satellite travels in a manner that it 

maintains a constant position above the earth.  Communications satellites and the missile 

launch detection satellites are in this orbit.   

 

Highly Elliptical Orbit (HEO): HEO orbits are designed to allow the satellite to dwell for 

8 hours over the northern hemisphere and are typically at a 64 degree inclination.  

1

Highly Elliptical Orbit (HEO)
-Long dwell time (8 hrs)
-Broad coverage
-Covers Poles

Goestationary Orbit (GEO)
-Same footprint on earth
-Hemispheric coverage

Low Earth Orbit (LEO)
-Small earth coverage
-Short orbit period

Ballistic Trajectory
-Elliptical Orbit that impacts earth
-High Apogee

 
Figure C-1. Basic orbits 
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The phases of ballistic missile flight are shown in Figure C-2 and described here. 

 

Boost phase:  Boost phase occurs from the time the missile is launched until the booster 

rocket ceases to burn.  The velocity vector at burnout determines the direction and range 

of the missile. 

 

Midcourse phase:  In this phase of flight the missile trajectory is determined by the 

effects of gravity.  During this phase the missile follows an elliptical path around the 

earth‟s center of gravity.  Also during this phase, the warhead will separate from the final 

booster stage.  It is at this point decoys will be deployed.  The booster is typically 

accompanied by the debris from the rest of the rocket, such as retaining rings, final 

booster stage, and warhead fairings.   

 

Terminal Phase:  Once the ballistic missile begins to reenter the atmosphere it enters the 

terminal phase of flight.  In this phase the lighter, less aerodynamic debris and decoys 

will begin to strip away from the warhead.  The deceleration of the warhead during 

reentry depends upon the ballistic coefficient and is proportional to the density of the 

atmosphere.  

 

 
Figure C-2. Phases of Ballistic Missile Flight 
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