
Abstract

This paper presents a method for constructive
induction, in which new attributes are constructed
as various functions of original attributes. Such a
method is called data-driven constructive
induction, because new attributes are derived from
an analysis of the data (examples) rather than the
generated rules. Attribute construction and rule
generation is repeated until a termination
condition, such as the satisfaction of a rule quality
measure, is met. The first step of this method, the
generation of new attributes has been implemented
in AQ17-PRE. Initial experiments with AQ17-
PRE  have shown that it leads to an improvement
of the learned rules both in terms of their
simplicity as well as accuracy on testing examples.

1 Introduction

Most inductive learning programs perform a
"selective" induction, that is, they generate
descriptions (rules, decision trees, etc.) that
involve only attributes initially provided in the
examples.  Thus, if the attributes used in the
examples are of poor "quality", the learned
descriptions may also be poor. It is possible,
however, that although the original attributes may
be of poor quality, there exist certain combinations
or functions of these attributes that are highly
relevant to the problem. This paper is concerned
with the problem of discovering such relevant
combinations of the original attributes. A method
of data-driven constructive induction (DCI) is
presented here, for the construction of new
attributes through the application of various
mathematical and logical operators to the initial

attributes. The method uses ideas of "probabilistic
adaptation"  in determining the best constructed
attributes, and has been partially implemented in
AQ17-PRE.

There are a number of other programs which
perform constructive induction. In INDUCE 3 [6]
attribute construction is guided by background
knowledge in the form of lrules and arules. Arules
generate new descriptors as arithmetic expressions
of the initially provided descriptors. Lrules define
new descriptors as logical combinations of other
descriptors. Our method is different as it is
assumed that such rules are not available, and that
the program must generate and test various
functions of the original attributes.

Another form of constructive induction
involves the derivation of new attributes from
rules rather than data. Such a method is called
hypothesis-driven constructive induction [13].
Constructive Induction is also being investigated
with decision trees. Two such methods are
FRINGE and GREEDY [10]. The FRINGE
method searches for useful conjunctions by
producing decision trees, assigning weights to
those attributes that lead to the target concept, and
then reformulating the training examples in terms
of the highest ranking attributes. GREEDY is a
separate-and-conquer method that recursively
selects the best short term conjunct that covers a
sizable portion of the examples.

NEWGEM [9], the rule generation program
used by DCI,  learns decision rules by performing
inductive inference on examples. Training
examples are vectors of attribute values. These
attributes may be provided explicitly by the user,
or they may be constructed by the program itself
as directed by the user. These constructed
attributes are combinations of given attributes and
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involve relations selected by the user. Available
operations currently include addition, subtraction,
multiplication, and the equality, greater-than, or
less-than relations.  The addition of a newly
constructed attribute to the available attribute set
(AS) is determined by  the attribute quality
function (AQF). Training examples are expressed
as conjunctions of attribute values, and initial or
induced decision rules are logical expressions in
disjunctive normal form. The program performs a
heuristic search through the space of logical
expressions, until it finds a decision rule that is
satisfied by all positive examples and no negative
examples. This search is guided by a rule
preference criterion. The program is  based on the
AQ algorithm for solving the general covering
problem [4]. After generation of rules, attribute
contributions to these rules is determined. Those
contributing most are rewarded and are
probabilistically more likely to be selected as the
process of generate-and-test is repeated. A more
detailed description of the method is given in
section 3.

A drawback of programs that cannot construct
new attributes is an inability to take advantage of
some fairly simple relationships. For example,
suppose there exist two sets of boxes, each box
described by three attributes: height,  length, and
width. Sample data shown.

class1 class2
height length width height length  width
2 12 2 12 4 2
6 4 2 4 12 2
3 8 2 8 6 2
4 4 3 4 8 3

The rule which describes the characteristic of
each class of box when found by a non-attribute-
constructing program, such as AQ15,  is fairly
complex

class1 :: [height= 2,3] v [height=4,6][length=4]
class2 :: [height=4,8]  [length=6,8,12] v

[height= 12]

This complexity is due to the limits of the
representation language. By generating new
attributes the representation language is enriched
and constructed rules are simpler and more
accurate. Various combinations of attributes using
a variety of operations are calculated. Useful
combinations, which in this case involve
multiplication, are kept. In the box example the

area of the front face of the box, height*length
was calculated and found to be useful. This area
was then retained and combined with the width
attribute to discover another useful attribute which
we call volume. The rules produced using this
constructed attribute are shown below.

class1 <:: [height * length * width = 48]
class2 <:: [height * length * width = 96]

2 A brief review of the AQ algorithm

Because the AQ algorithm is used in the
inductive module of this method, for
completeness, we provide a brief description of it.
The AQ algorithm generates the minimum or near
minimum number of general decision rules
characterizing a set of instances, as originally
described in [4,8]. 

1. A single positive example, called a seed, is
selected and a set of most general conjunctive
descriptions of this example is computed (such a
set is called a star for the seed). Each of these
descriptions must exclude all negative examples.

2. Using a description preference criterion a
single description is selected from the star, called
the 'best' description. If this description covers all
positive examples, then the algorithm stops.

3. Otherwise a new seed is selected among the
unexplained (uncovered) examples, and steps 1
and 2 are repeated until all examples are covered.

The disjunction of the descriptions selected in
each step constitutes a complete, consistent and
general description of all examples. The
preference criterion used in selecting a description
from a star is expressed as a list of elementary
criteria that are applied lexiographically and with a
certain tolerance. The criteria may be simplicity of
description (measured by the number of variables
used), cost (the sum of the given costs of the
individual variables), or other criteria [7].

The description of a class is expressed using
the variable-valued logic system 1 (VL1), which is
a multiple-valued logic propositional calculus with
typed variables [5]. A class description is called a
cover. A cover of a concept is a disjunction of
complexes describing all positive examples and
none of the negative examples. A complex is a
conjunction of selectors, which is the simplest
statement in VL1. A selector relates a variable to a
value or a disjunction of values, for example
[temperature = cold], or [x < 5]. The general form
of a selector is:



[L # R]

where L,  called the referee, is an attribute, and
R, called the referent is a set of values in the
domain of the attribute in L, # is a relational
symbol which can be one of the following: =,
<,>,>=,<=,<>.

3. Description of the DCI Method

The construction of new derived attributes
through the mechanism of constructive induction
is done in the following way.

1. Identify all linear type attributes.
2. Repeat steps 3 through 5 for each possible 

attribute combination.
 3. Repeat steps 4 and 5 for each operator.
 4. Calculate the values of this 

attribute pair for the given 
operator.

5. Evaluate the discriminatory power 
of this newly constructed attribute
using the Attribute Quality 
Function (AQF) described below. 
If the attribute is above some 
threshold then store it, else discard 
it.

6. Exit.

For now, only linear attribute types are used
because most of the operators available operate
only on linear types. However, in the future,
binary nominal attributes will also be considered,
to be operated on by equality and disjunction.
Linear type attributes have a finite number of
discrete ordered values. Nominal type attributes
have finite number of discrete unordered values.
Continuous-valued data is not acceptable to the
version of AQ algorithm being used here, but a
continuous version is being investigated by the
authors as well as others (for example CAQ). [12]

The sum of binary attributes, when those
attributes signal the presence or non-presence of a
feature, can be described as "if x of the following
y features exist". Such an attribute could possibly
be quite useful in a medical domain where these
binary attributes signal the presence of a symptom
or disease.

After selecting the possible candidates, the
algorithm generates every pairwise combination of
attribute and operation. After each new attribute's
values are calculated, an evaluation function,
AQF, is used to judge its quality before adding it
to the AS.  The AQF used is shown below:

   (#Positive events - W(#negative events))   
Number of events in selector class

Event values are considered positive  when the
common value (see below) is found within the
original class. Event values are considered
negative  when the common value is found in
classes other than the original class. The
weighting value (W) is currently set to 1, but can
easily be changed to reflect the relative importance
of positive versus negative coverage. The number
of events in selector class is the total number of
events in the original class. A perfect
discriminatory attribute, which alone discriminates
one class from all the other classes, will have an
AQF value of 1. Possible AQF values range from
negative (total #of events in other classes-1) to
one.

The AQF is calculated for each class, for each
attribute. First the most common value for an
attribute in a class is found, i.e. mode in statistics
(this is #Pos in the formula above). The mode is
the value which most often appears in the events
for that class. The mode was chosen because it is
likely to produce the highest AQF value for the
attribute (because of its high #Pos value). To
demonstrate how the AQF is calculated, let us
return to the volume example given earlier. The
previous volume data is now shown supplemented
with a constructed attribute height*length.

class1
height lengthwidth height*length
2 12 2 24
6 4 2 24
3 8 2 24
4 4 3 16

class2
height lengthwidth  height*length
12 4 2 48
4 12 2 48
8 6 2 48
4 8 3 48

The mode of constructed attribute height*length
in  class1 is 24 because 24 has a commonality of
3, and 16 has a commonality of only 1.

If the newly constructed attribute exceeds the
user-defined threshold, the attribute is added to the
attribute set (AS). The AS initially consists of only
the original attributes supplied by the user. This
process of attribute calculation, testing and



addition is repeated for all the possible
combinations. An adjustable program parameter is
used to help control the number of attributes
constructed. No new attributes will be constructed
after this threshold is reached. A better way to
control attribute construction, however, is by
setting high quality thresholds. Figure 1 gives a
functional description of the algorithm.

DATA

ATTRIBUTE GENERATION

ATTRIBUTE EVALUATION
       AND SELECTION

DATA 
REFORMULATION

RULE 
GENERATION

RULE CRITIC

Figure  1. A functional diagram of the method.

The attributes selected for the subset are chosen
probabilistically based on their importance in
describing the training examples. This importance
is measured by attribute weight (AW). Those
attributes with a high AW are more likely, but not
guaranteed, to be selected for the AS. Initially AW
is equal to the AQF values. After rules are
generated, the AW are adjusted based on the
presence of the attribute in the descriptions. Those
attributes present in rule descriptions are weighted
positively, while those not present are unchanged.
AW weights are also kept for attributes not in the
AS. Unselected attributes are increased by an
amount equal to the average increase of the
attributes present in the AS. This is done to
prevent unselected attributes from being punished
and never being selected to the AS. At the same
time this general increase does punish those
attributes which were in the AS, but were found
not to be useful. The pre-generation of new
attributes, followed by AQF testing, selection to
the AS and AW adjustment is repeated until the
decision rules produced satisfy a rule critic.

Because the newly generated attributes are
combinations of original attributes they are more
complicated than the original attributes. The cost
of these attributes should reflect this added

complexity. To do this each operation and relation
has been assigned a cost. These costs were
determined from an overall ranking by the authors
of selector complexity. The actual values are not
meaningful, but are only meant to reflect relative
complexity. These values can be changed by the
user if desired. The current default values for
these costs is shown in Table 1.

operation cost
equal (=) 1
addition (+) 5
subtraction (-) 5
greater than or equal (>=) 7
less than or equal (<=)7
multiplication (*) 9

Table 1. Operator costs

Another factor that should be considered when
calculating cost is the number of values a function
takes as its result. For example, the selector [x1 =
5] is less expensive than a selector of the form [x7
= 101 v 123] because the former has only one
value in the referent. This relation is cognitively
more difficult to understand and is assigned a
higher cost. The number of values in the referent
is indirectly controlled by the depth parameter.
The depth parameter controls whether a single
value, or multiple values will be used when
calculating quality. Increasing the depth parameter
allows more general concepts to be introduced.
The AQ algorithm is capable of generalizing
discrete points to ranges. The depth parameter
simply allows more general concepts to be
introduced. The maximum value of depth is
currently set to 2. This maximum is due to the
empirical finding that increasing the depth quickly
decreases quality and speed. The total cost of the
new attribute is a product of the sum of the
individual attributes’ costs, the cost of the relation
and the depth. 

4 Experimental Results

The presented method of attribute construction
is illustrated by experiments. In these experiments
only one iteration of attribute generation and AQF
evaluation was completed. These experiments
involve image data used by Bala and Pachowicz
[1] in their work.  All texture images were take
from the Brodatz album  of images [2].  Input
grey-level images were processed by the well-
known texture feature extraction technique of



Laws' masks [3] for texture feature extraction. A
vector of eight features was extracted for a single
pixel, and for each method of feature extraction.

In the first experiment the learning set contained
five classes of texture images, each with 50 events
and described by eight original attributes. From
these eight original an additional 46 attributes were
constructed from the ‘>=‘ and the ‘=‘ binary
operators.

In the second and third experiments the learning
set contained twelve classes of 100 events, and
was described by eight original attributes.  From
these eight original, an additional 37 attributes
were constructed in the second experiment, and an
additional 43 were constructed in the third
experiment. In both experiments the attributes
finally retained consisted of functions of the  ‘>= ‘
and ‘=‘ binary operators. The same testing set was
used for all three experiments, which consisted of
12 preclassified texture images classes, each with
200 examples. To test the rules which included
constructed attributes the original eight attributes
of the testing set  had to be expanded to include
the newly constructed attributes. This expansion
depended on the attributes discovered in the
learning data. These same attributes were then
calculated for the testing set.

The results of these experiments are shown in
Table 2. Three sets of learning data were
presented to NEWGEM, a learning program in the
AQ family that does not have the ability of
constructive induction [9], and then to AQ17-

Overall %
first rank
correct
recog.

AQ : aq17-Pre NG: Newgem

8481 7674 7572

#1 #2 #3Exp. 
AQNG AQNG AQNG

Overall %
correct
recog.

98 99 99 100 97 100

Table 2. Comparison of rules produced by
NEWGEM (a) and AQ17-Pre (b).

PRE, a program that partially implements the
method presented in this paper. The overall first

rank correct classification for AQ17-PRE for the
three experiments was 78%, compared to 75% for
NEWGEM. The average overall recognition was
100% for AQ17-PRE and 98% for NEWGEM.

The values shown in Table 2 were calculated by
a testing tool called ATEST [11]. In ATEST rule
performance is measured by the degree of
agreement between a class description rule and a
testing example from an assigned class. ATEST
views rules as expressions when comparing them
to a vector of attributes (e.g., a testing example).
The result of this evaluation is a real number
which is the degree of consonance between the
conditional part of the rule and the event. The
overall percent first rank value is the percentage of
events which matched the correct description rule
greater than any other rule. The overall percent
value is the percentage of events whose
consonance value was within a threshold margin t,
of the highest matching rule.

While the performance of the rules was higher
for AQ17-PRE, than for NEWGEM, the rules
produced by AQ17-PRE were also shorter. The
total number of complexes needed to describe all
the texture classes for the texture description was
fewer for AQ17-PRE. For the first experiment the
average reduction, for each class, was 1, while the
average per class reduction for the second and
third experiments was 2 complexes for each class.
In addition to having fewer complexes, another
advantage of the rules produced by AQ17-PRE is
the high quality of the first complex in covering
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Graph  1. Recognition results from experiment 1

the example space. As mentioned earlier, the rules
produced by AQ17-PRE and NEWGEM are in the



form of complexes. Both programs associate with
every complex a t-weight representing the total
number of covered events. An event is considered
covered when the complex is satisfied by an
event.The t-weight may then be interpreted as the
representativeness of a complex as a concept
description. The highest t-weight complexes in the
covers produced by AQ17-PRE were greater than
the highest t-weight complexes in the rules
produced by NEWGEM. The average increase in
the t-weight  from the rules produced by
NEWGEM to those produced by AQ17-PRE, was
4.0, for the first experiment 5.25 for the second,
and 7.25  for  the third experiment. The rules
produced by AQ17-PRE, therefore, contain fewer
disjuncts and contain complexes that are more
representative of the concept being described, than
those produced by NEWGEM.

Graphs 1 through 3 show the recognition
testing results of the three experiments by class.
The results for rules produced by AQ17-PRE are
shown by a darkly  shaded bar, and the results for   
rules produced by  NEWGEM are shown by a
lightly  shaded bar. There were 200 testing events
per class. The height of a bar represents the
percent of testing events correctly classified.

5 Conclusion

The proposed method of pre-generative
constructive induction partially implemented in
AQ17-PRE,  performed well on the problems in
the experiments. The rules produced by the
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Graph  2. Recognition results from experiment 2.

method, were superior to the rules produced by
using only the original attributes. The method of
pre-generative construction of attributes described
in this paper has shown itself to be a useful
process. In the domain of texture recognition the
rules produced after a pre-generation process and
that contained new attributes were found to be
superior to the rules described by only the original
attributes in terms of recognition on testing,
complexity of rule, and quality of individual
covers.

The ideas proposed here can be improved in
many ways. This approach only constructs new
attributes which are pairs of original attributes.
Furthermore the method is exhaustive, trying all
possible combinations every time the program is
run. A more sophisticated approach which first
detects the need for construction and also bases
attribute performance on a training set weighted
according to difficulty is being investigated. These
event weights reward new attributes which cover
'hard' concepts and attempt to prevent the
construction of new attributes which cover events
which are already well described.
Another problem for future work is to use domain
knowledge to guide the process of applying
operators in generating new attributes.  This
background knowledge could be in the form of a
mathematical function of the original attributes.
Such a feature would allow the program to
generate very advanced and complex

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
0

20

40

60

80

100

Class

%
 

O
v

e
r
a

ll
 

C
o

r
r
e
c
t 

R
e
c
o

g
n

it
io

n



Graph  3. Recognition results from experiment 3.

features much more efficiently. This will
supplement the present generate and test procedure
the program currently uses. It is also planned to
apply the method to domains other than textures,
to test its generality.
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