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Abstract

INFERENCE FOR AGE-DEPENDENT BRANCHING PROCESS AND THEIR APPLI-
CATIONS

Xin Cao, PhD

George Mason University, 2015

Dissertation Director: Dr.Anand N. Vidyashankar

Age-dependent branching processes arise in multiple areas of scientific applications such

as cell biology, epidemic spread, and medical science. Researchers have shown that the size

of the process grows exponentially fast with some rate depending on the offspring distribu-

tion and the life-time distribution of the particles, but the inference for such a rate has not

been well-studied in the literature.

In this thesis, we provided a new inferential methodology for age-dependent branching

process under different data structures available in cell biology and other fields. We inves-

tigated and proved the consistency and asymptotic normality of the Malthusian parameter

estimator. Additionally, we provided inferential methodology for the mean of offspring

distribution and the limiting age distribution, which incorporate most information of an

age-dependent branching process.

Under data structure with age chart information, where traditional maximum likelihood

method is not applicable for estimating the parameters of the life-time distribution, we pro-

vided an alternative method based on Hellinger distance and a computational algorithm for

obtaining the related parameters. The advantage of using the minimum Hellinger distance



estimator (MHDE) is the robustness when data contaminations or model mis-specifications

are present.
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Chapter 1: Introduction and Literature Review

1.1 Discrete Branching Process

A discrete time discrete state branching process (see Athreya and Ney (1972)) is a Markov

process that models a population in which each individual in generation n produces a

random number of individuals which form generation n+ 1. It is recursively defined using

the following equation

Zn+1 =

Zn∑
i=1

Xn,i, n = 1, 2, . . . , (1.1)

where Zn is the population size of the nth generation, Xn,i is the number of offspring

produced by the ith particle in the nth generation. It is assumed that {Xn,i : i ≥ 1, n ≥ 1}

is a sequence of independent and identical distributed (i.i.d.) non-negative, integer-valued

random variables with E(Xn,i) = m and V ar(Xn,i) = σ2. The branching process is referred

to be supercritical if m > 1, critical if m = 1, and subcritical if m < 1.

The process can be represented as an evolving population of particles. At time 0,

there is an initial population of Z0 particles, each of which lives one unit of time. At the

time of their death, the particles split independently of the others into a random number

of offsprings according to the probability function {pk; k = 0, 1, 2, . . . , pk ≥ 0,
∑
pk = 1},

where pk is the probability of producing k particles. The total number of offspring particles

produced by Z0 forms the first generation Z1. The process repeats, yielding Z2, Z3, . . ..

In the process, the number of offsprings produced by a single particle is independent of

all other particles at the present, and it is also independent with history of the process.

Note that 0 is an extinct state, since if Zn = 0, then Zn+k = 0 for all k ≥ 0. The
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Figure 1.1: Sample Structure for Discrete Time Branching Process

extinction probability is defined to be q = P (Zn = 0 for some n ≥ 1). It is well-known

that (see Harris (1963) and Athreya and Ney (1972)) the branching process dies out if

m ≤ 1 (unless p1 ≡ 1) and explodes with positive probability if m > 1. The moment of

{Zn : n ≥ 1} can be obtained recursively using (1.1). In fact,

EZn = mn, (1.2)

V ar(Zn) =


σ2mn−1(mn−1)

(m−1) if m 6= 1,

nσ2 if n = 1.

(1.3)

1.2 Continuous Time Markov Branching Process

In the discrete time branching process, the lifetime of each particle was one unit of time

so that the process is only defined at discrete time points. Naturally, the process can be

extended to continuous framework if we allow allow these life-time to be random variables.

In this case, we now consider the process {Z(t); t ≥ 0}, where Z(t) denotes the number

of particles at time t. Assuming that the life-times are independent and exponentially

distributed random variables, the process is a Markov Process in continuous time and is

referred to as continuous time Markov branching process. More precisely, it is defined as

follows (see Athreya and Ney (1972)),

2



Definition 1.1. A stochastic process {Z(t, ω); t ≥ 0} on a probability space (Ω,F , P ) is

called a one dimensional continuous time Markov branching process if:

(i) its state space is the set of non-negative integers;

(ii) it is a stationary Markov chain with respect to the σ-fields Ft = σ{Z(s, ω); s ≤ t},

(for any collection D of real-valued, Borel measurable random variables on (Ω,F , P ), σ(D)

denotes the σ-algebra of F generated by D);

(iii) the transition probability Pij(t) satisfy

∞∑
j=0

Pij(t)s
j = [

∞∑
j=0

P1,j(t)s
j ]i (1.4)

for all i ≥ 1 and |s| ≤ 1.

Properties (i) and (ii) say that Z(t) is a continuous time Markov process on the integers;

while (iii) characterizes the basic branching property.

One possible approach to the construction of the Markov branching process is to start

with the transition probabilities

Pij(s, s+ t) = P{Z(s+ t) = j|Z(s) = i}, (1.5)

which, due to the assumption of time homogeneity, satisfy

Pij(s, s+ t) = Pij(t), t ≥ 0. (1.6)

These transition function are determined by the infinitesimal probabilities

0 ≤ pk,
∞∑
i=0

pk = 1, (1.7)

3



as solutions to the Kolmogorov’s forward and backward equations (see Karlin (1966))

d

dt
Pij(t) = −jλPij(t) + a

j+1∑
k=1

kPik(t)pj−k+1 (forward), (1.8)

and

d

dt
Pij(t) = −iλPij(t) + ia

∞∑
k=i−1

pk−i+1Pkj(t) (backward), (1.9)

with boundary conditions Pij(0+) = δij = 1 for i = j, 0 for i 6= j and 0 < λ <∞.

The generating function plays an important role in the analysis of the continuous time

process. It is defined as (see Athreya and Ney (1972)):

f(s) =

∞∑
k=0

pks
k, |s| ≤ 1. (1.10)

Setting

u(s) = λ[f(s)− s], (1.11)

note that m = f ′(1) and α = u′(1) = λ(m−1). The number 0 < λ <∞, and the probability

function {pk; k = 0, 1, 2, . . .} contain all the information about {Z(t); t ≥ 0}. Define

F (s, t) =

∞∑
j=0

P{Z(t) = j|Z(0) = 1}sj =

∞∑
j=0

P1j(t)s
j = EsZ(t). (1.12)

From the Kolmogorov equations (1.8), (1.9) we can see that F(s,t) satisfies

∂

∂t
F (s, t) = u(s)

∂

∂s
F (s, t), (1.13)
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and

∂

∂t
F (s, t) = u[F (s, t)], (1.14)

with the boundary condition

F (s, 0) = s. (1.15)

It can be shown that there is a unique solution to (1.13), (1.14), (1.15), yielding a

generating function which uniquely determine the Markov process (see Athreya and Ney

(1972)). In addition, the mean and the variance of the process can also be obtained from

Kolmogorov equation. Differentiating both sides of the backward equation (1.14) with

respect to s and then letting s go to 1, we obtain

EZ(t) = eαt. (1.16)

Now under the assumption that
∑∞

k=1 k
2pk < ∞, it follows that m2(t) = E(Z2(t)) is

finite for all t. By using the backward equation we see that m2(t) satisfies the differential

equation

d

dt
m2(t) = u

′′
(1)e2αt + αm2(t), (1.17)

with boundary condition m2(0) = 1. The variance is then given by

V ar(Z(t)) =


u
′′
(1)α−1(e2αt − eαt)− e2αt if α 6= 0,

u
′′
(1)t− e2αt if α = 0.

(1.18)
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1.2.1 Birth-death Process

The birth-death process (see Karlin and Taylor (1975)) is a special case of the continuous-

time Markov process where the state transitions are of only two types: “births”, which

increase the population by one and “deaths”, which decrease the population by one. This

process is specified by birth rates {λi}i=0,...∞ and death rates {µi}i=0,...∞.

Figure 1.2: Birth-death Process

The process can be described as follows: each particle lives a random length of time

(distributed as exponential distribution with parameter λ + µ.). At the end of its life, it

produces two offsprings with probability λ
λ+µ or produce 0 offsprings with probability µ

λ+µ .

The expected number of offspring produced by the parent, namely m, equals 2λ
λ+µ . As a

result, if the birth rate is greater than the death rate, the process is supercritical while if

the birth rate is less than the death rate it is a subcritical process. And if they are equal,

the process is critical. This model is widely used to study the evolution of cells, the number

of people with a disease within a population, or the number of customers in line at the

supermarket.

1.3 Age-Dependent Process

1.3.1 Single Type Age-dependent Process

In the above description, if the particles have general lifetime distribution, then the process

{Z(t); t ≥ 0} is called an age-dependent branching process which was first studied by

Bellman and Harris (1952). The population size process {Z(t); t > 0} is therefor not a

6



Markov process since a distribution G(·) on [0,∞) describing the life length of the particle

will also be considered. Similar to the discrete time branching process, the age-dependent

branching process can be represented as follows: at time 0, there is an initial population

of Z0 particles, each of which lives a random length of time according to G(·). At the

time of their death, the particles split independently of the others into a random number

of offsprings according to the probability function {pk : k = 0, 1, 2, . . . , pk ≥ 0,
∑
pk = 1},

where pk is the probability of producing k offspring particles. These offsprings again continue

the same process according to life-time distribution G(·) and offspring distribution {pk}. It

is assumed that (see Athreya (1972)) particle productions are independent of the present

state or past history of the process; and the life-time distribution are also independent of

the offspring distribution.

As before, we now describe how to evaluate the generation function. To this end,

consider a process starting with one particle at initial time and resulting in k particles at

time t, i.e. Z(t) = k. A decomposition of the sample space according to the life-time and

number of offspring of the initial particle suggests the following relation: the initial particle

dies at time y (y < t), and produces j (j > 0) offsprings; these offsprings then produce

a total of k offsprings during the rest of time t− y. Thus

F (s, t) = s[1−G(t)] +

∫ t

0
f [F (s, t− y)]dG(y), |s| ≤ 1. (1.19)

This is the basic integral equation for an age-dependent branching process. Throughout the

thesis, we assume G(0+) = 0; i.e that the probability of instantaneous death is 0. Together

with the assumption of finite mean offspring distribution, this guarantees the a.s. finiteness

and uniqueness of the process.

Theorem 1.1. If G(0+) = 0 and m <∞ then P{Z(t) <∞} = 1 for each t ≥ 0.

The next theorem is concerned with the solution to (1.19) (see Athreya and Ney (1972)).

Theorem 1.2. Let f be a probability generating function and G a distribution on [0,∞)

7



with G(0+) = 0. Then (1.19) has a solution F (s, t), which is a generating function for each

t, and which is the unique bounded solution.

One of the main interest for age-dependent branching process is the mean number of

particles at time t, which is given by (see Athreya and Ney (1972))

µ(t) =
∂F (s, t)

∂s
|s=1 ≡ EZ(t).

It is well-known that EZ(t) grows exponentially fast with some growth rate (see Bellman

and Harris (1952), Athreya (1972)), which is called Malthusian parameter and it is defined

as follows:

Definition 1.2. The Malthusian parameter for γ and G is the root, provided it exists, of

the equation

γ

∫ ∞
0

e−αtdG(t) = 1 (1.20)

We denote it by α = α(γ,G).

Traditionally, the term ”Malthusian parameter (MP)” has been applied only to the solution

α(m,G), where m = f ′(1) > 1 and it is directly related to the expected number of particles

at time t. As a result, the MP is very useful in describing the growth of particles under

age-dependent branching process models. The following Theorem describes the relationship

precisely (see Athreya and Ney (1972)).

Theorem 1.3. If m = 1 then µ(t) ≡ 1. If m > 1 and G is non-lattice, then

µ(t) ∼ c′eαt, t→∞, (1.21)

where α > 0 is the Malthusian parameter for (m,G) and

c′ =

∫∞
0 e−αy[1−G(y)]dy

m
∫∞

0 ye−αydG(y)
=

m− 1

αm2
∫∞

0 ye−αydG(y)
. (1.22)

8



Through out this thesis, we will focus only on supercritical case with m > 1. The following

results (see Athreya and Ney (1972)) show that Z(t) normalized by µ(t) converges almost

sure (a.s.) to a random variable W.

Theorem 1.4. Assume that m > 1.

(i) if
∑
pklogk =∞ then W (t) ≡ Z(t)

c′eαt → 0 in probability.

(ii) if
∑
pklogk <∞ then W (t) converges in distribution to a non-negative random variable

W having the following properties:

(a) EW=1.

(b) ϕ(u) = Ee−uW , u ≥ 0, is the unique solution of the equation

ϕ(u) =

∫ ∞
0

f [ϕ(ue−αy)]dG(y)

(c) P (W = 0) = q ≡ P{Z(t) = 0 for some t }.

(d) The distribution of W is absolutely continuous on (0,∞).

Note that q = 0 if and only if p0 = 0. Hence, under the assumption p0 = 0, W > 0 with

probability 1. In chapter 2, we propose estimates for the Malthusian parameter α and m

and establish their asymptotic properties.

Another important and useful aspect of age-dependent branching processes is the limit-

ing behavior of the age distribution. For any realization ω of the process, let Z(t, ω) denote

the total number of individuals alive at time t, Z(x, t, ω) denote the number of individuals

of age less than x, and A(·, t, ω) defined by A(·, t, ω) = Z(x,t,ω)
Z(t,ω) denote the empirical age

distribution of those alive at time t.

There has been considerable interest in the limiting behavior of the age distribution as

t → ∞. Harris (1952) has showed that if the offspring distribution has a second moment

and the life distribution satisfies certain regularity condition, then A(·, t, ω) converges to

A(·) in distribution and referred the limiting quartile to as stable age distribution. Jagers

(1975) improved this result by dropping all of the regularity assumptions on G(·) but still

9



required a finite second moment. Athreya and Kaplan (1976) showed the validity of the

above result assuming that
∑

(k log k)·pk is finite. Finally, Kuczek (1982) proved the almost

sure convergence under the condition 1 < m <∞.

Theorem 1.5. If 1 < m <∞,then

limt→∞supx≥0|A(x, t, ω)−A(x)| a.s.= 0.

where

A(x) =

∫ x
0 e
−αt(1−G(t))dt∫∞

0 e−αt(1−G(t))dt
. (1.23)

1.3.2 Multi-type Branching Process

The processes we have mentioned until now have all consisted of indistinguishable parti-

cles. Another natural generalization is to allow a number of distinguishable particles having

different probabilistic behavior. In this case, to define the particle production of a p-type

process, we need p generating functions, each in p variables. The ith generating function,

f (i), will determine the distribution of the number of offspring of various types to be pro-

duced by a type i particle. Thus, we set

f (i)(s1, . . . , sp) =
∑

j1,...,jp≥0

p(i)(j1, . . . , jp)s
j1
1 · · · s

jp
p , 0 ≤ sα ≤ 1, α = 1, . . . , p, (1.24)

where p(i)(j1, . . . , jp) is the probability that a type i parent produces j1 particles of type

1, j2 particles of type 2,. . ., jp of type p. When the lifetimes in the multi-type branch-

ing process are defined to be one unit of time, exponential, and arbitrary distribution, the

resulting process is referred as multi-type branching process in discrete time, multi-type

Markov branching process, and multi-type age-dependent branching process respectively.

10



1.4 Applications for Age Dependent Branching Process

1.4.1 Dynamic Drug Resistance Model in Anti-Cancer Therapies

Cancer recurrence (or tumor recurrence) is defined as the return of cancer after treatment

and after a period of time during which the cancer cannot be detected. Such recurrences

are due to drug resistance, which is commonly caused by random point mutations in the ge-

nomic sequence of cells (see Baker (2005)). Although the cancer recurrence due to acquired

resistance is inevitable for many therapies, the timing of recurrence varies significantly be-

tween patients (Demicheli and et al (2008) and (2012)). The source of this variability,

namely, why some patients experience shorter (or longer) disease-free periods than others,

is largely unknown.

A typical solid tumor has a density between 107 and 109 cancer cells per cubic cen-

timeter. There are typically two types of cancer cells inside the tumor, namely, sensitive

cells and resistant cells. They are both non-functional cells but sensitive cells can be cured

by the treatment while resistant cells cannot be cured. When treatment is applied to the

patient, the population of the sensitive cells will be reduced and meanwhile, the sensitive

cells could mutate to the resistance cells with small probability. This mutation is typically

not reversible. The tumor size is determined by the total number of these two cells. In

particular, we consider the following scenario in which a population of drug-sensitive cancer

cells is placed under therapy, leading to a overall decline in tumor size. However, during

each replication of a sensitive cell, a mutation could arise with small probability, conferring

drug-resistance (and a net positive growth rate) in cells. If such a mutation arises prior to

extinction of the original population and forms a viable, growing subpopulation then the

population has ‘escaped’ extinction. These types of escape events due to the acquired resis-

tance cause the failure of many drugs including antibiotics, cancer therapies, and anti-viral

therapies.

There has been a substantial previous work in modeling the dynamics of drug resistance

in cancer. For example, Coldman and Goldie (1979) studied the emergence of resistance to
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one or two drugs using stochastic processes with a differentiation hierarchy to represent the

sensitive and resistant cells of a tumor . Harnevo and Agur (1992) studied drug resistance

emerging due to oncogene amplification using a branching process model. Iwasa and collab-

orators (2003) have used multi-type branching process models to study the probability of

resistance emerging due to point mutations in a variety of situations; Komarova and Wodarz

(2005, 2006) also utilized a multi-type branching model to investigate the general situation

in which k mutations are required to confer resistance against k drugs. However, most

of these works focused on calculations of the eventual probability of developing resistance

and the size of the resistant population, rather than the variations in cancer recurrence

timing. Most recently, Michor and Foo (2010) evaluate the development of drug resistance

and a dosing strategy in continuous and pulsed treatment schedules; the continuous treat-

ment schedules involve administering drugs continuously at sufficiently low doses without

treatment breaks and the pulse treatment schedules involve administering drugs at a higher

dose in short pulses followed by a break period for toxicity recovery. The work by Foo and

Michor (2010) does not take into account variability between individuals. This may cause

underestimation of the variance of the predicted timing, yielding inaccurate confidence in-

tervals or wrong dosing strategy. Our work can be extended to cancer models which yields

more precise estimations.

1.4.2 Carboxy-fluorescein Diacetate Succinimidyl Ester (CFSE) Labeling

Experiment

Over the past decade, carboxy-fluorescein diacetate succinimidyl ester (CFSE) labeling has

become a widely used assay to study the proliferation of cell populations, lymphocytes

in particular (see Hyrien (2008)). When conducted in vitro, such experiments begin by

labeling several thousand cells with the fluorescent dye CFSE, which binds indiscriminately

to intracellular proteins. Next, these labeled cells (ancestor cells) are placed in culture flasks

and stimulated (activated) to undergo multiple successive rounds of division over several

days by triggering surface receptors. During the experiment, 104 ∼ 106 individual cells are
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sampled in the resulting populations, and the CFSE fluorescence intensity of thousands of

these cells is measured by flow cytometry. The fluorescence intensity of any single cell is

roughly proportional to the total number of CFSE molecules bound to proteins within that

cell. When a cell divides, the CFSE molecules that it bears are distributed in approximately

equal measure between its two daughter cells, so that the CFSE fluorescence intensities of

these daughter cells are half of that of the parent cell and almost identical. Age dependent

branching process is typically used to develop statistical inference in CFSE fluorescence

intensities.

1.5 Structure of the Dissertation

This chapter provided basic background of branching process and literature review of related

applications like cancer model, CFSE labeling experiment. Chapter 2 will focus on infer-

ential methods for the estimation of Malthusian parameter, expected number of offspring

distribution, and limiting age distribution under one-dimensional age dependent process. In

chapter 3, we provide a robust method using Hellinger Distance for parameter estimation

using age-chart data. Chapter 4 contains concluding remarks.
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Chapter 2: Inference for Age-dependent Branching Process

Age-dependent branching processes are widely used in vitro cell experiments studies, es-

pecially in the context of cell proliferation (see Cowan (1986), Hyrien (2008), Halon and

Vidyashankar (2011)) in biology and medical science (see Michor and Foo (2010)). As de-

scribed in chapter 1, the growth rate of an age-dependent branching process is determined

by the Malthusian Parameter (MP), which is defined as

m

∫ ∞
0

e−αydG(y) = 1, (2.1)

where m is the mean of the offspring distribution and G(y) is the life-time distribution. In

this chapter, we assume that G(·) has a density g(·) with respect to the Lebesgue measure,

belonging to the parametric family G = {g(·; θ); θ ∈ Θ}, where Θ is the parametric space

and Θ ⊂ Rd, for some integer d. The MP is denoted by α = α(m,G). The expected value

of Z(t) is given by

E(Z(t)) = c′eαt, (2.2)

where

c′ =

∫∞
0 e−αy[1−G(y; θ)]dy

m
∫∞

0 ye−αydG(y; θ)
=

m− 1

αm2
∫∞

0 ye−αyg(y; θ)dy
. (2.3)

Thus, the estimation of α is important not only to understand the growth rate of Z(t) but

also to obtain an expression for the E(Z(t)). However, inference of the Malthusian pa-

rameter α has not been well-studied in the literature. Athreya and Keiding (1977) showed

that explicit likelihood based results exist only for the offspring distribution while the es-

timation of MP is difficult for age-dependent branching process. Cowan (1985), Ridout
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(2006) and Palmer (2008) provided approximate methods for estimating the Malthusian

parameter based on the moments of life-time distributions which is not applicable when the

life-times are not observable. In this chapter, we investigate methods for estimation of the

MP under a variety of data structures obtainable from an age-dependent branching process.

2.1 Data Structure

Ideally, if we can observe the life-time of each particle and the number of offsprings pro-

duced in each split at all times, the age-dependent process model is fully identifiable. All

the information like life-time distribution, generating function, and age distribution can be

explicitly determined. In applications, however, such a detailed information is not available

due to cost reasons. Based on applications in carboxy-fluorescein diacetate succinimidyl

ester (CFSE) experiments (see Hyrien (2008)) and cell lineage studies (see Powell (1955),

Cowan (1986) and Rohn (1932)), we can identify four different types of data structures,

that are available for statistical analysis.

(D1): The entire family tree of the age-dependent branching process is available until

time point t. For each particle in the population up to time t, we denote the information

about the life-time, the split-status until time t, and the number of offsprings produced

by the triplet (τi,j(t), Si,j(t), ξi,j(t)), where τi,j(t) denotes the lifetime of the jth particle in

the ith generation and ξi,j(t) denotes the number of offsprings of the jth particle in the ith

generation. The random variable Si,j(t) is defined to be

Si,j(t) =

 1, if the jth particle in the ith generation splits by time t;

0, otherwise.
(2.4)

Note that, ξi,j(t) is defined only when Si,j(t) = 1. Additionally, τi,j(t) is censored if Si,j(t) =

0. In this thesis, we do not consider any censoring related statistical methods. With this
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data structure, the parameters of the life-time distribution can be estimated. The generating

function together with the mean number of offspring distribution m can also be estimated

using the observed offspring distribution. The MP α can be then estimated using (2.1).

(D2): The total number of particles and the life-time distribution of a subset of the

members of the family tree are observable. As before, let Z(t) denote the population size

at time t. There are three possible sub-structures:

(i) end point assay data Z(t);

(ii) paired data (Z(t),Z(t+ s));

(iii) population sizes at time t1 < t2 < · · · < tk, namely Z(t1), Z(t2), . . . , Z(tk).

In addition, a subset of particles from the tree are selected and their life-times are

measured. In this case, the life-times can be denoted by y1, y2, . . . , yD, where D denotes the

total number of deaths observed via the experiment. Using this data set, one can estimate

the MP α, the life-time distribution G(·), and the mean of the offspring distribution m.

(D3): The total number of particles and the age distribution at discrete time points

are observable. In addition to the total number of particles Z(t), we have the age chart

At = (at1, a
t
2, . . . , a

t
Z(t)) at the time point t, where atj denote the age of the jth particle at

time t. Then we define the empirical age distribution as

A(x, t) =
1

Z(t)

Z(t)∑
j=1

I{atj<x}. (2.5)

Recall that in chapter 1, the limiting stable age distribution is defined as

A(x) =

∫ x
0 e
−αy(1−G(y))dy∫∞

0 e−αy(1−G(y))dy
. (2.6)

and by Theorem 1.5,

limt→∞supx≥0|A(x, t)−A(x)| a.s.= 0. (2.7)
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In this case, we can estimate the MP α and carryout inference concerning the parameters

of life-time distribution G(·) and the mean number of offspring distribution m.

(D4): Only the total number of particles at discrete time points are observable. In

this case, only the MP can be estimated using the asymptotic property of age-dependent

processes. Since there is no information about the life-time or age distribution, inference

concerning the other parameters of the age-dependent process can not be obtained.

In this chapter, we focus on inference for the parameter (α,m, θ), where α is the MP, m

is the mean of the offspring distribution and θ is the parameter associated with the life-time

distribution G(·; θ). We only consider three distribution for G(·; θ); namely, exponential(λ),

gamma(a,b), and log-normal(µ, σ2). We emphasize here that the offspring distribution sat-

isfies: p0 = 0.

2.2 Inference for Fully Observable Family Tree Data

We begin with the description of inference using the data structure D1. As explained previ-

ously, our data set can be represented using the triplet (τi,j(t), Si,j(t), ξi,j(t)), where τi,j(t)

denotes the lifetime of the jth particle in the ith generation and ξi,j(t) denotes the number

of offsprings of the jth particle in the ith generation. The random variable Si,j(t) is defined

to be

Si,j(t) =

 1, if the jth particle in the ith generation splits by time t;

0, otherwise.
(2.8)

Note that, ξi,j(t) is defined only when Si,j(t) = 1. Additionally, τi,j(t) is censored if Si,j(t) =

0. In addition, we denote the last generation before time t when a split occurred by M(t)

and it is defined to be

M(t) = max
{i:Bi 6=∅}

i, (2.9)
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Figure 2.1: Sample data structure for fully observable family tree

where Bi = ∪
j≥1

Ai,j(t) and Ai,j(t) = {Si,j(t) = 1}. The total number of particles in the ith

generation Zi(t) can then be represented as

Zi(t) =
∑
j∈C

ξi−1,j(t), (2.10)

where C = {j : Si−1,j = 1, 1 ≤ j ≤ Zi−1}. In this case, the method of moments estimates

of the offspring distribution {pk, k ≥ 1} is given by

p̂k(t) =

∑M(t)
i=0

∑
j∈C I{ξi,j(t)=k}∑M(t)

i=0

∑Zi(t)
j=1 Si,j(t)

. (2.11)

Based on the above estimate of {pk, k ≥ 1}, one can estimate m using

m̂(t) =

∞∑
k=1

kp̂k(t) (2.12)
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We now turn to the estimation of the parameters of the life-time distribution. Recall

that g(y; θ) denote the density of G(·; θ). In this case, since τij ’s are observable and are

i.i.d., the likelihood is given by

M(t)∏
i=1

Zi(t)∏
j=1

g(τij(t); θ) (2.13)

Here we ignore any censoring that can possibly occur at small time t. However, at large time

t, since Z(t) is growing exponentially fast, the effect of censoring is typically minimized.

This is especially the case for the life-time distribution under consideration. However, if the

life-time distribution possess heavy-tails (for example like a Pareto distribution), the use of

survival analysis based techniques may become necessary. Let θ̂(t) denote the MLE of θ.

Then the Malthusian parameter α is the root of

∫ ∞
0

e−αyg(y; θ̂(t))dy =
1

m̂(t)
(2.14)

For exponential distribution with θ = λ, the expression, after simplification, reduces to

α̂(t) = λ̂(m̂(t)− 1) (2.15)

For gamma distribution with θ = (a, b), the expression reduces to

α̂(t) =
m̂(t)

1
â − 1

b̂
(2.16)

For the log-normal distribution, evaluating

∫ ∞
0

e−αyg(y; µ̂, σ̂2)dy (2.17)
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involves further complications as it is known that the Laplace transform of a log-normal

distribution is a challenging problem (see Asmussen, Jensen and Rojas (2014)). We will

return to this issue in section 2.4.

2.3 Inference for Partially Observable Family Tree Data

2.3.1 Estimation of Malthusian Parameter α

For estimating α, since only the total population size is available, we adopt the following

methods of moments estimator: for end-point assay data Z(t), we propose the following

estimate for the MP α; namely

α̂E(y) =
1

t
logZ(t). (2.18)

For paired-data (Z(t), Z(t+ s)), we propose the following estimate, which is similar to

the Nagaev estimator (see Dion (1974)) in discrete branching process

α̂N (t, s) =
1

s
log

(
Z(t+ s)

Z(t)

)
. (2.19)

For multiple time point data with same time interval t up to endpoint nt, Z(t1), Z(t2), . . . , Z(tn) =

nt,

α̂M (tn) =
1

t
log

(∑n
i=1 Z(ti)∑n−1
i=1 Z(ti)

)
. (2.20)

These are the estimators for data structure D2, D3 and D4 for all life-time distributions.
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Properties of the Estimators

Theorem 2.1. Assume that the age-dependent branching process satisfies the following con-

dition:

(A1) 1 < m <∞.

(A2) p0 = 0.

(A3) The life-time distribution G is non-lattice.

Then with probability (w.p.) 1 the following hold: (i) limt→∞ α̂E(t) = α. (ii) limt→∞ α̂N (t, s) =

α. (iii) limn→∞ α̂M (tn) = α.

Before we start our proof of Theorem 2.1, we first focus on the estimator α̂M (tn), where

we have

t0 = 0 < t1 = t < t2 < · · · < tn = nt, ti = it. (2.21)

To study the behavior of the estimator

α̂M (tn) =
1

t
log

(∑n
i=1 Z(ti)∑n−1
i=1 Z(ti)

)
, (2.22)

we need first investigate the behavior of
∑n

i=1 Z(ti). Our next lemma is concerned with

this aspect.

Lemma 2.1. Under the condition of Theorem 2.1:

(A1) 1 < m <∞.

(A2) p0 = 0.

(A3) The life-time distribution G is non-lattice.

The following holds,

lim
t→∞

1

c′
e−αtn

n∑
i=1

Z(ti) =
W

1− e−αt
, w.p. 1. (2.23)
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Proof: Note that

1

c′
e−αtn

n∑
i=1

Z(ti) =

n∑
i=1

e−α(tn−ti)Z(ti)

c′eαti

=

n∑
i=1

e−α(n−i)tW (it)

=
n−1∑
i=0

W [(n− i)t]e−αit.

Now as n→∞, W [(n− i)t]→W . Hence, given ε > 0, there exist an n0 such that

|W (nt)−W | < ε, for all n ≥ n0. (2.24)

Hence,

n−1∑
i=0

W [(n− i)t]e−αit =

n−n0−1∑
i=0

W [(n− i)t]e−αit +

n∑
n−n0

W [(n− i)t]e−αit

=

n−n0−1∑
i=0

{W [(n− i)t]−W}e−αit +W

n−n0−1∑
i=0

e−αit

+

n∑
i=n−n0

W [(n− i)t]e−αit

= Jn(1) + Jn(2) + Jn(3).

For Jn(1), by (2.24), we have

|Jn(1)| ≤ ε
n∑
i=0

e−αit ≤ ε

1− e−αt
. (2.25)
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Since ε is arbitrary, it follows

lim
n→∞

Jn(1) = 0, w.p. 1. (2.26)

For Jn(3), we have

Jn(3) =
n∑

i=n−n0

W [(n− i)t]e−αit (2.27)

=

n0∑
j=0

W (jt)e−α(n−j)t by a change of variable. (2.28)

Since n0 is fixed,

lim
n→∞

Jn(3) =

n0∑
j=0

W (jt) lim
n→∞

e−α(n−j)t = 0. (2.29)

Finally, we consider

Jn(2) = W

n−n0−1∑
i=0

e−αit. (2.30)

Thus,

lim
n→∞

Jn(2) = W

[
1

1− e−αt

]
=

W

1− e−αt
. (2.31)

As a result,

lim
t→∞

1

c′
e−αtn

n∑
i=1

Z(ti) =
W

1− e−αt
, w.p. 1. (2.32)

Now, we can move to the proof of Theorem 2.1.
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Proof: First, we consider the convergence of α̂E(t).

α̂E(t) =
1

t
logZ(t) (2.33)

=
1

t
log

Z(t)

c′eαt
+

1

t
log(c′eαt) (2.34)

=
1

t
log (W (t)) +

1

t
log(c′eαt). (2.35)

By Theorem 1.4, under assumptions A1 and A2, lim
t→∞

W (t) = W w.p. 1. Hence,

lim
t→∞

α̂E(t) = lim
t→∞

1

t
log (W (t)) + lim

t→∞

1

t
log c′ + α (2.36)

= α w.p.1. (2.37)

Next, we consider the convergence of α̂N (t, s).

α̂N (t, s) =
1

s
log

[
Z(t+ s)

Z(t)

]
(2.38)

=
1

s
{log[Z(t+ s)]− log[Z(t)] + sα}. (2.39)

Again, by Theorem 1.4,

lim
t→∞

log(W (t+ s)) −→ logW, w.p. 1. (2.40)

lim
t→∞

log(W (t)) −→ logW, w.p. 1. (2.41)

Also P (| logW | < ∞) = 1, since we assume that p0 = 0. Thus taking limits as t → ∞ in

(2.39), we have

lim
t→∞

α̂N (t, s) = α, w.p. 1. (2.42)
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Finally, we consider the convergence of α̂M (tn).

lim
n→∞

α̂M (tn) =
1

t
log

(∑n
i=1 Z(ti)∑n−1
i=1 Z(ti)

)
(2.43)

= lim
n→∞

1

t
log

(
1
c′ e
−αtn∑n

i=1 Z(ti)
1
c′ e
−αtn−1

∑n−1
i=1 Z(ti)

eαt

)
(2.44)

=
1

t
log

 lim
n→∞

1
c′ e
−αtn∑n

i=1 Z(ti)

lim
n→∞

1
c′ e
−αtn−1

∑n−1
i=1 Z(ti)

eαt

 (2.45)

= α. (2.46)

Next, we investigate the asymptotic normality of the estimator α̂E(t).

Theorem 2.2. Assume that the age-dependent branching process satisfies the following con-

dition:

(A1) 1 < m <∞.

(A2) p0 = 0.

(A3) The life-time distribution G is non-lattice.

√
Z(t)

[
t(αE − α)− log c′ − logW −

(
c′ − 1

Z(t)

)]
d→ N(0, c′2V ar(W )). (2.47)

To prove this theorem, we start with the following lemma:

Lemma 2.2. Assume that the age-dependent branching process satisfies the following con-

dition:

(A1) 1 < m <∞.

(A2) p0 = 0.

(A3) The life-time distribution G is non-lattice.
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lim
t→∞

 log
(
W (t)
W

)
1− W (t)

W

 = −1. (2.48)

Proof: By Theorem 1.4, lim
t→∞

W (t) = W with probability 1. Hence,

lim
t→∞

W (t)

W
= 1 (2.49)

lim
t→∞

log

(
W (t)

W

)
= 0 (2.50)

lim
t→∞

(1− W (t)

W
) = 0. (2.51)

By L’Hospital’s rule,

lim
t→∞

 log
(
W (t)
W

)
1− W (t)

W

 = −1. (2.52)

Now we move to the proof of Theorem 2.2.

Proof: Let Z(t) be the total number of particles at time t, and αE is the endpoint

estimate for α.

√
Z(t)

[
t(α̂E − α)− log c′ − logW

]
=

√
Z(t)

[
log

(
Z(t)

c′eαt
c′eαt

)
− αt− log c′ − logW

]

=
√
Z(t) (logW (t)− logW )

=
√
Z(t)

(
log

W (t)

W
+ logW − logW

)

=
√
Z(t)

 log
(
W (t)
W

)
1− W (t)

W

(1− W (t)

W

)
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By Lemma 2.2, lim
t→∞

(
log
(
W (t)
W

)
1−W (t)

W

)
= −1, hence, we only need to evaluating lim

t→∞

√
Z(t)

(
1− W (t)

W

)
.

Let ati, i = 1, 2, . . . , Z(t) denote the age chart at time t. The total number of particles at

time (t+s), namely Z(t+s), is the sum of all population generated by particles at time t.

Z(t+ s) =

Z(t)∑
i=1

Zati(s), (2.53)

where Zati(s) is the population size generated during time interval (t, t+ s) by an ancestor

cell with age ati at time t. Let W = lim
s→∞

W (t+ s), we have

W = lim
s→∞

W (t+ s) (2.54)

= lim
s→∞

Z(t+ s)

c′eα(t+s)
(2.55)

= e−αt lim
s→∞

Z(t)∑
i=1

Zati(s)

c′eαs
(2.56)

= e−αt
Z(t)∑
i=1

Wi, (2.57)

where Wi(s) are i.i.d. and with same distribution as W. Then

lim
t→∞

√
Z(t)

(
1− W (t)

W

)
=

√
Z(t)

W
e−αt lim

t→∞

Z(t)∑
i=1

(Wxi(s)−
1

c′
)



= c′
√
Z(t)

 1

Z(t)

Z(t)∑
i=1

W

− 1

+ c′
√
Z(t)(1− 1

c′Z(t)
).
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By Theorem 1.4, we have E(W)=1. Hence,

c′
√
Z(t)

 1

Z(t)

Z(t)∑
i=1

W

− 1

 d→ N(0, c′2V ar(W )). (2.58)

Subtracting the bias term, we have

√
Z(t)

[
t(αE − α)− log c′ − logW − (c′ − 1

Z(t)
)

]
d→ N(0, c′2V ar(W )), (2.59)

which completes our proof.

2.3.2 Estimation for the Mean of Offspring Distribution

Under the data structure D2, once the Malthusian parameter α is calculated, we can use

the definition

m

∫ ∞
0

e−αydG(y) = 1 (2.60)

to obtain the estimator of m. Now let Y ∼ G(·), it is same as solving m by

E(e−αY ) =
1

m
. (2.61)

Exponential Distribution

When Y ∼ exp(λ), we have

E(e−αY ) =
λ

λ+ α
=

1

m
. (2.62)

Thus,

m = 1 +
α

λ
. (2.63)
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The estimator of α is proposed in previous section, we now describe the estimator of λ.

Assume that we can observe the lifetime y1, y2, . . . , yn in the experiment, where n is the

total number of observed life-times. The likelihood function is

L(λ; y1, y2, . . . , yn) = λnexp(−λ
n∑
j=1

yj). (2.64)

The log-likelihood function is

l(λ; y1, y2, . . . , yn) = nlog(λ)− λ
n∑
j=1

yj . (2.65)

As a result, the maximum likelihood estimator of λ is given by

λ̂ =
n∑n
j=1 yj

. (2.66)

With the estimates for α and λ, we set

m̂ = 1 +
α̂

λ̂
. (2.67)

Gamma Distribution

For gamma distribution with θ = (a, b), where

f(y|a, b) =
xa−1

Γ(a)ba
exp(−x

b
), (2.68)
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we have

E(e−αY ) = (1 + αb)−a =
1

m
(2.69)

m = (1 + bα)a. (2.70)

The estimator of α is proposed in previous section, we now describe the estimator of (a, b).

We assume that we can observe the lifetime y1, y2, . . . , yn in the experiment, where n is

the total number of observed life-time. The log-likelihood function is

l(a, b; y1, y2, . . . , yn) = (a− 1)
n∑
j=1

log yj − n log Γ(a)− na log b− 1

b

n∑
j=1

yj .

The maximum likelihood estimator of b is given by

b̂ =

∑n
j=1 yj

na
.

The maximum of a is at

Ψ(â) =

∑n
j=1 logyj

n
− log(

∑n
j=1 yj

n
) + loga0,

where Ψ is the digamma function Ψ(a) = Γ′(a)
Γ(a) . The iteration proceeds by setting a0 to the

current â, then inverting the Ψ function to get a new â. Because the likelihood is concave,

this iteration must converge to the (unique) global maximum. A good starting point for

30



the iteration is obtained via the approximation

log Γ(a) ≈ a log(a)− a− 1

2
log a+ const

Ψ(a) ≈ log(a)− 1

2a

â ≈ 0.5

log ȳ − log y
.

With the estimates for α and (a, b), we set

m̂ = (1 + b̂α̂)â (2.71)

2.3.3 Estimation of the Limiting Age Distribution

Recall that for any realization ω of the process, let Z(t, ω) denote the total number of

individuals alive at time t, Z(x, t, ω) denote the number of individuals of age less than x,

and A(·, t, ω) defined by A(·, t, ω) = Z(x,t,ω)
Z(t,ω) denote the empirical age distribution of those

alive at time t. By Theorem 1.6,

limt→∞supx≥0|A(x, t, ω)−A(x)| a.s.= 0. (2.72)

The limiting stable distribution A(x) is defined as

A(x) =

∫ x
0 e
−αy(1−G(y))dy∫∞

0 e−αy(1−G(y))dy
. (2.73)
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Exponential Distribution

Assume that the life-time distribution is exponential, Y ∼ exp(λ). We have

G(y) = 1− e−λy. (2.74)

The limiting age distribution can be explicitly expressed by

A(x) =

∫ x
0 e
−αy(1−G(y))dy∫∞

0 e−αy(1−G(y))dy

=

∫ x
0 e
−(α+λ)ydy∫∞

0 e−(α+λ)ydy

= 1− e−(α+λ)x.

which is an exponential distribution with parameter α+ λ.

Gamma Distribution

Assume that the life-time distribution is gamma, Y ∼ Gamma(a, b), where

g(y|a, b) =
xa−1

Γ(a)ba
exp(−x

b
). (2.75)

The cumulative probability distribution G(y) is given by

G(y) =
1

Γ(a)
γ(a,

y

b
). (2.76)
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Hence, there is no closed-form solution of the limiting age distribution

A(x) =

∫ x
0 e
−αy[1−G(y)]dy∫∞

0 e−αy[1−G(y)]dy
.

As a result, we provided a numerical approximation for A(x). For the denominator, let

v′(y) = e−αy and u(y) = 1−G(y) = P (Y ≥ y), we have v(y) = − 1
αe
−αy, u′(y) = dP (Y ≥ y).

Integral by parts,we have

∫ ∞
0

e−αy[1−G(y)]dy =

∫ ∞
0

u(y)dv(y)

= u(y)v(y)|∞0 −
∫ ∞

0
v(y)du(y)

= u(y)v(y)|∞0 −
∫ ∞

0
v(y)(−g(y))dy

=
1

α
− 1

α

∫ ∞
0

e−αyg(y)dy

=
1

α
(1− (1 + αb)−a).

For the numerator, we have

∫ x

0
e−αy[1−G(y)]dy =

∫ x

0
u(y)dv(y)

= u(y)v(y)|x0 −
∫ x

0
v(y)du(y)

= − 1

α
e−αx(1−G(x)) +

1

α
+

∫ x

0
v(y)g(y)dy

= − 1

α
e−αx(1−G(x)) +

1

α
− 1

α

∫ x

0
e−αyg(y)dy

= − 1

α
e−αx(1−G(x)) +

1

α
− 1

α
E(e−αY 1Y≤x).
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Thus the stable age distribution of a gamma life-time with parameter (a, b) is given by

A(x) =
1− e−αx(1−G(x))− E(e−αY 1Y≤x)

1− (1 + αb)−a
. (2.77)

2.4 Inference for Partially Observable Family Tree Data un-

der Log-normal Life-time Distribution

When the lifetime distribution is log-normal, there is no closed form expression of (2.61) and

hence m can not be expressed explicitly. Recall that a random variable X has a log-normal

distribution if X = eY , where Y is a normal distribution with mean µ and variance σ2. The

density of X is

f(x) =
1

x
√

2πσ
exp{−(logx− µ)2

2σ2
}. (2.78)

The Laplace transform of X is

E(e−αX) = E(e−αe
Y

) = e−α∆E(e−αe
Y0

), Y0 ∼ N(0, σ2). (2.79)

where ∆ can be expressed by

∆ = − 1

α
log

E(e−αe
Y0eµ)

E(e−αe
Y0 )

. (2.80)

To see this, note that

E(e−αe
Y0+µ

) = e−α∆E(e−αe
Y0

) (2.81)

∆ = − 1

α
log

E(e−αe
Y0eµ)

E(e−αe
Y0 )

. (2.82)
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Because of (2.86), for any log-normal distribution with parameter (µ, σ2), it is sufficient to

consider the evaluation of L(α) = E(e−αe
Y0 ).

This equation has no closed form expression. The basic method to compute L(α)

is known as Crude Monte Carlo, consists in simulating a sequence y1, y2, . . . , yR of i.i.d.

random variables with common distribution LN(0, σ2), then applying the transformation

y → e−αy to each random variable and finally returning the arithmetic average of the trans-

formed sequence as an estimator. The Law of Large Numbers (see Durrett (2010)) ensures

unbiasedness of this estimator while the Central Limit Theorem implies the error can be

made arbitrarily small by choosing R large enough. However, it is shown in Asmussen,

Jensen and Rojas (2014) that

Proposition 2.1. Let X ∼ LN(0, σ2). Then limα→∞
V ar(e−αX)
L(α)2

=∞ .

This result implies that the crude Monte Carlo estimation faces the problem of a relative

error that goes to infinity so that a huge value of R is required if α is large which is exactly

the same issue as that arising in rare-event simulation. For this reason, we consider a second

estimator which is based on the alternative representation of L(α) described in Asmussen,

Jensen and Rojas (2014). The alternative version of Laplace transform is

L̃(α) =
1√

1 +$(ασ2)
exp{ 1

2σ2
$(ασ2)2 +

1

σ2
$(ασ2)}. (2.83)

where $(·) is the Lambert W function described as the branches of the inverse relation of the

function z = $(z)e$(z). And the second estimator based on the alternative representation

of L(α) is given by

L̂IS(α) = exp{−$(ασ2)2

2σ2
− $(ασ2)

σ2
) · ϑ(Y, α), (2.84)

where Y ∼ N(0, σ2) and ϑ(Y, α) = exp{−$(α)
σ2 (eY − 1− Y )}.
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The algorithm to compute L̂IS for a given α is described as follows:

Algorithm 1 L̂IS estimator

1. Simulate Y1, Y2, . . . , YM from distribution N(0, σ2).

2. Compute ϑ(Yi, α) = exp{−$(alphaσ2)
σ2 (eYi − 1− Yi)}.

3. Return L̂IS(α) = exp{−$(ασ2)2

2σ2 − $(ασ2)
σ2 } 1

M

∑M
i=1 ϑ(Yi, α).

The property of L̂IS(α) has been studied in Asmussen, Jensen and Rojas (2014) and is

given below:

Theorem 2.3. The estimator L̂IS(α) is an unbiased estimator of the Laplace transform of

the log-normal distribution LN(0, σ2) and it has bounded relative error.

Since α is unknown, we replace α by α̂ using the methods proposed in the previous

sections. Hence, the estimator of m under log-normal distribution is given by

m̂ =
1

e−α̂∆E(e−α̂e
Y0 )

=
1

e−α̂∆̂L̂IS(α̂)
. (2.85)

We emphasize that ∆ involves estimation using L̂IS as well.

We now focus on the estimtors of µ and σ2. We assume that we can observe the lifetime

y1, y2, . . . , yn in the experiment, where n is the total number of observed life-time. Since

Y ∼ LN(µ, σ2), let X ∼ logY , then X ∼ N(µ, σ2). We take logarithm for each y to get a

set of data x1, x2, . . . , xn. The log-likelihood is

l(µ, σ2;x1, x2, . . . , xn) = (2πσ2)−n/2exp(− 1

2σ2

n∑
j=1

(xj − µ)2). (2.86)
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The maximum likelihood estimators for µ and σ2 are

µ̂ =

∑n
j=1 xj

n
, (2.87)

σ̂2 =

∑n
j=1(xj − µ̂)2

n
. (2.88)

Assume that the life-time distribution is log-normal, Y ∼ LN(µ, σ2), where

g(y|µ, σ2) =
1

yσ
√

2π
exp(−(logy − µ)2

2σ2
). (2.89)

The cumulative probability distribution G(y) is given by

G(y) =
1

2
+

1

2
erf [

logy − µ√
2σ

], (2.90)

where

erf(z) =
2√
π

∫ z

0
e−t

2
dt. (2.91)

Hence, there is no closed form expression for the limiting age distribution

A(x) =

∫ x
0 e
−αy[1−G(y)]dy∫∞

0 e−αy[1−G(y)]dy
.

As a result, we provided a numerical approximation for A(x). For the denominator, let

v′(y) = e−αy and u(y) = 1−G(y) = P (Y ≥ y), we have v(y) = − 1
αe
−αy, u′(y) = dP (Y ≥ y).
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Integrating by parts, we have

∫ ∞
0

e−αy[1−G(y)]dy =

∫ ∞
0

u(y)dv(y)

= u(y)v(y)|∞0 −
∫ ∞

0
v(y)du(y)

= u(y)v(y)|∞0 −
∫ ∞

0
v(y)(−g(y))dy

=
1

α
− 1

α

∫ ∞
0

e−αyg(y)dy

=
1

α
(1− E(e−αY )).

For the numerator, we have

∫ x

0
e−αy[1−G(y)]dy =

∫ x

0
u(y)dv(y)

= u(y)v(y)|x0 −
∫ x

0
v(y)du(y)

= − 1

α
e−αx(1−G(x)) +

1

α
+

∫ x

0
v(y)g(y)dy

= − 1

α
e−αx(1−G(x)) +

1

α
− 1

α

∫ x

0
e−αyg(y)dy

= − 1

α
e−αx(1−G(x)) +

1

α
− 1

α
E(e−αY 1Y≤x).

Hence, the true A(x) in log-normal distribution is given by

A(x) =
1− e−αx(1−G(x))− E(e−αY 1Y≤x)

1− E(e−αY )
. (2.92)
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2.5 Simulation Results

2.5.1 Simulation Results for Malthusian Parameter α

All our simulation results are based on generating 5000 family trees of different sizes. For

each replication, we start with one single cell and record the population size at time point

2, 4, 6, 8, . . . , 30. For log-normal distribution, we obtain the data until time 40 since the pop-

ulation size grows slower. The life-time distributions are chosen to be Exp(1), Gamma(1, 1)

and LN(0.5, 1). The offspring distribution is set to be p2 = p1 = 0.5 for simplicity. The true

mean of the offspring distribution is then 1.5. For αE estimate, we only use the single data

at different endpoint t. For αN estimate, we use paired data with different combinations

of endpoint t and interval s. For αM estimate, we use different endpoint t and number of

intervals n. The mean estimate and standard deviation based on 5000 replicates are given

in table 2.1 to 2.9.

From the simulation results, we can see that the estimate of αE is more biased compared

to αN and αM . Both αN and αM estimates yields estimates with less bias when t exceeds

10. The advantage of αN estimate is that it only requires a pair of data set while the αM

estimate required several time points data.

Table 2.1: αE estimator for exponential distribution

t Mean(standard deviation) True α

2 0.4782(0.1612) 0.5

4 0.4857(0.1103) 0.5

6 0.4896(0.0982) 0.5

8 0.4943(0.0674) 0.5

10 0.4963(0.0435) 0.5

20 0.4986(0.0298) 0.5

30 0.5009(0.0132) 0.5
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Table 2.2: αN estimator for exponential distribution

s=2 s=4 s=6 True α

t=2 0.4714(0.1212) 0.4736(0.1247) 0.4752(0.1138) 0.5

t=4 0.4837(0.0756) 0.4822(0.0745) 0.4834(0.0782) 0.5

t=6 0.4956(0.0229) 0.4951(0.0224) 0.4964(0.0203) 0.5

t=8 0.5032(0.0157) 0.5023(0.0145) 0.4989(0.0162) 0.5

t=10 0.5001(0.0101) 0.4998(0.0103) 0.5000(0.0102) 0.5

Table 2.3: αM estimator for exponential distribution

n=5 n=10 True α

t=2 0.4995(0.0212) 0.4996(0.0147) 0.5

t=4 0.4999(0.0106) 0.5

t=6 0.5000(0.0091) 0.5

Table 2.4: αE estimator for gamma distribution

t Mean(standard deviation) True α

2 0.4779(0.1642) 0.5

4 0.4851(0.1124) 0.5

6 0.4899(0.0975) 0.5

8 0.4941(0.0671) 0.5

10 0.4963(0.0444) 0.5

20 0.4988(0.0299) 0.5

30 0.5007(0.0132) 0.5
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Table 2.5: αN estimator for gamma distribution

s=2 s=4 s=8 True α

t=2 0.4721(0.1232) 0.4738(0.1239) 0.4749(0.1138) 0.5

t=4 0.4837(0.0755) 0.4831(0.0749) 0.4831(0.0780) 0.5

t=6 0.4957(0.0224) 0.4952(0.0222) 0.4964(0.0205) 0.5

t=8 0.5033(0.0151) 0.5022(0.0145) 0.4990(0.0168) 0.5

t=10 0.5000(0.0102) 0.4999(0.0102) 0.5001(0.0103) 0.5

Table 2.6: αM estimator for gamma distribution

n=5 n=10 True α

t=2 0.4995(0.0213) 0.4997(0.0147) 0.5

t=4 0.4998(0.0101) 0.5

t=6 0.5000(0.0089) 0.5

Table 2.7: αE estimator for Log-normal distribution

t Mean(standard deviation) True α

2 0.1511(0.0612) 0.192

4 0.1723(0.0488) 0.192

6 0.1872(0.0309) 0.192

8 0.1885(0.0206) 0.192

10 0.1895(0.0147) 0.192

20 0.1902(0.0098) 0.192

30 0.1927(0.0074) 0.192

40 0.1921(0.0059) 0.192
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Table 2.8: αN estimator for Log-normal distribution

s=2 s=4 s=8 True α

t=2 0.1632(0.0398) 0.1782(0.0392) 0.2474(0.0391) 0.192

t=4 0.1711(0.0276) 0.1762(0.0254) 0.2341(0.0243) 0.192

t=6 0.1822(0.0213) 0.1863(0.0201) 0.2083(0.0208) 0.192

t=8 0.1885(0.0187) 0.1884(0.0186) 0.1967(0.0192) 0.192

t=10 0.1898(0.0165) 0.1900(0.0160) 0.1929(0.0158) 0.192

t=16 0.1901(0.0102) 0.1908(0.0105) 0.1917(0.0101) 0.192

t=20 0.1918(0.0087) 0.1920(0.0081) 0.1918(0.0086) 0.192

t=24 0.1919(0.0075) 0.1919(0.0073) 0.1921(0.0074) 0.192

t=28 0.1918(0.0060) 0.1921(0.0059) 0.1922(0.0057) 0.192

Table 2.9: αM estimator for Log-normal distribution

n=5 n=10 True α

t=2 0.1882(0.0275) 0.1901(0.0277) 0.192

t=4 0.1912(0.0211) 0.1919(0.0209) 0.192

t=6 0.1919(0.0129) 0.192

2.5.2 Simulation Results for the Mean of Offspring Distribution

First of all, the offspring distribution is set to be p2 = p1 = 0.5. The true mean of the

offspring distribution is then 1.5. The parameters estimation for the life-time distributions

are based on maximum likelihood method described before. The Malthusian parameter are

given by αN estimate. Then the estimates for m under different distributions are given by

(2.67), (2.71) and (2.85), respectively. Secondly, we adjust p1 and p2 to obtain different

true m, which ranges from 1.1 to 1.9. The Malthusian parameter are given by αE estimate.

In our estimation, the MLEs for parameters of life-time distribution are accurate when
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the model is correctly specified. In such case, the accuracy of the estimate m is mainly de-

pends on the accuracy of Malthusian parameter α. For log-normal, it will take longer time

to get a good estimate of m compared with exponential and gamma life-time distribution,

which is corresponding to the previous results in Malthusian parameter estimation. One

reason is that the average splitting time is greater in log-normal life-time distribution and

the other reason is that we are using Laplace transformation to obtain the estimate while

there are close form solutions in both exponential and gamma life-time distributions.

Table 2.10: Mean of offspring distribution estimator for exponential distribution

s=2 s=4 s=8 True m

t=2 1.4769(0.3211) 1.4758(0.3314) 1.4726(0.3912) 1.5

t=4 1.4873(0.1762) 1.4831(0.1712) 1.4898(0.1746) 1.5

t=6 1.4959(0.1423) 1.4961(0.1321) 1.4957(0.1248) 1.5

t=8 1.5034(0.0745) 1.5024(0.0623) 1.4981(0.0503) 1.5

t=10 1.5001(0.0356) 1.4998(0.0231) 1.5000(0.0301) 1.5

Table 2.11: Mean of offspring distribution estimator for gamma distribution

s=2 s=4 s=8 True m

t=2 1.4769(0.3944) 1.4768(0.3984) 1.4725(0.4211) 1.5

t=4 1.4873(0.1632) 1.4832(0.1292) 1.4894(0.1566) 1.5

t=6 1.4960(0.1341) 1.4961(0.1291) 1.4958(0.1428) 1.5

t=8 1.5033(0.0866) 1.5021(0.0891) 1.4991(0.0803) 1.5

t=10 1.5002(0.0449) 1.4999(0.0341) 1.5001(0.0408) 1.5
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Table 2.12: Mean of offspring distribution estimator for Log-normal distribution

s=2 s=4 s=8 True m

t=2 1.2311(0.3921) 1.3654(0.3954) 1.7234(0.4211) 1.5

t=4 1.3842(0.2312) 1.4355(0.2411) 1.5921(0.2721) 1.5

t=8 1.4323(0.1103) 1.4887(0.1186) 1.5304(0.1098) 1.5

t=16 1.4923(0.0532) 1.4955(0.0522) 1.4979(0.0510) 1.5

t=20 1.4981(0.0311) 1.4999(0.0298) 1.4981(0.0281) 1.5

t=24 1.4976(0.0234) 1.4992(0.0221) 1.5021(0.0210) 1.5

t=28 1.4991(0.0174) 1.5011(0.0169) 1.5012(0.0171) 1.5

Table 2.13: Mean of offspring distribution estimator for exponential distribution

True m t=10 t=20 t=30

1.1 1.0634(0.1644) 1.0787(0.0984) 1.0837(0.0411)

1.3 1.2673(0.1532) 1.2879(0.0892) 1.2998(0.0366)

1.5 1.4839(0.1241) 1.4978(0.0793) 1.4996(0.0288)

1.7 1.6938(0.1166) 1.6982(0.0602) 1.6997(0.0273)

1.9 1.8962(0.0989) 1.8989(0.0441) 1.9001(0.0258)

Table 2.14: Mean of offspring distribution estimator for gamma distribution

True m t=10 t=20 t=30

1.1 1.0534(0.1714) 1.0801(0.1023) 1.0912(0.0723)

1.3 1.2811(0.1449) 1.2921(0.0882) 1.3007(0.0465)

1.5 1.4907(0.1132) 1.4969(0.0775) 1.5002(0.0312)

1.7 1.6945(0.0969) 1.6987(0.0622) 1.6999(0.0289)

1.9 1.8959(0.0871) 1.8988(0.0482) 1.9001(0.0271)
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Table 2.15: Mean of offspring distribution estimator for log-normal distribution

True m t=10 t=20 t=30 t=40

1.1 1.0417(0.1812) 1.0621(0.1201) 1.0837(0.0831) 1.0935(0.0541)

1.3 1.2521(0.1611) 1.2799(0.1008) 1.2884(0.0755) 1.2865(0.0490)

1.5 1.4754(0.1541) 1.4872(0.0952) 1.4934(0.0705) 1.4987(0.0466)

1.7 1.6812(0.1418) 1.6942(0.0887) 1.6990(0.0680) 1.6998(0.0452)

1.9 1.8931(0.1261) 1.8989(0.0852) 1.8995(0.0602) 1.9000(0.0401)

2.5.3 Simulation Results for Limiting Age Distribution

To investigate the convergence of empirical age distribution to the the stable age distribu-

tion, we obtain the age distribution data at t = 10, 20, . . . , 60. For exponential life-time

distribution, the true age distribution is also exponentially distributed so that we can plot

both stable age distribution and empirical age distribution within the definition region. The

graphs are shown in Figure 2.2 to 2.3. For gamma and log-normal life-time distribution,

the stable age distributions are depending on parameters from life-time distribution but can

only be obtained by numerical method. As a result, we provide the comparison between

cumulative age distribution (A(x) = P (X ≤ x)) and stable age distribution at several age

point x in table 2.16 and 2.17.

For exponential life-time distribution, we fit an exponential curve for the cumulative age

distribution. The true scale under stable age distribution is 1
λ+α = 2

3 . From the simulation

results we provide, we can state that the empirical age distribution converges to the stable

distribution when t is large. The conclusions are similar in both gamma and log-normal

life-time distributions.
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(a) t=10 (b) t=20

(c) t=30 (d) t=40

Figure 2.2: Empirical Age Distribution at Different Time Points
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Figure 2.3: Comparison between true age distribution and empirical age distribution under

gamma distribution

Figure 2.4: Comparison between true age distribution and empirical age distribution under

log-normal distribution
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Table 2.16: Comparison between true age distribution and estimated age distribution at

different time point in Gamma distribution

x Stable A(x) Â10(x) Â20(x) Â30(x) Â40(x) Â50(x) Â60(x)

0.2 0.269 0.291 0.282 0.273 0.274 0.270 0.268

0.4 0.458 0.479 0.470 0.462 0.457 0.457 0.458

0.6 0.596 0.573 0.608 0.592 0.597 0.594 0.597

0.8 0.701 0.734 0.716 0.696 0.701 0.702 0.702

1 0.778 0.801 0.789 0.774 0.776 0.779 0.779

1.5 0.895 0.872 0.883 0.891 0.893 0.894 0.895

2 0.949 0.965 0.957 0.953 0.951 0.949 0.950

Table 2.17: Comparison between true age distribution and estimated age distribution at

different time point in Log-normal distribution

x Stable A(x) Â10(x) Â20(x) Â30(x) Â40(x) Â50(x) Â60(x)

0.5 0.252 0.201 0.225 0.241 0.256 0.256 0.253

1 0.468 0.434 0.446 0.459 0.470 0.471 0.467

1.5 0.596 0.587 0.579 0.591 0.596 0.595 0.596

2 0.711 0.724 0.718 0.716 0.713 0.710 0.712

3 0.830 0.851 0.846 0.835 0.832 0.832 0.831

4 0.900 0.935 0.921 0.910 0.901 0.902 0.901

6 0.967 0.975 0.972 0.965 0.965 0.968 0.967
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Chapter 3: Robust Estimation for Age-dependent Branching

Process using Hellinger Distance

In the previous chapters, we provided inferential methods for data structure D1, D2 and

D4. Recall that the data structure D3 in addition to the total number of particles Z(t) also

contains information on the age chart At = (at1, a
t
2, . . . , a

t
Z(t)) at the time point t, where

atj denote the age of the jth particle at time t. The previously proposed methods are not

applicable since the life-time distribution is not observable. Other approximation methods

(see Cowan (1985), Ridout (2006) and Palmer (2008)) are not applicable either since they

are based on the moments of the life-times distributions. Hence, we introduce an alternative

estimation methods based on Hellinger distance to deal with the age chart data.

3.1 Minimum Hellinger distance Estimators(MHDE)

Definition: Let g(y) and h(y) be any two densities; the Hellinger distance between g(y)

and h(y) is defined as the L2-norm of the difference between square root of density functions,

HD2(g, h) = ||√g −
√
h||22 =

∫ (√
g(y)−

√
h(y)

)2
dy. (3.1)

Let Y1, Y2, . . . , Yn be i.i.d. real valued random variables with density belonging to a specific

parametric family {gθ; θ ∈ Θ} and hn be a non-parametric estimator of the density. The

Hellinger distance between gθ and hn is given by

HD2
n(gθ, hn) = ||

√
gθ(y)−

√
hn(y)||22. (3.2)
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The minimum Hellinger distance estimator of θ is defined to be the value θ̂n, if it exists,

that minimize HD2
n(gθ, hn). Note that,

HD2
n(gθ, hn) =

∫ (√
gθ(y)−

√
hn(y)

)2
dy (3.3)

=

∫
gθ(y)dy +

∫
hn(y)dy − 2

∫ √
gθ(y)hn(y)dy (3.4)

= 2− 2γn(θ), (3.5)

where

γn(θ) =

∫ √
gθ(y)hn(y)dy. (3.6)

Hence, finding the minimum Hellinger distance estimator is therefore equivalent to finding

the θ̂n that maximize γn(θ). In this thesis, we choose

hn(y) =
1

ncn

n∑
j=1

K{y − Yj
cn
}, (3.7)

where K(·) is the kernel density. Then it is well known that (see Devroye (1987)) as cn → 0,

hn(·) L1−→ gθ(·). This implies that HD2
n(gθ, hn) → 0. This argument suggest investigating

estimators that minimize the Hellinger distance between the nonparametric density estima-

tor and the proposed parametric density.

Beran (1977) have shown that the MHDE is more robust than maximum likelihood

estimator when data contamination are present. Further more MHDE is known to be

asymptotically efficient (see Beran (1977), Cheng and Vidyashankar (2004)) under a speci-

fied parametric family of densities and is minimax robust in a Hellinger metric neighborhood

of the given family.
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3.2 Hellinger Distance Estimator for Limiting Age distribu-

tion

3.2.1 Exponential Life-time Distribution

Assume that the lifetime distribution is exp(λ) and we observe the total number of particles

Z(t) and age chart at1, a
t
2, . . . , a

t
Z(t) at time t, which is the data structure D3. The initial

malthusian parameter α is obtained by the endpoint estimate we proposed last chapter. Now

we consider inference for the life-time distribution parameter λ using minimum Hellinger

distance. First, recall that the limiting stable age distribution A(x) is given by

A(x) =

∫ x
0 e
−αy(1−G(y))dy∫∞

0 e−αy(1−G(y))dy
, (3.8)

and the stable density function A′(x) is

A′(x) =
e−αx(1−G(x))∫∞

0 e−αy(1−G(y))dy
. (3.9)

The kernel density hZ(t)(x) for the stable density A′(x;λ) is given by

hZ(t)(x) =
1

Z(t)cn

Z(t)∑
j=1

K{
x− atj
cn
}. (3.10)

The probability density function A′(x;λ) can be obtained by differentiating A(x) and is

given by

A′(x;λ) =
d

dx
(

∫ x
0 e
−αy[1−G(y)]dy∫∞

0 e−αy[1−G(y)]dy
) (3.11)

= (λ+ α)e−(λ+α)x. (3.12)
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Recall that finding the MHDE of (λ, α) is equivalent to finding (λ, α) that maximizes the

following:

γ(λ, α) =

∫
(A′(x|α, λ))1/2

(hZ(t)(x))1/2
(hZ(t)(x))dx. (3.13)

By strong law of large numbers (see Durrett (2010)), the above integral can be approximated

by

1

M

M∑
i=1

(A′(xt,i|α, λ))1/2

(hZ(t)(xt,i))1/2
, (3.14)

where M is the number of the Monte Carlo samples and xt,i ∼ hZ(t)(·). We use

O(α, λ) =
1

M

M∑
i=1

ωt,i(λ+ α)
1
2 e−

1
2

(λ+α)xt,i ,where ωt,i =
1√

hZ(t)(xt,i)
, (3.15)

as the objective function as in Cheng and Vidyashankar (2004). Taking the first derivative

with respect to λ and α, we get

O′λ(λ, α) =
1

M

M∑
i=1

(ωt,i
2

(λ+ α)−
1
2 e−

1
2

(λ+α)xt,i − ωt,i
2
xt,i(λ+ α)

1
2 e−

1
2

(λ+α)xt,i
)
, (3.16)

and

O′α(λ, α) =
1

M

M∑
i=1

(ωt,i
2

(λ+ α)−
1
2 e−

1
2

(λ+α)xt,i − ωt,i
2
xt,i(λ+ α)

1
2 e−

1
2

(λ+α)xt,i
)
. (3.17)

Since there is no closed form expression for (λ, α) from the above equation, we use Newton-

Raphson method to solve for (λ, α). Taking the second derivative with respect to λ and α,
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we obtain

O′′λ(λ, α) =
1

M

M∑
i=1

[−ωt,i
4

(λ+ α)−
3
2 e−

1
2

(λ+α)xt,i − ωt,ixt,i
4

(λ+ α)−
1
2 e−

1
2

(λ+α)xt,i

− ωt,ixt,i
4

(λ+ α)−
1
2 e−

1
2

(λ+α)xt,i +
ωix

2
t,i

4
(λ+ α)

1
2 e−

1
2

(λ+α)xt,i)],

and

O′′α(λ, α) =
1

M

M∑
i=1

[−ωt,i
4

(λ+ α)−
3
2 e−

1
2

(λ+α)xt,i − ωt,ixt,i
4

(λ+ α)−
1
2 e−

1
2

(λ+α)xt,i

− ωt,ixt,i
4

(λ+ α)−
1
2 e−

1
2

(λ+α)xt,i +
ωix

2
t,i

4
(λ+ α)

1
2 e−

1
2

(λ+α)xt,i)].

Hence,

λn+1 = λn −
O′λ(λ, α)

O′′λ(λ, α)
,

αn+1 = αn −
O′α(λ, α)

O′′α(λ, α)
.

The initial value α0 is chosen to be α̂E which is described in chapter 2. For obtaining

the initial value for λ0, we use the stochastic search method in Chan and Vidyashankar

(2008). We generate λ
(1)
0 , λ

(2)
0 , . . . , λ

(N)
0 from exponential distribution and pair it with α̂E .

The initial λ is defined as

λ0 = argmax
1≤i≤N

O(λ
(i)
0 , α̂E). (3.18)

Thus, the initial estimate is (λ0, α̂E). The algorithm can be described as follows:
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Algorithm 2

1. Generate one random variable from the kernel density. Repeat M times. Set up the
initial value (λ0, α̂E).
2. Obtain the updates (λ, α) using Newton Raphson iteration.

3. When |λn+1 − λn| < 10−3 and |αn+1 − αn| < 10−3 then stop; else go to step 2.
4. Return (λ, α) as our MHDE.

We can also use the stochastic search method for further iteration rather than the

Newton-Raphson to obtain the MHDE. The idea is that we start with an initial pair (λ0, α0).

Then we generate N random combinations of λ
(i)
1 , α

(i)
1 , 1 ≤ i ≤ ∞ in the neighborhood of

the initial pair, for example, (λ0− ε1, λ0 + ε1) and (α0− ε2, α0− ε2). The updated estimate

is given by

(λ1, α1) = argmax
1≤i≤N

O(λ
(i)
1 , α

(i)
1 ). (3.19)

The algorithm to find MHDE using stochastic search can be described as follows:

Algorithm 3

1. Generate one random variable from the kernel density. Repeat M times. Set up the
initial value (λ0, α̂E).
2. Obtain the updates (λ, α) using stochastic search algorithm.

3. When |O(λn+1,αn+1)−O(λn,αn)|
|O(λn,αn)| < 10−6 then stop; else go to step 2.

4. Return (λ, α) as our MHDE for gamma distribution.

The results of both implementations are shown in section 3.4.

3.2.2 Gamma Life-time Distribution

We now turn to the gamma life-time distribution with parameter (a, b). In this case, the

limiting stable age density function is given by

A′(x|α, a, b) =
e−αxS(x)

1
α(1− (1 + αb)−a)

=
αe−αxS(x)

1− (1 + αb)−a
.
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Recalling that finding the MHDE of (α, a, b) is equivalent to finding (α, a, b) that maximizes

the following:

1

M

M∑
i=1

(A′(xt,i|a, b))1/2

(hZ(t)(xt,i))1/2
, (3.20)

where M is the number of the Monte Carlo samples and xt,i ∼ hZ(t)(·). The objective

function in the gamma case becomes

O(α, a, b) =
1

M

M∑
i=1

ωt,iα
1
2 e−

1
2
αxt,iS(xt,i)

1
2 (1− (1 + αb)−a)−

1
2 , (3.21)

where ωt,i = 1√
hZ(t)(xt,i)

and S(xt,i) = 1− γ(a,
xt,i
b

)

γ(a) = 1−
∫ xt,i/b
0 ta−1e−tdt∫∞

0 ta−1e−tdt
.

Taking the first derivative with respect to a. Set u(a, b) = S(xt,i)
1
2 and v(a, b) = (1− (1 +

αb)−a)−
1
2 . Then

du(a, b)

da
= −1

2
S(xt,i)

− 1
2

(∫ xt,i/b
0 ta−1e−tdt ·

∫∞
0 log(a− 1)ta−1e−tdt

(
∫∞

0 ta−1e−tdt)2

)
(3.22)

+
1

2
S(xt,i)

− 1
2

(∫ xt,i/b
0 log(a− 1)ta−1e−tdt ·

∫∞
0 ta−1e−tdt

(
∫∞

0 ta−1e−tdt)2

)
, (3.23)

dv(a, b)

da
= −1

2
(1− (1 + αb)a)−

3
2 (−log(1 + αb)(1 + αb)−a), (3.24)

O′a(α, a, b) =
1

M

M∑
i=1

ωt,iα
1
2 e−

1
2
αxt,i

(
du(a, b)

da
· v(a, b) +

dv(a, b)

da
· u(a, b)

)
. (3.25)

Since (α, a, b) can not be obtained from the above equation, and the Newton-Raphson

method requires the second derivative which are too complex to compute. As a result, we

use the stochastic search method to find the MHDE.
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As before, the initial α0 is chosen to be α̂E . And we generate (a
(1)
0 , a

(2)
0 , . . . , a

(N)
0 ,

b
(1)
0 , b

(2)
0 , . . . , b

(N)
0 ) from exponential distribution and pair them with α̂E . The initial pair

(a0, b0) is defined as

(a0, b0) = argmax
1≤i≤N

O(α̂E , a
(i)
0 , b

(i)
0 ). (3.26)

Once the initial pair is defined, we again generate random combinations in the neighborhood

of the initial pair and select (α, a, b) to maximize O(α, a, b).

The algorithm can be described as follows:

Algorithm 4

1. Generate one random variable from the kernel density. Repeat M times. Set up the
initial value (α0, a0, b0).
2. Obtain the updates (α, a, b) using stochastic search algorithm.

3. When |O(αn+1,an+1,bn+1)−O(αn,an,bn)|
|O(αn,an,bn)| < 10−6 then stop; else go to step 2.

4. Return (α, a, b) as our MHDE for gamma distribution.

The result of MHDE using stochastic search method is shown in section 3.4.

3.2.3 Log-normal Life-time Distribution

We now consider the log-normal life-time distribution with parameter (µ, σ2). The limiting

stable age density is given by

A′(x|α, µ, σ2) =
e−αxS(x)

1
α(1− E(e−αY ))

. (3.27)

The objective function in this case is given by

O(α, µ, σ2) =
1

M

M∑
i=1

ωx,iα
1
2 e−

1
2
αxi,tS(xi,t)

1
2 (1− E(e−αy))

1
2 , (3.28)
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where ωx,i = 1√
hZ(t)(xi,t)

and S(xi,t) = 1− Φ
(

log xi,t−µ
σ

)
.

Similar to the gamma distribution, (α, µ, σ2) can not be obtained from the above equa-

tion, and the Newton-Raphson method requires the second derivative which are too complex

to compute. As a result, we use the stochastic search method as described in Chan and

Vidyashankar (2008) to find the MHDE. The initial α0 is chosen to be α̂E . And we gener-

ate µ
(1)
0 , µ

(2)
0 , . . . , µ

(N)
0 from normal distribution and σ

2,(1)
0 , σ

2,(2)
0 , . . . , σ

2,(n)
0 from exponential

distribution then pair them with α̂E . The initial pair (µ0, σ
2
0) is defined as

(µ0, σ
2
0) = argmax

1≤i≤N
O(α̂E , µ

i
0, σ

2,(i)
0 )). (3.29)

Once the initial pair is defined, we again generate random combinations in the neighborhood

of the initial pair and select (α, µ, σ2) to maximize O(α, µ, σ2). The algorithm can be

described as follows:

Algorithm 5

1. Generate one random variable from the kernel density. Repeat M times. Set up the
initial value (α0, µ0, σ

2
0).

2. Obtain the updates (α, µ, σ2) using stochastic search algorithm.

3. When
|O(αn+1,µn+1,σ2

n+1)−O(αn,µn,σ2
n)|

|O(αn,µn,σ2
n)| < 10−6 then stop; else go to step 2.

4. Return (α, µ, σ2) as our MHDE for log-normal distribution.

3.3 Robustness Estimator when Data Contamination and

Model Mis-specification are Present

When the limiting stable age distribution is parametric, for example, exponential distri-

bution, we could use maximum likelihood method to estimate the parameters. However,

the maximum likelihood yields more bias when data contaminations are present. In such

case, our proposed method based on Hellinger distance outperforms the maximum likeli-

hood method due to the robustness.
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Consider the following life-time models with contamination,

G∗(y|θ) = (1− β)G(y|θ) + βU, (3.30)

where G(y|θ) is the true life-time distribution, U is a constant which is away from the the

true distribution and β is the proportion of contamination.

Assume that we observe the total number of particles Z(t) and age chart at1, a
t
2, . . . , a

t
Z(t)

at time t. Since the age distribution is exponential distributed with parameter (λ, α), the

likelihood function is

L(λ, α; at1, a
t
2, . . . , a

t
Z(t)) = (λ+ α)nexp

−(λ+ α)

Z(t)∑
j=1

atj

 . (3.31)

The log-likelihood function is

l(λ, α; at1, a
t
2, . . . , a

t
Z(t)) = nlog(λ+ α)− (λ+ α)

Z(t)∑
j=1

atj . (3.32)

Hence, the maximum likelihood estimator of λ+ α is given by

λ̂+ α̂ =
n∑Z(t)
j=1 a

t
j

. (3.33)

In addition, the estimator for α can be obtained by αE from last chapter. Hence, the

estimators for α and λ based on maximum likelihood methods are given by

α̂ =
1

t
logZ(t), (3.34)

λ̂ =
n∑Z(t)
j=1 a

t
j

− α̂. (3.35)
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The algorithms for MHDE under contamination model are exactly the same as we

described in previous section. For exponential life-time distribution, we perform simulations

to compare all three estimators, MLE, MHDE using Newton method and MHDE using

stochastic search. For gamma and log-normal life-time distribution, we only provide the

MHDE using stochastic search since MLE can not be obtained.

Other than the contamination model, the parametric model of the life-time distribution

could be mis-specified. For example, the true life-time distribution is gamma while we

assume it to be exponential. In such case, we compare the empirical age distribution from

the gamma life-time distribution and fitted age distribution under exponential model to

validate the robustness of MHDE.

3.4 Simulation Results

All our simulation results are based on generating 1000 family trees of different sizes. The

life-time distributions are chosen to be Exp(1), Gamma(1, 1) and LN(0.5, 1). The offspring

distribution is set to be p2 = p1 = 0.5. For each replication, we start with single ancestor

particle and obtain the age chart together with the total number of particles at time point

10, 20, and 30. For log-normal distribution, we obtain the data until time 40. Then the

kernel density function is estimated from the age chart data and the Malthusian parameters

are estimated using the αE estimator. Once the kernel density is built, 1000 observations

x1, x2, . . . , x1000 are generated based on the density function.

For exponential life-time distribution, we can use both Newton method and stochastic

search method. We start with generating λ
(1)
0 , λ

(2)
0 , . . . , λ

(1000)
0 from exponential distribution

with parameter 2 and pair it with α̂E . The initial λ is defined as

λ0 = argmax
1≤i≤1000

O(λ
(i)
0 , α̂E). (3.36)
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Then we use algorithm 2 and 3 to find MHDE. The neighborhood range is set to be 0.1.

The mean and standard deviation for MHDE of both λ and α are provided in Table 3.1

and 3.2.

Table 3.1: MHDE for α using Newton method and stochastic search method under expo-

nential life-time distribution

Newton Stochastic Search True α

t=10 0.5001(0.0016) 0.5003(0.0107) 0.5

t=20 0.5000(0.0008) 0.5001(0.0099) 0.5

t=30 0.5000(0.0005) 0.5001(0.0070) 0.5

Table 3.2: MHDE for λ using Newton method and stochastic search method under expo-

nential life-time distribution

Newton Stochastic Search True λ

t=10 1.0000(0.0010) 1.0008(0.0098) 1

t=20 1.0000(0.0005) 0.9996(0.0076) 1

t=30 1.0000(0.0003) 0.9999(0.0051) 1

3.4.1 Gamma Life-time Distribution

For gamma life-time distribution, we only use stochastic search method. We start with gen-

erating a
(1)
0 , a

(2)
0 , . . . , a

(N)
0 , b

(1)
0 , b

(2)
0 , . . . , b

(N)
0 from exponential distribution with parameter

2 and pair them with α̂E . The initial pair (a0, b0) is defined as

(a0, b0) = argmax
1≤i≤N

O(α̂E , a
(i)
0 , b

(i)
0 ). (3.37)
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Then we use algorithm 4 to find MHDE. The neighborhood range is set to be 0.1. The

mean and standard deviation for MHDE are provided in table 3.3.

Table 3.3: MHDE using stochastic search method under gamma life-time distribution

a b α True value

t=10 1.0010(0.0101) 0.9988(0.0109) 0.5002(0.0121) (a = 1, b = 1, α = 0.5)

t=20 1.0008(0.0085) 1.0002(0.0091) 0.5001(0.0099) (a = 1, b = 1, α = 0.5)

t=30 1.0004(0.0073) 0.9999(0.0074) 0.5000(0.0078) (a = 1, b = 1, α = 0.5)

3.4.2 Log-normal Life-time Distribution

The initial α0 is chosen to be α̂E . We generate µ
(1)
0 , µ

(2)
0 , . . . , µ

(N)
0 from normal distribution

N(0, 1) and σ
2,(1)
0 , σ

2,(2)
0 , . . . , σ

2,(N)
0 from exponential distribution with parameter 2. The

initial pair of (µ0, σ
2
0) is given by

(µ0, σ
2
0) = argmax

1≤i≤N
O(α̂E , µ

i
0, σ

2,(i)
0 )). (3.38)

Then we use algorithm 5 to find MHDE. The neighborhood range is set to be 0.1. The

mean and standard deviation for MHDE are provided in table 3.4.
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Table 3.4: MHDE using stochastic search method under log-normal life-time distribution

µ σ2 α True value

t=10 0.4173(0.1101) 0.9881(0.1013) 0.2028(0.0612) (µ = 0.5, σ2 = 1, α = 0.192)

t=20 0.4531(0.0798) 1.0139(0.0844) 0.2001(0.0387) (µ = 0.5, σ2 = 1, α = 0.192)

t=30 0.4963(0.0565) 0.9961(0.0521) 0.1910(0.0204) (µ = 0.5, σ2 = 1, α = 0.192)

t=40 0.5015(0.0351) 1.0012(0.0330) 0.1917(0.0138) (µ = 0.5, σ2 = 1, α = 0.192)

3.4.3 Model Contamination

In this case, in addition to our previous simulation settings, the contaminated life-times

are set to be twice of the mean life-time distribution. To be specific, 2 for exponential and

gamma distribution, and 2e for log-normal distribution. The proportion of contamination

ranges from 5% to 20%. The comparison between MLE and MHDE are provided in Table

3.5 to 3.6 for exponential life-time distribution. For gamma and log-normal distribution,

only MHDE estimates are provided.

Table 3.5: α estimator comparison under exponential contamination models

MLE Newton Stochastic Search True α

β = 5% 0.4876(0.0226) 0.4956(0.0102) 0.4966(0.0141) 0.5

β = 10% 0.4623(0.0218) 0.4922(0.0098) 0.4921(0.0147) 0.5

β = 15% 0.4417(0.0198) 0.4901(0.0102) 0.4899(0.0139) 0.5

β = 20% 0.4208(0.0251) 0.4868(0.0110) 0.4870(0.0140) 0.5
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Table 3.6: λ estimator comparison under exponential contamination models

MLE Newton Stochastic Search True λ

β = 5% 0.9960(0.0322) 0.9982(0.0153) 0.9987(0.0201) 1

β = 10% 0.9602(0.0311) 0.9913(0.0177) 0.9915(0.0217) 1

β = 15% 0.9300(0.0319) 0.9833(0.0182) 0.9854(0.0231) 1

β = 20% 0.8910(0.0352) 0.9668(0.0185) 0.9681(0.0225) 1

Table 3.7: MHDE under gamma contamination model

a b α True value

β = 5% 0.9990(0.0191) 1.0001(0.0199) 0.4967(0.0141) (a = 1, b = 1, α = 0.5)

β = 10% 0.9976(0.0185) 0.9987(0.0162) 0.4921(0.0148) (a = 1, b = 1, α = 0.5)

β = 15% 0.9878(0.0175) 0.9867(0.0174) 0.4899(0.0139) (a = 1, b = 1, α = 0.5)

β = 20% 0.9765(0.0179) 0.9752(0.0181) 0.4870(0.0141) (a = 1, b = 1, α = 0.5)

Table 3.8: MHDE under log-normal contamination model

µ σ2 α True value

β = 5% 0.4427(0.0801) 0.9958(0.0819) 0.1973(0.0349) (µ = 0.5, σ2 = 1, α = 0.192)

β = 10% 0.4397(0.0785) 0.9910(0.0791) 0.1926(0.0351) (µ = 0.5, σ2 = 1, α = 0.192)

β = 15% 0.4336(0.0790) 0.9846(0.0794) 0.1876(0.0340) (µ = 0.5, σ2 = 1, α = 0.192)

β = 20% 0.4289(0.0802) 0.9786(0.0801) 0.1803(0.0328) (µ = 0.5, σ2 = 1, α = 0.192)
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3.4.4 Model Mis-specification

In this case, we assume that the true life-time distribution is Gamma(0.5,1). However,

during the inference, we mis-specifies it as exponential distribution. With the given age-

chart data coming from the gamma life-time distribution, we use the proposed algorithm

for exponential life-time distribution to obtain the estimators of parameters. The empirical

age distribution and fitted age distribution are given in figure 3.1.

Figure 3.1: Empirical age distribution v/s Fitted age distribution
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Chapter 4: Discussion and Concluding Remark

In this thesis, we provided a new inferential methodology for age-dependent branching pro-

cess under different data structures available in cell biology and other fields. We investigated

and proved the consistency and asymptotic normality of the Malthusian parameter estima-

tor. Additionally, we provided inferential methodology for the mean of offspring distribution

and the limiting age distribution, which incorporate most information of an age-dependent

branching process. Generally speaking, the estimators are less biased in exponential and

gamma life-time distribution compared to log-normal distribution. One reason is that, it

will take longer time to obtain comparable population size using log-normal distribution.

The second reason is that Laplace transform of log-normal distribution is harder to compute

while there are explicit expressions for other distributions considered in the thesis.

Under data structure D3 with age chart information, where traditional maximum like-

lihood method is not applicable for estimation of life-time distribution, we provided al-

ternative statistical method based on Hellinger distance and computational algorithm for

obtaining related parameters. The advantage of using the minimum Hellinger distance es-

timator (MHDE) is the robustness when data contaminations or model mis-specifications

are present. MHDE can be also applied to data structure D2.

Our inferential methodology for single-type age-dependent branching processes can be

extended to multi-type framework, for example, in cancer models with resistant cells and

sensitive cells. We assume that each sensitive cell or resistant cell lives a random length

of time T. At the time of death, the cell is replaced by either 0 or 2 cells of same type.

That is to say, the offspring distribution has all of its mass at that points 0 and 2. The

existing model assumes that all patients have identical exponential life-time distribution of

cells (see Foo and Michor (2010)). Under this assumption, the variations between patients

may be underestimated. In addition, the reason why some patients experience shorter (or
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longer) disease-free periods than others are not explained. In a typical clinical trial, the

recurrence time can vary from 6 month to 10 years for patients with same cancer type and

similar cancer progression (see Baker (2005)). Hence, the assumption that the life-times

are identically distributed may not be true.

To account for the variability due to the differences between patients, one could assume

that the parameter of the exponential distribution are not constant but randomly chosen

from a distribution. This distribution is referred to as the random effect distribution. Once

the random effect is incorporated in the model, the Markovian properties are lost and the

resulting process turns out to be an multi-type age-dependent branching process. In such

case, extension of our results to this setting will facilitate more accurate estimators of the

recurrence time distribution.

There are also limitations to this research. First of all, we only applied the method-

ology to three commonly used continuous non-negative life-time distributions while there

are several others available. Secondly, we did not consider the dependence between sibling

particles and parents-children particles. We hope to address these issues in our future work.
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