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ABSTRACT 

 

HARDWARE/SOFTWRE CODESIGN APPROACHES TO PUBLIC KEY 

CRYPTOSYSTEMS 

Malik Umar Sharif, Ph.D.  

George Mason University, 2017 

Thesis Director: Dr. Kris Gaj 

 

If a quantum computer with a sufficient number of qubits was ever built, it would easily 

break all current American federal standards in the area of public-key cryptography, 

including algorithms protecting the majority of the Internet traffic, such as RSA, 

Elliptic Curve Cryptography (ECC), Digital Signature Algorithm (DSA), and Diffie-

Hellman. As a result, a new set of algorithms, resistant against any known attacks 

involving quantum computers, must be developed. These algorithms are collectively 

referred to as Post-Quantum Cryptography (PQC). The standardization effort for these 

algorithms is likely to last years and result in the entire portfolio of algorithms capable 

of replacing current public-key cryptography schemes. As a part of this standardization 

process, fair and efficient benchmarking of PQC algorithms in hardware and software 

becomes a necessity. Traditionally, software implementations of public-key algorithms 

provided the highest flexibility but lacked performance. On the other hand, custom 

hardware implementations provided the highest performance but lacked flexibility and 

adaptability to changing algorithms, parameters, and key sizes. Therefore, in this work, 

we investigate the suitability of the hardware/software codesign for implementing and 
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evaluating traditional and post-quantum public-key cryptosystems from the point of 

view of their implementation efficiency. 

As our case studies, we considered one traditional public key cryptosystem, RSA, and 

one post-quantum public key cryptosystem, NTRUEncrypt. We implemented both of 

them using custom hardware, as well as software/hardware codesign. The Xilinx Zynq-

7000 System on Chip platform, which integrates a dual-core ARM Cortex A9 

processing system along with Xilinx programmable logic, was used for our 

experiments. The performance vs. flexibility trade-off has been investigated, and the 

speed-up of our software/hardware codesign implementations vs. the purely software 

implementations on the same platform is reported and analyzed. Similarly, the speed-

up of the custom hardware vs. hardware-software codesign is investigated as well. 

Additionally, we have determined and analyzed different percentage contributions of 

the execution times for equivalent component operations executed using the 

aforementioned three different implementation approaches (custom hardware, 

software/hardware codesign, and pure software). We demonstrate that 

hardware/software codesign can reliably assist in early evaluation and comparison of 

various public-key cryptography schemes. Our project is intended to pave the way for 

the future comprehensive, fair, and efficient benchmarking of the most promising 

encryption, signature, and key agreement schemes from each of several major post-

quantum public-key cryptosystem families. 
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1 INTRODUCTION 

In this chapter, we describe the existing traditional and post-quantum public key 

cryptosystems that are used in the field of cryptography and reported in the literature. 

We also provide the motivation behind working on post-quantum public key 

cryptosystems and the reason why cryptographic community should focus its attention 

on preparing for the next generation of quantum resistant algorithms. We also 

emphasize on the importance of choosing the hardware/software codesign platform in 

an effort to evaluate and benchmark these algorithms and reasons to choose Xilinx 

system on chip solution to implement the designs and analyze the results.  

1.1 Traditional and Post-Quantum Public Key Cryptography 

The idea of Public-Key Cryptography (PKC) was proposed by Diffie and Hellman in 

1976 [1]. Later during the next year Ron Rivest, Adi Shamir and Leonard Addleman 

[2] proposed another public-key cryptosystem known as RSA which enabled 

encryption of a message using public key of the receiver. Only the receiver could 

decrypt the message with its private key which is kept as a secret. 

Public-key cryptosystems simplified the issue of key management. As they require 

intense mathematical calculations based on integer factorization and discrete 

logarithms, the implementations were much slower than symmetric key algorithms for 

encryption. As a result, secret-key cryptography kept on being in use for bulk 

encryption, while public-key cryptosystems were used for key management. With the 

advancements in the computing power of modern computers and due to efficient 

algorithms for integer factorization, the increasing size of RSA modulus caused the 

implementations to become slower due to large key sizes.  



2 

 

Another branch of traditional public-key cryptography (PKC) is Curve-based 

cryptography (e.g. ECC). It provides the same level of security as RSA with 

considerably shorter operands. In many cases, ECC has performance advantages (fewer 

computations) and bandwidth advantages (shorter signatures and keys) over RSA. 

However, ECC is still considered as a computational intensive application due to the 

complexity of scalar or point multiplications.  A steady progress has been made since 

mid-1980s, when the concept of quantum computing was born.  From the point of view 

of cryptography, the most important discovery was made in 1994, when Peter Shor 

developed his famous quantum algorithm for factoring [3]. 

 

Cryptography 

 Secret-Key 

Cryptography 

Post Quantum Public-Key 

Cryptography (PQPKC)

NTRU R-LWE

Traditional Public-Key 

Cryptography 

RSAECC

Code-based Lattice-based Multivariate Hash-based

Pairing Based 

Cryptography (PBC)

 

 

Figure 1. Scope of Research 

 

After some generalizations, this algorithm has been shown to solve the remaining two 

mathematical problems underlying modern public key cryptography: the discrete 

logarithm problem, elliptic curve discrete logarithm problem and factorization problem, 
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 Shor’s algorithm can be executed only on a specialized machine known as a quantum 

computer. As seen from Table 1, no quantum computer capable of handling numbers 

anywhere close to those used in cryptography has been reported to be built so far. 

Nevertheless, the danger is real, and the rate of progress in quantum computing research 

is hard to predict. A short history of quantum computing is summarized in Table 1.  

Table 1. Short History of Quantum Computing 

Date  Event  

1985  David Deutsch came up with the idea of quantum logic gates.  

1994  Peter Shor designed a quantum algorithm for factoring integers [3].  

1996  Lov Grover formulated a quantum algorithm capable of reducing the time 

necessary to break a secret-key cipher from 2n to 2n/2 operations.  

1998  First quantum computer built using 2 qubits  

2000  A 7-qubit quantum computer developed by Los Alamos National Laboratory.  

2001  IBM demonstrated Shor’s Algorithm by factoring 15 using a Nuclear Magnetic 

Resonance quantum computer with 7 qubits.  

2005  The first qubyte was created by the Institute of Quantum Optics and Quantum 

Information of the University of Innsbruck based on ion traps.  

2006  Scientists in Massachusetts established methods for controlling a 12-qubit 

system.  

2007  A Canadian startup, D-Wave, successfully demonstrated a 16-qubit quantum 

computer which could solve a Sudoku puzzle.  

2011  D-Wave Systems claimed developing a 128-qubit processor chipset.  

2011  Proof that a quantum computer can be made with a Von Neumann architecture 

(separation of RAM).  

2011  Physicists at the University of Science and Technology of China in Hefei, 

factored 143 into prime factors 11 and 13 using just 4 qubits.  

2013  Google announced launching a “Quantum Artificial Intelligence Lab,” holding 

a 512-qubit quantum computer developed by D-Wave Systems.  
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2013  An international team of researchers led by Mike Thewalt of Simon Fraser  

University in Canada were able to maintain the superposition states of qubits 

for an entire 39 minutes, thus breaking all previous records by a wide margin.  

[8]  

 

 

Arithmetic operations involved in traditional and post quantum PKC are 

computationally intensive and for hardware implementations, programmable logic 

inside FPGA is considered a natural candidate to speed up the computations using 

pipelining and parallelizing techniques. A lot of research has been done to build FPGA 

based coprocessors for traditional PKC [4], [5], [6], [7]. 

These designs mostly focus on improving the performance of the hardware but they are 

less flexible. Since 2000, there is a growing trend to use HW/SW codesign techniques 

to build cryptographic applications. These designs offer the flexibility of the software 

but also provide the performance of the hardware. Initially, these implementations were 

plagued with communication overhead problems between the software and hardware. 

With technological advancements, vendors now provided development environments 

where dedicated paths are provided between processor and reconfigurable logic to 

minimize latency during data communication and maximize performance. Specialized 

embedded resources allow configurable arithmetic units inside programmable logic to 

implement cryptographic operations effectively. There are relatively few HW/SW 

codesigns for RSA because RSA requires large operand sizes to provide acceptable 

security. Arithmetic operations involved in RSA are complex and time consuming. It 

requires high speed interfaces to overcome the communication overheads associated 

with working operations on large operands. However, the algorithm does not involve 
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technical jargon as other public-key cryptosystems. Key generation phase and different 

exponentiation schemes can be implemented in software, while the actual algorithm 

that involves modular multiplication can be sped up in hardware. Modular 

multiplications of large numbers in RSA are more suited for a hardware and fast 

implementations in hardware can be realized through pipelining the design. On the 

other hand, there are a lot of HW/SW codesign implementations for ECC [9], [4], [10], 

[5], [6], [7] because ECC requires smaller key sizes to provide equivalent security as 

RSA. The scope of this research is to use one of most promising HW/SW platforms 

that provides exceptional performance in all categories i.e. software, communication 

interfaces and hardware. We try to improve the overall system-level performance of 

RSA. This includes minimizing the communication overhead, equivalent performance 

to a hardware coprocessor while retaining the flexibility of the software. We will 

provide a generic model of a HW/ SW codesign that will be applicable to traditional 

PKC but our focus is to apply all the techniques to one of the promising branches of 

post-quantum PKC i.e. Lattice based cryptography. The primitive cryptographic 

operations involved in one of the selected lattice based algorithms (NTRU) are 

multiplications and modular reductions. The basic operations involved in modular 

exponentiation of RSA are also modular multiplications and reductions. Therefore, the 

design methods and techniques that we deployed for HW/SW codesign 

implementations of RSA are also beneficial in the implementation of NTRU.  
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1.2 Motivation and Research Goals 

There is a strong need to analyze and implement post-quantum public key schemes in 

a generic way (i.e., supporting different key sizes) using at least the following 

platforms:  

1. Microprocessors (software)  

2. Microcontrollers (software)  

3. FPGAs (Xilinx, Altera, and Microsemi families) (hardware)  

4. ASICs (hardware)  

5. Systems on chip (e.g., Xilinx ZYNQ) (software/hardware codesign). 

In this section, we discuss our major research goals and how they would help in 

benchmarking this emerging class of post-quantum public-key cryptosystems. 

The scope of our research is to contribute in the area of efficient and comprehensive 

benchmarking of post-quantum public-key schemes. We focus on developing a 

generalizable framework for hardware and HW/ SW codesign based approaches that 

can be applied to post quantum cryptosystems. For HW/SW codesign, RSA is 

considered as a test case and complete system integration is done using RSA to analyze 

the feasibility of HW/ SW codesign on Zynq SoC Platform. RSA is still one of the most 

widely used cryptosystems in real applications. As it is quite computationally intensive, 

using it for HW/SW codesign could also serve to optimize the overall performance of 

RSA while still retaining the flexibility offered by software. We believe that our HW/ 

SW codesign techniques are generic enough to be applied to traditional and post 

quantum PKC. 
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For hardware benchmarking of post-quantum public-key algorithms, we use the same 

PQC Hardware Application Programming Interface (API) to contribute in the direction 

of standardization of these algorithms for future developers. 

1.2.1 Post-Quantum Cryptosystems (PQC) 

  

If a quantum computer with a sufficient number of qubits was ever built, it would easily 

break all current NIST standards in the area of public-key cryptography, including 

algorithms protecting majority of the Internet traffic, such as RSA, ECC, DSA, and 

Diffie-Hellman. All traditional methods of dealing with growing computational 

capabilities of potential attackers, such as increasing key sizes, would be futile. This is 

because the execution time of the Shor’s algorithm [3] increases only as a cube, k3, of 

the key size, k (i.e., the Shor’s algorithm runs in the polynomial time on a quantum 

computer).     

In order to protect cryptography and secure communications as we know it, and prevent 

it from the complete collapse, when the first sufficiently large quantum computer is 

developed, a decisive and well-coordinated action is required right now.  

Since no clear and reliable replacement for current public key standards is in site, a 

substantial amount of time is needed in order to 

• Study, improve, and optimize the most promising families of cryptographic 

algorithms resistant to quantum attacks  

• Build confidence among members of the cryptographic community and end 

users   

• Improve the usability, and  
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• Develop efficient implementations in multiple domains, resistant to side-

channel attacks.  

1.2.2 Hardware/ Software Codesign  

We have selected HW/ SW codesign as one of the chosen design strategies to 

implement post quantum cryptosystems. With the advent of quantum computers in a 

not-too-distant future when the cryptography protecting virtually all e-mails, medical 

and financial records, and online transactions will be rendered obsolete by quantum 

computing, it is imperative to be prepared as soon as possible. HW/SW codesigns offer 

a balance between performance and efficiency with a substantial reduction in overall 

development time. This will greatly help in early investigation, selection and 

benchmarking of PQC without the delays of fine-tuned pure hardware 

implementations.  

1.2.3 Zynq All Programmable System on Chip 

 

Xilinx, Altera and Microsemi hold more than 90% of the FPGA market share. All big 

players in market are now incorporating processors along with reconfigurable logic in 

their System on Chip (SoC) solutions. ARM, being the biggest player in processor 

market is deployed in most of the SoC designs. Xilinx and Altera have spent a lot of 

time and investment into these SoC based development environment. It includes 

developing programming/ debugging tools for both processor and programmable logic, 

and ARM bus standard compatible IPs to work on for the next decade.  

Xilinx offered Zynq SoC platform that is specifically designed to optimize overall 

system-level performance. It includes high performance dual-core processors to speed 

up the software portion.  High performance interfaces between PS and PL allow access 

to L1/ L2 caches of the processor, thus providing high data bandwidth and reduced 
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latency. PL consists of reconfigurable logic based on Artix-7 that has support for high-

speed arithmetic.  

Zynq is particularly an ideal platform for research on Post Quantum Cryptosystems 

(PQC).  As Industry is realizing that advent of quantum computers will soon represent 

a practical threat. It will take decades to deploy post quantum resistant algorithm and 

schemes. These schemes require proven cryptanalysis and performance evaluation 

across multiple platforms. This situation highlights the importance of development 

time of algorithms under investigation. Zynq SoC platform provides drastic 

improvements in development time. It allows us to implement software, hardware or 

HW/ SW codesigns using the same platform. Thus, covering all three aspects i.e. 

software, hardware and HW/SW for PQC.  

Zynq SoC platform provides the best overall solution when compared to ASIC, ASSP 

and 2 chip solutions. It allows high performance due to industry standard ARM 

processor, latest Artix-7 based programmable logic and high-performance interfaces 

between PS and PL. It has a low power consumption due to the fact that both PS and 

PL are mapped onto the same chip. It provides flexibility in terms of scalability, 

portability, re-programmability and ease of partitioning. It has a very low risk and 

reduced time to market due to HLS based solution. On the other hand, ASIC based 

solutions provide excellent performance, reduced power consumption and unit cost but 

lack flexibility and scalability. They have huge risk of failure and time to market is 

quite substantial. ASSP based solutions lack flexibility and 2 chip solutions have higher 

power consumption, unit cost and communication overhead.  
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Table 2. Comparison with Alternative Solutions (Source: Xilinx Video Tutorials) 

 

1.2.4 Research Questions & Challenges 

Some challenges in the overall evaluation of these algorithms were 

• How to partition the design effectively between software and hardware? Where 

is the best sweet spot for optimal results in terms of performance and flexibility 

trade-off? What criteria to take into account to determine the point of partition? 

Although, transferring complete logic to hardware will result in faster 

implementation, how large is the price in terms of flexibility and development 

time. 

• Can we develop a framework to assist in reliable ranking of candidates from post 

quantum cryptosystems using these approaches? Ranking new candidates to a new 

standard based on RTL implementations would be too time consuming. There are 

multiple parameters, algorithms and key sizes so it would be faster and efficient to 

use codesign approach to assist in the comprehensive analysis. At the same time, 

fine-tuned hardware implementation provides more detailed insight about the 

techniques that can be used to optimize their performance on these platforms. 
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2 BACKGROUND 

 

In this chapter, we cover the necessary background to guide the reader towards 

understanding the core details of RSA and HW/SW codesign based topics. We start 

from the concepts behind RSA-based cryptosystems and the arithmetic involved in 

implementing RSA. 

2.1 Cryptographic Algorithms 

2.1.1 RSA 

The RSA cryptosystem, named after its inventors Ron Rivest, Adi Shamir, and Len 

Adleman [2] was the first public key cryptosystem and is still one of the most important 

ones. RSA is a public and private key based cryptosystem. Public key of the receiver is 

used to encrypt messages. The receiver then uses the private key to decrypt the 

ciphertext generated by the sender. The phases involved in RSA can be divided into 

three categories. 

Key Generation 

Let 𝑃 and 𝑄 be two distinct large prime numbers.  The product of these two primes is 

called the modulus 𝑁.  The security of RSA lies in the difficulty of factoring the 

modulus 𝑁. The Euler’s function is given by  

𝝋(𝑵)  =  (𝑷 −  𝟏)(𝑸 −  𝟏)  

An integer 𝑒 also called the public key exponent is typically selected to be relatively 

small. e.g., e=216 + 1. From the efficiency point of view, it also helps, if e has a small 
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number of 1’s in its binary representation. The public key consists of the modulus 𝑁 

and the public key exponent 𝑒. Later during decryption, a private key exponent 𝑑 is 

required which is computed as 

𝒅 =  𝒆−𝟏     (𝒎𝒐𝒅 𝝋(𝑵))  

The public key exponent along with the modulus 𝑁 are published. The private key 

exponent 𝑑 and both prime numbers 𝑃 and 𝑄 are kept secret. The encryption and 

decryption described below are  performed  using  large  𝑘-bit  integers  typically  larger  

than  1024 bits to ensure security. 

Encryption 

The ciphertext is obtained by encrypting the message with the public key as follows 

𝒄 ≡  𝒎𝒆    (𝒎𝒐𝒅 𝑵)  

Decryption 

The message can be decrypted using the ciphertext and the private key as follows 

𝒎 ≡  𝒄𝒅     (𝒎𝒐𝒅 𝑵)  

Decryption involves an exponent 𝑑 and is usually slower than encryption in RSA. Once 

the modulus 𝑁, 𝑒 and 𝑑  are generated, RSA encryption/decryption is  based  on  

modular exponentiation,  which  can  be  performed  using  successive modular  

multiplications. To improve overall performance of encryption and decryption, the key 

lies in efficiency of the underlying modular multiplications. 

 Montgomery Modular Multiplication (MMM) 

 

Montgomery multiplication [22] is commonly used when large number of 

multiplications are to be performed with the same modulus 𝑀, i.e., in modular 

exponentiation. To keep the products from growing after each multiplication, reduction 
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modulo 𝑀 has to be performed at each step, which slows down the whole process.  

Montgomery multiplication allows us to compute products without reduction modulo 

𝑀 as it replaces division by 𝑀 with division by a power of 2, which can be 

accomplished by a shift operation.   

 

 

 

The Montgomery product MP computed because of Montgomery multiplication is in 

the form of 𝑆 = 𝐴𝐵𝑅−1 (𝑚𝑜𝑑 𝑀), where 𝐴 and 𝐵 are the multiplication arguments, 𝑀 

is the modulus, 𝑆 is the final result, and 𝑅 = 2𝑛, where 𝑛 is equal to the number of bits 

of 𝑀.  

The additional overhead involved in MMM is the conversion of operands to 

Montgomery domain as shown below. The conversion can be performed by computing 

a Montgomery product (MP) given below: 

𝑋′ = 𝑀𝑃(𝑋, 22𝑛   (𝑚𝑜𝑑 𝑀), 𝑀) 

= 𝑋 ⋅ 22𝑛 ⋅ 2−𝑛   (𝑚𝑜𝑑 𝑀) 

= 𝑋 ⋅ 2𝑛   (𝑚𝑜𝑑 𝑀)             

Once the final result is computed, a conversion back from the Montgomery domain is 

performed as follows: 
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𝑆 = 𝑀𝑃(𝑆′, 1, 𝑀)                                

= (𝑆 ⋅ 2𝑛) ⋅ 1 ⋅ 2−𝑛   (𝑚𝑜𝑑 𝑀) 

= 𝑆   (𝑚𝑜𝑑 𝑀)                             

 

Montgomery Multiplication based on Orup’s Algorithm (OMP) 

In 1995, Orup proposed a quotient pipelining technique shown in algorithm 2, for 

implementing Montgomery multiplication [23]. His algorithm, shown below, produces 

the final result of multiplication in the form of 𝑆 =  𝐴𝐵𝑅−1 𝑚𝑜𝑑 𝑀, where 𝐴 and 𝐵 

are the multiplication arguments, 𝑀 is the modulus, 𝑆 is the final result, and 𝑅 = 2𝑛 , 

where 𝑛 is equal to the number of bits in 𝑀. 

The modulus 𝑀, used in Montgomery multiplication for the reduction part, is replaced 

by 𝑀̃ (called 𝑀𝑤𝑎𝑣𝑒 in all subsequent sections) and is given by 

𝑀̃ = (𝑀′  𝑚𝑜𝑑 2𝑘(𝑑+1)) 𝑀 
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2.1.2 Lattice-Based Cryptosystems  

There are three major families of post-quantum cryptosystems [11]:  

1. Code-based cryptosystems, such as the McEliece and Niederreiter schemes  

2. Lattice-based cryptosystems, such as Ring-LWE (Ring-Learning with Errors) 

and NTRU, and  

3. Multivariate cryptosystems, such as Rainbow and HFE.  

 

Their underlying mathematical problems, which at least partially determine the security 

of these schemes, and the best algorithms for solving these problems are summarized 

in Table 3. 

Lattices were first introduced and studied by famous mathematicians Joseph Louis 

Lagrange and Carl Friedrich Gauss in the 18th and 19th century. The capability to create 

a public key cryptosystem based on these mathematical structures was discovered by 

Ajtai in 1997 [12].   

Some lattice problems have been proven to be average-case hard, which is a property 

beneficial for cryptography.  There are, however, methods for lattice reduction, which 

aim to convert an average basis for the algorithm to a good basis.  A popular such 

algorithm is the LLL (Lenstra– Lenstra–Lovász) algorithm, which is an efficient 

scheme for giving an output of an almost reduced lattice basis in polynomial time.  The 

LLL algorithm thus led many to believe that the lattice-problem could actually become 

an easy problem in practice.   
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Table 3 The Underlying Security Problem and the Best Known Algorithms for 

Solving this Problem 

 Code-based  Lattice-based  Multivariate  

Publication year of 

the first algorithm  

1978  1997  1988  

Name of the first 

proposed algorithm  

McEliece    

public    key     

encryption  

Ajtai-­‐ Dwork    

public    key    

encryption     

  

Matsumoto-Imai (C*) 

public    key 

encryption and    

signature    

schemes 

Underlying 

mathematical 

problems  

Hardness of 

decoding in a 

random linear 

code. Exponential  

indistinguishability 

of Goppa codes. 

Code equivalence 

problem.  

Lattice problems: 

Shortest Vector 

Problem (SVP). 

Closest Vector 

Problem (CVP).  

Shortest 

Independent 

Vectors Problem 

(SIVP).  

MQ (Multivariate 

Quadratic) problem = 

solving a set of quadratic 

equations over a finite 

field  

Best algorithms for 

solving the 

underlying 

problems  

CSD 

(Computational 

Syndrome 

Decoding).  

CF (Codeword  

Finding). Complete 

Decoding. Goppa 

Bounded Decoding.  

Information Set 

Decoding. 

Structural  

attacks (e.g., 

recognizing code 

structure)  

LLL (Lenstra,  

Lenstra, Lovasz,  

1982), with 

extensions by  

Schnorr 1987  

Linearization  

Equations. 

LazardFaugère System  

Solvers (including  

Gröbner Bases, XL,  

F4, F5). Differential 

Attacks. Rank Attacks 

(including MinRank). 

Distilling Oil from 

Vineger.  

 

 

Today, despite the LLL algorithm, the lattice problem still seems intractable for 

sufficiently large lattices. No significant improvements in the algorithms solving the 

general cases of the lattice problems were reported since 1980s.  The major advantages 

of the entire family are strong security proofs based on worst-case hardness, efficient 

implementations, and simplicity.   
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Table 4 Major Algorithms of Lattice-based cryptosystems and their Publication Dates 

Cryptographic Scheme Algorithms 

Encryption Ring-LWE (Ring-Learning with Errors, 2005-2008),  

NTRUEncrypt (1998),  

GGH: Goldreich, Goldwasser, Halevi (1997)*,  

Ajtai-Dwork (1997)†,   

Signature NTRUSign with perturbation (2005),  

Lyubashevsky-Micciano (2008),  

GPV: Gentry, Peikert, Vaikuntanathan (2008)  

NTRUSign (2003)*,  

GGH (1997)*,   

Identification schemes Micciancio-Vadhan (2003),  

Lyubashevsky (2008) 

Identity Based 

Encryption 

GPV: Gentry, Peikert, Vaikuntanathan (2008) 

Oblivious Transfer PVW: Peikert, Vaikuntanathan, Waters (2008) 

 

Implementing majority of cryptosystems from this family does not involve multi-

precision arithmetic. Only additions and multiplications mod q are used, where q can 

be a power of 2. High level of parallelization can be also used to speed up the 

implementations on multiple platforms.  Public key size can be reduced by using 

restricted classes of lattices, such as cyclic lattices.   

A practical scheme, without a supporting security proof, called NTRU, is likely to be 

the only representative of this family currently used in practice. In particular, this 

scheme been already standardized by IEEE and ANSI. For other schemes, still more 

research and confidence is required.  

One of the small weaknesses of the entire family is a non-zero probability of decryption 

errors. This probability can be made very small with an appropriate choice of 
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parameters (e.g. 1%). Any encryption scheme can be also combined with error 

correction codes to reduce error probability to undetectable levels.  

 

Table 5. Public Key Sizes for Lattice-based algorithms for selected Security Levels. 

112-bit 128-bit 192-bit 256-bit 

NTRU: 552 B  

(N=401, q=211)  

[EBACS] 

NTRU: 604 B  

(N=439, q=211)  

[EBACS];  

LWE: 140 KB  

NTRU: 815 B  

(N=593, q=211)  

[EBACS] 

NTRU: 1022 B  

(N=743, q=211)  

[EBACS] 

* 1 KB = 1024 bytes  

† NTRU: public key size = N·log2 q  

 

2.1.3 NTRUEncrypt Cryptosystem 

 

NTRUEncrypt is a polynomial ring-based public-key encryption scheme that was first 

introduced at Crypto’96. The first formal paper describing this scheme was published 

at ANTS III [13]. In 2008, an extended version of this algorithm was published as the 

IEEE 1363.1 Standard Specification for Public Key Cryptographic Techniques Based 

on Hard Problems over Lattices [14]. Within the standard, the described algorithm is 

called Short Vector Encryption Scheme – SVES. Since the core of this algorithm is 

known in the academic literature as NTRUEncrypt, we will refer to the full 

cryptosystem as NTRUEncrypt SVES. Further standardization efforts included the 

Financial Services Industry Standard ANSI X9.98-2010 [15] and the Consortium for 

Efficient Embedded Security standard, EESS #1 [16]. Additionally, an Internet Draft 

proposing the use of NTRUEncrypt in the handshake for the Transport Layer Security 

(TLS) v1.3 has been developed in 2016 [17]. 
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The recent renewed interest in NTRU is at least partially driven by its presumed 

resistance to any efficient attacks using quantum computers. In Feb. 2016, NIST has 

published a draft report [18] and announced its plans of starting the standardization 

effort in the area of post-quantum cryptography [19]. This effort is likely to last years 

and result in an entire portfolio of algorithms capable of replacing current public-key 

cryptography schemes. This initial announcement was followed by the official Call for 

Proposals and Request for Nominations for Public-Key Post-Quantum Cryptographic 

Algorithms, issued in Dec. 2016 [20]. As a part of this standardization process, fair and 

efficient benchmarking of PQC algorithms in hardware and software becomes a 

necessity. 

NTRUEncrypt has three major parameters (N, p, q) such that  

a) N is prime,  

b) p and q are relatively prime, gcd(p,q)=1, and  

c) q is much larger than p  

For the purpose of efficiency p is typically chosen to be 3, and q as a power of two. The 

scheme is based on polynomial additions and multiplications in the ring R=Z[X]/XN-1. 

We use the “∗” to denote a polynomial multiplication in R, which is the cyclic 

convolution of the coefficients of two polynomials.  After completion of a polynomial 

multiplication or addition, the coefficients of the resulting polynomial need to be 

reduced either modulo q or p.  The key creation process also requires two polynomial 

inversions, which can be computed using the Extended Euclidean Algorithm. During 

the key generation, the user chooses two random secret polynomials  F ∈  R and g ∈

 R, with so called “small” coefficients, i.e., coefficients reduced modulo p (typically 
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chosen to be in the integer range from -1 to +1, and thus limited to -1, 0, and 1. The 

private key f is computed as f=1+pF. The public key h is calculated as 

h = f-1 * g  p  in (Z/qZ)[X]/(XN – 1) 

The message m is assumed to be a polynomial with “small” coefficients. The ciphertext 

is computed as 

e = r * h + m (mod q) 

where r ∈ R is a randomly chosen polynomial with “small” coefficients. 

The decryption procedure requires the following three steps: 

1) calculate f ∗  e   (mod q) 

2) shift coefficients of the obtained polynomial to the range [−q/2, q/2),  

3) reduce the obtained coefficients mod p. 

 

 

2.2 Technology 

2.2.1 Hardware/Software Codesign Platforms 

 

In this section, we will provide information on alternative HW/ SW codesign platforms 

other than Zynq SoC.   

1. Discrete FPGA-Processor Combination: In this scenario, processor and 

FPGA exist as physical separate components. The major disadvantage of this 

platform is the huge overhead of inter-chip communication. 
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Figure 2. Discrete FPGA-Processor Combination 

 

 

2. Processors inside FPGA: This category is one of the most efficient ways to 

implement a HW/ SW codesign system. The processors inside the FPGA are 

divided into two categories i.e. soft-core and hard-core processors. 

a) Soft-core Processors 

a. PicoBlaze: PicoBlaze is the designation of a series of three free soft 

processor cores from Xilinx for use in their FPGA and CPLD 

products. It is based on an 8-bit RISC architecture and can reach 

speeds up to 100 MIPS on the Virtex-4 FPGA family. 

b. MicroBlaze: The MicroBlaze is a soft microprocessor core designed 

for Xilinx FPGAs from Xilinx. As a soft-core processor, MicroBlaze 

is implemented entirely in the general-purpose memory and logic 

fabric of Xilinx FPGAs. 

c. NIOS-II: Nios is a soft-core embedded processor from Altera that 

includes a CPU optimized for SoC integration. This configurable, 

general-purpose RISC processor can be combined with user-defined 

logic and programmed into Altera FPLDs. Nios supports both 16- 

and 32-bit variants with 16-bit instruction set. 
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d. OpenSparc: OpenSPARC is an open-source hardware project 

started in December 2005. The initial contribution to the project was 

Sun Microsystems' register-transfer level (RTL) Verilog code for a 

full 64-bit, 32-thread microprocessor, the UltraSPARC T1 

processor. 

e. LEON3: The LEON3 is a synthesizable VHDL model of a 32-bit 

processor compliant with the SPARC V8 architecture. The full 

source code is available under the GNU GPL license, allowing free 

and unlimited use for research and education.  

f. Dalton 8051: The Intel 8051 is an 8-bit micro-controller. This 

micro-controller is capable of addressing 64K of program and 64K 

of data memory. The implementation is written in Synthesizable 

VHDL and models the actual Intel implementation rather closely, 

e.g., it is 100% instruction compatible.  

g. ARM Cortex-M1: The ARM Cortex-M1 processor is the first ARM 

processor designed specifically for implementation in FPGAs. The 

Cortex-M1 processor targets all major FPGA devices. The Cortex-

M1 processor enables cost savings through rationalization of 

software and tools investments across multiple projects spanning 

FPGA, ASIC and ASSP, plus greater independence through use of 

an industry-standard processor. 

b) Hard-core Processors: These processors are permanently embedded at 

fixed location inside FPGA but have an advantage that they can run at a 

much higher frequency and provide performance benefits. 
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a. IBM PowerPC: The single hard processor to be discussed is the 

IBM PowerPC, which was included as a hard processor in the 

Virtex-II Pro and subsequently in a subset of Virtex-4 and Virtex-5 

FPGAs. Each of these FPGAs includes either one or two PowerPC 

(PPC) units. 

b. ARM Cortex M3: This processor is available as a hardcore inside 

Microsemi SmartFusion2 SoC: The ARM Cortex™-M3 32-bit 

processor has been specifically developed to provide a high-

performance, low-cost platform for a broad range of applications, 

including microcontrollers, automotive body systems, industrial 

control systems and wireless networking. With a balance between 

size and speed, Microsemi's free Cortex-M3 processor is included 

as a hard resource in Microsemi's SmartFusion2 and SmartFusion 

SoC FPGA families. 

c. ARM Cortex A9: This dual core processor is available in Altera 

Cyclone V, Arria V, Arria 10 and Cyclone V FPGAs and provides 

the equivalent performance as Zynq SoC 7020 EPP platform. 

2.2.2 Hardware/Software Codesign with Xilinx Zynq SoC 

 

In this section, we will discuss all building blocks required to construct HW/ SW 

codesign using Zynq SoC platform. It is critical to rationally decide about the 

components of the codesign effort because later on, they have a huge impact on the 

performance and area utilization of your overall design. 
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Platform 

Typically, implementations are classified into software and hardware implementations. 

There are very few high-speed implementations done using HW/SW codesign 

approach. These available implementations largely suffer from low-performance 

processors and communication overhead between the processor and hardware 

accelerator. Having a processing system (PS) and programmable logic (PL) on a single 

chip greatly reduces the delays between both parts. For an efficient system, it is 

imperative to perform well in all areas, i.e., software, communication interface and 

hardware side. Our design platform uses Xilinx Zynq SoC 7020 Extensible Processing 

Platform (EPP). This chip is specifically designed for HW/SW cosdesign applications 

in mind and optimizes the design in all three domains of a codesign system.  

Processing System (PS) 

Zynq SoC platform  provides  dual  core  ARM  Cortex-A9 microprocessor core with 

CPU frequency up to 1 GHz. Zynq has 32 KB  of  L1  data  and  instructions  caches,  

512  KB  of L2  cache  and  512  MB  DDR3  memory.  This ensures high speed  

implementation  of  the  software  side  of  the  design. 
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Figure 3. Zync SoC Z7020 platform with interface between PS and PL 

 

Programmable System (PL) 

Zynq SOC platform provides a reconfigurable logic equivalent to Artix-7 FPGA. It 

consists of 85K Logic cells (Slices). Additionally, it offers embedded resources i.e. 140 

BRAMs (36kbit each) and 220 DSP blocks.  

 

 

Serial in Parallel out (SIPO) and Parallel in Serial out (PISO) Components: 

SIPO and PISO components are a part of input and output interface. SIPO takes in “n” 

w-bit wide data words serially and convert them into one b-bit wide output word that is 

n*w-bit wide. On the other hand, PISO takes in parallel input (b = n*w-bit wide) and 

converts it w-bit words that is serially transmitted out. 
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Figure 4. SIPO in Input interface of Coprocessor 
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Figure 5. PISO in Output interface of Coprocessor 

 

 

Choice of Processor (PS) Ports for Communications  

There are three major types of PS ports available for communication with PL using 

AXI interface.   

General Purpose (GP) port 

In GP interface, coprocessor acts as a slave. It attaches the coprocessor to a general 

purpose coprocessor port on the PS. Here, coprocessor is considered as a register 

interface with a memory mapped address. This is the simplest way of attaching the 
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coprocessor. This approach is particularly beneficial for application that does not 

require high bandwidth or large amount of data transfer. 

High Performance Port (HP)  

The second method of attaching the coprocessor is via a high performance port. HPP 

provides high bandwidth port b/w PL based accelerator and either the DDR memory or 

the OCM memory associated with PS. The coprocessor requires the DMA engine to 

move the data between its local buffer and PS DRR or OCM memory. The on-chip 

memory (OCM) has an equivalent latency as that of L2 cache and is much lower latency 

than DDR memory. Thus, for latency reasons, if the data set fits in the OCM memory, 

then it is best to use the OCM rather than the DDR memory. 

Accelerator Coherency Port (ACP)  

ACP port interface allows direct memory transfer between PL and L1 cache of PS. This 

method provides the fixed low latency path and high data bandwidth for short bursts. 

However, it provides best results when the data can be accommodated in caches.  

There are four high performance ports that provide high bandwidth communication but 

have a higher latency than ACP port interface. We implemented our RSA design based 

on both ACP and HP0 interfaces and reported results based on ACP port interface 

because they are slightly better than HP0 interface. Our design connects the PS to the 

hardware accelerator through DMA engine to stream data in burst mode.  



28 

 

 

Figure 6. Processor Ports for Communication between PS and PL 

 

Choice of Communication Interface 

There are many competing Bus standards used the industry. Most popular standards are 

AMBA V3, V4 from ARM Ltd, Coreconnect from IBM, Wishbone from SiliCore Corp.  

and Avalon from Altera.  Our design utilizes AMBA Advanced Bus Interfaces 

Extensible Interface 4 (AXI4), targeted at high performance, high clock frequency 

systems.   
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Table 6. Communication Interface Options in Zync SoC 

Bus configurations for existing bus standards 

Bus 

High-performance 

shared bus 

Peripheral 

shared bus 

Point-to-point 

bus 

        

AMBA v3 AAHB APB   

AMBA v4 AXI4 AXI4-Lite AXI-Stream 

Coreconnect PLB OPB   

Wishbone Crossbar topology Shared topology 

Point to point 

topology 

Avalon Avalon-MM Avalon-MM Avalon-ST 

 

 

2.2.3 Type of AXI Interfaces in Zynq SoC 

AXI is a part of ARM’s AMBA bus. Zynq SoC platform provides either a memory 

mapped or stream interface to connect PS to PL.  
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(Peripheral)
 

Figure 7. AXI Interfaces 
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 AXI4-Lite Interface 

AXI4-Lite interface is a part of memory mapped interface with no burst capability. This 

interface is generally used to connect peripheral that have low performance 

requirement.  

 AXI Full Interface 

AXI Full is the memory mapped interface that allows you to have the burst capability 

and is typically used for high performance peripherals.  
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Figure 8. AXI-Lite Interface 
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Figure 9. AXI Full Interface 

 

 

 AXI-Stream Interface 

AXI-Stream interface is not a shared bus interface and is generally between one master 

and slave. Therefore, it is called a point to point bus interface.  
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Figure 10. AXI Stream Interface 
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2.2.4 AXI DMA  

 

The coprocessor requires DMA transfer to move the data between its local buffer and 

the L1/ L2 data caches.  Once the data is ready for processing, A9 processor signals the 

coprocessor via the slave port that it may begin processing the data. The communication 

includes the address of the data. The coprocessor initiates a DMA transfer from the 

memory, in this case, the L1/ L2 cache to its local buffer. The coprocessor processes 

the data and returns the results in the 2nd buffer. The coprocessor initiates a DMA 

transfer from the buffer to the memory, L1/L2 cache. Finally the coprocessor signals 

the A9 processor that the data processing has been complete. The processor may then 

use the data passed to it. 

2.2.5 Embedded FPGA Resources 

 

Practically all FPGA vendors incorporate in modern FPGAs, apart from basic 

reconfigurable logic resources, also embedded resources, such as large memory blocks, 

DSP units, microprocessors, etc. Improved hardware performance and good balance in 

terms of the overall FPGA utilization can be achieved with the use of these embedded 

elements for multiple applications, such communications, digital signal processing, and 

scientific computing.  

 DSP Units 

 

Xilinx Virtex 5 FPGAs include DSP48E units. Each unit has a two-input multiplier 

followed by multiplexers and a three-input adder/subtractor/accumulator. The unit can 

be configured as a 25x18 multiplier and/or 48-bit adder with up to three inputs. The 

third input of an adder can be used only when multiple DSP units are cascaded and an 

adder output of one DSP unit is connected to an adder input of an adjacent DSP unit.  
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The DSP unit of the Stratix III FPGAs consists of four subunits units (called DSP_18s) 

and a total of eight 18x18-bit multipliers. Two neighboring 18x18 multipliers share a 

37-bit adder. The outputs of two 37-bit adders are fed to second stage 

Adder/Accumulator. Xilinx Spartan 3 and Altera Cyclone II contain only embedded 

multipliers. Spartan 3 devices support 18x18 signed multiplication. Cyclone II devices 

support 9x9 and 18x18 multiplication for signed and unsigned numbers. 

 

 

 

Figure 11. DSP48 inside Zync SoC Z7020 and Latency selection to operate at 400 

MHz 
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 Block Memory 

 

The Block Memory (BRAM) in Spartan 3 FPGAs has a size of 18 kbits, including parity 

bits. Word size is configurable in the range from 1 to 36 bits. The maximum word size 

is used in the configuration 512 x 36 bits. The block memory (BRAM) in Virtex 5 

FPGAs can store up to 36 kbits of data. It supports two independent 18 kbit blocks (with 

the word size up to 18 bits), or a single 36 kbit memory block (with the word size up to 

36 bits). 

Altera devices have different capacity of basic embedded memory blocks. The low-cost 

Cyclone II family is based on 4 kbit blocks. The high-performance Stratix III family is 

less homogenous. It consists of two types of memory blocks i.e., 9 kbits and 144 kbits. 

All block memories have single-port and dual-port modes.  

 

Figure 12. True Dual Port BRAM to store input data 
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Cryptographic algorithms have been demonstrated in the past to take advantage of these 

resources as well.  For example, the fastest to date FPGA implementation of the 

Montgomery multiplication, a major building block of public key cryptographic 

algorithms, such as RSA, have been demonstrated using DSP units in Virtex 5 FPGAs 

[21]. 
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3 SURVEY OF PREVIOUS WORK 

The gap between performance and flexibility can be narrowed down through an 

efficient HW/ SW codesign system. To develop such an environment, all aspects of 

software, hardware and interface between the software and hardware for 

communication should be taken care of. HW/SW co-design allows the designer to 

partition the design into hardware and software to aim for the best of both worlds. The 

flexibility and short development time of software is combined with performance and 

low-power/low energy consumption of hardware. 

This chapter covers the previous work on HW/SW implementations of RSA, currently 

available implementations of Lattice based cryptosystems, existing coprocessor designs 

on RSA/ ECC and HW/ SW codesign platforms that are already used by researchers. 

3.1 HW/ SW Codesign Implementations of RSA 

Public-key cryptosystems such as RSA have been widely used to secure digital data in 

many commercial systems. Modular arithmetic on large operands used during modular 

exponentiation makes RSA computationally challenging. We highlight some of the 

attempts made to optimize RSA cryptosystem through HW/SW codesign. 

Two variants of hardware/software co-design were presented by Simka et al. in [24] 

where they utilize one Montgomery multiplier (MM) coprocessor and two pipelined 

MM coprocessors respectively. The later implementation  was  aimed  towards  

minimizing  the  average  execution time  during  decryption  in  RSA.  They  used  

Altera’s  Nios RISC  processor  as  their  building  block. Their data path is organized 

as a cascade chain of processing elements implemented using two approaches for 
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MMM operations to target scalability, i.e., carry save adder based and carry propagate 

adder based MMM units. The word length, number of words, and number of stages can 

be changed according to the required area of the implemented coprocessor and the 

required timings for MM computations or the security level for flexibility of the 

coprocessor.  

Hani et al. in [25], proposed a private and public key cryptoprocessor. For RSA, the 

entire ME is performed in hardware. However they do not employ any techniques to 

make the design scalable by allowing different operand sizes or flexible by modular 

exponentiation algorithms and multiple security levels.  

Isaad et al. in [26] proposed two  implementations  for  HW/SW co-design based on 

right-to-left (R2L) algorithm for modular exponentiation. They propose a relatively 

flexible architecture for modular exponentiation (ME) using three implementation 

approaches, i.e SW only, with one MMM unit working sequentially, and two MMM 

units used in parallel to perform a ME. The second variant utilizes only one modular 

multiplier within  a  custom  hardware.  The  execution  time  is  further improved by 

parallel implementation of two multipliers based on  Montgomery  algorithm  as  their  

custom  IP.  The control of ME was done through MicroBlaze. Some  data transfers are 

also handled by local memories to reduce data transfer overhead. The highest level of 

operation in all three schemes was MMM. However, in their proposed designs, the 

scalability of modular multiplier is achieved by allowing different operand sizes, 

modular exponentiation algorithms, or multiple security levels. 

The implementations with the highest level operation being MMM offer higher 

flexibility but lower performance as compared to the other approach, i.e., to  implement 
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ME in hardware. To explore the best tradeoff between performance and flexibility, we 

intend to focus on multiple aspects. One of them is to allow support of multiple 

exponentiation algorithms i.e., R2L, L2R, sliding window. For highr flexibilility, 

handling of multiple operand sizes in the MMM unit, the capability to control the choice 

of ME algorithm form the software will be exploited. 

The table below lists all noteworthy contributions on HW/SW codesign of RSA. The 

security level in all reported implementations is equivalent to 80-bit security. Except 

[26], all reported implementations use Left-to-Right algorithm for exponentiation.  

Table 7. HW/ SW Codesign Implementations of RSA 

Note: In the Flexibility/Scalability column, the parameters marked with * are used for the 

reported results 

 

1 Montgomery Powering Ladder, 2 Blinded Fault Resistant Exponentiation, 3 Highest level of operation implemented in 

hardware is ME 

 

Source 
Flexibility/ 

Scalability 

Platform 
Area[LUTs/ 

LEs/Kgates, 

RAMs, 

DSP48] 

Clk 

Freq 

MHz 

Time 

[ms] 
Device Processor 

Isaad, 

2014 [26] 

1 MM unit in HW, 2 

MM units in 

hardware*, ME 

scheme: R2L/ Fixed 

operand size: 1024-bit  

Xilinx 

Virtex-5 
MicroBlaze 1848, 11, 22 62.5 22.25 

Uhsadel, 

20123 [27] 

Multiple ME schemes: 

L2R*, R2L, MPL1,  

BFR2/ Fixed operand 

size: 1024-bit  

Xilinx 

Virtex-4, 

XC4VFX101 

8051 27467, 0, 1 111 29.37 

Sakiyama, 

2007 [6] 

ME scheme: only 

binary-method/ Fixed 

operand size:1024-bit 

Virtex-II 

PRO, 

XC2VP30 

8051 
49.5 Kgates, 

6, 0 
12 129.8 

Hani, 

2006 [25] 

No Flexibility/ Fixed 

operand size: 1024-bit 
EPLS40 NIOS 

12881 LEs, 

0,0 
66 31.9 

Simka, 

2003 [24] 

1 MM unit in HW, 2 

MM units in 

hardware*/ Operand 

size: 1024*, 2048  

Altera 

APEX, 

EP20K200E

FC484-2X 

NIOS 
2837 LEs, 

N/A, 0 
50 39 
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3.2 Previous HW/ SW Codesign Implementations on Traditional 

Public-Key Cryptography  

The scope of this research is to develop a HW/ SW codesign that offers the advantages 

of flexibility in software but also offers the performance comparable to hardware. An 

optimal HW/SW codesign is possible only if the designer looks at overall system-level 

integration. In this section, we will look at the existing coprocessor implementations in 

the field of public key cryptosystems that try to solve the underlying challenges of 

HW/SW codesign approach.  

Typically, papers on public-key cryptography are categorized into low area and high 

speed implementations. Low area platforms include 8-bit microcontrollers (e.g. AVR 

or 8051) [9], [4], [28], [10] as well as 32-bit microprocessors with bus systems (e.g 

MSP430, ARM Cortex M0) [29] , [30], [31]. MicroBlaze with PLB and FSL bus and 

ARM Cortex-A9 operates at a much higher frequency and they are considered suitable 

for medium to high-speed implementations. In case, there is an additional requirement 

for performance, the compute intensive of the algorithms are offloaded to 

reconfigurable logic inside FPGA. These dedicated accelerators implemented inside 

FPGA are typically called hardware coprocessors. As ECC provides equivalent security 

to RSA with much smaller key sizes, it is more suitable for low-area and low-power 

applications. Therefore, most of the earlier HW/SW implementations utilized smaller 

processors (i.e. softcore processor like Dalton 8051, AVR, PicoBlaze, MicroBlaze) 

along with FPGA reconfigurable resources for time consuming tasks. We will provide 

details of previous HW/ SW implementations of ECC in this section that focused on 

overall system-level design approach and optimized their designs for flexibility and 

scalability. 
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Table 8. HW/ SW Codesign Implementations of ECC for 80-bit security. 

Note: In the Flexibility/Scalability column, the parameters marked with * are used for 

the reported results 

Source 
Flexibility/ 

Scalabilty 

Highest Level 

Operation in 

Hardware 

Platform 
Area 

[LUTs/ 

LEs, 

RAMs, 

DSP48] 

Clk 

Freq.   

[MHz] 

Time 

[ms] 
Device Processor 

Balasch, 

2014 [32]  

Fixed curve /Fixed 

operand size = 

256-bit 

Scalar 

Multiplication 

Virtex-5,  

XC5VLX30

-2FF324 

8051 2525, 6, 27 39.4 10.6 

Hassan, 

2010 [33] 

Supports 5 NIST 

curves (m =163*, 

233, 283 409, 

571)/ Supported 

datapath widths = 

8, 16, 32-bit* 

Binary Field 

Modular 

Multiplication 

Spartan-3, 

XC3S200 

32-bit 

PicoBlaze 
1127, 4, 0 68.3 380 

Sakiyama, 

2006 [6] 

Fixed curve /Fixed 

operand size = 

160-bit 

Montgomery 

Modular 

Multiplication, 

Modular 

Add/Subtract 

Virtex-II 

PRO 

XC2VP30 

8051 
49.5 Kgates, 

6, 0 
12 129.8 

Koschuch

2006 [28] 

Two Operand 

sizes = 163*, 191-

bit 

Binary Field 

Modular 

Multiplication 

N/A 
8051 

(Dalton) 

29.4 Kgates, 

0, 0 
12 99 

Batina, 

2005 [10] 

Fixed curve /Fixed 

operand size = 

160-bit 

Modular 

Multiplication, 

Addition and 

Inversion 

N/A 
8051 

(Dalton) 
3781, 0, 0 12 2488 

Kumar, 

2004 [4] 

Fixed curve /Fixed 

operand size = 

160-bit 

Binary Field 

Modular 

Multiplication 

 Atmel, 

ATSTK94 

FPSLIC  

AVR 8-

bit MCU 
498, 0, 0 4 113 

 

One of the important steps to codesign efficiently is to explore the design space and 

partition the design effectively. Some partition options are more suitable for high-speed, 

while others offer more flexibility. In case of ECC, one way to partition is to assign full 

point addition/ doubling operation to hardware and the remaining parts to software. 

While this approach is very fast (there are no operand transfers during point addition/ 

doubling), it suffers from a relatively high hardware cost.   



41 

 

A second way to draw a line between hardware and software is to offload the field 

arithmetic operations from the host processor and execute them in a dedicated hardware 

accelerator, serving as a coprocessor. All other operations, i.e. point addition/ doubling 

and scalar multiplication, are implemented in software and executed on the host 

processor. In general, this approach offers high flexibility. On the other hand, it may 

entail a significant communication overhead, especially when the coprocessor does not 

provide local storage for the intermediate results.  

Finally, the boundary between hardware and software can also be defined at the level 

of custom instructions that are specifically designed to accelerate the field arithmetic, 

most notably the field multiplication. HW/ SW codesign, at the granularity of 

instruction set extensions provides the highest flexibility and requires the least amount 

of extra hardware. However, these custom instructions are processor dependent. Each 

processor instruction can take multiple clock cycles to execute. Also, the fundamental 

bottlenecks of a sequential processor (memory access, sequential execution of code) 

are also fundamental bottlenecks for an instruction set extension based design.  

All designs except [32] and [6] present designs for binary fields. Kumar et al. [4] 

presented an extremely low-cost implementation with instruction set extension using 

reconfigurable logic, which enables an 8-bit microcontroller to provide full size elliptic 

curve cryptography (ECC) capabilities. Their design was flexible due to the use of ISE 

based processor, but worked on fixed curve and operand size of 160-bits only. Batina 

et al. in [10] proposed a hardware/software co-design of the HECC system that was 

implemented on a low-cost platform, an 8-bit 8051 microprocessor and utilized a small 
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hardware co-processor for field multiplication. This design was also inflexible in terms 

of fixed curve and operand size. 

Koschuch [28] proposed a HW/ SW codesign for ECC that supported two operand sizes 

(163 and 191-bit). They also demonstrated the importance of removing system-level 

performance bottlenecks caused by the transfer of operands between hardware 

accelerator and external RAM by integrating a small direct memory access (DMA) unit. 

Sakiyama et al. [6] presented a scalable architecture for accelerating public-key 

cryptography. They developed a coprocessor for both ECC and RSA. The hardware 

coprocessor had a modular arithmetic logic unit that was scalable and was able to work 

on variable digit size (d). Although, they mentioned that the software code could be 

made flexible to support multiple schemes (e.g. sliding window method, windowed 

NAF, or signed m-ary), the design was able to work only with binary-method for point 

multiplication. 

Hassan et al. [33] developed a low-area scalable design that supported 5 different NIST 

curves and variable data widths of 8, 16 and 32-bits. He performed binary field modular 

multiplication in hardware coprocessor to make the design flexible and handle higher 

level operations in software.  

Balasch et al. [32] implemented several versions of coprocessors to explore the design 

space for scalar multiplication. First coprocessor supported field multiplication, second 

one supported field arithmetic (addition, subtraction and multiplication), third one 

supported point arithmetic (point doubling, point addition) and fourth one supported 

scalar multiplication. However, their design worked on fixed operand sizes and has no 

provision to apply different multiplication schemes from the software.  
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Based on the previous work shown in this section, it is evident that all the HW/ SW 

codesign implementations tried to achieve some sort of flexibility in their design. Apart 

from one, all the designs tried to implement finite field multiplication in hardware 

coprocessor in order to make their design more flexible. Very few designs provided a 

support for multiple security levels. To the best of our knowledge, there were no designs 

that provided support for different multiplication schemes controlled from the software 

side and support for different operand sizes in one implementation. Thus, leaving room 

for more investigation to provide highly flexible and efficient designs.   

3.3 Previous Implementations of Lattice Based Cryptosystems 

In this section, we will provide details about already published work by other 

researchers in the area of Lattice based cryptography. We chose to investigate work on 

encryption schemes of NTRU and Ring-LWE algorithms. Work on signature and 

identification scheme, identity based encryption (IBE) and oblivious transfer are 

beyond the scope of this research. 

3.3.1 Previous Implementations of NTRU Cryptosystem 

The software implementation of encryption schemes of NTRU are available in eBACS 

(ECRYPT Benchmarking of Asymmetric Systems). These submitted implementations 

can perform public-key encryption with 112, 128, 192, 256-bit equivalent security. 

 

Bailey et al. [34] implemented NTRU on a wide variety of constrained devices, 

including the Palm Computing Platform, Advanced RISC Machines ARM7TDMI, the 

Research in Motion Pager, and finally, the Xilinx Virtex 1000 family of FPGAs. 

O’Rourke et al. [35] presented  a  scalable  architecture  to  perform  NTRU  

multiplication  and  also proposed a  unified  architecture based on Montgomery 
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multiplication. Kaps et al. [36] proposed a scalable low power design for the NTRU 

polynomial multiplications. The smallest version of their design implemented only a 

single arithmetic unit but the design was flexible to scale up the number of parallel 

arithmetic units relatively easily with minimal impact on the other elements of the 

design. In contrast to previous research, Atici et al. [37] presented a compact and low 

power NTRU design that was suitable for pervasive security applications such as 

RFIDs and sensor nodes. It was the first implementation to provide both encryption 

and decryption in a single design. However, they targeted one parameter set to 

implement fixed security level. Kamal et al. [38] investigated several hardware 

implementation options for the NTRU encryption algorithm. In  particular,  by utilizing  

the  statistical  properties  of  the  distance  between  the non-zero elements in the 

polynomials involved in the encryption and decryption operations, they presented an 

architecture that offers different  area-speed  trade-off  and  analyzed  its  performance 

on Virtex-E FPGA chip. The design was configurable to perform modular reduction 

using Mersenne Prime based and LUT based architectures.  
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Table 9. Selected Hardware Implementations of NTRU 

Note: In the Flexibility/Scalability column, the parameters marked with * are used for 

the reported results 

 
 

 

 

3.3.2 Previous Implementations on Modular Multiplier Designs 

As  modular  exponentiation  is  realized  through  repeated modular multiplications, 

the use of an efficient modular multiplier becomes very important.  

In  1985  Montgomery  proposed  modular  multiplication without   trial   division   [22]. 

A novel   number   representation, and a novel basic arithmetic operation,  were  named 

the  numbers  in  the  Montgomery  domain  and  the  modular Montgomery  

multiplication,  respectively.  Multiple  different, hardware-supporting,  bit-oriented  

versions  of  this  algorithm were analyzed in [39]. 

Source 
Flexibility/ 

Scalabilty 

Security Level/ 

Parameters Device 

Area [LUTs/ 

Slices/ LEs/ 

GE, RAMs, 

DSP48] 

Clk 

Freq 

MHz 

Time 

(ms)/ 

Throuput 

(Mbps) bits N p q 

Kamal,  

2009 

[38] 

Mersenne 

Prime based 

and LUT 

based 

Modular 

Reduction*, 

Variable 

shifter 

~80 251 3 128 

Xilinx 

Virtex- E, 

XCV1600

e8G860 

14352 Slices, 0, 

0 
62.3 0.0009 

Bailey, 

2001 

[34]  

No ~80 251 X+2 128 

Xilinx 

Virtex, 

1000EFG

860 

6373 Slices, 0, 

0 
50.0 0.0051 

Kaps, 

2005 

[36] 

Variable 

degree of 

parallelizatio

n 

57 167 3 128 N/A 2850 GE, 0, 0 0.5 58.45 

Atici, 

2008 

[37] 

No 57 167 3 128 N/A 2884 GE, 0, 0 0.5 56.44 
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Tenca et al. [40] proposed the very first scalable architecture for Montgomery 

Multiplication. Harris et al. in [41], and later on Huang et al. in [42] have improved this 

design in terms of latency and latency*area by factor of two. Further improvement of 

the aforementioned architectures was possible when radix-4 architectures were 

introduced. They were demonstrated for the Tenca et al., Harris et al. and Huang et al. 

designs in [43], [41] and [42], respectively.  

Bipartite multiplication algorithm proposed in [44] enables a two-way parallelism by 

using two custom modular multipliers. By combining a classical modular multiplication 

based on Barret with Montgomery’s modular multiplication, it splits the operand 

multiplier into two parts and processes them in parallel, increasing the calculation 

speed. Later in [45], the proposed tripartite algorithm minimizes the number of single-

precision multiplications and enables more than 3-way parallel computation. It achieves 

a higher speed compared to the bipartite algorithm. The algorithm is suitable for the 

multicore parallelism. 

Suzuki in [21] combined the Multiple Word Radix-2 Montgomery Multiplication 

(MWR2MM) together with the quotient pipelining technique and proposed an 

architecture which can be mapped efficiently onto a modern high-performance DSP-

oriented FPGA structure. Hardware architectures of modular arithmetic for parallel 

computing were demonstrated using residue number system in [46] and spectral 

modular arithmetic in [9] and [47].  

We employ a Montgomery multiplication algorithm based on quotient pipelining 

technique developed by Orup in 1991 [23]. The major differences between Orup's 

Montgomery multiplication and classical Montgomery multiplication are discussed in 

the background section.  
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4 HARDWARE/SOFTWARE CODESIGN OF RSA 

Considering all the technological advancements and existing implementations of RSA, 

we think it is realistic to improve the applicability of RSA for modern embedded 

systems even further. In this chapter, we present a study of RSA implemented through 

hardware/software codesign using Xilinx Zynq-7000 SoC platform. The originality of 

our work lies in exploring the best trade-off between achieving maximum flexibility 

from software, with an improvement in performance from hardware by balancing the 

partitioning between hardware and software components of the design.     

This chapter focuses on important design decisions to develop HW/ SW codesign 

implementation of public key cryptosystems. RSA also serves as a case study to 

describe the design process of a generic codesign methodology. The same approach 

will be carried forward to build a HW/ SW codesign for Lattice based cryptosystems 

(i.e., NTRU). 

4.1 Software Development 

4.1.1 Developing and Extending Software APIs in RELIC Library 

 

Our software implementation is based on RELIC toolkit [48]. One of the major reasons 

was to generate test vectors and intermediate results for functional verification of our 

coprocessor implemented in hardware for RSA implementation. We have utilized the 

already existing code base for modular exponentiation in RELIC for RSA 

implementation.  
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4.1.2 Hardware/Software Partitioning 

 

Profiling in one of the important feature of Zynq SoC software development kit (SDK). 

Profiling can be helpful to fully understand the time critical operations of any design. 

We used the built-in profiler provided as a part of Vivado Design Suite 2015.4 to 

determine the compute intensive portions of RSA that take majority of the time in its 

software implementation. Proper partitioning to find an optimum boundary between 

software and hardware requires detailed know-how of the design and some level of 

expertise. The profiler showed approximately 82% contribution of the Modular 

Exponentiation (ME). In all the methods used to perform ME, there are repeated 

modular multiplications at the lower level. The results generated because of profiling 

were used to define boundaries between software and hardware well in advance.  

 

RSA

Exponentiation

Modular Arithmetic

Software 

in C

Hardware 

in RTL

RSA

Exponentiation

Modular Arithmetic
Hardware 

in RTL

Partitioning Scheme: 

Software/ Hardware Mix 1

Partitioning Scheme: 

Software/ Hardware Mix 2

RSA

Exponentiation

Modular Arithmetic

Software 

in C

Partitioning Scheme: 

Software Only

RSA

Exponentiation

Modular Arithmetic

Hardware 

in RTL

Partitioning Scheme: 

Hardware Only 

Software 

in C

Figure 13. Hierarchy of Operations and Tentative Partitioning Schemes in RSA 
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The figure above shows the possible partitioning schemes for an RSA-based 

implementation. 

• Scheme 1: Offers full flexibility, but low performance. 

• Scheme 2: Modular arithmetic is offloaded to the coprocessor for improved 

performance. Multiple exponentiation schemes can be implemented from 

software to offer flexibility. 

• Scheme 3: The entire ME is implemented in the coprocessor for maximum 

performance gain. However, the design is less balanced between software and 

hardware. 

• Scheme 4: Maximum performance gain possible with very limited flexibility. 

Implementing the entire ME in hardware leans more towards performance optimization 

as it is quite close to having an entire RTL-based design. However, we implement 

partitioning scheme 2 as it leaves more room to achieve the balance between flexibility 

through software and performance from the coprocessor. 

4.2 Operation of the Processing System 

Zynq SoC platform provides dual core ARM Cortex-A9 microprocessor core. Zynq has 

32 KB of L1 data and instructions caches, 512 KB of L2 cache and 512 MB DDR3 

memory.  This ensures high speed implementation from the software side of the design. 

Our software implementation is based on RELIC toolkit [48]. RELIC was developed in 

Brazil as a part of the TinyPBC project and is optimized for embedded applications.  
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Table 10. Implemented hardware functions 

Function Call Description 

SET_OP_SIZE () To set operand size in PL using AXI-LITE interface 

LW_M () 
Loads modulus from PS through AXI-STREAM 

interface to the multiplier unit in PL 

LW (Reg_Num, A) 
Loads data from PS through AXI-STREAM 

interface to Reg_Num in local memory of PL 

SW (A, Reg_Num) 
Stores data from Reg_Num in local memory of PL 

through AXI-STREAM interface to PS 

Hw_mul_monty_orup4 (dst, src1, 

src2) 

Sends a control word through AXI-LITE interface 

to load operands from addresses src1 and src2 of the 

local memory to perform multiplication. The result 

is stored in address specified by dst. 

 

 

To achieve the flexibility in our RSA design, exponentiation is performed in software.  

This allows us to choose any of the exponentiation schemes, i.e., Left-to-Right (L2R), 

Right-to-left (R2L) or Sliding window method from software. 

Types of Exponentiation and Instruction Set: 

For all three variants to perform ME, we implemented corresponding functions in 

RELIC based on Montgomery multiplication using Orup's algorithm. In Algorithm 5, 

line 17, the function bn_rec_slw() is a function in RELIC used to windows win[0], 

win[1], ..., win[l-1]. Based on the windows, val[win[i]] is the index of the leftmost 1 in 

the binary representation of win[i]. Once this function is called during pre-processing, 

l becomes the number of windows rather than the number of bits in the exponent. The 

same implementations were used to for functional verification of the hardware 



51 

 

implementation. Also, the conversion of operands to/from Montgomery domain can be 

realized using Orup's Montgomery Product (OMP) in the coprocessor.  

We present the instruction set in Table 10 along with the description of the operation 

of all instructions.  Next, we present all three ME schemes with function calls to the 

hardware in algorithms 3, 4 and 5. In Algorithm 5, the additional step is the pre-

processing in which the RELIC based function bn_rec_slw() is executed. Post-

processing includes only one modular reduction in all three algorithms. In the 

processing phase, we use the hardware API's to transfer data and control words to the 

hardware coprocessor while performing modular multiplications. 
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4.3 Choice of Communication Interface  

There are many competing Bus standards used the industry. Most popular standards are 

AMBA V3, V4 from ARM Ltd, Coreconnect from IBM, Wishbone from SiliCore Corp. 

and Avalon from Altera. Our design utilizes AMBA Advanced Extensible Interface 4 

(AXI4), targeted at high performance, high clock frequency systems. There are three 

methods to attach a co-processor to the processing system (PS). 

• Hardware accelerator attached as a general purpose port (GP0) 
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• Hardware accelerator attached via high performance port (HP0) 

• Hardware accelerator attached using Accelerator Coherency Port (ACP) 

ACP port interface allows direct memory transfer between PL and L1 cache of PS. This 

method provides the fixed low latency path. However, it provides best results when the 

data can be accommodated in caches. There are four high performance ports that 

provide high bandwidth communication but have a higher latency than ACP port 

interface. We implemented designs based on both ACP and HP0 interfaces and reported 

results based on ACP port interface because they are slightly better than HP0 interface. 

Our design connects the PS to the hardware accelerator through DMA engine to stream 

data in burst mode. Hardware coprocessor receives input arguments from PS into the 

local memory and sends them to the multiplier unit. Once modular multiplication is 

completed, result is stored in the local memory while the system waits for the next 

control word through AXI-Lite interface. When the entire exponentiation is performed, 

the result is sent back to PS through AXI-Stream interface. 

4.4 Implementing Programmable Logic (PL) – Our Hardware 

Accelerator  

Our design process of a hardware coprocessor is further categorized into the following 

four major components 

• Compute Kernel: Coprocessor unit to perform compute intensive tasks 

• Controller: It includes the command interpreter, input FSM, compute FSM and 

output FSM 

• Interface: Interface with the bus that includes argument and result storage 

• Local Memory: To store the intermediate results in hardware 



55 

 

Compute Kernel: 

In our implementation, the compute kernel for RSA performs Montgomery modular 

multiplication. Our design for the compute kernel is targeted towards achieving both 

scalability and performance.  The implementation is based on Orup's implementation 

by Suzuki from [21]. We extended the basic Montgomery multiplier with an interface 

for input and output. The datapath is scalable for multiple operand sizes, i.e., 512, 1536, 

1024 and 2048 without any increase in the area. The command interpreter which is part 

of the controller is used to send a control word with the information of operand size 

from PS to PL. The operands are loaded into the local memory of the coprocessor at 

the start of the operation through AXI-Stream interface. The operands are stored locally 

into dual-port RAMs to reuse them and to minimize the overhead associated with data 

transfer from PS to PL. DSP48E macros are used to multiply operands in radix 217. 

Latency of these DSP units is adjusted to 3 to operate them at the maximum operating 

frequency to achieve better performance.   

Controller: 

Our controller consists of the command interpreter, input FSM, output FSM and 

compute FSM. Command interpreter acts as a bridge between software and hardware. 

It receives commands words from PS through AXI-Lite interface, interprets them and 

then distributes the control signals to the input, output and compute FSMs accordingly. 

In a standard approach, operands are fed into the compute kernel, result is computed 

and send back to PS. Our design is configurable to work with variable operand sizes 

and different optimization schemes controlled from PS. This requires that the controller 
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can dynamically adopt and generate the control signals for input, compute and output 

FSM. 
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Figure 14. Detailed Hardware Coprocessor Design 
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I/O Interface: 

Our I/O interface is implemented using dual port block memories to support width 

conversion necessary for the compute kernel to process data. It also takes care of the 

communication between PS and PL through synchronization signals and flags between 

PS and PL. We use Accelerated coherency port (ACP) to stream data into PL. DMA 

unit is used to handle communication in this scenario. 

Local Memory: 

Local memory provides local access to the intermediate results. Storing intermediate 

results into one of the available memories (L1/ L2 caches, OCM and DDR3 memory) 

associated with PS is very costly in terms of clock cycles. Each read/ write access to L1 

and L2 caches costs 27 and 32 clock cycles respectively. Access to the L1/ L2 caches 

is possible only if we use Accelerated Coherency Port (ACP). Similarly, accessing On-

Chip memory (OCM) and DDR3 memory cost 27 and 89 clock cycles respectively. 

High Performance Ports (HP0-3) can only access the OCM and DDR3 memories using 

46 and 76 clock cycles respectively. Using General Purpose Ports (GP0-3) has the 

biggest penalty and takes 88 and 118 clock cycles to access OCM and DDR3 memories.  

Using local memory implemented through dual-port block memories in FPGAs, on the 

other hand, only requires few clock cycles and is much more efficient. A more detailed 

layout can be seen in the block diagram. 
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4.5 Results and Comparison 

All results presented in this paper are generated using Vivado Design Suite 2015.4. The 

device used is Zedboard Zynq Evaluation and development kit (xc7z020clg484-1). The 

design is functionally verified using Vivado simulator and co-debugged using 

Integrated Logic Analyzer (ILA) core. Profiling and software implementation was 

performed in Xilinx SDK 2015.4.  

We present results for three exponentiation schemes, i.e., L2R, R2L and Sliding 

Window method. Aiming for scalability, our design is also configurable at runtime 

through software for four variants of operand sizes, i.e., 512, 1024,1536 and 2048-bit. 

Our design operates on two clocks, running at 100 and 200 MHz respectively. The 

arithmetic operations performed by DSP units utilize the faster clock, whereas the 

interface and rest of the design operates at 100 MHz. The additions performed in the 

modular multiplier unit are also executed as double word additions.   

A hardware timer was used to calculate the total number of clock cycles for both 

software and HW/SW codesign methodologies, denoted by CCsw and CChw/sw 

respectively. In case of HW/SW codesign, the timer keeps track of the number of clock 

cycles required for the preprocessing (CCpre) in software, the number of clock cycles to 

process data (CCproc) in hardware, and finally the post-processing (CCpost) in software.  

CCproc shows the clock cycles required during the processing phase of the design. In 

this phase, operands are first loaded into the local memory through AXI-Stream 

interface. The entire exponentiation algorithm is later guided by a set of command 

words sent through AXI-Lite interface to perform MM operations repeatedly. Finally, 

the result is collected from the local memory and sent back to the PS through AXI-
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Stream interface. As soon as a multiplication operation is completed, the hardware 

sends an interrupt signal to notify the PS that it is ready to receive the next command 

word. The same scheme is followed to transmit and receive data in the end as well.   

Table 11 shows that the HW/SW codesign based approach yields better performance 

than the software-only implementation showing speedups of 57.67, 57.65 and 46.31 

times for L2R, R2L and Sliding window scheme respectively. The sliding window 

method gives consistently better results than L2R and R2L for all operand sizes in term 

of the processing time. All clock cycles refer to the clock cycles of the 100 MHz system 

clock, measured using AXI Timer. 

L2R method shows better performance than R2L as only one operand needs to be 

loaded to the hardware coprocessor as compared to loading two operands in R2L 

exponentiation. According to Table 11, the sliding window method gives consistently 

better results than L2R and R2L for operand sizes greater or equal to 1024 bits. 

Table 12 compares our work with existing implementations available in literature. Our 

design works on the same datapath for all operand sizes. The provision to handle the 

operand size and choice of exponentiation scheme is handled from the software 

allowing run time configurability. This support is not available in any of the existing 

designs.  
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Table 11. Comparison of our HW/SW Implementation with software implementation 

based on RELIC for four operand sizes and three exponentiation schemes. Note: CCpre 

– Clock cucles for preprocessing, CCpost – Clock cycles for postprocessing, CCproc – 

Clock cycles for processing, CCsw – Clock cycles for software, CChw/sw – Clock 

cycles for HW/SW codesign 

Op Size 

(bits) 
CCsw 

CChw/sw 
Speedup 

CCpre CCproc CCpost CCtotal 

L2R 

512 4,628,086 N/A 
160,248 

(98.71%) 

2,098 

(1.29%) 
162,346 28.51 

1024 29,081,675 N/A 
636,626 

(99.55%) 

2,878 

(0.45%) 
639,504 45.48 

1536 91,506,750 N/A 
1,703,111 

(99.80%) 

3,478 

(0.20%) 
1,706,589 53.62 

2048 210,613,761 N/A 
3,647,842 

(99.88%) 
4,401(0.12%) 3,652,243 57.67 

R2L 

512 4,641,915 N/A 
160,900 

(98.49%) 

2,460 

(1.51%) 
163,360 28.42 

1024 29,119,311 N/A 
637,572 

(99.55%) 

2,898 

(0.45%) 
640,470 45.47 

1536 91,596,255 N/A 
1,704,883 

(99.76%) 

4,111 

(0.24%) 
1,708,994 53.60 

2048 210,780,530 N/A 
3,651,888 

(99.88%) 

4,478 

(0.12%) 
3,656,366 57.65 

Sliding Window 

512 3,731,606 
4,070 

(2.45%) 

115,586 

(96.09%) 

2,416 

(1.445%) 
167,072 22.47 

1024 22,725,405 
7,745 

(1.24%) 

614,977 

(98.30%) 

2,877 

(0.46%) 
625,609 36.33 

1536 70,955,868 
11,654 

(0.70%) 

1,637,734 

(99.04%) 

4,215 

(0.25%) 
1,653,603 42.91 

2048 162,227,749 
15,223 

(0.43%) 

3,487,745 

(99.44%) 

4,356 

(0.12%) 
3,507,324 46.25 
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Table 12. Comparison of our work with existing designs of modular exponentiation 

ME from literature. Note: * - the execution time was determined for the ME scheme 

and operand size marked by this symbol, SLID – Sliding Window Method, MPL – 

Montgomer Powering Ladder, BFL – Blinded Fault Resistant Exponentiation 

Referenc

e 

ME Scheme 

(Flexibility)/ 

Operand Size 

(Scalability) 

Coprocesso

r performs 

Device

s 

Freq 

(MHz) 

Area  

(LUTs/LEs

, RAMs, 

DSP48) 

Time 

(ms) 

HW/SW Codesign-based Implementations 

This Work L2R, R2L, 

SLID*/512,1024*

, 1536, 2048-bit 

MM Zynq 

SOC 

100/20

0 

10385, 26, 

17 

6.33 

San et al. 

[49] 

R2L/512, 1024*, 

2048-bit 

ME Zynq 

SOC 

100 6224, 0, 62 3.04 

Issad et al. 

[26] 

R2L/1024-bit MM Virtex-

5 

62.5 1848, 11, 22 22.2

5 

Uhsadel et 

al. [27] 

R2L, L2R*, MPL, 

BFR/1024-bit 

ME Virtex-

4 

111 27467, 0, 0 29.3

7 

HW-only Implementations 

Suzuki et 

al. [21] 

SLID/512, 1024*, 

1536, 2048-bit 

ME Virtex-

4 

200/40

0 

4190, 7, 17 1.71 

Song et al. 

[50] 

R2L/1024-bit ME Virtex-

5 

447 180, 1, 1 36.3

7 

Wang et 

al. [51] 

L2R/1024-bit ME Virtex-

5 

200 5730, 0, 0 679 

 

 

The choice of platform by San et al. in [49] makes their design comparable with our 

implementation. The design is expected to have better results in terms of time as they 

followed a more hardware oriented approach by offloading the entire exponentiation 

onto the coprocessor for performance leaving limited room for flexibility through 
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software. We provide a more balanced partitioning scheme to exploit maximum benefit 

from both hardware and software, still maintaining comparable performance. 

In [26], a fixed 1024-bit RSA design is implemented with one exponentiation scheme, 

i.e., R2L. They employ two multiplier units to optimize their design for R2L scheme. 

This scheme cannot be easily generalized to show performance gain for other 

exponentiation schemes. Also, their design is 3.5 times slower than our implementation. 

In [27], results for HW/SW codesign-based implementation using 8051 microcontroller 

are presented. Although they implement several exponentiation schemes, their design 

is not scalable for any operand sizes other than 1024-bit. Our computation time is 4.6 

times faster than their design based on L2R scheme. 

 

We also provide HW only designs, implemented without the use of any embedded 

processor. Their results do not offer a fair comparison as the designs are HW-only 

implementations. In codesign-based approach, the designer should deal with additional 

overheads related to communication interfaces. HW-only designs are more geared 

towards optimizing for execution time and are less suited for applications that require 

flexibility. The capability of controlling designs from software to can also help to 

evaluate the best suited combination of parameters and schemes for an embedded 

application with comparable performance.  Implementing exponentiation algorithms 

can also provide additional resistance against side-channel attacks. 
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4.6 Conclusion 

We presented a novel HW/SW codesign approach to support algorithmic and 

implementation level flexibility. The generic approach can be applied to other public-

key cryptosystems as well. In the current design, we achieved up to 57 times speedup 

as compared to our software implementation with comparable performance in 

hardware. The results show that balanced partitioning of a design between hardware 

and software may seem challenging but it can support promising flexibility vs 

performance tradeoff. 
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5 CUSTOM HARDWARE IMPLEMENTATION OF NTRUEncrypt 

 

In this chapter, we present a high-speed hardware implementation of NTRUEncrypt 

Short Vector Encryption Scheme (SVES), fully compliant with the IEEE 1363.1 

Standard Specification for Public Key Cryptographic Techniques Based on Hard 

Problems over Lattices. Our implementation supports two representative parameter 

sets, ees1087ep1 and ees1499ep1, optimized for speed, which provide security levels 

of 192 and 256 bits, respectively. Our implementation follows an earlier proposed Post-

Quantum Cryptography (PQC) Hardware Application Programming Interface (API). 

As a first implementation following this API, it provides a reference that can be adopted 

in any future implementations of post-quantum cryptosystems. We describe the detailed 

flow and block diagrams as well as results in terms of latency (in clock cycles), 

maximum clock frequency, and resource utilization. We also report the speedup of our 

implementation in Xilinx Field Programmable Gate Arrays (FPGAs) as compared to a 

software implementations of NTRUEncrypt SVES, with equivalent functionality, 

running on the Cortex A9 ARM Core. Our results show a significant speed-up of 

hardware vs. software, and very different percentage contributions of the execution 

times for equivalent operations executed in these two different environments. 

 

5.1 Preliminaries 

We are not aware of any previous high-speed hardware implementation of the entire 

NTRUEncrypt SVES scheme reported in the scientific literature or available 

commercially. Our implementation is also unique in that it is the first implementation 
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of any PQC scheme following our newly proposed PQC Hardware API. As such, it 

provides a valuable reference for any future implementers of PQC schemes, which is 

very important in the context of the upcoming NIST standard candidate evaluation 

process. 

5.2 NTRUEncrypt SVES 

The flow diagrams of the NTRUEncrypt SVES encryption and decryption operations 

are shown in Figure 15. The notation used, and the names of basic operations, inputs, 

outputs, and intermediate variables are explained in Table 13 and  

Table 14. 
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Figure 15. Flow diagram of SVES Encryption (top) and Decryption (bottom) 

 

 

Table 13. Basic operations of Encryption and Decryption. 

 

Name Description 

Poly Mult, * Polynomial Multiplication (ring multiplication in Z[X]/(XN-1) 

BPGM Blinding Polynomial Generation Method 

MGF Mask Generation Function 

Range Conv Range Conversion from [0,q] to [-q/2, q/2] 

B2T Conversion of each group of three bits to two ternary coefficients 

T2B Conversion of two ternary coefficients to a group of three bits 

Poly Add, + Polynomial Addition 

Poly Sub, – Polynomial Subtraction 

Check 1 Checking whether an input polynomial with “small” coefficients contains at 

least dm0 1s, -1s, and 0s. If not, setting fail=1. 

Check 2 Checking whether all bytes of padding after decryption are 0s. 

Check 3 Comparing values of two inputs cR and cR’. If they are different setting 

fail=1. 
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Table 14. Inputs, Outputs, and Intermediate Variables 

 

Name Role Description 

OID in Object identifier specifying uniquely an algorithm and 

parameter set used 

b in Random data (binary string) 

m in Message (binary string) 

octL in Length of message m in bytes (single byte) 

p0 var Zero padding (binary string) 

hTrunc in First pkLen bits of the public key h (binary string) 

r var Random polynomial with “small” coefficients 

h in Public key (polynomial with “big” coefficients) 

e out/in Ciphertext (polynomial with “big” coefficients) 

Mbin, sData cMbin, 

csData 

var Intermediate variables (binary strings) 

Mtrin, mask, m’ 

cMtrin, mask, ci 

var Intermediate variables (polynomials with “small” 

coefficients) 

R, cR, cR’ var Intermediate variables (polynomials with “big” 

coefficients) 

cb var Decrypted random data (binary string) 

cm out Decrypted message (binary string) 

cOctL out Length of decrypted message (single byte) 

cp0 var Decrypted padding (to be verified) 

F in/var Polynomial with “small” coefficients (can be used as 

an input representing uniquely private key f) 

f=1+pF in/var Private key (can be replaced as an input by F) 

 

 

 

In Figure 15, the operations of the core NTRUEncrypt scheme, known from the early 

literature on the topic, such as [13], are shown in dashed boxes. 
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In the SVES encryption scheme shown in Figure 15, m is replaced by m’, which is an 

intermediate variable, dependent on the binary message m, length of m (denoted by 

octL), random data b, public key h, and the Object identifier, OID, representing 

uniquely a given encryption scheme and parameter set. Additionally, r is not selected 

completely at random, but rather generated by a deterministic function, called the 

Blinding Polynomial Generation Method (BPGM), based on a standardized hash 

algorithm, with inputs in the form of OID, message m, random data b, and the first 

pkLen bits of the public key h (hTrunc). B2T is a conversion of each group of three bits 

to two ternary coefficients, using the look-up table defined in the IEEE standard. 

In the SVES decryption scheme shown in Figure 15, the decrypted value is denoted by 

ci, and must be still unmasked to recover the actual decrypted binary message cm. Three 

checks are performed on the decryption side. If any of these checks fails, the result of 

decryption is considered invalid. Check 1 is to verify whether ci, which should be 

identical with m’ on the encryption site, has a sufficient number (at least dm0) of 1s, -

1s, and 0s (where dm0 is a part of a given parameter set, and is given in Table 3). Check 

2 is to determine whether cMbin on the decryption side, which should be the same as 

Mbin on encryption site, has a proper format, i.e., its padding bytes (the last 

maxMsgLenBytes – cOctL bytes) are all equal to zeros. Finally, Check 3 is the most 

comprehensive check, used to verify whether the value of cR’ is equal to cR, where cR’ 

is calculated using the same formulas as R during decryption, with the message m 

replaced by decrypted message cm, and the random input b replaced by the decrypted 

random data cb. The other parts of the input to BPGM, namely OID and hTrunc, remain 

the same as during encryption. T2B is an inverse of the B2T conversion function. 
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5.3 Hardware Design 

Assumptions 

 

Our hardware implementation supports full Short Vector Encryption Scheme (SVES) 

described in the IEEE P1361.1 standard [14]. It is also compliant with the recently 

proposed PQC Hardware API [52]. Encryption and decryption share the same circuit.  

Key generation is assumed to be performed externally, e.g., in software. This 

assumption is consistent with the proposed PQC Hardware API [52], and is common 

for many practical implementations of other public key cryptosystems. Public key and 

private key are loaded in advance, before the first encryption/decryption. They are 

stored internally and can be used for processing of multiple messages/ciphertexts. 

The primary optimization target is the minimum latency (in absolute time units) for 

encryption and decryption. However, in case any design choices can lead to the same 

or only marginally greater latency, with the circuit area decreased substantially, these 

design choices are pursued as well to keep the cost and energy consumption of the 

circuit as low as possible. 

The implementation supports two parameter sets, specified in [14], denoted as 

ees1087ep1 and ees1499ep1, optimized for speed, with security levels of 192 and 256 

bits, respectively. The swap between these two parameter sets can occur during runtime. 

SHA-256 is used as a basis for the implementation of the Blinding Polynomial 

Generation Method (BPGM) and the Mask Generation Function (MGF) of SVES. The 

remaining major parameters of both sets are summarized in Table 15.  
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Table 15. Parameters of the algorithm, architecture, and input affecting the execution 

time, for two parameter sets ees1499ep1 and ees1087ep1. 

Parameter Set ees1499ep1 ees1087ep1 

Name Description   

PARAMETERS OF ALGORITHM – BASIC 

N Dimension (rank) of the polynomial ring 1499 1087 

dr No. of 1s and no. of -1s in r 79 63 

df No. of 1s and no. of -1s in F 79 63 

db No. of random bits of b 256 192 

dm0 The minimum number of 0s, 1s and -1s in m’ 

and ci, used in Check 1 

79 63 

maxMsg 

LenBytes 

Maximum message length in bytes 247 178 

pkLen No. of bits of h to include in sData 256 192 

q "Big" modulus 2048 2048 

p "Small" modulus 3 3 

c Polynomial index generation constant 13 13 

hiLen Hash function input block size in bits 512 512 

hoLen Hash function output block size in bits 256 256 

PARAMETERS OF ALGORITHM – DERIVED 

=log2q No. of bits used to represent "big" coefficients 11 11 

=log2N No. of bits used to represent an index of a 

polynomial coefficient 

11 11 

cthr Index generation threshold  

= 2c-(2c mod N), used by BPGM 

7495 7609 

cval Probability that a randomly generated c-bit 

unsigned integer is smaller than cthr 

0.9149 0.9288 

bthr Threshold = 35, used by MGF 243 243 

bval Probability that a randomly generated 8-bit 

unsigned integer is smaller than bthr 

0.9492 0.9492 

PARAMETERS OF ARCHITECTURE 

pmff Polynomial multiplier folding factor 3 3 

cphi Clock cycles per hash input block 65 65 

w Width of the PDI and DO data buses 64 64 

sw Width of the SDI data bus 16 16 

rw Width of the RDI data bus 32 32 

PARAMETERS OF INPUT 

L Message length in bytes variable  variable 
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Both polynomial r (for encryption) and polynomial F (for decryption) are 

represented using indices of all their coefficients equal to 1 and -1. Our implementation 

does not support the so-called product form of polynomials r and F, described in [16], 

as this form is not supported by P1363.1 [14]. 

5.3.1 Hardware API & Interface of NTRU core 

 

To ensure compatibility among implementations of the same algorithm by different 

designers, our NTRU implementation is designed based on the hardware API proposed 

in [52]. A general idea of the NTRU core interface is shown in Figure 16. 

NTRU

do_data do_data
w

pdipdi
w

pdi_validpdi_valid

pdi_readypdi_ready

sdisdi
sw

sdi_validsdi_valid

sdi_readysdi_ready
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rw
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clk rst

clk rst

amw

mw

mw

wmw

 

Figure 16. NTRU Interface compatible with the PQC Hardware API interface [8]. 

 

The interface has five major data buses: 1) Public Data Inputs (PDI), 2) Secret Data 

Inputs (SDI), 3) Random Data Inputs (RDI), 4) Data Outputs (DO), and 5) External 

memory Inputs/Outputs (MEM), respectively. The external memory ports are optional, 

and are not used by our core. Selected widths of the interface data buses, w, sw, and rw 

are summarized in Table 3. These widths were selected in such a way to minimize the 

time required to load inputs and unload results, but at the same time, keep the pin 

requirements of the circuit at the level easily supported by modern FPGAs. Private key 
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is assumed to be loaded through SDI in the form of –bit indices of the non-zero 

coefficients of F, one coefficient at a time. Public key is loaded through PDI. 

5.3.2 Top-Level Block Diagram 

 

The top-level hardware block diagram is shown in Figure 17. The function of the 

majority of operational units corresponds to the basic operations of encryption and 

decryption, specified in Table 13. The functionality of additional auxiliary components 

is summarized in Table 16. 

The two major functional units, which determine the speed and area of the circuit are 

PolyMult and BPGM/MGF.  The latter of these units is used to implement both BPGM 

and MGF, because of the similarity between both operations, their sequential non-

overlapping functionality, and because of the reliance on a single hash function core, 

implementing SHA-256.  

Public key h is stored inside of Poly Mult (for both encryption and decryption). Indices 

of non-zero coefficients of F, uniquely determining the private key f, are stored in RAM 

at the top level (located in the diagram in Figure 17 just above the Poly Mult unit). 

Range Conversion and modulo p reduction are naturally combined together. The mod 

p (mod 3) operation is optimized in such a way to use just 10 LUTs per 11-bit 

coefficient. 

Poly Add (+), Poly Sub (-), Range Conv & mod p, T2B, Check 1 and Check 3 are all 

performed on only 2w (rather than N) coefficients at a time. Since these operations do 

not limit the latency of either Encryption or Decryption (as long as performed at least 
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with the speed of unloading final results), the narrower datapaths of these units help to 

minimize the area and energy consumption of the circuit without affecting performance. 

Table 16. Auxiliary components used in the top-level block diagram and the diagrams 

of lower-level components. 

Symbol Full Name Role 

RAM  Random Access Memory Storing Random data, b, and the first pkLen bits 

of the public key h, hTrunc 

SIPO* Serial In Parallel Out Transferring data between a bus with a narrower 

width to a bus with a wider width 

PISO* Parallel In Serial Out Transferring data between a bus with a wider 

width to a bus with a narrower width 

SIPO w/PI* SIPO with Parallel Input Regular functionality of SIPO extended with an 

ability to load SIPO in a single clock cycle using 

parallel input 

PISO 

w/PO* 

PISO with Parallel 

Output 

Regular functionality of PISO extended with an 

ability to unload PISO in a single clock cycle 

using parallel output 

mod 4 / 

mod p, etc. 

 Reducing each coefficient of a polynomial  

mod 4 / mod p, etc. 

IDCU  

-E/-ED 

Input Data Conversion 

Unit for encryption / 

decryption 

Converting format of incoming data, such as 

encrypted message, decrypted message, etc. to 

the format required by the following unit 

ODCU  

-E/-ED 

Output Data Conversion 

Unit for encryption / 

decryption 

Converting format of outgoing data, such as 

public key, ciphertext, etc. to the format 

required by the external units 

DFU  

-E/-D 

Data Forming Unit for 

encryption / decryption 

Forming words of the sData/csData input to 

BPGM 

ROTATOR Variable rotator Rotating one input by the number of positions 

given by a second input 

<<1 Shift left by 1 Shifting the input by one position to the left 

BWC Bus Width Converter Converting Bus Widths (with the support for 

stalling a preceding circuit, and using unrelated 

bus widths) 
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*Nsel control input is optionally used if either input or output bus width depends on N. This input modifies the 

operation of the circuit depending on the currently used value of N, corresponding to one of the two supported 

parameter sets. 

 

 

Figure 17. Top-level block diagram of the developed hardware architecture of SVES. 

N represents max(1499, 1087)=1499. 

 

 

Before the first exchange of data with a given user, this user’s public key must be loaded 

to the PolyMult unit, using the pdi_data bus, and the Input Data Conversion Unit 

(IDCU-ED). This unit is required to handle the control signals of the PDI bus and to 

perform the bus width conversion (from w to w/ bits). Similarly, before 

decrypting first data from a given user, this user’s private key value, F, must be loaded 

to the circuit  using the sdi_data bus, and stored in the internal RAM. Since F is a 

polynomial with small coefficients 1, -1, and 0, only the locations of 1s and -1s must 
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be loaded. Each of these locations is a number in the range, 0..N-1, and thus is 

represented using =ceil(log2N) bits. Each location is loaded in a separate clock cycle. 

During encryption, the db bits of random data b are first loaded to the RAM with the 

input rdi_data. The sData input to BPGM is formed next, as the concatenation of OID 

(Object identifier), b, m (message), and hTrunc (the first pkLen bits of the public key 

h), using the Data Formation Unit, DFU-E. After being fed with sData as a seed, BPGM 

works as a pseudorandom number generator, producing a new location i of a non-zero 

small coefficient of the random polynomial r in each new iteration of BPGM. Each of 

these locations is consumed by PolyMult in 3 clock cycles, corresponding to the 

Polynomial multiplier folding factor, pmff. Only after PolyMult processes all elements 

of r, the output R=r*h becomes available. This output is then reduced mod 4, and the 

obtained values provided to the input of MGF. The MGF unit produces the mask, in the 

form of a polynomial with small random coefficients. This polynomial is then added to 

the polynomial mTrin obtained by converting the extended message input Mbin=b, 

octL, m, p0, using the binary to ternary conversion unit, B2T. Finally, the obtained new 

message representation, m’, is added to the previously generated output from PolyMul, 

R, producing the ciphertext e. The ciphertext is than released to the output do_data, 

after conversion to words of the width w, using PISO and the Output Data Conversion 

Unit (ODCU-E). 

The decryption, starts from the polynomial multiplication of the private key f=1+pF by 

the ciphertext e. The obtained value fe then undergoes range conversion and reduction 

mod p. The obtained value ci should be the same as the message representation during 

encryption m’. ci undergoes Check 1 for the minimum number of 1s, -1s, and 0s. 
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Additionally, ci is used in the calculation of cR=e-ci, which should be identical to R, 

calculated on the encryption side. cR is then reduced mod 4 and used as an input to 

MGF to produce mask. Mask is subtracted from ci to generate cMtrin. After converting 

cMtrin to cMbin using the ternary to binary conversion T2B and a PISO. The Output 

Data Conversion Unit (ODCU-D & Check 2) checks whether the decrypted data has a 

correct format, including p0Len= maxMsgLenBytes – cOctL bytes of zero padding. If 

Check 2 passes, the extended decrypted data is decoded to identify values of cb and cm, 

which should be the same as b and m during encryption. These values are then used as 

inputs to the Data Formation Unit for Decryption (DFU_D), used to generate csData = 

OID, cm, cb, hTrunc. csData is then passed to BPGM as a seed value. The BPGM unit 

then produces the locations i of all non-zero coefficients of the random polynomial cr=r, 

which should be the same as those on the encryption site. These values are then used, 

together with the public key h, stored inside of Poly Mult, to calculate cR’=cr*h. Since 

for the correctly decrypted message, cr=r, then cR’ should be equal to cR obtained 

earlier during the decryption process. Comparing these two values constitutes the final 

check (Check 3) for the correctness of decryption. Only after this test passes, the 

decrypted message cm is released through the output do_data, followed by the status 

block with the Status field equal to Success. If any of the three decryption checks fails, 

all remaining calculations are preempted and only the status block with the Status field 

equal to Failure is released to the output do_data. 

5.3.3 Diagrams of Selected Lower-Level Components 

 

Internal block diagrams of two major components: the polynomial multiplier, Poly 

Mult, and the BPGM/MGF units are shown in Figure 18 and Figure 19, respectively. 



77 

 

The polynomial multiplier is based on a variable rotator, and a series of adders capable 

of adding a corresponding coefficient of one of the operands to a temporary sum. A full 

width version of this multiplier can be folded by an arbitrary factor. A folding factor 

equal to 3, which was selected based on the careful timing analysis, is shown in Figure 

18.   

During encryption, only one polynomial multiplication R=r*h is performed, and thus, 

the public key h can be stored directly in the top SIPO w/PI (the Serial Input Parallel 

Output unit with Parallel Input). During decryption, two multiplications are performed, 

f*e and cR’=cr*h. As a result during the first multiplication, h is pushed to the 

neighboring PISO w/PO (the Parallel Input Serial Output unit with Parallel Output), 

and then brought back to SIPO w/PI for the second polynomial multiplication. In the 

period between the two multiplications, PISO w/PO (holding the ciphertext e), feeding 

the serial output ce, is used for the calculation of cR (2w -bit coefficients at a time). 

The BPGM/MGF unit is shown in Figure 19. It is based on the slightly modified 

implementation of SHA-256 [53], extended with the capability to store and retrieve the 

chaining value, which substantially speeds up the repeated computations of 

hash(Z||Counter) for multiple values of the Counter and Z composed of multiple input 

blocks of SHA-256. 

Our implementation of SHA-256 is a basic iterative architecture with 65 clock cycles 

per block. During the BPGM calculations Data input is used. During the MGF 

calculations, the inputs R4 and cR4 are used, for encryption and decryption, 

respectively. For the BPGM calculations, the output of a hash function is divided into 

c-bit blocks (with c=13 for both implemented parameter sets). Each block is treated as 
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an unsigned integer. If the value of this integer is greater than the index generation 

threshold cthr = 2c-(2c mod N), then the block is discarded. Otherwise, the 

corresponding output i is calculated by taking the unsigned integer value of the block 

mod N. Since N is different for each parameter set (1499 and 1087, respectively), two 

2c x  look-up tables are required to perform the respective mod operations.  

 

 

Figure 18. Architecture of the polynomial multiplier, folded by a factor of 3 
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Figure 19. Hardware architecture of the combined unit, BPGM/MGF, implementing 

the Blinding Polynomial Generation Method and Mask Generation Function 

 

 

5.4 Results 

Our design has been described in VHDL at the Register Transfer Level (RTL). The 

target device has been selected as Xilinx Virtex-7 XC7VX485T-3FFG1761. The results 

have been generated using Xilinx ISE v14.7. All presented results are after placing and 

routing.  

In Table 17, we summarize the resource utilization (in LUTs and Slices), maximum 

clock frequency, and latencies of several major building blocks. Poly Mult is shown to 

be most restrictive in terms of clock frequency (89.51 MHz) and taking a vast majority 
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of the circuit resources (138,475 LUTs). It should be stressed that for operations such 

as Poly Add and Poly Sub, latency represents the number of clock cycles necessary to 

obtain an output coefficient corresponding to the input coefficients with the same index, 

and not the time necessary to process all coefficients of the polynomial. 

 

Table 17. Resource utilization and performance metrics of major component units. 

Latencies correspond to the ees1499ep1 parameter set. 

 

Operation LUTs: Slices Clk Freq 

[MHz] 

Latency 

[cycles] 

Latency·LUTs 

Poly Mult 140,512: 25,099 

 

74.44 474 66,602,688 

BPGM 1971: 421 171.05 845 1,665,495 

MGF 1004 1,978,884 

B2T 64: 34 904.00 1 64 

T2B 64: 35 984.25 1 64 

Poly Adds 

e=(Mtrin+mask) +R_fe 

1338: 272 

 

316.25 1 1338 

Poly Sub 

cMtrin=ci-mask 

74 : 64 540.24 1 74 

Poly Sub 

cR=ce-ci 

1221 : 258 331.23 1 1221 

 

 

 

Timing analysis of our hardware implementation is shown in Table 18. Latencies in 

clock cycles correspond to the maximum sizes of messages allowed by a given 

parameter set.  For comparison, in Table 19, we present the results of profiling of the 

software implementation of NTRUEncrypt SVES from [54], using the Cortex A9 

ARM Core, with clock cycles measured using a 100 MHz, AXI Timer. 
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Table 18. Timing analysis of our hardware implementation. Latencies in clock cycles 

correspond to the maximum sizes of messages allowed by a given parameter set. 

 

 

Operation 

Latency 

(clock 

cycles) 

% of 

Total 

Time 

Latency 

(clock 

cycles) 

% of 

Total 

Time 

ees1499ep1 ees1087ep1 

ENCRYPTION 

Performing BPGM on sData & 

calculating R using Poly Mult  

(in a pipelined fashion) 

890 38.8% 701 39.5% 

Calculating cR4 using mod 4 &  

mask using MGF 

1005 43.8% 787 44.3% 

Calculating m’ using Poly Add 

& 

performing Check 1 

97 4.2% 70 3.9% 

Unloading ciphertext e 300 13.1% 218 12.3% 

Total 2292 100% 1776 100% 

DECRYPTION 

Loading ciphertext e 300 10.7% 218 10.0% 

Calculating f*e using Poly Mult 480 17.1% 378 17.6% 

Range Conv, mod p, calculating 

cR using Poly Sub & cR4 using 

mod 4 

94 3.4% 68 3.1% 

Calculating mask using MGF 1004 35.8% 786 36.0% 

Calculating cMbin using Poly 

Sub & T2B 

2 0.1% 2 0.1% 

Performing BPGM on csData & 

calculating cR' using Poly Mult  

(in a pipelined fashion) 

890 31.8% 701 32.1% 

Unloading decrypted message 

cm 

31 1.1% 23 1.1% 

Total 2801 100% 2182 100% 
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Table 19. Results of profiling of the software implementation of NTRUEncrypt SVES 

from [9], using the Cortex A9 ARM Core of Zynq 7020, for the ees1499ep1parameter 

set 

 

Software Function Hardware Equivalent Clock 

cycles 

% of 

Total 

Time 

ntru_gen_poly Performing BPGM on sData & 

calculating R using Poly Mult 

(in a pipelined fashion) 

24,779 2.3% 

ntru_octets_2_elements 12,728 1.2% 

ntru_ring_mult_product_in

dices 

950,892 89.4% 

ntru_coeffs_mod4_2_octet

s 

Calculating cR4 using mod 4 & 

mask using MGF 

9,427 0.9% 

ntru_mgftp1 30,703 2.9% 

ntru_bits_2_trits 3,020 0.3% 

adding Mtrin to mask Calculating m’ using Poly Add & 

performing Check 1 

8,108 0.8% 

ntru_poly_check_min_wei

ght 

6,910 0.6% 

add_m'  8,672 0.8% 

elements_2_octets Unloading ciphertext e 13,549 1.3% 

Total  1,068,788 100.0% 

 

 

 

The percentage contribution of various operations is substantially different for 

hardware and software implementation. Hardware implementation is seriously limited 

by the sequential nature of the SHA-256 calculations. As a result, the operation of Poly 

Mult can be almost completely overlapped with the computations of BPGM through 

the use of pipelining. On the other hand, in the software implementation, Poly Mult 

amounts to about 90% of the total execution time. The operations that are most critical 

in hardware are hash based operations of BPGM and MGF, amounting to about 83% of 

the execution time for both supported parameter sets. 
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Table 20. Speed up of Hardware (This Work) vs. Software (source code [54]) 

 

 Software Hardware Speed-up 

Poly Mult [s] 9,508.9 5.3 x1794.1 

No. of Poly Mults per second 105.2 188,679.2 

Encryption Time [s] 10,687.9 25.6 x417.5 

No. of Encryptions per second 93.6 39,062.5 

 

 

 

The speed up of our hardware implementation vs. software implementation from [54], 

running on the Cortex A9 ARM Core of Zynq 7020, with the clock frequency of 

666.7 MHz, is summarized in Table 20. For Poly Mult, this speed-up reaches almost 

1800. For the entire encryption operation it is equal to 417.5. 

The implementation results for NTRUEncrypt reported earlier in the literature are 

summarized in Table 21. These results cannot be compared fairly with our results for 

multiple reasons, such as: a) different security level (57 & 80 bits vs. 192 & 256 bits), 

b) very different values of primary parameters (N=167 & 251 vs. N= 1499 & 1087, 

q=128 vs. q=2048), c) implementation of a pure NTRUEncrypt vs. implementation of 

NTRUEncrypt SVES), d) support for encryption only vs. support for encryption and 

decryption, e) support for a single parameter set vs. support for two parameter sets 

(swappable during run-time), f) results for old generation FPGA families (Virtex-E) 

and ASIC libraries (0.13m) vs. results for the state-of-the-art FPGA family (Virtex-7, 

28nm).  
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Table 21. Previous Hardware Implementations of NTRU. Notation: E – encryption, D 

– decryption, E/D: Encryption & Decryption. 

 

Source 
Sec 

[bits] 
N p q 

FPGA 

family/ 

ASIC library 

Resources 

Clk 

Freq 

[MHz] 

Execution 

Time 

[s] 

Kamal et al. 

2009 [7] 
80 251 3 128 

Xilinx 

Virtex-E 

E/D: 14,352 

Slices 
62.33 

E: 3.1 

D: 2.8 

Bailey et al. 

2001 [3] 
80 251 X+2 128 

Xilinx 

Virtex-E 

E: 6,373 

Slices 
50.06 E: 5.2 

Kaps 

2006 [5] 

(k=84) * 

57 167 3 128 

0.13 m 

TSMC 

 

E: 16,200 

GEs 
0.5 E: 866 

Atici et al. 

2008 [6] 
57 167 3 128 

0.13m 

Faraday 

Low Leakage 

E: 2884 

GEs 

E/D: 6718 

GEs 

0.5 
E: 56,446 

D: 119,238 

Kaps 

2006 [5] 

(k=1) * 

57 167 3 128 

0.13 m 

TSMC 

 

E: 2850 

GEs 
0.5 

E: 58,450 

 

* k: degree of parallelization 

 

Table 22. Comparison of the results for the hardware implementation of Poly Mult by 

Liu et al. using Altera Cyclone IV, and this work using Xilinx Kintex-7. 

Source Resources Clk Freq 

[MHz] 

Latency 

[cycles] 

Latency 

[s] 

Parameter set: ees1499ep1 

Liu et al. [22] 83,949 LEs 63.64 867 13.62 

This Work 140,512 LUTs/250,99 

Slices 

 

89.51 474 6.35 

Speed-up x1.41 x1.83 x2.57 

Parameter set: ees1087ep1 

Liu et al. [22] 60,876 LEs 73.71 638 8.65 

This Work 138,475 LUTs 

 

89.51 378 4.22 

Speed-up x1.21 x1.69 x2.05 
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The comparison of this work with the results reported in [55] for Poly Mult itself, 

summarized in Table 22, demonstrates the speed-up by a factor of 2.57 for the 

ees1499ep1 parameter set, and 2.05 for the ees1499ep1 parameter set. However, a 

portion of this speed up has to be attributed to a different FPGA family: Xilinx Virtex-

7 in this work and Altera Cyclone IV in [55]. 

Since our implementation is intended primarily for high-end servers supporting a very 

large number of TLS, IPSec, and other secure protocol transactions per second, no 

attempt was made to introduce any countermeasures against side channel attacks. Still 

making the implementation constant-time might be desirable [56]. 

The current implementation has a natural dependence of the execution time on the 

length of the message, affecting the size of sData and csData inputs to BPGM. For 

example, for the ees1499ep1 parameter set, the latency of encryption varies between 

2097 clock cycles for an empty message, and 2292 clock cycles for the maximum 

allowed size of the message (247 bytes). Eliminating this dependence will be a part of 

our future work. 

 

5.5 Conclusions 

We report the first high-speed hardware implementation of the full encryption scheme 

of the IEEE P1363.1 standard (NTRUEncrypt SVES). 

Our results demonstrate the need to revisit the algorithmic construction of the 

NTRUEncrypt SVES in order to make this algorithm more parallelizable and more 

suitable for high-speed hardware implementations in the post-quantum era. 
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It should be noticed that the similar problem has been earlier reported by Gueron et al. 

[57], for software implementations taking advantage of the AVX2 and AVX512 Single 

Instruction Multiple Data (SIMD) instructions of modern Intel processsors. The 

proposed solution was to replace the SHA-1/SHA-256 hash functions with the 

pseudorandom function based on the pipelined AES New Instructions (AES-NI). 

Although this solution may be also applicable to hardware implementations, other 

alternatives, preserving the desired security features, but offering a greater potential for 

parallelization of the BPGM and MGF functions should be considered as well. For 

example, the use of the hardware friendly SHA-3 functions may be considered. 

Natural resistance to timing attacks could be added as well through algorithmic changes 

in the NTRUEncrypt SVES scheme by eliminating the dependence of the size of inputs 

sData and csData to BPGM on the length of the message. 

Additionally, the elimination of the use of SHA-1 in the P1363.1 parameter sets with the 

security levels of 112 and 128 bits should be taken into account, both for security reasons 

[58], as well as in order to avoid any undesired hardware overhead associated with 

implementing multiple hash algorithms within one generic hardware module supporting 

multiple parameter sets. 

Our future work will involve taking advantage of any additional optimizations at the 

algorithmic and hardware architecture levels (including the possible use of unrolled 

implementations of SHA-2, with two or more rounds per clock cycle [59]), adding 

countermeasures against timing attack [56], as well as targeting minimum energy use. 
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6 Hardware/ Software Codesign of NTRUEncrypt 

This chapter focusses on the Hardware/Software codesign of NTRU cryptosystem. We 

demonstrate our design methodology, focusing on finding an optimal partitioning 

scheme to offload the computationally intensive operations to the programmable logic. 

We discussed the input and output interface we adopted for our codesign 

implementation. The critical path analysis of our design was conducted and based on 

that, we explain our efforts to optimally pipeline our design to achieve maximum 

frequency. Eventually, we attempted different techniques to reduce the area utilization 

of our polynomial multiplier We conclude the discussion by providing results for our 

codesign implementation.   

6.1 Methodology 

To fit the design on our Zedboard platform (Zynq-7000)  that has an Artix-7 FPGA, we 

conduct this research on NTRU codesign by adopting a smaller parameter set 

EES401EP1. Using larger parameter sets that take resources more than available in the 

programmable logic of our current platform, limits our capability to fit the design inside 

the FPGA during the implementation phase. To avoid this constraint and allow 

successful implementation and routing of the design, the HW/SW codesign results are 

taken using a smaller parameter set in which the resources take close to 60% of the total 

chip reconfigurable resources.  

Once different optimization techniques are perfected, we intend to apply them to 

designs with bigger parameter sets, EES1499EP1 and EES1499EP1. 
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6.2 Software Profiling 

The results collected through software profiling show that polynomial multiplier takes 

90 % of the total computation time. Based on this fact, it becomes a suitable operation 

to be implemented in reconfigurable logic resources of FPGA.  

6.3 Proposed Partitioning Schemes: 

We proposed four schemes to partition NTRU.   

 

 
 

 

 



89 

 

 

 

 

Figure 20. Partitioning Schemes for HW/ SW Codesign of NTRU 
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6.4 Four popssible partitioning schemes NTRUEncrypt bewteen software 

and hardware 

The figure above shows the possible partitioning schemes for out NTRUEncrypt 

implementation. 

• Scheme 1: Offers full flexibility, but low performance 

• Scheme 2: Only polynomial multiplication is offloaded to the coprocessor for 

improved performance 

• Scheme 3: Polynomial multiplication and combined BPGM/ MGF modules 

are offloaded to the coprocessor for improved performance 

• Scheme 4: Maximum performance gain possible with very limited flexibility 

We implement partitioning scheme 2 as it leaves more room to achieve the balance 

between flexibility through software and performance from the coprocessor. 

POLY 

MULT

do_data do_data
w

di_data
w

di_valid

di_ready

do_valid do_valid

do_ready do_ready

clk rst

clk rst

di_last

di_data

di_valid

di_ready

di_last do_last do_last

 

Figure 21. Interface for Polynomial Multiplier 
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For the HW/ SW codesign implementation of NTRU, we used AXI Stream interface to 

to connect to input and output signals of the polynomial multiplier. In case of 

encryption, we transmit the input data i.e public key “h” and indices of non-zero 

coefficients of blinding polynomial “r” from PS to PL using the following function calls  

1. load_h_e()  

2. load_r_f() 

Loading public key is not a part of encryption. It happens as a part of a separate function 

call, load_h_e (), before any message is encrypted. With a FIFO at the input pdi_data, 

we overlap the multiplication and the transmission of the indices of non-zero 

coefficients of r. 

6.5 Optimizing the Polynomial Multiplier 

Different optimization techniques are employed to improve the performance and reduce 

the area utilization of the design. These techniques are also application to hardware only 

implementation of our design. We reduce the critical path of the hardware coprocessor 

resulting in eventual speedup. The figure below shows the block diagram of the full 

version of polynomial multiplier with maximum area utilization. 
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Figure 22. Polynomial Multiplier – Full Version 

 

We analyzed the critical path of the design using the timing analyzer. 
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Figure 23. Critical Path Analysis for Polynomial Multiplier 

The reports from the timing analyzer of the design with parameter set EES401EP1 with 

no folding show that the critical path goes through the following components. 

1. SIPO w/ PI 

2. Variable Rotator 

3. Adder 

4. PSIO w/PO 
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Figure 24. Full version of the multiplier (Critical Path shown in Red). 

Out of these components, variable rotator introduced 46.2 % of the total delay. We tried 

pipelining our variable rotator at various pipeline levels and analyzed the critical path.  

 

Figure 25. Diagram for Pipelining at different Pipeline Levels 
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It was evident that the pipelining the variable rotator at the pipeline level gave us the 

best results and the critical path was balanced. This way, we could double the operating 

frequency of the polynomial multiplier with a minimal penalty in terms of hardware 

resource. 

 Secondly, we attempt to reduce area utilization of polynomial multiplier reduce the area 

utilization in terms of number of CLB slices and LUTs. This is because it takes the 

largest amount of area resources.  

 

αN/3

PISO w/PO

α

+

ROTATOR

α

αN/3

p1

α

0s p20
αα

c0

0s

1s

α

α

POLYNOMIAL MULTIPLIER – FOLDED BY 3

αN/3 αN/3αN/3

α

αN/3 αN/3 p0p2

p10
α

p00
α

α

+

α

α

0s p2N/3-1
αα

c0

0s

1s

α

α

α
p1N/3-1

α

p0N/3-1
α

pj0
pjN/3-1

<< 1

α

+

α

α

0s p21
αα

c0

0s

1s

α

α

α
p11

α

p01
α

pj1

<< 1<< 1

αN

β

r_f

h_eSIPO w/PI
αN

Nsel

PISO w/PO 

αN/3

αN/3αN/3

R_fe
α(2w)

αN

ce
α(2w)

Nsel

α* w/α 

 

Figure 26. Polynomial Multiplier – Folded Architecture 
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Table 23. Comparison of Results with and without Pipelining at different Pipeline 

Levels 

Pipelined Pipeline 

Level 

Number of 

LUTs 

Number of 

Slices 

Number of 

FFs 

Frequency 

[MHz] 

Full Version 

Yes PL6 28609 7683 13238 153.9 

Yes PL7 28341 8896 13238 164.4 

Yes PL8 26629 7065 13238 136.6 

No N/A 30411 9004 8827 90.4 

Folded Version 

Yes PL6 28550 7578 13238 158.4 

Yes PL7 28074 7403 13260 168.8 

Yes PL8 26669 7079 13260 143.1 

No N/A 28074 7383 8849 93.8 

 

Based on the results, it is evident that there is a significant improvement in terms of 

frequency and we can operate at a frequency of 168.8 instead of 93.8 with a folding 

factor of 3 (i.e. F3) and after pipelining variable rotator at pipeline level of 7 (i.e. PL7). 

Although, area utilization is comparable for both folded and full architecture, folded 

architecture is preferred due the fact that effect of folding will be more profound while 

working on bigger parameter sets.  
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Figure 27. Reconfigurable Resource Utilization of Zynq SoC for HW/ SW Codesign 

Implementation 

Table 24. Results of profiling of the software implementation of NTRUEncrypt 

SVES, using the Cortex A9 ARM Core of Zynq 7020, for the ees401ep1 parameter 

set 

 
Software Function Hardware Equivalent Clock 

cycles 

% of 

Total 

Time 

ntru_gen_poly Performing BPGM on sData & 

calculating R using Poly Mult  

(in a pipelined fashion) 

18081 3.9% 

ntru_octets_2_elements 
5558 1.2% 

ntru_ring_mult_product_indices 407,988 
88.0% 

ntru_coeffs_mod4_2_octets Calculating cR4 using mod 4 & mask 

using MGF 
4636 1.0% 

ntru_mgftp1 
6027 1.3% 

ntru_bits_2_trits 
1391 0.3% 

adding Mtrin to mask Calculating m’ using Poly Add & 

performing Check 1 
4173 0.9% 

ntru_poly_check_min_weight 
2318 0.5% 

add_m'  
3014 0.6% 

elements_2_octets Unloading ciphertext e 
5569 1.2% 

Total  458,754 100.0% 
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Table 25. Results of profiling of the HW/ SW codesign implementation of 

NTRUEncrypt SVES, using the Cortex A9 ARM Core of Zynq 7020, for the 

ees401ep1 parameter set 

 
Software Function Hardware Equivalent Clock 

cycles 

% of 

Total 

Time 

ntru_gen_poly Performing BPGM on sData & 

calculating R using Poly Mult  

(in a pipelined fashion) 

18081 35.0% 

ntru_octets_2_elements 
5558 10.8% 

ntru_ring_mult_product_indices 
857 1.7% 

ntru_coeffs_mod4_2_octets Calculating cR4 using mod 4 & mask 

using MGF 
4636 9.0% 

ntru_mgftp1 
6027 11.7% 

ntru_bits_2_trits 
1391 2.7% 

adding Mtrin to mask Calculating m’ using Poly Add & 

performing Check 1 
4173 8.1% 

ntru_poly_check_min_weight 
2318 4.5% 

add_m'  
3014 5.8% 

elements_2_octets Unloading ciphertext e 
5569 10.8% 

Total  51623 100.0% 
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Table 26. Results of profiling of the hardware implementation of NTRUEncrypt SVES, using 

the Cortex A9 ARM Core of Zynq 7020, for the ees401ep1 parameter set 

 

Software Function Hardware Equivalent 
Clock 

cycles 

% of 

Total 

Time 

ntru_gen_poly 
Performing BPGM on sData & 

calculating R using Poly Mult  

(in a pipelined fashion) 

781 66.7% ntru_octets_2_elements 

ntru_ring_mult_product_indices 

ntru_coeffs_mod4_2_octets 

Calculating cR4 using mod 4 & 

mask using MGF 
281 

24.0% 

 
ntru_mgftp1 

ntru_bits_2_trits 

adding Mtrin to mask 
Calculating m’ using Poly Add & 

performing Check 1 28 

2.4% 

 

 

ntru_poly_check_min_weight 

add_m'  

elements_2_octets Unloading ciphertext e 81 6.9% 

Total  1171 100.0% 

 

Table 27 . Timing analysis of our HW/ SW codesign implementation. Latencies in clock 

cycles correspond to the maximum sizes of messages allowed by a given parameter set. 

 

Operation 

Latency 

(clock cycles) 

% of 

Total 

Time 

ees401ep1 

ENCRYPTION 

Performing BPGM on sData & calculating R using Poly Mult  

(in a pipelined fashion) 

781 66.7% 

Calculating cR4 using mod 4 &  

mask using MGF 

281 24.0% 

Calculating m’ using Poly Add & 

performing Check 1 

28 2.4% 

Unloading ciphertext e 81 6.9% 

Total 1171 100% 

DECRYPTION 

Loading ciphertext e 81 4.3% 

Calculating f*e using Poly Mult 684 36.7% 

Range Conv, mod p, calculating cR using Poly Sub & cR4 using 

mod 4 

26 1.4% 

Calculating mask using MGF 281 15.1% 

Calculating cMbin using Poly Sub & T2B 2 0.1% 

Performing BPGM on csData & calculating cR' using Poly Mult  

(in a pipelined fashion) 

781 41.9% 

Unloading decrypted message cm 8 0.4% 

Total 1863 100% 
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6.6 Conclusion 

In this chapter, we profiled or software code for NTRUEncrypt and studied different 

options for partitioning the design. We implemented the design that was the best 

balanced in terms of optimal partitioning. We implemented the design and performed 

critical path analysis based on the timing analysis. The reports conclude that pipelining 

the variable rotator inside polynomial multiplier will always help for any parameter set. 

A completely balanced pipelined approach can double operating frequency of the 

polynomial multiplier. Folding the polynomial multiplier helps more in case of larger 

parameter sets but is less effective to reduce the area for smaller parameter sets. We were 

able to obtain a speedup of 9x when we offload the polynomial multiplier to the FPGA 

coprocessor. This indicates that we can achieve a substantial speedup using codesign 

approach as compared to the pure software approach if we carefully partition the design 

in a balanced way and then use techniques to parallelize and pipeline the design.  

6.7 Future Work 

We analyzed our design for balanced pipelining and offloaded polynomial multiplier to 

the hardware coprocessor. We left the BPGM and MGF components on the software 

side. In future, our design can be made more flexible so that we could choose between 

different parameter sets on the run time. Similarly, we can incorporate ease of changing 

the HASH function for BPGM/ MGF component.  
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7 CONCLUSIONS & FUTURE WORK 

Based on our contributions discussed in the earlier chapters, we would like to provide 

the reader with concluding remarks and directions for future work in this field of study.  

Our primary focus was to facilitate the process of speeding up and benchmarking 

implementations and as a result, ranking post-quantum public-key cryptosystems. The 

upcoming NIST standard candidate evaluation process for PQC algorithms puts all 

these algorithms in spotlight. The evaluation based on their performance and 

applicability in both hardware and software platforms is of prime importance to move 

forward with the process of standardization. Our design provides a valuable reference 

for any future hardware implementers of PQC schemes. It also paves the way for fair 

ranking through effective benchmarking of post-quantum cryptosystems. Our 

motivation was to have one platform to explore the flexibility of software and 

performance of hardware through HW/SW codesign-based approach. Our design also 

supports a common hardware API which can be adopted for implementations of any 

future post-quantum cryptosystems. For the design space exploration of flexibility vs. 

performance, we have presented a novel HW/SW codesign approach that supports both 

algorithmic and implementation level flexibility. For performance, different techniques 

like pipelining and folding the hardware architecture were used. Due to the importance 

of partitioning between hardware and software, we have thoroughly profiled and 

examined our algorithms to achieve the best of both worlds. The results of our RSA 

design show that balanced partitioning of a design between hardware and software may 

seem challenging but it can support promising flexibility vs performance tradeoff. 
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Through our study based on NTRUEncrypt, our goal was to compare the hardware 

implementations of NTRUEncrypt SVES at the same security level, using the same API, 

from the point of view of the execution time, resource utilization, and speed-up vs. 

software, as well as flexibility and scalability in terms of supporting multiple parameter 

sets. The comparisons revealed that all reported results support only one operand size. 

Only one scalable architecture is reported in literature. Our study on NTRU SVES 

scheme reveals that it is not always sufficient to rely on software profiling. As the 

hardware supports parallel execution of logic, in our case HW profiling of NTRU 

revealed that execution time is dominated by hash functions. We propose both 

architectural and algorithmic level improvements in the design of NTRU to overcome 

this bottleneck of the design. These kinds of observations cannot be made if only 

software profiling is performed.  

PQC   cryptosystems   do   not   have   HW/SW codesign-based   implementations   and 

flexibility explored. Majority of the designs targeted only one or two aspects (operand 

size, use of DSP units, multiple algorithmic schemes) of flexibility. Finally, through our 

flexible HW/SW codesign-based approach, we extend and provide a generic model for 

the evaluation of other PQC algorithms to incorporate architectural and algorithmic level 

improvements through this interesting design technique. The use of a common interface 

along with codesign-based approach to have quick evaluation and early estimates can be 

valuable for the post-quantum cryptographic community in the entire process of 

benchmarking and ranking these candidates. 
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7.1 Possibilities for Future Work 

We highlight some noteworthy aspects through which our adopted design methodology 

can potentially be extended in the future.  

High-Level Synthesis to speed-up development and benchmarking: 

Use of HLS is rather limited in the field of cryptography. However, researchers have 

applied use of HLS in the hardware benchmarking efforts of AES [60] and SHA-3 

finalists [61]. They were able to observe that HLS based designs can obtain the same 

ranking of candidates as the RTL based designs with a small penalty in terms of area 

and performance. The results to evaluation of candidates to the HASH function 

competition SHA-3 were very promising and there was a very good correlation between 

RTL and HLS result with much shorter development time. Currently, there is also work 

done on the comparison of HLS and RTL based designs for CEASER competition. 

Post-Quantum cryptosystems is relatively a new class of cryptosystems. Therefore, 

there is no standard yet and as a result, multiple algorithms have been evaluated from 

the point of view of efficiency in hardware and the current situation is similar to that of 

cryptographic contest for the standardization of SHA-3 hash functions. HLS can help 

in the ranking of candidates with results comparable to RTL with a relatively less 

performance penalty. With the threat of post-quantum computers in near future, it is 

important analyze to as many post-quantum resistant algorithm as possible. The 

development time and comparable ranking obtained using HLS will be more beneficial 

than having a smaller set of candidates evaluated using RTL in the same time frame. 

Comparison of RTL and HLS based approaches in terms of development time, 

execution time and area utilization can also be very beneficial. 
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Algorithmic and architectural level improvements in NTRU: 

Our future work will involve taking advantage of any additional optimizations at the 

algorithmic and hardware architecture levels. From the architectural aspect, we can 

possibly explore the use of unrolled implementations of SHA-2, with two or more 

rounds per clock cycle to remove the bottleneck in NTRU. To reduce the area we can 

also fold the rotator inside the polynomial multiplier unit. At the algorithmic level, SHA-

3 can be adopted instead of SHA-2 or a pseudorandom function based on pipelined AES 

can be used. We can also eliminating (or at least reducing) the dependence of the 

execution time on message size. 

Improvements in HW/SW Codesign-based approach 

For NTRUEncrypt SVES, other partitioning schemes can be explored to even further 

extend the evaluation process. For RSA, the extension could include implementing 

other exponentiation algorithms. communication, computation overlap in design to 

improve performance. Utilizing multiple high performance ports to reduce the number 

of clock cycles for data communications can also be a possible future extension. 

Resistance to Side-Channel Attacks: 

As we implemented the NTRUEncrypt scheme published as the IEEE 1363.1 standard 

specification, the careful choice of parameters is already adopted. Additionally, from the 

security point of view, adding support for resistance against side-channel attacks by 

introducing necessary countermeasures can also be explored for all implemented 

schemes. 
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