
HARDWARE/SOFTWARE CODESIGN APPROACHES TO PUBLIC KEY

CRYPTOSYSTEMS

by

Malik Umar Sharif

A Dissertation

Submitted to the

Graduate Faculty

of

George Mason University

in Partial Fulfillment of

The Requirements for the Degree

of

Doctor of Philosophy

Electrical and Computer Engineering

Committee:

______________________________ Dr. Kris Gaj, Dissertation Director

______________________________ Dr. Jens Peter Kaps, Committee Member

______________________________ Dr. Houman Homayoun, Committee Member

______________________________ Dr. Robert Simon, Committee Member

______________________________ Dr. Monson H. Hayes, Department Chair

______________________________ Dr. Kenneth S. Ball, Dean, Volgenau School

 of Engineering

Date: __________________________ Summer Semester 2017

 George Mason University

 Fairfax, VA

ii

Hardware/Software Codesign Approaches to Public Key Cryptosystems

A Dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at George Mason University

by

Malik Umar Sharif

Master of Science

George Washington University, 2010

Bachelor of Science

National University of Sciences and Technology, 2001

Director: Kris Gaj, Associate Professor

Department of Electrical and Computer Engineering

Summer Semester 2017

George Mason University

Fairfax, VA

x

Copyright 2017 Malik Umar Sharif

All Rights Reserved

xi

DEDICATION

I dedicate this dissertation to my lovely wife, Rabia. It would not have been possible

without her consistent support as a partner all these years. To my mother, who has

always been there for me whenever I needed guidance and her prayers have always

kept me going. I would also like to dedicate this to my father for always believing in me

and lastly to my son, Shaheer. He has always brightened my day with his smile and has

been the reason for my motivation specially in the past couple of years.

xii

ACKNOWLEDGEMENTS

I would specially like to acknowledge and express my sincere gratitude towards my

advisor Dr. Kris Gaj for his consistent guidance, knowledge and mentorship during my

Ph.D study and research. It has always been a pleasure working under his supervision.

His attention to detail and thorough knowledge has helped me immensely to accomplish

the research work I have worked on.

I would also like to thank Dr. Kaps for always giving great feedback whenever I asked

for any guidance. He has always been open to new ideas and insight related to any

challenges I faced during my Ph.D.

I would also like to thank my other committee members, Dr. Houman Homayoun and

Dr. Simon for their valuable comments regarding my thesis study.

I would also extend my gratitude to all fellow present and former Cryptographic

Engineering Research Group (CERG) members for all the discussions, meetings and

valuable feedback they offered throughout these years.

And in the end, a special thanks to all my family members, my parents, my sister, and

my wife Rabia for always being there for me whenever I needed them the most.

xiii

TABLE OF CONTENTS

Page
LIST OF TABLES………………………………………………………………………. viii

LIST OF FIGURES…………………………………………………………………….. x

ABSTRACT……………………………………………………………………………. xi

1 INTRODUCTION ... 1

1.1 Traditional and Post-Quantum Public Key Cryptography ... 1

1.2 Motivation and Research Goals ... 6

1.2.1 Post-Quantum Cryptosystems (PQC) .. 7

1.2.2 Hardware/ Software Codesign ... 8

1.2.3 Zynq All Programmable System on Chip .. 8

1.2.4 Research Questions & Challenges ... 10

2 BACKGROUND ... 11

2.1 Cryptographic Algorithms ... 11

2.1.1 RSA .. 11

2.1.2 Lattice-Based Cryptosystems ... 15

2.1.3 NTRUEncrypt Cryptosystem ... 18

2.2 Technology .. 20

2.2.1 Hardware/Software Codesign Platforms .. 20

2.2.2 Hardware/Software Codesign with Xilinx Zynq SoC 23

2.2.3 Type of AXI Interfaces in Zynq SoC ... 29

2.2.4 AXI DMA .. 32

2.2.5 Embedded FPGA Resources .. 32

3 SURVEY OF PREVIOUS WORK .. 36

3.1 HW/ SW Codesign Implementations of RSA .. 36

3.2 Previous HW/ SW Codesign Implementations on Traditional Public-Key

Cryptography ... 39

3.3 Previous Implementations of Lattice Based Cryptosystems 43

3.3.1 Previous Implementations of NTRU Cryptosystem .. 43

3.3.2 Previous Implementations on Modular Multiplier Designs 45

4 HARDWARE/SOFTWARE CODESIGN OF RSA .. 47

4.1 Software Development ... 47

4.1.1 Developing and Extending Software APIs in RELIC Library 47

4.1.2 Hardware/Software Partitioning .. 48

xiv

4.2 Operation of the Processing System .. 49

4.3 Choice of Communication Interface .. 53

4.4 Implementing Programmable Logic (PL) – Our Hardware Accelerator 54

4.5 Results and Comparison .. 58

4.6 Conclusion ... 63

5 CUSTOM HARDWARE IMPLEMENTATION OF NTRUEncrypt 64

5.1 Preliminaries .. 64

5.2 NTRUEncrypt SVES ... 65

5.3 Hardware Design ... 69

5.3.1 Hardware API & Interface of NTRU core ... 71

5.3.2 Top-Level Block Diagram ... 72

5.3.3 Diagrams of Selected Lower-Level Components .. 76

5.4 Results .. 79

5.5 Conclusions .. 85

6 Hardware/ Software Codesign of NTRUEncrypt .. 87

6.1 Methodology .. 87

6.2 Software Profiling .. 88

6.3 Proposed Partitioning Schemes:... 88

6.4 Four popssible partitioning schemes NTRUEncrypt bewteen software and hardware

6.5 Optimizing the Polynomial Multiplier ... 91

6.6 Conclusion ... 100

6.7 Future Work ... 100

7 CONCLUSIONS & FUTURE WORK .. 101

7.1 Possibilities for Future Work ... 103

A. PUBLICATIONS ... 105

xv

LIST OF TABLES

Table Page

Table 1. Short History of Quantum Computing... 3

Table 2. Comparison with Alternative Solutions (Source: Xilinx Video Tutorials)

.. 10

Table 3 The Underlying Security Problem and the Best Known Algorithms for

Solving this Problem .. 16

Table 4 Major Algorithms of Lattice-based cryptosystems and their Publication

Dates .. 17

Table 5. Public Key Sizes for Lattice-based algorithms for selected Security

Levels. .. 18

Table 6. Communication Interface Options in Zync SoC.................................... 29

Table 7. HW/ SW Codesign Implementations of RSA.. 38

Table 8. HW/ SW Codesign Implementations of ECC for 80-bit security. 40

Table 9. Selected Hardware Implementations of NTRU 45

Table 10. Implemented hardware functions ... 50

Table 11. Comparison of our HW/SW Implementation with software

implementation based on RELIC for four operand sizes and three

exponentiation schemes. Note: CCpre – Clock cucles for preprocessing,

CCpost – Clock cycles for postprocessing, CCproc – Clock cycles for

processing, CCsw – Clock cycles for software, CChw/sw – Clock cycles for

HW/SW codesign... 60

Table 12. Comparison of our work with existing designs of modular

exponentiation ME from literature. Note: * - the execution time was

determined for the ME scheme and operand size marked by this symbol,

SLID – Sliding Window Method, MPL – Montgomer Powering Ladder,

BFL – Blinded Fault Resistant Exponentiation ... 61

Table 13. Basic operations of Encryption and Decryption. 66

Table 14. Inputs, Outputs, and Intermediate Variables 67

Table 15. Parameters of the algorithm, architecture, and input affecting the

execution time, for two parameter sets ees1499ep1 and ees1087ep1. 70

Table 16. Auxiliary components used in the top-level block diagram and the

diagrams of lower-level components. .. 73

Table 17. Resource utilization and performance metrics of major component

units. Latencies correspond to the ees1499ep1 parameter set. 80

Table 18. Timing analysis of our hardware implementation. Latencies in clock

cycles correspond to the maximum sizes of messages allowed by a given

parameter set. ... 81

Table 19. Results of profiling of the software implementation of NTRUEncrypt

SVES from [9], using the Cortex A9 ARM Core of Zynq 7020, for the

ees1499ep1parameter set ... 82

Table 20. Speed up of Hardware (This Work) vs. Software (source code [54]) . 83

xvi

Table 21. Previous Hardware Implementations of NTRU. Notation: E –

encryption, D – decryption, E/D: Encryption & Decryption. 84

Table 22. Comparison of the results for the hardware implementation of Poly

Mult by Liu et al. using Altera Cyclone IV, and this work using Xilinx

Kintex-7. .. 84

Table 23. Comparison of Results with and without Pipelining at different

Pipeline Levels ... 96

Table 24. Results of profiling of the software implementation of NTRUEncrypt

SVES, using the Cortex A9 ARM Core of Zynq 7020, for the ees401ep1

parameter set .. 97

Table 25. Results of profiling of the HW/ SW codesign implementation of

NTRUEncrypt SVES, using the Cortex A9 ARM Core of Zynq 7020, for

the ees401ep1 parameter set .. 98

Table 26. Results of profiling of the hardware implementation of NTRUEncrypt

SVES, using the Cortex A9 ARM Core of Zynq 7020, for the ees401ep1

parameter set .. 99

Table 27 . Timing analysis of our HW/ SW codesign implementation. Latencies

in clock cycles correspond to the maximum sizes of messages allowed by a

given parameter set. ... 99

xvii

LIST OF FIGURES

Figure Page

Figure 1. Scope of Research .. 2

Figure 2. Discrete FPGA-Processor Combination ... 21

Figure 3. Zync SoC Z7020 platform with interface between PS and PL 25

Figure 4. SIPO in Input interface of Coprocessor.. 26

Figure 5. PISO in Output interface of Coprocessor ... 26

Figure 6. Processor Ports for Communication between PS and PL 28

Figure 7. AXI Interfaces .. 29

Figure 8. AXI-Lite Interface .. 30

Figure 9. AXI Full Interface .. 31

Figure 10. AXI Stream Interface ... 31

Figure 11. DSP48 inside Zync SoC Z7020 and Latency selection to operate at 400

MHz ... 33

Figure 12. True Dual Port BRAM to store input data.. 34

Figure 13. Hierarchy of Operations and Tentative Partitioning Schemes in RSA 48

Figure 14. Detailed Hardware Coprocessor Design .. 56

Figure 15. Flow diagram of SVES Encryption (top) and Decryption (bottom) 66

Figure 16. NTRU Interface compatible with the PQC Hardware API interface [8].... 71

Figure 17. Top-level block diagram of the developed hardware architecture of SVES.

N represents max(1499, 1087)=1499. .. 74

Figure 18. Architecture of the polynomial multiplier, folded by a factor of 3 78

Figure 19. Hardware architecture of the combined unit, BPGM/MGF, implementing

the Blinding Polynomial Generation Method and Mask Generation Function ... 79

Figure 20. Partitioning Schemes for HW/ SW Codesign of NTRU 89

Figure 21. Interface for Polynomial Multiplier.. 90

Figure 22. Polynomial Multiplier – Full Version .. 92

Figure 23. Critical Path Analysis for Polynomial Multiplier 93

Figure 24. Full version of the multiplier (Critical Path shown in Red). 94

Figure 25. Diagram for Pipelining at different Pipeline Levels 94

Figure 26. Polynomial Multiplier – Folded Architecture ... 95

Figure 27. Reconfigurable Resource Utilization of Zynq SoC for HW/ SW Codesign

Implementation .. 97

xviii

ABSTRACT

HARDWARE/SOFTWRE CODESIGN APPROACHES TO PUBLIC KEY

CRYPTOSYSTEMS

Malik Umar Sharif, Ph.D.

George Mason University, 2017

Thesis Director: Dr. Kris Gaj

If a quantum computer with a sufficient number of qubits was ever built, it would easily

break all current American federal standards in the area of public-key cryptography,

including algorithms protecting the majority of the Internet traffic, such as RSA,

Elliptic Curve Cryptography (ECC), Digital Signature Algorithm (DSA), and Diffie-

Hellman. As a result, a new set of algorithms, resistant against any known attacks

involving quantum computers, must be developed. These algorithms are collectively

referred to as Post-Quantum Cryptography (PQC). The standardization effort for these

algorithms is likely to last years and result in the entire portfolio of algorithms capable

of replacing current public-key cryptography schemes. As a part of this standardization

process, fair and efficient benchmarking of PQC algorithms in hardware and software

becomes a necessity. Traditionally, software implementations of public-key algorithms

provided the highest flexibility but lacked performance. On the other hand, custom

hardware implementations provided the highest performance but lacked flexibility and

adaptability to changing algorithms, parameters, and key sizes. Therefore, in this work,

we investigate the suitability of the hardware/software codesign for implementing and

xix

evaluating traditional and post-quantum public-key cryptosystems from the point of

view of their implementation efficiency.

As our case studies, we considered one traditional public key cryptosystem, RSA, and

one post-quantum public key cryptosystem, NTRUEncrypt. We implemented both of

them using custom hardware, as well as software/hardware codesign. The Xilinx Zynq-

7000 System on Chip platform, which integrates a dual-core ARM Cortex A9

processing system along with Xilinx programmable logic, was used for our

experiments. The performance vs. flexibility trade-off has been investigated, and the

speed-up of our software/hardware codesign implementations vs. the purely software

implementations on the same platform is reported and analyzed. Similarly, the speed-

up of the custom hardware vs. hardware-software codesign is investigated as well.

Additionally, we have determined and analyzed different percentage contributions of

the execution times for equivalent component operations executed using the

aforementioned three different implementation approaches (custom hardware,

software/hardware codesign, and pure software). We demonstrate that

hardware/software codesign can reliably assist in early evaluation and comparison of

various public-key cryptography schemes. Our project is intended to pave the way for

the future comprehensive, fair, and efficient benchmarking of the most promising

encryption, signature, and key agreement schemes from each of several major post-

quantum public-key cryptosystem families.

1

1 INTRODUCTION

In this chapter, we describe the existing traditional and post-quantum public key

cryptosystems that are used in the field of cryptography and reported in the literature.

We also provide the motivation behind working on post-quantum public key

cryptosystems and the reason why cryptographic community should focus its attention

on preparing for the next generation of quantum resistant algorithms. We also

emphasize on the importance of choosing the hardware/software codesign platform in

an effort to evaluate and benchmark these algorithms and reasons to choose Xilinx

system on chip solution to implement the designs and analyze the results.

1.1 Traditional and Post-Quantum Public Key Cryptography

The idea of Public-Key Cryptography (PKC) was proposed by Diffie and Hellman in

1976 [1]. Later during the next year Ron Rivest, Adi Shamir and Leonard Addleman

[2] proposed another public-key cryptosystem known as RSA which enabled

encryption of a message using public key of the receiver. Only the receiver could

decrypt the message with its private key which is kept as a secret.

Public-key cryptosystems simplified the issue of key management. As they require

intense mathematical calculations based on integer factorization and discrete

logarithms, the implementations were much slower than symmetric key algorithms for

encryption. As a result, secret-key cryptography kept on being in use for bulk

encryption, while public-key cryptosystems were used for key management. With the

advancements in the computing power of modern computers and due to efficient

algorithms for integer factorization, the increasing size of RSA modulus caused the

implementations to become slower due to large key sizes.

2

Another branch of traditional public-key cryptography (PKC) is Curve-based

cryptography (e.g. ECC). It provides the same level of security as RSA with

considerably shorter operands. In many cases, ECC has performance advantages (fewer

computations) and bandwidth advantages (shorter signatures and keys) over RSA.

However, ECC is still considered as a computational intensive application due to the

complexity of scalar or point multiplications. A steady progress has been made since

mid-1980s, when the concept of quantum computing was born. From the point of view

of cryptography, the most important discovery was made in 1994, when Peter Shor

developed his famous quantum algorithm for factoring [3].

Cryptography

 Secret-Key

Cryptography

Post Quantum Public-Key

Cryptography (PQPKC)

NTRU R-LWE

Traditional Public-Key

Cryptography

RSAECC

Code-based Lattice-based Multivariate Hash-based

Pairing Based

Cryptography (PBC)

Figure 1. Scope of Research

After some generalizations, this algorithm has been shown to solve the remaining two

mathematical problems underlying modern public key cryptography: the discrete

logarithm problem, elliptic curve discrete logarithm problem and factorization problem,

3

 Shor’s algorithm can be executed only on a specialized machine known as a quantum

computer. As seen from Table 1, no quantum computer capable of handling numbers

anywhere close to those used in cryptography has been reported to be built so far.

Nevertheless, the danger is real, and the rate of progress in quantum computing research

is hard to predict. A short history of quantum computing is summarized in Table 1.

Table 1. Short History of Quantum Computing

Date Event

1985 David Deutsch came up with the idea of quantum logic gates.

1994 Peter Shor designed a quantum algorithm for factoring integers [3].

1996 Lov Grover formulated a quantum algorithm capable of reducing the time

necessary to break a secret-key cipher from 2n to 2n/2 operations.

1998 First quantum computer built using 2 qubits

2000 A 7-qubit quantum computer developed by Los Alamos National Laboratory.

2001 IBM demonstrated Shor’s Algorithm by factoring 15 using a Nuclear Magnetic

Resonance quantum computer with 7 qubits.

2005 The first qubyte was created by the Institute of Quantum Optics and Quantum

Information of the University of Innsbruck based on ion traps.

2006 Scientists in Massachusetts established methods for controlling a 12-qubit

system.

2007 A Canadian startup, D-Wave, successfully demonstrated a 16-qubit quantum

computer which could solve a Sudoku puzzle.

2011 D-Wave Systems claimed developing a 128-qubit processor chipset.

2011 Proof that a quantum computer can be made with a Von Neumann architecture

(separation of RAM).

2011 Physicists at the University of Science and Technology of China in Hefei,

factored 143 into prime factors 11 and 13 using just 4 qubits.

2013 Google announced launching a “Quantum Artificial Intelligence Lab,” holding

a 512-qubit quantum computer developed by D-Wave Systems.

4

2013 An international team of researchers led by Mike Thewalt of Simon Fraser

University in Canada were able to maintain the superposition states of qubits

for an entire 39 minutes, thus breaking all previous records by a wide margin.

[8]

Arithmetic operations involved in traditional and post quantum PKC are

computationally intensive and for hardware implementations, programmable logic

inside FPGA is considered a natural candidate to speed up the computations using

pipelining and parallelizing techniques. A lot of research has been done to build FPGA

based coprocessors for traditional PKC [4], [5], [6], [7].

These designs mostly focus on improving the performance of the hardware but they are

less flexible. Since 2000, there is a growing trend to use HW/SW codesign techniques

to build cryptographic applications. These designs offer the flexibility of the software

but also provide the performance of the hardware. Initially, these implementations were

plagued with communication overhead problems between the software and hardware.

With technological advancements, vendors now provided development environments

where dedicated paths are provided between processor and reconfigurable logic to

minimize latency during data communication and maximize performance. Specialized

embedded resources allow configurable arithmetic units inside programmable logic to

implement cryptographic operations effectively. There are relatively few HW/SW

codesigns for RSA because RSA requires large operand sizes to provide acceptable

security. Arithmetic operations involved in RSA are complex and time consuming. It

requires high speed interfaces to overcome the communication overheads associated

with working operations on large operands. However, the algorithm does not involve

5

technical jargon as other public-key cryptosystems. Key generation phase and different

exponentiation schemes can be implemented in software, while the actual algorithm

that involves modular multiplication can be sped up in hardware. Modular

multiplications of large numbers in RSA are more suited for a hardware and fast

implementations in hardware can be realized through pipelining the design. On the

other hand, there are a lot of HW/SW codesign implementations for ECC [9], [4], [10],

[5], [6], [7] because ECC requires smaller key sizes to provide equivalent security as

RSA. The scope of this research is to use one of most promising HW/SW platforms

that provides exceptional performance in all categories i.e. software, communication

interfaces and hardware. We try to improve the overall system-level performance of

RSA. This includes minimizing the communication overhead, equivalent performance

to a hardware coprocessor while retaining the flexibility of the software. We will

provide a generic model of a HW/ SW codesign that will be applicable to traditional

PKC but our focus is to apply all the techniques to one of the promising branches of

post-quantum PKC i.e. Lattice based cryptography. The primitive cryptographic

operations involved in one of the selected lattice based algorithms (NTRU) are

multiplications and modular reductions. The basic operations involved in modular

exponentiation of RSA are also modular multiplications and reductions. Therefore, the

design methods and techniques that we deployed for HW/SW codesign

implementations of RSA are also beneficial in the implementation of NTRU.

6

1.2 Motivation and Research Goals

There is a strong need to analyze and implement post-quantum public key schemes in

a generic way (i.e., supporting different key sizes) using at least the following

platforms:

1. Microprocessors (software)

2. Microcontrollers (software)

3. FPGAs (Xilinx, Altera, and Microsemi families) (hardware)

4. ASICs (hardware)

5. Systems on chip (e.g., Xilinx ZYNQ) (software/hardware codesign).

In this section, we discuss our major research goals and how they would help in

benchmarking this emerging class of post-quantum public-key cryptosystems.

The scope of our research is to contribute in the area of efficient and comprehensive

benchmarking of post-quantum public-key schemes. We focus on developing a

generalizable framework for hardware and HW/ SW codesign based approaches that

can be applied to post quantum cryptosystems. For HW/SW codesign, RSA is

considered as a test case and complete system integration is done using RSA to analyze

the feasibility of HW/ SW codesign on Zynq SoC Platform. RSA is still one of the most

widely used cryptosystems in real applications. As it is quite computationally intensive,

using it for HW/SW codesign could also serve to optimize the overall performance of

RSA while still retaining the flexibility offered by software. We believe that our HW/

SW codesign techniques are generic enough to be applied to traditional and post

quantum PKC.

7

For hardware benchmarking of post-quantum public-key algorithms, we use the same

PQC Hardware Application Programming Interface (API) to contribute in the direction

of standardization of these algorithms for future developers.

1.2.1 Post-Quantum Cryptosystems (PQC)

If a quantum computer with a sufficient number of qubits was ever built, it would easily

break all current NIST standards in the area of public-key cryptography, including

algorithms protecting majority of the Internet traffic, such as RSA, ECC, DSA, and

Diffie-Hellman. All traditional methods of dealing with growing computational

capabilities of potential attackers, such as increasing key sizes, would be futile. This is

because the execution time of the Shor’s algorithm [3] increases only as a cube, k3, of

the key size, k (i.e., the Shor’s algorithm runs in the polynomial time on a quantum

computer).

In order to protect cryptography and secure communications as we know it, and prevent

it from the complete collapse, when the first sufficiently large quantum computer is

developed, a decisive and well-coordinated action is required right now.

Since no clear and reliable replacement for current public key standards is in site, a

substantial amount of time is needed in order to

• Study, improve, and optimize the most promising families of cryptographic

algorithms resistant to quantum attacks

• Build confidence among members of the cryptographic community and end

users

• Improve the usability, and

8

• Develop efficient implementations in multiple domains, resistant to side-

channel attacks.

1.2.2 Hardware/ Software Codesign

We have selected HW/ SW codesign as one of the chosen design strategies to

implement post quantum cryptosystems. With the advent of quantum computers in a

not-too-distant future when the cryptography protecting virtually all e-mails, medical

and financial records, and online transactions will be rendered obsolete by quantum

computing, it is imperative to be prepared as soon as possible. HW/SW codesigns offer

a balance between performance and efficiency with a substantial reduction in overall

development time. This will greatly help in early investigation, selection and

benchmarking of PQC without the delays of fine-tuned pure hardware

implementations.

1.2.3 Zynq All Programmable System on Chip

Xilinx, Altera and Microsemi hold more than 90% of the FPGA market share. All big

players in market are now incorporating processors along with reconfigurable logic in

their System on Chip (SoC) solutions. ARM, being the biggest player in processor

market is deployed in most of the SoC designs. Xilinx and Altera have spent a lot of

time and investment into these SoC based development environment. It includes

developing programming/ debugging tools for both processor and programmable logic,

and ARM bus standard compatible IPs to work on for the next decade.

Xilinx offered Zynq SoC platform that is specifically designed to optimize overall

system-level performance. It includes high performance dual-core processors to speed

up the software portion. High performance interfaces between PS and PL allow access

to L1/ L2 caches of the processor, thus providing high data bandwidth and reduced

9

latency. PL consists of reconfigurable logic based on Artix-7 that has support for high-

speed arithmetic.

Zynq is particularly an ideal platform for research on Post Quantum Cryptosystems

(PQC). As Industry is realizing that advent of quantum computers will soon represent

a practical threat. It will take decades to deploy post quantum resistant algorithm and

schemes. These schemes require proven cryptanalysis and performance evaluation

across multiple platforms. This situation highlights the importance of development

time of algorithms under investigation. Zynq SoC platform provides drastic

improvements in development time. It allows us to implement software, hardware or

HW/ SW codesigns using the same platform. Thus, covering all three aspects i.e.

software, hardware and HW/SW for PQC.

Zynq SoC platform provides the best overall solution when compared to ASIC, ASSP

and 2 chip solutions. It allows high performance due to industry standard ARM

processor, latest Artix-7 based programmable logic and high-performance interfaces

between PS and PL. It has a low power consumption due to the fact that both PS and

PL are mapped onto the same chip. It provides flexibility in terms of scalability,

portability, re-programmability and ease of partitioning. It has a very low risk and

reduced time to market due to HLS based solution. On the other hand, ASIC based

solutions provide excellent performance, reduced power consumption and unit cost but

lack flexibility and scalability. They have huge risk of failure and time to market is

quite substantial. ASSP based solutions lack flexibility and 2 chip solutions have higher

power consumption, unit cost and communication overhead.

10

Table 2. Comparison with Alternative Solutions (Source: Xilinx Video Tutorials)

1.2.4 Research Questions & Challenges

Some challenges in the overall evaluation of these algorithms were

• How to partition the design effectively between software and hardware? Where

is the best sweet spot for optimal results in terms of performance and flexibility

trade-off? What criteria to take into account to determine the point of partition?

Although, transferring complete logic to hardware will result in faster

implementation, how large is the price in terms of flexibility and development

time.

• Can we develop a framework to assist in reliable ranking of candidates from post

quantum cryptosystems using these approaches? Ranking new candidates to a new

standard based on RTL implementations would be too time consuming. There are

multiple parameters, algorithms and key sizes so it would be faster and efficient to

use codesign approach to assist in the comprehensive analysis. At the same time,

fine-tuned hardware implementation provides more detailed insight about the

techniques that can be used to optimize their performance on these platforms.

11

2 BACKGROUND

In this chapter, we cover the necessary background to guide the reader towards

understanding the core details of RSA and HW/SW codesign based topics. We start

from the concepts behind RSA-based cryptosystems and the arithmetic involved in

implementing RSA.

2.1 Cryptographic Algorithms

2.1.1 RSA

The RSA cryptosystem, named after its inventors Ron Rivest, Adi Shamir, and Len

Adleman [2] was the first public key cryptosystem and is still one of the most important

ones. RSA is a public and private key based cryptosystem. Public key of the receiver is

used to encrypt messages. The receiver then uses the private key to decrypt the

ciphertext generated by the sender. The phases involved in RSA can be divided into

three categories.

Key Generation

Let 𝑃 and 𝑄 be two distinct large prime numbers. The product of these two primes is

called the modulus 𝑁. The security of RSA lies in the difficulty of factoring the

modulus 𝑁. The Euler’s function is given by

𝝋(𝑵) = (𝑷 − 𝟏)(𝑸 − 𝟏)

An integer 𝑒 also called the public key exponent is typically selected to be relatively

small. e.g., e=216 + 1. From the efficiency point of view, it also helps, if e has a small

12

number of 1’s in its binary representation. The public key consists of the modulus 𝑁

and the public key exponent 𝑒. Later during decryption, a private key exponent 𝑑 is

required which is computed as

𝒅 = 𝒆−𝟏 (𝒎𝒐𝒅 𝝋(𝑵))

The public key exponent along with the modulus 𝑁 are published. The private key

exponent 𝑑 and both prime numbers 𝑃 and 𝑄 are kept secret. The encryption and

decryption described below are performed using large 𝑘-bit integers typically larger

than 1024 bits to ensure security.

Encryption

The ciphertext is obtained by encrypting the message with the public key as follows

𝒄 ≡ 𝒎𝒆 (𝒎𝒐𝒅 𝑵)

Decryption

The message can be decrypted using the ciphertext and the private key as follows

𝒎 ≡ 𝒄𝒅 (𝒎𝒐𝒅 𝑵)

Decryption involves an exponent 𝑑 and is usually slower than encryption in RSA. Once

the modulus 𝑁, 𝑒 and 𝑑 are generated, RSA encryption/decryption is based on

modular exponentiation, which can be performed using successive modular

multiplications. To improve overall performance of encryption and decryption, the key

lies in efficiency of the underlying modular multiplications.

 Montgomery Modular Multiplication (MMM)

Montgomery multiplication [22] is commonly used when large number of

multiplications are to be performed with the same modulus 𝑀, i.e., in modular

exponentiation. To keep the products from growing after each multiplication, reduction

13

modulo 𝑀 has to be performed at each step, which slows down the whole process.

Montgomery multiplication allows us to compute products without reduction modulo

𝑀 as it replaces division by 𝑀 with division by a power of 2, which can be

accomplished by a shift operation.

The Montgomery product MP computed because of Montgomery multiplication is in

the form of 𝑆 = 𝐴𝐵𝑅−1 (𝑚𝑜𝑑 𝑀), where 𝐴 and 𝐵 are the multiplication arguments, 𝑀

is the modulus, 𝑆 is the final result, and 𝑅 = 2𝑛, where 𝑛 is equal to the number of bits

of 𝑀.

The additional overhead involved in MMM is the conversion of operands to

Montgomery domain as shown below. The conversion can be performed by computing

a Montgomery product (MP) given below:

𝑋′ = 𝑀𝑃(𝑋, 22𝑛 (𝑚𝑜𝑑 𝑀), 𝑀)

= 𝑋 ⋅ 22𝑛 ⋅ 2−𝑛 (𝑚𝑜𝑑 𝑀)

= 𝑋 ⋅ 2𝑛 (𝑚𝑜𝑑 𝑀)

Once the final result is computed, a conversion back from the Montgomery domain is

performed as follows:

14

𝑆 = 𝑀𝑃(𝑆′, 1, 𝑀)

= (𝑆 ⋅ 2𝑛) ⋅ 1 ⋅ 2−𝑛 (𝑚𝑜𝑑 𝑀)

= 𝑆 (𝑚𝑜𝑑 𝑀)

Montgomery Multiplication based on Orup’s Algorithm (OMP)

In 1995, Orup proposed a quotient pipelining technique shown in algorithm 2, for

implementing Montgomery multiplication [23]. His algorithm, shown below, produces

the final result of multiplication in the form of 𝑆 = 𝐴𝐵𝑅−1 𝑚𝑜𝑑 𝑀, where 𝐴 and 𝐵

are the multiplication arguments, 𝑀 is the modulus, 𝑆 is the final result, and 𝑅 = 2𝑛 ,

where 𝑛 is equal to the number of bits in 𝑀.

The modulus 𝑀, used in Montgomery multiplication for the reduction part, is replaced

by 𝑀̃ (called 𝑀𝑤𝑎𝑣𝑒 in all subsequent sections) and is given by

𝑀̃ = (𝑀′ 𝑚𝑜𝑑 2𝑘(𝑑+1)) 𝑀

15

2.1.2 Lattice-Based Cryptosystems

There are three major families of post-quantum cryptosystems [11]:

1. Code-based cryptosystems, such as the McEliece and Niederreiter schemes

2. Lattice-based cryptosystems, such as Ring-LWE (Ring-Learning with Errors)

and NTRU, and

3. Multivariate cryptosystems, such as Rainbow and HFE.

Their underlying mathematical problems, which at least partially determine the security

of these schemes, and the best algorithms for solving these problems are summarized

in Table 3.

Lattices were first introduced and studied by famous mathematicians Joseph Louis

Lagrange and Carl Friedrich Gauss in the 18th and 19th century. The capability to create

a public key cryptosystem based on these mathematical structures was discovered by

Ajtai in 1997 [12].

Some lattice problems have been proven to be average-case hard, which is a property

beneficial for cryptography. There are, however, methods for lattice reduction, which

aim to convert an average basis for the algorithm to a good basis. A popular such

algorithm is the LLL (Lenstra– Lenstra–Lovász) algorithm, which is an efficient

scheme for giving an output of an almost reduced lattice basis in polynomial time. The

LLL algorithm thus led many to believe that the lattice-problem could actually become

an easy problem in practice.

16

Table 3 The Underlying Security Problem and the Best Known Algorithms for

Solving this Problem

 Code-based Lattice-based Multivariate

Publication year of

the first algorithm

1978 1997 1988

Name of the first

proposed algorithm

McEliece

public key

encryption

Ajtai-­‐ Dwork

public key

encryption

Matsumoto-Imai (C*)

public key

encryption and

signature

schemes

Underlying

mathematical

problems

Hardness of

decoding in a

random linear

code. Exponential

indistinguishability

of Goppa codes.

Code equivalence

problem.

Lattice problems:

Shortest Vector

Problem (SVP).

Closest Vector

Problem (CVP).

Shortest

Independent

Vectors Problem

(SIVP).

MQ (Multivariate

Quadratic) problem =

solving a set of quadratic

equations over a finite

field

Best algorithms for

solving the

underlying

problems

CSD

(Computational

Syndrome

Decoding).

CF (Codeword

Finding). Complete

Decoding. Goppa

Bounded Decoding.

Information Set

Decoding.

Structural

attacks (e.g.,

recognizing code

structure)

LLL (Lenstra,

Lenstra, Lovasz,

1982), with

extensions by

Schnorr 1987

Linearization

Equations.

LazardFaugère System

Solvers (including

Gröbner Bases, XL,

F4, F5). Differential

Attacks. Rank Attacks

(including MinRank).

Distilling Oil from

Vineger.

Today, despite the LLL algorithm, the lattice problem still seems intractable for

sufficiently large lattices. No significant improvements in the algorithms solving the

general cases of the lattice problems were reported since 1980s. The major advantages

of the entire family are strong security proofs based on worst-case hardness, efficient

implementations, and simplicity.

17

Table 4 Major Algorithms of Lattice-based cryptosystems and their Publication Dates

Cryptographic Scheme Algorithms

Encryption Ring-LWE (Ring-Learning with Errors, 2005-2008),

NTRUEncrypt (1998),

GGH: Goldreich, Goldwasser, Halevi (1997)*,

Ajtai-Dwork (1997)†,

Signature NTRUSign with perturbation (2005),

Lyubashevsky-Micciano (2008),

GPV: Gentry, Peikert, Vaikuntanathan (2008)

NTRUSign (2003)*,

GGH (1997)*,

Identification schemes Micciancio-Vadhan (2003),

Lyubashevsky (2008)

Identity Based

Encryption

GPV: Gentry, Peikert, Vaikuntanathan (2008)

Oblivious Transfer PVW: Peikert, Vaikuntanathan, Waters (2008)

Implementing majority of cryptosystems from this family does not involve multi-

precision arithmetic. Only additions and multiplications mod q are used, where q can

be a power of 2. High level of parallelization can be also used to speed up the

implementations on multiple platforms. Public key size can be reduced by using

restricted classes of lattices, such as cyclic lattices.

A practical scheme, without a supporting security proof, called NTRU, is likely to be

the only representative of this family currently used in practice. In particular, this

scheme been already standardized by IEEE and ANSI. For other schemes, still more

research and confidence is required.

One of the small weaknesses of the entire family is a non-zero probability of decryption

errors. This probability can be made very small with an appropriate choice of

18

parameters (e.g. 1%). Any encryption scheme can be also combined with error

correction codes to reduce error probability to undetectable levels.

Table 5. Public Key Sizes for Lattice-based algorithms for selected Security Levels.

112-bit 128-bit 192-bit 256-bit

NTRU: 552 B

(N=401, q=211)

[EBACS]

NTRU: 604 B

(N=439, q=211)

[EBACS];

LWE: 140 KB

NTRU: 815 B

(N=593, q=211)

[EBACS]

NTRU: 1022 B

(N=743, q=211)

[EBACS]

* 1 KB = 1024 bytes

† NTRU: public key size = N·log2 q

2.1.3 NTRUEncrypt Cryptosystem

NTRUEncrypt is a polynomial ring-based public-key encryption scheme that was first

introduced at Crypto’96. The first formal paper describing this scheme was published

at ANTS III [13]. In 2008, an extended version of this algorithm was published as the

IEEE 1363.1 Standard Specification for Public Key Cryptographic Techniques Based

on Hard Problems over Lattices [14]. Within the standard, the described algorithm is

called Short Vector Encryption Scheme – SVES. Since the core of this algorithm is

known in the academic literature as NTRUEncrypt, we will refer to the full

cryptosystem as NTRUEncrypt SVES. Further standardization efforts included the

Financial Services Industry Standard ANSI X9.98-2010 [15] and the Consortium for

Efficient Embedded Security standard, EESS #1 [16]. Additionally, an Internet Draft

proposing the use of NTRUEncrypt in the handshake for the Transport Layer Security

(TLS) v1.3 has been developed in 2016 [17].

19

The recent renewed interest in NTRU is at least partially driven by its presumed

resistance to any efficient attacks using quantum computers. In Feb. 2016, NIST has

published a draft report [18] and announced its plans of starting the standardization

effort in the area of post-quantum cryptography [19]. This effort is likely to last years

and result in an entire portfolio of algorithms capable of replacing current public-key

cryptography schemes. This initial announcement was followed by the official Call for

Proposals and Request for Nominations for Public-Key Post-Quantum Cryptographic

Algorithms, issued in Dec. 2016 [20]. As a part of this standardization process, fair and

efficient benchmarking of PQC algorithms in hardware and software becomes a

necessity.

NTRUEncrypt has three major parameters (N, p, q) such that

a) N is prime,

b) p and q are relatively prime, gcd(p,q)=1, and

c) q is much larger than p

For the purpose of efficiency p is typically chosen to be 3, and q as a power of two. The

scheme is based on polynomial additions and multiplications in the ring R=Z[X]/XN-1.

We use the “∗” to denote a polynomial multiplication in R, which is the cyclic

convolution of the coefficients of two polynomials. After completion of a polynomial

multiplication or addition, the coefficients of the resulting polynomial need to be

reduced either modulo q or p. The key creation process also requires two polynomial

inversions, which can be computed using the Extended Euclidean Algorithm. During

the key generation, the user chooses two random secret polynomials F ∈ R and g ∈

 R, with so called “small” coefficients, i.e., coefficients reduced modulo p (typically

20

chosen to be in the integer range from -1 to +1, and thus limited to -1, 0, and 1. The

private key f is computed as f=1+pF. The public key h is calculated as

h = f-1 * g  p in (Z/qZ)[X]/(XN – 1)

The message m is assumed to be a polynomial with “small” coefficients. The ciphertext

is computed as

e = r * h + m (mod q)

where r ∈ R is a randomly chosen polynomial with “small” coefficients.

The decryption procedure requires the following three steps:

1) calculate f ∗ e (mod q)

2) shift coefficients of the obtained polynomial to the range [−q/2, q/2),

3) reduce the obtained coefficients mod p.

2.2 Technology

2.2.1 Hardware/Software Codesign Platforms

In this section, we will provide information on alternative HW/ SW codesign platforms

other than Zynq SoC.

1. Discrete FPGA-Processor Combination: In this scenario, processor and

FPGA exist as physical separate components. The major disadvantage of this

platform is the huge overhead of inter-chip communication.

21

Processor FPGA

External
communication

links

Figure 2. Discrete FPGA-Processor Combination

2. Processors inside FPGA: This category is one of the most efficient ways to

implement a HW/ SW codesign system. The processors inside the FPGA are

divided into two categories i.e. soft-core and hard-core processors.

a) Soft-core Processors

a. PicoBlaze: PicoBlaze is the designation of a series of three free soft

processor cores from Xilinx for use in their FPGA and CPLD

products. It is based on an 8-bit RISC architecture and can reach

speeds up to 100 MIPS on the Virtex-4 FPGA family.

b. MicroBlaze: The MicroBlaze is a soft microprocessor core designed

for Xilinx FPGAs from Xilinx. As a soft-core processor, MicroBlaze

is implemented entirely in the general-purpose memory and logic

fabric of Xilinx FPGAs.

c. NIOS-II: Nios is a soft-core embedded processor from Altera that

includes a CPU optimized for SoC integration. This configurable,

general-purpose RISC processor can be combined with user-defined

logic and programmed into Altera FPLDs. Nios supports both 16-

and 32-bit variants with 16-bit instruction set.

22

d. OpenSparc: OpenSPARC is an open-source hardware project

started in December 2005. The initial contribution to the project was

Sun Microsystems' register-transfer level (RTL) Verilog code for a

full 64-bit, 32-thread microprocessor, the UltraSPARC T1

processor.

e. LEON3: The LEON3 is a synthesizable VHDL model of a 32-bit

processor compliant with the SPARC V8 architecture. The full

source code is available under the GNU GPL license, allowing free

and unlimited use for research and education.

f. Dalton 8051: The Intel 8051 is an 8-bit micro-controller. This

micro-controller is capable of addressing 64K of program and 64K

of data memory. The implementation is written in Synthesizable

VHDL and models the actual Intel implementation rather closely,

e.g., it is 100% instruction compatible.

g. ARM Cortex-M1: The ARM Cortex-M1 processor is the first ARM

processor designed specifically for implementation in FPGAs. The

Cortex-M1 processor targets all major FPGA devices. The Cortex-

M1 processor enables cost savings through rationalization of

software and tools investments across multiple projects spanning

FPGA, ASIC and ASSP, plus greater independence through use of

an industry-standard processor.

b) Hard-core Processors: These processors are permanently embedded at

fixed location inside FPGA but have an advantage that they can run at a

much higher frequency and provide performance benefits.

23

a. IBM PowerPC: The single hard processor to be discussed is the

IBM PowerPC, which was included as a hard processor in the

Virtex-II Pro and subsequently in a subset of Virtex-4 and Virtex-5

FPGAs. Each of these FPGAs includes either one or two PowerPC

(PPC) units.

b. ARM Cortex M3: This processor is available as a hardcore inside

Microsemi SmartFusion2 SoC: The ARM Cortex™-M3 32-bit

processor has been specifically developed to provide a high-

performance, low-cost platform for a broad range of applications,

including microcontrollers, automotive body systems, industrial

control systems and wireless networking. With a balance between

size and speed, Microsemi's free Cortex-M3 processor is included

as a hard resource in Microsemi's SmartFusion2 and SmartFusion

SoC FPGA families.

c. ARM Cortex A9: This dual core processor is available in Altera

Cyclone V, Arria V, Arria 10 and Cyclone V FPGAs and provides

the equivalent performance as Zynq SoC 7020 EPP platform.

2.2.2 Hardware/Software Codesign with Xilinx Zynq SoC

In this section, we will discuss all building blocks required to construct HW/ SW

codesign using Zynq SoC platform. It is critical to rationally decide about the

components of the codesign effort because later on, they have a huge impact on the

performance and area utilization of your overall design.

24

Platform

Typically, implementations are classified into software and hardware implementations.

There are very few high-speed implementations done using HW/SW codesign

approach. These available implementations largely suffer from low-performance

processors and communication overhead between the processor and hardware

accelerator. Having a processing system (PS) and programmable logic (PL) on a single

chip greatly reduces the delays between both parts. For an efficient system, it is

imperative to perform well in all areas, i.e., software, communication interface and

hardware side. Our design platform uses Xilinx Zynq SoC 7020 Extensible Processing

Platform (EPP). This chip is specifically designed for HW/SW cosdesign applications

in mind and optimizes the design in all three domains of a codesign system.

Processing System (PS)

Zynq SoC platform provides dual core ARM Cortex-A9 microprocessor core with

CPU frequency up to 1 GHz. Zynq has 32 KB of L1 data and instructions caches,

512 KB of L2 cache and 512 MB DDR3 memory. This ensures high speed

implementation of the software side of the design.

25

S_AXI_LITE

S_AXIS_S2MM
M_AXI_MM2S

AXI Direct Memory Access

M_AXI_S2MM

M_AXIS_MM2S

AXI Timer

S_AXI

S00_AXI

S00_AXISM00_AXIS

FPGA Coprocesor

S00_AXI

S01_AXI
M00_AXI

AXI Interconnect

S_AXI_ACP

ZYNQ7 Processing System

M_AXI_GP0DDR

FIXED_IO

S00_AXI M00_AXI

M01_AXIM02_AXI

AXI Interconnect

Figure 3. Zync SoC Z7020 platform with interface between PS and PL

Programmable System (PL)

Zynq SOC platform provides a reconfigurable logic equivalent to Artix-7 FPGA. It

consists of 85K Logic cells (Slices). Additionally, it offers embedded resources i.e. 140

BRAMs (36kbit each) and 220 DSP blocks.

Serial in Parallel out (SIPO) and Parallel in Serial out (PISO) Components:

SIPO and PISO components are a part of input and output interface. SIPO takes in “n”

w-bit wide data words serially and convert them into one b-bit wide output word that is

n*w-bit wide. On the other hand, PISO takes in parallel input (b = n*w-bit wide) and

converts it w-bit words that is serially transmitted out.

26

en rst

dout

w

Reg

w

en rst

w

Reg

w

b

en rst

w

Reg

w

en rst

w

Reg

w

din

Figure 4. SIPO in Input interface of Coprocessor

01

w w

01

w w

01

w w

din

dout

en rst

w

Reg

w

en rst

w

Reg

w

en rst

w

Reg

w

en rst

w

Reg

w

selsel sel

b

Figure 5. PISO in Output interface of Coprocessor

Choice of Processor (PS) Ports for Communications

There are three major types of PS ports available for communication with PL using

AXI interface.

General Purpose (GP) port

In GP interface, coprocessor acts as a slave. It attaches the coprocessor to a general

purpose coprocessor port on the PS. Here, coprocessor is considered as a register

interface with a memory mapped address. This is the simplest way of attaching the

27

coprocessor. This approach is particularly beneficial for application that does not

require high bandwidth or large amount of data transfer.

High Performance Port (HP)

The second method of attaching the coprocessor is via a high performance port. HPP

provides high bandwidth port b/w PL based accelerator and either the DDR memory or

the OCM memory associated with PS. The coprocessor requires the DMA engine to

move the data between its local buffer and PS DRR or OCM memory. The on-chip

memory (OCM) has an equivalent latency as that of L2 cache and is much lower latency

than DDR memory. Thus, for latency reasons, if the data set fits in the OCM memory,

then it is best to use the OCM rather than the DDR memory.

Accelerator Coherency Port (ACP)

ACP port interface allows direct memory transfer between PL and L1 cache of PS. This

method provides the fixed low latency path and high data bandwidth for short bursts.

However, it provides best results when the data can be accommodated in caches.

There are four high performance ports that provide high bandwidth communication but

have a higher latency than ACP port interface. We implemented our RSA design based

on both ACP and HP0 interfaces and reported results based on ACP port interface

because they are slightly better than HP0 interface. Our design connects the PS to the

hardware accelerator through DMA engine to stream data in burst mode.

28

Figure 6. Processor Ports for Communication between PS and PL

Choice of Communication Interface

There are many competing Bus standards used the industry. Most popular standards are

AMBA V3, V4 from ARM Ltd, Coreconnect from IBM, Wishbone from SiliCore Corp.

and Avalon from Altera. Our design utilizes AMBA Advanced Bus Interfaces

Extensible Interface 4 (AXI4), targeted at high performance, high clock frequency

systems.

29

Table 6. Communication Interface Options in Zync SoC

Bus configurations for existing bus standards

Bus

High-performance

shared bus

Peripheral

shared bus

Point-to-point

bus

AMBA v3 AAHB APB

AMBA v4 AXI4 AXI4-Lite AXI-Stream

Coreconnect PLB OPB

Wishbone Crossbar topology Shared topology

Point to point

topology

Avalon Avalon-MM Avalon-MM Avalon-ST

2.2.3 Type of AXI Interfaces in Zynq SoC

AXI is a part of ARM’s AMBA bus. Zynq SoC platform provides either a memory

mapped or stream interface to connect PS to PL.

AXI Interfaces

Memory Mapped

(Shared Bus)

Stream

(Point-to-Point

Bus)

Full AXI

(Burst Capable)

(High Performance)

AXI-Lite

(Single-beat)

(Peripheral)

Figure 7. AXI Interfaces

30

 AXI4-Lite Interface

AXI4-Lite interface is a part of memory mapped interface with no burst capability. This

interface is generally used to connect peripheral that have low performance

requirement.

 AXI Full Interface

AXI Full is the memory mapped interface that allows you to have the burst capability

and is typically used for high performance peripherals.

Address

and

Control

Read Data Channel

Write Data Channel

Write Address Channel

Write Response Channel

M
a

st
e

r

Sl
av

e

Read

data

Read address channel

Address

and

Control

M
a

st
e

r

Sl
av

eWrite

data

Write address channel

Read data channel

Write data channel

Write

response

Write response channel

Read Address Channel

Figure 8. AXI-Lite Interface

31

Address

and

Control

Read Data Channel

Write Data Channel

Write Address Channel

Write Response Channel

M
a

st
e

r

Sl
av

e

Read

data

Read address channel

Read

data

Read

data

Address

and

Control

M
a

st
e

r

Sl
av

eWrite

data

Write address channel

Read data channel

Write data channel

Write

data
Write

data

Write

response

Write response channel

Read Address Channel

Figure 9. AXI Full Interface

 AXI-Stream Interface

AXI-Stream interface is not a shared bus interface and is generally between one master

and slave. Therefore, it is called a point to point bus interface.

M
a

st
e

r

Sl
av

e

 data

AXI4-Stream Transfer

Data channel

 data data data

Figure 10. AXI Stream Interface

32

2.2.4 AXI DMA

The coprocessor requires DMA transfer to move the data between its local buffer and

the L1/ L2 data caches. Once the data is ready for processing, A9 processor signals the

coprocessor via the slave port that it may begin processing the data. The communication

includes the address of the data. The coprocessor initiates a DMA transfer from the

memory, in this case, the L1/ L2 cache to its local buffer. The coprocessor processes

the data and returns the results in the 2nd buffer. The coprocessor initiates a DMA

transfer from the buffer to the memory, L1/L2 cache. Finally the coprocessor signals

the A9 processor that the data processing has been complete. The processor may then

use the data passed to it.

2.2.5 Embedded FPGA Resources

Practically all FPGA vendors incorporate in modern FPGAs, apart from basic

reconfigurable logic resources, also embedded resources, such as large memory blocks,

DSP units, microprocessors, etc. Improved hardware performance and good balance in

terms of the overall FPGA utilization can be achieved with the use of these embedded

elements for multiple applications, such communications, digital signal processing, and

scientific computing.

 DSP Units

Xilinx Virtex 5 FPGAs include DSP48E units. Each unit has a two-input multiplier

followed by multiplexers and a three-input adder/subtractor/accumulator. The unit can

be configured as a 25x18 multiplier and/or 48-bit adder with up to three inputs. The

third input of an adder can be used only when multiple DSP units are cascaded and an

adder output of one DSP unit is connected to an adder input of an adjacent DSP unit.

33

The DSP unit of the Stratix III FPGAs consists of four subunits units (called DSP_18s)

and a total of eight 18x18-bit multipliers. Two neighboring 18x18 multipliers share a

37-bit adder. The outputs of two 37-bit adders are fed to second stage

Adder/Accumulator. Xilinx Spartan 3 and Altera Cyclone II contain only embedded

multipliers. Spartan 3 devices support 18x18 signed multiplication. Cyclone II devices

support 9x9 and 18x18 multiplication for signed and unsigned numbers.

Figure 11. DSP48 inside Zync SoC Z7020 and Latency selection to operate at 400

MHz

34

 Block Memory

The Block Memory (BRAM) in Spartan 3 FPGAs has a size of 18 kbits, including parity

bits. Word size is configurable in the range from 1 to 36 bits. The maximum word size

is used in the configuration 512 x 36 bits. The block memory (BRAM) in Virtex 5

FPGAs can store up to 36 kbits of data. It supports two independent 18 kbit blocks (with

the word size up to 18 bits), or a single 36 kbit memory block (with the word size up to

36 bits).

Altera devices have different capacity of basic embedded memory blocks. The low-cost

Cyclone II family is based on 4 kbit blocks. The high-performance Stratix III family is

less homogenous. It consists of two types of memory blocks i.e., 9 kbits and 144 kbits.

All block memories have single-port and dual-port modes.

Figure 12. True Dual Port BRAM to store input data

35

Cryptographic algorithms have been demonstrated in the past to take advantage of these

resources as well. For example, the fastest to date FPGA implementation of the

Montgomery multiplication, a major building block of public key cryptographic

algorithms, such as RSA, have been demonstrated using DSP units in Virtex 5 FPGAs

[21].

36

3 SURVEY OF PREVIOUS WORK

The gap between performance and flexibility can be narrowed down through an

efficient HW/ SW codesign system. To develop such an environment, all aspects of

software, hardware and interface between the software and hardware for

communication should be taken care of. HW/SW co-design allows the designer to

partition the design into hardware and software to aim for the best of both worlds. The

flexibility and short development time of software is combined with performance and

low-power/low energy consumption of hardware.

This chapter covers the previous work on HW/SW implementations of RSA, currently

available implementations of Lattice based cryptosystems, existing coprocessor designs

on RSA/ ECC and HW/ SW codesign platforms that are already used by researchers.

3.1 HW/ SW Codesign Implementations of RSA

Public-key cryptosystems such as RSA have been widely used to secure digital data in

many commercial systems. Modular arithmetic on large operands used during modular

exponentiation makes RSA computationally challenging. We highlight some of the

attempts made to optimize RSA cryptosystem through HW/SW codesign.

Two variants of hardware/software co-design were presented by Simka et al. in [24]

where they utilize one Montgomery multiplier (MM) coprocessor and two pipelined

MM coprocessors respectively. The later implementation was aimed towards

minimizing the average execution time during decryption in RSA. They used

Altera’s Nios RISC processor as their building block. Their data path is organized

as a cascade chain of processing elements implemented using two approaches for

37

MMM operations to target scalability, i.e., carry save adder based and carry propagate

adder based MMM units. The word length, number of words, and number of stages can

be changed according to the required area of the implemented coprocessor and the

required timings for MM computations or the security level for flexibility of the

coprocessor.

Hani et al. in [25], proposed a private and public key cryptoprocessor. For RSA, the

entire ME is performed in hardware. However they do not employ any techniques to

make the design scalable by allowing different operand sizes or flexible by modular

exponentiation algorithms and multiple security levels.

Isaad et al. in [26] proposed two implementations for HW/SW co-design based on

right-to-left (R2L) algorithm for modular exponentiation. They propose a relatively

flexible architecture for modular exponentiation (ME) using three implementation

approaches, i.e SW only, with one MMM unit working sequentially, and two MMM

units used in parallel to perform a ME. The second variant utilizes only one modular

multiplier within a custom hardware. The execution time is further improved by

parallel implementation of two multipliers based on Montgomery algorithm as their

custom IP. The control of ME was done through MicroBlaze. Some data transfers are

also handled by local memories to reduce data transfer overhead. The highest level of

operation in all three schemes was MMM. However, in their proposed designs, the

scalability of modular multiplier is achieved by allowing different operand sizes,

modular exponentiation algorithms, or multiple security levels.

The implementations with the highest level operation being MMM offer higher

flexibility but lower performance as compared to the other approach, i.e., to implement

38

ME in hardware. To explore the best tradeoff between performance and flexibility, we

intend to focus on multiple aspects. One of them is to allow support of multiple

exponentiation algorithms i.e., R2L, L2R, sliding window. For highr flexibilility,

handling of multiple operand sizes in the MMM unit, the capability to control the choice

of ME algorithm form the software will be exploited.

The table below lists all noteworthy contributions on HW/SW codesign of RSA. The

security level in all reported implementations is equivalent to 80-bit security. Except

[26], all reported implementations use Left-to-Right algorithm for exponentiation.

Table 7. HW/ SW Codesign Implementations of RSA

Note: In the Flexibility/Scalability column, the parameters marked with * are used for the

reported results

1 Montgomery Powering Ladder, 2 Blinded Fault Resistant Exponentiation, 3 Highest level of operation implemented in

hardware is ME

Source
Flexibility/

Scalability

Platform
Area[LUTs/

LEs/Kgates,

RAMs,

DSP48]

Clk

Freq

MHz

Time

[ms]
Device Processor

Isaad,

2014 [26]

1 MM unit in HW, 2

MM units in

hardware*, ME

scheme: R2L/ Fixed

operand size: 1024-bit

Xilinx

Virtex-5
MicroBlaze 1848, 11, 22 62.5 22.25

Uhsadel,

20123 [27]

Multiple ME schemes:

L2R*, R2L, MPL1,

BFR2/ Fixed operand

size: 1024-bit

Xilinx

Virtex-4,

XC4VFX101

8051 27467, 0, 1 111 29.37

Sakiyama,

2007 [6]

ME scheme: only

binary-method/ Fixed

operand size:1024-bit

Virtex-II

PRO,

XC2VP30

8051
49.5 Kgates,

6, 0
12 129.8

Hani,

2006 [25]

No Flexibility/ Fixed

operand size: 1024-bit
EPLS40 NIOS

12881 LEs,

0,0
66 31.9

Simka,

2003 [24]

1 MM unit in HW, 2

MM units in

hardware*/ Operand

size: 1024*, 2048

Altera

APEX,

EP20K200E

FC484-2X

NIOS
2837 LEs,

N/A, 0
50 39

39

3.2 Previous HW/ SW Codesign Implementations on Traditional

Public-Key Cryptography

The scope of this research is to develop a HW/ SW codesign that offers the advantages

of flexibility in software but also offers the performance comparable to hardware. An

optimal HW/SW codesign is possible only if the designer looks at overall system-level

integration. In this section, we will look at the existing coprocessor implementations in

the field of public key cryptosystems that try to solve the underlying challenges of

HW/SW codesign approach.

Typically, papers on public-key cryptography are categorized into low area and high

speed implementations. Low area platforms include 8-bit microcontrollers (e.g. AVR

or 8051) [9], [4], [28], [10] as well as 32-bit microprocessors with bus systems (e.g

MSP430, ARM Cortex M0) [29] , [30], [31]. MicroBlaze with PLB and FSL bus and

ARM Cortex-A9 operates at a much higher frequency and they are considered suitable

for medium to high-speed implementations. In case, there is an additional requirement

for performance, the compute intensive of the algorithms are offloaded to

reconfigurable logic inside FPGA. These dedicated accelerators implemented inside

FPGA are typically called hardware coprocessors. As ECC provides equivalent security

to RSA with much smaller key sizes, it is more suitable for low-area and low-power

applications. Therefore, most of the earlier HW/SW implementations utilized smaller

processors (i.e. softcore processor like Dalton 8051, AVR, PicoBlaze, MicroBlaze)

along with FPGA reconfigurable resources for time consuming tasks. We will provide

details of previous HW/ SW implementations of ECC in this section that focused on

overall system-level design approach and optimized their designs for flexibility and

scalability.

40

Table 8. HW/ SW Codesign Implementations of ECC for 80-bit security.

Note: In the Flexibility/Scalability column, the parameters marked with * are used for

the reported results

Source
Flexibility/

Scalabilty

Highest Level

Operation in

Hardware

Platform
Area

[LUTs/

LEs,

RAMs,

DSP48]

Clk

Freq.

[MHz]

Time

[ms]
Device Processor

Balasch,

2014 [32]

Fixed curve /Fixed

operand size =

256-bit

Scalar

Multiplication

Virtex-5,

XC5VLX30

-2FF324

8051 2525, 6, 27 39.4 10.6

Hassan,

2010 [33]

Supports 5 NIST

curves (m =163*,

233, 283 409,

571)/ Supported

datapath widths =

8, 16, 32-bit*

Binary Field

Modular

Multiplication

Spartan-3,

XC3S200

32-bit

PicoBlaze
1127, 4, 0 68.3 380

Sakiyama,

2006 [6]

Fixed curve /Fixed

operand size =

160-bit

Montgomery

Modular

Multiplication,

Modular

Add/Subtract

Virtex-II

PRO

XC2VP30

8051
49.5 Kgates,

6, 0
12 129.8

Koschuch

2006 [28]

Two Operand

sizes = 163*, 191-

bit

Binary Field

Modular

Multiplication

N/A
8051

(Dalton)

29.4 Kgates,

0, 0
12 99

Batina,

2005 [10]

Fixed curve /Fixed

operand size =

160-bit

Modular

Multiplication,

Addition and

Inversion

N/A
8051

(Dalton)
3781, 0, 0 12 2488

Kumar,

2004 [4]

Fixed curve /Fixed

operand size =

160-bit

Binary Field

Modular

Multiplication

 Atmel,

ATSTK94

FPSLIC

AVR 8-

bit MCU
498, 0, 0 4 113

One of the important steps to codesign efficiently is to explore the design space and

partition the design effectively. Some partition options are more suitable for high-speed,

while others offer more flexibility. In case of ECC, one way to partition is to assign full

point addition/ doubling operation to hardware and the remaining parts to software.

While this approach is very fast (there are no operand transfers during point addition/

doubling), it suffers from a relatively high hardware cost.

41

A second way to draw a line between hardware and software is to offload the field

arithmetic operations from the host processor and execute them in a dedicated hardware

accelerator, serving as a coprocessor. All other operations, i.e. point addition/ doubling

and scalar multiplication, are implemented in software and executed on the host

processor. In general, this approach offers high flexibility. On the other hand, it may

entail a significant communication overhead, especially when the coprocessor does not

provide local storage for the intermediate results.

Finally, the boundary between hardware and software can also be defined at the level

of custom instructions that are specifically designed to accelerate the field arithmetic,

most notably the field multiplication. HW/ SW codesign, at the granularity of

instruction set extensions provides the highest flexibility and requires the least amount

of extra hardware. However, these custom instructions are processor dependent. Each

processor instruction can take multiple clock cycles to execute. Also, the fundamental

bottlenecks of a sequential processor (memory access, sequential execution of code)

are also fundamental bottlenecks for an instruction set extension based design.

All designs except [32] and [6] present designs for binary fields. Kumar et al. [4]

presented an extremely low-cost implementation with instruction set extension using

reconfigurable logic, which enables an 8-bit microcontroller to provide full size elliptic

curve cryptography (ECC) capabilities. Their design was flexible due to the use of ISE

based processor, but worked on fixed curve and operand size of 160-bits only. Batina

et al. in [10] proposed a hardware/software co-design of the HECC system that was

implemented on a low-cost platform, an 8-bit 8051 microprocessor and utilized a small

42

hardware co-processor for field multiplication. This design was also inflexible in terms

of fixed curve and operand size.

Koschuch [28] proposed a HW/ SW codesign for ECC that supported two operand sizes

(163 and 191-bit). They also demonstrated the importance of removing system-level

performance bottlenecks caused by the transfer of operands between hardware

accelerator and external RAM by integrating a small direct memory access (DMA) unit.

Sakiyama et al. [6] presented a scalable architecture for accelerating public-key

cryptography. They developed a coprocessor for both ECC and RSA. The hardware

coprocessor had a modular arithmetic logic unit that was scalable and was able to work

on variable digit size (d). Although, they mentioned that the software code could be

made flexible to support multiple schemes (e.g. sliding window method, windowed

NAF, or signed m-ary), the design was able to work only with binary-method for point

multiplication.

Hassan et al. [33] developed a low-area scalable design that supported 5 different NIST

curves and variable data widths of 8, 16 and 32-bits. He performed binary field modular

multiplication in hardware coprocessor to make the design flexible and handle higher

level operations in software.

Balasch et al. [32] implemented several versions of coprocessors to explore the design

space for scalar multiplication. First coprocessor supported field multiplication, second

one supported field arithmetic (addition, subtraction and multiplication), third one

supported point arithmetic (point doubling, point addition) and fourth one supported

scalar multiplication. However, their design worked on fixed operand sizes and has no

provision to apply different multiplication schemes from the software.

43

Based on the previous work shown in this section, it is evident that all the HW/ SW

codesign implementations tried to achieve some sort of flexibility in their design. Apart

from one, all the designs tried to implement finite field multiplication in hardware

coprocessor in order to make their design more flexible. Very few designs provided a

support for multiple security levels. To the best of our knowledge, there were no designs

that provided support for different multiplication schemes controlled from the software

side and support for different operand sizes in one implementation. Thus, leaving room

for more investigation to provide highly flexible and efficient designs.

3.3 Previous Implementations of Lattice Based Cryptosystems

In this section, we will provide details about already published work by other

researchers in the area of Lattice based cryptography. We chose to investigate work on

encryption schemes of NTRU and Ring-LWE algorithms. Work on signature and

identification scheme, identity based encryption (IBE) and oblivious transfer are

beyond the scope of this research.

3.3.1 Previous Implementations of NTRU Cryptosystem

The software implementation of encryption schemes of NTRU are available in eBACS

(ECRYPT Benchmarking of Asymmetric Systems). These submitted implementations

can perform public-key encryption with 112, 128, 192, 256-bit equivalent security.

Bailey et al. [34] implemented NTRU on a wide variety of constrained devices,

including the Palm Computing Platform, Advanced RISC Machines ARM7TDMI, the

Research in Motion Pager, and finally, the Xilinx Virtex 1000 family of FPGAs.

O’Rourke et al. [35] presented a scalable architecture to perform NTRU

multiplication and also proposed a unified architecture based on Montgomery

44

multiplication. Kaps et al. [36] proposed a scalable low power design for the NTRU

polynomial multiplications. The smallest version of their design implemented only a

single arithmetic unit but the design was flexible to scale up the number of parallel

arithmetic units relatively easily with minimal impact on the other elements of the

design. In contrast to previous research, Atici et al. [37] presented a compact and low

power NTRU design that was suitable for pervasive security applications such as

RFIDs and sensor nodes. It was the first implementation to provide both encryption

and decryption in a single design. However, they targeted one parameter set to

implement fixed security level. Kamal et al. [38] investigated several hardware

implementation options for the NTRU encryption algorithm. In particular, by utilizing

the statistical properties of the distance between the non-zero elements in the

polynomials involved in the encryption and decryption operations, they presented an

architecture that offers different area-speed trade-off and analyzed its performance

on Virtex-E FPGA chip. The design was configurable to perform modular reduction

using Mersenne Prime based and LUT based architectures.

45

Table 9. Selected Hardware Implementations of NTRU

Note: In the Flexibility/Scalability column, the parameters marked with * are used for

the reported results

3.3.2 Previous Implementations on Modular Multiplier Designs

As modular exponentiation is realized through repeated modular multiplications,

the use of an efficient modular multiplier becomes very important.

In 1985 Montgomery proposed modular multiplication without trial division [22].

A novel number representation, and a novel basic arithmetic operation, were named

the numbers in the Montgomery domain and the modular Montgomery

multiplication, respectively. Multiple different, hardware-supporting, bit-oriented

versions of this algorithm were analyzed in [39].

Source
Flexibility/

Scalabilty

Security Level/

Parameters Device

Area [LUTs/

Slices/ LEs/

GE, RAMs,

DSP48]

Clk

Freq

MHz

Time

(ms)/

Throuput

(Mbps) bits N p q

Kamal,

2009

[38]

Mersenne

Prime based

and LUT

based

Modular

Reduction*,

Variable

shifter

~80 251 3 128

Xilinx

Virtex- E,

XCV1600

e8G860

14352 Slices, 0,

0
62.3 0.0009

Bailey,

2001

[34]

No ~80 251 X+2 128

Xilinx

Virtex,

1000EFG

860

6373 Slices, 0,

0
50.0 0.0051

Kaps,

2005

[36]

Variable

degree of

parallelizatio

n

57 167 3 128 N/A 2850 GE, 0, 0 0.5 58.45

Atici,

2008

[37]

No 57 167 3 128 N/A 2884 GE, 0, 0 0.5 56.44

46

Tenca et al. [40] proposed the very first scalable architecture for Montgomery

Multiplication. Harris et al. in [41], and later on Huang et al. in [42] have improved this

design in terms of latency and latency*area by factor of two. Further improvement of

the aforementioned architectures was possible when radix-4 architectures were

introduced. They were demonstrated for the Tenca et al., Harris et al. and Huang et al.

designs in [43], [41] and [42], respectively.

Bipartite multiplication algorithm proposed in [44] enables a two-way parallelism by

using two custom modular multipliers. By combining a classical modular multiplication

based on Barret with Montgomery’s modular multiplication, it splits the operand

multiplier into two parts and processes them in parallel, increasing the calculation

speed. Later in [45], the proposed tripartite algorithm minimizes the number of single-

precision multiplications and enables more than 3-way parallel computation. It achieves

a higher speed compared to the bipartite algorithm. The algorithm is suitable for the

multicore parallelism.

Suzuki in [21] combined the Multiple Word Radix-2 Montgomery Multiplication

(MWR2MM) together with the quotient pipelining technique and proposed an

architecture which can be mapped efficiently onto a modern high-performance DSP-

oriented FPGA structure. Hardware architectures of modular arithmetic for parallel

computing were demonstrated using residue number system in [46] and spectral

modular arithmetic in [9] and [47].

We employ a Montgomery multiplication algorithm based on quotient pipelining

technique developed by Orup in 1991 [23]. The major differences between Orup's

Montgomery multiplication and classical Montgomery multiplication are discussed in

the background section.

47

4 HARDWARE/SOFTWARE CODESIGN OF RSA

Considering all the technological advancements and existing implementations of RSA,

we think it is realistic to improve the applicability of RSA for modern embedded

systems even further. In this chapter, we present a study of RSA implemented through

hardware/software codesign using Xilinx Zynq-7000 SoC platform. The originality of

our work lies in exploring the best trade-off between achieving maximum flexibility

from software, with an improvement in performance from hardware by balancing the

partitioning between hardware and software components of the design.

This chapter focuses on important design decisions to develop HW/ SW codesign

implementation of public key cryptosystems. RSA also serves as a case study to

describe the design process of a generic codesign methodology. The same approach

will be carried forward to build a HW/ SW codesign for Lattice based cryptosystems

(i.e., NTRU).

4.1 Software Development

4.1.1 Developing and Extending Software APIs in RELIC Library

Our software implementation is based on RELIC toolkit [48]. One of the major reasons

was to generate test vectors and intermediate results for functional verification of our

coprocessor implemented in hardware for RSA implementation. We have utilized the

already existing code base for modular exponentiation in RELIC for RSA

implementation.

48

4.1.2 Hardware/Software Partitioning

Profiling in one of the important feature of Zynq SoC software development kit (SDK).

Profiling can be helpful to fully understand the time critical operations of any design.

We used the built-in profiler provided as a part of Vivado Design Suite 2015.4 to

determine the compute intensive portions of RSA that take majority of the time in its

software implementation. Proper partitioning to find an optimum boundary between

software and hardware requires detailed know-how of the design and some level of

expertise. The profiler showed approximately 82% contribution of the Modular

Exponentiation (ME). In all the methods used to perform ME, there are repeated

modular multiplications at the lower level. The results generated because of profiling

were used to define boundaries between software and hardware well in advance.

RSA

Exponentiation

Modular Arithmetic

Software

in C

Hardware

in RTL

RSA

Exponentiation

Modular Arithmetic
Hardware

in RTL

Partitioning Scheme:

Software/ Hardware Mix 1

Partitioning Scheme:

Software/ Hardware Mix 2

RSA

Exponentiation

Modular Arithmetic

Software

in C

Partitioning Scheme:

Software Only

RSA

Exponentiation

Modular Arithmetic

Hardware

in RTL

Partitioning Scheme:

Hardware Only

Software

in C

Figure 13. Hierarchy of Operations and Tentative Partitioning Schemes in RSA

49

The figure above shows the possible partitioning schemes for an RSA-based

implementation.

• Scheme 1: Offers full flexibility, but low performance.

• Scheme 2: Modular arithmetic is offloaded to the coprocessor for improved

performance. Multiple exponentiation schemes can be implemented from

software to offer flexibility.

• Scheme 3: The entire ME is implemented in the coprocessor for maximum

performance gain. However, the design is less balanced between software and

hardware.

• Scheme 4: Maximum performance gain possible with very limited flexibility.

Implementing the entire ME in hardware leans more towards performance optimization

as it is quite close to having an entire RTL-based design. However, we implement

partitioning scheme 2 as it leaves more room to achieve the balance between flexibility

through software and performance from the coprocessor.

4.2 Operation of the Processing System

Zynq SoC platform provides dual core ARM Cortex-A9 microprocessor core. Zynq has

32 KB of L1 data and instructions caches, 512 KB of L2 cache and 512 MB DDR3

memory. This ensures high speed implementation from the software side of the design.

Our software implementation is based on RELIC toolkit [48]. RELIC was developed in

Brazil as a part of the TinyPBC project and is optimized for embedded applications.

50

Table 10. Implemented hardware functions

Function Call Description

SET_OP_SIZE () To set operand size in PL using AXI-LITE interface

LW_M ()
Loads modulus from PS through AXI-STREAM

interface to the multiplier unit in PL

LW (Reg_Num, A)
Loads data from PS through AXI-STREAM

interface to Reg_Num in local memory of PL

SW (A, Reg_Num)
Stores data from Reg_Num in local memory of PL

through AXI-STREAM interface to PS

Hw_mul_monty_orup4 (dst, src1,

src2)

Sends a control word through AXI-LITE interface

to load operands from addresses src1 and src2 of the

local memory to perform multiplication. The result

is stored in address specified by dst.

To achieve the flexibility in our RSA design, exponentiation is performed in software.

This allows us to choose any of the exponentiation schemes, i.e., Left-to-Right (L2R),

Right-to-left (R2L) or Sliding window method from software.

Types of Exponentiation and Instruction Set:

For all three variants to perform ME, we implemented corresponding functions in

RELIC based on Montgomery multiplication using Orup's algorithm. In Algorithm 5,

line 17, the function bn_rec_slw() is a function in RELIC used to windows win[0],

win[1], ..., win[l-1]. Based on the windows, val[win[i]] is the index of the leftmost 1 in

the binary representation of win[i]. Once this function is called during pre-processing,

l becomes the number of windows rather than the number of bits in the exponent. The

same implementations were used to for functional verification of the hardware

51

implementation. Also, the conversion of operands to/from Montgomery domain can be

realized using Orup's Montgomery Product (OMP) in the coprocessor.

We present the instruction set in Table 10 along with the description of the operation

of all instructions. Next, we present all three ME schemes with function calls to the

hardware in algorithms 3, 4 and 5. In Algorithm 5, the additional step is the pre-

processing in which the RELIC based function bn_rec_slw() is executed. Post-

processing includes only one modular reduction in all three algorithms. In the

processing phase, we use the hardware API's to transfer data and control words to the

hardware coprocessor while performing modular multiplications.

52

53

4.3 Choice of Communication Interface

There are many competing Bus standards used the industry. Most popular standards are

AMBA V3, V4 from ARM Ltd, Coreconnect from IBM, Wishbone from SiliCore Corp.

and Avalon from Altera. Our design utilizes AMBA Advanced Extensible Interface 4

(AXI4), targeted at high performance, high clock frequency systems. There are three

methods to attach a co-processor to the processing system (PS).

• Hardware accelerator attached as a general purpose port (GP0)

54

• Hardware accelerator attached via high performance port (HP0)

• Hardware accelerator attached using Accelerator Coherency Port (ACP)

ACP port interface allows direct memory transfer between PL and L1 cache of PS. This

method provides the fixed low latency path. However, it provides best results when the

data can be accommodated in caches. There are four high performance ports that

provide high bandwidth communication but have a higher latency than ACP port

interface. We implemented designs based on both ACP and HP0 interfaces and reported

results based on ACP port interface because they are slightly better than HP0 interface.

Our design connects the PS to the hardware accelerator through DMA engine to stream

data in burst mode. Hardware coprocessor receives input arguments from PS into the

local memory and sends them to the multiplier unit. Once modular multiplication is

completed, result is stored in the local memory while the system waits for the next

control word through AXI-Lite interface. When the entire exponentiation is performed,

the result is sent back to PS through AXI-Stream interface.

4.4 Implementing Programmable Logic (PL) – Our Hardware

Accelerator

Our design process of a hardware coprocessor is further categorized into the following

four major components

• Compute Kernel: Coprocessor unit to perform compute intensive tasks

• Controller: It includes the command interpreter, input FSM, compute FSM and

output FSM

• Interface: Interface with the bus that includes argument and result storage

• Local Memory: To store the intermediate results in hardware

55

Compute Kernel:

In our implementation, the compute kernel for RSA performs Montgomery modular

multiplication. Our design for the compute kernel is targeted towards achieving both

scalability and performance. The implementation is based on Orup's implementation

by Suzuki from [21]. We extended the basic Montgomery multiplier with an interface

for input and output. The datapath is scalable for multiple operand sizes, i.e., 512, 1536,

1024 and 2048 without any increase in the area. The command interpreter which is part

of the controller is used to send a control word with the information of operand size

from PS to PL. The operands are loaded into the local memory of the coprocessor at

the start of the operation through AXI-Stream interface. The operands are stored locally

into dual-port RAMs to reuse them and to minimize the overhead associated with data

transfer from PS to PL. DSP48E macros are used to multiply operands in radix 217.

Latency of these DSP units is adjusted to 3 to operate them at the maximum operating

frequency to achieve better performance.

Controller:

Our controller consists of the command interpreter, input FSM, output FSM and

compute FSM. Command interpreter acts as a bridge between software and hardware.

It receives commands words from PS through AXI-Lite interface, interprets them and

then distributes the control signals to the input, output and compute FSMs accordingly.

In a standard approach, operands are fed into the compute kernel, result is computed

and send back to PS. Our design is configurable to work with variable operand sizes

and different optimization schemes controlled from PS. This requires that the controller

56

can dynamically adopt and generate the control signals for input, compute and output

FSM.

BRAM

BRAM

VSL

VSR

ai or mi

Input Storage

2k

2k

AXI-Lite Interface

src2src1dstRR

REG0 REG1

Cmd/ Data

m

2 6 6 6

Input FSM

Cmd Status

Compute
FSM

Cmd Status

Output
FSM

Cmd Status

Command Interpreter

BRAM

BRAM

VSL

VSR
Out Stream

2k

2k
m

Compute Kernel

S_src10

mi

bi

S_src11

mi

S_src1k-1

mi

S2

In Stream

Controller

S_src20

S_src21

S_src216

S_src10

S_src20

S_src11

S_src21

S_src1k-1

S_src2k-1

2k

S2

Output Storage

2k

2k

2k

2k

2k

2k

2k

2k

2k

VSR: Variable Shift Right
VSL: Variable Shift Left
m: 32-bit Bus
k: 17 (Words size)
Dst: Destination address
 (Local Memory)
Src1: Source 1 address
 (Local Memory)
Src2: Source 2 address
 (Local Memory)

A
X

I-
St

re
am

 In
te

rf
ac

e A
X

I-Stre
am

 Inte
rface

m

2k

2k

2k

2k

2k

2k

2k

2k

2k

2k

2k

2k

2k

2k

2k

2k

2k

2k

k

Figure 14. Detailed Hardware Coprocessor Design

57

I/O Interface:

Our I/O interface is implemented using dual port block memories to support width

conversion necessary for the compute kernel to process data. It also takes care of the

communication between PS and PL through synchronization signals and flags between

PS and PL. We use Accelerated coherency port (ACP) to stream data into PL. DMA

unit is used to handle communication in this scenario.

Local Memory:

Local memory provides local access to the intermediate results. Storing intermediate

results into one of the available memories (L1/ L2 caches, OCM and DDR3 memory)

associated with PS is very costly in terms of clock cycles. Each read/ write access to L1

and L2 caches costs 27 and 32 clock cycles respectively. Access to the L1/ L2 caches

is possible only if we use Accelerated Coherency Port (ACP). Similarly, accessing On-

Chip memory (OCM) and DDR3 memory cost 27 and 89 clock cycles respectively.

High Performance Ports (HP0-3) can only access the OCM and DDR3 memories using

46 and 76 clock cycles respectively. Using General Purpose Ports (GP0-3) has the

biggest penalty and takes 88 and 118 clock cycles to access OCM and DDR3 memories.

Using local memory implemented through dual-port block memories in FPGAs, on the

other hand, only requires few clock cycles and is much more efficient. A more detailed

layout can be seen in the block diagram.

58

4.5 Results and Comparison

All results presented in this paper are generated using Vivado Design Suite 2015.4. The

device used is Zedboard Zynq Evaluation and development kit (xc7z020clg484-1). The

design is functionally verified using Vivado simulator and co-debugged using

Integrated Logic Analyzer (ILA) core. Profiling and software implementation was

performed in Xilinx SDK 2015.4.

We present results for three exponentiation schemes, i.e., L2R, R2L and Sliding

Window method. Aiming for scalability, our design is also configurable at runtime

through software for four variants of operand sizes, i.e., 512, 1024,1536 and 2048-bit.

Our design operates on two clocks, running at 100 and 200 MHz respectively. The

arithmetic operations performed by DSP units utilize the faster clock, whereas the

interface and rest of the design operates at 100 MHz. The additions performed in the

modular multiplier unit are also executed as double word additions.

A hardware timer was used to calculate the total number of clock cycles for both

software and HW/SW codesign methodologies, denoted by CCsw and CChw/sw

respectively. In case of HW/SW codesign, the timer keeps track of the number of clock

cycles required for the preprocessing (CCpre) in software, the number of clock cycles to

process data (CCproc) in hardware, and finally the post-processing (CCpost) in software.

CCproc shows the clock cycles required during the processing phase of the design. In

this phase, operands are first loaded into the local memory through AXI-Stream

interface. The entire exponentiation algorithm is later guided by a set of command

words sent through AXI-Lite interface to perform MM operations repeatedly. Finally,

the result is collected from the local memory and sent back to the PS through AXI-

59

Stream interface. As soon as a multiplication operation is completed, the hardware

sends an interrupt signal to notify the PS that it is ready to receive the next command

word. The same scheme is followed to transmit and receive data in the end as well.

Table 11 shows that the HW/SW codesign based approach yields better performance

than the software-only implementation showing speedups of 57.67, 57.65 and 46.31

times for L2R, R2L and Sliding window scheme respectively. The sliding window

method gives consistently better results than L2R and R2L for all operand sizes in term

of the processing time. All clock cycles refer to the clock cycles of the 100 MHz system

clock, measured using AXI Timer.

L2R method shows better performance than R2L as only one operand needs to be

loaded to the hardware coprocessor as compared to loading two operands in R2L

exponentiation. According to Table 11, the sliding window method gives consistently

better results than L2R and R2L for operand sizes greater or equal to 1024 bits.

Table 12 compares our work with existing implementations available in literature. Our

design works on the same datapath for all operand sizes. The provision to handle the

operand size and choice of exponentiation scheme is handled from the software

allowing run time configurability. This support is not available in any of the existing

designs.

60

Table 11. Comparison of our HW/SW Implementation with software implementation

based on RELIC for four operand sizes and three exponentiation schemes. Note: CCpre

– Clock cucles for preprocessing, CCpost – Clock cycles for postprocessing, CCproc –

Clock cycles for processing, CCsw – Clock cycles for software, CChw/sw – Clock

cycles for HW/SW codesign

Op Size

(bits)
CCsw

CChw/sw
Speedup

CCpre CCproc CCpost CCtotal

L2R

512 4,628,086 N/A
160,248

(98.71%)

2,098

(1.29%)
162,346 28.51

1024 29,081,675 N/A
636,626

(99.55%)

2,878

(0.45%)
639,504 45.48

1536 91,506,750 N/A
1,703,111

(99.80%)

3,478

(0.20%)
1,706,589 53.62

2048 210,613,761 N/A
3,647,842

(99.88%)
4,401(0.12%) 3,652,243 57.67

R2L

512 4,641,915 N/A
160,900

(98.49%)

2,460

(1.51%)
163,360 28.42

1024 29,119,311 N/A
637,572

(99.55%)

2,898

(0.45%)
640,470 45.47

1536 91,596,255 N/A
1,704,883

(99.76%)

4,111

(0.24%)
1,708,994 53.60

2048 210,780,530 N/A
3,651,888

(99.88%)

4,478

(0.12%)
3,656,366 57.65

Sliding Window

512 3,731,606
4,070

(2.45%)

115,586

(96.09%)

2,416

(1.445%)
167,072 22.47

1024 22,725,405
7,745

(1.24%)

614,977

(98.30%)

2,877

(0.46%)
625,609 36.33

1536 70,955,868
11,654

(0.70%)

1,637,734

(99.04%)

4,215

(0.25%)
1,653,603 42.91

2048 162,227,749
15,223

(0.43%)

3,487,745

(99.44%)

4,356

(0.12%)
3,507,324 46.25

61

Table 12. Comparison of our work with existing designs of modular exponentiation

ME from literature. Note: * - the execution time was determined for the ME scheme

and operand size marked by this symbol, SLID – Sliding Window Method, MPL –

Montgomer Powering Ladder, BFL – Blinded Fault Resistant Exponentiation

Referenc

e

ME Scheme

(Flexibility)/

Operand Size

(Scalability)

Coprocesso

r performs

Device

s

Freq

(MHz)

Area

(LUTs/LEs

, RAMs,

DSP48)

Time

(ms)

HW/SW Codesign-based Implementations

This Work L2R, R2L,

SLID*/512,1024*

, 1536, 2048-bit

MM Zynq

SOC

100/20

0

10385, 26,

17

6.33

San et al.

[49]

R2L/512, 1024*,

2048-bit

ME Zynq

SOC

100 6224, 0, 62 3.04

Issad et al.

[26]

R2L/1024-bit MM Virtex-

5

62.5 1848, 11, 22 22.2

5

Uhsadel et

al. [27]

R2L, L2R*, MPL,

BFR/1024-bit

ME Virtex-

4

111 27467, 0, 0 29.3

7

HW-only Implementations

Suzuki et

al. [21]

SLID/512, 1024*,

1536, 2048-bit

ME Virtex-

4

200/40

0

4190, 7, 17 1.71

Song et al.

[50]

R2L/1024-bit ME Virtex-

5

447 180, 1, 1 36.3

7

Wang et

al. [51]

L2R/1024-bit ME Virtex-

5

200 5730, 0, 0 679

The choice of platform by San et al. in [49] makes their design comparable with our

implementation. The design is expected to have better results in terms of time as they

followed a more hardware oriented approach by offloading the entire exponentiation

onto the coprocessor for performance leaving limited room for flexibility through

62

software. We provide a more balanced partitioning scheme to exploit maximum benefit

from both hardware and software, still maintaining comparable performance.

In [26], a fixed 1024-bit RSA design is implemented with one exponentiation scheme,

i.e., R2L. They employ two multiplier units to optimize their design for R2L scheme.

This scheme cannot be easily generalized to show performance gain for other

exponentiation schemes. Also, their design is 3.5 times slower than our implementation.

In [27], results for HW/SW codesign-based implementation using 8051 microcontroller

are presented. Although they implement several exponentiation schemes, their design

is not scalable for any operand sizes other than 1024-bit. Our computation time is 4.6

times faster than their design based on L2R scheme.

We also provide HW only designs, implemented without the use of any embedded

processor. Their results do not offer a fair comparison as the designs are HW-only

implementations. In codesign-based approach, the designer should deal with additional

overheads related to communication interfaces. HW-only designs are more geared

towards optimizing for execution time and are less suited for applications that require

flexibility. The capability of controlling designs from software to can also help to

evaluate the best suited combination of parameters and schemes for an embedded

application with comparable performance. Implementing exponentiation algorithms

can also provide additional resistance against side-channel attacks.

63

4.6 Conclusion

We presented a novel HW/SW codesign approach to support algorithmic and

implementation level flexibility. The generic approach can be applied to other public-

key cryptosystems as well. In the current design, we achieved up to 57 times speedup

as compared to our software implementation with comparable performance in

hardware. The results show that balanced partitioning of a design between hardware

and software may seem challenging but it can support promising flexibility vs

performance tradeoff.

64

5 CUSTOM HARDWARE IMPLEMENTATION OF NTRUEncrypt

In this chapter, we present a high-speed hardware implementation of NTRUEncrypt

Short Vector Encryption Scheme (SVES), fully compliant with the IEEE 1363.1

Standard Specification for Public Key Cryptographic Techniques Based on Hard

Problems over Lattices. Our implementation supports two representative parameter

sets, ees1087ep1 and ees1499ep1, optimized for speed, which provide security levels

of 192 and 256 bits, respectively. Our implementation follows an earlier proposed Post-

Quantum Cryptography (PQC) Hardware Application Programming Interface (API).

As a first implementation following this API, it provides a reference that can be adopted

in any future implementations of post-quantum cryptosystems. We describe the detailed

flow and block diagrams as well as results in terms of latency (in clock cycles),

maximum clock frequency, and resource utilization. We also report the speedup of our

implementation in Xilinx Field Programmable Gate Arrays (FPGAs) as compared to a

software implementations of NTRUEncrypt SVES, with equivalent functionality,

running on the Cortex A9 ARM Core. Our results show a significant speed-up of

hardware vs. software, and very different percentage contributions of the execution

times for equivalent operations executed in these two different environments.

5.1 Preliminaries

We are not aware of any previous high-speed hardware implementation of the entire

NTRUEncrypt SVES scheme reported in the scientific literature or available

commercially. Our implementation is also unique in that it is the first implementation

65

of any PQC scheme following our newly proposed PQC Hardware API. As such, it

provides a valuable reference for any future implementers of PQC schemes, which is

very important in the context of the upcoming NIST standard candidate evaluation

process.

5.2 NTRUEncrypt SVES

The flow diagrams of the NTRUEncrypt SVES encryption and decryption operations

are shown in Figure 15. The notation used, and the names of basic operations, inputs,

outputs, and intermediate variables are explained in Table 13 and

Table 14.

8*l

B2T

octL p0

Mbin

db

b

8 8*p0Len

m

2N

2N

MGF
2N

m

+
2N

αN

2N

*

αN

r

αN

db

BPGM

m

24

OID

8*l

b hTrunc

pkLen

e

sData

αN

Mtrin

mask

Check 1

h

mod4
2N

+

m

R=r*h
R4

66

Figure 15. Flow diagram of SVES Encryption (top) and Decryption (bottom)

Table 13. Basic operations of Encryption and Decryption.

Name Description

Poly Mult, * Polynomial Multiplication (ring multiplication in Z[X]/(XN-1)

BPGM Blinding Polynomial Generation Method

MGF Mask Generation Function

Range Conv Range Conversion from [0,q] to [-q/2, q/2]

B2T Conversion of each group of three bits to two ternary coefficients

T2B Conversion of two ternary coefficients to a group of three bits

Poly Add, + Polynomial Addition

Poly Sub, – Polynomial Subtraction

Check 1 Checking whether an input polynomial with “small” coefficients contains at

least dm0 1s, -1s, and 0s. If not, setting fail=1.

Check 2 Checking whether all bytes of padding after decryption are 0s.

Check 3 Comparing values of two inputs cR and cR’. If they are different setting

fail=1.

67

Table 14. Inputs, Outputs, and Intermediate Variables

Name Role Description

OID in Object identifier specifying uniquely an algorithm and

parameter set used

b in Random data (binary string)

m in Message (binary string)

octL in Length of message m in bytes (single byte)

p0 var Zero padding (binary string)

hTrunc in First pkLen bits of the public key h (binary string)

r var Random polynomial with “small” coefficients

h in Public key (polynomial with “big” coefficients)

e out/in Ciphertext (polynomial with “big” coefficients)

Mbin, sData cMbin,

csData

var Intermediate variables (binary strings)

Mtrin, mask, m’

cMtrin, mask, ci

var Intermediate variables (polynomials with “small”

coefficients)

R, cR, cR’ var Intermediate variables (polynomials with “big”

coefficients)

cb var Decrypted random data (binary string)

cm out Decrypted message (binary string)

cOctL out Length of decrypted message (single byte)

cp0 var Decrypted padding (to be verified)

F in/var Polynomial with “small” coefficients (can be used as

an input representing uniquely private key f)

f=1+pF in/var Private key (can be replaced as an input by F)

In Figure 15, the operations of the core NTRUEncrypt scheme, known from the early

literature on the topic, such as [13], are shown in dashed boxes.

68

In the SVES encryption scheme shown in Figure 15, m is replaced by m’, which is an

intermediate variable, dependent on the binary message m, length of m (denoted by

octL), random data b, public key h, and the Object identifier, OID, representing

uniquely a given encryption scheme and parameter set. Additionally, r is not selected

completely at random, but rather generated by a deterministic function, called the

Blinding Polynomial Generation Method (BPGM), based on a standardized hash

algorithm, with inputs in the form of OID, message m, random data b, and the first

pkLen bits of the public key h (hTrunc). B2T is a conversion of each group of three bits

to two ternary coefficients, using the look-up table defined in the IEEE standard.

In the SVES decryption scheme shown in Figure 15, the decrypted value is denoted by

ci, and must be still unmasked to recover the actual decrypted binary message cm. Three

checks are performed on the decryption side. If any of these checks fails, the result of

decryption is considered invalid. Check 1 is to verify whether ci, which should be

identical with m’ on the encryption site, has a sufficient number (at least dm0) of 1s, -

1s, and 0s (where dm0 is a part of a given parameter set, and is given in Table 3). Check

2 is to determine whether cMbin on the decryption side, which should be the same as

Mbin on encryption site, has a proper format, i.e., its padding bytes (the last

maxMsgLenBytes – cOctL bytes) are all equal to zeros. Finally, Check 3 is the most

comprehensive check, used to verify whether the value of cR’ is equal to cR, where cR’

is calculated using the same formulas as R during decryption, with the message m

replaced by decrypted message cm, and the random input b replaced by the decrypted

random data cb. The other parts of the input to BPGM, namely OID and hTrunc, remain

the same as during encryption. T2B is an inverse of the B2T conversion function.

69

5.3 Hardware Design

Assumptions

Our hardware implementation supports full Short Vector Encryption Scheme (SVES)

described in the IEEE P1361.1 standard [14]. It is also compliant with the recently

proposed PQC Hardware API [52]. Encryption and decryption share the same circuit.

Key generation is assumed to be performed externally, e.g., in software. This

assumption is consistent with the proposed PQC Hardware API [52], and is common

for many practical implementations of other public key cryptosystems. Public key and

private key are loaded in advance, before the first encryption/decryption. They are

stored internally and can be used for processing of multiple messages/ciphertexts.

The primary optimization target is the minimum latency (in absolute time units) for

encryption and decryption. However, in case any design choices can lead to the same

or only marginally greater latency, with the circuit area decreased substantially, these

design choices are pursued as well to keep the cost and energy consumption of the

circuit as low as possible.

The implementation supports two parameter sets, specified in [14], denoted as

ees1087ep1 and ees1499ep1, optimized for speed, with security levels of 192 and 256

bits, respectively. The swap between these two parameter sets can occur during runtime.

SHA-256 is used as a basis for the implementation of the Blinding Polynomial

Generation Method (BPGM) and the Mask Generation Function (MGF) of SVES. The

remaining major parameters of both sets are summarized in Table 15.

70

Table 15. Parameters of the algorithm, architecture, and input affecting the execution

time, for two parameter sets ees1499ep1 and ees1087ep1.

Parameter Set ees1499ep1 ees1087ep1

Name Description

PARAMETERS OF ALGORITHM – BASIC

N Dimension (rank) of the polynomial ring 1499 1087

dr No. of 1s and no. of -1s in r 79 63

df No. of 1s and no. of -1s in F 79 63

db No. of random bits of b 256 192

dm0 The minimum number of 0s, 1s and -1s in m’

and ci, used in Check 1

79 63

maxMsg

LenBytes

Maximum message length in bytes 247 178

pkLen No. of bits of h to include in sData 256 192

q "Big" modulus 2048 2048

p "Small" modulus 3 3

c Polynomial index generation constant 13 13

hiLen Hash function input block size in bits 512 512

hoLen Hash function output block size in bits 256 256

PARAMETERS OF ALGORITHM – DERIVED

=log2q No. of bits used to represent "big" coefficients 11 11

=log2N No. of bits used to represent an index of a

polynomial coefficient

11 11

cthr Index generation threshold

= 2c-(2c mod N), used by BPGM

7495 7609

cval Probability that a randomly generated c-bit

unsigned integer is smaller than cthr

0.9149 0.9288

bthr Threshold = 35, used by MGF 243 243

bval Probability that a randomly generated 8-bit

unsigned integer is smaller than bthr

0.9492 0.9492

PARAMETERS OF ARCHITECTURE

pmff Polynomial multiplier folding factor 3 3

cphi Clock cycles per hash input block 65 65

w Width of the PDI and DO data buses 64 64

sw Width of the SDI data bus 16 16

rw Width of the RDI data bus 32 32

PARAMETERS OF INPUT

L Message length in bytes variable variable

71

Both polynomial r (for encryption) and polynomial F (for decryption) are

represented using indices of all their coefficients equal to 1 and -1. Our implementation

does not support the so-called product form of polynomials r and F, described in [16],

as this form is not supported by P1363.1 [14].

5.3.1 Hardware API & Interface of NTRU core

To ensure compatibility among implementations of the same algorithm by different

designers, our NTRU implementation is designed based on the hardware API proposed

in [52]. A general idea of the NTRU core interface is shown in Figure 16.

NTRU

do_data do_data
w

pdipdi
w

pdi_validpdi_valid

pdi_readypdi_ready

sdisdi
sw

sdi_validsdi_valid

sdi_readysdi_ready

rdirdi
rw

rdi_validrdi_valid

rdi_readyrdi_ready

do_valid do_valid

do_ready do_ready

mem_addr

mem_do

mem_di

mem_wr

status_ready

clk rst

clk rst

amw

mw

mw

wmw

Figure 16. NTRU Interface compatible with the PQC Hardware API interface [8].

The interface has five major data buses: 1) Public Data Inputs (PDI), 2) Secret Data

Inputs (SDI), 3) Random Data Inputs (RDI), 4) Data Outputs (DO), and 5) External

memory Inputs/Outputs (MEM), respectively. The external memory ports are optional,

and are not used by our core. Selected widths of the interface data buses, w, sw, and rw

are summarized in Table 3. These widths were selected in such a way to minimize the

time required to load inputs and unload results, but at the same time, keep the pin

requirements of the circuit at the level easily supported by modern FPGAs. Private key

72

is assumed to be loaded through SDI in the form of –bit indices of the non-zero

coefficients of F, one coefficient at a time. Public key is loaded through PDI.

5.3.2 Top-Level Block Diagram

The top-level hardware block diagram is shown in Figure 17. The function of the

majority of operational units corresponds to the basic operations of encryption and

decryption, specified in Table 13. The functionality of additional auxiliary components

is summarized in Table 16.

The two major functional units, which determine the speed and area of the circuit are

PolyMult and BPGM/MGF. The latter of these units is used to implement both BPGM

and MGF, because of the similarity between both operations, their sequential non-

overlapping functionality, and because of the reliance on a single hash function core,

implementing SHA-256.

Public key h is stored inside of Poly Mult (for both encryption and decryption). Indices

of non-zero coefficients of F, uniquely determining the private key f, are stored in RAM

at the top level (located in the diagram in Figure 17 just above the Poly Mult unit).

Range Conversion and modulo p reduction are naturally combined together. The mod

p (mod 3) operation is optimized in such a way to use just 10 LUTs per 11-bit

coefficient.

Poly Add (+), Poly Sub (-), Range Conv & mod p, T2B, Check 1 and Check 3 are all

performed on only 2w (rather than N) coefficients at a time. Since these operations do

not limit the latency of either Encryption or Decryption (as long as performed at least

73

with the speed of unloading final results), the narrower datapaths of these units help to

minimize the area and energy consumption of the circuit without affecting performance.

Table 16. Auxiliary components used in the top-level block diagram and the diagrams

of lower-level components.

Symbol Full Name Role

RAM Random Access Memory Storing Random data, b, and the first pkLen bits

of the public key h, hTrunc

SIPO* Serial In Parallel Out Transferring data between a bus with a narrower

width to a bus with a wider width

PISO* Parallel In Serial Out Transferring data between a bus with a wider

width to a bus with a narrower width

SIPO w/PI* SIPO with Parallel Input Regular functionality of SIPO extended with an

ability to load SIPO in a single clock cycle using

parallel input

PISO

w/PO*

PISO with Parallel

Output

Regular functionality of PISO extended with an

ability to unload PISO in a single clock cycle

using parallel output

mod 4 /

mod p, etc.

 Reducing each coefficient of a polynomial

mod 4 / mod p, etc.

IDCU

-E/-ED

Input Data Conversion

Unit for encryption /

decryption

Converting format of incoming data, such as

encrypted message, decrypted message, etc. to

the format required by the following unit

ODCU

-E/-ED

Output Data Conversion

Unit for encryption /

decryption

Converting format of outgoing data, such as

public key, ciphertext, etc. to the format

required by the external units

DFU

-E/-D

Data Forming Unit for

encryption / decryption

Forming words of the sData/csData input to

BPGM

ROTATOR Variable rotator Rotating one input by the number of positions

given by a second input

<<1 Shift left by 1 Shifting the input by one position to the left

BWC Bus Width Converter Converting Bus Widths (with the support for

stalling a preceding circuit, and using unrelated

bus widths)

74

*Nsel control input is optionally used if either input or output bus width depends on N. This input modifies the

operation of the circuit depending on the currently used value of N, corresponding to one of the two supported

parameter sets.

Figure 17. Top-level block diagram of the developed hardware architecture of SVES.

N represents max(1499, 1087)=1499.

Before the first exchange of data with a given user, this user’s public key must be loaded

to the PolyMult unit, using the pdi_data bus, and the Input Data Conversion Unit

(IDCU-ED). This unit is required to handle the control signals of the PDI bus and to

perform the bus width conversion (from w to w/ bits). Similarly, before

decrypting first data from a given user, this user’s private key value, F, must be loaded

to the circuit using the sdi_data bus, and stored in the internal RAM. Since F is a

polynomial with small coefficients 1, -1, and 0, only the locations of 1s and -1s must

75

be loaded. Each of these locations is a number in the range, 0..N-1, and thus is

represented using =ceil(log2N) bits. Each location is loaded in a separate clock cycle.

During encryption, the db bits of random data b are first loaded to the RAM with the

input rdi_data. The sData input to BPGM is formed next, as the concatenation of OID

(Object identifier), b, m (message), and hTrunc (the first pkLen bits of the public key

h), using the Data Formation Unit, DFU-E. After being fed with sData as a seed, BPGM

works as a pseudorandom number generator, producing a new location i of a non-zero

small coefficient of the random polynomial r in each new iteration of BPGM. Each of

these locations is consumed by PolyMult in 3 clock cycles, corresponding to the

Polynomial multiplier folding factor, pmff. Only after PolyMult processes all elements

of r, the output R=r*h becomes available. This output is then reduced mod 4, and the

obtained values provided to the input of MGF. The MGF unit produces the mask, in the

form of a polynomial with small random coefficients. This polynomial is then added to

the polynomial mTrin obtained by converting the extended message input Mbin=b,

octL, m, p0, using the binary to ternary conversion unit, B2T. Finally, the obtained new

message representation, m’, is added to the previously generated output from PolyMul,

R, producing the ciphertext e. The ciphertext is than released to the output do_data,

after conversion to words of the width w, using PISO and the Output Data Conversion

Unit (ODCU-E).

The decryption, starts from the polynomial multiplication of the private key f=1+pF by

the ciphertext e. The obtained value fe then undergoes range conversion and reduction

mod p. The obtained value ci should be the same as the message representation during

encryption m’. ci undergoes Check 1 for the minimum number of 1s, -1s, and 0s.

76

Additionally, ci is used in the calculation of cR=e-ci, which should be identical to R,

calculated on the encryption side. cR is then reduced mod 4 and used as an input to

MGF to produce mask. Mask is subtracted from ci to generate cMtrin. After converting

cMtrin to cMbin using the ternary to binary conversion T2B and a PISO. The Output

Data Conversion Unit (ODCU-D & Check 2) checks whether the decrypted data has a

correct format, including p0Len= maxMsgLenBytes – cOctL bytes of zero padding. If

Check 2 passes, the extended decrypted data is decoded to identify values of cb and cm,

which should be the same as b and m during encryption. These values are then used as

inputs to the Data Formation Unit for Decryption (DFU_D), used to generate csData =

OID, cm, cb, hTrunc. csData is then passed to BPGM as a seed value. The BPGM unit

then produces the locations i of all non-zero coefficients of the random polynomial cr=r,

which should be the same as those on the encryption site. These values are then used,

together with the public key h, stored inside of Poly Mult, to calculate cR’=cr*h. Since

for the correctly decrypted message, cr=r, then cR’ should be equal to cR obtained

earlier during the decryption process. Comparing these two values constitutes the final

check (Check 3) for the correctness of decryption. Only after this test passes, the

decrypted message cm is released through the output do_data, followed by the status

block with the Status field equal to Success. If any of the three decryption checks fails,

all remaining calculations are preempted and only the status block with the Status field

equal to Failure is released to the output do_data.

5.3.3 Diagrams of Selected Lower-Level Components

Internal block diagrams of two major components: the polynomial multiplier, Poly

Mult, and the BPGM/MGF units are shown in Figure 18 and Figure 19, respectively.

77

The polynomial multiplier is based on a variable rotator, and a series of adders capable

of adding a corresponding coefficient of one of the operands to a temporary sum. A full

width version of this multiplier can be folded by an arbitrary factor. A folding factor

equal to 3, which was selected based on the careful timing analysis, is shown in Figure

18.

During encryption, only one polynomial multiplication R=r*h is performed, and thus,

the public key h can be stored directly in the top SIPO w/PI (the Serial Input Parallel

Output unit with Parallel Input). During decryption, two multiplications are performed,

f*e and cR’=cr*h. As a result during the first multiplication, h is pushed to the

neighboring PISO w/PO (the Parallel Input Serial Output unit with Parallel Output),

and then brought back to SIPO w/PI for the second polynomial multiplication. In the

period between the two multiplications, PISO w/PO (holding the ciphertext e), feeding

the serial output ce, is used for the calculation of cR (2w -bit coefficients at a time).

The BPGM/MGF unit is shown in Figure 19. It is based on the slightly modified

implementation of SHA-256 [53], extended with the capability to store and retrieve the

chaining value, which substantially speeds up the repeated computations of

hash(Z||Counter) for multiple values of the Counter and Z composed of multiple input

blocks of SHA-256.

Our implementation of SHA-256 is a basic iterative architecture with 65 clock cycles

per block. During the BPGM calculations Data input is used. During the MGF

calculations, the inputs R4 and cR4 are used, for encryption and decryption,

respectively. For the BPGM calculations, the output of a hash function is divided into

c-bit blocks (with c=13 for both implemented parameter sets). Each block is treated as

78

an unsigned integer. If the value of this integer is greater than the index generation

threshold cthr = 2c-(2c mod N), then the block is discarded. Otherwise, the

corresponding output i is calculated by taking the unsigned integer value of the block

mod N. Since N is different for each parameter set (1499 and 1087, respectively), two

2c x  look-up tables are required to perform the respective mod operations.

Figure 18. Architecture of the polynomial multiplier, folded by a factor of 3

79

Figure 19. Hardware architecture of the combined unit, BPGM/MGF, implementing

the Blinding Polynomial Generation Method and Mask Generation Function

5.4 Results

Our design has been described in VHDL at the Register Transfer Level (RTL). The

target device has been selected as Xilinx Virtex-7 XC7VX485T-3FFG1761. The results

have been generated using Xilinx ISE v14.7. All presented results are after placing and

routing.

In Table 17, we summarize the resource utilization (in LUTs and Slices), maximum

clock frequency, and latencies of several major building blocks. Poly Mult is shown to

be most restrictive in terms of clock frequency (89.51 MHz) and taking a vast majority

80

of the circuit resources (138,475 LUTs). It should be stressed that for operations such

as Poly Add and Poly Sub, latency represents the number of clock cycles necessary to

obtain an output coefficient corresponding to the input coefficients with the same index,

and not the time necessary to process all coefficients of the polynomial.

Table 17. Resource utilization and performance metrics of major component units.

Latencies correspond to the ees1499ep1 parameter set.

Operation LUTs: Slices Clk Freq

[MHz]

Latency

[cycles]

Latency·LUTs

Poly Mult 140,512: 25,099

74.44 474 66,602,688

BPGM 1971: 421 171.05 845 1,665,495

MGF 1004 1,978,884

B2T 64: 34 904.00 1 64

T2B 64: 35 984.25 1 64

Poly Adds

e=(Mtrin+mask) +R_fe

1338: 272

316.25 1 1338

Poly Sub

cMtrin=ci-mask

74 : 64 540.24 1 74

Poly Sub

cR=ce-ci

1221 : 258 331.23 1 1221

Timing analysis of our hardware implementation is shown in Table 18. Latencies in

clock cycles correspond to the maximum sizes of messages allowed by a given

parameter set. For comparison, in Table 19, we present the results of profiling of the

software implementation of NTRUEncrypt SVES from [54], using the Cortex A9

ARM Core, with clock cycles measured using a 100 MHz, AXI Timer.

81

Table 18. Timing analysis of our hardware implementation. Latencies in clock cycles

correspond to the maximum sizes of messages allowed by a given parameter set.

Operation

Latency

(clock

cycles)

% of

Total

Time

Latency

(clock

cycles)

% of

Total

Time

ees1499ep1 ees1087ep1

ENCRYPTION

Performing BPGM on sData &

calculating R using Poly Mult

(in a pipelined fashion)

890 38.8% 701 39.5%

Calculating cR4 using mod 4 &

mask using MGF

1005 43.8% 787 44.3%

Calculating m’ using Poly Add

&

performing Check 1

97 4.2% 70 3.9%

Unloading ciphertext e 300 13.1% 218 12.3%

Total 2292 100% 1776 100%

DECRYPTION

Loading ciphertext e 300 10.7% 218 10.0%

Calculating f*e using Poly Mult 480 17.1% 378 17.6%

Range Conv, mod p, calculating

cR using Poly Sub & cR4 using

mod 4

94 3.4% 68 3.1%

Calculating mask using MGF 1004 35.8% 786 36.0%

Calculating cMbin using Poly

Sub & T2B

2 0.1% 2 0.1%

Performing BPGM on csData &

calculating cR' using Poly Mult

(in a pipelined fashion)

890 31.8% 701 32.1%

Unloading decrypted message

cm

31 1.1% 23 1.1%

Total 2801 100% 2182 100%

82

Table 19. Results of profiling of the software implementation of NTRUEncrypt SVES

from [9], using the Cortex A9 ARM Core of Zynq 7020, for the ees1499ep1parameter

set

Software Function Hardware Equivalent Clock

cycles

% of

Total

Time

ntru_gen_poly Performing BPGM on sData &

calculating R using Poly Mult

(in a pipelined fashion)

24,779 2.3%

ntru_octets_2_elements 12,728 1.2%

ntru_ring_mult_product_in

dices

950,892 89.4%

ntru_coeffs_mod4_2_octet

s

Calculating cR4 using mod 4 &

mask using MGF

9,427 0.9%

ntru_mgftp1 30,703 2.9%

ntru_bits_2_trits 3,020 0.3%

adding Mtrin to mask Calculating m’ using Poly Add &

performing Check 1

8,108 0.8%

ntru_poly_check_min_wei

ght

6,910 0.6%

add_m' 8,672 0.8%

elements_2_octets Unloading ciphertext e 13,549 1.3%

Total 1,068,788 100.0%

The percentage contribution of various operations is substantially different for

hardware and software implementation. Hardware implementation is seriously limited

by the sequential nature of the SHA-256 calculations. As a result, the operation of Poly

Mult can be almost completely overlapped with the computations of BPGM through

the use of pipelining. On the other hand, in the software implementation, Poly Mult

amounts to about 90% of the total execution time. The operations that are most critical

in hardware are hash based operations of BPGM and MGF, amounting to about 83% of

the execution time for both supported parameter sets.

83

Table 20. Speed up of Hardware (This Work) vs. Software (source code [54])

 Software Hardware Speed-up

Poly Mult [s] 9,508.9 5.3 x1794.1

No. of Poly Mults per second 105.2 188,679.2

Encryption Time [s] 10,687.9 25.6 x417.5

No. of Encryptions per second 93.6 39,062.5

The speed up of our hardware implementation vs. software implementation from [54],

running on the Cortex A9 ARM Core of Zynq 7020, with the clock frequency of

666.7 MHz, is summarized in Table 20. For Poly Mult, this speed-up reaches almost

1800. For the entire encryption operation it is equal to 417.5.

The implementation results for NTRUEncrypt reported earlier in the literature are

summarized in Table 21. These results cannot be compared fairly with our results for

multiple reasons, such as: a) different security level (57 & 80 bits vs. 192 & 256 bits),

b) very different values of primary parameters (N=167 & 251 vs. N= 1499 & 1087,

q=128 vs. q=2048), c) implementation of a pure NTRUEncrypt vs. implementation of

NTRUEncrypt SVES), d) support for encryption only vs. support for encryption and

decryption, e) support for a single parameter set vs. support for two parameter sets

(swappable during run-time), f) results for old generation FPGA families (Virtex-E)

and ASIC libraries (0.13m) vs. results for the state-of-the-art FPGA family (Virtex-7,

28nm).

84

Table 21. Previous Hardware Implementations of NTRU. Notation: E – encryption, D

– decryption, E/D: Encryption & Decryption.

Source
Sec

[bits]
N p q

FPGA

family/

ASIC library

Resources

Clk

Freq

[MHz]

Execution

Time

[s]

Kamal et al.

2009 [7]
80 251 3 128

Xilinx

Virtex-E

E/D: 14,352

Slices
62.33

E: 3.1

D: 2.8

Bailey et al.

2001 [3]
80 251 X+2 128

Xilinx

Virtex-E

E: 6,373

Slices
50.06 E: 5.2

Kaps

2006 [5]

(k=84) *

57 167 3 128

0.13 m

TSMC

E: 16,200

GEs
0.5 E: 866

Atici et al.

2008 [6]
57 167 3 128

0.13m

Faraday

Low Leakage

E: 2884

GEs

E/D: 6718

GEs

0.5
E: 56,446

D: 119,238

Kaps

2006 [5]

(k=1) *

57 167 3 128

0.13 m

TSMC

E: 2850

GEs
0.5

E: 58,450

* k: degree of parallelization

Table 22. Comparison of the results for the hardware implementation of Poly Mult by

Liu et al. using Altera Cyclone IV, and this work using Xilinx Kintex-7.

Source Resources Clk Freq

[MHz]

Latency

[cycles]

Latency

[s]

Parameter set: ees1499ep1

Liu et al. [22] 83,949 LEs 63.64 867 13.62

This Work 140,512 LUTs/250,99

Slices

89.51 474 6.35

Speed-up x1.41 x1.83 x2.57

Parameter set: ees1087ep1

Liu et al. [22] 60,876 LEs 73.71 638 8.65

This Work 138,475 LUTs

89.51 378 4.22

Speed-up x1.21 x1.69 x2.05

85

The comparison of this work with the results reported in [55] for Poly Mult itself,

summarized in Table 22, demonstrates the speed-up by a factor of 2.57 for the

ees1499ep1 parameter set, and 2.05 for the ees1499ep1 parameter set. However, a

portion of this speed up has to be attributed to a different FPGA family: Xilinx Virtex-

7 in this work and Altera Cyclone IV in [55].

Since our implementation is intended primarily for high-end servers supporting a very

large number of TLS, IPSec, and other secure protocol transactions per second, no

attempt was made to introduce any countermeasures against side channel attacks. Still

making the implementation constant-time might be desirable [56].

The current implementation has a natural dependence of the execution time on the

length of the message, affecting the size of sData and csData inputs to BPGM. For

example, for the ees1499ep1 parameter set, the latency of encryption varies between

2097 clock cycles for an empty message, and 2292 clock cycles for the maximum

allowed size of the message (247 bytes). Eliminating this dependence will be a part of

our future work.

5.5 Conclusions

We report the first high-speed hardware implementation of the full encryption scheme

of the IEEE P1363.1 standard (NTRUEncrypt SVES).

Our results demonstrate the need to revisit the algorithmic construction of the

NTRUEncrypt SVES in order to make this algorithm more parallelizable and more

suitable for high-speed hardware implementations in the post-quantum era.

86

It should be noticed that the similar problem has been earlier reported by Gueron et al.

[57], for software implementations taking advantage of the AVX2 and AVX512 Single

Instruction Multiple Data (SIMD) instructions of modern Intel processsors. The

proposed solution was to replace the SHA-1/SHA-256 hash functions with the

pseudorandom function based on the pipelined AES New Instructions (AES-NI).

Although this solution may be also applicable to hardware implementations, other

alternatives, preserving the desired security features, but offering a greater potential for

parallelization of the BPGM and MGF functions should be considered as well. For

example, the use of the hardware friendly SHA-3 functions may be considered.

Natural resistance to timing attacks could be added as well through algorithmic changes

in the NTRUEncrypt SVES scheme by eliminating the dependence of the size of inputs

sData and csData to BPGM on the length of the message.

Additionally, the elimination of the use of SHA-1 in the P1363.1 parameter sets with the

security levels of 112 and 128 bits should be taken into account, both for security reasons

[58], as well as in order to avoid any undesired hardware overhead associated with

implementing multiple hash algorithms within one generic hardware module supporting

multiple parameter sets.

Our future work will involve taking advantage of any additional optimizations at the

algorithmic and hardware architecture levels (including the possible use of unrolled

implementations of SHA-2, with two or more rounds per clock cycle [59]), adding

countermeasures against timing attack [56], as well as targeting minimum energy use.

87

6 Hardware/ Software Codesign of NTRUEncrypt

This chapter focusses on the Hardware/Software codesign of NTRU cryptosystem. We

demonstrate our design methodology, focusing on finding an optimal partitioning

scheme to offload the computationally intensive operations to the programmable logic.

We discussed the input and output interface we adopted for our codesign

implementation. The critical path analysis of our design was conducted and based on

that, we explain our efforts to optimally pipeline our design to achieve maximum

frequency. Eventually, we attempted different techniques to reduce the area utilization

of our polynomial multiplier We conclude the discussion by providing results for our

codesign implementation.

6.1 Methodology

To fit the design on our Zedboard platform (Zynq-7000) that has an Artix-7 FPGA, we

conduct this research on NTRU codesign by adopting a smaller parameter set

EES401EP1. Using larger parameter sets that take resources more than available in the

programmable logic of our current platform, limits our capability to fit the design inside

the FPGA during the implementation phase. To avoid this constraint and allow

successful implementation and routing of the design, the HW/SW codesign results are

taken using a smaller parameter set in which the resources take close to 60% of the total

chip reconfigurable resources.

Once different optimization techniques are perfected, we intend to apply them to

designs with bigger parameter sets, EES1499EP1 and EES1499EP1.

88

6.2 Software Profiling

The results collected through software profiling show that polynomial multiplier takes

90 % of the total computation time. Based on this fact, it becomes a suitable operation

to be implemented in reconfigurable logic resources of FPGA.

6.3 Proposed Partitioning Schemes:

We proposed four schemes to partition NTRU.

89

Figure 20. Partitioning Schemes for HW/ SW Codesign of NTRU

90

6.4 Four popssible partitioning schemes NTRUEncrypt bewteen software

and hardware

The figure above shows the possible partitioning schemes for out NTRUEncrypt

implementation.

• Scheme 1: Offers full flexibility, but low performance

• Scheme 2: Only polynomial multiplication is offloaded to the coprocessor for

improved performance

• Scheme 3: Polynomial multiplication and combined BPGM/ MGF modules

are offloaded to the coprocessor for improved performance

• Scheme 4: Maximum performance gain possible with very limited flexibility

We implement partitioning scheme 2 as it leaves more room to achieve the balance

between flexibility through software and performance from the coprocessor.

POLY

MULT

do_data do_data
w

di_data
w

di_valid

di_ready

do_valid do_valid

do_ready do_ready

clk rst

clk rst

di_last

di_data

di_valid

di_ready

di_last do_last do_last

Figure 21. Interface for Polynomial Multiplier

91

For the HW/ SW codesign implementation of NTRU, we used AXI Stream interface to

to connect to input and output signals of the polynomial multiplier. In case of

encryption, we transmit the input data i.e public key “h” and indices of non-zero

coefficients of blinding polynomial “r” from PS to PL using the following function calls

1. load_h_e()

2. load_r_f()

Loading public key is not a part of encryption. It happens as a part of a separate function

call, load_h_e (), before any message is encrypted. With a FIFO at the input pdi_data,

we overlap the multiplication and the transmission of the indices of non-zero

coefficients of r.

6.5 Optimizing the Polynomial Multiplier

Different optimization techniques are employed to improve the performance and reduce

the area utilization of the design. These techniques are also application to hardware only

implementation of our design. We reduce the critical path of the hardware coprocessor

resulting in eventual speedup. The figure below shows the block diagram of the full

version of polynomial multiplier with maximum area utilization.

92

αN

+

ROTATOR

11

α

αN

mult = sum_fb = sum_fb_i()

0s

sum

α

ro

r_f

c0

0s

1s

α

α

h_e
2α

SIPO

αN

α

α

sum_fb_i0

+

α

α

0s
α

c0

0s

1s

α

α

α

α

sum_fb_i1

+

α

α

0s
α

c0

0s

1s

α

α

α

α

sum_fb_iN-1

ce

sel_t sel_t sel_t

z_mi z_mi z_mi

tN-1
t1 αt0

pbk_out_i0pbk_out_iN-1

PISO w/PO

αN

R_fe
α(2w)

Nsel

Figure 22. Polynomial Multiplier – Full Version

We analyzed the critical path of the design using the timing analyzer.

93

Figure 23. Critical Path Analysis for Polynomial Multiplier

The reports from the timing analyzer of the design with parameter set EES401EP1 with

no folding show that the critical path goes through the following components.

1. SIPO w/ PI

2. Variable Rotator

3. Adder

4. PSIO w/PO

94

αN

+

ROTATOR

11

α

αN

mult = sum_fb = sum_fb_i()

0s

sum

α

ro

r_f

c0

0s

1s

α

α

h_e
2α

SIPO

αN

POLYNOMIAL MULTIPLIER – FULL WIDTH

α

α

sum_fb_i0

+

α

α

0s
α

c0

0s

1s

α

α

α

α

sum_fb_i1

+

α

α

0s
α

c0

0s

1s

α

α

α

α

sum_fb_iN-1

ce

sel_t sel_t sel_t

z_mi z_mi z_mi

tN-1
t1 αt0

pbk_out_i0pbk_out_iN-1

PISO w/PO

αN

R_fe
α(2w)

Nsel

Figure 24. Full version of the multiplier (Critical Path shown in Red).

Out of these components, variable rotator introduced 46.2 % of the total delay. We tried

pipelining our variable rotator at various pipeline levels and analyzed the critical path.

Figure 25. Diagram for Pipelining at different Pipeline Levels

>> α*(2^0)

αN

>> α*(2^1)

αN

>> α*(2^5)

αN

>> α*(2^6)

αN

>> α*(2^7)

αN

>> α*(2^8)

αN

αN

A

C

>> α*(2^0)

αN

>> α*(2^1)

αN

>> α*(2^5)

αN

>> α*(2^6)

αN

>> α*(2^7)

αN

>> α*(2^8)

αN

αN

A

C

>> α*(2^0)

αN

>> α*(2^1)

αN

>> α*(2^5)

αN

>> α*(2^6)

αN

>> α*(2^7)

αN

>> α*(2^8)

αN

αN

A

C

>> α*(2^0)

αN

>> α*(2^1)

αN

>> α*(2^5)

αN

>> α*(2^6)

αN

>> α*(2^7)

αN

>> α*(2^8)

αN

αN

A

C

Variable Rotator – PL8Non-Pipelined – Variable Rotator Variable Rotator – PL7 Variable Rotator – PL6

Pipeline Level 8

Pipeline Level 7

Pipeline Level 6

95

It was evident that the pipelining the variable rotator at the pipeline level gave us the

best results and the critical path was balanced. This way, we could double the operating

frequency of the polynomial multiplier with a minimal penalty in terms of hardware

resource.

 Secondly, we attempt to reduce area utilization of polynomial multiplier reduce the area

utilization in terms of number of CLB slices and LUTs. This is because it takes the

largest amount of area resources.

αN/3

PISO w/PO

α

+

ROTATOR

α

αN/3

p1

α

0s p20
αα

c0

0s

1s

α

α

POLYNOMIAL MULTIPLIER – FOLDED BY 3

αN/3 αN/3αN/3

α

αN/3 αN/3 p0p2

p10
α

p00
α

α

+

α

α

0s p2N/3-1
αα

c0

0s

1s

α

α

α
p1N/3-1

α

p0N/3-1
α

pj0
pjN/3-1

<< 1

α

+

α

α

0s p21
αα

c0

0s

1s

α

α

α
p11

α

p01
α

pj1

<< 1<< 1

αN

β

r_f

h_eSIPO w/PI
αN

Nsel

PISO w/PO

αN/3

αN/3αN/3

R_fe
α(2w)

αN

ce
α(2w)

Nsel

α* w/α

Figure 26. Polynomial Multiplier – Folded Architecture

96

Table 23. Comparison of Results with and without Pipelining at different Pipeline

Levels

Pipelined Pipeline

Level

Number of

LUTs

Number of

Slices

Number of

FFs

Frequency

[MHz]

Full Version

Yes PL6 28609 7683 13238 153.9

Yes PL7 28341 8896 13238 164.4

Yes PL8 26629 7065 13238 136.6

No N/A 30411 9004 8827 90.4

Folded Version

Yes PL6 28550 7578 13238 158.4

Yes PL7 28074 7403 13260 168.8

Yes PL8 26669 7079 13260 143.1

No N/A 28074 7383 8849 93.8

Based on the results, it is evident that there is a significant improvement in terms of

frequency and we can operate at a frequency of 168.8 instead of 93.8 with a folding

factor of 3 (i.e. F3) and after pipelining variable rotator at pipeline level of 7 (i.e. PL7).

Although, area utilization is comparable for both folded and full architecture, folded

architecture is preferred due the fact that effect of folding will be more profound while

working on bigger parameter sets.

97

Figure 27. Reconfigurable Resource Utilization of Zynq SoC for HW/ SW Codesign

Implementation

Table 24. Results of profiling of the software implementation of NTRUEncrypt

SVES, using the Cortex A9 ARM Core of Zynq 7020, for the ees401ep1 parameter

set

Software Function Hardware Equivalent Clock

cycles

% of

Total

Time

ntru_gen_poly Performing BPGM on sData &

calculating R using Poly Mult

(in a pipelined fashion)

18081 3.9%

ntru_octets_2_elements
5558 1.2%

ntru_ring_mult_product_indices 407,988
88.0%

ntru_coeffs_mod4_2_octets Calculating cR4 using mod 4 & mask

using MGF
4636 1.0%

ntru_mgftp1
6027 1.3%

ntru_bits_2_trits
1391 0.3%

adding Mtrin to mask Calculating m’ using Poly Add &

performing Check 1
4173 0.9%

ntru_poly_check_min_weight
2318 0.5%

add_m'
3014 0.6%

elements_2_octets Unloading ciphertext e
5569 1.2%

Total 458,754 100.0%

98

Table 25. Results of profiling of the HW/ SW codesign implementation of

NTRUEncrypt SVES, using the Cortex A9 ARM Core of Zynq 7020, for the

ees401ep1 parameter set

Software Function Hardware Equivalent Clock

cycles

% of

Total

Time

ntru_gen_poly Performing BPGM on sData &

calculating R using Poly Mult

(in a pipelined fashion)

18081 35.0%

ntru_octets_2_elements
5558 10.8%

ntru_ring_mult_product_indices
857 1.7%

ntru_coeffs_mod4_2_octets Calculating cR4 using mod 4 & mask

using MGF
4636 9.0%

ntru_mgftp1
6027 11.7%

ntru_bits_2_trits
1391 2.7%

adding Mtrin to mask Calculating m’ using Poly Add &

performing Check 1
4173 8.1%

ntru_poly_check_min_weight
2318 4.5%

add_m'
3014 5.8%

elements_2_octets Unloading ciphertext e
5569 10.8%

Total 51623 100.0%

99

Table 26. Results of profiling of the hardware implementation of NTRUEncrypt SVES, using

the Cortex A9 ARM Core of Zynq 7020, for the ees401ep1 parameter set

Software Function Hardware Equivalent
Clock

cycles

% of

Total

Time

ntru_gen_poly
Performing BPGM on sData &

calculating R using Poly Mult

(in a pipelined fashion)

781 66.7% ntru_octets_2_elements

ntru_ring_mult_product_indices

ntru_coeffs_mod4_2_octets

Calculating cR4 using mod 4 &

mask using MGF
281

24.0%

ntru_mgftp1

ntru_bits_2_trits

adding Mtrin to mask
Calculating m’ using Poly Add &

performing Check 1 28

2.4%

ntru_poly_check_min_weight

add_m'

elements_2_octets Unloading ciphertext e 81 6.9%

Total 1171 100.0%

Table 27 . Timing analysis of our HW/ SW codesign implementation. Latencies in clock

cycles correspond to the maximum sizes of messages allowed by a given parameter set.

Operation

Latency

(clock cycles)

% of

Total

Time

ees401ep1

ENCRYPTION

Performing BPGM on sData & calculating R using Poly Mult

(in a pipelined fashion)

781 66.7%

Calculating cR4 using mod 4 &

mask using MGF

281 24.0%

Calculating m’ using Poly Add &

performing Check 1

28 2.4%

Unloading ciphertext e 81 6.9%

Total 1171 100%

DECRYPTION

Loading ciphertext e 81 4.3%

Calculating f*e using Poly Mult 684 36.7%

Range Conv, mod p, calculating cR using Poly Sub & cR4 using

mod 4

26 1.4%

Calculating mask using MGF 281 15.1%

Calculating cMbin using Poly Sub & T2B 2 0.1%

Performing BPGM on csData & calculating cR' using Poly Mult

(in a pipelined fashion)

781 41.9%

Unloading decrypted message cm 8 0.4%

Total 1863 100%

100

6.6 Conclusion

In this chapter, we profiled or software code for NTRUEncrypt and studied different

options for partitioning the design. We implemented the design that was the best

balanced in terms of optimal partitioning. We implemented the design and performed

critical path analysis based on the timing analysis. The reports conclude that pipelining

the variable rotator inside polynomial multiplier will always help for any parameter set.

A completely balanced pipelined approach can double operating frequency of the

polynomial multiplier. Folding the polynomial multiplier helps more in case of larger

parameter sets but is less effective to reduce the area for smaller parameter sets. We were

able to obtain a speedup of 9x when we offload the polynomial multiplier to the FPGA

coprocessor. This indicates that we can achieve a substantial speedup using codesign

approach as compared to the pure software approach if we carefully partition the design

in a balanced way and then use techniques to parallelize and pipeline the design.

6.7 Future Work

We analyzed our design for balanced pipelining and offloaded polynomial multiplier to

the hardware coprocessor. We left the BPGM and MGF components on the software

side. In future, our design can be made more flexible so that we could choose between

different parameter sets on the run time. Similarly, we can incorporate ease of changing

the HASH function for BPGM/ MGF component.

101

7 CONCLUSIONS & FUTURE WORK

Based on our contributions discussed in the earlier chapters, we would like to provide

the reader with concluding remarks and directions for future work in this field of study.

Our primary focus was to facilitate the process of speeding up and benchmarking

implementations and as a result, ranking post-quantum public-key cryptosystems. The

upcoming NIST standard candidate evaluation process for PQC algorithms puts all

these algorithms in spotlight. The evaluation based on their performance and

applicability in both hardware and software platforms is of prime importance to move

forward with the process of standardization. Our design provides a valuable reference

for any future hardware implementers of PQC schemes. It also paves the way for fair

ranking through effective benchmarking of post-quantum cryptosystems. Our

motivation was to have one platform to explore the flexibility of software and

performance of hardware through HW/SW codesign-based approach. Our design also

supports a common hardware API which can be adopted for implementations of any

future post-quantum cryptosystems. For the design space exploration of flexibility vs.

performance, we have presented a novel HW/SW codesign approach that supports both

algorithmic and implementation level flexibility. For performance, different techniques

like pipelining and folding the hardware architecture were used. Due to the importance

of partitioning between hardware and software, we have thoroughly profiled and

examined our algorithms to achieve the best of both worlds. The results of our RSA

design show that balanced partitioning of a design between hardware and software may

seem challenging but it can support promising flexibility vs performance tradeoff.

102

Through our study based on NTRUEncrypt, our goal was to compare the hardware

implementations of NTRUEncrypt SVES at the same security level, using the same API,

from the point of view of the execution time, resource utilization, and speed-up vs.

software, as well as flexibility and scalability in terms of supporting multiple parameter

sets. The comparisons revealed that all reported results support only one operand size.

Only one scalable architecture is reported in literature. Our study on NTRU SVES

scheme reveals that it is not always sufficient to rely on software profiling. As the

hardware supports parallel execution of logic, in our case HW profiling of NTRU

revealed that execution time is dominated by hash functions. We propose both

architectural and algorithmic level improvements in the design of NTRU to overcome

this bottleneck of the design. These kinds of observations cannot be made if only

software profiling is performed.

PQC cryptosystems do not have HW/SW codesign-based implementations and

flexibility explored. Majority of the designs targeted only one or two aspects (operand

size, use of DSP units, multiple algorithmic schemes) of flexibility. Finally, through our

flexible HW/SW codesign-based approach, we extend and provide a generic model for

the evaluation of other PQC algorithms to incorporate architectural and algorithmic level

improvements through this interesting design technique. The use of a common interface

along with codesign-based approach to have quick evaluation and early estimates can be

valuable for the post-quantum cryptographic community in the entire process of

benchmarking and ranking these candidates.

103

7.1 Possibilities for Future Work

We highlight some noteworthy aspects through which our adopted design methodology

can potentially be extended in the future.

High-Level Synthesis to speed-up development and benchmarking:

Use of HLS is rather limited in the field of cryptography. However, researchers have

applied use of HLS in the hardware benchmarking efforts of AES [60] and SHA-3

finalists [61]. They were able to observe that HLS based designs can obtain the same

ranking of candidates as the RTL based designs with a small penalty in terms of area

and performance. The results to evaluation of candidates to the HASH function

competition SHA-3 were very promising and there was a very good correlation between

RTL and HLS result with much shorter development time. Currently, there is also work

done on the comparison of HLS and RTL based designs for CEASER competition.

Post-Quantum cryptosystems is relatively a new class of cryptosystems. Therefore,

there is no standard yet and as a result, multiple algorithms have been evaluated from

the point of view of efficiency in hardware and the current situation is similar to that of

cryptographic contest for the standardization of SHA-3 hash functions. HLS can help

in the ranking of candidates with results comparable to RTL with a relatively less

performance penalty. With the threat of post-quantum computers in near future, it is

important analyze to as many post-quantum resistant algorithm as possible. The

development time and comparable ranking obtained using HLS will be more beneficial

than having a smaller set of candidates evaluated using RTL in the same time frame.

Comparison of RTL and HLS based approaches in terms of development time,

execution time and area utilization can also be very beneficial.

104

Algorithmic and architectural level improvements in NTRU:

Our future work will involve taking advantage of any additional optimizations at the

algorithmic and hardware architecture levels. From the architectural aspect, we can

possibly explore the use of unrolled implementations of SHA-2, with two or more

rounds per clock cycle to remove the bottleneck in NTRU. To reduce the area we can

also fold the rotator inside the polynomial multiplier unit. At the algorithmic level, SHA-

3 can be adopted instead of SHA-2 or a pseudorandom function based on pipelined AES

can be used. We can also eliminating (or at least reducing) the dependence of the

execution time on message size.

Improvements in HW/SW Codesign-based approach

For NTRUEncrypt SVES, other partitioning schemes can be explored to even further

extend the evaluation process. For RSA, the extension could include implementing

other exponentiation algorithms. communication, computation overlap in design to

improve performance. Utilizing multiple high performance ports to reduce the number

of clock cycles for data communications can also be a possible future extension.

Resistance to Side-Channel Attacks:

As we implemented the NTRUEncrypt scheme published as the IEEE 1363.1 standard

specification, the careful choice of parameters is already adopted. Additionally, from the

security point of view, adding support for resistance against side-channel attacks by

introducing necessary countermeasures can also be explored for all implemented

schemes.

105

A. PUBLICATIONS

M.U. Sharif, R. Shahid, M. Rogawski, and K. Gaj, “Use of embedded FPGA resources in

implementations of five round three SHA-3 candidates”, May. 2011, ECRYPT II Hash

Workshop 2011

Maria Malik, Teng Li, Umar Sharif, Rabia Shahid, Tarek A. El-Ghazawi, and Gregory B.

Newby, Productivity of GPUs under diff erent programming paradigms,Concurrency and

Computation:Practice and Experience, Vol. 24, Nr. 2 (2012) , p. 179-191

R. Shahid, M.U. Sharif, M. Rogawski, and K. Gaj, “Use of embedded FPGA resources in

implementations of 14 Round 2 SHA-3 candidates”, The 2011 International Conference on

Field-Programmable Technology, FPT 2011, New Delhi, India, Dec. 12-14, 2011

K. Gaj, E. Homsirikamol, M. Rogawski, R. Shahid, and M.U. Sharif, “Comprehensive

Evaluation of High-Speed and Medium-Speed Implementations of Five SHA-3 Finalists Using

Xilinx and Altera FPGAs”, 3rd SHA-3 Candidate Conference, March. 22-23, 2012

M.U. Sharif, M. Rogawski, R. Shahid, and K. Gaj, “Hardware-Software Codesign of Pairing-

Based Cryptosystems for Optimal Performance vs. Flexibility Trade-off”, Proc. CryptArchi

2014, Annecy, France, June2014.

E. Homsirikamol, W. Diehl, A. Ferozpuri, F. Farahmand, M.U. Sharif, and K. Gaj, “Toward a

Universal High-Speed Interface for Authenticated Ciphers”, Proc. CryptArchi 2015, Leuven,

Belgium, June 2015.

E. Homsirikamol, W. Diehl, A. Ferozpuri, F. Farahmand, M.U. Sharif, K. Gaj, “GMU

Hardware API for Authenticated Ciphers”, Proc. DIAC 2015: Directions in Authenticated

Ciphers, Singapore, 27-29 Sep. 2015.

M. U. Sharif, R. Shahid, M. Rogawski, and K. Gaj,“Hardware-software codesign of RSA for

optimal performance vs. flexibility trade-off”, 26th International Conference on Field

Programmable Logic and Applications (FPL), Lausanne, Switzerland, Aug. 2016

M. U. Sharif, and K. Gaj, “Lessons Learned from High-Speed Implementation and

benchmarking of two Post-Quantum Public-Key Cryptosystems”, Cryptarchi 2017, Smolenice,

Slovakia, June. 2017

M. U. Sharif, and K. Gaj, “A Generic High-Speed and HW/SW Codesign Implementations of

NTRU Encrypt (SVES)”, International Conference on Reconfigurable Computing and FPGAs

(ReConfig 2017), Cancun, Mexico, Dec. 2017 (to be submitted)

https://www.researchgate.net/profile/Malik_Sharif?_iepl%5BviewId%5D=9ndA5y33dSmNH0sDbCebL2xV&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A308836046&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile
https://www.researchgate.net/profile/Rabia_Shahid?_iepl%5BviewId%5D=9ndA5y33dSmNH0sDbCebL2xV&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A308836046&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile
https://www.researchgate.net/profile/Marcin_Rogawski?_iepl%5BviewId%5D=9ndA5y33dSmNH0sDbCebL2xV&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A308836046&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile
https://www.researchgate.net/profile/Kris_Gaj?_iepl%5BviewId%5D=9ndA5y33dSmNH0sDbCebL2xV&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A308836046&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile
https://www.researchgate.net/profile/Kris_Gaj?_iepl%5BviewId%5D=9ndA5y33dSmNH0sDbCebL2xV&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A308836046&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile
https://www.researchgate.net/profile/Kris_Gaj?_iepl%5BviewId%5D=9ndA5y33dSmNH0sDbCebL2xV&_iepl%5BprofilePublicationItemVariant%5D=default&_iepl%5Bcontexts%5D%5B0%5D=prfpi&_iepl%5BtargetEntityId%5D=PB%3A308836046&_iepl%5BinteractionType%5D=publicationViewCoAuthorProfile

106

BIBLIOGRAPHY

[1] M. E. H. Whitfield Diffie, "New Directions in Cryptography," IEEE Transactions on

Information Theory, vol. 22, no. 6, 1996.

[2] R. L. Rivest, A. Shamir and L. Adleman, "A method for obtaining digital signatures

and public-key cryptosystems," in Commun. ACM, 21(2), February 1978, pp 120– 126.

[3] P. W. Shor, "Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer," Journal on Computing, vol. 26, no. 5, p. 1484–

1509, 1997. .

[4] S. Kumar and C. Paar, "Reconfigurable Instruction Set Extension for Enabling ECC on

an 8-bit Processor," in 14th International Conference, FPL , Leuven, Belgium, 2004,

pp 586-595.

[5] G. Orlando and C. Paar, "A High-Performance Reconfigurable Elliptic Curve

Processor for GF(2m)," in Cryptographic Hardware and Embedded Systems,

Worcester, MA, 2000. pp 41-56.

[6] K. Sakiyama, L. Batina, B. Preneel and I. Verbauwhede, "HW/SW co-design for

accelerating public-key cryptosystems over GF(p) on the 8051 micro-controller," in

World Automation Congress (WAC), IEEE, 2006, pp 1–6.

[7] R. C. C. Cheung, W. Luk and P. Y. K. Cheung, "Reconfigurable Elliptic Curve

Cryptosystems on a Chip," in Design, Automation and Test in Europe - Volume 1 ,

Washington, DC, 2005. pp 24-29 .

[8] K. Saeedi1, S. Simmons2, J. Z. Salvail1, P. Dluhy1, H. Riemann3, N. V. Abrosimov3,

P. Becker4, H.-J. Pohl5, J. J. L. Morton6, M. L. W. Thewalt1 and *, "Room-

Temperature Quantum Bit Storage Exceeding 39 Minutes Using Ionized Donors in

Silicon-28," 2013.

[9] N. Gura, A. Patel, A. Wander, H. Eberle and S. C. Shantz, " Comparing elliptic curve

cryptography and RSA on 8-bit CPUs," in Cryptographic Hardware and Embedded

Systems, Cambridge, MA, 2004. pp. 119–132.

[10] L. Batina, D. Hwang, A. Hodjat, B. Preneel and I. Verbauwhede, "Hardware/Software

Co-design for Hyperelliptic Curve Cryptography (HECC) on the 8051 μP," in

Cryptographic Hardware and Embedded Systems, Edinburgh, UK, 2005. pp 106-118.

[11] D. Bernstein, J. Buchmann and E. Dahmen, "Post-Quantum Cryptography," Springer-

Verlag Berlin Heidelberg, 2009.

[12] M. Ajtai, "Generating hard instances of lattice problems," New York, NY, 1996.

107

[13] J. Hoffstein, J. Pipher and J. H. Silverman, "NTRU: A Ring-Based Public Key

Cryptosystem," in Proceedings of the Third International Symposium on Algorithmic

Number Theory , London, UK, 1998. pp 267-288 .

[14] IEEE Std P1363.1-2008, IEEE Standard Specification for Public Key Cryptographic

Techniques based on Hard problems over Lattices, March. 2009.

[15] "Financial Services Industry's Accredited Standards Committee X9, ANSI X9.98-

2010, Lattice-Based Polynomial Public Key Establishment Algorithm for the Finalcial

Services Industry," 2010.

[16] "Consortium for Efficient Embedded Security, Efficient Embedded Security Standards

(EESS), EESS #1: Implementation Aspects of NTRUEncrypt, v. 3.1," Sep. 2015.

[17] J. Schanck, W. Whyte and Z. Zhang, "Quantum-Safe Hybrid (QSH) Ciphersuite for

Transport Layer Security (TLS) version 1.3, TLS Working Group Internet Draft," Oct.

2016 (work in progress).

[18] L. Chen, Y. -K. Liu, S. Jordan, D. Moody, R. Peralta, R. Perlner and D. Smith-Tone,

"Report on Post-Quantum Cryptography," National Institute of Standards and

Technology Internal Report, NISTIR 8105 DRAFT, Feb. 2016.

[19] D. Moody, "Post-Quantum Cryptography: NIST's Plans for the Future," in 7th

International Conference on Post-Quantum Cryptography, PQCrypto 2016, Fukuota,

Japan, Feb. 24-26. 2016.

[20] "National Institute of Standards and Technology, Post-Quantum Crypto Project,"

[Online]. Available: http://csrc.nist.gov/groups/ST/post-quantum-crypto/.

[21] D. Suzuki, "How to maximize the potential of fpga resources for modular

exponentiation," in Proc. 9th International Workshop on Cryptographic Hardware in

Embedded Systems (CHES’07), Sep. 2007, pp. 272–288.

[22] P. L. Montgomery, "Modular multiplication without trial division," in Math. Comp.,

44(170), 1985, pp 519–521.

[23] H. Orup, "Simplifying quotient determination in high-radix modular multiplication," in

Proceedings of the 12th Symposium on Computer Arithmetic, Jul 1995, pp 193–199.

[24] M. Simka and V. Fischer, "Hardware-software codesign in embedded asymmetric

cryptography application - A case study," in Proc. Field-Programmable Logic and

Applications, 2003, pp 1075–1078.

[25] M. K. Hani, H. Wen and A. Paniandi, "Design and implementation of a private and

public key crypto processor for next generation IT security applications.," in

Malaysian J. Comput. Sci., 19, 2006, pp 29–45.

[26] M. Issad, B. Boudraa, M. Anane and N. Anane, "Software/hardware co-design of

modular exponentiation for efficient RSA cryptosystem," in Journal of Circuits,

Systems, and Computers, 23(3), 2014.

108

[27] L. Uhsadel, M. Ullrich, I. Verbauwhede and B. Preneel, "Interface design for mapping

a variety of RSA exponentiation algorithms on a HW/SW co-design platform.," in

Proceedings of the 2012 IEEE 23rd International Conference on Application-Specific

Systems, Architectures and Processors, ASAP ’12, Washington, DC, USA, 2012, pp

109–116.

[28] M. Koschuch, J. Lechner, A. Weitzer, J. Großschädl, A. Szekely, S. Tillich and J.

Wolkerstorfer, "Hardware/software co-design of elliptic curve cryptography on an

8051 microcontroller," in International conference on Cryptographic Hardware and

Embedded Systems , Berlin, Heidelberg, 2006. pp 430-444.

[29] C. P. L. Gouvêa, L. B. Oliveira and J. López, "Efficient software implementation of

public-key cryptography on sensor networks using the MSP430X microcontroller," in

Journal of Cryptographic Engineering, 2012, pp. 19–29.

[30] E. Wenger, T. Unterluggauer and M. Werner, 8/16/32 Shades of Elliptic Curve

Cryptography on Embedded Processors, Mumbai, India: INDOCRYPT , 2013.

[31] E. Wenger, "Hardware Architectures for MSP430-based Wireless Sensor Nodes

Performing Elliptic Curve Cryptography," in 11th International Conference, ACNS ,

Banff, AB, Canada, 2013, pp 290-306.

[32] J. Balasch, B. Gierlichs, K. Jaurvinen and I. Verbauwhede, "Hardware/software co-

design flavors of elliptic curve scalar multiplication," in IEEE International

Symposium on Electromagnetic Compatibility (EMC), Raleigh, NC , 2014 .

[33] M. Hassan, "A scalable hardware/software co-design for elliptic curve cryptography

on PicoBlaze microcontroller," in Proceedings of 2010 IEEE International Symposium

on Circuits and Systems (ISCAS), Paris, 2010.

[34] D. V. Bailey, D. Coffin, A. Elbirt, J. H. Silverman and A. D. Woodbury, "NTRU in

Constrained Devices," in Cryptographic Hardware and Embedded Systems , Paris,

France, 2001. pp 262-272.

[35] C. M. O. Rourke, "Efficient NTRU Implementations," MS Thesis, Worcester

Polytechnic Institute, 2006.

[36] J.-P. Kaps, "Cryptography for Ultra-Low Power Devices," PhD Thesis, Worcester

Polytechnic Institute, 2006.

[37] A. C. Atıcı, L. Batina, J. Fan, I. Verbauwhede and S. Yalcin, "Low-cost

Implementations of NTRU for pervasive security," in International Conference on

Application-Specific Systems, Architectures and Processors, ASAP, Leuven, 2008. pp

79 - 84 .

[38] A. Kamal and A. Youssef, "An FPGA implementation of the NTRUEncrypt

cryptosystem," in International Conference on Microelectronics (ICM), Marrakech,

2009. pp 209 - 212 .

109

[39] Ç. Koc, T. Acar and B. J. Kaliski, "Analyzing and comparing montgomery

multiplication algorithms," in IEEE Micro, 16(3), June 1996, pp 26–33.

[40] A. F. Tenca and C. K. Koc, "A scalable architecture for modular multiplication based

on montgomery’s algorithm," in IEEE Trans. Computers, 52(9), 2003, pp 1215–1221.

[41] D. Harris and K. Kelley, "Parallelized very high radix scalable montgomery

multipliers," in Proceedings of the 20th annual conference on Integrated circuits and

systems design, 2005, pp 306–311.

[42] M. Huang, K. Gaj and T. El Gazawi, "New hardware architectures for montgomery

modular multiplication algorithm," in Transactions on Computers, 2010.

[43] A. F. Tenca, R. F. Tenca, G. Todorov and C. K. Koc, "High-radix design of a scalable

modular multiplier," in Cryptographic Hardware and Embedded Systems — CHES

2001, 2001, pp 189–200.

[44] M. E. Kaihara and N. Takagi, "Bipartite Modular Multiplication Method," in IEEE

Trans. Computers 57(2): , 2008, pp 157-164.

[45] K. Sakiyama, M. Knežević and J. Fan, "Tripartite modular multiplication," in

Integration the VLSI Journal 09/2011; 44(4), 2011, pp 259-269.

[46] G. X. Yao, J. Fan, R. C. C. Cheung and I. Verbauwhede, "Faster Pairing Coprocessor

Architecture," in LNCS Volume 7708, 2013, pp 160-176.

[47] M. Rogawski, "Development and benchmarking of New Hardware Architectures for

Emerging Cryptographic Transformations, Ph.D. Thesis," George Mason University,

Fairfax, VA, 2013.

[48] D. F. Aranha and C. P. L. Gouvêa, "RELIC is an Efficient LIbrary for Cryptography,"

[Online]. Available: http://code.google.com/p/relic-toolkit/.

[49] I. San and N. At, "Improving the computational efficiency of modular operations for

embedded systems," in Journal of Systems Architecture - Embedded Systems Design,

60(5), 2014, pp 440-451.

[50] B. Song, K. Kawakami, K. Nakano and Y. Ito, "An rsa encryption hardware algorithm

using a single DSP block and a single block RAM on the FPGA," in IJNC, 1(2), 2011,

pp 277–289.

[51] Z. Wang, Z. Jia, L. Ju and R. Chen, "Asip-based design and implementation of RSA

for embedded systems," in Proceedings of the 2012 IEEE 14th International

Conference on High Performance Computing and Communication, 2012, pp 1375–

1382.

[52] A. Ferozpuri, F. Farahmand, M. U. Sharif, J. -P. Kaps and K. Gaj, "Hardware API for

Post-Quantum Public Key Cryptosystems," Technical Report, [Online]. Available:

https://cryptography.gmu.edu/athena/PQC/PQC_HW_API.pdf.

110

[53] "Cryptographic Engineering Research Group @ George Mason University, Source

Code for the SHA-3 Round 3 Candidates & SHA-2 - The Third SHA-3 Candidate

Conference Release," March. 2012. [Online]. Available:

https://cryptography.gmu.edu/athena/index.php?id=source_codes.

[54] "Security Innovation, Inc., Open Source NTRU Public key Cryptography Algorithm

and Reference code," [Online]. Available:

https://github.com/NTRUOpenSourceProject/ntru-crypto.

[55] B. Liu and H. Wu, "Efficient Multiplication Architecture over Truncated Polynomial

Ring for NTRUEncrypt System," in IEEE International Symposium on Circuits and

Systems, ISCAS 2016, Montreal, QC, Canada, 2016, pp 1174-1177.

[56] P. C. Kocher, "Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and

other Systems," in CRYPTO 1996, pp. 104-113.

[57] S. Gueron and F. Schlieker, "Software Optimizations of NTRUEncrypt for Modern

Processor Architectures," in S. Latifi (ed.), Information Technology New Generations,

Advances in Intelligent Systems and Computing 448, pp. 189-199.

[58] "Announcing the first SHA1 collision," [Online]. Available:

https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html.

[59] R. Lien, T. Grembowski and K. Gaj, "A 1Gbit/s Partially Unrolled Architecture of

Hash Functions SHA-1 and SHA-512," in LNCS 2964, RSA Conference 2004

Cryptographer's Track, CT-RSA 2004, San Francisco, CA, Feb. 2004, pp 324-328.

[60] E. Homsirikamol, W. Diehl, A. Ferozpuri, F. Farahmand, M. U. Sharif and K. Gaj,

"GMU Hardware API for Authenticated Ciphers," 2015.

[61] E. Homsirikamol and K. Gaj, "Hardware Benchmarking of Cryptographic Algorithms

Using High-Level Synthesis Tools: The SHA-3 Contest Case Study," in Applied

Reconfigurable Computing, Bochum, Germany, 2015. pp 217-228.

[62] D. Harris, R. Krishnamurthy, M. Anders, S. Mathew and S. Hsu, "An improved unified

scalable radix-2 montgomery multiplier," in Computer Arithmetic, 2005.

[63] N. Nedjah and L. D. M. Mourelle, "Software/hardware co-design of efficient and

secure cryptographic hardware," in J. Unive. Comput. Sci., , 2005, pp 66–82.

[64] Z. Wang, Z. Jia, L. Ju and R. Chen, "Development and benchmarking of new hardware

architectures for emerging cryptographic transformations," Ph.D. Thesis. George

Mason University, July 2013.

[65] Z. Wang, Z. Jia, L. Ju and R. Chen, "Asip-based design and implementation of RSA

for embedded systems," HPCC-ICESS, IEEE Computer Society, 2012, pp 1375–1382.

[66] N. Koblitz, "Elliptic curve cryptosystems,," in Mathematics of Computation, Vol. 48,

1987. pp. 203–209..

111

[67] D. Bernstein, "Cost analysis of hash collisions: Will quantum computers make

SHARCS obsolete?," Proc. 4th Workshop on Special-purpose Hardware for Attacking

Cryptograhic Systems, Lausanne, Switzerland, Sep. 9-10, 2009.

[68] D. Bernstein, "Introduction to post-quantum cryptography," [BBD09].

[69] D. Bernstein, "Grover vs. McEliece," Post-Quantum Cryptography, 2010.

[70] D. Buktu, "The NTRU Project," 2011. [Online]. Available:

http://tbuktu.github.io/ntru/.

[71] D. J. Bernstein, "McBits: Fast Constant-Time Code-Based Cryptography," in Prof.

15th International Workshop, Santa Barbara, CA, USA, August 20-23, 2013.

[72] "eBACS: ECRYPT Benchmarking of Cryptographic Systems," [Online]. Available:

http://bench.cr.yp.to.

[73] A. Canteaut and N. Sendrier, "Cryptanalysis of the Original McEliece Cryptosystem,"

in INRIA, 1998.

[74] N. Göttert, T. Feller, M. Schneider, S. A. Huss and J. Buchmann, "On the design of

hardware building blocks for modern lattice-based encryption schemes," in Proc.

CHES, 2012.

[75] M. Heger, "Cryptographers Take on Quantum Computers," in IEEE Spectrum, January

2009.

[76] S. Heyse, "Code-Based Cryptography: Implementing the McEliece Scheme on

Reconfigurable Hardware," Diploma Thesis, Ruhr-University Bochum, 31 May 2009.

[77] T. Eisenbarth, T. Güneysu, S. Heyse and C. Paar, "MicroEliece: McEliece for

Embedded Devices," in Proc. CHES, 2009, pp. 49-64.

[78] S. Heyse, I. Maurich and T. Güneysu, "Smaller Keys for Code-based Cryptography:

QC-MDPC McEliece Implementations on Embedded Devices," in Proc. CHES 2013,

Santa Barbara, USA, August 20-23, 2013.

[79] "Hybrid McEliece," [Online]. Available: https://www.rocq.inria.fr/secret/MCE .

[80] "Q&A With Post-Quantum Computing Cryptography Researcher Jintai Ding," in

IEEE Spectrum, 2008.

[81] A. Kamal and A. Youssef, "An FPGA implementation of the NTRUEncrypt

cryptosystem," in International Conference on Microelectronics (ICM), 2009, pp. 209-

212.

[82] I. von Maurich and T. Güneysu, "Lightweight Code-based Cryptography: QC-MDPC

McEliece Encryption on Reconfigurable Devices," in Proc. DATE 2014, Dresden,

Germany, March 24-28, 2014.

112

[83] D. Micciancio, "The Geometry of Lattice Cryptography," in UCSDCSE, 16 Feb. 2012.

[84] D. Micciancio and O. Regev, "Lattice-Based Cryptography," in New York University

Courant Institute of Mathematical Sciences, 22 July 2008.

[85] J. Morgan, "Quantum Memory," in World Record' Smashed, BBC News, 14 Nov.

2013.

[86] "NTRU Encryption Toolkits and Libraries," [Online]. Available:

https://www.securityinnovation.com/products/encryption-libraries/ntru-crypto/ .

[87] "PQCrypto – Post-quantum cryptography workshop series," [Online]. Available:

http://pqcrypto.org .

[88] "NIST Workshop on Cybersecurity in a Post-Quantum World," [Online]. Available:

http://www.nist.gov/itl/csd/ct/post-quantum-crypto-workshop-2015.cfm .

[89] "Quo Vadis Cryptology 2011," [Online]. Available:

http://cryptography.gmu.edu/quovadis/ .

[90] S. Tang, H. Yi, J. Ding, H. Chen and G. Chen, "High-speed Hardware Implementation

of Rainbow Signature on FPGAs," in Proc. PQCrypt , 2011.

[91] "Xilinx Zynq-7000 Extensible Processing Platform," [Online]. Available:

http://www.xilinx.com/products/silicon-devices/epp/zynq-7000.

[92] J. Ho.ffstein, J. Pipher and J. H. Silverman, "A Ring Base Public Key Cryptosystem,"

in Algorithmic Number Theory (ANTS III), Lecture Notes in Computer Science,

volume 1423, Berlin, 1998, pp 267-288.

[93] G. Gaubatz, J.-P. Kaps, E. Ozturk and B. Sunar, "State of the art in ultra-low power

public key cryptography for wireless sensor networks," in Third IEEE International

Conference on Pervasive Computing and Communications Workshops, 2005. PerCom

2005 Workshops. , Kauai Island, HI, 2005.

[94] N. Nedjah and L. D. M. Mourelle, "Software/hardware co-design of efficient and

secure cryptographic hardware," in J. Unive. Comput. Sci., 2005. pp 66–82.

[95] P. Schaumont, A Practical Introduction to Hardware/Software Codesign, Blacksburg,

VA: Springer US, 2013.

[96] F. Hu, K. Wilhelm, M. Schab, M. Lukowiak, S. Radziszowski and Y. Xiao, "NTRU-

based Sensor Network Security: A Low-power Hardware Implementation

Perspective," International Journal of Security and Communication Networks (Wiley),

vol. 2, no. 1, pp. pp 71-81, 2009.

[97] T. Pöppelmann, L. Ducas and T. Güneysu, "Enhanced Lattice-Based Signatures on

Reconfigurable Hardware," in Cryptographic Hardware and Embedded Systems,

Busan, South Korea, 2014. pp 353-370.

113

[98] T. Pöppelmann and T. Güneysu, "Towards Practical Lattice-Based Public-Key

Encryption on Reconfigurable Hardware," in Selected Areas in Cryptography - SAC ,

Burnaby, BC, Canada, 2013. pp 68-85.

[99] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen and I. Verbauwhede, "Compact

Ring-LWE Cryptoprocessor," in Cryptographic Hardware and Embedded Systems,

Busan, South Korea, 2014. pp 371-391.

[100] O. Regev, "On lattices, learning with errors, random linear codes, and cryptography,"

in ACM symposium on Theory of computing , New York, NY, 2005. pp 84-93 .

[101] E. Homsirikamol and K. Gaj, "Can High-Level Synthesis Compete Against a Hand-

Written Code in the Cryptographic Domain? A Case Study," in International

Conference on ReConFigurable Computing and FPGAs (ReConFig), Cancún, Mexico,

2014.

[102] E. Homsirikamol, W. Diehl, A. Ferozpuri, F. Farahmand and K. . . . Gaj, "C vs.

VHDL: Comparing Performance of CAESAR Candidates Using High-Level Synthesis

on Xilinx and Altera FPGAs," Cryptographic architectures embedded in

reconfigurable devices (CryptArchi), Leuven, Belgium, 2015.

[103] E. Homsirikamol and K. Gaj, "Hardware Benchmarking of Cryptographic Algorithms

Using High-Level Synthesis Tools: The SHA-3 Contest Case Study," Applied

Reconfigurable Computing (ARC), Bochum, Germany, 2015.

[104] E. Homsirikamol and K. Gaj, "Benchmarking of Cryptographic Algorithms in

Hardware," Directions in Authenticated Ciphers (DIAC), Santa Barbara, USA, 2014.

[105] L. H. Crockett, R. A. Elliot, M. A. Enderwitz and R. W. Stewart, The Zynq Book,

Glasgow, Scotland, UK: Strathclyde Academic Media, 2014.

[106] Financial Services Industry's Accredited Standards Committee X9, ANSI X9.98-2010,

Lattice-Based Polynomial Key Establishment Algorithm for the Financial Services

Industry, 2010.

[107] Consortium for Efficient Embedded Security, Efficient Embedded Security Standards

(EESS), eess #1: Implementation Aspects of NTRUEncrypt, v. 3.1, , Sep. 2015.

[108] B. Liu, "Efficient architectureand Implementation for NTRU Based Systems," Master's

Thesis, University of Windsor, Windsor, Ontario, Canada, Aug. 2015.

[109] B. Liu and H. Wu, "Efficient Architecture and Implementation for NTRUEncrypt

System," in IEEE 58th International Midwest Symposium on Circuits and Systems

(MWSCAS), Fort Collins, CO, Aug. 2015, pp 1-4.

[110] K. Wilhelm, "Aspects of Hardware Methodologies for the NTRU Public Key

Cryptosystem," Master's Thesis, RIT, Feb. 2008.

[111] F. Hu, Q. Hao, M. Lukowiak, Q. Sun, K. Wilhelm, S. Radziszowski and Y. Wu,

"Trustworthy Data Collection From Implantable Medical Devices Via High-Speed

114

Security Implementation Based on IEEE 1363," in IEEE Trans. Information

Technology in Biomedicine, vol. 14, no. 6, 2010, pp 1397-1404.

[112] "SHA-3 Contest," [Online]. Available:

http://csrc.nist.gov/groups/ST/hash/sha3/index.html.

[113] "SHA-3 Zoo," [Online]. Available: http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo.

[114] "SHA-3 Zoo: SHA-3 hardware implementations," [Online]. Available:

http://ehash.iaik.tugraz.at/wiki/SHA3_Hardware_Implementations.

[115] "ATHENa Project Website," [Online]. Available: http://cryptography.gmu.edu/athena.

[116] K. Gaj, J. Kaps, V. Amirineni, M. Rogawski, E. Homsirikamol and B. Brewster,

"ATHENa Automated Tool for Hardware EvaluatioN: Toward Fair and

Comprehensive Benchmarking of Cryptographic Hardware using FPGAs," in Proc.

20th Int. Conf. on Field Programmable Logic and Applications, FPL, Milan, Italy,

2010.

[117] K. Gaj, E. Homsirikamol and M. Rogawski, "Fair and Comprehensive Methodology

for Comparing Hardware Performance of Fourteen Round Two SHA-3 Candidates

Using FPGAs," in Proc. CHES 2010, Santa Barbara, CA, USA, Aug. 2010, pp. 264-

278.

[118] E. Homsirikamol, W. Diehl, A. Ferozpuri, F. Farahmand, M. U. Sharif and K. Gaj,

"GMU Hardware API for Authenticated Ciphers," 2015.

[119] E. Homsirikamol and K. Gaj, "Hardware Benchmarking of Cryptographic Algorithms

Using High-Level Synthesis Tools: The SHA-3 Contest Case Study," in Applied

Reconfigurable Computing, Bochum, Germany, 2015, pp 217-228.

115

BIOGRAPHY

Malik Umar Sharif received his Master of Science degree from George Washington

University, Washington, DC, in 2010. He received his Bachelor of Science from

National University of Sciences and Technology, Pakistan in 2001. During his Ph.D.

degree, he worked as a teaching assistant in the ECE department at GMU for several

years. During his work at GMU, he was also working towards his Ph.D. in Computer

Engineering from George Mason University, Fairfax, VA. Being a member of

Cyptographic Engineering Research Group (CERG), he worked on several projects

related to symmetric key and public key cryptosystems. His major research interests

include hardware security, software/hardware codesign and post-quantum public key

cryptosystems.

