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Abstract

This paper presents a method for constructive
induction, in which new attributes are constructed
as various functions of original attributes. Such a
method is called data-driven constructive
induction, because new attributes are derived from
an analysis of the data (examples) rather than the
generated rules. Attribute construction and rule
generation is repeated untili a termination
condition, such as the satisfaction of a rule quality
measure, ismet. Thefirst step of this method, the
generation of new attributes has been implemented
in AQL17-PRE. Initial experiments with AQ17-
PRE have shown that it leads to an improvement
of the learned rules both in terms of thar
simplicity aswell as accuracy on testing examples.

1 Introduction

Most inductive learning programs perform a
"selective” induction, that is, they generate
descriptions (rules, decision trees, etc.) that
involve only attributes initially provided in the
examples. Thus, if the attributesused in the
examples are of poor "quality”, the learned
descriptionsmay also be poor. It is possible,
however, thaalthoughthe original attributesmay
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attributes. The method usekeasof "probabilistic
adaptation” in determiningthe best constructed
attributes,and has beenpartially implementedin
AQ17-PRE.

There are a numberof other programswhich
perform constructive induction. INDUCE 3 [6]
attribute constructionis guided by background
knowledge in the form dfules andarules. Arules
generate new descriptors as arithmekpressions
of the initially provideddescriptorsLrules define
new descriptorsas logical combinationsof other
descriptors. Our method is different as it is
assumed that such rules a@ available,andthat
the program must generate and test various
functions of the original attributes.

Another form of constructive induction
involves the derivation of new attributes from
rules rather than data. Sucha methodis called
hypothesis-drivenconstructive induction [13].
Constructive Inductions also being investigated
with decision trees. Two such methods are
FRINGE and GREEDY [10]. The FRINGE
method searchesfor useful conjunctions by
producing decision trees, assigning weights to
those attributes that ledd the targetconcept,and
thenreformulatingthe training examplesin terms
of the highestranking attributes. GREEDY is a
separate-and-conquemethod that recursively
selectsthe bestshort term conjunctthat coversa

be of poor quality, there exist certain combinationsizable portion of the examples.

or functions of these attributes that are highly
relevantto the problem. This paperis concerned
with the problem of discovering such relevant
combinationsof the original attributes.A method
of data-driven constructive induction (DCI) is
presented here, for the construction of new
attributes through the application of various
mathematicaland logical operatorsto the initial

NEWGEM [9], the rule generationprogram
used by DCI, learns decision ruleg performing
inductive inference on examples. Training
examplesare vectors of attribute values. These
attributesmay be providedexplicitly by the user,
or they may be constructedby the programitself
as directed by the user. These constructed
attributes areombinationsof given attributesand



involve relationsselectedby the user. Available

operationscurrently include addition, subtraction,
multiplication, and the equality, greater-thangpr

less-thanrelations. The addition of a newly

constructedattribute to the available attribute set

(AS) is determinedby the attribute quality

function (AQF). Training examplesare expressed
asconjunctionsof attribute values,and initial or

induceddecisionrules are logical expressionsn

disjunctive normal formThe programperformsa

heuristic search through the space of logical

expressionsuntil it finds a decisionrule that is

satisfiedby all positive examplesand no negative
examples. This search is guided by a rule

preference criterion. The program sasedon the

AQ algorithm for solving the general covering
problem[4]. After generationof rules, attribute
contributionsto theserules is determined.Those
contributing most are rewarded and are
probabilisticallymorelikely to be selectedas the

process ofgenerate-and-tess repeated A more
detailed description of the method is given in

section 3.

A drawbackof programsthat cannotconstruct
new attributesis an inability to take advantageof
some fairly simple relationships.For example,
supposehereexist two sets ofboxes, eachbox

describedby threeattributes:height, lengthand
width. Sample data shown.

classl class2

height length width height length width
2 12 2 12 4 2

6 4 2 4 12 2

3 8 2 8 6 2

4 4 3 4 8 3

The rule which describesthe characteristicof
eachclassof box when found by non-attribute-
constructingprogram,such asAQ15, is fairly
complex

classl :: [height= 2,3] v [height=4,6][length=4]
class2 :: [height=4,8] [length=6,8,12] v
[height= 12]

This complexity is due to the limits of the
representation language. By generating new
attributesthe representatiortanguageis enriched
and constructed rules are simpler and more
accurate. Various combination$ attributesusing
a variety of operationsare calculated. Useful
combinations, which in this case involve
multiplication, are kept. In the box examplethe

areaof the front face of the box, height*length
was calculatedandfound to be useful. This area
was then retainedand combinedwith the width
attribute to discover anotheseful attributewhich
we call volume. The rules producedusing this
constructed attribute are shown below.

classl <:: [height * length * width = 48]
class2 <:: [height * length * width = 96]

2 A brief review of the AQ algorithm

Becausethe AQ algorithm is used in the
inductive module of this method, for
completeness, we provide a brief descriptrit.
The AQ algorithm generateshe minimum or near
minimum number of general decision rules
characterizinga set of instances, asoriginally
described in [4,8].

1. A single positive example,called a seed,is
selectedand a set of most general conjunctive
descriptionsof this exampleis computed(such a
setis called a star for the seed).Each of these
descriptions must exclude all negative examples.

2. Using a description preferencecriterion a
single descriptionis selectedrom the star, called
the 'best' description. If this descriptioaversall
positive examples, then the algorithm stops.

3. Otherwisea new seedis selectedamongthe
unexplained(uncovered)examples,and steps 1

and 2 are repeated until all examples are covered.

The disjunction of the descriptionsselectedin
eachstep constitutesa complete, consistentand
general description of all examples. The
preference criterion used selectinga description
from a staris expresseds a list of elementary
criteria that are applied lexiographicadiyd with a
certain tolerance. The critenmaay be simplicity of
description(measuredy the numberof variables
used), cost (the sum of the given costs ofthe
individual variables), or other criteria [7].

The descriptionof a classis expressedusing
the variable-valued logic system 1 (MLwhichis
a multiple-valued logic propositionablculuswith
typed variables [5]A classdescriptionis calleda
cover. A cover of a conceptis a disjunction of
complexesdescribingall positive examplesand
none of the negativeexamples.A complexis a
conjunction of selectors,which is the simplest
statement in VL. A selectorrelatesa variableto a
value or a disjunction of values, for example
[temperature = cold], or [x < 5]. Thgeneralform
of a selector is:



[L#R]

where L, called the referess, an attribute,and
R, called the referentis a set of valuesin the
domain of the attributein L, # is a relational
symbol which can be one of the following: =
<,>,>=,<=,<>,

3. Description of the DCI Method

The construction of new derived attributes
throughthe mechanismof constructiveinduction
is done in the following way.

1. Identify all linear type attributes.

(#Positive events - W(#negative events))
Number of events in selector class

Event valuesre consideredositive whenthe
commonvalue (see below) is found within the
original class. Event values are considered
negative when the commonvalue is found in
classes other than the original class. The
weighting valug(W) is currently setto 1, but can
easily be changed to reflettie relative importance
of positive versusiegativecoverage The number
of eventsin selectorclassis the total numberof
events in the original class. A perfect

2. Repeat steps 3 through 5 for each possible discriminatory attribute, which alorgiscriminates

attribute combination.
3. Repeat steps 4 and 5 for each operator.

4. Calculate the values of this
attribute pair for the given
operator.

5. Evaluate the discriminatory power

of this newly constructed attribute
using the Attribute Quality
Function (AQF) described below.
If the attribute is above some

oneclassfrom all the otherclasseswill have an
AQF value of 1. PossibleAQF valuesrangefrom
negative(total #of eventsin other classes-1)to
one.

The AQF is calculatedfor eachclass, for each
attribute. First the most common value for an
attribute in a class found, i.e. modein statistics
(this is #Posin the formulaabove).The modeis
the value which mostoften appearsn the events
for that classThe modewas chosenbecauset is

threshold then store it, else discardlikely to producethe highestAQF value for the

it.
6. Exit.

For now, only linear attribute types are used
becausemost of the operatorsavailable operate
only on linear types. However, in the future,
binary nominal attributeswill alsobe considered,
to be operatedbn by equality and disjunction.
Linear type attributeshave a finite number of
discreteorderedvalues. Nominal type attributes
havefinite numberof discreteunorderedvalues.
Continuous-valueddata is not acceptableto the
versionof AQ algorithm being usedhere, but a
continuousversion is being investigatedby the

attribute (becauseof its high #Pos value). To
demonstratenow the AQF is calculated,let us
returnto the volume examplegiven earlier. The
previous volume data is now shown supplemented
with a constructed attribute height*length.

classl

height lengthwidth height*length
2 12 2 24

6 4 2 24

3 8 2 24

4 4 3 16

class2

authors as well as others (for example CAQ). [12height lengthwidth height*length
12 4 2 48

The sum of binary attributes, when those
attributes signal the presenoenon-presencef a
feature, can be describad"if x of the following
y features exist"Suchan attributecould possibly
be quite useful in a medicaldomainwhere these
binary attributes signal the preserafea symptom
or disease.

After selecting the possible candidates,the
algorithm generates every pairwise combinatbn
attributeand operation.After eachnew attribute's
values are calculated, an evaluation function,
AQF, is usedo judgeits quality beforeaddingit
to the AS. The AQF used is shown below:

4 12 2 48
8 6 2 48
4 8 3 48

The mode of constructed attributeight*length
in classlis 24 becaus&4 hasa commonalityof
3, and 16 has a commonality of only 1.

If the newly constructedattribute exceedsthe
user-defined threshold, the attribute is added to the
attribute set (AS). The AS initially consists of only
the original attributessuppliedby the user. This
process of attribute calculation, testing and



addition is repeated for all the possible
combinations. An adjustable progrgrarameteis

used to help control the number of attributes
constructed. No new attributes whle constructed
after this thresholdis reached.A better way to

control attribute construction, however, is by

setting high quality thresholds.Figure 1 gives a

functional description of the algorithm.

DATA
RULE CRITIC 1 ATTRIBUTE GENERATION
I
ATTRIBUTE EVALUATION
AND SELECTION
I
DATA RULE

REFORMULATION [% GENERATION

Figure 1. A functional diagram of the method.

The attributes selected for the sulbemetchosen
probabilistically based on their importancein
describing theraining examplesThis importance
is measuredby attribute weight (AW). Those
attributes with a high AWare morelikely, but not
guaranteed, to be selected for the AS. InitiAly
is equal to the AQF values. After rules are
generated,the AW are adjustedbased on the
presence of the attribute in tdescriptionsThose
attributes present in ruldescriptionsare weighted

positively, while those not preseate unchanged.

AW weightsare also keptfor attributesnot in the
AS. Unselectedattributes are increasedby an
amount equal to the averageincrease of the
attributes presentin the AS. This is done to
preventunselectedttributesfrom being punished
andneverbeingselectedto the AS. At the same
time this general increase does punishthose
attributeswhich werein the AS, but were found
not to be useful. The pre-generationof new
attributes,followed by AQF testing, selectionto
the AS and AW adjustmentis repeateduntil the
decision rules produced satisfy a rule critic.
Becausethe newly generated attributes are
combinationsof original attributes theyare more
complicatedthan the original attributes.The cost
of these attributes should reflect this added

complexity. To do this eacbperationandrelation
has been assigneda cost. These costs were
determined from an overall rankirty the authors
of selectorcomplexity. The actualvaluesare not
meaningful,but areonly meantto reflect relative
complexity. Thesevaluescan be changedby the
user if desired. The current default values for
these costs is shown in Table 1.

oper ation cost
equal (=)

addition (+)

subtraction (-)

greater than or equal (>=)
less than or equal (<¥)
multiplication (*)

© ~N ool

Table 1. Operator costs

Anotherfactor that shouldbe consideredvhen
calculating cost is the numbef valuesa function
takes as its result. For exampilee selector{x1 =
5] is less expensive than a selector offtiren [x7
= 101 v 123]becausehe former has only one
value in the referent. This relationis cognitively
more difficult to understandand is assigneda
higher cost. The numberof valuesin the referent
is indirectly controlled by the depth parameter.
The depth parametercontrols whether a single
value, or multiple values will be used when
calculating quality. Increasinipe depthparameter
allows more generalconceptsto be introduced.
The AQ algorithm is capable of generalizing
discrete points to ranges. The depth parameter
simply allows more general concepts to be
introduced. The maximum value of depth is
currently setto 2. This maximum is due to the
empirical finding thaincreasingthe depthquickly
decreasesguality and speed.The total costof the
new attribute is a product of the sum of the
individual attributes’ costs, theostof the relation
and the depth.

4 Experimental Results

The presentednethodof attribute construction
is illustrated by experiment#n theseexperiments
only one iteratiorof attributegeneratiorand AQF
evaluation was completed. These experiments
involve image dataused byBala and Pachowicz
[1] in their work. All textureimageswere take
from the Brodatzalbum of images[2]. Input
grey-level imageswere processedby the well-
known texture feature extraction technique of



Laws' masks [3] fortexturefeatureextraction.A  rank correctclassificationfor AQ17-PREfor the
vector of eightfeatureswas extractedfor a single three experiments was 78%, compare@3éo for
pixel, and for each method of feature extraction. NEWGEM. The averageoverall recognitionwas

In the first experiment the learning set contained00% for AQ17-PRE and 98% for NEWGEM.

five classes of texture images, each withegénts
and describedby eight original attributes.From

The values shown in Table 2 were calculated by
atestingtool calledATEST [11]. In ATEST rule

these eight original an additional 46 attributes werperformance is measured by the degree of

constructedfrom the ‘>=' and the ‘=" binary

operators.

agreemenbetweena classdescriptionrule and a
testing examplefrom an assignedclass. ATEST

In the second and third experiments the learningiews rulesas expressions whaeomparingthem

set containedtwelve classesof 100 events,and

to a vectorof attributes(e.g., a testingexample).

was describedoy eight original attributes. From  The result of this evaluationis a real number
theseeight original, an additional 37 attributes which is the degreeof consonancebetweenthe
were constructed in the second experiment,aand conditional part of the rule and the event. The
additional 43 were constructed in the third overall percent first rank value is tpercentagef
experiment.In both experimentsthe attributes eventswhich matchedthe correctdescriptionrule
finally retained consisted of functions of the ‘>= greaterthan any other rule. The overall percent
and ‘=' binary operators. The same testing set waslue is the percentage of events whose

used for all thre@xperimentsyhich consistedof

12 preclassifiedextureimagesclassesgachwith

200 examples.To testthe rules which included
constructedattributesthe original eight attributes
of the testingset hadto be expandedo include
the newly constructedattributes.This expansion
dependedon the attributes discovered in the
learning data. These same attributes were then
calculated for the testing set.

The results of theseexperimentsare shown in
Table 2. Three sets of learning data were
presented to NEWGEM, a learning progranthiea
AQ family that does not have the ability of
constructive induction [9], and then to AQ17-

EXp. #1 #2 #3
NG AQ NG AQ NG AQ

Overall %
first rank

correct |81 (84 |74 |76 | 72| 75
recog.

Overall %

correct | 9g | 99 | 99| 100 97 10
recog.

AQ : aql7-Pre NG: Newgen

Table 2. Comparison of rules produced by
NEWGEM (a) and AQ17-Pre (b).

PRE, a program that partially implements the
methodpresentedn this paper.The overall first

consonance value was within a threshold margin t,
of the highest matching rule.

While the performanceof the ruleswas higher
for AQ17-PRE,than for NEWGEM, the rules
producedby AQ17-PREwere also shorter. The
total numberof complexeseededto describeall
the textureclassedor the texturedescriptionwas
fewer for AQ17-PRE. For théirst experimenthe
average reduction, f@ach class, was 1, while the
averageper class reductionfor the secondand
third experiments was 2 complexes éach class.
In additionto having fewer complexes,another
advantage ofhe rules producedby AQ17-PREis
the high quality of the first complex in covering
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Graph 1. Recognition results from experiment 1

the example space. As mentiorestlier,the rules
produced by AQ17-PRE and NEWGEM are in the



form of complexes. Botlprogramsassociatevith
every complex a t-weight representingthe total
number of covered events. Awentis considered
covered when the complex is satisfied by an
event. Thet-weight may then be interpretedasthe
representativenessf a complex as a concept
description. The highest t-weight complexesha
covers producetly AQ17-PREwere greaterthan
the highest t-weight complexesin the rules
producedby NEWGEM. The averagencreasein
the t-weight from the rules produced by
NEWGEM to those produced by AQ17-PREas
4.0, for thefirst experiments.25 for the second,
and 7.25 for the third experiment.The rules
produced by AQ17-PREherefore containfewer
disjuncts and contain complexesthat are more
representative of the concept being describieah
those produced by NEWGEM.

Graphs 1 through 3 show the recognition
testingresultsof the three experimentsby class.
The resultsfor rulesproducedby AQ17-PREare

method,were superiorto the rules producedby

usingonly the original attributes.The methodof

pre-generativeonstructionof attributesdescribed
in this paper has shown itself to be a useful
process.in the domainof texture recognitionthe

rules producedafter a pre-generatiomprocessand
that containednew attributeswere found to be
superior to the rules described by ottt original

attributes in terms of recognition on testing,
complexity of rule, and quality of individual

covers.

The ideasproposedhere can be improved in
many ways. This approachonly constructsnew
attributeswhich are pairs of original attributes.
Furthermorethe methodis exhaustive trying all
possiblecombinationsevery time the programis
run. A more sophisticatedapproachwhich first
detectsthe needfor construction andalso bases
attribute performanceon a training set weighted
according to difficulty is being investigatetihese

shown by a darkly shaded bar, and the results faventweightsrewardnew attributeswhich cover

rules producedby NEWGEM are shown by a
lightly shaded bar. Themgere 200 testingevents
per class. The height of a bar representsthe
percent of testing events correctly classified.

5 Conclusion

The proposed method of pre-generative
constructive induction partially implemented in

AQ17-PRE, performed well on the problems in generate very

the experiments. The rules produced by the
100
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Graph 2. Recognition results from experiment 2.

'hard" concepts and attempt to prevent the
construction ofhew attributeswhich coverevents
which are already well described.

Another problem for future work i® usedomain
knowledge to guide the process of applying
operatorsin generatingnew attributes. This
backgroundknowledgecould be in the form of a
mathematicalfunction of the original attributes.
Such a feature would allow the program to
advanced and complex
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Graph 3. Recognition results from experiment 3.

features much more efficiently. This will

[6] W.A. Hoff, R.S. Michalski, andR. E. Stepp,
“INDUCE 3: A Programfor Learning Structural
Descriptions from Examples,” ISG 86-Bgpt. of

supplement the present generate and test proced@emputer Science, University of lllinoislrbana,

the programcurrently uses. It is also plannedto
apply the methodto domainsother than textures,
to test its generality.
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