
DATA COMPRESSION IN STATISTICAL LEARNING BY MEANS OF
QUANTIZED RANDOM PROJECTION

by

Glenn Hui
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University
In Partial fulfillment of

The Requirements for the Degree
of

Doctor of Philosophy
Statistical Science

Committee:

Dr. Martin Slawski, Dissertation Director

Dr. Anand Vidyashankar, Committee Member

Dr. Daniel Carr, Committee Member

Dr. Emanuel Ben-David, Committee Member

Dr. Anand Vidyashankar, Department Chair

Dr. Kenneth S. Ball, Dean, The Volgenau
School of Engineering

Date: Summer Semester 2020
George Mason University
Fairfax, VA

Data Compression in Statistical Learning by Means of Quantized Random Projection

A dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University

By

Glenn Hui
Master of Science

London School of Economics, 2005
Bachelor of Science

University of Toronto, 2004

Director: Dr. Martin Slawski, Professor
Department of Statistics

Summer Semester 2020
George Mason University

Fairfax, VA

Copyright c© 2020 by Glenn Hui
All Rights Reserved

ii

Dedication

To T.K.H.

iii

Acknowledgments

I would like to thank the following people who made this possible: Dr. Martin Slawski, my
advisor, who helped me grow as a researcher and stuck with me when I was really stuck.
Dr. Anand Vidyashankar, Dr. Daniel Carr, and Dr. Emanuel Ben-David for insight and
advice that helped make my dissertation the best it can be. Dr. William Rosenberger for
his guidance and faith in me. Verronica Mitchell, Carroll Barbour, and Liz Quigley for their
help in keeping the departmental engines running. Various friends for proof reading then
humoring me when I try to explain what they just read. And last but certainly not least,
my parents for their love and support.

iv

Table of Contents

Page

List of Figures . viii

Abstract . xi

1 Introduction . 1

2 Chapter 2 . 4

2.1 Random Projection Background . 6

2.1.1 Preservation of pairwise distances and inner products 6

2.1.2 Quantization and other variants of random projection 7

2.2 Random Projection Theoretical Foundation 9

2.2.1 Algebraic Formulation of Random Projection 9

2.2.2 Unbiasedness of Distance Estimator 10

2.3 Estimators of Pairwise Distances and Inner Products 13

2.3.1 Applications and Related Work . 16

3 Chapter 3 . 18

3.1 Quantization Methods Defined for Scalars 19

3.1.1 Deterministic Quantization . 19

3.1.2 Stochastic Quantization . 20

3.2 Comparison of Estimators of ρ after Deterministic and

Stochastic Quantization . 21

3.2.1 Estimators of ρ . 21

3.2.2 Expectation and variance of 1-bit discrete quantized estimator ρ̂qM . 22

3.2.3 ρ̂qS , Stochastic Quantization estimator 30

3.2.4 Analysis of ρ̂S , estimator after Stochastic 4-level / 2-bit Quantization 33

3.2.5 General m-level estimator ρ̂S . 35

3.2.6 MSE . 38

3.3 Other estimators of ρ in the presence of quantization 41

3.4 Application to Spectral Clustering . 44

3.4.1 Quantized experiments . 44

3.5 Discussion . 45

v

4 Chapter 4 . 47

4.1 Bounds for Estimators of ρ after Random Projection 48

4.1.1 Variance of g(ρ̂lin) . 48

4.1.2 Expectation and bias of g(ρ̂lin) . 53

4.1.3 Expectation of ρ̂mult . 55

4.2 Bounds for Gaussian Similarity Measure . 60

4.2.1 Expectation of g(ρ̂mult) . 60

4.2.2 Variance of g(ρ̂mult) . 61

4.3 Bounds for Gaussian measure g(ρ̂) for quantized ρ̂ 65

4.3.1 Delta method for expectation g(ρ̂qM), 1-bit Quantized MLE 65

4.3.2 Delta method / Taylor expansion for expectation g(ρ̂qS),

Stochastic Quantization estimator 66

4.3.3 Bounds for g(ρ̂lin), general b bit quantized estimator 68

4.4 Discussion . 72

5 Chapter 5 . 74

5.1 Spectral Clustering Simulation Experiments 74

5.1.1 Simulation Setting Details . 75

5.1.2 Initial Results: Clustering Accuracy against ρ and k 76

5.1.3 Linear versus Multiplicative Estimator 77

5.1.4 Variance of clustering accuracy . 83

5.1.5 Ratios and Differences of Similarities 83

5.2 Spectral Clustering and Random Projection Algorithm Parameters 86

5.2.1 Gaussian kernel parameter σ . 86

5.2.2 Known correlation between clusters ρ 87

5.2.3 Reduced dimensionality k . 87

5.2.4 AR(1) simulation results . 90

5.3 Real data experiments . 92

5.3.1 MNIST dataset . 92

5.3.2 Columbia University Image Library (COIL-20) dataset 95

5.4 Discussion . 96

A Appendix 1 . 97

A.1 Section 2.1, Johnson-Lindenstrauss for inner products 97

A.2 Section 2.2.2 Alternative Proof . 98

A.3 Section 3.2 Proof using Isserlis’ theorem . 102

vi

A.4 Section 3.2 Lemmas . 103

A.5 Delta Method using Taylor Expansion Detailed 104

A.6 Section 3.2.3 discssion on selection of b . 105

A.7 Section 3.2.4 . 108

A.7.1 Section 4.1, full calculation using Taylor expansions for E(ρ̂) 110

B Appendix 2 . 112

B.1 Spectral Clustering Experiment Details . 112

B.1.1 Spectral Clustering Implementation 113

B.1.2 Experiment 1 Details . 115

B.1.3 Experiment 1 Results . 116

B.1.4 Experiment 2 Details . 118

B.1.5 Experiment 2 Results . 120

Bibliography . 121

vii

List of Figures

Figure Page

2.1 Random Projection conceptualized. 7

3.1 Simulated ρ̂qM results using 1-bit MLE demonstrating that both are O
(
1
k

)
. 29

3.2 Variance of 2-bit ρ̂S , levels = {−4.0,−0.5, 0.5, 4.0} corresponding to a = 0.5,

b = 4.0. Theoretical and simulated values are plotted against each other,

with the simulated values confirming that the variance matches (3.24). . . . 36

3.3 Theoretical MSE of ρ̂ by ρ (uncompressed data’s correlation), demonstrat-

ing that 1-bit Discrete Quantization has a lower MSE than 1-bit Stochastic

Quantization, and still better than 2- and 3-bit Qs for ρ < 0.6. 40

3.4 Classification Accuracy of QRP + SC on MNIST, averaged results over all

pairs. We can see that quantized performance rapidly converges to that of

full precision with only 2 or 3 bits. 46

4.1 Calculated and simulated results for Taylor expansion remainder terms of

Variance of ρ̂. In these plots we plot both the actual values, along with

plotted curves with regression lines, verifying that (left) E(ρ̂− ρ)3 = O
(

1
k2

)
,

(right) Bias2 (ρ̂) is O
(
1
k

)
. 51

4.2 log |bias| vs ρ, separate models for each k. In this plot we demonstrate that

bias ρ = O
(
1
k

)
; we plot log values to aid clarity. 59

4.3 Plot of log Var(g(ρmult)) against ρ, simulated and theoretical; we plot log

values so that differences are clearer. The close fit shows that the true values

of Var(g(ρ̂mult)) helps confirm our calculated O
(
1
k

)
. 64

4.4 log MSE of ρ̂, quantized linear estimator. We vary levels of b · k = 384.

Theoretical upper bound as calculated above in Eq. 4.19. While this plot is

mostly to compare simulated values and theoretical upper bounds, we also

note that MSE improves rapidly as b increases from 1 to 3, where it starts to

stablize. 73

viii

5.1 Clustering Accuracy, Regime 1, n = 1000, replicates = 100, σ = 1. These two

plots are the initial results using the linear estimator ρ̂lin, demonstrating the

relationship of Accuracy with ρ (true, original correlation) and k (reduced

dimensionality). 77

5.2 Bias and variance of g(ρ̂) for both linear and multiplicative estimators . . . 80

5.3 Clustering accuracy, Regime 1, n = 2000, replicates = 100. Besides the

relationship between Accuracy and both ρ and k, this plot shows that the

two estimators ρ̂lin and ρ̂mult perform similarly, with ρ̂lin performing slightly

and consistently better. 82

5.4 Variance of accuracy, Regime 1, n = 1000, replicates = 100, ρ̂lin. The goal of

these plots is to highlight how clustering accuracy varies more when accuracy

is in the ”middle” range of around 0.65 to 0.85 (noting that Accuracy is

between 0.5 and 1.0 for two clusters). 83

5.5 Variance of accuracy, Regime 1, n = 1000, replicates = 100, ρ̂lin. These are

two of the plots we earlier combined in Fig. 5.3, with standard error bars to

demonstrate how much accuracy can vary. 84

5.6 Difference and Ratio of g(ρ̂w) / g(ρ̂b), theoretical and simulated results. The

aim of the ratio and difference plots is to show how separation in g(ρ̂) =

exp((ρ̂ − 1)/σ2) varies with k and (true, pre-compression) ρ. The expected

relationship with ρ is clear. We can also see, as k increases, the simulated

plots follow the theoretical lines more closely. 85

5.7 Difference of g(ρw) - g(ρb) and ratio of g(ρw) / g(ρb) against σ, theoretical

and simulation results. 87

5.8 Relationship between Clustering Accuracy and Difference g(ρw) - g(ρb), across

σ. Each of the four panels fixes a different value of ρ. Ultimately the plots

show us that the difference in similarity measures does not tell the entire story. 88

5.9 Plots of theoretical g(ρ). Each plot has a different value of σ; within each

plot are standard error bars for different levels of k. The goal of these plots

is to show how rapidly the compressed data approaches the true values as k

increases. In particular we can see that the intersection with g(ρ) approaches

ρ = 0 when σ = 1. 89

5.10 Accuracy vs ρ, regime 2 (AR(1) ρ within blocks), for various σ. 90

ix

5.11 Variance of accuracy vs ρ, regime 2 (AR(1) ρ within blocks), for selected

values of k. 91

5.12 MNIST Accuracy vs ρwithin − ρbetween, varying k. 20 replicates, σ = 1.0. . 93

5.13 MNIST Accuracy vs ρwithin − ρbetween, varying σ. 50 replicates, k = 150. . . 94

5.14 Accuracy vs k, Spectral clustering. RP vs PCA vs full data, no quantization. 95

A.1 Values of b corresponding to various α and n · k. We can see that even for

extreme values, setting b = 7 is sufficiently high. 106

B.1 RP and PCA, k ≤ 300 . 117

B.2 RP, k ≥ 400 . 117

B.3 Experiment 1 Results . 117

B.4 Experiment 2 Results . 120

x

Abstract

DATA COMPRESSION IN STATISTICAL LEARNING BY MEANS OF QUANTIZED
RANDOM PROJECTION

Glenn Hui, PhD

George Mason University, 2020

Dissertation Director: Dr. Martin Slawski

This dissertation explores advancements in random projection, a method of dimension-

ality reduction that reduces the number of variables in a dataset via multiplication with a

smaller, randomly generated matrix. Compared to other dimensionality reduction methods,

random projection has very fast operation time and a small memory footprint, at the cost of

potentially more information loss. This dissertation investigates the effects of quantization

on random projection, particularly in conjunction with machine learning algorithms. We

demonstrate that in many settings the amount information loss can be managed to be of

minimal practical consequence.

Beyond establishing an effective method of data compression for machine learning, this

dissertation provides formulae and code that allow future researchers, or anyone who seeks

to reduce their data under certain circumstances, to determine an optimal compression

scheme. We also feel that the structure of our proofs can be generalized to suit them a

variety of machine learning algorithms, or quantization methods.

The first two chapters of this dissertation introduce the topic and provide background

information, respectively. Chapter 2 goes into significant algebraic detail to provide con-

text for understanding the following chapters. Chapter 3 investigates quantization, with

two different methods of quantization compared both individually and when combined with

random projection. It focuses on proofs on bounds of mean squared errors. Chapter 4

focuses on random projection in conjunction with spectral clustering, an algorithm whose

strengths align well with those of random projection. Again the focus is on analyzing

bounds. Finally, chapter 5 explores these algorithms through experiments. Two simulation

experiments further explore the technical details of spectral clustering and random projec-

tion, before we close with some real data experiments that compare random projection to

principal components analysis.

Chapter 1: Introduction

Introduction

As computing power and storage capabilities have grown, so has the amount of data we

store: large datasets now abound in all corners of industry, research, and government. With

large data sets come associated difficulties. In particular, as dimensionality – the number

of variables in a dataset, or columns if the data are thought of as a table or matrix – grows,

datasets become difficult to interpret, statistical analysis is burdened by the increasing

sample size required for statistical significance, and computation time explodes. Even core

operations required for data analysis, such as matrix inversion, become intractable, making

techniques for dealing with massive datasets increasingly in-demand.

A common tool employed when dealing with large datasets is data compression, which

is the encoding of data to use less storage space, and is discussed in contexts ranging

from imaging, big data, signal processing, and communications. When compressing data,

there are several considerations needed: the amount of time taken to compress the data

(and reconstruct it if required), the amount of compression (savings), and the amount of

information loss. All of these trade-offs will be addressed throughout this dissertation.

There are many approaches to data compression, but this dissertation is primarily in-

terested in dimensionality reduction, a class of methods that aim to reduce the number

of variables stored or used in a dataset. One such method is random projection (RP, or

RPs for random projections), which takes an original dataset of dimension d and reduces it

to dimension k — perhaps orders of magnitude lower than d – by multiplying the data in

matrix form by a randomly generated matrix.

This dissertation investigates advancements in and applications of random projection,

1

primarily around quantized random projection (QRP). Quantization is a process of trans-

forming continuous data to discrete; in the simplest case, any continuous scalar can be

reduced to one bit, either positive or negative. Quantized random projection, then, can

be thought of as element-wise quantization of randomly projected data. We focus on two

sub-types of quantization, and combining with RP: deterministic quantization and stochas-

tic quantization. Where deterministic quantization assigns a discrete value based solely on

where the original value is, stochastic uniform quantization assigns a discrete value with

probability equal to the distance of the real point from each neighboring threshold or “cut”

point. We discuss this in detail in Chapter 3.

Overview of Contributions

This dissertation explores the theory and practice of using machine learning algorithms on

data that has been compressed via quantized random projection. To be precise, we focus on

applying RP to a data set before using the compressed data as input to spectral clustering.

Spectral clustering is a state-of-the-art clustering method that creates a graph out of a

dataset and uses the eigenvectors of this graph’s similarity matrix to perform clustering [1],

which is what random projection aims to preserve. In many contexts spectral clustering

is among the best performing methods, has several performance guarantees, and is non-

parametric and thus broadly applicable. Specific applications with promising experimental

results include speech separation [2] and biotechnology [3]. Finally, we briefly explore the

impact of quantized random projection on other machine learning algorithms.

The setting of our experiment is a high-dimensional data set with n observations and d

variables, X ∈ Rn×d. For clarity, by “data compressed via quantized random projection”,

we mean that the input for the machine learning algorithms shall not be the original data

X ∈ Rn×d but compressed data Q ∈ (M±)n×d, where Q is the element-wise quantized

version of Z = XR, as described in section 3.1, and M± is a set of codes representing

discrete partitions of the real line. This concept is defined in detail in (3.1).

2

We can divide our work into theoretical and applied areas. In terms of theory, we

perform analysis on how quantization affects estimators, expected values, and variances.

We calculate bounds for bias and variance, the first step of which is to assess the bias

and variance of the Gaussian similarity s(xi, xj) = exp(−‖xi − xj‖2/2σ2) using the various

“quantized” estimators described above. (We note, again, that the estimators themselves

are not quantized, thus the quotation marks; we use the term “quantized estimators” to

refer to estimators based on quantized compressed data.) We define Gaussian similarity

function formally here, for some known tuning parameter σ:

s : Rd × Rd → R, x, x′ 7→ exp(−‖x− x′‖2/2σ2) (1.1)

As part of this exploration, we shall examine the ideal usage of storage space, or more

specifically the relationship between b bits and k compressed dimensions. To illustrate this

idea, let us assume that for our purposes we have 256 bits to store each observation of some

data set after compression: we could store that as, say, 256 columns of 1-bit data (k = 256,

b = 1), or 128 columns of 2-bit data (k = 128, b = 2), and so on.

We confirm this analysis with experiments and simulations, most of these presented in

line with relevant work. The final chapter also contains some applied experiments involving

spectral clustering on real data that has been compressed via QRP.

3

Chapter 2: Random Projection and Dimensionality

Reduction

Dimensionality reduction is an increasingly important field, and within that field random

projection has been gathering interest due to its speed, especially in comparison to principal

components analysis (PCA). In this chapter we present some fundamental proofs that later

work will build upon and establish background theory.

Chapter outline

We begin with theoretical definitions of random projections and proofs on pairwise distances

to establish the context of our work. We move on to theoretical foundation and comparisons

with PCA.

4

Notation Table

I(·) Indicator function

≡ Equality by definition

X A script capital letter generally refers to a matrix.

x or x′ A script lowercase letter generally refers to a vector. Shorthand x, x′

indicates an arbitrary pair of observations from a dataset X.

xi The ith scalar element of vector x.

xij The i, j scalar element of matrix X.

xi,: The ith row vector of matrix X.

x:,j The jth column vector of matrix X.

‖x‖q Lq-norm of a vector x ∈ Rd, i.e. ‖x‖q =
(∑d

i=1 x
q
)1/q

.

‖x‖ implicitly means the L2-norm if subscript q is missing

〈x, x′〉 Usual Euclidean inner product of vectors x, x′ ∈ Rn:

x ∼ N(µ,Σ) Random vector x follows a Gaussian (normal) distribution with mean

vector µ and covariance matrix Σ

argmin
r

f(·, r) The value of r that minimizes f(·, r).

argmax
r

f(·, r) The value of r that maximizes f(·, r).

f (j)(·) The jth derivative of f(·)

i.i.d. Independent and identically distributed

w.p. With probability

log(x) Natural logarithm of x

Bias1(ρ̂) First order Taylor expansion approximation of Bias(ρ̂),

where ρ̂ is an estimator of some observed value ρ.

Var1(ρ̂) First order Taylor expansion approximation of Var(ρ̂)

k = Ω(f(n)) k is asymptotically lower bounded by f(n)

QD(·) Discrete quantization as a function of some real-valued input

QS(·) Stochastic quantization as a function of some real-valued input

5

2.1 Random Projection Background

We begin with a precise definition of random projection and the setting we work in. Given

n observations with d variables, represented as X ∈ Rn×d, the rows of X are the obser-

vations and the columns of X are the variables. We refer to each observation i of X as

row vector xi, and an arbitrary pair of observations as x, x′. Our goal is to compress this

data with minimal loss in pairwise distances 〈x, x′〉 for each pair of observations x, x′ in

the data set. Random projection creates a compressed data set Z ∈ Rn×k by multiplying

X by a random d × k matrix R ∈ Rd×k: that is Z = XR [4]. (We refer to observations

of Z, corresponding to arbitrary original observations x, x′, as z, z′.) “Random projection”

can in fact be used to describe various implementations, such as forming Z = RX where

X ∈ Rd×n has observations in columns and features in rows [5], but we will always apply

RP as Z = XR.

The elements of R = (rij), 1 ≤ i ≤ d, 1 ≤ j ≤ k, are independently and identically

distributed (i.i.d.) random variables. A common case – and the one we focus on in our

research – is to let each rij be a standard normal random variable. Unless otherwise noted,

henceforth RP will be assumed to be standard normal RP – or alternatively properly scaled,

i.e., rij ∼ N(0, 1k), where k is the reduced dimension. The scaling need not be done at this

stage, but doing so makes later formulae cleaner. Then Z = (zij), 1 ≤ i ≤ n, 1 ≤ j ≤ k. We

use the convention that x is an arbitrary observation (row) of the original data X, and z is

the corresponding observation of the compressed data Z. We treat the data x as fixed, and

work with properties of the projected data z conditional on x. We illustrate this concept

via a diagram of block matrices, Fig. 2.1.

2.1.1 Preservation of pairwise distances and inner products

Random projection preserves approximate Euclidean distance between any two data points

(rows of X) x and x′: we can bound the difference between pairwise distances of compressed

6

Figure 2.1: Random Projection conceptualized.

data points z and z′ compared to the true distances between the original data points.

Formally, this preservation of squared distances is guaranteed by the Johnson-Lindenstrauss

lemma [6], which, in the context of RP, gives us that for any error factor ε ∈ (0, 1), there is

some dimension k = Ω

(
log(n)

ε2

)
, such that

(1− ε)‖x− x′‖2 ≤ ‖z − z′‖2 ≤ (1 + ε)‖x− x′‖2

This preservation extends to inner products as well, that is:

〈x, x′〉 − ε · ‖x‖‖x′‖ ≤ 〈z, z′〉 ≤ 〈x, x′〉+ ε · ‖x‖‖x′‖

Appendix A.1 contains a derivation of this statement.

It follows that random projection preserves both pairwise distances and inner products,

a characteristic we shall make implicit use of frequently throughout this dissertation.

2.1.2 Quantization and other variants of random projection

Quantization is a procedure that partitions the real line into disjoint intervals (“bins”);

each bin is associated with a code, typically some real value within its associated bin.

Quantization, like random projection, aims to save on storage space, and is often seen in

7

applications where bit rate is at a premium such as signal and image processing. Combining

these two methods by quantizing the randomly projected data, element-wise, allows for

further storage savings, particularly for applications where throughput is a primary concern:

thus Quantized Random Projection (QRP) [7]. It is not uncommon to apply quantization

with other methods, such as in hashing [8, 9] or compressed sensing [10].

We explore two methods of quantization: Deterministic Quantization (specifically Lloyd-

Max quantization[11], which we may also refer to as simply “quantization” when context

is clear) as well as Stochastic Quantization (a method that essentially flips a weighted coin

to choose which bin to assign to each value) [12]. Our overall process is the same for either

case: letting Qu(·) be the quantization function, quantized randomly projected matrix Q

consists of element-wise quantization of randomly projected matrix Z, i.e.

Q = (qij) = Qu(xTi rj), i ∈ {1, 2, ..., n}, j ∈ {1, ..., k}

We illustrate the concept in matrix form below.

Z =



xT1 r1 xT1 r2 ... xT1 rk

xT2 r1 xT2 r2 ... xT2 rk

...

xTnr1 xTnr2 ... xTnrk


Q =



Qu(xT1 r1) Qu(xT1 r2) ... Qu(xT1 rk)

Qu(xT2 r1) Qu(xT2 r2) ... Qu(xT2 rk)

...

Qu(xTnr1) Qu(xTnr2) ... Qu(xTnrk)



Comparison to structured random projection

It is worth making the distinction between quantized random projection and various “struc-

tured” random projections. Achlioptas [13] has shown that sign random projections – that

is, random projections where the projection matrix simply takes two values, positive and

negative (+1 / -1) with equal probability – still provide consistent estimation of distances

between points. He also proposed “sparse” random projections, in which each element of

8

the projection matrix takes on three values instead of two: -1, 0, +1, with respective prob-

ability 1/6, 2/3, 1/6. These structured RPs are distinct from QRP in that structured RPs

can be thought of as quantizing entries of the projection matrix, whereas QRP quantizes

after projection is completed.

2.2 Random Projection Theoretical Foundation

The next sections establish foundational proofs involving random projection (RP). We occa-

sionally compare results to those of principal component analysis (PCA, or PCs for principal

components) to help contextualize.

2.2.1 Algebraic Formulation of Random Projection

We begin by establishing some syntax. As mentioned above, given n observations of d-

dimensional Euclidean data X ∈ Rn×d, random projection reduces dimensionality to k-

dimensional Euclidean data Z ∈ Rn×k by multiplying by a random d× k matrix R ∈ Rd×k

– that is, Z = XR. First note that Z = (zij) = (1√
k
xi,:r:,j). We can also represent X and

Z by their respective rows (data points), i.e.

X =



xT1,:

xT2,:
...

xTn,.


and Z =



zT1,:

zT2,:
...

zTn,:


, zTi,: = [zi1, zi2, . . . , zik]

Having presented the basic formulations explicitly, we drop the above notation going forward

and return to a simpler notation: we indicate a vector simply by a letter, ie z instead of

zi,:, and denote a pair of arbitrary observations (vectors) as z and z′. Using this notation,

9

Euclidean distance is

d2(x, x′) = ‖x− x′‖2 = ‖x‖2 + ‖x′‖2 − 2〈x, x′〉.

When dealing with unit norms (i.e., ‖x‖ = 1 for all rows / observations x of X), this reduces

to

d2(x, x′) = ‖x− x′‖2 = 2(1− 〈x, x′〉) = 2(1− ρ),

where ρ is the cosine similarity of (cosine of the angle between) x and x′. This reduces to

the inner product 〈x, x′〉 for unit length vectors.

2.2.2 Unbiasedness of Distance Estimator

We focus our work on Gaussian (normal) Random Projections, where each element of

R = (rij), 1 ≤ i ≤ d, 1 ≤ j ≤ k is a N(0, 1) random variable. Such RPs provide unbiased

estimators for d2(x, x′) = ‖x− x′‖2, which we prove below.

Proposition 2.2.1. Estimating distance after random projection is unbiased,

i.e. E[d2(z, z′)] = d2(x, x′).

Proof. We show that E[d2(z, z′)] = d2(x, x′). By definition,

d2(z, z′) = ‖z − z′‖2 = ‖z‖2 + ‖z′‖2 − 2〈z, z′〉 , and

E[‖z‖2] = E

[
k∑
i=1

z2i

]
= E

 k∑
i=1

 d∑
j=1

xjrji

2

/k

 (2.1)

Since each rji ∼ N(0, 1), we have

E(xj · rji) = xj · E(rji) = 0, and

E(x2j · r2ji) = x2j · E(r2ji) = x2j

10

So each term in the summation in (2.1) above, E(z2i) = E(x′2 · r2ji) = x′2

E[‖z‖2] =
k∑
i=1

x′2 = ‖x‖2

Similarly, E‖z′‖2 = ‖x′‖2. It now remains to show that E〈z, z′〉 = 〈x, x′〉.

E〈z, z′〉 = E

[
k∑
i=1

ziz
′
i

]
= E

 k∑
i=1

 d∑
j=1

xjrji

d∑
j=1

x′jrji


= E

[
r211(x1x

′
1) + r222(x2x

′
2) + · · ·+ r2dd(xdx

′
d)
]

= E
[
(x1x

′
1) + (x2x

′
2) + · · ·+ (xdx

′
d)
]

=

d∑
i=1

xix
′
i = 〈x, x′〉

Thus E〈z, z′〉 = 〈x, x′〉, and so in all E
[
d2(z, z′)

]
= d2(x, x′).

Remark

We used three properties of random projections in the above proof: that for all i, j ∈

1, 2, . . . d, 1) E[rij] = 0, 2) Var(rij) = 1, and 3) for all k, l such that ! (k = i, l = j), Cov(rij , rkl) =

0. Thus, the above proof applies to any such random projection.

Proposition 2.2.2. The estimator for distance is also consistent.

Proof. To prove consistency it suffices to show that d2(z, z′)→ d2(x, x′) in probability, i.e.

∀ε, lim
k→∞

P
[
| d2(z, z′)− d2(x, x′) |≥ ε

]
= 0 (2.2)

We first show that the Var(d2(z, z′)) is O
(
1
k

)
. Note that d2(z, z′) =| z − z′ |2, and that

z − z′ is a normal random vector. To see this, note that

11

z − z′ = 1

k

d∑
j=1

xjrij −
1

k

d∑
j=1

x′jrij

=
1

k

d∑
j=1

(xj − x′j)rij

which is a linear combination of normal random variables, and thus is normally distributed

itself. It follows that each element of z − z′ has finite variance, and thus

σ2d ≡ V ar(d2(z, z′)) = Var

1

k

d∑
j=1

(xj − x′j)rij


= O

(
1

k

)

We now turn to Chebyshev’s Inequality, which states that, for any random variable X

with finite mean µ and finite variance σ2, for all ε > 0

P (| X − µ |≥ ε) ≤ σ2

ε2

And so in our case,

P (| d2(z, z′)− d2(x, x′) |≥ ε) ≤
σ2d
ε2

=
1

ε2
·O
(

1

k

)

Taking the limit as k →∞, we have

lim
k→∞

P
[
| d2(z, z′)− d2(x, x′) |≥ ε

]
= 0

12

Which satisfies (2.2).

As an alternative proof, one can show that ‖z‖, ‖z′‖, and 〈z, z′〉 are consistent estimators

of ‖x‖, ‖x′‖, and 〈x, x′〉 respectively. Since d2(z, z′) = ‖z‖2 +‖z′‖2−2〈z, z′〉, it follows that

d2(z, z′) is a consistent estimator for ‖x‖2 + ‖x′i‖2 − 2〈x, x′〉 = d2(x, x′).

2.3 Estimators of Pairwise Distances and Inner Products

Many machine learning and multivariate statistics algorithms use the input data via pair-

wise distances or inner products between observations. Examples include k-means cluster-

ing, spectral clustering, linear regression, Principal Components Analysis (PCA), Linear

Discriminant Analysis, and Canonical Correlation Analysis. Random projection’s preserva-

tion of pairwise distances and inner products thus allows us to apply these algorithms on

compressed data with bounded error. Estimation of the original data X’s pairwise distances

or inner products using the compressed data Z is thus a key aspect of applying RP, and

our research.

In this context our topic of interest becomes the trade off of bit rate against accuracy

of pairwise distance estimation, instead of the usual paradigm of having random data and

(say) reducing the variance of a sample. We note that we are thus treating the input data

X as observed constants; we are only concerned with the randomization of the compression

(random projection).

Example Uses for Pairwise Distance Estimation

The spectral clustering algorithm is a prime example application of pairwise estimation.

In spectral clustering, actual data points are discarded entirely for an n-node graph –

represented as an n × n similarity matrix, where n is the number of observations – made

up of pairwise distances, such as Gaussian similarity s(x, x′) = exp(−‖x− x′‖2/2σ2).

Another example is linear regression, which – while normally thought of as a function of

inner products between variables – can be represented as a function of the inner products

13

between observations, i.e. via the dual form. In the dual form, we solve for the coefficient

α = (XXT)−1y [14], which can be transformed to the familiar coefficient estimator β =

XTα. Calculating the dual form of linear regression on projected data Z = XR involves

ZZT (instead of ZTZ, as the primal form does), i.e. the pairwise distances preserved by

random projection. These sorts of examples inform our focus on estimators of ρ.

Other examples include K-nearest neighbors classification [15], Support Vector Machines

[16], and PCA itself [17].

Estimators of ρ after random projection

Perhaps the most straightforward estimator of 〈x, x′〉 is 〈z, z′〉. This is of course also a

natural estimator of ρ, which we call the “linear” estimator ρ̂lin = 〈z, z′〉. This estimator is

unbiased (i.e., E(〈z, z′〉) = ρ)) and consistent, as we demonstrated in the previous section.

It is also simple to calculate, and has variance 1+ρ2

k [7].

Now, note that each pair of points (zl, z
′
l), l ∈ {1, 2, ..., k} have distribution

(zl, z
′
l)
T ∼ N


0

0

 ,

 ‖xl‖2k
〈xl,x′l〉
k

〈xl,x′l〉
k

‖x′l‖
2

k


 .

Then, assuming the data are 0-mean, 〈z, z′〉 is the sample covariance of the pairs (zil, zjl),

and thus is the MLE and uniform minimum variance unbiased estimator (UMVUE) of 〈x, x′〉

in the case where we do not have individual norms [19].

We can improve upon the linear estimator above if we assume the norms of the original

data observations ‖x‖ have been calculated and stored; in this context, we can assume that

‖x‖ = 1 for all i ∈ {1, · · · , n}. Doing so is efficient: calculation of the ‖x‖ can be done as

the data are read in, and storage is only of the order of O(n). Given the ‖x‖, inner product

and normalized inner product are equivalent. We shall henceforth refer to normalized inner

product as ρ = 〈x, x′〉/‖x‖‖x′‖, and work in the unit norm context. Note also that in the

14

unit norm case, inner product and L2 norm are also equivalent without even needing the

norms, as then ‖x− x′‖2 = 2(1− ρ).

The papers [19] and [7] discuss two other closed form estimators that depend only on

norms: the “simple margin” estimator ρ̂add and “normalized” estimator ρ̂mult:

(i) ρ̂add = 1− 1

2
‖z − z′‖2 (ii) ρ̂mult =

〈z, z′〉
‖z‖‖z′‖

The former is unbiased and has variance 2(1−ρ)2/k, lower than ρ̂lin when ρ > 2−
√

3 ≈ 0.27.

The latter is asymptotically unbiased with variance (1 − ρ)2/k, uniformly lower than ρ̂lin

(but usually higher than that of ρ̂add).

Non-quantized MLE

Finally, Li [19] suggests the maximum likelihood estimator (MLE), which uses the fact that

each pair of z, z′ are bivariate Gaussian with correlation ρ. The MLE then results as

ρ̂MLE = argmin
r

(
−1

2
log(1− r2)− 1

2

1

1− r2
(‖z‖2 + ‖z′‖2 − 2r〈z, z′〉)

)

One can show further that ρ̂MLE is a solution of the following cubic equation in ρ:

ρ3 − ρ2〈z, z′〉+ ρ(−1 + ‖z‖2 + ‖z′‖2)− 〈z, z′〉 = 0

The MLE has lower asymptotic variance than the other estimators, but its non-closed form

solution makes it unwieldy.

Our first step involving estimators is to analyze the effects of the various estimators

(in quantized context) on the Gaussian similarity mentioned above, s(x, x′) = exp(−‖x −

x′‖2/2σ2), plugging in our various estimators into the distance formula. In particular, we

note that by the invariance property of the MLE, the MLE of any function of an estimator

is simply that estimator plugged into the function. We conduct the analysis on bias and

15

variance, and perform simulations to see how an algorithm (specifically, spectral clustering)

using this distance performs.

2.3.1 Applications and Related Work

Over the past several years, researchers have looked into applications of machine learning

algorithms to data compressed by random projection. In particular, the comparison to

Principal Components Analysis is a natural and common one; both methods can be thought

of as a matrix multiplication that reduces the original data in matrix form X ∈ Rn×d to

some Z ∈ Rn×k. We discuss PCA and its relationship to RP further in subsection “Random

Projection Algebraic Background” below.

In [20] and [21], Dasgupta compares RP to PCA in the context of learning mixtures of

Gaussians, in particular discussing “c-separation”, the distance between the centers (means)

of Gaussians to be compared. He theorizes that the “spherical” effects of RP – that is, data

have lower eccentricity after RP – would make them efficient under certain contexts, and

finds that combining RP with expectation-maximization (EM) works in Optical Character

Recognition (OCR) and simulations.

In [22], Boutsidis et al. examine sign random projection in conjunction with k-means

clustering. They establish bounds for performance: given an error bound ε ∈ (0, 1/3),

k-means clustering can be performed on the compressed data while preserving clustering

structure within a factor of 2+ε. (In other words, the objective function of the approximated

clustering is within 2 + ε of the optimal clustering’s objective function.)

They test both accuracy and run-time performance via a facial recognition task and

find that RP performs only slightly worse in terms of misclassification rates than several

competing methods, with performance often orders of magnitude faster. (It is worth noting

here that we deemed run-time optimization outside of the scope of this dissertation.)

In [23], Bingham and Mannila discuss RP as applied to image processing (using images of

nature) and text data. They compare PCA and discrete cosine transform to both Gaussian

and Sparse RP, over ranges of k ranging from 1 to 800. They find that RP does not introduce

16

significant distortion to their data, and performs significantly better than discrete cosine

transform which is a computationally fast algorithm like RP. Furthermore, they add noise to

their data and find that RP is relatively robust, suggesting that it could be useful for noise

reduction. Generally, they note that RP mitigates the curse of dimensionality and may be

useful for cases where other methods of dimensionality reduction may be computationally

infeasible. A similar survey found that random projection performs fairly well in general

contexts [24].

Several surveys have been done in which RP is compared with PCA, including [25],

in which they run both methods before nearest neighbor clustering and find comparable

results, and [26], which looks at several other dimensionality reduction methods as well for

cancer image classification.

Other applications that have been explored with promising results so far include facial

recognition [27] via neural networks [28, 29], nearest neighbor classification [26], hyper-

spectral imaging [30,31], cybersecurity (specifically anomalous behavior detection [32,33]),

image compression [34], and privacy for distributed computing [35,36].

17

Chapter 3: Quantization Methods

In this chapter we explore quantization and its application to random projection. Quan-

tization is a procedure that partitions the real line into disjoint intervals (“bins”); in the

simplest case, any continuous scalar can be reduced to one bit, either positive or negative.

Generally, each bin is associated with a code, typically some real value within its associated

bin. (This is sometimes referred to as ”scalar quantization”, as it is quantizing a single

number on the real line to a discrete subset of the real line. We note here that all of

the quantization we do in this dissertation is on a scalar; if we discuss quantization of a

matrix or vector, we mean performing scalar quantization on each element independently.)

Quantization, like random projection, aims to save on storage space, and is often seen in

applications where bit rate is at a premium such as signal and image processing. Combining

these two methods for further storage savings can then be referred to as Quantized Random

Projection (QRP) and has become a topic of some study [7].

Chapter Outline

This chapter is divided in to three parts. We begin with detailed definitions and background

theory of quantization methods, then compare theoretical bounds for the Mean Squared

Error (MSE) of these methods. We then explore the relationship between quantization and

random projection. We close with practical experiments performing Spectral Clustering

on data compressed via Quantized Random Projection that combine all the above theory.

Throughout the chapter we will intersperse small simulations that demonstrate the theory.

18

3.1 Quantization Methods Defined for Scalars

In this section we define two methods of quantization, which we dub Deterministic Quan-

tization (DQ, or QD(·) when referring to a function) and Stochastic Quantization (SQ or

QS(·)). (Recall that we denote the general quantization function Qu(·).) At a high level,

our methodology for quantized random projection is the same for each method: we be-

gin with data X ∈ Rn×d, with n observations and d variables, then randomly project it

to generate Z = XR, Z ∈ Rn×k, R ∈ Rd×k. We then perform element-wise quantiza-

tion: letting qij = Qu(zij) for each (i, j), we denote the quantized, compressed data set as

Q = (qij), 1 ≤ i ≤ n, 1 ≤ j ≤ k.

3.1.1 Deterministic Quantization

We begin with a formal definition of deterministic quantization. Scalar deterministic quan-

tization can be defined as a function QD from R to a set of codes (often called quantization

alphabet) M± = −M∪M, where M = {µi}, i ∈ {1, 2, ..., 2b−1}. Each code µi represents

one of the ordered, non-overlapping bins defined by its thresholds [ti, ti+1); for our work we

assume that µi ∈ [ti−1, ti). Note that in our work the codes are symmetric around 0, as

the projected data to be quantized are 0-mean. Equipped with those quantities, we are in

position to define the map QD:

QD : R→M± ≡ −M∪M, z 7→ QD(z) = sign(z)
2b−1∑
s=1

µsI(|z|∈ [ts−1, ts)) (3.1)

Quantized random projection then can be thought of as element-wise quantization of

the randomly projected data Z, where Z = XR: letting qij = QD(zij) for each (i, j), we

denote the quantized, compressed data set as Q = (qij), 1 ≤ i ≤ n, 1 ≤ j ≤ k. We may also

represent this concept as Q = QD(Z).

Unless otherwise noted, deterministic quantization in our research will be performed

19

according to the well-known Lloyd-Max algorithm [37,38].

3.1.2 Stochastic Quantization

Stochastic Quantization, sometimes known as dithering or Stochastic Uniform Quantization

in other data compression contexts [12, 39], is a probabilistic method of quantization that

essentially flips a weighted coin to decide which of the two nearest cutpoints z is assigned to.

Stochastic quantization eliminates bias but, as we will demonstrate, tends to have a larger

variance. In this chapter we compare these methods’ estimation of ρ theoretically, then

verify with simulation. We define stochastic quantization QS(z) formally here, as described

in [39]. Let m be the number of levels (or cut-points) to quantize to. (If we are compressing

down to b bits, the number of levels m = 2b.) Since our randomly projected data will always

be 0-mean, we can define the set of levels B = B1, B2, ..., Bm symmetrically about 0, so that

B1 = −Bm, B2 = −Bm−1, etc. This is analagous to letting µi be the discrete values in

an alphabet M, except in SQ the representative values are also cut points. Then, for the

two cut points Bi, Bi+1 such that z ∈ [Bi, Bi+1), QS(z) takes on the value of either with

probability equal to the relative distance z is from each cut point. That is,

QS(z) =


Bi, w.p. | z−Bi+1

Bi+1−Bi |

Bi+1, w.p. | z−Bi
Bi+1−Bi |

As an example, let us say we are performing 2-level stochastic quantization, with our levels

at say B1 = −8, B2 = 12. If we have a data point z = 6, then we would have

QS(6) =


−8, w.p. | 6− 12 | /20 = 0.3

12, w.p. | 6− (−8) | /20 = 0.7

20

3.2 Comparison of Estimators of ρ after Deterministic and

Stochastic Quantization

In this section we compare Deterministic Quantization and Stochastic Quantization in the

context of estimating ρ, the inner product (or cosine similarity) of two vectors z, z′ (i.e.,

ρ = 〈z, z′〉).

Given two data points z, z′, we aim to estimate their cosine similarity ρ using the

quantized (compressed) values 〈q, q′〉. This chapter compares two estimators of ρ, one for

each of Discrete Quantization and Stochastic Quantization. We establish that the mean

squared error (MSE) of DQ is lower than that of SQ when using the same number of bits,

and thus preferable in most cases where the slight bias of DQ is not crucial.

As mentioned above, quantization is a method of transforming continuous data to dis-

crete. In this section we discuss this in combination random projection, which can be

thought of as element-wise quantization of randomly projected data. Specifically we com-

bine each of DQ and SQ with RP.

Where quantization assigns a discrete value based solely on where the original value

is, stochastic quantization assigns a discrete value to a neighboring value with probability

proportional to the distance of the real point from each cut point.

3.2.1 Estimators of ρ

To estimate ρ = 〈z, z′〉 using SQ, we define

ρ̂qS =
1

k

k∑
l=1

ql · q′l

Meanwhile, our estimator under 1-bit deterministic quantization is the MLE: ρ̂qM :

ρ̂qM = cos
(
π
(

1− P̂sign
))

= cos

(
π

(
1− 1

k

k∑
l=1

I(ql = q′l

))
21

Where Psign = P (ql = q′l) = P
(

sign(zl) = sign(z′l)
)

is the probability of collision, and

empirical collision probability P̂sign = 1
k

∑k
l=1 I(qil = qjl) is our estimator thereof. k is,

as usual, the reduced dimension of our random projection. We now proceed to establish

bounds on the estimation error of these estimators.

3.2.2 Expectation and variance of 1-bit discrete quantized estimator ρ̂qM

Theorem 3.2.1. Bias (ρ̂qM) ≤ ρ
2k

(
π2

4 − arcsin2(ρ)
)

= O
(
1
k

)
Proof. We calculate the expectation of ρ̂ and show that E[ρ̂] is ρ + O

(
1
k

)
. Our first step

is simplifying using cos (a + b) = (cos a cos b) + (sin a sin b). We will eventually use the

delta method to bound the expectation of the simplified version below.

E(ρ̂qM) = E

[
cos

(
π

(
1− 1

k

k∑
l=1

I(ql = q′l)

))]
(3.2)

= E

[
cosπ · cos

(
π

k

k∑
l=1

I(ql = q′l)

)]
− E

[
(sinπ) ·

(
sin

π

k

k∑
l=1

I(ql = q′l)

)]
, (3.3)

= E

[
−1 · cos

(
π

k

k∑
l=1

I(ql = q′l)

)]
− E

[
0 ·

(
sin

π

k

k∑
l=1

I(ql = q′l)

)]
, (3.4)

= −E

[
cos

(
π

k

k∑
l=1

I(ql = q′l)

)]
(3.5)

Lemma 3.2.2. E
[∑k

l I(ql = q′l)
]

= k ·
(
1
π arcsin(ρ) + 1

2

)
. Note that for convenience we

define S ≡
∑k

l I(ql = q′l), so that we have E[S] = k ·
(
1
π arcsin(ρ) + 1

2

)
.

Proof.

E

[
k∑
l

I(ql = q′l)

]
= k · P (ql = q′l) = k ·

(
1

π
arcsin(ρ) +

1

2

)
(3.6)

22

Where the last term can be calculated by integrating a bivariate normal pdf from 0 to ∞

across both dimensions [40], and noting that each P (ql = q′l) is equal for all l.

Now we define a function f ,

f : R→ R, r 7→ cos
(π
k
· r
)

(3.7)

so that E[ρ̂qM] = −E[f(S)], via Eq. 3.5. We can now differentiate with respect to S =∑k
l=1 I(ql = q′l) for the next step’s Taylor expansion. For convenience in this section we

also define E[S] = µ. We then have:

∂f(S)

∂S
= −π

k
sin(

π

k
S),

∂f(µ)

∂S
= −π

k

√
1− ρ2

∂2f(S)

∂S2
= −π

2

k2
cos(

π

k
S),

∂2f(µ)

∂S2
= −ρ

We now take the Taylor expansion around µ to solve for E(ρ̂). (For details on our application

of the delta method using Taylor expansions, see Appendix A.5.)

E(ρ̂) ≡ E[f(S)] = f(µ) + E

[
f ′′(S̃)

2
· (S − µ)2

]
(3.8)

Where S̃ ∈
[
S = [

∑k
l I(ql = q′l)], kρ

]
. We now calculate the first order term and variance

term in Equation (3.8) separately:

Lemma 3.2.3. The first order term f(µ) = − cos(πkµ) = ρ.

23

Proof. This is a straightforward application of trigonometric properties.

− cos(
π

k
µ) = − cos

(
E

[
π

k

k∑
l=1

I(ql = q′l)

])

= − cos
(

arcsin(ρ) +
π

2

)
= −

(
cos(arcsin(ρ)) · cos

(π
2

)
− sin(arcsin(ρ)) · sin

(π
2

))
= −(

√
1− ρ2 · 0− ρ · 1) = ρ

Lemma 3.2.4. Var (S) ≡ V ar(
∑k

l I(ql = q′l)) = k
(
−arcsin2(ρ)

π2 + 1
4

)
Proof. We again use trigonometric properties, and the fact that the indicator variables

I(ql = q′l) are independent from each other.

Var(

k∑
l=1

I(ql = q′l)) = k
(
E
[
(I(ql = q′l))

2
]
− (E

[
I(ql = q′l)

]
)2
)

= k

((
arcsin(ρ)

π
+

1

2

)
−
(

arcsin(ρ)

π
+

1

2

)2
)

= k

(
−arcsin2(ρ)

π2
+

1

4

)

We can then obtain a bound on the absolute bias (and thus bias) of ρ̂, noting that

|Bias(ρ̂)|≡ |E[ρ̂]− ρ|. The latter inequality follows because (S − µ)2 is non-negative, and S

24

and kρ are both in [0, k]:

E[f(S)] = f(µ) + E

[
f ′′(S̃)

2
· (S − µ)2

]
,

E[f(S)]− ρ = E

[
f ′′(S̃)

2
· (S − µ)2

]
,

|E[f(S)]− ρ| ≤ 1

2
max
s∈[0,k]

|f ′′(s)|·E
[
(S − µ)2

]

Thus the second order term is O
(
1
k

)
:

1

2
max
s∈[0,k]

|f ′′(s)|·E
[
(S − µ)2

]
=

1

2
max
s∈[0,k]

|f ′′(s)|Var(S)

= max
s∈[0,k]

∣∣∣∣− π2

2k2
cos
(π
k
s
)∣∣∣∣ · k(−arcsin2(ρ)

π2
+

1

4

)

=
π2

2k
· ρ ·

(
−arcsin2(ρ)

π2
+

1

4

)

=
ρ

2k

(
π2

4
− arcsin2(ρ)

)

And so putting together these pieces, we have

|E(ρ̂qM)− ρ| ≤ ρ

2k

(
π2

4
− arcsin2(ρ)

)
, or

E(ρ̂qM) = ρ+O

(
1

k

)

Theorem 3.2.5. For the 1-bit quantized MLE, Var (ρ̂qM) = 1−ρ2
k

(
− arcsin2(ρ) + π2

4

)
=

O
(
1
k

)

25

Proof. First, some previously-calculated values that we will use:

E[S] ≡ E

[
k∑
l

I(ql = q′l)

]
= k ·

(
arcsin(ρ)

π
+

1

2

)

Var[S] ≡ Var(

k∑
l

I(ql = q′l)) = k

(
−arcsin2(ρ)

π2
+

1

4

)

E[S2] = k

(
−arcsin2(ρ)

π2
+

1

4

)
+ k2 ·

(
arcsin(ρ)

π
+

1

2

)2

= k ·
[
(k − 1)

(
arcsin2(ρ)

π2

)
+ k

(
arcsin(ρ)

π

)
+
k + 1

4

]

We now begin by simplifying Var(ρ̂):

Var(ρ̂) = V ar

(
cos

(
π − π

k

k∑
l

I(ql = q′l)

))
(3.9)

= Var

(
cosπ · cos

(
π

k

k∑
l=1

I(ql = q′l)

)
− sinπ · sin

(
π

k

k∑
l=1

I(ql = q′l)

))
(3.10)

− 2 Cov

(
cosπ · cos

(
π

k

k∑
l=1

I(ql = q′l)

)
− sinπ · sin

(
π

k

k∑
l=1

I(ql = q′l)

))
(3.11)

= Var

(
−1 · cos

(
π

k

k∑
l=1

I(ql = q′l)

)
− 0

)
− 0 (3.12)

= Var

(
cos

(
π

k

k∑
l=1

I(ql = q′l)

))
(3.13)

We use the Delta Method on this simplified form. Recalling that f(S) = cos(πkS), we take

a second order Taylor expansion around E(S), using the Lagrange remainder as described

26

in Appendix A.5.

V ar (f(S)) = V ar

(
f(E(S) + f ′(E(S)(S − E(S)) +

(S − E(S))2

2
f ′′(S̃)

)

= 0 + Var(S − E(S))(f ′(E(S)))2 +
1

4
(f ′′(S̃))2Var

[
(S − E(S))2

]
= Var(S)(f ′(E(S)))2 +

1

4
(f ′′(S̃))2Var

[
(S − E(S))2

]

The leading term is O(1k):

Var(S)
(
f ′(E(S))

)2
= k

(
−arcsin2(ρ)

π2
+

1

4

)
· (−π

k

√
1− ρ2)2

= k

(
−arcsin2(ρ)

π2
+

1

4

)
· π

2

k2
(1− ρ2)

=
(1− ρ2)

k

(
− arcsin2(ρ) +

π2

4

)

Noting that S̃ ∈ [E(S), S] and f ′′(S̃) = O (1), the remainder term can be broken down into

the following inequality:

1

4
f ′′(E(S̃))2Var

[
(S − E(S))2

]
≤ 1

4
f ′′(S̃)2

(
E[(S − E(S))4] + Cov

(
(S − E(S), (S − E(S))2

))

We now apply a sub-Gaussian argument to demonstrate that this remainder term is below

O(1k) [41]. First, note that S is the sum of i.i.d sub-Gaussian random variables, and is thus

sub-Gaussian itself:

S =

k∑
l=1

I(ql = q′l)

Then it follows that E[(S − E(S)] = O
(

1√
k

)
, and so E[(S − E(S)]4 = O

(
1
k2

)
.

27

For the covariance term, we rely on the Cauchy-Schwartz inequality, which states that

for any random variables X and Y with finite second moment,

E|XY |≤
√
E(X2)

√
E(Y 2)

So we have

Cov
(

(S − E(S), (S − E(S))2
)

= E
[
(S − E(S)

(
(S − E(S))2 − E([(S − E(S))2]

)]
≤
√
E[(S − E(S))2]

√
[(S − E(S))4]

= O

(
1√
k

)
·O
(

1

k

)
= O

(
1

k3/2

)

Thus our remainder terms are of order O
(

1
k3/2

)
and O

(
1
k2

)
. Plugging this all in to (3.9),

we have:

Var(ρ̂) =
π2(1− ρ2)

k

(
−arcsin2(ρ)

π2
+

1

4

)
+O

(
1

k3/2

)
+O

(
1

k2

)

Simulated results, Quantization

We support our second order estimate calculations with plots of simulated results of ρ̂qM for

k from 1000 to 10000 alongside the theoretical results calculated above, Fig. 3.1. Note that

simulation variance is high at O
(

1
nsim

)
(nsim being the number of Monte Carlo simulations),

which is significant when the bias itself is O
(
1
k

)
. It is nonetheless clear that both bias and

variance are of order O
(
1
k

)
, and thus so is MSE(ρ̂).

28

Figure 3.1: Simulated ρ̂qM results using 1-bit MLE demonstrating that both are O
(
1
k

)
.

29

3.2.3 ρ̂qS , Stochastic Quantization estimator

We now move on to estimation of ρ after Stochastic Quantization estimation. Part of the

proof below relies on Isserlis’ Theorem (full proof in Appendix A.2). We simply state the

results used here, where Z,Z ′ are each univariate Gaussian random variables with 0 mean,

1 variance, and ρ correlation:

E(Z2Z
′2) = Var(Z)Var(Z ′) + 2Cov(Z,Z ′)2 = 1 + 2ρ2 E(Z2Z ′) = 0

Analysis of ρ̂qS , 2-level estimator

We begin with analysis of the simplest 2-level (1-bit) case. To simplify the notation for this

case, we label the two bin thresholds B1 ≡ a and B2 ≡ b.

For this theoretical work, we assume b ≥ maxi∈[1,n],j∈[1,k]|zij |. This can be done by

setting b to the maximum of the data set we are quantizing. In practice this may not be

easy to do over an entire data set of n observations, even with a tractable post-projection

dimension k, as this operation is of order n · k. It is possible to control the bias by fixing b

sufficiently large so that the probability of any given observation is negligible. For example,

we can set b proportional to
√

log (nk), which is of order E[max1≤i≤n|Zi|] so that P (|(z(1))|>

b) < α for some sufficiently low α, such as α < 1/nk. We discuss this in more detail in

Appendix A.5.

Theorem 3.2.6. Bias(ρ̂) = 0

Proof. We use conditioning: E(QQ′) = E[E(QQ′|Z,Z ′)]. Note that this proof applies to

any number of bits.

E
[
QQ′|Z,Z ′

]
= b2P (Q = b,Q′ = b) + ab · P (Q = a,Q′ = b) + ba · P (Q = b,Q′ = a)

+ a2P (Q = a,Q′ = a)

30

Now, since we set a = −b:

E
[
QQ′|Z,Z ′

]
=

1

4b2
[b2(Z + b)(Z ′ + b) + b2(b− Z)(b− Z ′)− b2(Z + b)(b− Z ′)

+ b2(Z ′ + b)(b− Z)]

= Z ′(b+ Z − b+ Z)/2 = ZZ ′

This gives us:

E
[
E
[
QQ′|Z,Z ′

]]
= E(ZZ ′)

= Cov(ZZ ′)− E(Z)E(Z ′) = ρ

Theorem 3.2.7. Var (QQ′) = b4 − ρ2

Proof. We begin with a lemma, proof of which is straightforward and can be found in

Appendix A.

Lemma 3.2.8. Var[E [QQ′|Z,Z ′]] = 1 + ρ2

Now, using the above lemmas, we calculate the variance of QS(ρ) = QQ′. We condition

Q,Q′ on Z,Z ′ and calculate each term separately:

V ar(QQ′) = E(V ar(QQ′|Z,Z ′)) (3.14)

+ V ar(E(QQ′|Z,Z ′)) (3.15)

31

We first calculate term (3.14) by expanding the variance:

(3.14) = E
[
V ar(QQ′|Z,Z ′)

]
(3.16)

= E
[
E[(Q2Q′2|Z,Z ′)] (3.17)

− (E
[
QQ′|Z,Z ′

]
)2
]

(3.18)

Using conditional independence of Q,Q′|Z,Z ′, we can calculate the subsidiary terms of

(3.14):

(3.17) = E
[
E[(Q2Q′2|Z,Z ′)]

]
= E

[
E[Q2|Z]

]
· E
[
E[Q′2|Z]

]
= b2 · b2 = b4

(3.18) = E
[
(E
[
QQ′|Z,Z ′

]
)2
]

= E
[
(ZZ ′)2

]
= 1 + 2ρ2 using Isserlis’ Theorem as noted above

Thus, in all (3.14) becomes

V ar(QQ′) = E(V ar(QQ′|Z,Z ′)) + V ar(E(QQ′|Z,Z ′))

= b4 − (1 + 2ρ2) + (1 + ρ2) = b4 − ρ2

Recall that the estimator is ρ̂qS = 1
k

∑k
l=1 ql · q′l , where the (ql, q

′
l) ∼ (Q,Q′) and are i.i.d.,

and so it follows that

Var(ρ̂qS) =
V ar(QQ′)

k
=
b4 − ρ2

k

32

3.2.4 Analysis of ρ̂S, estimator after Stochastic 4-level / 2-bit Quantiza-

tion

We now extend the above to 2 bits. As before, since the levels are centered on 0, ˆρS2Q is

unbiased for any number of bits. We proceed to examine the variance of ρ̂

Theorem 3.2.9. For the 4-level estimator, we have the following expression for Var (QQ′):

Var(QQ′) = a4P (Z,Z ∈ (−a, a]) + 4a2(E[Z · IZ∈(−a,a),Z′>a(a+ b)]

− ab · P (Z ∈ (−a, a), Z ′ > a)) + 2E[ZZ ′IZ>a,Z′>a(a+ b)2

− (Z + Z ′)(a+ b)ab · IZ>a,Z′>a] + 2a2b2 · P (Z > a,Z ′ > a)

− 2E[ZZ ′IZ>a,Z′<−a(a+ b)2 + (a+ b)ab(Z − Z ′) · IZ>a,Z′<−a

− a2b2IZ>a,Z′<−a]− ρ2

Proof.

V ar(QQ′) = E(V ar(QQ′|Z,Z ′)) (3.19)

+ V ar(E(QQ′|Z,Z ′)) (3.20)

We first calculate term (3.19) by expanding the variance:

(3.19) = E
[
V ar(QQ′|Z,Z ′)

]
(3.21)

= E
[
E[(Q2Q′2|Z,Z ′)] (3.22)

− (E
[
QQ′|Z,Z ′

]
)2
]

(3.23)

We condition as in the previous section, and we will build up in the same way. Due

to the conditional independence of Q|Z,Z ′ and Q′|Z,Z ′, we have the following equalities

33

(once again assuming that b is set to the maximum of the projected data).

(3.20) ≡ V ar(E[QQ′|Z,Z ′]) = V ar(E[Q|Z]E[Q′|Z ′]) = 1 + ρ2

(3.23) ≡ E
[
E(QQ′|Z,Z ′)2

]
= E

[
Z2Z ′2

]
= 1 + 2ρ2

Now, let f(a) be the p.d.f. of Z ∼ N(0, 1) at a, and let Φ(a) be the c.d.f. of Z at

a. We again assume Φ(b) = 1 and f(b) = 0, then using the formula for truncated normal

probabilities [42]:

E[X|X > a] = µ+
σf(a)

1− Φ(a)

Then we can calculate E[E(Q2|Z)], which we will later plug in to (3.22).

E[E(Q2|Z)] = 2b2(I(Z > b)) + a2I(Z ∈ (−a, a]) + (a+ b)
f(a)− f(b)

Φ(b)− Φ(a)
(Φ(b)− Φ(a))

− ab(Φ(b)− Φ(a))− (Φ(b)− Φ(a))ab

− (a+ b)
f(−b)− f(−a)

Φ(−a)− Φ(−b)
(Φ(−a)− Φ(−b))

= 2b2(1− Φ(b)) + a2(2Φ(a)− 1)− 2ab(1− Φ(a)) + 2(a+ b)f(a)

We then substitute this in to (3.22) to obtain E(E(Q2Q′2|Z,Z ′)). We present the final

34

result of (3.22) here as the full calculation is rather long; it can be found in Appendix A.7.

(3.22) = E(E(Q2Q′2|Z,Z ′))

= a4P (Z,Z ∈ (−a, a]) + 4a2(E[Z · IZ∈(−a,a),Z′>a(a+ b)]

− ab · P (Z ∈ (−a, a), Z ′ > a)) + 2E[ZZ ′IZ>a,Z′>a(a+ b)2

− (Z + Z ′)(a+ b)ab · IZ>a,Z′>a] + 2a2b2 · P (Z > a,Z ′ > a)

− 2E[ZZ ′IZ>a,Z′<−a(a+ b)2 + (a+ b)ab(Z − Z ′) · IZ>a,Z′<−a − a2b2IZ>a,Z′<−a]

In all, we have

Var(QQ′) = E(E(Q2Q′2|Z,Z ′))− ρ2 (3.24)

which concludes our proof. Again recall that the actual estimator for ρ is ρ̂qS = 1
k

∑k
l=1 ql ·q′l,

and so Var(ρ̂qS) = V ar(QQ′)/k .

As this expression is not closed form, to help confirm that our calculations are correct

we simulated ρ̂S with 4 levels and plotted its variance against the theoretical value we

calculated above. In the next section we extend this to the variance for the general m-level

estimator.

3.2.5 General m-level estimator ρ̂S

Theorem 3.2.10. For general m-level (or 2b bit) estimator ρ̂S,

V ar(QQ′) =

m∑
i=1

m∑
j=1

B2
iB

2
j ·
|Z −Bi|

d
· |Z
′ −Bj |
d

·P (Z ∈ (Bi−1, Bi+1), Z
′ ∈ (Bj−1, Bj+1))−ρ2

Proof. Bias and the first three terms of variance are the same as above, so we skip to

35

Figure 3.2: Variance of 2-bit ρ̂S , levels = {−4.0,−0.5, 0.5, 4.0} corresponding to a = 0.5, b
= 4.0. Theoretical and simulated values are plotted against each other, with the simulated
values confirming that the variance matches (3.24).

36

E[Q2Q′2], which is part of our bound for general m-level stochastic quantization. Let

B1, ..., Bm be the m values Q and Q′ can take on. For convenience in notation and calcu-

lation we assume equidistant cut points with distance d, but this need not be the case.

E[Q2Q′2] =

m∑
i=1

m∑
j=1

B2
iB

2
j · P (Q = Bi, Q

′ = Bj) (3.25)

This requires calculation of P (Q = Bi, Q
′ = Bj) :

P (Q = Bi, Q
′ = Bj) = P (Q = Bi, Q

′ = Bj , Z in(Bi−1, Bi+1, Z
′ in(Bj−1, Bj+1) (3.26)

= P (Q = Bi, Q
′ = Bj |Z in(Bi−1, Bi+1, Z

′ in(Bj−1, Bj+1) (3.27)

· P (Z ∈ (Bi−1, Bi+1), Z
′ ∈ (Bj−1, Bj+1)) (3.28)

=
|Z −Bi|

d
· |Z

′ −Bj |
d

(3.29)

· P (Z ∈ (Bi−1, Bi+1), Z
′ ∈ (Bj−1, Bj+1)) (3.30)

Then equation (3.25) is:

E[Q2Q′2] =
m∑
i=1

m∑
j=1

B2
iB

2
j ·
|Z −Bi|

d
· |Z

′ −Bj |
d

· (3.31)

P (Z ∈ (Bi−1, Bi+1), Z
′ ∈ (Bj−1, Bj+1)) (3.32)

Where this last term is easily calculated via numerical integration. Putting all of these pieces

37

together we get a lengthy but calculable variance for general m-level stochastic quantization:

V ar(ρ̂S) =
m∑
i=1

m∑
j=1

B2
iB

2
j ·
|Z −Bi|

d
· |Z

′ −Bj |
d

· P (Z ∈ (Bi−1, Bi+1), Z
′ ∈ (Bj−1, Bj+1))

− (1 + 2ρ2) + (1 + ρ2)

=

m∑
i=1

m∑
j=1

B2
iB

2
j ·
|Z −Bi|

d
· |Z

′ −Bj |
d

· P (Z ∈ (Bi−1, Bi+1), Z
′ ∈ (Bj−1, Bj+1))

− ρ2

3.2.6 MSE

We can now compare the mean squared error (MSE), MSE(ρ̂) = Bias2(ρ̂) + V ar(ρ̂), of

our estimators. As we can see from the plot above, the MSE of Quantization is lower than

that of SQ for ρ > 0.7 even using only 1 bit vs 3 bits (recalling that to get m levels requires

b = log2m bits).

MSE(ρ̂qS) = Bias2(ρ̂qS) + V ar(ρ̂qS)

= 0 +

m∑
i=1

m∑
j=1

B2
iB

2
j ·
|Z −Bi|

d
· |Z

′ −Bj |
d

P (Z ∈ (Bi−1, Bi+1), Z
′ ∈ (Bj−1, Bj+1))− ρ2

38

For the Quantized MLE (1-bit):

Bias =
ρ

2k

(
arcsin2(ρ)− π2

4

)

Var[ρ̂qM] =
1

k
(1− ρ2)

(
π2

4
− arcsin2(ρ)

)
+O

(
1

k2

)

MSE =
ρ2

4k2

(
arcsin2(ρ)− π2

4

)2

+
1

k
(1− ρ2)

(
π2

4
− arcsin2(ρ)

)
+O

(
1

k2

)

39

Figure 3.3: Theoretical MSE of ρ̂ by ρ (uncompressed data’s correlation), demonstrating
that 1-bit Discrete Quantization has a lower MSE than 1-bit Stochastic Quantization, and
still better than 2- and 3-bit Qs for ρ < 0.6.

40

3.3 Other estimators of ρ in the presence of quantization

When estimating pairwise distances and inner products after quantized random projection,

we estimate based on the quantized projected data (i.e., we do not quantize the estimators).

Due to the non-linearity of the quantization function, any estimator using quantized data

will be biased. The estimators we will work with can be classified into two categories: those

that use the codes µi and those that use the bins [ti, ti+1). Within the first category, using

codes, there are several that can be described as closed form, a cubic estimator [7], and of

course the stochastic quantization estimator ρ̂ explored in the section above. Within the

second category, using bins, are the Maximum Likelihood Estimator (MLE) (also discussed

in detail in section 3.2) and estimators using the Hamming distance, which we address

briefly later.

Quantized estimators using codes

We begin with estimators that use codes, which correspond directly to the non-quantized

estimators above: the estimators can be modified by simply using q (the coded values of

z) in place of z above. We use the same names here for simplicity, and assume that when

quantized data is present the quantized versions of the estimators are used.

(i) ρ̂qlin = 〈qi, qj〉

(ii) ρ̂qadd = c− 1

2
‖qi − qj‖2

(iii) ρ̂qmult =
〈qi, qj〉
‖qi‖‖qj‖

where c is a constant that merely affects the bias of ρ̂add, and can simply be set so that

E(ρ̂qadd) = E(ρ̂qlin) [43]. Similarly to the non-quantized case, the above estimators have

straightforward and easy-to-calculate closed forms.

In [7], the authors note that, under Lloyd-Max quantization using b bits, the bias of

41

the linear estimator ρ̂qlin is bounded by 2π
√

3 ρ2

22b
. Crucially, this means that the bias

has exponential rate of decay, i.e. O(2−2b). The other estimators improve bias and / or

variance under certain settings, primarily depending on ρ. The paper goes on to explore

the trade off between storage bits b and reduced dimension k in greater detail, assuming

that storage is limited to some total bits B = kb. Part of our research will involve exploring

this relationship in applications.

We can also substitute the codes q in place of z into the MLE described above. Because

this estimator is no longer the MLE, we call it ρ̂cubic instead. As before, ρ̂cubic is

ρ̂cubic = argmin
r

(
−1

2
log(1− r2)− 1

2

1

1− r2
(‖qi‖2 + ‖qj‖2 − 2r〈qi, qj〉)

)

Quantized estimators using bins

We now briefly discuss estimators that do not require an encoding of the quantization, but

instead rely on collisions within the bins: that is, whether or not the quantized values are

in the same bin. These estimators are the Maximum Likelihood Estimator in the quantized

context (as opposed to the MLE for the full-data context), and a Hamming distance-based

estimator.

We begin by describing the MLE. Without going into too much detail at this stage,

we observe that there are 2 · 2b bin pairings possible given a pair of values using b-bit

quantization. The MLE counts these distinct empirical cell frequencies and utilizes sym-

metries to reduce the number of cells to L, where L = (2b−1)(2b−1 + 1). Calling each

cell probability πl and the empirical analogues π̂l, we have the negative log-likelihood

L(ρ) = −
∑L

l=1 π̂l log(πl(ρ)) [19], [44]. Then

ρ̂qM = argmin
ρ

(−
L∑
l=1

π̂l log(πl(ρ)))

42

A simpler method uses the Hamming distance, which counts the number of differing elements

in the vectors:

dh(qi, qj) =
1

k

k∑
l=1

I(qil 6= qjl)

Then let θ(ρ) be the collision probability, i.e., a function such that

ρ 7→ Eρ(IQ(Z)=Q(Z′)) = Pρ(Q(Z) = Q(Z ′))

It follows that 1− dh(qi, qj) is an estimator of θ(ρ), i.e. we can call

θ̂(ρ) ≡ 1− dh(qi, qj)

Thus we can construct an estimator

ρ̂ham = θ−1(θ̂) = θ−1(1− dh(qi, qj))

Note that the Hamming distance is one-to-one and monotone decreasing on ρ ∈ [0, 1], while

θ(ρ) monotone increasing on ρ ∈ [0, 1], thus both are invertible [45].

43

3.4 Application to Spectral Clustering

We now move on from the previous sections and discuss an application of quantized random

projections to spectral clustering. Spectral clustering is a clustering algorithm that uses the

eigenvalues of the data’s graph similarity matrix. It is a relaxation of the graph cut problem

[1]. One of its advantages is that it relies only on pairwise distances; since this is what

random projection preserves, we would expect spectral clustering to be a good application

of RP. We conducted a base experiment of just spectral clustering and random projection,

which can be found in the Appendix B, and contains a more detailed description of the

experiment. In this section we combine spectral clustering with each of two methods of

dimensionality reduction, random projection and principal component analysis, as well as

each of our two methods of data compression (quantization or Stochastic Quantization).

The spectral clustering algorithm we used was introduced in [46]. We followed the

implementation outlined in [1] with minimal modification to incorporate our dimensionality

reduction. Our goal is to cluster data X to κ clusters.

3.4.1 Quantized experiments

We conduct an experiment using dimensionality reduction combined with spectral cluster-

ing, where we apply both random projection and PCA to the Modified National Institute of

Standards and Technology (MNIST) database [47]) of handwritten digits, each represented

by a 28× 28 grey scale bitmap. Essentially our methodology is as follows: we project data

X ∈ Rn×d using RP (or PCA for comparison) to obtain Z = XR, zi ∈ Rk. For each com-

pression type we then perform spectral clustering. For details on the steps therein, as well

as parameter settings and findings, please see Appendix B.

We assess the clustering performance using several measures, including Rand Index [48]

to measure clustering similarity (higher indicates greater similarity and thus better perfor-

mance), ratio cut (lower values of ratio cut indicate more dissimilar partitions, i.e. better

performance [1]), as well as straightforward classification accuracy when it is obtainable.

44

For this stage of our experiment, we quantize the projected data Z in Euclidean space

Rk to quantized alphabet (M±)
k

using deterministic quantization.

We ran this experiment on the MNIST data set. Please see Appendix B for a full

description of the experiment, with emphasized changes to the algorithm in bold. In Fig

3.4, we can see that classification accuracy using quantized data converges quickly to full

data results.

3.5 Discussion

In this chapter we established bounds on estimation of ρ after two quantization methods.

While stochastic quantization is unbiased (so long as bins are defined post-compression,

which may not be feasible), the variance of deterministic quantization is significantly lower

than that of stochastic quantization. In all, deterministic quantization’s MSE is much lower

than that of stochastic quantization for most levels of ρ and b bits. In the following chapter,

we expand this work to exploring the relationship between random projection and spectral

clustering. We eventually bring in quantization as well, though going forward the focus is

only on deterministic quantization.

45

Figure 3.4: Classification Accuracy of QRP + SC on MNIST, averaged results over all pairs.
We can see that quantized performance rapidly converges to that of full precision with only
2 or 3 bits.

46

Chapter 4: Theory of Random Projection with Spectral

Clustering

We now move on to theoretical bounds of random projection. This chapter establishes

bounds on the mean squared error, MSE(ρ̂) = Bias(ρ̂)2 + Var(ρ̂), of our estimators ρ̂lin =

〈z, z′〉 and ρ̂mult = 〈z,z′〉
‖z‖‖z′‖ . We spend most of our time in the full data context before adding

quantization to the mix. We establish that, for both estimators, Bias(ρ̂) = O
(
1
k

)
, and thus

{Bias(ρ̂)}2 = O
(

1
k2

)
, and also establish that Var(ρ̂) = O

(
1
k

)
. Note that we assume unit

vectors, i.e. ‖x‖2 = 1 for all observations x.

Chapter outline

This chapter has been divided into two sections, one for each of ρ̂lin and ρ̂mult. Within

each section we begin with bounds for ρ̂ before exploring how that interacts with Gaussian

similarity measure g(ρ) = exp
(
ρ−1
σ2

)
.

Foundational quantities, including some previous work

Recall that each element of the random projection matrix is a univariate Gaussian random

variable with 1
k variance, or rij ∼ N(0, 1k). As before, lower case z, z′ indicate an arbitrary

pair of k× 1 compressed observations from randomly projected, non-quantized data Z. We

also use zi to denote the ith element of z, and z′i to denote the ith element of z′. Recall

that zi ∼ Z, where Z ∼ N(0, 1) (given our unit vector assumption). Going forward in this

chapter we use (Z,Z ′) to refer to arbitrary bivariate normal random variables with 0 mean,

47

1 variance, and correlation ρ. Then we can have several quantities we will use further on:

zi
zj

 ∼ N

0

0

 ,

1 ρ

ρ 1




E[(ρ̂)] = E[〈z, z′〉] = 〈x, x′〉 = ρ,

V ar[(ρ̂)] =
‖x‖2 · ‖x′‖2 + 〈x, x′〉2

k
=

1 + ρ2

k

E(ziz
′
i) = Cov(ziz

′
i) + E(zi)E(z′i) = Cov(ziz

′
i) = ρ

(i) g(ρ) = exp

(
ρ− 1

σ2

)
(ii) g(j)(ρ) =

1

σ2j
exp

(
ρ− 1

σ2

)

4.1 Bounds for Estimators of ρ after Random Projection

In this section we establish bounds on the mean squared error (MSE) of ρ̂ for various

estimators. Our big picture goal is to establish the validity of quantized random projection

as a dimenstionality reduction method: in particular, that it retains pairwise distances

between any (all) observations. This demonstrates the consistency of these estimators and

viability of random projection as a means of data compression. The basic flow of our work is

as follows: We establish bounds on estimation of pairwise correlation ρ. We then show that

these bounds are retained after the Gaussian similarity function used in spectral clustering

g(ρ) ≡ exp((ρ− 1)/σ2). We continue by demonstrating that the pairwise distances are still

retained after deterministic quantization, both before and after applying Gaussian distance

measure.

4.1.1 Variance of g(ρ̂lin)

Theorem 4.1.1. Var(g(ρ̂lin)) = (1+ρ2)
k · e(ρ−1)/σ2

σ4 +O
(

1
k2

)

48

Delta method / Taylor expansion for variance

We create an upper bound on Var(g(ρ̂)) via Taylor expansion. We use the Lagrange form

of the remainder after the first term, R = 1
2f
′′(E(ρ̃))(ρ̂− E(ρ̂))2.

Var(g(ρ̂)) = Var

[
g(E(ρ̂)) + g′(E(ρ̂))(ρ̂− E(ρ̂) +

1

2
g′′(ρ̃)(ρ̂− E(ρ̂))2

]

= 0 + Var(ρ̂)(g′(E(ρ̂))2 +R

=
(1 + ρ2)

k
· e

(ρ−1)/σ2

σ4
+R

Where we replaced g′′(ρ̃)(ρ̂− E(ρ̂))2 with the remainder R:

R =

(
g′′(E(ρ̃))2

4

)
Var(ρ̂− E(ρ̂))2 + Cov

(
(ρ̂− E(ρ̂), (ρ̂− E(ρ̂))2

)
g′(E(ρ̂))g′′(ρ̃),

ρ̃ = max(〈z, z′〉, 〈x, x′〉)

It is clear that the first order term is O
(
1
k

)
with a constant in terms of ρ and σ. We now

look at remainder terms individually.

Lemma 4.1.2. The covariance term of remainder E(ρ̂− ρ)3 = O
(

1
k2

)
Proof. We first expand (ρ̂ − ρ)3 and rearrange terms. Recall that we have the following

constants: E(ρ̂) = ρ, V ar(ρ̂) = 1+ρ2

k .

E(ρ̂− ρ)3 = E(ρ̂3)− E(3ρ̂2ρ) + E(3ρ̂ρ2)− E(ρ3) (4.1)

49

Now we take a Taylor expansion of E(ρ̂3), letting f(ρ) = ρ3:

E(ρ̂3) = E

[
f(ρ) + f ′(ρ)(ρ̂− ρ) +

f ′′(ρ̃)(ρ̂− ρ)2

2

]

= ρ3 + 3ρ2E(ρ̂− ρ) +
6E[ρ̃]

2
· E[(ρ̂− ρ)2]

= ρ3 + 0 + 3E[ρ̃] · 1 + ρ2

k

Similarly,

E[ρ̂2] = (V ar(ρ̂) + (E[ρ̂])2) =
1 + ρ2

k
+ ρ2

We plug the above results for E[ρ̂2] and E[ρ̂3] into 4.1:

E(ρ̂− ρ)3 = ρ3 + 3E [ρ̃] · 1 + ρ2

k
− 3ρ ·

(
(1 + ρ2)

k
+ ρ2

)
+ 3ρ3 − ρ3

=
3(1 + ρ2) · E[ρ̃− ρ]

k

Now note that ρ̃ ∈ (ρ, ρ̂), and thus |ρ̃− ρ‖≤ |(ρ̂− ρ)|. And so:

E(ρ̃− ρ) ≤ E[max(〈z, z′〉 − 〈x, x′〉), 0)]

= P (〈z, z′〉 − 〈x, x′〉 > 0)E(ρ̂− ρ)

≤ Bias(ρ̂) = O

(
1

k

)
,

∴ E(ρ̂− ρ)3 ≤ 3(1 + ρ2) ·O
(

1

k

)
· 1

k
= O

(
1

k2

)

50

Simulation Results: Plot of E(ρ̂− ρ)3 against k

Noting that the above is an upper bound, we plot results of regression lines on simulated

values of ρ̂: We plot E(ρ̂− ρ)3 against k, along with regression lines against each of 1/k1.5

and 1/k2. This simulation and plot strongly suggests that E(ρ̂− ρ)3 is of order 1/k2.

Figure 4.1: Calculated and simulated results for Taylor expansion remainder terms of Vari-
ance of ρ̂. In these plots we plot both the actual values, along with plotted curves with

regression lines, verifying that (left) E(ρ̂− ρ)3 = O
(

1
k2

)
, (right) Bias2 (ρ̂) is O

(
1
k

)
.

Lemma 4.1.3. E[| ρ̂− ρ |q] = O
(
k−q/2

)
, for q ≥ 1

Proof. Recalling that ρ̂ = 1
k

∑k
i ziz

′
i, and (zi, z

′
i) are i.i.d. bivariate standard normal with

correlation ρ. Then ziz
′
i−ρ is a 0-mean sub-exponential random variable. A 0-mean random

variable V is sub-exponential [41] if and only if there exists a constant C > 0 such that

E[exp(λV) ≤ exp(λ2C2) for all λ s.t. | λ |≤ 1/C (4.2)

51

For convenience we define ζi = (ziz
′
i − ρ)/k so that:

k∑
i

ζi ≡
k∑
i

(ziz
′
i − ρ)/k = ρ̂− ρ (4.3)

We can see that
∑
ζi is itself sub-exponential with constant C/

√
k:

E

[
exp(λ

k∑
i

ζi

]
= E

[
exp(λ

k∑
i

ziz
′
i − ρ
k

]
=

(
exp

(
C2

k2
λ2
))k

= exp

((
Cλ√
k

)2
)

(4.4)

In general, for any random variable V that is sub-exponential with constant C, we have

that

E[|V |q] ≤ (C ′q)q for some C ′ = αC,α > 0

which leads to our final result:

E[| ρ̂− ρ |q] ≤ (qC ′)qk−q/2 = O
(
k−q/2

)
, q ≥ 1

It follows that E(| ρ̂− ρ |4) = O(k−2)

Putting components of variance together

From the above we can now conclude that

Var(f(ρ̂)) = 0 + Var(ρ̂)(g′(E(ρ̂))2 +

(
g′′(E(ρ̃))2

4

)
Var(ρ̂− E(ρ̂)2)+

Cov
(

(ρ̂− E(ρ̂)(ρ̂− E(ρ̂))2
)
g′(E(ρ̂))f ′′(ρ̃)

=
(1 + ρ2)e(ρ−1)/σ

2

kσ4
+O(1/k2) +O(1/k2)

52

4.1.2 Expectation and bias of g(ρ̂lin)

Delta method for expectation

We now move to a Taylor expansion the the expectation. Using similar techniques as before

and described in A.5, we have

E[g(ρ̂)] = g(E[ρ̂]) + E

[
g′′E[ρ̂]

2
· (ρ̂− E[ρ̂])2

]

Again recall that the linear estimator is unbiased, E(ρ̂) = ρ, and g(ρ) = exp((ρ − 1)/σ2).

So we can then obtain a bound on the absolute bias (and thus bias) of ρ̂, |Bias(g(ρ̂))|≡

|E[g(ρ̂)]− g(ρ)|. Noting that (ρ̂−E[ρ̂])2 is non-negative, and ρ̂ and ρ are both in [0, 1] and

thus so is ρ̃, we have

E[g(ρ̂)] = g(E[ρ̂]) + E

[
g′′E[ρ̂]

2
· (ρ̂− E[ρ̂])2

]
,

E[g(ρ̂)]− ρ = E

[
g′′E[ρ̂]

2
· (ρ̂− E[ρ̂])2

]
,

|E[g(ρ̂)]− ρ| ≤ 1

2
max
r∈[0,1]

|g′′(r)|·Var(ρ̂)

Thus the second order term is O
(
1
k

)
:

1

2
max
r∈[0,1]

|g′′(r)|·Var(ρ̂) = max
r∈[0,1]

∣∣∣∣ 1

σ4
exp((r − 1)/σ2)

∣∣∣∣ · (1 + ρ2

k

)

=
1

σ4
exp(1/σ2) ·

(
1 + ρ2

k

)

53

And so putting together these pieces, we have

|E[g(ρ̂)]− ρ| ≤ exp(1/σ2)(1 + ρ2)

kσ4
, or

E[g(ρ̂)] = ρ+O

(
1

k

)

and so

Bias(g(ρ̂lin)) ≤ exp(1/σ2)(1 + ρ2)

kσ4

Analysis of MSE for ρ̂mult

The following two subsections analyse ρ̂mult = 〈z,z′〉
‖z‖‖z′‖ , which we refer to as ρ̂ for convenience

in this section. (Any references to other estimators in this section will be spelled out

explicitly, e.g. ρ̂lin.) We go about our analysis in several stages, beginning with listing

established work and known facts. We show that the bias of ρ̂ = O(1k) via Delta method

(Section 4.1.3), then show that the bias of g(ρ̂) = O(1k) as well (Section 4.3.2), where

g(ρ) = exp((ρ − 1)/σ2) is the Gaussian similarity function we use for spectral clustering.

We do the same for Var(g(ρ̂)) in Section 4.2.2.

Known quantities for proofs concerning the estimator ρ̂mult

We define and quickly calculate some quantities for use in this section. Recall that Z,Z ′

indicate an arbitrary pair of scalar elements from vectors z, z′.

ρ̂ =
〈z, z′〉
‖z‖‖z′‖

Var(Z) =
‖x‖2

k
=

1

k

Var(‖z‖2) =
2

k

Cov(Z,Z ′) = E(ZZ ′) =
ρ

k

E(ZZ ′) = Cov(Z,Z ′) + E(Z)E(Z ′) =
ρ

k

Var(ρ̂) =
(1− 〈x, x′〉2)2

k
+O

(
1

k2

)
=

(1− ρ2)2

k
+O

(
1

k2

)

54

The next few properties follow from Isserlis’ Theorem applied to a bivariate normal with

0 mean, unit variance, and ρ correlation:

E(Z3Z ′) = 3Cov(Z,Z ′)Var(Z)

= 3 · ρ
k
· 1

k
=

3ρ

k2

E(Z2Z
′2) = Var(Z)Var(Z ′) + 2Cov(Z,Z ′)2

=
1

k2
+
ρ2

k2
=

1 + ρ2

k2

Now the Gaussian distance of ρ is g(ρ) = exp(ρ−1
σ2), and its derivatives are:

(i) g(ρ) = exp

(
ρ− 1

σ2

)
(ii) g(j)(ρ) =

1

σ(2j)
exp

(
ρ− 1

σ2

)

Note that we shall assume that σ = 1 for most of our work.

4.1.3 Expectation of ρ̂mult

Theorem 4.1.4. Bias(ρ̂) = O
(
1
k

)
Proof. Before proving this theorem, we establish some lemmas. These lemmas will use some

of the below facts, which rely on a simplified expression of ρ̂:

ρ̂ =
〈z, z′〉
‖z‖‖z′‖

=
a√
bc

= f(a, b, c)

Where, for simplicity below, we re-label some terms as a, b, and c:

a = 〈z, z′〉 b = ‖z‖2 c = ‖z′‖

2 E(a) = ρ E(b) = ‖x‖2 = 1 E(c) = ‖x′‖2 = 1

55

Then we can calculate the gradient of f :

∇f =

(
b−1/2c−1/2 −1

2ab
−3/2c−1/2 ab−1/2c−3/2

)T
(4.5)

∇2f =


0 −1

2b
−3/2c−1/2 −1

2b
−1/2c−3/2

−1
2b
−3/2c−1/2 3

4ab
−5/2c−1/2 1

4ab
−3/2c−3/2

−1
2b
−1/2c−3/2 1

4ab
−3/2c−3/2 3

4ab
−1/2c−5/2

 (4.6)

E(ac) and E(bc)

We now progress by calculating each expectation required, beginning with E(ac) and E(bc)

in this subsection.

Lemma 4.1.5.

E(ab) = E(ac) =
3ρ

k
+ ρ− ρ

k
= ρ+

2ρ

k
, E(bc) = 1 +

ρ2

k

Proof. Using Isserlis’ Theorem as mentioned in Chapter 3, we have the facts that

E(Z3Z ′) =
3ρ

k2
, E(Z2Z

′2) =
1 + ρ2

k2
, E(Z2) =

1

k

Then we plug in the above to solve for E[ab] and E[ac]

E[ab] = E[ac] = kE(Z3Z ′) + k(k − 1)E(ZZ ′)E(Z2)

= k · 3ρ

k2
+ (k2 − k) · ρ

k
· 1

k

=
3ρ

k
+ ρ− ρ

k
= ρ+

2ρ

k

56

Similarly for E[bc],

E(bc) = E(‖z‖2‖z′‖2) = E

[(
k∑
i

Z2
i

) (
k∑
i

Z2′
i

)]

= E
[
(z21 + · · ·+ z2k)(z

′2
1 + · · ·+ z

′2
k)
]

= E
[
kE(Z2

1Z
′2
1) + k(k − 1)E(Z2

1)E(Z
′2
2)
]

= k
1 + ρ2

k2
+

(k2 − k)

k2
= 1 +

ρ2

k

57

Delta method for E(ρ̂)

We are now prepared to prove the main theorem. We take a Taylor expansion around

E[ρ̂], using the Lagrange form of the remainder setting ã ∈ [〈z, z′〉, ρ], b̃ ∈ [‖z‖2, ‖x‖2], and

c̃ ∈ [‖z′‖2, ‖x′‖2]. We use properties of ρ̂ = a√
bc

in equation line (4.5). The proof is outlined

in a somewhat abbreviated form here; the full version can be found in Appendix A.7.1.

E [ρ̂] = E

[
〈z, z′〉
‖z‖‖z′‖

]
= E[

a√
bc

]

= E

f
E


a

b

c


+

1

2

(
a− ρ b− 1 c− 1

)
∇2f(ã, b̃, c̃)


a− ρ

b− 1

c− 1




≤ ρ+

E


(
a− ρ b− 1 c− 1

)


0 −1
2 b̃
− 3

2 c̃−
1
2 −1

2 b̃
− 1

2 c̃−
3
2

−1
2 b̃
− 3

2 c̃−
1
2

3
4 ãb̃
− 5

2 c̃−
1
2

1
4 ãb̃
− 3

2 c̃−
3
2

−1
2 b̃
− 1

2 c̃−
3
2

1
4 ãb̃
− 3

2 c̃−
3
2

3
4 ãb̃
− 1

2 c̃−
5
2




a− ρ

b− 1

c− 1




= ρ+

2ρ+ ã(3 + ρ2/2)

k

And thus Bias(ρ̂) = O
(
1
k

)
.

To illustrate the relationship between bias ρ̂ and ρ, we plot simulated and theoretical

values below in Fig. 4.2. We plot log absolute bias to better highlight difference.

58

Figure 4.2: log |bias| vs ρ, separate models for each k. In this plot we demonstrate that

bias ρ = O
(
1
k

)
; we plot log values to aid clarity.

59

4.2 Bounds for Gaussian Similarity Measure

This section again uses the Delta method / Taylor expansions, this time to calculate bounds

on expectation and variance of Gaussian similarity measure g(ρ̂) = exp((ρ̂−1)/σ2), for both

the linear and multiplicative estimators discussed in section 4.1. We do this to show that

the bounds we demonstrated for random projection itself are also retained for use in spectral

clustering, or any other method whose primary (or even only) dependence on data is via a

related distance. We go into great detail for the proofs in this section as the principles are

relied upon heavily in later proofs. We begin with the multiplicative estimator ρ̂mult.

4.2.1 Expectation of g(ρ̂mult)

Theorem 4.2.1. Bias [g(ρ̂mult)] = O(1k)

Proof. We prove this using the delta method, using the O
(
1
k

)
bias of ρ̂ established above.

We will specifically use these properties shown above:

E(ρ̂) = ρ+O

(
1

k

)
, Var(ρ̂) =

(1− ρ2)2

k
+O

(
1

k2

)

g(ρ) = exp((ρ− 1)/σ2); g(ρ) = exp(ρ− 1) for σ = 1

We proceed to take a Taylor expansion of E(g(ρ̂)):

E(g(ρ̂)) = g(E(ρ̂)) +
1

2
g′′(E(ρ̃))Var(ρ̂)

So E(g(ρ̂)) = exp

(
ρ+O

(
1

k

)
− 1

)
·
(

1 +
1

2
Var(ρ̂)

)
since σ = 1

= exp

(
ρ+O

(
1

k

)
− 1

)
·
(

1 +
(1− ρ2)2

2k
+O(

1

k2
)

)

= exp(ρ− 1) · exp

(
O

(
1

k

))
·
(

1 +
(1− ρ2)2

2k
+O

(
1

k2

))

60

From here we can calculate the bias of (g(ρ̂)):

Bias(g(ρ̂)) = eρ−1
[
exp

(
O

(
1

k

))(
1 +

(1− ρ2)2

2k
+O

(
1

k2

))
− 1

]

= eρ−1
[
exp

(
O

(
1

k

))
− 1

]
+ eρ−1

[
exp

(
O

(
1

k

))
·
(

(1− ρ2)2

2k
+O

(
1

k2

))]

≤ eρ−1
[
O

(
1

k

)
· exp

(
O

(
1

k

))]
+ eρ−1 ·O

(
1

k

)
, since |ex − 1|≤ |x|e|x|

= eρ−1
[
O

(
1

k

)
· exp

(
O

(
1

k

))
+O

(
1

k

)]

= O

(
1

k

)
, completing the proof

4.2.2 Variance of g(ρ̂mult)

Theorem 4.2.2. For the non-quantized multiplicative estimator,

Var(f(ρ̂)) =
(1−ρ2)2 exp

(
2(ρ−1)

σ2

)
k·σ4 = O(1k)

Proof. We can create an upper bound on Var(f(ρ̂)) via Taylor expansion, again using the

Lagrange form of the remainder:

Var(g(ρ̂)) = Var

[
g(E(ρ̂)) + g′(E(ρ̂))(ρ̂− E(ρ̂)) + g′′(ρ̃)

(
ρ̂− E(ρ̂)

)2]

= 0 + Var(ρ̂)(g′(E(ρ̂))2 +R

=
((1− ρ2)2

k
+O

(
1

k2

))(exp((ρ− 1 +O
(
1
k

)
)/σ2)

σ2

)2

+R

=
(1− ρ2)2 exp

(
2(ρ−1)
σ2

)
k · σ4

+R

61

Thus the first order term is O
(
1
k

)
with a constant in terms of ρ and σ. We now look at

remainder term R′s individual components to show that they are of lower order than O
(
1
k

)
:

R =

(
g′′(E(ρ̃))2

4

)
Var
[
(ρ̂− E(ρ̂))2

]
+

+ Cov
(

(ρ̂− E(ρ̂), (ρ̂− E(ρ̂))2
)
g′(E(ρ̂))g′′(ρ̃)

Lemma 4.2.3. Var[(ρ̂− E(ρ̂))2] = O(1
k2

) and Cov
(

(ρ̂− E(ρ̂), (ρ̂− E(ρ̂))2
)

= O(1
k1.5

).

Proof. We use the same sub-exponential argument as in (4.1.3). We note that

∀i, E(zi, z
′
i) = Cov(zi, z

′
i) + E(zi)E(z′i) = ρ

and so (ziz
′
i−ρ) is sub-exponential with constant C. We then form sub-exponential random

variable ζi as in:

k∑
i

ζi ≡ ρ̂− ρ =

k∑
i

(ziz
′
i − ρ)/k

where ζi is itself sub-exponential with constant C/
√
k, and so

E[|V |q] ≤ (C ′q)q for some C ′ = αC,α > 0

And so it follows that E(| ρ̂− ρ |4) = O(k−2) and E(| ρ̂− ρ |3) = O(k−1.5)

62

Completion of Proof for Var(g(ρ̂))

We now have that

Var(g(ρ̂)) =
(1− ρ2)2 exp

(
2(ρ−1)
σ2

)
k · σ4

+O

(
1

k3/2

)
+O

(
1

k3/2

)

=
(1− ρ2)2 exp (2(ρ− 1))

k
when σ = 1

= O

(
1

k

)
, as required

We plot the theoretical bounds calculated above against simulated values for emphasis.

63

Figure 4.3: Plot of log Var(g(ρmult)) against ρ, simulated and theoretical; we plot log values
so that differences are clearer. The close fit shows that the true values of Var(g(ρ̂mult)) helps

confirm our calculated O
(
1
k

)
.

64

4.3 Bounds for Gaussian measure g(ρ̂) for quantized ρ̂

In this section we show that the MSE for the Gaussian distance measure using quantized

estimators, both deterministic and stochastic, is also of order O
(
1
k

)
. We start with Deter-

ministic Quantization then move on to Stochastic.

4.3.1 Delta method for expectation g(ρ̂qM), 1-bit Quantized MLE

Theorem 4.3.1. For 1-bit Quantized MLE, bias (g(ρ̂)) = O(1k)

Proof. The methodology for this proof is the delta method similar to the previous section,

using the O
(
1
k

)
bias of ρ̂ established above. Now recall that, for the Quantized MLE ρ̂qM :

E[ρ̂qM] = ρ+
ρ

2k

(
arcsin2(ρ)− π2

4

)

V ar(ρ̂qM) =
1

k
(1− ρ2)

(
π2

4
− arcsin2(ρ)

)
+O

(
1

k2

)

Then taking a Taylor expansion, we have as before

E(g(ρ̂)) = g(E(ρ̂)) + g′′(E(ρ̃))Var(ρ̂)

So E(g(ρ̂)) = exp

(
ρ+O

(
1

k

)
− 1

)
· (1 + Var(ρ̂))

= exp

(
ρ+O

(
1

k

)
− 1

)
·
(

1 +
(1− ρ2)

k
·
(
π2

4
− arcsin2(ρ)

)
+O(

1

k2
)

)

= exp(ρ− 1) · exp

(
O

(
1

k

))
·
(

1 +
(1− ρ2)

k
·
(
π2

4
− arcsin2(ρ)

)
+O

(
1

k2

))

65

We can now calculate bias(g(ρ̂)) by subtracting the above from g(ρ̂):

bias(g(ρ̂)) = eρ−1
[
exp

(
O

(
1

k

))(
1 +

(1− ρ2)
k

·
(
π2

4
− arcsin2(ρ)

)
+O

(
1

k2

))
− 1

]
(4.7)

= eρ−1
[
exp

(
O

(
1

k

))
− 1

]
+ (4.8)

+ eρ−1
[
exp

(
O

(
1

k

))
·
(

(1− ρ2)
k

·
(
π2

4
− arcsin2(ρ)

)
+O

(
1

k2

))]
(4.9)

≤ eρ−1
[
O

(
1

k

)
· exp

(
O

(
1

k

))]
+ eρ−1 ·O

(
1

k

)
, since |ex − 1|≤ |x|e|x|

(4.10)

= eρ−1
[
O

(
1

k

)
· exp

(
O

(
1

k

))
+O

(
1

k

)]
(4.11)

= O

(
1

k

)
, completing the proof (4.12)

4.3.2 Delta method / Taylor expansion for expectation g(ρ̂qS),

Stochastic Quantization estimator

Theorem 4.3.2. For the Stochastic Quantized estimator, Bias (g(ρ̂qS)) = O(1k)

Proof. The proof for SQ is similar, as the step in line (4.7) holds for any O
(
1
k

)
variance.

66

Recall that, for the one-dimensional Stochastic Quantized estimator with m levels:

E[ρ̂qS] = ρ

V ar(ρ̂qS) =
m∑
i=1

m∑
j=1

B2
iB

2
j ·
|Z −Bi|

d
· |Z

′ −Bj |
d

·

P (Z ∈ (Bi−1, Bi+1), Z
′ ∈ (Bj−1, Bj+1))− ρ2

Thus, in quantizing a k-dimensional random projection, our estimator is 〈Q,Q′〉 =
∑k

l
1
kqlq

′
l

which has variance:

V ar(ρ̂qS) =
k∑
l

1

k

[m∑
i=1

m∑
j=1

B2
iB

2
j ·
|Zl −Bi|

d
·
|Z ′l −Bj |

d

P (Zl ∈ (Bi−1, Bi+1), Z
′
l ∈ (Bj−1, Bj+1))− ρ2

]

And so we can substitute this in to our Taylor expansion above:

E(g(ρ̂)) = g(E(ρ̂)) + g′′(E(ρ̂))Var(ρ̂)

So E(g(ρ̂)) = exp (ρ− 1) · (1 + Var(ρ̂))

= exp (ρ− 1) ·
(

1 +O

(
1

k

)
+O

(
1

k2

))

Similarly to above,

Bias g(ρ̂) = exp (ρ− 1) ·
[(

1 +O

(
1

k

)
+O

(
1

k2

))
− 1

]

= exp(ρ− 1)

(
O

(
1

k

)
+O

(
1

k2

))

= O

(
1

k

)

67

4.3.3 Bounds for g(ρ̂lin), general b bit quantized estimator

Variance and Bias for ρ̂lin

We begin by noting that, from [7] and some previous work, we have the following bounds

for ρ̂lin = 1
k 〈q, q

′〉:

Var(ρ̂lin) ≤ 1 + ρ2

k
(4.13)

Bias2(ρ̂lin) ≤ 4ρ2D2
b , where Db =

31.52π

12
2−2b (4.14)

For simplicity we call this

Bias2(ρ̂lin) ≤ ρ2c2 (4.15)

Note that Var(ρlin) is increasing as b increases, whereas bias is independent of k. As

noted in [7], concerning estimation of ρ, when considering the trade off between b and k (on

the assumption that we have a total of B = b · k bits), there is a trade off of variance and

bias as k and b are changed. While variance does increase somewhat as b increases, bias is

completely independent of k and only depends on b and ρ.

Theorem 4.3.3. |E(g(ρ̂))|≤ |eρ−1 · (1− e
√
3πρ2−2b

)|

Proof. We assume as usual that ρ ≥ 0. Then we have

|Bias(ρ̂)| ≤ cρ,−cρ ≤ Bias(ρ̂) ≤ cρ

|Bias(ρ̂)| ≡ |E(ρ̂)− ρ|

|E(ρ̂)− ρ| ≤ ρc

ρ(1− c) ≤ E[ρ̂] ≤ ρ(1 + c)

68

We then take the Taylor expansion. We use the Lagrange form of the remainder, with

ρ̃ ∈ (ρ, ρ̂), and so ρ̃ ≤ max(ρ, ρ̂).

E[g(ρ̂] = g(E[ρ̂]) +
1

2
g′′(ρ̃)Var(ρ̂)

The individual terms can be broken down:

g(E[ρ̂]) = eE[ρ̂]−1

eρ(1−c)−1 ≤ eE[ρ̂]−1 ≤ eρ(1+c)−1

The upper bound using the remainder and (4.13) is straightforward:

1

2
g′′(ρ̃) ≤ 1

2
eρ(1+c)−1

(
1 + ρ2

k

)

Which gives us an upper bound for the second term in Var(ρ̂) since g′′(·) is positive. We

take these knowns and apply delta method to upper bound E[g(ρ̂)].

Now, for absolute bias of (g(ρ̂)), we take upper and lower bounds of :

E(g(ρ̂)) = g(E(ρ̂)) + g′′(E(ρ̃))Var(ρ̂)

E(g(ρ̂)) ≤ exp(ρ− 1) exp(|c2−2b|) +R,

E(g(ρ̂)) ≥ exp(ρ− 1) exp(−|c2−2b|) +R

Now focusing on remainder R and setting σ = 1:

R = exp(E(ρ̃)− 1)) · 1 + ρ2

k

≤ exp(E(max(ρ, ρ̂)− 1)) · 1 + ρ2

k

69

Bias becomes squared in forming the MSE, so we can safely drop the O(1k) since it will

disappear rapidly next to the Variance term (which is itself O(1k), as we will explore shortly).

Doing so, we now take absolute value of bias of g(ρ̂):

|E(g(ρ̂))− g(ρ))| = eρ−1 · |(ebias(ρ̂) − 1)|

≤ min
(
eρ−1 · |e|bias(ρ̂)| − 1|, eρ−1 · |1− e−|bias(ρ̂)||

)
≤ min

(
eρ−1 · (e|E[ρ̂]−ρ| − 1), eρ−1 · (1− e−|E[ρ̂]−ρ|)

)

Theorem 4.3.4. Variance of g(ρ̂lin) = (1+ρ2)e2ρ

e2
· 1k ·exp

(
2π
√

3 · 2−2b
)
+O(k−1.5) = O(1/k).

Proof. Variance calculation is similar:

Var(g(ρ̂)) = Var
[
g(E(ρ̂)) + g′(E(ρ̂)) ((ρ̂)− E(ρ̂)) + g′′(ρ̂)) ((ρ̂)− E(ρ̂))2

]
= 0 + Var(ρ̂)

[
g′(E[ρ̂)]

]2
+R

We calculate the first term:

Var(ρ̂
[
g(ρ̂))2

]
=

1 + ρ2

k
exp

(
2(ρ− 1) + 2 · c2−2b

)

=
1 + ρ2

k
exp

(
2ρ+ 2π

√
3ρ2−2b − 2

)

=
(1 + ρ2)e2ρ

e2
· 1

k
· exp

(
2π
√

3 · 2−2b
)

Now we calculate the remainder R, which will involve several sub-lemmas.

R =

(
f ′′(E(ρ̃))2

4

)
Var(ρ̂− E(ρ̂)2) + Cov

(
(ρ̂− E(ρ̂), (ρ̂− E(ρ̂))2

)
f ′(E(ρ̂))f ′′(ρ̃)

70

Lemma 4.3.5. Generally, E[‖ρ̂−ρ‖m] = O
(
k−m/2

)
, for m ≥ 1. And so Var[(ρ̂−E(ρ̂))2] =

O(1
k2

).

Proof. Note that this is the same basic proof used for the non-quantized linear estimator,

and hinges on basic facts: each pair (ql, q
′
l) are i.i.d., and both E(qlq

′
l) and Var(qlq

′
l) ≡ σ2l

are finite since each ql, q
′
l have bounded, discrete values.

∀i, E(zi, z
′
i) = Cov(zi, z

′
i) + E(zi)E(z′i) = ρ

We note that ρ̂lin = 1
k 〈q, q

′〉 is sub-exponential. The proof is then identical to that of

(4.1.3).

MSE of g(ρ̂lin)

Putting the MSE together, we have, for general b-bit linear estimator:

MSE(g(ρ̂)) = Bias2(g(ρ̂)) + Var(g(ρ̂)) (4.16)

=

{
eρ−1 exp(c2−2b)

[(
c2−2b

)
+

1 + ρ2

k

]}2

+
(1 + ρ2)e2ρ

k · e2
· exp

(
2π
√

3 · 2−2b
)

(4.17)

=
e2ρ

e2
exp(2π

√
3 · 2−2b)

[(
c2−2b

)
+

1 + ρ2

k

]2
+

(1 + ρ2)e2ρ

k · e2
· exp

(
2π
√

3 · 2−2b
)

(4.18)

= e2(ρ−1) exp
(

2π
√

3 · 2−2b
)
·

{[(
c2−2b

)
+

1 + ρ2

k

]2
+

1 + ρ2

k

}
(4.19)

71

Plots using numerical integration

As the above form is rather complex, we plot lines of these calculated bounds along with

simulated MSE of ρ̂ in Fig. 4.19. We fix the total number of bits used in compression B,

and plot several values of b and k (i.e. B = b · k is the same for all levels).

4.4 Discussion

In this chapter we established theoretical bounds on estimation of the Guassian similarity

measure g(ρ) = exp (ρ− 1)/σ2, used in a variety of applications but in particular spectral

clustering. We show that quantized random projection does preserve g(ρ), with MSE of

order
(
1
k

)
, and is thus suitable for situations where similar functions of pairwise distance are

involved. Having worked out the theory, we are now prepared to move on to experiments

on both synthetic and real datasets.

72

(a) b = 1, k = 384 (b) b = 2, k = 192

(c) b = 3, k = 128 (d) b = 4, k = 96

Figure 4.4: log MSE of ρ̂, quantized linear estimator. We vary levels of b · k = 384.
Theoretical upper bound as calculated above in Eq. 4.19. While this plot is mostly to
compare simulated values and theoretical upper bounds, we also note that MSE improves
rapidly as b increases from 1 to 3, where it starts to stablize.

73

Chapter 5: Spectral Clustering and Random Projection

Experiments

Having established theoretical bounds of the Gaussian similarity function g(ρ̂) in Chapter 4,

we explore how spectral clustering (SC) actually performs after applying random projection.

In particular, we are interested in the relationship between mean squared error (MSE) of

similarity measures and clustering performance, and how the parameters of our algorithm

(spectral clustering and random projection both) affect performance. This is extended to

analysis of the relationship between both MSE and performance and various parameters:

ρ, σ, k, as well as two different estimators ρ̂mult and ρ̂lin. We conduct simulations under two

experiment regimes: one in which elements within a block have the same correlation with

all other elements in the block; and one in which each block is an autoregressive system of

order 1, AR(1) for short. We also perform several real data experiments.

Chapter Outline

We start by describing our simulation experiments, the theory behind them, and results.

The second section goes into details of how the various parameters of SC affect MSE (ρ̂)

and how that affects clustering results. In the third and final section we discuss our real

data experiments.

5.1 Spectral Clustering Simulation Experiments

The purpose of these simulation experiments was to explore in depth how random pro-

jection works in practice, with a controlled setting. We construct two related simulation

experiments wherein we can control every aspect, which we now describe in detail.

74

5.1.1 Simulation Setting Details

1) We assume original, pre-compressed data x = x1, ..., xn, each xi a d-length Gaussian

vector with mean 0, covariance matrix C (i.e., x ∼ N(0, C)). The covariance matrix Cn×n

is defined by the following form:

C =

B1 0

0 B2


That is to say, we divide our data into 2 blocks, B1 and B2. Elements within the same

block have covariance ρ; elements not within the same block have covariance 0 (i.e., are

independent).

2) We then generate simulated random projection result Zn×k as a k-dimensional mul-

tivariate normal,

Zi, Zj ∼ N


0

0

 ,

ρi,j 0

0 ρi,j




3) We generate z = Rx, where z is the desired multivariate normal z ∼ N(µ,Σ2),

RRT = Σ, and x ∼ N(0, 1) as above. We solve for R using the following:

R =



D c/
√
n ...

c/
√
n D c/

√
n ...

c/
√
n c/

√
n D c/

√
n ...

...

c/
√
n c/

√
n D



75

R ·RT =



1 ρ ρ ρ ...

ρ 1 ρ ρ ...

ρ ρ 1 ρ ...

...

ρ ρ 1



Which gives us two linear equations with which we can solve for c and D.

4) For the first version of this experiment (henceforth ”regime 1”) we have fixed ρ within

all blocks as described above, so the only parameters in model are B blocks and ρ.

The second model (regime 2) is an autoregressive model of order 1, i.e. it uses power

decay where ρi,j = ρ|i−j| within blocks and 0 between, instead of constant ρ within blocks.

5) After generating this data Z, we calculate g(ρ̂) for Z and then perform spectral clus-

tering as usual (see in Appendix B for full details).

5.1.2 Initial Results: Clustering Accuracy against ρ and k

We begin by displaying initial results of the regime 1 experiment, Fig. 5.1. We plot

clustering accuracy of spectral clustering with random projection against both original

correlation ρ and reduced dimension k to show the basic outline of our results. As we

expected, performance increases very clearly with both ρ and k.

Remark: Note on defining clustering accuracy

Since there are only two clusters, we can define accuracy simply as the proportion of obser-

vations in the same (true) block that are in the same cluster after SCRP. Thus, clustering

accuracy of 1 indicates that all observations in a (true) block are clustered together, whereas

the minimum clustering accuracy of 0.5 indicates that exactly half of the observations are

76

(a): Accuracy by ρ (selected k) (b): Accuracy by k (selected ρ)

Figure 5.1: Clustering Accuracy, Regime 1, n = 1000, replicates = 100, σ = 1. These two
plots are the initial results using the linear estimator ρ̂lin, demonstrating the relationship
of Accuracy with ρ (true, original correlation) and k (reduced dimensionality).

in an incorrect cluster.

5.1.3 Linear versus Multiplicative Estimator

In this subsection we explore the linear and multiplicative estimators ρ̂lin and ρ̂mult. We be-

gin with a discussion of theoretical bounds on MSE then discuss regime 1 results comparing

ρ̂lin and ρ̂mult.

77

ρ̂lin known quantities, from previous work

g(ρ) = exp
(ρ
σ2

)
g′(ρ) =

1

σ2
exp

(ρ
σ2

)
g′′(ρ) =

1

σ4
exp

(ρ
σ2

)

Bias(ρ̂) ≤ exp (ρ/σ2) · (1 + ρ2)

k · σ4

Var(g(ρ̂)) = Var(ρ̂)(g′(E(ρ̂))2 + remainder

≤ exp (2ρ/σ2) · (1 + ρ2)

k · σ4
+ o

(
1

k

)

ρ̂mult known quantities, from previous work

Bias(ρ̂) ≤ 5ρ+ ρ3/2

k

Var(ρ̂) =
(1− ρ2)

k
+ o

(
1

k

)

Calculation for multiplicative estimator

E(g(ρ̂)) = exp

(
ρ+ Bias(ρ̂)

σ2

)(
1 +

1

σ4
·Var(ρ̂)

)
, we drop the o

(
1

k

)
term in Var(ρ̂)

(5.1)

= exp
(ρ
σ2

)
· exp

(
Bias(ρ̂)

σ2

)
·
(

1 +
1

σ4
· (1− ρ2)2

k

)
(5.2)

= exp
(ρ
σ2

)
· exp

(
5ρ+ ρ3/2

kσ2

)
·
(

1 +
1

σ4
· (1− ρ2)2

k

)
(5.3)

78

Thus we can calculate bias by subtracting g(ρ) from 5.3:

Bias = exp
(ρ
σ2

)
· exp

(
5ρ+ ρ3/2

kσ2

)
·
(

1 +
1

σ4
· (1− ρ2)2

k

)
− exp

(ρ
σ2

)

= exp
(ρ
σ2

)
·
[
exp

(
5ρ+ ρ3/2

kσ2

)
·
(

1 +
1

σ4
· (1− ρ2)2

k

)
− 1

]

= O

(
1

k

)

From previous work,

Var(g(ρ̂)) =
(1− ρ2)2 exp

(
2ρ
σ2

)
k · σ4

+ o

(
1

k

)

We plot out these theoretical values of bias and variance of the above, Fig. 5.2. In

summary, both have similar O
(
1
k

)
bounds on MSE and have comparable computation

time. It then follows that we must explore the actual performance of these estimators.

79

(a) Bias(g(ρ̂lin)) (b) Var(g(ρ̂lin))

(c) Bias(g(ρ̂mult)) (d) Var(g(ρ̂mult))

Figure 5.2: Bias and variance of g(ρ̂) for both linear and multiplicative estimators

80

ρ̂lin and ρ̂mult comparison simulations

In Fig. 5.3 we present results for ρ̂lin and ρ̂mult in the form of plots of Accuracy vs ρ for

both estimators and across four values of k.

It is immediately clear that both are performing similarly, and also that ρlin appears

to be performing slightly better than ρmult. We take a moment to note that there is very

high variance of clustering performance, which we discuss below. Plot 5.5 shows Accuracy

vs ρ with standard errors for ρ̂lin; we discuss this variance in the next section. (The

corresponding plot for ρ̂mult is almost identical and thus omitted.)

81

Figure 5.3: Clustering accuracy, Regime 1, n = 2000, replicates = 100. Besides the rela-
tionship between Accuracy and both ρ and k, this plot shows that the two estimators ρ̂lin
and ρ̂mult perform similarly, with ρ̂lin performing slightly and consistently better.

Since all our experiments suggest that ρ̂mult and ρ̂lin perform very similarly, we focus

on ρ̂lin in later sections.

82

Figure 5.4: Variance of accuracy, Regime 1, n = 1000, replicates = 100, ρ̂lin. The goal
of these plots is to highlight how clustering accuracy varies more when accuracy is in the
”middle” range of around 0.65 to 0.85 (noting that Accuracy is between 0.5 and 1.0 for two
clusters).

5.1.4 Variance of clustering accuracy

Before moving on to exploring algorithm parameters, we take a moment to note that with

these relatively small sample sizes and dimensions, performance of clustering varies signif-

icantly, which explains much of the variance in the results. We plot results with standard

error bars to emphasize this in Fig. 5.5.

The most important factor determining variance of accuracy is the range of accuracy

itself; for example, when performance is near 100% then variance of accuracy approaches 0,

and when it is near 50% there is less variance as the results are consistently near-minimum.

This can be seen in Fig. 5.4. The corresponding plot for ρ̂mult is omitted as it is essentially

identical.

5.1.5 Ratios and Differences of Similarities

The spectral clustering algorithm can be viewed as clustering based on the similarity g(ρ),

and thus being able to distinguish g(ρ) for two points within a block vs between blocks

83

Figure 5.5: Variance of accuracy, Regime 1, n = 1000, replicates = 100, ρ̂lin. These are two
of the plots we earlier combined in Fig. 5.3, with standard error bars to demonstrate how
much accuracy can vary.

is potentially of interest. To explore this, we generated plots of accuracy along with ratio

and difference of distances. We denote the correlation within blocks as ρw := ρ, and note

that correlation between blocks ρb = 0. Of course, after random projection, the correlation

between compressed data points depend on estimators ρ̂b and ρ̂w. Then theoretical results

are, respectively,

Diff := exp
ρ− 1

σ2
− exp

−1

σ2

Ratio :=
exp ρ−1

σ2

exp −1
σ2

We present plots of post-random projection results against ρ and k, overlaid with the

theoretical (true) values. In a later section we discuss these ratio and differences with

respect to Gaussian similarity measure parameter σ.

84

(a): Difference of g(ρw) - g(ρb) vs ρ. (b): Difference of g(ρw) - g(ρb) vs k.

(c): Ratio of g(ρw) / g(ρb) vs ρ. (d): Ratio of g(ρw) / g(ρb) vs k.

Figure 5.6: Difference and Ratio of g(ρ̂w) / g(ρ̂b), theoretical and simulated results. The

aim of the ratio and difference plots is to show how separation in g(ρ̂) = exp((ρ̂ − 1)/σ2)
varies with k and (true, pre-compression) ρ. The expected relationship with ρ is clear. We
can also see, as k increases, the simulated plots follow the theoretical lines more closely.

85

5.2 Spectral Clustering and Random Projection Algorithm

Parameters

In this section we explore the effects of σ, ρ, k on MSE and performance based on our

experiments, as well as theory where relevant.

Parameters and quantities of Interest

Parameter Description

ρ correlation between original data points, within block

k reduced dimensionality (after random projection)

σ σ parameter used in the Gaussian distance measure

5.2.1 Gaussian kernel parameter σ

We proceed to investigate Gaussian kernel parameter σ in detail. We begin by looking at

the separation of g(ρb) and g(ρw), and plotting performance of clustering against σ.

It is evident that σ has minimal effect on performance, with the notable exception of

extremely low values of σ. (In this experiment, when we dropped σ below 0, the similarity

function broke down and produced Laplacians of all 0s or NaNs). Plots show that, while

high sigma makes absolute weights smaller, the variance is correspondingly smaller. In Fig.

5.7 we look at separation of g(ρb) and g(ρw), i.e. ρ between and within clusters, respectively.

The left panel is the difference g(ρb) - g(ρw), while the right panel is the ratio g(ρb)/g(ρw).

In short, setting σ to something around 1, which other literature implicitly suggests as a

default, produces good results and has the extra benefit of making calculations simpler.

We initially discussed difference and ratio in Sec. 5.1.5. We now plot theoretical within-

cluster measures related to g(ρb) − g(ρw), shown in Fig. 5.8, with respect to σ. In these

plots we show the theoretical values of g(ρ) as ρ increases, along with g(ρ) + /−sd(ρ). We

also define ρ− δ1, where δ1 =absolute bias= |ρ̂− ρ|, and within 0− δ2, then calculate and

86

Figure 5.7: Difference of g(ρw) - g(ρb) and ratio of g(ρw) / g(ρb) against σ, theoretical and
simulation results.

plot gap = ρ− δ1 − δ2.

Our next plot, Fig. 5.9, examines theoretical variance under various settings. Each

of the four panels in this figure has a different value of the parameter σ. The line with

standard deviations crosses 1 - i.e., e0, the point at which it would become impossible to

determine which cluster our point is in - near ρ = 0.18 in all four plots. While there is

a small amount of variation, this essentially confirms that σ should have little effect on

algorithm performance.

5.2.2 Known correlation between clusters ρ

ρ has a very strong effect on performance and variance, as theory and common sense sug-

gests. It can be seen from any of the results plots that as ρ increases, so does performance.

5.2.3 Reduced dimensionality k

As our work above suggests, MSE of ρ is O(1/k), and experiments verified that there is a

large effect of k on SC performance. Figures 1, 2, and 3 all clearly show a strong relationship

between performance and k.

87

(a) ρ = 0.05 (b) ρ = 0.1

(c) ρ = 0.15 (d) ρ = 0.2

Figure 5.8: Relationship between Clustering Accuracy and Difference g(ρw) - g(ρb), across
σ. Each of the four panels fixes a different value of ρ. Ultimately the plots show us that
the difference in similarity measures does not tell the entire story.

88

(a) Theoretical g(ρ), σ = 1 (b) Theoretical g(ρ), σ = 10

(c) Theoretical g(ρ), σ = 100 (d) Theoretical g(ρ), σ = 1000

Figure 5.9: Plots of theoretical g(ρ). Each plot has a different value of σ; within each plot
are standard error bars for different levels of k. The goal of these plots is to show how
rapidly the compressed data approaches the true values as k increases. In particular we can
see that the intersection with g(ρ) approaches ρ = 0 when σ = 1.

89

Figure 5.10: Accuracy vs ρ, regime 2 (AR(1) ρ within blocks), for various σ.

5.2.4 AR(1) simulation results

Our experiment continues with regime 2, an Autoregressive (1) (“AR(1)”) model in which

the within-block observations xi and xj have correlation ρ|j−i|, where |j − i| is the distance

between the observations in the matrix: Corr (xi, xj) = ρ|j−i|. As the above graphs show,

this regime is much more difficult to cluster, but the relationship between ρ and performance

is again clear. Clustering accuracy has high variance as accuracy increases past 0.5, which

again likely has more to do with the fact that when clustering is near 0.5 - that is, the

minimum - it is consistently near the minimum and thus low variance (5.11).

90

Figure 5.11: Variance of accuracy vs ρ, regime 2 (AR(1) ρ within blocks), for selected values
of k.

91

5.3 Real data experiments

5.3.1 MNIST dataset

First, we revisited the MNIST dataset of handwritten digits. Here we present compiled plots

with all digits included in each plot: each data point represents the accuracy (averaged over

each simulation) of a particular pairing of digits (e.g., 0 and 1, 0 and 2, 1 and 3, and so

forth up to 8 and 9). The y-axis is clustering (classification) accuracy, while the x-axis is

the mean difference in correlation. Specifically, the x-axis value for Cluster C1 and Cluster

C2, which we call ρC1,C2:

ρC1,C2 =
∑
i∈C1

∑
j∈C1

〈xi, xj〉+
∑
i∈C2

∑
j∈C2

〈xi, xj〉 − 2
∑
i∈C1

∑
j∈C2

〈xi, xj〉 (5.4)

The above set of nine plots shows different levels of k. Across all the plots we can

see that there is a clear positive relationship between ρC1,C2 and clustering accuracy, as

well as a positive relationship between reduced dimension k and clustering accuracy. This

experiment allowed us to observe very low values of σ, second set of eight plots varies σ.

Performance for very low values of σ is much worse, peaking at around 70% correct, before

stabilizing at around σ = 0.4 where performance approaches 100%. (Literature and our

experiments suggest σ = 1 is a reasonable default.)

92

Figure 5.12: MNIST Accuracy vs ρwithin − ρbetween, varying k. 20 replicates, σ = 1.0.

93

Figure 5.13: MNIST Accuracy vs ρwithin − ρbetween, varying σ. 50 replicates, k = 150.

94

Figure 5.14: Accuracy vs k, Spectral clustering. RP vs PCA vs full data, no quantization.

5.3.2 Columbia University Image Library (COIL-20) dataset

Another dataset we looked at was the Columbia University Image Library (COIL-20) dataset

of rotated images [50]. This image dataset consists of 72 angles of each of 20 objects, for

1440 total images. We first attempted all pairs spectral clustering, wherein we took each

of
(
20
2

)
= 190 pairs of objects and clustered them all. Results are similar to our MNIST

experiments. Formal time trials were not run, but it was noted that RP ran significantly

faster than PCA due to the relatively large size of the images (128× 128, d = 16384).

95

5.4 Discussion

This dissertation began with a theoretical exploration of quantization, random projection,

and spectral clustering, and has concluded with experiments that successfully employ all

of these methods. We explored specific results with spectral clustering using two synthetic

datasets, then performed some experiments on real data. Results show that clustering

performance on a dataset compressed by RP is comparable to that of PCA, and full data for

that matter, although RP is somewhat dependent on a reasonably large reduced dimension

k. Quantized experiment results show that we retain almost all relevant information with

quantization for b ≥ 3. Besides the specific results we have proven, we have provided

a framework for methods to apply to other machine learning algorithms or quantization

methods.

There are several ways that both the theoretical and practical aspects of our work

could be extended. We could compare other methods of compression besides RP and PCA.

We could explore other methods of quantization besides the deterministic and stochastic

methods we used. Focusing only on experiments, we could briefly add other clustering

algorithms to our comparisons. With some optimization of our code, we might also attempt

timed runs to compare practical run time of PCA to RP on datasets of varying size and

complexity. An analysis of alternative compression methods such as structured random

projection might be another feasible extension.

96

Appendix A: Additional proofs

In this appendix we include proofs that did not warrant inclusion in the main text. Many

of these are expanded versions of proofs that are outlined in the main text; some are fairly

elementary calculations, or previously established proofs that may help the reader follow

along.

A.1 Section 2.1, Johnson-Lindenstrauss for inner products

Proposition A.1.1. 〈xi, xj〉 − ε · ‖xi‖‖xj‖ ≤ 〈zi, zj〉 ≤ 〈xi, xj〉+ ε · ‖xi‖‖xj‖

Proof. We work under our assumption of unit vector norms.

〈zi, zj〉 =
1

4

(
‖zi‖2 + ‖zj‖2 + 2〈zi, zj〉 −

(
‖zi‖2 + ‖zj‖2 − 2〈zi, zj〉

))
=

1

4

(
‖zi + zj‖2 − ‖zi − zj‖2

)
≥ 1

4

(
(1− ε)‖xi + xj‖2 − (1 + ε)‖xi − xj‖2

)
= 〈xi, xj〉 −

1

2
ε(‖xi‖2 + ‖xi‖2)

= 〈xi, xj〉 − ε

≥ 〈xi, xj〉 − ε〈xi, xj〉 , since 〈xi, xj〉 ≤ 1

= (1− ε)〈xi, xj〉

97

A.2 Section 2.2.2 Alternative Proof

Proposition A.2.1. d2(z, z′) is a consistent estimator for ‖xi‖2 + ‖x′i‖2 − 2〈x, x′〉 =

d2(x, x′).

Proof. For this proof we note that d2(z, z′) = ‖z‖2 +‖z′‖2−2〈z, z′〉, and then we show each

of ‖z‖, ‖z′‖, and 〈z, z′〉 are consistent estimators of ‖x‖, ‖x′‖, and 〈x, x′〉 respectively. We

have already established that each of these is unbiased, and thus it remains to show that

the variance of each converges to 0 as k →∞.

First we establish V ar‖z‖.

V ar‖z‖2 = V ar
k∑
i=1

z2i

= V ar
k∑
i=1

(
d∑
j=1

xjrij)
2/k

=
1

k2
V ar

k∑
i=1

(x1ri1 + x2ri2 + · · ·+ xdrid)
2

=
1

k2

k∑
i=1

 d∑
j=1

V ar(x2jr
2
j1) +

d∑
l=1

d∑
m 6=l

Cov(xlrjl, xmrjm)



=
1

k2

k∑
i=1

 d∑
j=1

V ar(x2jr
2
ij) + 0



Now, for all i, j

V ar(x2jr
2
ij) = E(x4jr

4
ij)− (E(x2jr

2
ij))

2

= 3x4j − x4j

= 2x4j

98

Thus, going back to the original equation,

V ar‖z‖2 =
1

k2

k∑
i=1

 d∑
j=1

V ar(x2jr
2
ij)



=
1

k2

k∑
i=1

 d∑
j=1

2x4j



=
1

k

 d∑
j=1

2x4j



And so as k →∞, V ar‖z‖ → 0. Now we establish V ar(〈z, z′〉).

V ar(〈z, z′〉) = V ar

[
k∑
i=1

ziz
′
i

]

=
1

k2

k∑
i=1

k∑
j=1

Cov(ziz
′
i, zjz

′
j)

=
1

k2

k∑
i=1

k∑
j=1

E(ziz
′
izjz

′
j)− E(ziz

′
i)E(zjz

′
j)

Recall that the rij are i.i.d. ∼ N(0, 1), and so we have the following moments:

E[rij] = 0, E[r2ij] = 1, E[r2ijr
2
il] = 1, E[r3ijril] = 0, E[r4ij] = 3

99

Now, for all i, and noting that the rij ∼ N(0, 1) and are independent from each other,

E(ziz
′
i) = E

[
d∑
l=1

xlril

d∑
m=1

x′mrim

]

= E
[
(x1ri1 + · · ·+ xdrid)(x

′
1rj1 + · · ·+ x′drjd)

]

= E

[
d∑
l=1

xlx
′
lr

2
il

]
+ E

 d∑
l=1

∑
m6=l

xlrilx
′
mrim



=

[
d∑
l=1

xlx
′
lE[r2il]

]
+

d∑
l=1

∑
m 6=l

xlx
′
mE[ril]E[xim]

= 〈x, x′〉+ 0

Now we solve for E(ziz
′
izjz

′
j). To do so we break into two cases, i = j (for which there

are k cases) and i 6= j (for which there are k(k− 1) cases). For the case that i 6= j, we note

that (zi, zj , z
′
i, zj)

′ form a multivariate normal random vector, and so by Isserlis’ theorem

(details Appendix A) and equation A.2 above

E(ziz
′
izjz

′
j) = E(ziz

′
i)E(zjz

′
j) + E(zizj)E(z′iz

′
j) + E(z′izj)E(ziz

′
j)

= 〈x, x′〉2 + 0 + 0

Thus, putting it together, we have

100

E(ziz
′
iziz

′
i) = E(z2i z

′2
i)

= E
[
(x21r

2
i1 + x22r

2
i2 + · · ·+ x2dr

2
id)(x

′2
1 r

2
i1 + x′22 r

2
i2 + · · ·+ x′2d r

2
id)
]

= E(x21x
′2
1 r

4
i1 + · · ·+ x21x

′2
1 r

4
i1) + E

 d∑
l=1

∑
m6=l

x2l x
′2
mr

2
ilr

2
im



= 3

d∑
l=1

x2l x
′2
l +

d∑
l=1

∑
m 6=l

x2l x
′2
m

= 3〈x, x′〉2 + ‖x‖22 · ‖x′‖22 − 〈x, x′〉2

Putting these parts together, we have:

1

k2

k∑
i=1

k∑
j=1

E(ziz
′
izjz

′
j)− E(ziz

′
i)E(zjz

′
j)

=
1

k2
(
k
[
3〈x, x′〉2 + ‖x‖22 · ‖x′‖22 − 〈x, x′〉2

]
+ (k2 − k)〈x, x′〉2 − k2〈x, x′〉2

)
=

1

k

(
‖x‖22 · ‖x′‖22 + 〈x, x′〉2

)

Thus, as k →∞, V ar〈z, z′〉 → 0, and (recalling that E〈z, z′〉 = 〈x, x′〉), 〈z, z′〉 is a consistent

estimator for 〈z, z′〉.

In all, we have that ‖z‖, ‖z′‖, and 〈z, z′〉 are consistent estimators of ‖x‖, ‖x′‖, and

〈x, x′〉 respectively. Since d2(z, z′) = ‖z‖2+‖z′‖2−2〈z, z′〉, d2(z, z′) is a consistent estimator

for ‖xi‖2 + ‖x′i‖2 − 2〈x, x′〉 = d2(x, x′).

101

A.3 Section 3.2 Proof using Isserlis’ theorem

Proposition A.3.1. For bivariate normal vectors Z,Z ′, E(Z2Z
′2) = Var(Z)Var(Z ′) +

2Cov(Z,Z ′)2 = 1 + 2ρ2

Proof. We begin by stating Isserlis’ Theorem, then apply to our case.

Isserlis’ Theorem

For a multivariate, 0-mean normal vector (X1X2 . . . X2n) with E(Xi) = 0 for all i ∈

{1, ..., 2n},

E(X1X2...X2n) =
∑∏

E(XiXj), and in particular

E(X1X2X3X4) = E(X1X2)E(X3X4) + E(X1X3)E(X2X4) + E(X1X4)E(X2X3)

Where the sum is over all disjoint pairs of the {Xi, Xj}, and the product is over all distinct

pairings within of said random variables. [51]

Back to E(ziz
′
izjz

′
j), we now solve for the case that i = j, we have

E(ziz
′
iziz

′
i) = E(z2i z

′2
i)

= E
[
(x21r

2
i1 + x22r

2
i2 + · · ·+ x2dr

2
id)(x

′2
1 r

2
i1 + x′22 r

2
i2 + · · ·+ x′2d r

2
id)
]

= E(x21x
′2
1 r

4
i1 + · · ·+ x21x

′2
1 r

4
i1) + E

 d∑
l=1

∑
m6=l

x2l x
′2
mr

2
ilr

2
im



= 3

d∑
l=1

x2l x
′2
l +

d∑
l=1

∑
m 6=l

x2l x
′2
m

= 3〈x, x′〉2 + ‖x‖22 · ‖x′‖22 − 〈x, x′〉2

102

A.4 Section 3.2 Lemmas

Lemma A.4.1. Bias(ρ̂) = 0

Proof. We use conditioning: E(QQ′) = E[E(QQ′|Z,Z ′)], treating Z,Z ′ as constants. Note

that this proof applies to any number of bits.

E
[
QQ′|Z,Z ′

]
= b2P (Q = b,Q′ = b) + ab · P (Q = a,Q′ = b) + ba · P (Q = b,Q′ = a)

Now, assuming a = −b:

E
[
QQ′|Z,Z ′

]
=

1

4b2
[b2(z + b)(z′ + b) + b2(b− z)(b− z′)− b2(z + b)(b− z′)

+ b2(z′ + b)(b− z)]

= z′(b+ z − b+ z)/2

= zz′

This gives us:

E
[
E
[
QQ′|Z,Z ′

]]
= E(zz′)

= Cov(ZZ ′)− E(Z)E(Z ′) = ρ

Lemma A.4.2. Var[E [QQ′|Z,Z ′]] = 1 + ρ2

103

Proof.

V ar
[
E
[
QQ′|Z,Z ′

]]
= V ar[zz′]

= E(z2z′2]− [E(zz′)]2

= 1 + 2ρ2 − ρ2

= 1 + ρ2

A.5 Delta Method using Taylor Expansion Detailed

Our application of the delta method has its basis with the Taylor expansion / approximation

of a function f(·) at a point, using the Lagrange form of the remainder for the second term:

f(x+ h) = f(x) + hf ′(x) +
h2

2!
f ′′(x+ p · h), p ∈ (0, 1)

In the context of an estimator ρ̂ of ρ, we take a Taylor expansion around E[ρ̂], i.e. in

the above formula we set x = E(ρ̂), h = ρ̂− E(ρ̂), and take ρ̃ = max(ρ, ρ̂):

f(ρ̂) = f(E(ρ̂)) + f ′(E(ρ̂))(ρ̂− E(ρ̂)) +
(ρ̂− E[ρ̂])2

2!
f ′′(E(ρ̃))

So taking expectation or variance of both sides we have:

E [f(ρ̂)] = E

[
f(E(ρ̂)) + f ′(E(ρ̂))(ρ̂− E(ρ̂)) +

(ρ̂− E[ρ̂])2

2!
f ′′(E(ρ̃))

]

= f(E[ρ]) + 0 +
E[(ρ̂− E[ρ̂])2]

2
f ′′(E(ρ̃))]

104

V ar [f(ρ̂)] = V ar

[
f(E(ρ̂)) + f ′(E(ρ̂))(ρ̂− E(ρ̂)) +

(ρ̂− E[ρ̂])2

2!
f ′′(E(ρ̃))

]

= 0 + V ar(ρ̂) ·
[
f ′(ρ̂)2

]
+R

We will often use the Lagrange form of the remainder after the first term,

R = 1
2f
′′(E(ρ̃))(ρ̂− E(ρ̂))2, and

V ar(R) = V ar

(
1

2
f ′′(E(ρ̃))(ρ̂− E(ρ̂))2

)

=
1

4
f ′′(E[ρ̃])2V ar

(
(ρ̂− E[ρ̂])2

)

A.6 Section 3.2.3 discssion on selection of b

The estimator (ˆρSBQ) is unbiased only if b ≥ maxi∈[1,k] zi. It is feasible to go through the

data post-projection to set b equal to the maximum over observations (zij), but this would

be an inefficient process is of order O (nk). More practically, we can choose b depending

of n, such as proportional to
√

log nk, which is the order of E[max1≤i≤n|Zi|]). With this

choice of b the bias becomes negligible.

In theory, for a given sample, b should be set to be the maximum of the sample so

that Z is never greater than b, i.e. P (Z > b) = 0. This operation of determining the min

and max of each Z would be an operation of O
(
1
k

)
, and perhaps not feasible for practical

application. One option for choosing b could instead be to set b such that the probability

of a projected value zl > b, given a sample of n observations and reduced dimension k, is

α = 0.001 (say):

105

Figure A.1: Values of b corresponding to various α and n · k. We can see that even for
extreme values, setting b = 7 is sufficiently high.

P (z(n) > b) = α =⇒ P (z1, ..., znk < b) = 1− α

P (z1, ..., znk < b) = (Φ(b))nk = 1− α

Φ(b) = (1− α)1/nk

b = Φ−1
(

(1− α)1/nk
)

We could instead choose b according to n, for example b = O
(√

log(k)
)

, which is of the

106

order of E[max1≤i≤k|zl|]). Another option might be to follow (Royston 1982, Blom 1958,

proper citations coming if we use this), wherein we set

b ∝ E[z(k)] ≈ Φ
(i− ν)

k − 2α+ 1

where Φ(·) is the cdf of a standard normal random variable and ν ≈ 0.375.

107

A.7 Section 3.2.4

We substitute the below in to the work in section 3.2.4, in the calculation of E(E(Q2Q′2|Z,Z ′)).

E(E(Q2Q′2|Z,Z ′))

= E
[
E(Q2|Z) · E(Q′2|Z ′)

]
= E

[
(2b2(I(Z > b)) + a2I(Z ∈ (−a, a]) + (Z(b+ a)− ab)I(Z ∈ (a, b)

− (Z(a+ b) + ab)(I(Z ∈ (−b,−a]))

· 2b2(I(Z > b)) + a2I(Z ∈ (−a, a]) + (Z(b+ a)− ab)I(Z ∈ (a, b)

− (Z(a+ b) + ab)(I(Z ∈ (−b,−a])
]

= 4b2P (Z > b, Z ′ > b) + a4P (Z,Z ∈ (−a, a])

+ E[ZZ ′(a+ b)2 + (Z + Z ′)(a+ b)ab+ a2b2|Z,Z ′ ∈ (a, b]] · P (Z,Z ′ ∈ (a, b])

+ E[ZZ ′(a+ b)2 − (Z + Z ′)(a+ b)ab+ a2b2|Z,Z ′ ∈ (−b,−a]] · P (Z,Z ′ ∈ (−b,−a])

+ P (Z ∈ (−a, a], Z ∈ (a, b])a2

· [((a+ b)E(Z ′|Z ′ ∈ (a, b)) + ab) + (a+ b)E(Z|Z ∈ (a, b]) + ab)

− ((a+ b)E(Z ′|Z ′ ∈ (−b,−a])− ab)− ((a+ b)E(Z|Z ∈ (−b,−a])− ab))]

= a4P (Z,Z ∈ (−a, a]) + 4a2(E[Z · IZ∈(−a,a),Z′>a(a+ b)]− ab · P (Z ∈ (−a, a), Z ′ > a))

+ 2E[ZZ ′IZ>a,Z′>a(a+ b)2 − (Z + Z ′)(a+ b)ab · IZ>a,Z′>a]

+ 2a2b2 · P (Z > a,Z ′ > a)

− 2E[ZZ ′IZ>a,Z′<−a(a+ b)2 + (a+ b)ab(Z − Z ′) · IZ>a,Z′<−a − a2b2IZ>a,Z′<−a]

108

Lemma A.7.1. Var[E [QQ′|Z,Z ′]] = 1 + ρ2

Proof.

V ar
[
E
[
QQ′|Z,Z ′

]]
= V ar[zz′]

= E(z2z′2]− [E(zz′)]2

= 1 + 2ρ2 − ρ2

= 1 + ρ2

109

A.7.1 Section 4.1, full calculation using Taylor expansions for E(ρ̂)

E [ρ̂] = E

[
〈z, z′〉
‖z‖‖z′‖

]
= E[

a√
bc

]

= E

f
E


a

b

c


+

1

2

(
a− ρ b− 1 c− 1

)
∇2f(ã, b̃, c̃)


a− ρ

b− 1

c− 1




≤ ρ+

E


(
a− ρ b− 1 c− 1

)


0 −1
2 b̃
− 3

2 c̃−
1
2 −1

2 b̃
− 1

2 c̃−
3
2

−1
2 b̃
− 3

2 c̃−
1
2

3
4 ãb̃
− 5

2 c̃−
1
2

1
4 ãb̃
− 3

2 c̃−
3
2

−1
2 b̃
− 1

2 c̃−
3
2

1
4 ãb̃
− 3

2 c̃−
3
2

3
4 ãb̃
− 1

2 c̃−
5
2




a− ρ

b− 1

c− 1





= ρ+
1

2
E
[
(a− ρ)

(
−b+ c+ 2

2

)
+ (b− 1)

(
−(a− ρ)

2
+

3ã(b− 1)

4
+
ã(c− 1)

4

)
+

+ (c− 1)

(
−(a− ρ)

2
+
ã(b− 1)

4
+

3ã(c− 1)

4

)]

= ρ+ E
[
(a− ρ)(2− b− c) +

3ã[(b− 1)2 + (c− 1)2] + 2ã(b− 1)(c− 1)

8

]

110

E [ρ̂] = ρ− ρ+ E(a)

− E(ab)− E(ac) + E(ρb) + E(ρc)

2
+

3ã(V (b) + V (c)) + 2ãE[(b− 1)(c− 1)]

8

= ρ+ 2ρ− (ρ+
2ρ

k
)− 2ρ+ ρ+ ρ+

3ã(2 · 2k + 2ã(1 + ρ2

k − 1− 1 + 1)

8

= ρ+
2ρ

k
+

3ã

k
+
ãρ2

2k

= ρ+
2ρ+ ã(3 + ρ2/2)

k

And thus Bias(ρ̂) = O
(
1
k

)
.

111

Appendix B: Spectral Clustering Experiment Details and

Results

B.1 Spectral Clustering Experiment Details

This appendix describes the spectral clustering experiment in detail. Spectral Clustering is

a clustering algorithm that uses the eigenvalues of the data’s graph similarity matrix (de-

scribed below) [52] [1]. It is a relaxation of the graph cut problem. One of its advantages

is that it relies only on pairwise distances; since this is what random projection preserves,

we would expect spectral clustering to be a good application of RP.

Many of our experiments involved comparing RP to PCA. The algorithms are similar on

their faces: both take existing data and reduce to lower dimension, and can be represented

as a matrix multiplication. Whereas RP gives a projection of the data on a random sub-

space, PCA gives a projection on a sub-space that provides the best linear approximation

of the data. Of course, this is done at the expense of computational complexity. Each

principal component minimizes the sum of squared distance between all points and their

projection in the subspace.

PCA maximizes the amount of variance accounted for with a given number of dimen-

sions. In theory, we expect PCA to give better accuracy at the cost of processing time for

a given k; for lower k, likely much better, as PCA may provide noise reduction.

For our experiment, we combine spectral clustering with each of the two methods of

dimensionality reduction, random projection and principal component analysis.

The spectral clustering algorithm we used was introduced in [46]. We followed the im-

plementation outlined in [1] with minimal modification to incorporate our dimensionality

112

reduction. We present the entire algorithm below, clustering data X to κ clusters.

B.1.1 Spectral Clustering Implementation

(1) Project data using RP (or PCA for comparison) to reduce dimensionality, ie project

X,xi ∈ Rd to obtain Z = RX, zi ∈ Rk.

(1a) PCA implementation

i. Find singular value decomposition of X, ie U,Σ, V such that X = UΣV T ,

with X,U ∈ Rn×d,Σ ∈ Rd×d, V ∈ Rd×d

ii. Create R ∈ Rd×k by taking first k vectors of V as columns, ie Rd×k =

v1, ..., vk, with vi ∈ Rd×1.

iii. Create reduced data matrix Z = RX.

(1b) RP implementation

i. Create R ∈ Rd×k where rij ∼ N(0, 1).

ii. Create reduced data matrix Z = RX.

(2) Create quantized data matrix Q = Qu(Z), where Qu(·) represents some general

element-wise quantization of Z. This can be done in one of several ways:

(2a) Deterministic Quantization, described in section 3.1.1.

(2b) Stochastic Quantization, described in section 3.1.2.

(2c) No quantization at all, i.e. Q = Z.

(3) Construct graph and associated Laplacian matrices.

(3a) Calculate similarities between all pairs of data points in Rk. For our experiment,

we used the Gaussian similarity, ie sij = s(xi, xj) = exp(−‖xi − xj‖2/2σ2).

113

Aside: For data that has been compressed to quantized space (M±)k, we

could calculate distances between points in (M±)
k

via alternative methods such

as hamming distance dh(x, y) = 1
k

∑k
j=1 I(xj 6=yj); i.e. for all i, j, d(qi, qj) ∈

{0, 1k ,
2
k , ..., 1}.

Another, simpler, option involves simply substituting the coded value (typically

midpoint) or even cut points in to other distance measures and pretending that

the data are from the real line. Alternatively, we can use inner product (or cosine

similarity), d(x, y) = 〈x, y〉. If data are normalized then d(x, y) ∈ [0, 1] and the

same weight formula below can be applied. In this case the weights are in [0,1].

(3b) Construct the K-nearest neighbors graph W using these similarities. To ensure

symmetry, we connect an edge between xi and xj if xi is amongst the K nearest

neighbors of yi, or if yi is amongst the K nearest neighbors of xi. The Kth near-

est neighbor of xi is defined as the data point with the Kth highest similarity. In

either case, wij = sij is then stored in weight matrix W . Otherwise the i,j entry

is 0. Note wii = 1.

We would like to emphasize here that capital K, the number of nearest neighbors

used to generate W , has nothing to do with k, the reduced dimension, or κ, the

number of clusters.

If using normalized distances, the weight of each edge w(xi, xj) can be set to

1− d(xi, xj) ≥ 0, since the algorithm relies on similarities instead of distances.

(3c) Generate degree matrix D, diagonal with entries dii =
∑

j wij , i = 1, . . . , n.

114

(3d) Generate Laplacian matrices. First, create unnormalized Laplacian L = D−W .

Then create normalized, symmetric Laplacian Lsym = D−1/2LD−1/2

Note that L is positive semi-definite, symmetric, and has n real eigenvalues ≥

0 (including 0, which has eigenvector 1, the vector composed of all 1’s). Lsym

has eigenvalue 0 with eigenvector D1/21, and is positive semi-definite, with n

non-negative real eigenvalues.

(4) Compute first κ eigenvectors of L, v1, ..., vκ, where “first” is defined as those associ-

ated with smallest κ eigenvalues (recalling that L is positive semi-definite).

(4a) Create matrix U ∈ Rn×κ by arranging v1, ..., vκ into columns.

(4b) Form matrix T ∈ Rn×κ by normalizing U by rows. Let yi be the κ × 1 vector

corresponding to the ith row of U .

(5) Cluster the points yi in Rκ to κ clusters Ci. This may be done with k-means or some

other method. The clustering of the data xi follows this clustering.

B.1.2 Experiment 1 Details

Our first experiment involved running the above algorithm, comparing PCA and RP sep-

arately. The steps were repeated for k from 10 to 300, in increments of 10, for both PCA

and RP. Since RP had yet to converge to full data performance, we then continued running

k up to 4000 in increments of 200.

115

For each iteration of the simulation (i.e., for each value of k), 20 RPs were calculated

and SCs performed for each projection. Since PCA is deterministic it was only run once

for each k. The R function kmeans was used for this experiment, with 5 random starts.

Our database is the Mixed National Institute of Standards and Technology database

(MNIST, [47]), a database of handwritten digits compiled by the USPS. Each handwritten

digit is represented by a 28×28 grey scale bitmap, with each pixel having one of 256 shades

in the grey scale. Thus, one row of the database contains 784 columns corresponding to the

shade of a pixel in the bitmap.

We stripped the training database down to several of the more easily-identifiable digits

for the purposes of this experiment, namely 0, 1, 2, 6, and 9. For this stage, a sample of

1000 digits were used from the original training database of about 60000 bitmaps. Thus

our data set X consists of about 200 images for each of 5 digits, that is 1000 rows.

B.1.3 Experiment 1 Results

For this experiment we used the Rand index [48] to measure similarity between the correct

clustering and the calculated clustering. The Rand Index calculates the fraction of pairings

that agree between the two clusterings, and thus may be slightly higher or lower than actual

(mis)-classification rate but is roughly equivalent. We then calculated the min, max, and

average Rand indexes.

Figure B.1 plots Rand index against reduced dimension k. PCA performance surpasses

full data performance around k = 50, peaks at k = 90, and descends from there until it

converges with full data performance at around k = 220.

RP performance is consistently lower than performance of both full data and PCA.

116

Figure B.1: RP and PCA, k ≤ 300 Figure B.2: RP, k ≥ 400

Figure B.3: Experiment 1 Results

However, performance does begin to converge to that of full data, as theory dictates. The

extended graph in figure B.2 shows this.

117

B.1.4 Experiment 2 Details

A second experiment was conducted, this time dividing the data into pairs of digits and

clustering these. This two-cluster experiment allowed us to use thresholding, a more con-

trollable method of clustering than kmeans, as well as ratio cut instead of Rand index

to measure performance. Ratio cut is a balanced cut metric that measures the difference

between clusters of a particular graph partitioning; the formula for the K-cluster case is

demonstrated below. [53] [54]

RatioCut(C, V \C) =

K∑
l=1

cut(Cl, V \Cl)
|Cl|

, where

cut(Cl, V \Cl) =
∑

i∈C,j∈V \C

wij

We outline the experiment here, referring to the algorithm in B.1.1 where necessary.

Experiment 2 Procedure

(1) Divide data into pairs of digits, i.e. each of
(
10
2

)
= 45 pairs, to attempt to cluster into

2 clusters. We call any particular data set X.

(2) Create compressed data set Z = XR via either RP or PCA. Use reduced dimension

k from 10 through 200 via increments of 10.

(3) Create K-nearest neighbor graph W of compressed data Z using Gaussian similarity,

degree matrix D, Laplacian L as in step (2) above.

(4) Compute the eigenvectors v1, ..., vn of L, but store only v2 (the one corresponding to

smallest non-zero eigenvalue).

(5) Threshold the eigenvector y2:

118

(5a) Sort y2 in ascending order to generate sorted vector ysort = {y2,(1), · · · , y2,(n)}.

(5b) For j ∈ {1, 2, · · · , n − 1}, divide ysort into two clusters by defining cluster C =

{y2,(1), · · · , y2,(j)}. The remaining elements ysort\C compose the other cluster

V \C. Calculate RatioCut(C, V \C) for each threshold j, using the weight matrix

W of the compressed data.

(5c) After looping through all n−1 possible thresholds, choose the one with the lowest

ratio cut value. Call the optimal clustering Cz.

(6) Measure results by comparing to same algorithm run on full data X, again using

RatioCut or NormalizedCut as the metric.

(6a) Run above steps (1) through (5), except create eigenvector y2 from full data X.

Call this optimal clustering Cx.

(6b) Evaluate performance of data compression by comparing Cx to Cz, via Ratio-

Cut (Cx, V \Cx) - RatioCut (Cz, V \Cz). Note that at this measurement step the

affinity matrix W to be used in the RatioCut calculation is that of the full data,

not that of the compressed data.

Lower values indicate better performance. By using different compression meth-

ods to create Z, they can be compared to either other and the full data perfor-

mance.

119

Figure B.4: Experiment 2 Results

B.1.5 Experiment 2 Results

For this experiment we measure performance of compression methods via RatioCut, as

described above. Lower values of ratio cut indicate more dissimilar partitions, i.e. better

performance. We present averaged results over all 45 pairs: that is, for any particular point .

Figure B.4 plots ratio cut against reduced dimension k. PCA performance climbs

steadily towards full data performance, although it does not quite converge to full data.

RP performance is consistently lower than performance of PCA at the same reduced

dimension k, besides at k = 10 where PCA performs very poorly. The difference is small

however, with ratio cut values very similar to that of PCA for k < 90, and almost identical

from around k = 100.

120

Bibliography

[1] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and computing, vol. 17,
no. 4, pp. 395–416, 2007.

[2] F. R. Bach and M. I. Jordan, “Learning spectral clustering, with application to speech
separation,” Journal of Machine Learning Research, vol. 7, no. Oct, pp. 1963–2001,
2006.

[3] H. Zare, P. Shooshtari, A. Gupta, and R. R. Brinkman, “Data reduction for spec-
tral clustering to analyze high throughput flow cytometry data,” BMC bioinformatics,
vol. 11, no. 1, p. 403, 2010.

[4] P. Li, T. J. Hastie, and K. W. Church, “Very sparse random projections,” in Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2006, pp. 287–296.

[5] M. Liu, Z. Shang, and G. Cheng, “Sharp theoretical analysis for nonparametric testing
under random projection,” in Conference on Learning Theory, 2019, pp. 2175–2209.

[6] W. B. Johnson and J. Lindenstrauss, “Extensions of lipschitz mappings into a hilbert
space,” Contemporary mathematics, vol. 26, no. 189-206, p. 1, 1984.

[7] P. Li, M. Mitzenmacher, and M. Slawski, “Quantized random projections and non-
linear estimation of cosine similarity,” in Advances in Neural Information Processing
Systems, 2016, pp. 2748–2756.

[8] K. He, F. Wen, and J. Sun, “K-means hashing: An affinity-preserving quantization
method for learning binary compact codes,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2013, pp. 2938–2945.

[9] W. Kong and W.-J. Li, “Double-bit quantization for hashing,” in Twenty-Sixth AAAI
Conference on Artificial Intelligence, 2012.

[10] A. Zymnis, S. Boyd, and E. Candes, “Compressed sensing with quantized measure-
ments,” IEEE Signal Processing Letters, vol. 17, no. 2, pp. 149–152, 2009.

[11] M. Garey, D. Johnson, and H. Witsenhausen, “The complexity of the generalized lloyd-
max problem (corresp.),” IEEE Transactions on Information Theory, vol. 28, no. 2,
pp. 255–256, 1982.

[12] P. Carbone and D. Petri, “Performance of stochastic and deterministic dithered quan-
tizers,” in IMTC/99. Proceedings of the 16th IEEE Instrumentation and Measurement
Technology Conference (Cat. No. 99CH36309), vol. 3. IEEE, 1999, pp. 1653–1658.

121

[13] D. Achlioptas, “Database-friendly random projections,” in Proceedings of the twenti-
eth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems.
ACM, 2001, pp. 274–281.

[14] R. L. Dykstra, “An algorithm for restricted least squares regression,” Journal of the
American Statistical Association, vol. 78, no. 384, pp. 837–842, 1983.

[15] J. M. Keller, M. R. Gray, and J. A. Givens, “A fuzzy k-nearest neighbor algorithm,”
IEEE transactions on systems, man, and cybernetics, no. 4, pp. 580–585, 1985.

[16] B. Schölkopf, “The kernel trick for distances,” in Advances in neural information pro-
cessing systems, 2001, pp. 301–307.

[17] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley interdisciplinary
reviews: computational statistics, vol. 2, no. 4, pp. 433–459, 2010.

[18] J. Shlens, “A tutorial on principal component analysis,” arXiv preprint
arXiv:1404.1100, 2014.

[19] P. Li, T. J. Hastie, and K. W. Church, “Improving random projections using
marginal information,” in International Conference on Computational Learning The-
ory. Springer, 2006, pp. 635–649.

[20] S. Dasgupta, “Learning mixtures of gaussians,” in Foundations of computer science,
1999. 40th annual symposium on. IEEE, 1999, pp. 634–644.

[21] ——, “Experiments with random projection,” in Proceedings of the Sixteenth conference
on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., 2000, pp.
143–151.

[22] C. Boutsidis, A. Zouzias, and P. Drineas, “Random projections for k-means clustering,”
in Advances in Neural Information Processing Systems, 2010, pp. 298–306.

[23] E. Bingham and H. Mannila, “Random projection in dimensionality reduction: ap-
plications to image and text data,” in Proceedings of the seventh ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining. ACM, 2001, pp.
245–250.

[24] D. Fradkin and D. Madigan, “Experiments with random projections for machine learn-
ing,” in Proceedings of the ninth ACM SIGKDD international conference on Knowledge
discovery and data mining, 2003, pp. 517–522.

[25] H. Xie, J. Li, Q. Zhang, and Y. Wang, “Comparison among dimensionality reduction
techniques based on random projection for cancer classification,” Computational biology
and chemistry, vol. 65, pp. 165–172, 2016.

[26] S. Deegalla and H. Bostrom, “Reducing high-dimensional data by principal component
analysis vs. random projection for nearest neighbor classification,” in 2006 5th Interna-
tional Conference on Machine Learning and Applications (ICMLA’06). IEEE, 2006,
pp. 245–250.

122

[27] N. Goel, G. Bebis, and A. Nefian, “Face recognition experiments with random projec-
tion,” in Biometric Technology for Human Identification II, vol. 5779. International
Society for Optics and Photonics, 2005, pp. 426–437.

[28] A. Bouzalmat, N. Belghini, A. Zarghili, J. Kharroubi, and A. Majda, “Face recognition
using neural network based fourier gabor filters & random projection,” International
Journal of Computer Science and Security (IJCSS), vol. 5, no. 3, p. 376, 2011.

[29] N. Belghini, A. Zarghili, J. Kharroubi, and A. Majda, “Sparse random projection and
dimensionality reduction applied on face recognition,” in The Proceedings of Interna-
tional Conference on Intelligent Systems & Data Processing, 2011, pp. 78–82.

[30] J. E. Fowler, Q. Du, W. Zhu, and N. H. Younan, “Classification performance of random-
projection-based dimensionality reduction of hyperspectral imagery,” in 2009 IEEE
International Geoscience and Remote Sensing Symposium, vol. 5. IEEE, 2009, pp.
V–76.

[31] K. Varmuza, C. Engrand, P. Filzmoser, M. Hilchenbach, J. Kissel, H. Krüger, J. Silén,
and M. Trieloff, “Random projection for dimensionality reductionapplied to time-of-
flight secondary ion mass spectrometry data,” Analytica chimica acta, vol. 705, no. 1-2,
pp. 48–55, 2011.

[32] A. Juvonen and T. Hamalainen, “An efficient network log anomaly detection system
using random projection dimensionality reduction,” in 2014 6th International Confer-
ence on New Technologies, Mobility and Security (NTMS). IEEE, 2014, pp. 1–5.

[33] A. Juvonen, T. Sipola, and T. Hämäläinen, “Online anomaly detection using dimen-
sionality reduction techniques for http log analysis,” Computer Networks, vol. 91, pp.
46–56, 2015.

[34] J. J. Amador, “Random projection and orthonormality for lossy image compression,”
Image and Vision Computing, vol. 25, no. 5, pp. 754–766, 2007.

[35] S. R. Oliveira and O. R. Zaiane, “Privacy-preserving clustering by object similarity-
based representation and dimensionality reduction transformation,” in Proc. of the
Workshop on Privacy and Security Aspects of Data Mining (PSADM04) in conjunction
with the Fourth IEEE International Conference on Data Mining (ICDM04), 2004, pp.
21–30.

[36] K. Liu, H. Kargupta, and J. Ryan, “Random projection-based multiplicative data
perturbation for privacy preserving distributed data mining,” IEEE Transactions on
knowledge and Data Engineering, vol. 18, no. 1, pp. 92–106, 2005.

[37] J. Max, “Quantizing for minimum distortion,” IRE Transactions on Information The-
ory, vol. 6, no. 1, pp. 7–12, 1960.

[38] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on information
theory, vol. 28, no. 2, pp. 129–137, 1982.

[39] A. T. Suresh, F. X. Yu, S. Kumar, and H. B. McMahan, “Distributed mean estimation
with limited communication,” in Proceedings of the 34th International Conference on
Machine Learning-Volume 70. JMLR. org, 2017, pp. 3329–3337.

123

[40] S. S. Gupta, “Probability integrals of multivariate normal and multivariate t1,” The
Annals of mathematical statistics, pp. 792–828, 1963.

[41] R. Vershynin, High-dimensional probability: An introduction with applications in data
science. Cambridge university press, 2018, vol. 47.

[42] Wikipedia contributors, “Truncated normal distribution — Wikipedia, the
free encyclopedia,” 2019, [Online; accessed 12-June-2019]. [Online]. Available:
https://en.wikipedia.org/wiki/Truncated normal distribution#Moments

[43] P. Li, M. Mitzenmacher, and M. Slawski, “Simple strategies for recovering inner prod-
ucts from coarse random projections,” 2017.

[44] M. S. Charikar, “Similarity estimation techniques from rounding algorithms,” in Pro-
ceedings of the thiry-fourth annual ACM symposium on Theory of computing. ACM,
2002, pp. 380–388.

[45] P. Li, M. Mitzenmacher, and A. Shrivastava, “Coding for random projections,” in
International Conference on Machine Learning, 2014, pp. 676–684.

[46] A. Ng and M. Jordan, “Y. weiss,” On spectral clustering: Analysis and an algorithm,
NIPS, vol. 14, pp. 849–856, 2002.

[47] Y. LeCun, C. Cortes, and C. J. Burges, “The mnist database of handwritten digits,”
1998.

[48] K. Y. Yeung and W. L. Ruzzo, “Details of the adjusted rand index and clustering al-
gorithms, supplement to the paper an empirical study on principal component analysis
for clustering gene expression data,” Bioinformatics, vol. 17, no. 9, pp. 763–774, 2001.

[49] Y. Chen, K. W. Ng, and Q. Tang, “Weighted sums of subexponential random variables
and their maxima,” Advances in applied probability, vol. 37, no. 2, pp. 510–522, 2005.

[50] S. A. Nene, S. K. Nayar, and H. Murase, “Columbia object image library (coil-20,”
Tech. Rep., 1996.

[51] L. Isserlis, “On a formula for the product-moment coefficient of any order of a normal
frequency distribution in any number of variables,” Biometrika, vol. 12, no. 1/2, pp.
134–139, 1918.

[52] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an
algorithm,” in Advances in neural information processing systems, 2002, pp. 849–856.

[53] N. Fan and P. M. Pardalos, “Multi-way clustering and biclustering by the ratio cut
and normalized cut in graphs,” Journal of combinatorial optimization, vol. 23, no. 2,
pp. 224–251, 2012.

[54] M. Slawski, “Stat 672 class 10: Clustering,” https://mymasonportal.gmu.edu/
bbcswebdav/pid-6702797-dt-content-rid-89070567 1/courses/18328.201710/class-10%
281%29.pdf, April 2017.

[55] N. L. Johnson, S. Kotz, and N. Balakrishnan, “Continuous univariate distributions,”
1994.

124

Curriculum Vitae

Glenn T. Hui graduated from the University of Toronto Schools, Toronto, Canada in 1999.
He received his Bachelor of Science from the University of Toronto in 2004. He received his
Master of Science from the London School of Economics and Political Science in 2005. He
worked in government statistics before starting his Doctor of Philosophy at George Mason
University in 2014.

125

