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ABSTRACT 

AN EXAMINATION OF AFFECT-RELATED BRAIN ACTIVITY AND 
SUBSTANCE USE AMONG ADOLESCENTS 

Stefanie Fraga Goncalves, Ph.D. 

George Mason University, 2022 

Dissertation Director: Dr. Tara Chaplin 

 

Death and disability related to substance use disorder have increased substantially 

over the past couple of decades. Most adults with substance use disorder initiated 

substance use as adolescents, making adolescence a critical period for the prevention of 

substance use and substance use disorder. It is therefore important to identify risk factors 

for adolescent substance use. Recent research has demonstrated the role of altered 

affective processing in adolescent substance use. Unfortunately, most of this research has 

employed self-report and behavioral methods, which, while valuable, are limited in 

comparison to other methods, namely functional neuroimaging, in detecting subtle 

neural-level differences in affective processing and how it relates to adolescent substance 

use. Thus, the focus of this dissertation is on neural affective processing and adolescent 

substance use employing functional neuroimaging. In Study 1 of this dissertation, a 

systematic review of neuroimaging studies examining affective processing and 

adolescent substance use was conducted. Results revealed that higher activation in 
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midcingulo-insular regions—particularly the striatum—to positive affective stimuli (e.g., 

monetary reward) was most often associated with initiation and low-level use of 

substances, whereas lower activation in these regions was most often associated with 

substance use disorder and higher-risk substance use. In regard to negative affective 

stimuli, most research demonstrated associations between higher activation of 

midcingulo-insular network regions and adolescent substance use. Associations between 

activation in additional network regions (e.g., frontoparietal, pericentral) and adolescent 

substance use were mixed. To extend findings from Study 1, Study 2 of this dissertation 

was an empirical study examining how patterns of neural activation in two standardized 

and one naturalistic affective processing tasks classify substance use as well as predict 

substance use intentions and expectancies in 11–15-year-old adolescents (n = 168). 

Machine learning analyses were performed. Results did not provide evidence that neural 

activation to negative or positive affective stimuli—neither standardized nor 

naturalistic—could reliably classify adolescent substance use and predict adolescent 

substance use intentions and expectancies. Implications of all findings, as well as 

limitations and directions for future research are discussed. 

 

  



 
 

1 

An Examination of Affect-Related Brain Activity and Substance Use Among 

Adolescents 

Most adults with substance use disorder (SUD) initiated substance use (SU) as 

adolescents, making adolescence a vulnerable period for the development of SUD 

(Substance Abuse and Mental Health Services Administration, 2014). This is problematic 

given the devastating consequences of SUD, including disability and death (Bahorik et 

al., 2017; Merikangas et al., 1998). Unfortunately, despite public health efforts, death 

related to SU and SUD has increased over the past several years (Hedegaard et al., 2017). 

It is therefore more important than ever to identify risk factors of SUD, particularly in 

adolescence, that can inform public health efforts to prevent or minimize effects of SUD.  

One risk factor of SUD is altered affective processing. This refers to heightened 

or blunted responses to positively- and negatively-valanced stimuli, such as monetary 

reward and peer rejection. With mounting research linking altered affective processing to 

SU in adolescence (e.g., Colder et al., 2013; Chaplin et al., 2012), it is important that 

neural markers of altered affective processing underlying adolescent SU are better 

understood.  

 The body of literature on affect-related brain activity and adolescent SU is 

growing; however, there are several gaps that the present dissertation addressed. First, 

even though this literature has been synthesized in narrative and meta-analytic reviews 

(e.g., Tervo-Clemmens et al., 2020; Silveri et al., 2016), no review to our knowledge has 

focused exclusively on the adolescent developmental period (prior to 18 years of age) and 

included studies examining various SU behaviors (e.g., SUD, initiation, escalation). 
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Consequently, for Dissertation Study 1, I conducted a systematic review of all 

neuroimaging studies of neural affective processing and adolescent SU.  

Secondly, the existing literature on affect-related brain function and adolescent 

SU is almost exclusively made up of neuroimaging studies that employed traditional 

statistical approaches instead of machine learning approaches. Machine learning 

approaches are better at yielding more generalizable findings (Norman et al., 2006; 

Scheinost et al., 2019). The existing research examining affective processing and 

adolescent SU have also generally used standardized paradigms. Although these 

paradigms have increased our understanding of affect-SU associations, it would be 

important to supplement these with more naturalistic affective paradigms, preferably 

within a social context. This would increase the ecological validity of our findings. 

Consequently, for Dissertation Study 2, I used machine learning approaches to analyze 

affect-related neural activation and SU using both standardized and naturalistic affective 

paradigms.  
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STUDY ONE:  SYSTEMATIC REVIEW OF AFFECT-RELATED BRAIN 
ACTIVITY AND ADOLESCENT SUBSTANCE USE 

Adolescence is a critical period in the development of substance use disorder 

(SUD). Research suggests that most adults with SUD initiated substance use (SU) prior to 

age 18 (Substance Abuse and Mental Health Services Administration, 2014). It is 

therefore advantageous to understand the brain activity that characterizes adolescent SU. 

It is particularly important to examine how affect-related brain activity is 

associated with adolescent SU. In this review, affect-related brain activity refers to neural 

networks recruited during processing of emotionally and/or motivationally (i.e., reward) 

salient stimuli. In behavioral studies, altered affective processing has been identified as a 

risk factor for SU (Cheetham et al., 2010; Colder et al., 2013). This is consistent with 

theories stating that individuals initiate and engage in problematic SU to regulate altered 

emotion and reward arousal (Khantzian, 1997; Luijten et al., 2017).  

Among adults, altered neural activation during affective processing has been 

associated with SU (Balodis & Potenza, 2015; Gruber et al., 2009). Comparatively less 

research has been conducted on affective neural correlates of SU in adolescence, 

however. This is particularly important because of research demonstrating that neural 

networks supporting affective processing mature more rapidly than cognitive control-

related networks in adolescents (Casey et al., 2011).  

The current study systematically reviewed fMRI studies of adolescents’ neural 

responses to affective processing tasks and SU. Other reviews have similarly examined 

associations between affective processing and SUD risk in adolescents and young adults 
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(Tervo-Clemmens et al., 2020); however, the present study more specifically targeted 

adolescence as a developmental period and focused on actual SU behavior.  

Method 

We searched for studies on “PubMed” and “PsycInfo” databases. We used 

keywords to obtain search results on studies employing functional magnetic resonance 

imaging (fMRI) and examining SU outcomes in adolescent samples. We searched for 

studies on “PubMed” and “PsycInfo” databases. We used keywords to obtain search 

results on English language peer-reviewed studies employing fMRI (fMRI, functional 

magnetic resonance imaging) and examining SU outcomes (substance use, drug use, 

alcohol use, cannabis use, tobacco use) in adolescent samples (youth, adolescen*, 

pediatric, teen*, child*). After manually removing duplicate papers, we had 244 total 

studies. These studies were coded based on inclusion and exclusion criteria by three 

independent coders. In order for a study to be included in this review it had to: (1) 

examine neural activation with fMRI; (2) employ an affect-related task; (3) include SU as 

an outcome (e.g., initiation, SUD diagnosis); and (4) employ a sample with a mean age 

below 18 years. Studies were excluded if they only examined family history of SUD or 

prenatal SU exposure as correlates of fMRI activation. Studies were also excluded if they 

only employed working memory (i.e., no affective component) fMRI tasks, as well as if 

they were treatment studies. Studies were deemed eligible if they met all inclusion 

criteria and no exclusion criteria.  

Next, the three independent coders coded each eligible study for: age range, 

sample size, task type, task stimulus, analysis type (whole brain or ROI; longitudinal or 
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cross-sectional), contrast of interest, SU outcome, main finding, and brain network 

corresponding to main findings (based on Uddin et al., 2019). Regarding task type, the 

three coders coded based on Research Domain Criteria (RDoC; Cuthbert & Insel; 2013). 

Studies were coded as positive valence systems if they included tasks that reflected the 

following sub-domains: reward responsiveness (e.g., monetary incentive delay task), 

reward valuation (i.e., probability choice task), and/or reward learning (e.g., probabilistic 

reward task). Studies were coded as negative valence systems if they reflected the 

following sub-domains: acute fear (e.g., trier social stress task), potential threat (e.g., no 

threat-predictable threat-unpredictable threat task (NU-threat task)), sustained threat (i.e., 

no task established), loss (e.g., sadness eliciting film clips), and frustrative nonreward 

(e.g., point subtraction aggression paradigm (PSAP)). Given that the focus of this review 

was on affective processing, no eligible studies were related to other RDoC domains, 

including cognitive systems, social processes, arousal and regulatory systems, and 

sensorimotor systems. Most studies were coded based on the domain and sub-domain 

(e.g., a study was coded as a reward responsiveness positive valence system study); 

however, some studies examining the domain negative valence only indirectly examined 

sub-domains (e.g., potential threat) and were therefore coded as “responses to negative 

emotional stimuli.” There were no disagreements among coders on coding.   

Results/Discussion 

Positive Valence Systems 

 Within the RDoC framework (Cuthbert & Insel, 2013), positive valence systems 

refer to systems underlying approach motivation, which may be altered in youth at risk 
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for SUD. In total, 31 studies examined positive valence systems (mostly reward valuation 

and responsiveness) and associations with adolescent SU.  

Reward Valuation 

 Reward valuation refers to processes of encoding the probability and magnitude 

of reward in the future (Cuthbert & Insel, 2013). Most often this is assessed during choice 

selection phases of tasks that can lead to a reward.  

Monetary Reward Tasks. Most studies employed variants of an economic 

lottery task wherein adolescents select between risky and safe choices in order to earn 

money. These studies found that altered activation during choice selection (which reflects 

reward valuation) was associated with adolescent SU.  

Crowley and colleagues (2010) and Dalwani and colleagues (2014) found that 

reduced activation in brain regions belonging to the midcingulo-insular, frontoparietal, 

and occipital networks during choice selection was associated with SUDs in 14–18-year-

old boys. Compared to controls, boys with SUD had decreased activation in midcingulo-

insular regions involved in salience (e.g., anterior cingulate cortex [ACC], insula, 

amygdala, putamen, caudate), frontoparietal regions involved in cognitive control (e.g., 

middle frontal gyrus [MFG]) and self-referential/information processing (e.g., middle 

temporal gyrus [MTG], hippocampus, restrosplenial cortex, precuneus), as well as 

occipital regions involved in visual processing (i.e., lingual gyrus). A third study also 

found reduced activation in a midcingulo-insular salience region—the caudate, involved 

in learning stimulus-outcome associations (Balleine et al., 2007)—as well as in 

frontoparietal self-referential/information processing (e.g., MTG) and pericentral 



 
 

7 

language processing regions (e.g., superior temporal gyrus [STG]) during risky choice 

selection in 13–16-year-old adolescents after they initiated binge drinking compared to 

controls (Jones et al., 2016). Taken together, these results suggest that adolescents with 

heavy use or SUD may undervalue potential future monetary rewards. Given that these 

adolescents have been heavily using substances, they may have developed over time a 

tendency to undervalue monetary reward and instead overvalue drug reward (van Hell et 

al., 2010).  

Claus and colleagues (2018) employed a different task, the balloon analogue risk-

taking task, to examine neural responses during risky decisions. In a sample of 14–18-

year-olds in an “alternative to incarceration” program, Claus and colleagues found that 

relative to controls, adolescent substance users had decreased activation in midcingulo-

insular and medial frontoparietal networks implicated in salience and self-

referential/information processing, including in the nucleus accumbens [NAcc], anterior 

insula [AI], inferior frontal gyrus [IFG], as well as in the thalamus/brainstem. These 

results align with aformentioned studies and indicate blunted neural activation during 

reward valuation in youth who are high-risk. This may suggest lower arousal to potential 

monetary reward and shifting of reward arousal to drug cues. Alternatively, as these 

youth have conduct problems, they may show lower activation in general to affective 

stimuli, which may lead them to be under-aroused and to seek out substances to up-

regulate arousal (Blair et al., 2018).  

Kim-Spoon and colleagues (2019) similarly found that reduced activation in the 

AI—a midcingulo-insular salience region—during risky choice selection in an economic 
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lottery task longitudinally predicted increases in SU from early to middle adolescence in 

adolescents with high cognitive control. Notably, among adolescents low in cognitive 

control, increased AI activation predicted increases in SU, suggesting that adolescents 

with low cognitive control may take a different pathway towards SU compared to most 

adolescents. This study was extended by Elder and colleagues (2019) who also found that 

reduced AI activation during reward valuation indirectly predicted increased alcohol use 

(AU) two years later through externalizing symptoms in 13–14-year-old boys, not girls. 

This finding underscores that reduced midcingulo-insular activation during reward 

valuation may be a more likely pathway to SU for adolescent boys.  

Three studies linked increased activation during reward valuation to adolescent 

SU. One study examining 16–18-year-old binge drinkers found increased activation of 

midcingulo-insular network regions; however, this study compared two tasks making 

these results challenging to interpret (Xiao et al., 2013). Further, De Bellis and colleagues 

(2013) found that 13–17-year-old boys with cannabis use disorder (CUD) had increased 

activation in the frontoparietal attention orienting (i.e., superior parietal lobule), 

frontoparietal self-referential/information processing (i.e., precuneus), and occipital 

visual processing networks (e.g., cuneus) during selection of risky choices that had 

uncertainty versus controls. Morales and colleagues (2018) similarly found that during 

reward valuation increased recruitment of midcingulo-insular salience (e.g., bilateral 

NAcc), occipital visual (e.g., middle occipital gyrus) and medial frontoparietal network 

regions (i.e., fusiform gyrus, precuneus) involved in self-referential/information 

processing predicted earlier onset of binge drinking in 14–15-year-olds.  
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Taken together, these results indicate that adolescents with heavy SU and SUDs 

mostly show blunted activation in midcingulo-insular networks, as well as both increased 

and decreased activation in networks implicated in attention, self-referential/information 

processing and visual processing during reward valuation. These mixed findings could be 

due to task type, as De Bellis and colleagues and Morales and colleagues examined 

reward valuation under more cognitively demanding circumstances, possibly suggesting 

that heightened activation in these networks is related to inefficient resource deployment 

during reward valuation in youth with SUDs or heavy SU.  

Reward Responsiveness 

 Reward responsiveness refers to responses to the anticipation or receipt of reward 

(Cuthbert & Insel, 2013). Most studies examined neural responses to monetary reward 

anticipation/receipt and SU, with two examining responses to drug cues.  

Monetary Reward Tasks. Monetary Incentive Delay Task. Most studies 

employed adapted versions of the monetary incentive delay task. This task has two 

phases assessing reward anticipation and reward receipt. During reward anticipation, 

subjects are presented with an anticipation cue indicating the magnitude or probability of 

a monetary outcome (e.g., “possible win $5”). They are then presented with the actual 

monetary outcome (e.g., “win $5”) during the reward receipt phase. Depending on the 

specific version of the task, the monetary outcome (e.g., “win $5”) may be determined by 

how the subject responds to the anticipation cue (e.g., guessing card correctly to win 

money).  
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Most of these studies found an association between altered activation of striatal 

regions (part of the greater midcingulo-insular salience network) to monetary reward and 

adolescent SU. Five linked increased striatal activation to SU. Two studies found that 

increased NAcc activation to monetary reward receipt and anticipation was associated 

with increased SU cross-sectionally in 8–27-year-olds (Braams et al., 2016) and 

prospectively among 8–12-year-olds (Cope et al., 2019). Similarly, among 14–16-year-

olds, increased caudate and putamen activation to receipt of money was associated with 

SU prospectively (not cross-sectionally) (Stice et al., 2013). There is also evidence that 

the association between NAcc activation and SU is sex-specific. Increased NAcc 

activation to monetary reward anticipation and receipt, respectively, predicted increased 

SU prospectively two years (Swartz et al., 2020) and one year later (Chaplin et al., 2021) 

in 12–16-year-old boys, but not girls. Taken together, these studies suggest that increased 

striatal activation to monetary reward among lower-risk youth (i.e., less SU history) is 

associated with current and prospective SU across the adolescent period, which is 

consistent with theories that SUDs begin as a result of a high reward sensitivity that 

drives individuals to use substances (Luijten et al., 2017). This may be more likely 

among boys who demonstrate higher reward sensitivity than girls in studies (Harden et 

al., 2018).  

In contrast to these findings, six studies found associations between decreased 

striatal activation to monetary reward and SU. These studies are more consistent with 

theoretical models that posit that SU may be a function of blunted reward arousal that 

drives adolescents to up-regulate arousal (Luijten et al., 2017; Blum et al., 2996). Indeed, 
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two studies linked reduced putamen and NAcc activation to monetary reward receipt and 

anticipation to increased drinking in 14-year-olds (Nees et al., 2015) and 14–18-year-olds 

in residential treatment (for a range of concerns, including SUDs) (Aloi et al., 2019). 

Further, 14- to 18-year-old adolescent tobacco smokers had reduced NAcc and putamen 

activation to monetary reward anticipation versus controls (and non-tobacco substance 

users) (Karoly et al., 2015; Peters et al., 2011). Two studies demonstrated sex differences 

in these associations. Swartz and colleagues (2020) and Chaplin and colleagues (in 

preparation) showed that reduced NAcc activation to reward anticipation and receipt was 

associated with increased SU in 16-year-olds girls and 12–14-year-old boys a few years 

later. The latter findings contrast with aforementioned studies that found that boys are 

more likely to take a pathway to SU characterized by increased striatal activation. This 

may be because adolescents in Chaplin and colleagues (in preparation) are a higher-risk 

sample (i.e., substance-using boys) and may show blunted arousal to monetary reward 

compared to a lower-risk sample of boys. Girls, even lower-risk girls, may take a 

pathway to SU characterized by blunted striatal activation.  

Thus, there is evidence to suggest that both heightened and blunted recruitment of 

striatal regions to monetary reward anticipation and receipt are associated with SU in 

adolescents, with heightened activation observed more often in lower-risk youth with 

minimal SU history, especially boys, and blunted activation observed more often in 

higher-risk youth, with more SU history, especially girls. This may suggest that 

decreased activation is a consequence of SU, leading these youth to develop reduced 

sensitivity to non-drug reward compared to drug reward. Also, notably, two studies did 
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not find that neural activation to monetary reward anticipation was associated with SU in 

13–19-year-old adolescents (Nees et al., 2012; Jager et al., 2013). 

Additional studies found that, in addition to the striatum, increased activation in 

frontoparietal regions involved in decision making and emotion (middle PFC [mPFC], 

dorsomedial PFC [dmPFC]) were also associated with SU. Bertocci and colleagues 

(2017) found that increased activation in the mPFC—involved in cognitively demanding 

tasks (Pochon et al., 2002)—to receipt of monetary reward predicted SU two years later 

among 13–14-year-olds. Swartz and colleagues (2020) additionally found that increased 

activation of the dmPFC to monetary reward anticipation was associated with more 

drinking in 16-year-old girls two years later. The dmPFC is implicated in both response 

monitoring (de Ruiter et al., 2012) and emotion awareness (Vilgis et al., 2018) and 

heightened recruitment of this region to monetary reward anticipation may indicate that 

adolescent girls who are more attentive to potential reward and its emotional impacts may 

be at risk for SU. As mentioned previously, Swartz and colleagues (2020) also found 

decreased NAcc activation to monetary reward anticipation in this sample for girls, 

suggesting that girls may show a pathway to SU characterized by high emotionality but 

blunted reward system activation. This is consistent with research linking increased 

dmPFC activation in girls (Vilgis et al., 2018) and decreased NAcc activation in 

adolescents overall with depression (Hanson et al., 2015) and lend credence to theories 

that girls are more likely to take an internalizing pathway to SU (Chaplin et al., 2018).  

Other Monetary Reward Tasks. Four studies employed different tasks (i.e., 

economic lottery tasks and antisaccade reward task) and found decreased activation in 
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midcingulo-insular and frontoparietal network regions. One study using an antisaccade 

reward task found that decreased activation in the NAcc, putamen, amygdala—

midcingulo-insular regions implicated in salience—and a lateral frontoparietal region, the 

ventrolateral prefrontal cortex (vlPFC), implicated in cognitive control, to reward 

anticipation was associated with increased cannabis use (CU) among 14–18-year-olds 

recruited from an intensive outpatient program for SU problems (Chung et al., 2015). 

Similarly, Crowley and colleagues (2010) and De Bellis and colleagues (2013) 

demonstrated that in response to monetary reward receipt, 13–18-year-old boys with 

SUD, relative to controls, had reduced activation in midcingulo-insular regions (e.g., 

ACC) involved in salience, as well as in frontoparietal (e.g., orbitofrontal cortex [OFC], 

precuneus) and pericentral regions (e.g., STG) involved in cognitive control, self-

referential, visual, and language processing. These results suggest that adolescents, 

especially boys, with SUD are hyporesponsive to monetary reward, possibly an effect of 

using high amounts of substances over time.  

Another study found that binge drinking predicted decreased activation in the 

cerebellum to monetary reward receipt among 12–16-year-olds (Cservenka et al., 2015). 

Crowley and colleagues (2010) similarly found an association with reduced activation in 

the cerebellum, suggesting that adolescents with SUD or problematic SU may have 

disrupted cognitive/affective processing more broadly (Strick et al., 2009).  

Drug and Food Cue Tasks. Two studies examined neural responses to drug cues 

specifically. Brumback and colleagues (2015) found that 16–18-year-olds with histories 

of heavy drinking, compared with light drinking youth, had increased activation in 
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midcingulo-insular network regions (i.e., putamen/NAcc, ACC, parahippocampal gyrus 

[PHG]) as well as the cerebellum, to alcohol images (although differences diminished 

following one month of abstinence). Tapert and colleagues (2003) similarly found that 

14- to 17-year- olds with AUD had increased activation in frontoparietal regions involved 

in decision-making (e.g., MFG), midcingulo-insular regions involved in salience (e.g., 

amygdala), and in occipital regions involved in visual processing (e.g., cuneus) to alcohol 

cues compared to healthy controls. These findings suggest that adolescents engaging in 

higher-risk SU had increased recruitment of salience, decision making, and visual 

processing systems in response to alcohol cues. This is in opposition with studies in 

higher-risk adolescents showing blunted activation in these regions to monetary reward 

and supports that youth with extended exposure to substances may undervalue monetary 

reward and shift to over-valuing drug reward. 

Additionally, two studies found links between altered activation in midcingulo-

insular networks and frontoparietal networks to food cues and adolescent SU. Yip and 

colleagues (2016) demonstrated that, in 11–17-year-olds (with and without prenatal 

cocaine exposure), increased activation in midcingulo-insular regions (e.g., caudate, 

insula) and frontoparietal regions (e.g., dorsolateral prefrontal cortex) involved in reward 

encoding and cognitive control to food imagery was associated with illicit SU. Moreover, 

Rubinstein and colleagues (2011) found that 13–17-year-old smokers had decreased 

activation in frontoparietal and midcingulo-insular regions involved in salience and 

decision making (i.e., putamen, insula, inferior frontal cortex) to pleasurable food images 

compared to nonsmokers. Taken together, these studies suggest that youth who engage in 
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illicit SU may attach more value to food reward and that youth who smoke may assign 

less value to food reward.    

Non-Monetary, Non-Drug Cue Tasks. Three studies employed different 

affective tasks. Migliorini and colleagues (2013) found that 15–17-year-olds with SUD 

had increased and decreased activation in the AI and posterior insula (PI), respectively—

midcingulo-insular regions implicated in salience, including somatosensation/pain 

processing (2017)—to pleasant tactile stimulation compared to controls. Adolescents 

with SUD also had increased medial frontal gyrus and MFG activation, indicating 

increased recruitment of regions involved in self-referential/information processing and 

cognitive control. In addition, Aloi and colleagues (2018) and Leiker and colleagues 

(2019) found that increased amygdala—a midcingulo-insular region—and medial 

temporal lobe activation to positive emotion stimuli during an affective stroop task and 

an emotion faces task was associated with higher AU among 14–18-year-olds (some with 

SUDs). These findings are inconsistent (except for PI finding) with other research cited 

above linking decreased recruitment of midcingulo-insular regions to reward and 

adolescent heavy SU/SUD. It is possible that adolescents with SUDs may not lose 

sensitivity to certain non-drug rewards, such as tactile stimulation or positive emotional 

images.  

Summary 

Overall, these findings suggest that altered activation during monetary reward 

valuation and in response to monetary reward are associated with altered activation in 

regions across midcingulo-insular, frontoparietal, pericentral, and occipital networks. 
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Most studies linked decreased recruitment of the striatum, ACC, and AI—midcingulo-

insular regions involved in salience—with adolescent SUD and heavy SU. In contrast to 

this research, some research found that increased midcingulo-insular activation was 

associated with lower-risk SU among adolescents. Thus, it is possible that decreased 

midcingulo-insular activation during monetary reward valuation and in response to 

reward is a consequence of heavy SU over time; these adolescents may develop a 

tendency to undervalue monetary reward, and likely, overvalue drug reward. This is 

underscored by research demonstrating that adolescents with SUD have increased 

recruitment of midcingulo-insular regions, including the striatum, to drug cues. These 

associations may also be sex-specific. Among youth at lower risk for SU (e.g., less SU 

history), boys may be more likely to recruit these midcingulo-insular regions, whereas 

girls may be less likely to activate these regions. 

There was also evidence of both decreased and increased activation in 

frontoparietal, pericentral and occipital regions, including in regions important for 

cognitive control, decision-making, self-referential/information processing, and visual 

processing. It is less clear what may explain these discrepant findings, although it may be 

that different contextual factors (e.g., choices involving uncertainty versus not) are 

driving these differences.  

Negative Valence Systems 

 Negative valence systems refer to processes involving responses negative 

emotional stimuli and loss (Cuthbert & Insel, 2013). In total, thirteen studies examined 

neural correlates of negative valence systems as related to adolescent SU. Most studies 
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examined responding to negative emotional stimuli, which more indirectly assesses 

processing of threat and harm.  

Responses to Negative Emotional Stimuli 

 Several studies found an association between increased activation in midcingulo-

insular and frontoparietal network regions and increased adolescent SU. Two studies 

found that 12–14-year-olds that had increased activation in the amydgala, a midcingulo-

insular salience region involved in emotional processing (Balleine et al., 2007), to 

negative emotion faces initiated AU earlier (Elsayed et al., 2018) and used cannabis 

(compared to controls) (Spechler et al., 2015). Chaplin and colleagues (2019) similarly 

found that increased activation in the AI to negative emotional images was associated 

with lifetime SU in 12–14-year-old girls, but not boys. Moreover, one study found that 

increased AU along with increased CU was associated with increased activation in the 

amygdala and IFG—a frontoparietal network region involved in self-

referential/information processing—to negative emotional stimuli in 14–18-year-olds 

(Aloi et al., 2018). Interestingly, increased AU was associated with decreased activation 

in the amygdala and IFG at low levels of CU. Polysubstance use, such as heavy AU and 

CU, is higher risk and may be associated with increased reactivity compared to lower-risk 

substance use (i.e., one substance only). Consistent with these findings, Yip and 

colleagues (2016) found that 11–17-year-old, illicit substance using adolescents (without 

prenatal cocaine exposure) had increased response to a negative personalized stress 

imagery script in midcingulo-insular and frontoparietal networks involved in salience 

(e.g., caudate) and self-referential/information processing (hippocampus) compared to 
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controls. Taken together, these findings demonstrate a link between increased activation 

of midcingulo-insular regions and adolescent SU and suggest that adolescents with 

heightened arousal to negative emotional stimuli may use substances to down-regulate 

this arousal. Moreover, the finding by Chaplin and colleagues (2019) may suggest that 

this link is stronger in girls compared to boys. 

Another study had 15–17-year-olds with SUD complete a combined drug cue 

reactivity and aversive interoceptive task (May et al., 2020) and found decreased 

activation in midcingulo-insular and frontoparietal network regions as well. Specifically, 

adolescents had to view images of drug and neutral cues that were either paired with an 

aversive interoceptive stimulus (i.e., higher breathing load) or not. Results revealed that 

adolescents with SUD had decreased activation to higher breathing load in the amygdala, 

IFG, and PHG (midcingulo-insular and frontoparietal regions) than controls and 

adolescents with SU experimentation. Across adolescents, decreased activation in the 

IFG and PHG was correlated to increased lifetime AU and CU. Notably, these findings 

are in contrast to most research, including earlier work showing increased activation in 

the PI (as well as PHG and STG) to breathing load in 15–17-year-olds with SUD 

compared to controls (Berk et al., 2015).  

Research has also demonstrated decreased activation in frontoparietal networks 

involved in cognitive control and self-referential/information processing to increased SU. 

One study found that decreased activation in frontoparietal regions involved in cognitive 

control (e.g., IPL) was associated with increased AU in 14- to 18-year-olds (Leiker et al., 

2019). Similarly, Blair and colleagues (2019) found that decreased activation in the OFC, 
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ventromedial PFC, and rostromedial PFC—frontoparietal regions implicated in self-

referential/information processing and decision-making—as well as occipital network 

regions to looming negative emotional faces was associated with increased CU. These 

studies may indicate that decreased recruitment of regions involved in cognitive control 

and information processing to negative stimuli is associated with increased SU. 

Non-Reward and Loss Responsiveness 

 Finally, four studies examined associations between neural responses to non-

reward and loss and adolescent SU. Aloi and colleagues (2019) found that decreased 

activation of midcingulo-insular regions involved in salience (e.g., putamen, 

ACC/dmPFC) to punishment was related to increased CU in 14–16-year-olds. Similarly, 

Bertocci and colleagues (2013) found that decreased AI activation—a midcingulo-insular 

network region—to monetary loss was associated with increased SU two years later in 9–

17-year-olds. On the other hand, Crowley and colleagues (2010) found that 14–18-year-

old boys with SUD had increased activation in midcingulo-insular network regions (e.g., 

cingulate gyrus), as well as frontoparietal regions involved in cognitive control (e.g., 

MFG) and self-referential/information processing (e.g., MTG, precuneus, IFG, superior 

frontal gyrus), pericentral network regions (e.g., paracentral lobule) involved in 

sensorimotor functioning, and the cerebellum and brainstem. Finally, another study found 

that prior to first drink, adolescents that went on to initiate SU within a three-year period 

had increased activation in the midcingulo-insular networks involved in salience (i.e., left 

putamen) and frontoparietal networks involved in error detection and self-referential 

processing (i.e., right precuneus), as well as the brainstem/pons, to monetary loss 
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compared to adolescents that remained abstinent (Gonçalves et al., 2021). Given that 

these adolescents were alcohol naive while undergoing fMRI, these results may indicate 

that increased recruitment of salience and error detection/self-referential processing 

networks is an initial vulnerability factor for SU. Thus, there is evidence that both 

increased and decreased midcingulo-insular activation to loss/non-reward is associated 

with low-risk SU and SUDs.  

Summary 

 Overall, altered activation in midcingulo-insular, occipital, pericentral and 

frontoparietal regions to negative emotional stimuli is implicated in adolescent SU. Most 

studies, including studies examining low-risk adolescents with minimal SU history and 

high-risk adolescents with SUDs, linked increased amygdala activation (as well as other 

regions involved in emotional arousal, such as the ACC and insula) to negative emotional 

stimuli to increased SU. This suggests that increased midcingulo-insular activation to 

negative emotional stimuli may be a vulnerability factor for SU/SUD that remains 

unchanged after extensive exposure to SU. Most research also indicates that reduced 

frontoparietal activation involved in self-referential/information processing, cognitive 

control, decision-making, and visual processing in response to negative emotional stimuli 

is associated with increased SU. In regard to non-reward and loss, there is much less 

research. Of the four studies that are published, there is evidence of both increased and 

decreased activation in midcingulo-insular regions to loss.
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Table 1 
 
Main findings from systematic review 
 

Study Sample 
Size 

Age 
Range  

Sex Cross-
Sectional or 
Longitudinal  

Task  Stimulus Condition or 
Contrast 

Main Findings Analysis  

Reward Valuation 
Claus 
et al. 

(2018) 

198 14-18 M/F Cross-
Sectional 

Balloon 
Analogue 
Risk Task 

Money Mean response 
for  risky 

decisions > 
riskless 

decisions 
(mean color > 
mean white) 

 

Substance user (alcohol 
and cannabis) > Con:  
↓ bilateral NAcc, L 

AI/IFG, 
thalamus/brainstem 

Whole 
Brain 

Crowle
y et al. 
(2010) 

40 14-18 M Cross-
Sectional 

Colorado 
Balloon 
Game  

Money Choice 
selection (safe 
and risky) > no 

choice 
selection 

SUD (any non-nicotine 
substance) > Con:  
↓ bilateral ACC, 

bilateral MFG, bilateral 
middle frontal gyrus, 

bilateral SFG, R MTG, 
R putamen/caudate, L 

STG, bilateral insula, R 
amygdala, L precuneus, 
L postcentral gyrus, R 
supramarginal gyrus, R 

LG, L hippocampus, 
and bilateral 
cerebellum 

  

Whole 
Brain 
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Dalwa
ni et al. 
(2014) 

40 14-18 M Cross-
Sectional 

Colorado 
Balloon 
Game 

Money N/A SUD (any non-nicotine 
substance) > Con: 
↓ bilateral SFG, L 

middle frontal gyrus, L 
MFG, bilateral MTG, 
bilateral retrosplenial 
cortex, bilateral LG 
↑ bilateral cuneus 

  

ICA/Wh
ole Brain 

De 
Bellis 
et al. 

(2013) 

56 13-17 M Cross-
Sectional 

Decision-
Reward 

Uncertaint
y Task 

Money Risky choice 
selection (with 
uncertainty) > 
risky choice 
selection (no 

uncertainty) + 
no risky choice 

selection 
 

CUD > Con 
(w/psychopathology 

but not SUD):  
↑ L SPL, L lateral 

occipital cortex, and 
bilateral precuneus 

Whole 
Brain 

Elder 
et al. 

(2019) 

167 13-14 M/F Longitudinal Economic 
Lottery 
Choice 
Task 

Money N/A  ↓ AI predicted ↑ AU 
two years later through 
externalizing symptoms 

for boys, not girls 
  

ROI 

Jones 
et al. 

(2016) 

26 13-16 M/F Longitudinal Wheel of 
Fortune 

Money Risky choice 
selection > safe 

choice 
selection 

Binge drinker: 
↓ L caudate at revisit 
compared to baseline 

(prior to drinking) 
 

Binge drinker > Con at 
revisit: 

↓ L caudate, L IPL, L 
IFG, bilateral MTG, 

bilateral STG 

ROI and 
Whole 
Brain 
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↓ L caudate associated 

with ↑ drinking 
  

Kim-
Spoon 
et al. 

(2019) 

167 13-14 M/F Longitudinal Economic 
Lottery 
Choice 
Task 

Money N/A  ↑ AI predicted ↑ SU 
(nicotine, alcohol, and 

cannabis) over time 
among adolescents ↓ in 
cognitive control (i.e., ↑ 

mPFC activation) 
↓ AI predicted ↑ SU 

(nicotine, alcohol, and 
cannabis) over time 

among adolescents ↑ in 
cognitive control (i.e., ↓ 

mPFC activation) 
  

ROI 

Morale
s et al. 
(2018) 

47 14-15 M/F Longitudinal Wheel of 
Fortune 

Money High risk 
choice 

selection > 
moderate risk 

choice 
selection  

↑ bilateral NAcc, R 
middle occipital gyrus, 

L FG, R precuneus 
predicted ↓ duration to 

binge drinking 
  

ROI and 
Whole 
Brain 

Xiao et 
al. 

(2012) 

28 16-18  Cross-
Sectional 

Iowa 
Gambling 

Task 
Control 

Task 

Money Iowa Gambling 
Task > Control 

Task 

Heavy alcohol user > 
Con: 

↑ L amygdala, bilateral 
insula 

Whole 
Brain 

Responses to Reward 
Aloi et 

al. 
(2019) 

150 14-18 M/F Cross-
Sectional 

Monetary 
Incentive 

Delay 
Task 

Money Monetary 
reward receipt 

(to accurate 

↓ bilateral NAcc, 
bilateral PCC, ↑ AU 

 
 

ROI and 
Whole 
Brain 
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and inaccurate 
response) 

> monetary 
loss receipt (to 
accurate and 
inaccurate 
response) 

 
 

 
 

 
 

Aloi et 
al. 

(2018) 

96 14-18 M/F Cross-
Sectional 

Affective 
Stroop 
Task 

Positive 
Emotiona
l Images 

Positive stimuli 
> negative and 
neutral stimuli 

 
 

↑ R amygdala, ↑ AU 
 

ROI 

Bertoc
ci et al. 
(2017) 

73 9-17 M/F Longitudinal Monetary 
Incentive 

Delay 
Task 

Money Monetary 
reward receipt 

> no 
loss/reward 

receipt  

↑ L mPFC, ↑ SU (any 
substance) two years 

later 

ROI 

Braams 
et al. 

(2016) 

169 9-24 M/F Longitudinal Gambling 
Task 

Money Monetary 
reward receipt 
> loss receipt 
when playing 

self 

↑ R NAcc predicted ↑ 
AU cross-sectionally 

 
 

ROI and 
Whole 
Brain 

Brumb
ack et 

al. 
(2015) 

38 16-18 M/F Longitudinal Alcohol 
Cue 

Reactivity 

Drug Alcoholic > 
neutral 

beverage 
images 

Heavy AU > Con:  
↑ bilateral dorsal 
striatum/globus 

pallidus, L ACC, 
bilateral cerebellum, 

and L PHG at baseline 
(not one month later 

after abstinence) 

ROI and 
Whole 
Brain 

Chapli
n et al. 
(2021) 

66 12-14 M/F Longitudinal Monetary 
Incentive 

Money Monetary 
reward receipt 

↑ NAcc, ↑ SU (any 
substance) one year 

later in boys, not girls 

ROI 
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Delay 
Task 

> no reward 
receipt 

Chapli
n et al. 

(in 
prepara

tion) 

66 12-14 M/F Longitudinal Monetary 
Incentive 

Delay 
Task 

Money Monetary 
reward receipt 
> no reward 

receipt 

↓ NAcc, ↑ SU (any 
substance) frequency 
one year later in boys, 

not girls 

ROI 

Chung 
et al. 

(2015) 

14 14-18 M/F Longitudinal Reward 
Cue 

Antisacca
de Task 

Money Large monetary 
reward 

anticipation  > 
no reward 

anticipation   

↓ L NAcc, L amygdala, 
R vlPFC, and bilateral 
putamen predicted ↑ 
CU six months later 

ROI 

Cope et 
al. 

(2019) 

34 8-12 M/F Longitudinal Monetary 
Incentive 

Delay 
Task 

Money Large monetary 
reward 

anticipation > 
no reward 

anticipation   

↑ bilateral NAcc 
predicted ↑ SU (any 
substance) initiation  

 
 

ROI 

Crowle
y et al. 
(2010) 

40 14-18 M Cross-
Sectional 

Colorado 
Balloon 
Game  

Money Correct choice 
selection 

reward receipt 
> correct 
choice 

selection no 
reward 

SUD (any non-nicotine 
substance) > Con: 
↓ bilateral ACC, 

bilateral STG, R ITG, 
R MTG, R precuneus, 

R FG, bilateral 
cerebellum  

Whole 
Brain 

Cserve
nka et 

al. 
(2015) 

34 12-16 M/F Longitudinal Wheel of 
Fortune 

Money Monetary 
reward receipt 
> no reward 

receipt 

Binge drinkers > Con: 
↓ L cerebellum at 

revisit (not baseline) 
 

↓ L cerebellum at 
revisit, ↑ AU 

ROI and 
Whole 
Brain 

De 
Bellis 

44 13-17 M Cross-
Sectional 

Decision 
Reward 

Money Monetary 
reward receipt 

after risky 

CUD > 
(w/psychopathology 

but not SUD): 

Whole 
Brain 
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et al. 
(2013) 

Uncertaint
y Task 

decision > no 
reward receipt 

after risky 
decision 

↓ L OFC 
 

↓ L OFC, ↑ SU 
experimentation 

  
Jager et 

al. 
(2013) 

45 13-19 M Cross-
Sectional 

Monetary 
Incentive 

Delay 
Task 

Money Monetary 
reward 

anticipation > 
no reward 

anticipation   

Heavy cannabis user > 
Con: 

No significant findings 

ROI 

Karoly 
et al. 

(2015) 

132 14-18 M/F Cross-
Sectional 

Monetary 
Incentive 

Delay 
Task 

Money Monetary 
reward 

anticipation > 
no reward 

anticipation   

Heavy tobacco user > 
Con: 

↓ bilateral NAcc  

ROI 

Leiker 
et al. 

(2019) 

104 14-18 M/F Cross-
Sectional 

Morphed 
Emotion 

Face 
Processing 

Task 

Positive 
and 

negative 
emotiona

l faces 

Happy face > 
neutral face 

↑ MTP, ↑ AU 
 

Whole 
Brain 

Miglior
ini et 

al. 
(2013) 

32 15-17 M/F Cross-
Sectional 

CPT with 
positively 
valenced 
soft touch 

Touch Pleasant touch 
receipt > 

pleasant touch 
anticipation 

SUD (any substance) > 
Con: 

↑ L AI 
 

↓ bilateral PI , R MFG, 
R MeFG 

ROI and 
Whole 
Brain 

Nees et 
al. 

(2012) 

324 14 M/F Cross-
Sectional 

Monetary 
Incentive 

Delay 
Task 

Money Big monetary 
reward 

anticipation > 
small monetary 

reward 
anticipation  

No significant findings 
for brain activation and 

AU 

ROI 
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Nees et 
al. 

(2015) 

530 14 M/F Longitudinal Monetary 
Incentive 

Delay 
Task 

Money Monetary 
reward 

anticipation > 
neutral 

monetary 
reward 

anticipation 
 

Monetary 
reward receipt 

> neutral 
receipt 

Heavy alcohol user > 
Light alcohol user: 

Among 
Val66Met carriers: 

↓ putamen 
 
 

Among 
Val66Met carriers: 

↓ putamen, ↑ AU two 
years later 

ROI 

Peters 
et al. 

(2011) 

86 14 M/F Cross-
Sectional 

Monetary 
Incentive 

Delay 
Task 

Money Monetary 
reward 

anticipation > 
no reward 

anticipation 

Tobacco user > Con: 
↓ bilateral NAcc, 

putamen 
 

↓ bilateral NAcc, 
putamen, ↑ smoking 

frequency 

ROI and 
Whole 
Brain 

Rubins
tein et 

al. 
(2011) 

24 13-17 M/F Cross-
Sectional 

Food 
Picture 
Cues 

Food Pleasurable 
foods > 

Everyday 
objects 

Tobacco user > Con: 
↓ R insula, R putamen, 
R inferior frontal cortex 

Whole 
Brain 

Stice et 
al. 

(2013) 

162 14-16 M/F Longitudinal Monetary 
Incentive 

Delay 
Task 

Money Monetary 
reward receipt 
> no reward 

receipt 

↓ L caudate associated 
with ↑ SU (any 

substance) cross-
sectionally 

 
↑ L caudate and R 

putamen predicted ↑ 
SU (any substance) 

initiation one year later 

Whole 
Brain 
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Swartz 
et al. 

(2020) 

262 15-17 M/F Longitudinal Monetary 
Incentive 

Delay 
Task 

Money Monetary 
reward 

anticipation > 
no reward 

anticipation   

↑ NAcc, ↑ drinking 
among boys two year 

later 
↑ NAcc, ↓ drinking 

among girls two years 
later 

↑ dmPFC, ↑ drinking 
among girls two years 

later 
  

ROI 

Tapert 
et al. 

(2003) 

30 14-17 M/F Cross-
Sectional 

Alcohol 
and 

Neutral 
Picture 
Cues 

Drug Alcoholic > 
neutral 

beverage 
images 

AUD > Con: 
↑ several regions in 
frontoparietal and 
midcingulo-insular 

regions (e.g., bilateral 
amygdala, L MFG, 

bilateral cuneus) 
 ↓ R MFG, R IFG 

 
↑ L IFG, L paracentral 

lobule, R 
precuneus/cuneus, R 
posterior cingulate, ↑ 

drinks consumed 
among AUD group 

Whole 
Brain 

Yip et 
al. 

(2016) 

68 11-17 M/F Cross-
Sectional 

Imagery 
Script 

Food Favorite food  Illicit substance user > 
Con: 

Adolescents without 
prenatal cocaine 

exposure: 
↑ several regions in 
frontoparietal and 
midcingulo-insular 

Whole 
Brain 
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regions (e.g., insula, 
dlPFC, IFG and  

primary gustatory 
cortex) 

 
Illicit substance user > 

Con: 
Adolescents with 
prenatal cocaine 

exposure: 
↑ several regions in 
frontoparietal and 
midcingulo-insular 

regions (e.g., thalamus, 
putamen, caudate, 

MFG) 
 

Illicit SU > Con: 
Adolescents with 
prenatal cocaine 

exposure compared to 
those without prenatal 

cocaine exposure: 
↓ PHG and cerebellum 

↑ OFC and IFG 
 

Responses to Negative Emotional Stimuli 
Aloi et 

al. 
(2018) 

96 14-18 M/F Cross-
Sectional 

Affective 
Stroop 
Task 

Negative 
Emotiona
l Images 

Negative 
stimuli  

↓ IFG, ↑ AU at lower 
CU 

↑ IFG, ↑ AU at higher 
CU 

↓ L amygdala, ↑ AU at 
lower CU 

ROI and 
Whole 
Brain 
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 ↑ L amygdala, ↑ AU at 
higher CU  

Berk et 
al. 

(2015) 

33 15-17 M/F Cross-
Sectional 

Breathing 
Load Task 

Breathin
g load 

Breathing load  
 
 
 

Breathing load 
> anticipation 
(no breathing 

load) 
 

SUD (alcohol and/or 
cannabis ) > Con: 

↑ R PI, L PHG, L STG 
 

Among SUD: 
↑ bilateral PI, L AI, L 

MFG, R IFG 
 

ROI and 
Whole 
Brain 

Blair et 
al. 

(2019) 

87 14-18 M/F Cross-
Sectional 

Looming 
Threat 
Task 

Negative 
Emotiona

l Faces 

Looming > 
receding 
negative 

emotion faces  

↓ L rmPFC, L FG, R 
cerebellum, ↑ CU 

 
CUD > Con: 

↓ L rmPFC, L OFC, R 
STG 

 
AUD > Con: 

↓ R vmPFC, R STG 

Whole 
Brain 

Chapli
n et al. 
(2019) 

66 12-14 M/F Cross-
Sectional 

Negative 
Emotional 

Images 
Task  

Negative 
emotiona
l images 

Negative > 
neutral 

emotional 
stimuli 

↑ L AI, ↑ SU (any 
substance) among girls 

ROI 

Elsaye
d et al. 
(2018) 

330 12-14 M/F Cross-
Sectional 

Emotion 
Faces 
Task 

Negative 
emotiona

l faces 

Fearful faces > 
geometric 

shapes 

Early alcohol initiators 
> Late alcohol 

initiators: 
↑ bilateral amygdala  

ROI 

Leiker 
et al. 

(2019) 

104 14-18 M/F Cross-
Sectional 

Morphed 
Emotion 

Face 
Processing 

Task 

Positive 
and 

negative 
emotiona

l faces 

Fear face > 
neutral face 

↑ R MTP, ↑ AU 
↓ L IPL, ↑ AU 

Whole 
Brain 
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May et 
al. 

(2020) 

47 15-17 M/F  Cross-
Sectional 

Drug Cues 
with 

Breathing 
Cues 

Breathin
g load 

High breathing 
load (across 

substance and 
neutral images)  

SUD (alcohol and/or 
cannabis) > Con and 

experimenters: 
↓ R amygdala, L IFG, L 

PHG 
 

Among SUD and 
experimenters: 

↓ L IFG, ↑ lifetime AU 
↓ L PHG, ↑ lifetime CU 

and AU 
  

Whole 
Brain 

Spechl
er et al. 
(2015) 

140 14 M/F Cross-
Sectional 

Emotion 
Face 

Video 
Clips  

Negative 
emotiona

l faces 

Angry faces > 
neutral faces 

Cannabis users: 
↑ bilateral amygdala 

among cannabis users; 
no difference between 

groups  

ROI and 
Whole 
Brain 

Yip et 
al. 

(2016) 

68 11-17 M/F Longitudinal Imagery 
Script 
Task 

Stressful 
imagery 

Stressful 
imagery 

Illicit substance user > 
Con: 

Adolescents without 
prenatal cocaine 

exposure: 
↑ several regions in 
frontoparietal and 
midcingulo-insular 

regions: hippocampus, 
thalamus, caudate and 

cingulate 
 

Illicit substance user > 
Con: 

Whole 
Brain 
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Adolescents with 
prenatal cocaine 

exposure: 
↓ cuneus and other 
occipital regions 

 
Illicit substance user > 

Con: 
Adolescents with 
prenatal cocaine 

exposure compared to 
those without:  

↓ OFC, ACC, PCC, R 
hippocampus, ACC, 
amygdala, brainstem 

Responses to Non-Reward and Loss 
Aloi et 

al. 
(2019) 

175 14-18 M/L Cross-
Sectional 

Monetary 
Incentive 

Delay 
Task 

Money Inaccurate 
punishment > 

all other 
outcomes 

 

↓ R putamen, L 
ACC/dmPFC, ↑ CU 

ROI and 
Whole 
Brain 

Bertoc
ci et al. 
(2017) 

73 9-17 M/F Longitudinal Monetary 
Incentive 

Delay 
Task 

Money Monetary loss 
> no 

loss/reward 

↓ L AI to loss, ↑ SU 
(any substance) two 

years later 

ROI 

Crowle
y et al. 
(2010) 

40 14-18 M Cross-
Sectional 

Colorado 
Balloon 
Game  

Money Choice 
selection 

monetary loss 
receipt > No 

choice 
selection 

SUD (any non-nicotine 
substance) > Con: 
↑ bilateral SFG, 
bilateral MFG, 

bilateral, R MeFG, L 
MTG/ITG, L 
precuneus, R 

paracentral lobule, L 

Whole 
Brain 
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brainstem, R cingulate 
gyrus, L cerebellum 

Gonçal
ves et 
al. (in 
press) 

64 12-14  Longitudinal Monetary 
Incentive 

Delay 
Task 

Money Monetary Loss 
Outcome > 

Neutral 
Outcome 

↑ L putamen/NAcc, R 
precuneus, 

brainstem/pons, ↑ AU 
initiation 

Whole 
Brain 

 
Note. Con; control; L, left; R, right; SU, substance use; AU, alcohol use; CU; cannabis use; SUD, substance use disorder; 
AUD, alcohol use disorder; CUD, cannabis use disorder; NAcc, nucleus accumbens; AI, anterior insula; PI, posterior insula; 
IFG, inferior frontal gyrus; ITG, inferior temporal gyrus; IPL, inferior parietal lobule; SFG, superior frontal gyrus; SPL, 
superior parietal lobule; STG, superior temporal gyrus; MFG, medial frontal gyrus; MTG, medial temporal gyrus; MTP, 
medial temporal pole; LG, lingual gyrus; FG, fusiform gyrus; PHG, parahippocampal gyrus; PCC, posterior cingulate cortex; 
ACC, anterior cingulate cortex; dlPFC, dorsolateral prefrontal cortex; rmPFC, rostromedial prefrontal cortex; vmPFC, 
ventromedial prefrontal cortex; vlPFC, ventrolateral prefrontal cortex.
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Conclusions 

A growing body of research is examining affect-related brain activity and SU 

among adolescents. Although extant research in this area is mixed, several clear patterns 

are emerging.  

Most of the research has been on positive valence systems, including the 

processes of reward valuation and especially reward responsiveness. Most studies found 

that increased activation during monetary reward valuation and reward responsiveness in 

midcingulo-insular regions (i.e., ACC, AI), including striatal regions, involved in salience 

signaling, was associated with SU in youth without heavy SU histories. In contrast, 

decreased activation in those regions was found for youth with SUDs and heavy SU. 

Thus, it may be the case that increased striatal and midcingulo-insular activation may 

represent an initial vulnerability factor to SU and SUD, and that decreased striatal and 

midcingulo-insular activation to monetary reward valuation and reward responsiveness 

may occur over time with heavy SU exposure as youth devalue monetary reward and 

overvalue drug cue reward. This theory is reinforced by studies examining responses to 

drug cues wherein higher SU was linked to increased activation of midcingulo-insular 

regions. Also, altered activation (both increased and decreased activation) in 

frontoparietal, pericentral and occipital regions to reward was also associated with SU in 

adolescence, although it is unclear what may be driving these discrepant findings. 

There is also some evidence that altered activation to reward valuation and 

responsiveness may also be sex-specific. In some studies, examining low-risk substance-

using samples, boys were more likely to demonstrate increased midcingulo-insular 
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network (involved in salience signaling) recruitment, whereas girls were more likely to 

demonstrate decreased recruitment of these regions (increased recruitment of some 

frontoparietal network regions). This supports theories that girls may be more likely to 

take an internalizing pathway to SU (Chaplin et al., 2018).  

A smaller, but sizeable amount of research has also examined negative valence 

systems and adolescent SU. Most studies on adolescents with minimal SU history and 

SUDs found that increased recruitment of midcingulo-insular regions (e.g., ACC, AI) and 

the amygdala, involved in negative emotion processing, to negative emotional stimuli 

was associated with SU. Thus, heightened emotion reactivity to negative emotional 

stimuli likely serves as a vulnerability factor for SU and is unchanged after extensive 

exposure to SU.  

Overall, the current review benefitted from several strengths, particularly the 

inclusion of studies examining all SU behavior types in samples with an average age 

below 18, as well as limitations that should be addressed moving forward. First, future 

research should use longitudinal designs to directly examine affect-related brain activity 

before and after SU initiation and escalation. This will allow us to better identify initial 

vulnerability factors of SU/SUDs that are not confounded with the effects of SU over 

time. This is particularly important because it is possible that aforementioned differences 

between low-risk adolescents and high-risk adolescents are unrelated to the effects of SU 

over time, but rather innate, pre-existing differences between these two groups. This was 

unable to be parsed in the current review and should be a focus of future work.  



 
 

36 

In addition, more research on low-risk adolescent SU is needed more generally, 

with most work done in high-risk adolescents that are particularly vulnerable and do not 

represent most adolescents that go on to develop SUD in adulthood (Merikangas & 

McClair, 2012). The challenge in performing this work, however, is that it is frequently 

done in community samples with low endorsement of SU overall (Johnston et al., 2014; 

Masten et al., 2008). This is problematic for conducting high-powered analyses without 

the need for specialized statistics (e.g., zero-inflated modeling). One potential solution for 

this is to recruit community samples that are oversampled with a risk factor for 

adolescent SU, such as family history of SUD (Handley et al., 2013).  

Finally, future research should also be expanded to examine sex as a moderating 

variable, as well as examine neural activation during reward learning and in response to 

loss and threat. The current review was limited in exploring these constructs given the 

lack of studies in these areas. The studies that do exist, however, demonstrate meaningful 

findings that should be replicated and expanded in the future.   
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STUDY TWO: USING MACHINE LEARNING APPROACHES TO EXAMINE 

AFFECT-RELATED BRAIN ACTIVITY AND ADOLESCENT SUBSTANCE USE 

Despite public health efforts to reduce SU, death related to SU and SUD have 

significantly increased over the past several decades (Hedegaard et al., 2017). SU is also 

associated with increased risk of medical conditions (Bahorik et al., 2017), comorbid 

psychiatric disorders (i.e., depression; Merikangas et al., 1998), and health risk behaviors 

(e.g., unsafe sex; Staton et al., 1999; DuRant et al., 1999). Overall, it is estimated that the 

economic burden of death and disability due to SU and SUD exceeds 400 billion dollars 

(Sacks et al., 2015). Importantly, most adults with SUD began using these substances as 

adolescents (Substance Abuse and Mental Health Services Administration, 2014), 

making adolescence a critical period for the development of SU and SUD. 

One major contributing factor to adolescent SU is altered affective processing, or 

the processing of negatively- (e.g., negative emotion, loss) and positively- (e.g., reward) 

valanced stimuli (NIMH RDoC; Cuthbert & Insel, 2013). As adolescents undergo 

significant biological and psychosocial changes (Rice & Dolgin, 2005), they may 

experience altered responsivity (i.e., heightened and blunted responses) to negatively-

valanced (e.g., Dahl & Gunnar, 2009; van Leeuwen et al., 2011) and positively-valanced 

(e.g., Urošević et al., 2012) stimuli that can lead to SU if not appropriately regulated 

(Tschann et al., 1994). Unfortunately, our understanding of affective processing and SU 

among adolescents is limited. For example, although all adolescents experience negative 

emotion to social rejection on occasion, not all of these adolescents engage in SU; 

moreover, not all adolescents highly responsive to monetary reward will engage in SU 
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either. This suggests that there is something specific about these positive and negative 

valence systems in these adolescents that do engage in SU. It is therefore important to 

employ methods, such as functional neuroimaging, that are sensitive enough to identify 

subtle neural level differences in affective processing across adolescents that do and do 

not engage in SU (differences that can go undetected using behavioral or laboratory 

methods).  

Previous research has begun to explore the neural correlates of affective 

processing that relate to SU and SUD risk among adolescents. These have found both 

increased and decreased activation within midcingulo-insular and frontoparietal network 

regions (e.g., Spechler et al., 2015; Chaplin et al., 2019; Claus et al., 2018). However, 

these neuroimaging studies have employed traditional statistical methods instead of 

machine learning methods, which yield more generalizable findings (Norman et al., 2006; 

Scheinost et al., 2019). Prior neuroimaging studies of affective processing and adolescent 

SU have also generally used standardized paradigms. Although these paradigms have 

increased our understanding of affect-SU associations, it would be important to 

supplement these with more naturalistic affective paradigms, preferably within a social 

context. This would increase the ecological validity of our findings. The current study 

employed machine learning to classify patterns of neural activation in two standardized 

affective processing tasks (one on negative emotion responsiveness and another on 

reward responsiveness) and in a novel naturalistic affective responsiveness task using 

data collected as part of a larger study on SU, parenting, and fMRI. These patterns of 

neural activation can be used to improve our understanding of SUD risk, which can be 
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used to improve SUD prevention and intervention efforts. In the longer-term, these 

patterns of neural activation can serve as neurobiological markers to identify adolescents 

at risk for SUD.  

Model of Adolescent Neurodevelopment 

Throughout the adolescent developmental period, there is significant development 

in brain networks that support affective processing. Most models converge on the 

principle that adolescence is specifically characterized by exaggerated activation of 

midcingulo-insular networks involved in salience, particularly the striatum, and blunted 

activation of frontoparietal networks involved in cognitive control, including regions of 

the prefrontal and parietal cortex (Shulman et al., 2016; Casey & Jones, 2010). These 

differences are related to the amount of time it takes for these networks to fully mature. 

Compared to networks involved in salience that mature in adolescence, networks 

involved in cognitive control are not fully matured until adulthood (Shulman et al., 2016; 

Casey & Jones, 2010). The result is that adolescents, more so than children and adults, 

are biased towards engaging in affect-driven behavior (e.g., reward seeking behavior) and 

are less able to modulate this behavior to promote health and well-being (Shulman et al., 

2016; Casey & Jones, 2010; Geier, 2013; Duell et al., 2018; Faden, 2006). This may help 

explain the escalation of SU (and other risk-taking) during adolescence (Chaplin et al., 

2018).  
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Negative Valence Systems and SU 

Behavioral Studies on Negative Valence Systems and SU 

 A large body of literature has demonstrated an association between altered 

negative valence systems and SU in adolescence. Most behavioral studies point to the 

role of heightened negative emotion in SU and SUD among adolescents. It is theorized in 

self-medication models of SU (Hussong et al., 2011) that adolescents with heightened 

negative emotion experience this emotion as overwhelming and down-regulate this 

emotion with substances. Indeed, several studies have found that higher levels of negative 

emotion, based on self-report and laboratory measures, are correlated with higher SU 

(i.e., frequency and escalation) among adolescents, cross-sectionally and longitudinally 

(Cooper et al., 1995; Myers et al., 2003; Mason et al., 2009; Chaplin et al., 2012; Hops et 

al., 1990). In addition, higher levels of internalizing symptoms, which are characterized 

by high negative emotion, are correlated with SU in adolescents (Swendsen & 

Merikangas, 2000; Poulin et al., 2005). Importantly, there are studies that have shown 

that blunted negative emotion is also associated with a heightened risk for SU among 

adolescents. Theories suggest that adolescents with blunted negative emotion try to up-

regulate this negative emotional arousal through SU (Steinberg, 2004). For example, 

research has found that adolescents with low levels of negative emotion, measured 

primarily with laboratory measures, consume higher quantities of substances (van 

Leeuwen et al., 2011; Gunnarsson et al., 2008; Evans et al., 2013; Chaplin et al., 2015). 

Relatedly, adolescents with higher levels of callous-unemotional symptoms endorse 
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higher levels of SU (Wymbs et al., 2012). Overall, evidence suggests that both heightened 

and blunted negative emotion responsiveness is associated with adolescent SU.  

Neuroimaging Studies on Negative Valence Systems and SU 

Over the past few years, burgeoning research has examined negative valence 

systems and SU utilizing neuroimaging methods. These studies have used traditional 

statistical analysis, which do not test models on previously unseen subjects. These studies 

have found associations between altered activation in midcingulo-insular and 

frontoparietal network regions (involved in salience and self-referential/information 

processing) and SU. Two studies found that increased midcingulo-insular network 

activation in the amygdala to negative emotion faces was associated with problematic 

drinking among late adolescents (Nikolova et al., 2016; Ray et al., 2010) and history of 

cannabis use among middle adolescents (Spechler et al., 2015). In addition, Chaplin and 

colleagues (2019) found that increased activation in the left anterior insula (AI) and 

bilateral anterior cingulate cortex (ACC)—midcingulo-insular network regions—to 

negative emotion images was associated with SU in early adolescent girls. In contrast, 

two additional studies found that blunted activation in midcingulo-insular and 

frontoparietal regions that support salience—including the amygdala, ACC, AI, striatum, 

orbitofrontal cortex (OFC)—and self-referential/information processing—the 

hippocampus—to negative emotional stimuli were associated with SU in youth who were 

at risk for SU due to family history of alcohol use disorder (Heitzeg et al., 2008) or to 

prenatal cocaine exposure (Yip et al., 2016).  
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In sum, initial fMRI studies using traditional statistical approaches find that 

altered brain activation (particularly in midcingulo-insular and frontoparietal regions) to 

negative emotional stimuli are related to SU and SUD risk among adolescents—with 

most research, except for two studies, showing increased activation in brain regions 

implicated in salience and self-referential processing. The current study took the next step 

by using machine learning approaches that have higher sensitivity and yield more 

generalizable, replicable findings to examine neural patterns of activation to negatively-

valanced stimuli related to SU and SUD risk.   

Positive Valence Systems and SU 

Behavioral Studies on Positive Valence Systems and SU 

 Several studies have demonstrated that altered positive valence systems are 

associated with adolescent SU. Most of this evidence specifically links increased reward 

responsiveness assessed via self-report and laboratory measures with increased 

adolescent SU cross-sectionally and longitudinally (Genovese & Wallace, 2007; van 

Hemel-Ruiter et al., 2013; Colder et al., 2013; Peeters et al., 2017). This is consistent 

with reward surfeit models of addiction wherein individuals engage in SU due to high 

reward responsiveness that drives them to seek substances (Hariri et al., 2006; McClure 

et al., 2004). Another theory of addiction posits that addiction results from blunted 

reward responsiveness that individuals attempt to up-regulate with substances (Blum et 

al., 2015). Interestingly, there is less behavioral research to support this. However, a few 

studies show that anhedonia, characterized by an inability to experience pleasure, predicts 

increased SU among adolescents (e.g., Christodoulou et al., 2020). Thus, most behavioral 
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research supports that increased reward responsiveness is associated with adolescent SU, 

with less research linking decreased reward responsiveness (i.e., anhedonia) with 

adolescent SU.  

Neuroimaging Studies on Positive Valence Systems and SU 

Most of the research examining positive valence systems has employed fMRI, 

with several studies (using traditional statistical methods) finding links between altered 

activation in midcingulo-insular and frontoparietal network regions (involved in salience, 

self-referential/information processing, and cognitive control) and adolescent SU. Some 

studies demonstrated that adolescents with heavy SU/SUD had decreased activation 

during reward valuation and to receipt/anticipation of reward in midcingulo-insular 

regions (ACC, AI), including the striatum (particularly the nucleus accumbens) involved 

in salience signaling, as well as frontoparietal regions involved in cognitive control (e.g., 

dorsolateral prefrontal cortex [dlPFC]) and value encoding (e.g., orbitofrontal cortex 

[OFC]) compared to controls cross-sectionally and longitudinally (Claus et al., 2018; 

Crowley et al., 2010; Dalwani et al., 2014; Peters et al., 2011). In contrast, a few studies 

found that increased activation in midcingulo-insular salience regions (e.g., AI, 

amygdala; Elder et al., 2019; Xiao et al., 2012; Aloi et al., 2019; Aloi et al., 2018; Cope 

et al., 2019; Swartz et al., 2020) and frontoparietal regions (e.g., precuneus) involved in 

self-referential processing (de Bellis et al., 2013; Morales et al., 2018) were associated 

with increased adolescent SU. These aforementioned studies mostly examined monetary 

reward. Most of the studies examining drug cues, however, consistently found increased 

recruitment of midcingulo-insular regions involved in salience (Brumback et al., 2015; 
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Tapert et al., 2003). For example, Brumback and colleagues (2015) found that middle 

adolescents with histories of heavy drinking, compared with light drinking youth, had 

increased activation in midcingulo-insular network regions (i.e., striatum, ACC) to 

alcohol images. The current study examined neural patterns of activation to positively-

valanced stimuli related to SU and SUD risk using machine learning approaches that 

yield more generalizable, replicable findings.   

Affective Processing in Social Contexts 

 Across the adolescent developmental period, there is an increased emphasis on 

social functioning (Collins et al., 1997). Compared to children, adolescents begin to 

dedicate more resources to developing their social relationships (Larson & Richards, 

1991; Westenberg et al., 2004) and show heightened brain activation in networks 

involved in social processing (Burnett et al., 2011). The implication of this is that many of 

the stressors for adolescents are related to their social functioning (e.g., parental 

acceptance) (Violato & Holden, 1988; de Anda, 1997). This includes processing of peer 

and parent stimuli (e.g., Masten et al., 2011; Stoker & Swadi, 1990). These stressors 

require substantial emotion regulation and have implications for SU involvement.  

 Despite the importance of considering positive and negative valence systems 

within social contexts in this developmental period, there is relatively little research using 

social emotional tasks. Recently, some studies have examined neural activation during 

negative emotion processing to peer negative stimuli. These studies find that increased 

activation of midcingulo-insular regions involved in salience (i.e., ACC, amygdala) in the 
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social context of peer rejection is associated with increased psychopathology among 

adolescents (Masten et al., 2011; Silk et al., 2013; Groschwitz et al., 2016).  

Although early adolescents begin to prioritize peer relationships, they remain 

heavily dependent on their parents (Levitt et al., 1993). Research suggests that a negative 

parent-adolescent relationship (i.e., low connectedness, high negative parenting) is 

associated with increased adolescent SU, while a positive parent-adolescent relationship 

(i.e., high connectedness, high negative parenting) is associated with decreased 

adolescent SU (Stoker & Swadi, 1990). Importantly, among adolescents with peer 

pressure to use substances, those with negative parent-adolescent relationships are much 

more likely to initiate SU than those with positive relationships (Farrell & White, 1998). 

Thus, it is important to examine adolescent affective processing and SU within a parental 

social context. One way to do this is by looking at how adolescents process video clips of 

their own parents expressing negative and positive emotion towards them. Neural 

activation to parental negative and positive emotional stimuli may be more predictive of 

SU than standardized negative and positive emotional stimuli because it is more salient to 

adolescents and related to the circumstances leading to SU in the real world. For instance, 

we might expect that adolescents with high activation in midcingulo-insular salience 

regions to negative parent stimuli might experience heightened negative emotion while 

with parents that in the real world would lead them to distance themselves from their 

parent and use substances. On the other hand, adolescents with high activation in 

midcingulo-insular salience regions to positive parent stimuli might experience 
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heightened positive emotion while with parents that in the real world would lead them to 

get closer with their parent, thereby reducing likelihood of engagement in SU.   

Empirical research has begun to examine emotion processing within more 

naturalistic social contexts, including within the parent-child interaction context. One 

paradigm used in the current study involves adolescents viewing video clips of their 

parents expressing negative and positive emotion that were filmed during a parent-

adolescent conflict interaction task. One study found that activation in midcingulo-insular 

salience regions—such as in the insula, caudate, and amygdala—to negative parent video 

clips was associated with increased aggression among adolescents (Whittle et al., 2012). 

Using a similar paradigm, another study found that adolescents showed decreased 

activation in the cingulate cortex—a midcingulo-insular network region—to parent 

positive emotional clips and that this decreased activation was correlated with 

adolescents’ increased depressive symptoms (Saxbe et al., 2016). Other research using 

similar parent emotion paradigms have found similar findings. For example, one study 

showed increased (i.e., amygdala, insula) and decreased (i.e., amygdala, dlPFC, ACC, 

precuneus) BOLD responses in midcingulo-insular salience regions and frontoparietal 

regions involved in cognitive control and self-referential processing (Aupperle et al., 

2016), as well as evidence that these BOLD responses are associated with increased 

psychopathology in tasks in which adolescents listen to audio clips of their mothers 

making critical statements about them. Taken together, these studies suggest that 

naturalistic, parent-based fMRI paradigms reveal patterns of activation among 
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adolescents that predict psychopathology. Extant research, however, has not examined 

these paradigms using machine learning approaches to classify/predict SU.  

Using Machine Learning Approaches to Examine Affect-Related Neural Signatures 

of Adolescent SU 

It is important to note that all of the aforementioned fMRI studies employed 

traditional statistical approaches. Although these methods have advanced our 

understanding of affective processing and SU, they do not frequently generalize to novel 

individuals. Machine learning overcomes these limitations by developing models based 

on fMRI data from previously unseen individuals and testing them in new individuals 

(Norman et al., 2006; Scheinost et al., 2019. In other words, machine learning models are 

more likely than traditional statistical analyses to produce neurobiological markers of SU 

and SUD risk that can detect substance using adolescents from non-using adolescents.  

To date, no studies have employed machine learning approaches to examine 

affective processing (i.e., negative and positive valence systems) and adolescent SU. 

There have been a few studies using machine learning to examine affective processing 

and other forms of adolescent psychopathology (Just et al., 2017; Mourão-Miranda et al., 

2012). For example, one study had adolescents with or without suicidal ideation undergo 

fMRI while viewing emotion words (Just et al., 2017). Machine learning accurately 

discriminated between the two groups of adolescents based on activation in specific 

frontoparietal regions involved in self-referential processing (Just et al., 2017). There 

have also been a few studies that used machine learning to examine neural responses to 

drug cues in adults (Elton et al., 2019; Havermans et al., 2017). These studies employing 
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machine learning have yielded neurobiomarkers of SU and psychopathology overall that 

are more spatially sensitive and more likely to generalize to new individuals than those 

neurobiomarkers identified using traditional statistical approaches.  

SU Intentions and Expectancies 

 Adolescents frequently have SU intentions, or the intention to use substances in 

the future (Wolford & Swisher, 1986). Youth can also have expectancies about what will 

happen if they use substances, including positive (e.g., feeling relaxed) and negative (e.g., 

lead to poor school performance) expectancies (Montes et al., 2019). Several studies have 

established intentions to use substances, as well as high positive and low negative SU 

expectancies held during early adolescence as strong predictors of future adolescent SU 

(Maddahian et al., 1988; Andrews et al., 2003). This is important because relatively low 

rates of SU among adolescent samples (particularly in early adolescence, or from ages 

11-14) makes it difficult for studies with early adolescents to have sufficient variance in 

SU and power to detect significant associations with SU. Thus, in the current study, 

affect-related brain activity was examined as being associated with actual SU behavior 

and also with SU intentions and expectancies.  

The Current Study 

 In the current study, machine learning approaches were used to classify and 

predict SU and SU intentions and expectancies based on patterns of neural activation in 

affective processing tasks. The two aims and associated hypotheses were as follows:  

Aim 1. Examine neural activation to standardized negative and positive affective 

stimuli in relation to adolescent SU using machine learning. 
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Hypothesis 1.1. A machine learning classifier will accurately differentiate 

adolescent substance users from non-users based on patterns of neural activity in 

midcingulo-insular (salience; AI, ACC, amygdala, striatum) and frontoparietal 

(cognitive control and self-referential processing; dlPFC; precuneus; OFC) 

network regions.  

Hypothesis 1.2. A machine learning classifier will accurately predict higher SU 

intentions and expectancies among adolescents based on patterns of neural 

activity in midcingulo-insular (salience; AI, ACC, amygdala, striatum) and 

frontoparietal (cognitive control and self-referential processing; dlPFC; 

precuneus; OFC) network regions.  

Aim 2. Examine neural activation to naturalistic negative and positive affective 

stimuli in relation to adolescent SU using machine learning.  

Hypothesis 2.1. A machine learning classifier will accurately differentiate 

adolescent substance users from non-users based on patterns of neural activity in 

midcingulo-insular (salience; AI, ACC, amygdala, striatum) and frontoparietal 

(cognitive control and self-referential processing; dlPFC; precuneus; OFC) 

network regions. 

Hypothesis 2.2. A machine learning classifier will accurately predict higher SU 

intentions and expectancies among adolescents based on patterns of neural 

activity in midcingulo-insular (salience; AI, ACC, amygdala, striatum) and 

frontoparietal (cognitive control and self-referential processing; dlPFC; 

precuneus; OFC) network regions. 
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Hypothesis 2.3. Predictive accuracy for machine learning models on naturalistic 

affective stimuli will be significantly higher than machine learning models on 

naturalistic affective stimuli.  

Method 

Participants  

One hundred sixty-eight 11–15-year-old adolescents (Mage = 12.60, SDage = .85) 

were drawn from a larger R01 study that investigates parenting and adolescent SU using 

MRI. This sample of adolescents was oversampled (40%) for maladaptive parenting 

(based on parenting screener) and were recruited from Northern Virginia through 

mailings, social media, and community advertisements. Eighty-five adolescents were 

cisgender boys, 75 were cisgender girls and 8 were non-binary assigned female at birth.  

Adolescents were predominately White (n = 108, 64.3%; 8.9% Black, 6.5% Asian, 1.2% 

American Indian/Alaskan, 17.9% biracial, 2.3% unknown or not reported), non-Hispanic 

(n = 130; 77.4%) and upper-middle class (> $100,000, n = 123, 73.2%; 12.5% $75-

100,000, 4.2% $60-75,000; 3.6% $45-60,000, 1.8% $35-45,000, 2.4% < $35,000, 2.4% 

not reported).  

The inclusion criteria for participation in this study included: 1) adolescent 

between 11-15 years of age; 2) adolescent with no prenatal substance exposure; 3) 

adequate English proficiency to complete questionnaires for adolescent and at least one 

parent; and 5) adolescent safety-eligible for MRI (e.g., no metal in body, no pregnancy). 

The exclusion criteria were: 1) diagnosis of intellectual disability, pervasive 

developmental disorder, or psychosis for adolescent, and 2) adolescent with history of 
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congenital brain defect or severe traumatic brain injury (due to impacts on brain structure 

and function; e.g., Newsome et al., 2008). We included adolescents that are on 

psychotropic medications, given that we did not want to exclude adolescents with 

psychopathology who are at greater risk for SU (e.g., Deas et al., 2006).  

Procedure 

 Adolescents participated in: 1) a 4-hour behavioral session with their parents and 

2) a 1.5-hour MRI session. The MRI session took place approximately two weeks 

following the behavioral session (except for a few adolescents who completed their 

behavioral session just prior to March 2020 and had their MRI session scheduled for a 

couple of months after). Adolescents returned for yearly follow-up behavior sessions. 

The current study used baseline MRI and baseline behavior session data.  

Due to the COVID-19 pandemic, procedures were modified mid-way through the 

study. Specifically, families that enrolled in the study after March 2020 completed certain 

self-report and parent-report measures, such as demographics and all SU questionnaires, 

remotely in their homes as opposed to the laboratory. Other modifications were related to 

the fMRI procedures and are detailed below. 

Baseline Behavioral Session 

Adolescents completed self-report, parent-report, interviews, and physical 

measures (urine screens, breathalyzers) of adolescent SU and SU intentions and 

expectancies, as well as the parent-adolescent interaction task (PAIT).  

PAIT Task. Adolescents and their parent(s) completed a video-recorded parent-

adolescent interaction task, during which they discussed a highly mutually rated conflict 
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topic (i.e., spending money, swearing etc.) for 10 minutes. Adolescents and their 

parent(s) also completed a shorter PAIT in which they discussed a fun, pleasant event 

from the past couple of months. Parent negative and positive emotion was micro-coded 

from this interaction, using the PAIT Coding System (Chaplin, 2010). Trained coders 

rated parents’ expressions of negative and positive emotion every 5 seconds from 

videotapes of the PAIT task based on facial, vocal, gestural, and postural cues indicative 

of negative and positive emotion (e.g., downturned mouth, narrowed eyes). 20% of the 

tapes were double-coded and checked for inter-rater reliability. This task and coding 

system has been used in previous studies (Chaplin et al., 2012; Chaplin et al., 2014) and 

the coding system shows high reliability (ICCs = .67 - .81; Ave K = .91).  

Baseline fMRI Session 

MRI scans were conducted using a Siemens 3T Prisma MRI scanner with a 32-

channel coil. First, upon arrival to the MRI facility, adolescents were safety screened by 

an MRI technologist. Next, adolescents completed practice trials of the card guessing task 

outside of the scanner. Following the start of the COVID-19 pandemic, adolescents 

reviewed the card guessing task on Zoom prior to the MRI session. Adolescents then 

underwent MRI, including a T1-weighted structural scan and several functional scans. 

All visual stimuli were projected to the bore of the scanner and viewed on a mirror 

mounted on the head coil. In order to reduce motion, reduce noise, and increase comfort, 

adolescents were padded with foam inserts and given earbuds.  

Standardized (Positive Affect) Card Guessing Task. This task is a card 

guessing task (like a monetary incentive delay task) developed by Forbes and colleagues 
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(2009). This task is a single run, event-related design that takes approximately 10 

minutes. There are 24 trials, including 12 potential win trials (i.e., win $1) and 12 

potential loss trials (i.e., lose $.50); half of the trials have neutral outcomes (i.e., no 

winning money, no losing money). Participants are told that the trial outcomes are 

random, although in actuality the trial outcomes are predetermined. In addition, 

participants are told that their performance on the task determines how much monetary 

compensation they will receive. Trial order is pseudorandomized. Each trial is 20 

seconds. A trial begins with a question mark where participants have 4 seconds to guess 

whether the next card is greater than or less than five. Participants use the response button 

pad to guess. Next, a six second image of shuffling cards appears that indicates the trial 

type (i.e., win $1, lose $.50, or neither win or lose). This is followed by a 500ms image of 

the actual card number and then a 500ms image of the outcome (i.e., win $1, lose $.50, or 

neither win or lose). The trial ends with a 9 second crosshair.  

Standardized (Negative Affect) IAPS Task. This task involves viewing 

negative, neutral, and positive emotional images from the International Affective Picture 

Set (IAPS) (Lang et al., 2008). IAPS images are empirically validated and shown to elicit 

emotion-related neural activation in adolescents (McRae  et al., 2012). The images 

utilized are matched to one another on subject type, color, and luminance. The task 

includes 81 trials with 27 negative, 27 positive, and 27 negative images that are presented 

using an event-related design in a pseudo-randomized order across two 7-minute runs. 

Trial order and timing are determined using Optseq2. Three different presentation 

schedules are used (one for each run) with the order of these counterbalanced across 
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participants. Each trial consists of viewing a picture (4s) and an inter-trial interval (ITI) 

jittered between 2s and 12s (jitter determined with optseq2). Participants are asked to 

press a button for each picture to ensure attention, but no further response will be done 

in-scanner.  

Naturalistic Parent Emotion (Negative and Positive Affect) Task. This task 

involves passive viewing of 16-sec video clips of adolescent’s own mother and father 

showing negative, positive, and neutral emotion during the PAIT task (completed in the 

behavioral session). Previous research has shown that emotional video clips can be 

obtained from parent-adolescent interactions with early adolescents and that these clips 

yield brain activation in regions involved in emotional arousal and that this brain 

activation is correlated with psychopathology symptoms (Whittle et al., 2012; Saxbe et 

al., 2016). Adolescents additionally view clips of an unfamiliar mother and father actor 

(matched in ethnicity to the family) showing negative, positive, and neutral emotion 

towards an adolescent actor. The video clips are presented in block design interspersed 

with 8-sec rest (fixation cross) across two 6 minutes runs. In each run, negative, positive, 

and neutral video clips are alternated within alternating own-mother, other-mother, own-

father, and other-father clips, for a total of 12 clips. Order of presentation is 

counterbalanced across runs and participants.  

fMRI Data Acquisition. Functional images of the blood oxygen level dependent 

(BOLD) response during tasks and resting state are acquired using T2*-weighted gradient 

echo echoplanar imaging (GE EPI) (TR/TE = 1200/33ms; FOV = 230mm; matrix = 

96x96; voxel size=2.5 x 2.5 x 2.5mm; MB=4; P/E=AP)). Opposing P/E direction 
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acquisition field maps is acquired for the reduction of geometric distortion. A high 

resolution T1-weighted volumetric MPRAGE sequence (TR/TE = 2400/2.14ms; Flip: 8 

degrees; 256 sagittal slices; 0.8mm isotropic voxels; GRAPPA = 2) and a T2-weighted 

SPACE sequence (TR/TE = 3200/560ms; 256 sagittal slices; 0.8mm isotropic voxels; 

GRAPPA = 2) scan is acquired for anatomical co-registration.  

Measures 

SU 

Adolescent SU was measured through self-report and parent-report 

questionnaires, interviews and physical toxicology screens. Given low-level endorsement 

of SU across the sample, SU was scored as a binary variable. Adolescents were 

considered positive for lifetime SU (scored 1) if they or their parent endorsed any SU 

across all SU measures and negative for lifetime SU (scored 0) if they or their parent 

denied all SU across all SU measures. In the total sample (n = 168), 40 adolescents 

(23.81%) were substance-using.  

Questionnaires. Adolescents completed the Youth Risk Behavior Survey 

(YRBS; Brener et al., 2002). On the YRBS, adolescents were asked to indicate how many 

days (on a 6 or 7-point scale from “0 days” to “40 days or more”) they used 10 different 

substances (i.e., alcohol, cannabis, cocaine, inhalants, heroin, methamphetamine, ecstasy, 

hallucinogens, prescription pills, steroids). An example item was: “during your life, on 

how many days have you had at least one drink of alcohol (for example, a full can of 

beer, a full glass of wine, a full shot of liquor)?” Adolescents were also asked if they have 

ever tried “cigarette smoking, even one or two puffs” or used an “electronic vapor 
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(vaping) product.” Parents completed a parent-report version of the YRBS to indicate 

their adolescent’s lifetime SU. Example items included: “during your child’s life, on how 

many days has he/she had at least on drink of alcohol (for example, a full can of beer, a 

full glass of wine, a full shot of liquor)?” and “has your child ever used an electronic 

vapor (vaping) product?” 

Interviews. Adolescents participated in three SU interviews: the 60-day timeline 

follow-back (TLFB; Rueger et al., 2012), the SUD module and AUD module of the Mini-

International Neuropsychiatric Interview for Children and Adolescents (MINI-Kid; 

Sheehan et al., 2010) and a lifetime SU interview. For the TLFB, adolescents were asked 

by a research assistant if they had used any substances in the past 60 days. If adolescents 

endorsed “yes” to this question, they worked with the research assistant to review the past 

60 days in reverse chronological order and indicate which days they used a specific 

substance (e.g., alcohol). They also indicated the quantity (e.g., full drinks of alcohol) of 

the specific substance consumed on those days. Adolescents completed the TLFB for 

each substance used in the past 60 days.  

For the substance use disorder (SUD) module of the MINI-Kid, adolescents were 

asked if they used nine substances (e.g., stimulants, cocaine, opiates, hallucinogens, 

dissociative drugs, inhalants, cannabis, tranquilizers, and miscellaneous/other drugs) in 

the past year. For the alcohol use disorder (AUD) module of the MINI-Kid, adolescents 

were asked the screener question of “in the past year, have you had three or more drinks 

of alcohol in a day?” An answer of “yes” to these screeners (or positive endorsement of 

SU) prompted the research assistant to administer the entire SUD/AUD module.  
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For the lifetime substance use interview, adolescents were asked by a research 

assistant how many times (on a 7-point scale from “never” to “40 times or more”) they 

have used 12 separate substances (e.g., alcohol, cannabis, tobacco, amphetamines, heroin, 

opiates, methadone, barbiturates, sedatives, cocaine, inhalants, hallucinogens) in their 

life.  

Physical Toxicology Screens. Adolescents provided urine samples for the 

Reditest Redcup Urine 10 Panel Drug Screen for opiates, PCP, cocaine, cannabis (i.e., 

THC), alcohol (i.e., ETG), amphetamines (if on prescribed medication, not counted) and 

benzodiazepines. The urine was also used to measure the presence of cotinine, indicating 

nicotine use. Additionally, adolescents completed a breath screen for tobacco (i.e., carbon 

monoxide) and alcohol.  

SU Expectancies and Intentions 

Adolescents reported on SU expectancies and intentions using a measure based on 

prior work (Brown et al., 1987). Specifically, adolescents answered “no,” “maybe,” or 

“yes” to the following questions: (1) Do you think you would drink alcohol, smoke 

cigarettes, or use drugs as a teenager (or, if you are a teenager, when you are an older 

teenager)?; (2) Do you think that [specific substance] would relax you or let you have 

more fun?; and (3) Do you think that [specific substance] would make you do poorly in 

school or make others not want to hang around you? The two questions on expectancies 

are asked separately for alcohol, cigarettes, vaping, and other illicit drugs (i.e., four times 

for each expectancy question for a total of eight questions). For these nine items (one 

item for intentions, four items for positive expectancies, four items for negative 
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expectancies) “no” was scored as 0, “maybe” was scored as 1, and “yes” was scored as 2. 

The four items on negative expectancies were reverse-scored. Then, all items were 

summed to create an overall intentions/expectancies number, with higher values 

reflecting higher SU intentions and expectancies.  

Data Analytic Plan 

fMRI Image Pre-Processing 

Neuroimaging data was preprocessed using fMRIPrep 20.0.5 (Esteban et al., 

2019; Esteban et al., 2019; RRID:SCR_016216), which is based on Nipype 1.4.2 

(Gorgolewski et al., 2011; Gorgolewksi et al., 2018; RRID:SCR_002502).  

Anatomical Data Preprocessing. The T1-weighted (T1w) image was corrected 

for intensity non-uniformity (INU) with N4BiasFieldCorrection (Tustison et al. 2010), 

distributed with ANTs 2.2.0 (Avants et al. 2008, RRID:SCR_004757), and used as T1w-

reference throughout the workflow. The T1w-reference was then skull-stripped with 

a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), using 

OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid 

(CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted 

T1w using fast (FSL 5.0.9, RRID:SCR_002823; Zhang, Brady, & Smith, 2001). Brain 

surfaces were reconstructed using recon-all (FreeSurfer 6.0.1, RRID:SCR_001847; Dale, 

Fischl, & Sereno, 1999), and the brain mask estimated previously was refined with a 

custom variation of the method to reconcile ANTs-derived and FreeSurfer-derived 

segmentations of the cortical gray-matter of Mindboggle (RRID:SCR_002438; Klein et 

al., 2017). Volume-based spatial normalization to two standard spaces 
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(MNI152NLin2009cAsym, MNI152NLin6Asym) was performed through nonlinear 

registration with antsRegistration (ANTs 2.2.0), using brain-extracted versions of both 

T1w reference and the T1w template. The following templates were selected for spatial 

normalization: ICBM 152 Nonlinear Asymmetrical template version 2009c [Fonov et al. 

(2009), RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym], FSL’s MNI 

ICBM 152 non-linear 6th Generation Asymmetric Average Brain Stereotaxic 

Registration Model [Evans et al. (2012), RRID:SCR_002823; TemplateFlow ID: 

MNI152NLin6Asym], 

Functional Data Preprocessing. For each of the BOLD runs found per subject 

(across all tasks and sessions), the following preprocessing was performed. First, a 

reference volume and its skull-stripped version were generated using a custom 

methodology of fMRIPrep. A B0-nonuniformity map (or fieldmap) was estimated based 

on two (or more) echo-planar imaging (EPI) references with opposing phase-encoding 

directions, with 3dQwarp Cox and Hyde (1997) (AFNI 20160207). Based on the 

estimated susceptibility distortion, a corrected EPI (echo-planar imaging) reference was 

calculated for a more accurate co-registration with the anatomical reference. The BOLD 

reference was then co-registered to the T1w reference using bbregister (FreeSurfer) 

which implements boundary-based registration (Greve & Fischl, 2009). Co-registration 

was configured with six degrees of freedom. Head-motion parameters with respect to the 

BOLD reference (transformation matrices, and six corresponding rotation and translation 

parameters) are estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9; 

Jenkinson et al., 2002). BOLD runs were slice-time corrected using 3dTshift from AFNI 
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20160207 (Cox & Hyde, 1997; RRID:SCR_005927). The BOLD time-series were 

resampled onto the following surfaces (FreeSurfer reconstruction 

nomenclature): fsaverage. The BOLD time-series (including slice-timing correction when 

applied) were resampled onto their original, native space by applying a single, composite 

transform to correct for head-motion and susceptibility distortions. These resampled 

BOLD time-series will be referred to as preprocessed BOLD in original space, or 

just preprocessed BOLD. The BOLD time-series were resampled into standard space, 

generating a preprocessed BOLD run in MNI152NLin2009cAsym space. First, a reference 

volume and its skull-stripped version were generated using a custom methodology 

of fMRIPrep. Automatic removal of motion artifacts using independent component 

analysis (ICA-AROMA, Pruim et al., 2015) was performed on the preprocessed BOLD 

on MNI space time-series after removal of non-steady state volumes and spatial 

smoothing with an isotropic, Gaussian kernel of 6mm FWHM (full-width half-

maximum). Corresponding “non-aggressively” denoised runs were produced after such 

smoothing. Additionally, the “aggressive” noise-regressors were collected and placed in 

the corresponding confounds file. Several confounding time-series were calculated based 

on the preprocessed BOLD: framewise displacement (FD), DVARS and three region-

wise global signals. FD and DVARS are calculated for each functional run, both using 

their implementations in Nipype (following the definitions by Power et al., 2014). The 

three global signals are extracted within the CSF, the WM, and the whole-brain masks. 

Additionally, a set of physiological regressors were extracted to allow for component-

based noise correction (CompCor, Behzadi et al., 2007). Principal components are 
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estimated after high-pass filtering the preprocessed BOLD time-series (using a discrete 

cosine filter with 128s cut-off) for the two CompCor variants: temporal (tCompCor) and 

anatomical (aCompCor). tCompCor components are then calculated from the top 5% 

variable voxels within a mask covering the subcortical regions. This subcortical mask is 

obtained by heavily eroding the brain mask, which ensures it does not include cortical 

GM regions. For aCompCor, components are calculated within the intersection of the 

aforementioned mask and the union of CSF and WM masks calculated in T1w space, 

after their projection to the native space of each functional run (using the inverse BOLD-

to-T1w transformation). Components are also calculated separately within the WM and 

CSF masks. For each CompCor decomposition, the k components with the largest 

singular values are retained, such that the retained components’ time series are sufficient 

to explain 50 percent of variance across the nuisance mask (CSF, WM, combined, or 

temporal). The remaining components are dropped from consideration. The head-motion 

estimates calculated in the correction step were also placed within the corresponding 

confounds file. The confound time series derived from head motion estimates and global 

signals were expanded with the inclusion of temporal derivatives and quadratic terms for 

each (Satterthwaite et al. 2013). Frames that exceeded a threshold of 0.5 mm FD or 1.5 

standardised DVARS were annotated as motion outliers. All resamplings can be 

performed with a single interpolation step by composing all the pertinent transformations 

(i.e. head-motion transform matrices, susceptibility distortion correction when available, 

and co-registrations to anatomical and output spaces). Gridded (volumetric) resamplings 

were performed using antsApplyTransforms (ANTs), configured with Lanczos 
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interpolation to minimize the smoothing effects of other kernels (Lanczos, 1964). Non-

gridded (surface) resamplings were performed using mri_vol2surf (FreeSurfer). 

Many internal operations of fMRIPrep use Nilearn 0.6.2 (Abraham et al. 2014, 

RRID:SCR_001362), mostly within the functional processing workflow. For more details 

of the pipeline, see the section corresponding to workflows in fMRIPrep’s documentation 

(https://fmriprep.org/en/latest/workflows.html). 

First-Level Analyses. First-level analyses were run using FSL’s fMRI Expert 

Analysis Tool (FEAT). For each adolescent, blood-oxygen-level-dependent (BOLD) 

signal at each voxel was modeled using generalized least squares with a voxel-wise, 

temporally and spatially regularized autocorrelation model. These models included 

regressors for onset and duration of events of interest, which were convolved with double 

gamma functions to create explanatory variables (e.g., monetary reward cue followed by 

monetary reward outcome). These models created coefficient of parameter estimate 

(COPE) values for each explanatory value that were used to create our contrasts of 

interest. In the current study, we examined the following contrasts: monetary reward 

outcome versus neutral outcome in the standardized positive affect (card guessing) task, 

negative emotional stimuli versus neutral stimuli in the negative affect (IAPS) task, and 

parent negative emotion versus parent neutral emotion and parent positive emotion versus 

parent neutral emotion in the naturalistic affect task. For the standardized negative affect 

(IAPS) task and the naturalistic affect task, contrasts of interest were averaged across two 

runs (if available for that adolescent) in a higher-level analysis.  



 
 

63 

fMRI Analysis 

To test the study aims, machine learning models were conducted in Python using 

nilearn (e.g., Pedregosa et al., 2011; Abraham et al., 2014) and sklearn (Pedregosa et al., 

2011). Due to extenuating circumstances (e.g., time limitations, request to leave scanner), 

not all adolescents completed every fMRI task. Thus, sample sizes will vary depending 

on the task being examined. Moreover, fMRI runs (and therefore sometimes subjects) 

were excluded for significant motion (i.e., more than 20% of TRs in run with greater than 

.5 mm FD).  

Aim 1. Examine neural activation to standardized negative and positive affective 

stimuli in relation to adolescent SU using machine learning.  

Hypothesis 1.1. A machine learning classifier will accurately differentiate 

adolescent substance users from non-users based on patterns of neural activity in 

midcingulo-insular (salience; AI, ACC, amygdala, striatum) and frontoparietal 

(cognitive control and self-referential processing; dlPFC; precuneus; OFC) 

network regions.  

Hypothesis 1.2. A machine learning classifier will accurately predict higher SU 

intentions and expectancies among adolescents in midcingulo-insular (salience; 

AI, ACC, amygdala, striatum) and frontoparietal (cognitive control and self-

referential processing; dlPFC; precuneus; OFC) network regions.  

For these hypotheses, machine learning was used to classify SU as a dichotomous 

variable (yes/no lifetime use) and predicting SU intentions and expectancies as a 

continuous variable. A total of four machine learning models (one for each task 
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(standardized IAPS, standardized card guessing) and each outcome variable 

(dichotomous SU, continuous SU intentions and expectancies)) were conducted. The 

input for the machine learning models were the z-stat images for the affective stimuli > 

neutral affective stimuli contrasts. For the standardized IAPS task, this was responses to 

the negative emotional images > neutral emotional image contrast and for the 

standardized card guessing task this was the responses to the monetary win > neutral 

outcomes contrast. Each machine learning model had sex, age, race, psychotropic 

medication use, and family income as covariates.  

For each machine learning model, we: (1) selected MRI features to analyze, (2) 

trained a model in classifying/predicting SU based on patterns of neural activation to 

affective stimuli using training data, and (3) tested the model using testing data 

(previously unseen data) and evaluated its performance.  

1. Feature selection. The machine learning models examined neural patterns of 

activation across an atlas (Seitzman et al., 2020) of 300 functionally-defined cortical and 

subcortical regions of interests. This was done by masking a parcellation of the atlas 

across each subject’s z-stat image using NiftiLabelsMasker (Pedregosa et al., 2011; 

Abraham et al., 2014) from nilearn. The number of regions of interests in our machine 

learning models were reduced in analyses by using lasso regularization (C = .1), which 

penalizes less important features by assigning them a value of 0 (Muthukrishnan & 

Rohini, 2016).  

2. Model training and internal validation. Since the model must be trained and 

tested in independent data, internal 5-fold leave-one-out cross-validation was employed 
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to split the original dataset into 5 separate folds (or subsets) (Scheinost et al., 2019). Four 

of those folds were used as training data and one of those folds were used as testing data. 

This process was repeated five times, so that each fold was used as training and testing 

data in an iterative manner. Stratification was employed to ensure that adolescents that 

use and do not use SU were adequately represented in both the training and testing 

datasets. In addition, to account for the imbalanced data, random undersampling was 

applied (Lemaître et al., 2017). This transforms the testing data to create a more balanced 

dataset by randomly deleting cases in the majority class (i.e., non-substance users). For 

models that are classifying substance users versus non-users, we used logistic regression 

and support vector machine (SVM) with a linear kernel as the machine learning 

algorithms. For models that are predicting the continuous SU intentions and expectancies 

variable, we used linear regression (Formisano et al., 2008). All models included lasso 

regularization as parameters.  

3. Model performance. We assessed how accurately the model classifies/predicts 

outcomes using several metrics. For models that were classifying substance users from 

non-users, we assessed model performance using measures of accuracy, recall, precision, 

F1 score and area under the ROC (receiver operating characteristic curve) curve (AUC-

ROC) (Scheinost et al., 2019). For models that were predicting SU intentions and 

expectancies, we assessed model performance using mean squared error (MSE) and 

prediction R2 (Scheinost et al., 2019).  As analyses in the leave-one-out folds are not 

wholly independent, significance testing was conducted using permutation testing (Stelzer 

et al., 2013). For these analyses, data was randomly shuffled to create a null distribution 
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of model performance from which a p-value was calculated (Stelzer et al., 2013). Feature 

importance was determined by examining beta coefficients for each feature. 

Aim 2. Examine neural activation to naturalistic negative and positive affective 

stimuli in relation to adolescent SU using machine learning.  

Hypothesis 2.1. A machine learning classifier will accurately differentiate 

adolescent substance users from non-users based on patterns of neural activity in 

midcingulo-insular (salience; AI, ACC, amygdala, striatum) and frontoparietal 

(cognitive control and self-referential processing; dlPFC; precuneus; OFC) 

network regions. 

Hypothesis 2.2. A machine learning classifier will accurately predict higher SU 

intentions and expectancies among adolescents based on patterns of neural 

activity in midcingulo-insular (salience; AI, ACC, amygdala, striatum) and 

frontoparietal (cognitive control and self-referential processing; dlPFC; 

precuneus; OFC) network regions. 

Hypothesis 2.3. Predictive accuracy for machine learning models on naturalistic 

affective stimuli will be significantly higher than machine learning models on 

naturalistic affective stimuli.  

Analyses for hypotheses 2.1-2.3 were done similarly to analyses for Aim 1. For 

hypothesis 2.3, paired-sample t-tests were used to compare metrics for the various 

models. Two t-tests were conducted: one to compare accuracy in classifying SU in the 

naturalistic parent positive emotion task and the standardized positive affect task and 

another to compare accuracy in classifying SU in the naturalistic parent negative affect 
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task and the standardized negative affect task. This was similarly done for machine 

learning models predicting SU intentions and expectancies.  

Results 

 Descriptive statistics and correlations for study variables are in Table 2. SU 

intentions and expectancies was positively correlated with lifetime SU. Age was 

positively correlated with SU intentions and expectancies, but not lifetime SU. Race was 

negatively correlated with lifetime SU, indicating that non-White adolescents had greater 

lifetime SU. Additional demographic variables (i.e., sex, psychotropic medication use, 

income) were not correlated with either SU intentions and expectancies or lifetime SU.  

 

 

Table 2 
 
Correlations and Descriptive Statistics 
 

 

Variable 1 2 3 4 5 6 7 
1. Sex 1       
2. Age -0.10 1      
3. Race -0.00 0.02 1     
4. Med. Use  .16* -.02 0.06 1    
5. Income -.03 -0.04 0.16* -.04 1   
6. SU Int. Exp. 0.4 .18* -0.10 0.04 .17 1  
7. Lifetime SU .05 0.12 -0.16* 0.06 -.14 .26** 1 
Mean .51 12.60 0.66 0.11 .37 0.93 0.24 
SD .50 0.85 0.48 0.32 .49 1.52 0.43 
 
Note. Sex, Race, Med. Use and Income were dummy coded (0 = female, 1 = male; 0 = 
non-White, 1 = White; 0 = no medication, 1 = medication; 0 = <$100,000, 1 = 
>$100,000).  
Med. Use = psychotropic medication use; SU Int. Exp = substance use intentions and 
expectancies; Lifetime SU. As described in the Method, Lifetime SU was dummy 
coded (0 = no lifetime SU; 1 = lifetime SU).  
 



 
 

68 

 
 
 

Aim 1 

Standardized Positive Affect (Card Guessing) Task 

 Included Subjects. Of the 168 in the total sample, 160 completed the card 

guessing task and had analyzable data. Sixteen had significant motion and/or responded 

to fewer than 50% of presented trials and were therefore excluded, resulting in a final 

sample of 144. These 144 adolescents were not significantly different in age, race, 

income, SU, or SU intentions and expectancies from the original 168 adolescents. 

However, there were more female adolescents than in the original sample of 168 (p < 

.05).  

 SU Classification. Logistic regression and linear SVM classifiers were trained 

and then tested (using stratified 5-fold internal cross-validation and lasso regularization) 

on the classification of SU using 300 ROIs, age, race, sex, and income. Results are in 

Table 3. Accuracy, recall, precision, F1 score, and ROC were used as metrics of the 

classifiers’ performances. Accuracy metrics indicate that both classifiers were able to 

train training data above 60%. When applied to the testing data, however, the classifiers 

had reduced classification ability. Logistic regression accurately classified SU at chance 

level (i.e., 50.02%), and linear SVM accurately classified slightly above chance level 

(i.e., 52.83%). Other metrics that are less biased by imbalanced data demonstrated poorer 

performance, with an F1 score of .31 and .13 for the logistic regression and linear SVM 

classifiers, respectively. The discrepancy between training and testing metrics indicates 
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that both classifiers overfit the data. The most important features for SU classification 

based on beta coefficients were age, psychotropic medication use, race, and ROIs in the 

right occipital pole, left intracalcarine cortex, right lateral occipital cortex, right superior 

temporal gyrus (STG), left temporal fusiform cortex, left amygdala, and cerebellum (see 

Table 4).    

 Prediction of SU intentions and expectancies. Results are in Table 5. A linear 

regression classifier was trained and then tested (using 5-fold internal cross-validation 

and lasso regularization) on the prediction of SU intentions and expectancies using 300 

ROIs, age, race, sex, and income. R2 and MSE were used as metrics of the classifiers’ 

performances. The classifier was not able to train training data as evidenced by an R2 of 

0, indicating 0 variance in SU intentions and expectancies explained by the features using 

the classifier. When applied to the testing data, the classifier did not perform well, with 

an R2 of -.13; R2 suggests that the model is an inappropriate fit for the data (Pedregosa et 

al., 2011). The MSE for the training and testing was likely biased given the low R2  

values. The most important features in this model were not extracted given that the model 

was an inappropriate fit for the data.  

Standardized Negative Affect (IAPS) Task 

Included Subjects. Of the 168 in the total sample, 162 completed the IAPS task 

and had analyzable data. Nine had significant motion and were excluded, resulting in a 

final sample of 153. These 153 adolescents were not significantly different in age, race, 

income, SU or SU intentions and expectancies from the original 168 adolescents. 
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However, there were more female adolescents than in the original sample of 168 (p < 

.05).  

SU Classification. Logistic regression and linear SVM classifiers were trained 

and then tested (using stratified 5-fold internal cross-validation and lasso regularization) 

on the classification of SU using 300 ROIs, age, race, sex, and income. Results are in 

Table 3. Accuracy, recall, precision, F1 score, and ROC were used as metrics of the 

classifiers’ performances. Accuracy metrics indicate that both classifiers were able to 

train training data above 60%. When applied to the testing data, the classifiers had 

reduced classification ability. Logistic regression accurately classified SU above chance 

level (i.e., 62.77%), and linear SVM accurately classified above chance level (i.e., 

62.88%). However, other metrics that are less biased by imbalanced data demonstrated 

poorer performance, with an F1 score of .28 and .38 for the logistic regression and linear 

SVM classifiers, respectively. The discrepancy between training and testing metrics 

indicates that both classifiers overfit the data. The most important features based on beta 

coefficients were race and ROIs in the left juxtapositional lobule cortex, right middle 

frontal gyrus (MFG), left frontal pole, right lateral occipital cortex, right supramarginal 

gyrus and cerebellum (see Table 4).    

 Prediction of SU intentions and expectancies. Results are in Table 5. A linear 

regression classifier was trained and then tested (using 5-fold internal cross-validation 

and lasso regularization) on the prediction of SU intentions and expectancies using 300 

ROIs, age, race, sex, and income. R2 and MSE were used as metrics of the classifiers’ 

performances. The classifier was not able to train training data as evidenced by an R2 of 
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0, indicating 0 variance in SU intentions and expectancies explained by the features using 

the classifier. When applied to the testing data, the classifier did not perform well, with 

an R2 of -.12; R2 suggests that the model is an inappropriate fit for the data (Pedregosa et 

al., 2011). The MSE for the training and testing were excellent and are likely biased 

given the low R2  values. The most important features in this model were not extracted 

given that the model was an inappropriate fit for the data. 

Aim 2  

Naturalistic Negative and Positive Affect (Parent Emotion) Tasks 

Included Subjects. Of the 168 in the total sample, 158 completed the parent 

emotion task and had analyzable data. Thirteen had significant motion and were 

excluded, resulting in a final sample of 145. These 145 adolescents were not significantly 

different in age, race, income, SU or SU intentions and expectancies from the original 

168 adolescents. However, there were more female adolescents than in the original 

sample of 168 (p < .05).  

 Positive Affective Stimuli. SU Classification. Logistic regression and linear 

SVM classifiers were trained and then tested (using stratified 5-fold internal cross-

validation and lasso regularization) on the classification of SU using 300 ROIs, age, race, 

sex, and income. Results are in Table 3. Accuracy, recall, precision, F1 score, and ROC 

were used as metrics of the classifiers’ performances. Accuracy metrics indicate that both 

classifiers were able to train training data above 60%. When applied to the testing data, 

the classifiers had reduced classification ability. Logistic regression and linear SVM 

accurately classified SU above chance level (i.e., 57-59%). However, other metrics that 
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are less biased by imbalanced data demonstrated poorer performance, with an F1 score of 

.29 and .36 for the logistic regression and linear SVM classifiers, respectively. The 

discrepancy between training and testing metrics indicates that both classifiers overfit the 

data. The most important features based on beta coefficients were race, income, sex, and 

ROIs in the bilateral inferior temporal gyrus (ITG), left MTG, left frontal pole, and right 

amygdala (see Table 4). Prediction of SU intentions and expectancies. Results are in 

Table 5. A linear regression classifier was trained and then tested (using 5-fold internal 

cross-validation and lasso regularization) on the prediction of SU intentions and 

expectancies using 300 ROIs, age, race, sex, and income. R2 and MSE were used as 

metrics of the classifiers’ performances. The classifier was not able to train training data 

as evidenced by an R2 of 0, indicating 0 variance in SU intentions and expectancies 

explained by the features using the classifier. When applied to the testing data, the 

classifier did not perform well, with an R2 of -.34; R2 suggests that the model is an 

inappropriate fit for the data (Pedregosa et al., 2011). The MSE for the training and 

testing were excellent and are likely biased given the low R2  values. The most important 

features in this model were not extracted given that the model is an inappropriate fit for 

the data. 

Negative Affective Stimuli. SU Classification. Logistic regression and linear 

SVM classifiers were trained and then tested (using stratified 5-fold internal cross-

validation and lasso regularization) on the classification of SU using 300 ROIs, age, race, 

sex, and income. Results are in Table 3. Accuracy, recall, precision, F1 score, and ROC 

were used as metrics of the classifiers’ performances. Accuracy metrics indicate that both 
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classifiers were able to train training data above 60%. When applied to the testing data, 

the classifiers had reduced classification ability. Logistic regression and linear SVM 

accurately classified SU above chance level (i.e., 55%). However, other metrics that are 

less biased by imbalanced data demonstrated poorer performance, with an F1 score of .38 

and .32 for the logistic regression and linear SVM classifiers, respectively. The 

discrepancy between training and testing metrics indicates that both classifiers overfit the 

data. The most important features based on beta coefficients were sex, race, income, and 

ROIs in the left MTG, left supramarginal gyrus, right temporal occipital fusiform gyrus, 

right lateral occipital cortex, bilateral hippocampus, and right amygdala (see Table 4). 

Prediction of SU intentions and expectancies. Results are in Table 5. A linear regression 

classifier was trained and then tested (using 5-fold internal cross-validation and lasso 

regularization) on the prediction of SU intentions and expectancies using 300 ROIs, age, 

race, sex, and income. R2 and MSE were used as metrics of the classifiers’ performances. 

The classifier was not able to train training data as evidenced by an R2 of 0, indicating 0 

variance in SU intentions and expectancies explained by the features using the classifier. 

When applied to the testing data, the classifier did not perform well, with an R2 of -.14; 

this R2 suggests that the model is an inappropriate fit for the data (Pedregosa et al., 2011).  

The mean square error for the training and testing were excellent and are likely biased 

given the low R2  values. The most important features in this model were not extracted 

given that the model is an inappropriate fit for the data. 
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Table 3 
 

 

Performance of models of substance use classification 
 

 

Classifier Accuracy Recall Precision F1 
Score 

ROC 
AUC 

p-
value 

       
Std. Positive 
Affect Task       

   Logistic 
Regression 

      

      Training 61.94% .68 .63 .64 .55 - 
      Testing 50.02% .50 .24 .31 .47 .26 
   Linear SVC       
      Training 75.70% .76 .76 .76 .88 - 
      Testing 52.83% .16 .12 .13 .44 .001 

Std. Negative 
Affect Task 

      

   Logistic 
Regression 

      

      Training 62.62% .47 .53 .51 .65 - 
      Testing 62.77% .36 .23 .28 .54 .08 
   Linear SVC       
      Training 77.59% .79 .77 .78 .84 - 
      Testing 62.88% .45 .33 .37 .53 .002 

Nat. Negative 
Parent Affect 
Task  

      

   Logistic 
Regression 

      

      Training 62.95% .38 .57 .64 .66 - 
      Testing 55.17% .68 .66 .38 .54 .26 
   Linear SVC       
      Training 76.36% .77 .76 .76 .84 - 
      Testing 55.86% .43 .26 .32 .22 .001 
       
Nat. Positive 
Parent Affect 
Task  
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Table 4 

 
Most important feature in substance use classification models 

 

 
 

Task Network b x y z 
      
Std. Positive Affect Task      
   Med. Use - -.28 - - - 
   R Lateral Occipital Cortex Occipital .28 37.45 -64.7 40.38 
   L Amygdala Midcingulo-

insular 
-.24 -20.3 -2.27 -

22.21 
   Cerebellum Not defined -.22 -32 -78 -38 
   L Temporal Fusiform 
Cortex 

Pericentral -.22 -31.13 -9.99 -
36.32 

   R Occipital Pole Occipital .18 26.68 -97.3 -
13.49 

   R Superior Temporal 
Gyrus 

Pericentral -.18 51.52 -32.52 7.55 

   L Intracalcarine Cortex Occipital .17 -8.43 -80.5 7.44 
   Age - .17 - - - 
   Race - -.16 - - - 
      
Std. Negative Affect Task      
   Race - -.40 - - - 

   Logistic 
Regression 

      

      Training 61.70% .49 .53 .50 .64 - 
      Testing 59.31% .40 .24 .29 .52 .43 
   Linear SVC       
      Training 71.82% .75 .71 .73 .83 - 
      Testing 57.93% .49 .30 .36 .58 .02 
       
   
Note. Nat. = naturalistic; Std. = standardized; ROC AUC = area under the ROC 
(receiver operating characteristic curve) curve. All machine learning models 
included 300 ROIS, sex, age, race, income and psychotropic medication use as 
features. All machine learning models employed stratified 5-fold cross-validation, 
random undersampling, and lasso regularization.  
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   R Supramarginal Gyrus Frontoparietal -.26 49.18 -42.41 45.16 
   L Frontal Pole Frontoparietal .24 -17.65 63.19 -9.17 
   Cerebellum Not defined -.19 -34 -72.01 -48 
   L Juxtapositional Lobule 
Cortex 

Pericentral .15 -2.88 2.38 53.21 

   R Middle Frontal Gyrus Frontoparietal -.13 31.24 32.79 26.39 
   Cerebellum Not defined -.12 14 -48 -52 
   R Lateral Occipital Cortex Occipital .11 28.68 -76.62 25.42 
      
Nat. Negative Parent Affect 
Task  

     

   L Supramarginal Gyrus Frontoparietal -.66 -52.6 -48.83 42.5 
   Race - -.27 - - - 
   Income - -.20 - - - 
   R Amygdala Midcingulo-

insular 
.17 19.51 -1.85 -

23.11 
   L Hippocampus Frontoparietal .16 -25.57 -11.78 -

21.54 
   R Hippocampus Frontoparietal .15 24.73 -11.25 -

22.68 
   Sex  - .15 - - - 
   R Temporal Occipital 
Fusiform Gyrus 

Occipital .14 45.68 -46.67 -
16.85 

   R Lateral Occipital Cortex Occipital .14 25.34 -58.18 60.34 
   Cerebellum Not defined -.13 -32 -78 -38 
   L Middle Temporal Gyrus Frontoparietal .12 -49.3 -42.15 .83 
      
Nat. Positive Parent Affect 
Task  

     

   Race - -.36 - - - 
   Income - -.29 - - - 
   Sex - .15 - - - 
   L Middle Temporal Gyrus Frontoparietal .14 -56.47 -50.48 9.92 
   R Inferior Temporal Gyrus Frontoparietal .13 55.18 -30.8 -

16.93 
   L Frontal Pole/OFC Frontoparietal .13 -21.14 40.87 -

20.48 
   L Inferior Temporal Gyrus Frontoparietal -.11 -50.06 -7.09 -

39.24 
   R Amygdala Midcingulo-

insular 
.10 19.51 -1.85 -

23.11 
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Note. Nat. = naturalistic; Std. = standardized; Med. Use = psychotropic medication use; 
R = right; L = left. Sex, Race, Med. Use and Income were dummy coded (0 = female, 1 
= male; 0 = non-White, 1 = White; 0 = no medication, 1 = medication; 0 = <$100,000, 
1 = >$100,000).  
B coefficients were extracted from machine learning models using the linear support 
vector machine classifier.  
 

 

 

Comparing Standardized Versus Naturalistic Tasks  

Paired-sample t-tests revealed that the naturalistic parent positive affect task was 

not significantly more accurate in classifying SU than the standardized positive task; 

t(1)= -3.43, p = .180. In contrast to this, the standardized negative affect IAPS task was 

significantly more accurate in classifying SU than the naturalistic parent negative affect 

task; t(1)= 25.21 p = .03. Due to inappropriate model fit in predicting SU intentions and 

expectancies, comparisons of accuracy metrics across standardized and naturalistic tasks 

were not conducted.   

 

 

Table 5 

  
Performance of models predicting substance use intentions and expectancies 

 
 

Classifier R2 MSE p-value 

    
Std. Positive Affect Task    
   Linear Lasso    
      Training 0.00 .04 - 
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      Testing -.13 .04 .75 
    
Std. Negative Affect Task    
   Linear Lasso    
      Training 0.00 .04 - 
      Testing -.12 .04 .58 
    
Nat. Negative Parent Affect Task     
   Linear Lasso    
      Training 0.00 .04 - 
      Testing -.34 .04 .73 
    
Nat. Positive Parent Affect Task     
   Linear Lasso    
      Training 0.00 .04 - 
      Testing -.34 .04 .73 
    
   
Note. Nat. = naturalistic; Std. = standardized; MSE = mean square error. All machine 
learning models included 300 ROIS, sex, age, race, income and psychotropic 
medication use as features. All machine learning models employed stratified 5-fold 
cross-validation and lasso regularization.  

 

 

 

 

Discussion 

The purpose of this study was to identify neural patterns of affect-related brain 

activity that classify SU and predict SU intentions and expectancies using machine 

learning methods. Prior research has been limited by traditional statistical methods that 

are not designed to produce generalizable findings that translate to novel, previously 

unseen subjects (Norman et al., 2006; Scheinost et al., 2019). Moreover, this study aimed 

to examine affect-related brain activity using standardized and naturalistic paradigms, 

which to our knowledge is the first study to do so. This is important, particularly among 
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adolescents, given that social stimuli are more salient to adolescents (see Foulkes & 

Blakemore, 2016) and related to the circumstances leading to SU in the real world. 

Overall, our results did not provide sufficient evidence that affect-related neural activity 

is able to accurately and reliably classify substance-using adolescents and predict SU 

intentions and expectancies. These results and their implications are elaborated below. 

Aim 1 

Classifying SU Based on Neural Activation to Standardized Affective Stimuli 

For hypothesis 1, we hypothesized that neural activity in midcingulo-insular and 

frontoparietal network regions during the standardized positive affect card guessing and 

the standardized negative affect IAPS tasks would classify substance-using adolescents 

from non-using adolescents. Results revealed that machine learning classifiers (i.e., 

logistic regression and linear SVM) classified 52.83-62.88% of previously unseen 

adolescents from patterns of neural activity to positive affective stimuli (i.e., monetary 

win) and negative affective stimuli (i.e., negative emotional pictures). These accuracy 

metrics were significant and indicate that machine learning classifiers did better than 

chance at SU classification. 

However, other classification metrics reveal poorer performance of machine 

learning classifiers. In both tasks, the F1-score were between .13-.37, which in 

combination with low recall and precisions scores, suggests that less-than-half to half of 

adolescents were incorrectly classified as substance users or non-users. Although many 

studies employing machine learning do not report F1-scores, several studies report recall 

and precision scores (which make up the F1-score) above .50 (e.g., Grotegerd et al., 
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2014). The discrepancy between the accuracy and F1-score metric is likely due to the 

imbalanced nature of the data, specifically the fact that there are more non-using 

adolescents than substance-using adolescents. That is, in an imbalanced dataset such as 

the one in the current study, the accuracy can be artificially higher because the classifier 

chooses the majority class (i.e., non-substance using adolescents) most of the time (see 

Figure 1 for formulas for accuracy, recall and precision). Given that the model metrics for 

the training datasets were higher than for the testing datasets, an additional consideration 

is that the machine learning classifiers overfit the data. This means that the classifiers 

were training on noise (versus meaningful variance) that did not generalize to previously 

unseen adolescents (that may not have similar types of noise).  

 

 

 

 

 

 

 

Figure 1 
 
Formulas for Precision, Accuracy, and Recall 
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Note. Reprinted from “Analyzing the Leading Causes of Traffic Fatalities Using 
XGBoost and Grid-Based Analysis: A City Management Perspective,” by J. Ma, 2019, 
IEEE Access, 7, p. 148064. CC BY 4.0.  
 

 

Despite the poor performance of the models, several features were identified as 

important to the classification of SU. These features had the highest beta coefficients, 

signifying that they had increased predictive value compared to features with the lowest 

beta coefficients. Higher activation in occipital regions implicated in visual processing to 

both monetary reward and negative affective stimuli classified substance users. In 

addition, higher activation in the juxtapositional lobule cortex—a pericentral region 

implicated in movement—to negative affective stimuli only was important in classifying 

SU. Together with heightened recruitment of occipital regions, these findings suggest that 

substance-using adolescents are attending to standardized positive and negative affective 

stimuli more than non-substance-using adolescents.  

In contrast, lower activation in a midcingulo-insular region (i.e., amygdala) and 

pericentral regions (e.g., temporal fusiform cortex) to monetary reward only was 



 
 

82 

important in SU classification. The amygdala is involved in salience and emotion arousal 

and thus this suggests that blunted emotion arousal to rewarding stimuli is important for 

SU classification. The pericentral regions are critical in recognition and are consistent 

with research showing that adolescents with conduct symptoms (and comorbid SU) have 

impaired learning of rewarding stimuli (Blair et al., 2018). It may be that for substance-

using adolescents, compared to non-using adolescents, rewarding stimuli are less familiar 

and more novel with each occurrence and thus they are more likely to seek out rewarding 

stimuli (e.g., substances) later.  

Moreover, in the negative affect IAPS task and positive affect card guessing task, 

higher and lower activation in frontoparietal regions responsible for cognitive control 

(e.g., frontal pole) and self-/other-referential processing (e.g., supramarginal gyrus, STG), 

respectively, classified substance-using adolescents. It may be that substance-using 

adolescents expend more prefrontal resources in processing negative affective stimuli 

compared to non-using adolescents. This aligns with research showing that inefficient 

recruitment of the prefrontal cortex during working memory tasks is associated with 

higher levels of negative urgency, the tendency to act impulsively in response to negative 

emotion (Chester et al., 2016). Interestingly, in the negative affect IAPS task, lower 

activation in the MFG (around dlPFC) was predictive of substance-using adolescents. 

This is interesting given that both the MFG and frontal pole are implicated in cognitive 

control. However, the MFG cluster encompasses the dmPFC—a region implicated in 

self-/other-referential processing; thus, this finding can reflect that lower self-/other-

referential processing occurs in substance-using versus non-using adolescents.  



 
 

83 

Demographic variables were additionally found to be important by machine 

classifiers. Non-White adolescents were more likely to use substances based on findings 

from both tasks. This is consistent with literature showing higher rates of SU among 

Hispanic adolescents (Shih et al., 2010), but inconsistent with studies demonstrating 

lower SU among Black adolescents compared to their White peers (Shih et al., 2010; 

Wallace & Bachman, 1991). Based only on findings from the positive affect card 

guessing task, older adolescents and adolescents not on psychotropic medication were 

also more likely to be classified as substance users. Older adolescents are well-known to 

engage in SU compared to younger adolescents (Substance Abuse and Mental Health 

Services Administration, 2014). It is interesting that adolescents on psychotropic 

medication were less likely to be classified as substance users. While there are several 

studies showing that increased psychopathology (and therefore psychotropic medication 

use) is associated with increased SU (Friedman et al., 1987), there is also research 

suggesting that psychopathology may play a protective role in SU (e.g., Felton et al., 

2020). Regarding other demographics, contrary to research suggesting sex differences in 

SU (see Chaplin et al., 2018), sex did not emerge as an important feature in SU 

classification in this sample, as did family income. 

Overall, the machine learning classifiers were not able to accurately classify 

substance-using adolescents from non-using adolescents based on neural activity in the 

standardized positive and negative affect tasks. This is despite a higher accuracy metric, 

which is misleading in imbalanced data. However, the models still generated the most 

important features in the SU classifications. This revealed higher and lower activation in 
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midcingulo-insular, frontoparietal, occipital and pericentral network regions involved in 

emotion arousal, cognitive control, visual processing, self-/other-referential processing, 

and recognition. These findings are consistent with the literature on SU; however, given 

the poor performance of the models, should be interpreted with extreme caution.   

Predicting SU Intentions & Expectancies From Neural Activation to Standardized 

Affective Stimuli 

Regarding hypothesis 2, we hypothesized that neural activity in midcingulo-

insular and frontoparietal network regions during the standardized positive affect card 

guessing and the standardized negative affect IAPS tasks would predict SU intentions and 

expectancies. We did not find support for this hypothesis, as the linear regression 

classifier was unable to predict any variance during training. This likely indicates that the 

model is a poor fit for the data—worse than a horizontal line. It is unclear what may 

explain these results. One possibility is that the construct of SU intentions and 

expectancies is too broad and therefore has limited predictive value. For instance, an 

adolescent scoring high in this construct may have high intentions and expectancies, or 

just high intentions, or just high expectancies; this is potentially problematic because they 

may be differentially related to SU. An adolescent high in expectancies may never intend 

to use substances and they are grouped with an adolescent high in intentions that likely 

will use substances. There is also research suggesting that SU intentions and expectancies 

does not predict a lot of variance in SU behavior overall among adolescents (Huba et al., 

1981). In this study, SU intentions and expectancies were positively correlated with SU; 

however, the effect size was small with only 6% of variance explained. Thus, there is a 
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possibility that the construct of SU intentions and expectancies is not strong enough to be 

predicted by a machine learning model. Another possibility is that the link between 

affect-related neural processing and SU intentions and expectancies is not direct (unlike 

that potentially observed with SU) and therefore there is reduced power in detecting an 

association. For example, neural activation in the amygdala to monetary reward may not 

predict SU intentions because SU may be less related to reward sensitivity and perhaps 

more affected by substance availability irrespective of SU. Additionally, it may be that 

the linear regression classifier was not optimal for predicting SU intentions and 

expectancies given that it is zero-inflated (most adolescents reported no intentions, nor 

expectancies related to SU).  

Aim 2 

Classifying SU Based on Neural Activation to Naturalistic Parent Affective Stimuli 

The results for Aim 2 paralleled those of Aim 1. For hypothesis 1, we 

hypothesized that neural activity in midcingulo-insular and frontoparietal network 

regions during the both the naturalistic positive and negative parent emotion tasks would 

classify substance-using adolescents from non-using adolescents. There was limited 

support for this hypothesis. The machine learning classifiers classified previously unseen 

adolescents between 55% to 59% of the time—higher than chance. However, as 

discussed above, given that the dataset is imbalanced, it is important to consider other 

metrics (e.g., F1-score). These metrics demonstrated poor performance, with all models 

incorrectly classifying non-users as users and vice versa.  
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This is similar to findings from the standardized affect tasks. This suggests that 

the task type (naturalistic versus standardized) is unlikely to explain the inability of these 

machine learning models to classify SU with high accuracy. These null findings can 

reflect the limited predictive value of neural activity (as measured through functional 

neuroimaging) overall compared to behavioral traits. Indeed, studies examining models 

with combined behavioral and neural measures have shown greater predictive value of 

behavioral traits, particularly in the prediction of SU (e.g., Nees et al., 2012). This does 

not mean that neural activity is unrelated to SU, rather that BOLD response during 

affective processing tasks is not sensitive enough to predict SU. This is particularly 

problematic in adolescent samples that have noisier neuroimaging data compared to adult 

samples. For example, in the current sample, up to 10% of adolescents were excluded 

from analyses due to excessive motion; this is despite a liberal threshold for motion that 

included adolescents in models that would ordinarily be excluded in adult samples. The 

tradeoff with increasing sample size by including adolescents with motion-confounded 

data is that more noise is introduced into the data, thereby reducing power to detect 

effects. Alternatively, the imbalance between the number of adolescents endorsing and 

denying lifetime SU may be too great for the employed machine learning classifiers. 

Only 23% of adolescents were substance-using and with the 5-fold cross-validation 

procedure, there are even fewer substance-using adolescents that the classifiers could 

train on. This may have resulted in poor training of SU that did not generalize well to 

previously unseen adolescents with and without SU. Moreover, regardless of the 

imbalance in SU endorsement within the data set and limited predictive ability of affect-
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related brain activity, it may be the case that the sample size of 168 is insufficient. One 

recent study demonstrated that a sample of thousands of subjects is necessary to uncover 

reliable, brain-behavior associations (Marek et al., 2022).  

 Although the models for the naturalistic positive and negative affect parent 

emotion tasks were not very accurate, it is valuable to examine the most important 

features as determined by the machine learning classifiers. It is important, however, to 

interpret these findings with caution given that the models overall were not highly 

accurate. Both tasks had higher activation in the amygdala as classifying substance-using 

adolescents. Interestingly, lower amygdala activation was found to be important for SU 

classification in the standardized positive affect card guessing task. This suggests that 

adolescents with increased reactivity to naturalistic affective stimuli (regardless of 

valence) and decreased reactivity to standardized positive affective stimuli are more 

likely to endorse lifetime SU. It is unclear what may account for these discrepant 

findings. It is likely that the pathway to SU from affective reactivity differs based on 

whether the stimulus is naturalistic/social and standardized/monetary. One possibility is 

that the amygdala is being recruited more strongly during processing of relevant affective 

stimuli and less strongly during processing of less relevant affective stimuli (Ousdal, 

2008). What is relevant will depend on the adolescent. Substance-using adolescents may 

find stimuli of parent affect more relevant (perhaps due to increased family conflict; 

Gruber & Taylor, 2006) compared to non-using adolescents. On the other hand, 

substance-using adolescents may find monetary reward less relevant (perhaps due to a 

focus on substances and other reinforcers; Büchel et al., 2017). In these cases, valence of 
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the relevant or less relevant stimuli is not pertinent, especially since the amygdala 

responds to both negatively- and positively-valanced stimuli (see Murray, 2007).  

In both the naturalistic positive and negative affect parent tasks, higher and lower 

activation in frontoparietal network regions also classified SU. Specifically, higher 

activation in frontoparietal regions (and occipital regions; e.g., temporal occipital 

fusiform gyrus) involved in recognition (e.g., MTG, ITG) to positive and negative parent 

affect classified substance-using adolescents; interestingly, lower activation in the left 

ITG (not right ITG) was important in SU classification in the naturalistic positive parent 

affect task, suggesting distinct functions of the right and left ITG. These findings are 

slightly in opposition to findings showing that lower activation of frontoparietal and 

pericentral regions involved in recognition to monetary reward were important for SU 

classification. It is possible that enhanced recognition of parental affect as opposed to 

standardized affective stimuli is predictive of SU. A recent study showed that adolescents 

with heightened neural reactivity to peer rejection had increased depressive symptoms 

(Silk et al., 2022), so it is possible that the reactivity to parental affect is similarly 

predictive of SU.  

In addition, increased activation in the hippocampus and frontal pole—

frontoparietal regions implicated in memory and cognitive control, respectively—to 

negative parent affect only was also higher in substance-using adolescents. Given that 

these results are like those from the standardized negative affect IAPS task, it can be 

concluded that adolescents classified as substance-using were more likely to engage 

cognitive control resources to negative affective stimuli (not positive affective stimuli) 
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overall. Also, again paralleling findings on the standardized affective tasks, blunted 

recruitment of certain frontoparietal regions (e.g., supramarginal gyrus) to negative 

parental affect was important to classifying SU, indicating that substance-using 

adolescents are engaging in self/other-referential processing during negative (not 

positive) affective processing less than non-using adolescents. That this finding was not 

seen for the standardized and naturalistic positive affect tasks suggests that less 

engagement in these processes to negative affective stimuli is more predictive of SU 

compared to these processes to positive affective stimuli.  

 Demographic variables were also demonstrated as important to SU classification. 

Non-White adolescents and adolescents from families making less than $100,000 a year 

were more likely to be classified as substance-using compared to non-using. This finding 

on race replicates the results from the standardized affective tasks. It is notable that 

income emerged as an important feature in the naturalistic tasks, but not the standardized 

affective tasks. Because this was the case for positive and negative affective stimuli, it is 

unlikely to be a function of valence. It is perhaps the case that adolescents from lower-

income families engage with their parents differently than adolescents from higher-

income families. Although limited research has been done in this area, some studies have 

shown race-related variability in how parents and youth interact with one another (e.g., 

Gibson-Davis et al., 2010). Alternatively, the fact that this emerged only for the 

naturalistic task may indicate that income emerged as a highly important predictor 

controlling for affect-related neural activity. Also unique to the naturalistic parent affect 

tasks, males were more likely to be classified as substance users. This is consistent with 
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research demonstrating increased externalizing symptoms among boys compared to girls 

(Leadbeater et al., 1999). Again, the fact that sex only emerged as an important predictor 

for the naturalistic parent affect tasks suggests that demographic factors are more 

predictive of SU when controlling for affect-related neural activity compared to 

standardized affective tasks. This may speak to the reliability of naturalistic tasks. 

Although they are likely more ecologically valid, they likely generate more noisy neural 

data that is more difficult to identify and characterize.  

 Overall, the machine learning classifiers were unable to classify adolescents with 

and without SU with high levels of accuracy based on patterns of neural activity during 

the naturalistic parent affect tasks. This can be observed with classification metrics that 

are less biased to unbalanced data. Despite this, several brain regions were deemed 

important in the SU classification during training and testing. Specifically, higher 

midcingulo-insular activity (i.e., amygdala) involved in salience/emotion arousal and 

higher frontoparietal activity involved in recognition to both the negative and positive 

parent affect tasks classified substance-using adolescents. For the negative parent affect 

task only, higher frontoparietal activity involved in cognitive control and lower 

frontoparietal activity involved in self-/other-referential processing was important in SU 

classification. These findings are both consistent and in contrast with the findings for the 

standardized affective tasks. In contrast to the naturalistic parent affect tasks, lower 

midcingulo-insular and frontoparietal activity involved in salience and recognition, 

respectively, were important for SU classification. Consistent with the naturalistic parent 

affect tasks, higher activation in cognitive control and lower activation in self-/other-
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referential processing classified adolescents with and without SU. Given the poor 

performance of the machine learning models, however, these findings need to be 

interpreted with caution.  

Predicting SU Intentions & Expectancies From Neural Activation to Naturalistic 

Parent Affective Stimuli 

 For hypothesis 2, we hypothesized that neural activity during the naturalistic 

parent negative and positive affective tasks would predict SU intentions and 

expectancies. As was the case in Aim 1, the linear regression classifier was unable to 

predict any variance in SU intentions and expectancies, suggesting an extremely poor 

model fit.   

Comparing Naturalistic and Standardized Affective Tasks 

For the final hypothesis, we hypothesized that neural activity to naturalistic 

affective stimuli, specifically parent affective stimuli, would be a significantly better 

predictor of SU and SU intentions and expectancies compared to standardized affective 

stimuli. There was no evidence to support this hypothesis. There was no difference in 

how well the naturalistic parent positive affect task classified SU compared to the 

standardized positive affect card guessing task. However, the naturalistic parent negative 

affect task performed worse that the standardized negative affective task. This is in 

opposition with the hypothesis. One possibility for this finding is that the naturalistic 

parent negative affect task did not generate as much negative affect as expected 

compared to the standardized negative affective task. All families were instructed to 

discuss an issue they had faced over the past month during the PAIT. For some families, 
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this meant that they were discussing minor issues such as not making the bed or arguing 

with siblings. Although these were the most salient issue for some families, they were 

unlikely to generate high levels of conflict and negative affect. The consequence is that 

standardized negative affective stimuli, such as images of a starved child, may have 

induced more negative affect. Moreover, due to technical challenges in videorecording 

the parent-adolescent interaction conflict, some adolescents had difficulty hearing their 

parent speaking during video clips of their parent expressing negative affect towards 

them. This may have made it more challenging for adolescents to fully process the 

negative event. Given that the models predicting SU intentions and expectancies were a 

poor fit, comparisons between naturalistic and standardized affective tasks were not 

conducted.    

Implications 

 This research has implications for the affective neuroscience field, as well as for 

clinical practice. There was no evidence that affect-related neural activity reliably 

differentiated substance-using adolescents from non-using adolescents. This was the case 

across four fMRI tasks—each with a different valence and stimuli type (e.g., naturalistic 

versus standardized). This puts into question the predictive value of affective 

neuroimaging data. Recent research has shown that neuroimaging data (particularly with 

sample sizes in the hundreds as opposed to the thousands) is limited in how much it can 

predict behavior, including SU (Marek et al., 2022; Nees et al., 2012). This is particularly 

important given that behavioral and self-report data can predict lifetime SU (Nees et al., 

2012). Moving forward, increased focus on increasing the predictive value of affective 
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neuroimaging is warranted. Moreover, shifting focus to affect-related neural activity as a 

mechanism in the link between behavior and SU, instead of affect-related neural activity 

as direct predictor, may be the most advantageous path forward. Regarding clinical 

practice, it is not currently appropriate to rely on affect-related neural activity to predict 

adolescents that are or will become substance users. This means that the ability of this 

work to directly inform preventative and intervention efforts is limited. This line of work 

is still in its infancy; with advancements of affective neuroimaging in the future, the 

ability of using neural activity to identify at-risk youth may be much improved.   

Limitations and Future Directions 

 The current study benefitted from several strengths, including a diverse set of 

affective neuroimaging tasks and a larger-than-average sample size of community 

adolescents. However, this study has limitations that can be addressed in subsequent 

studies. First, there was only 23% endorsement of lifetime SU in this study, which likely 

impeded machine learning classifiers from training and then accurately testing on 

previously unseen adolescents. Thus, in the future, analyzing more balanced datasets with 

a more even distribution of substance-using adolescents and non-using adolescents is 

critical. Given recent findings suggesting the need for large sample sizes (Marek et al., 

2022), an increased emphasis on cross-laboratory studies with the ability to produce large 

sample sizes for investigation is warranted. Second, the sample of adolescents were not 

representative of the adolescent population overall, given that most were White, non-

Hispanic and upper-middle class. Research has shown that White, non-Hispanic and 

upper-middle class adolescents differ from Black and low-income in how they respond to 
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certain stimuli (Romens et al., 2015). In the current dataset, it would be challenging to 

investigate how differences in race and income are related to associations between affect-

related neural activity and SU and thus an effort to diversify future samples is justified. 

Third, the power to produce accurate models was further weakened by adolescents that 

were removed from the sample due to excessive motion and poor task performance. 

Although this is more commonly seen in adolescent compared to adult samples, it is 

problematic because it reduced the sample size and introduced more noise into the 

neuroimaging data. Future studies in adolescent samples would benefit from 

implementing protocols to reduce motion, such as practicing being still in a mock 

scanner. Fourth, the naturalistic parent affective tasks were limited by the relatively 

minimal levels of negative affect and positive affect evoked by the adolescents. This 

makes it a challenge to reasonably compare the value of standardized versus naturalistic 

fMRI tasks. One consideration for the future is to draw video stimuli from high-affect 

parent-adolescent encounters (e.g., Trier social stress task).  

Conclusion 

 Given the role of altered affective processing in adolescent SU, it is critical to 

identify neural markers of altered affective processing that can be used to identify at-risk 

adolescents in need of interventive efforts. The current study used machine learning 

approaches to classify substance-using adolescents and predict SU intentions and 

expectancies based on neural activity during standardized and naturalistic affective tasks. 

There was insufficient evidence to demonstrate that neural activity to affective stimuli 

(standardized or naturalistic) could accurately classify or predict SU and SU intentions 
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and expectancies. This may be due to limited sample size, imbalanced SU endorsement in 

the sample, and excessive noise (e.g., motion) in data. Important variables for SU 

classification were extracted and are consistent with hypotheses but need to be interpreted 

with caution (given inaccurate machine learning models) and are therefore of limited 

applicability.   
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