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Abstract

INFERENCE FOR PREFERENTIAL ATTACHMENT MODELS AND RELATED TOP-
ICS

Daniel Saxton, PhD

George Mason University, 2014

Dissertation Director: Dr. Anand Vidyashankar

Preferential attachment models arise in several areas of mathematics and scientific appli-

cations such as in the analysis of social, financial, and gene regulatory networks. However,

inferential questions related to such models are challenging and have so far not been ad-

dressed. In this dissertation, we provide a framework using branching processes within

which to investigate these issues. In particular, we develop theory that may be employed

to extract information about the strength of preferential attachment from graph data, as

well as information about degree asymptotics. We also study an extension of the model

incorporating random effects which helps to introduce added heterogeneity into the process

which is not represented in existing models. Questions concerning cascades on trees are also

studied.



Chapter 1: Introduction

1.1 Preferential attachment

1.1.1 Basic setting and problem

Stochastic processes with positive reinforcement have been studied in great detail over the

past century. Generally speaking, these are processes where the occurrence of some event

renders the event more likely to occur in the future, the classic example of which being

the Pólya urn scheme [12]. Over the past ten years, there has been renewed interest in

these processes with the introduction by Barabasi and Albert [1] of what is now known as

the preferential attachment model. This model is a random graph process which begins

with some number of vertices connected by edges, where at each discrete time step a new

vertex joins the graph and connects randomly to one of the existing vertices. The key

feature of the preferential attachment model is that the newly joining vertex is more likely

to connect to vertices that are already well-connected, and Barabasi and Albert showed

through simulation and heuristic arguments that this simple mechanism was enough to

produce the kinds of power-law behavior that are ubiquitous in real world networks. (Figure

1.1 shows the first several steps in the evolution of a hypothetical preferential attachment

tree.)

While the existence of preferential attachment has been postulated as an explanation for

several properties of real world networks, there currently exists no statistical framework for

detecting or measuring the strength of such a mechanism. The purpose of this dissertation

is to begin to develop such theory through estimation of a parameter that arises naturally

in these models, one which provides insight into the nature of the preferential attachment

mechanism at work in a given graph process.
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Figure 1.1: Evolution of a preferential attachment graph. The degrees are indicated under-
neath each node.

Another drawback of the standard model is that it implicitly assumes that two vertices

with equal degree are indistinguishable. However, this is clearly an oversimplification of

networks in nature. To overcome this, we introduce an extension of the existing model

called preferential attachment with random effects which tries to incorporate other vertex

features aside from connectivity.

Possible applications of this research would be in settings where a linear preferential

attachment has been assumed and one wishes to test the strength of this mechanism. Or, if

one wished to improve the fit of a preferential attachment model by the inclusion of random

effects to account for other vertex-specific traits.

1.1.2 Previous work

Though Barabasi and Albert were the first to study the preferential attachment model, it

was not well-defined until the work of Bollobas and Riordin, who also established the first

rigorous results for the model. For instance, they were able to formally derive the power-law

asymptotics for the degree distribution (the degree of a vertex being the number of edges

incident to it), and also show that the diameter of the graph, defined as the maximum
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distance between vertices, grows logarithmically in the limit.

Since then many variants of the preferential attachment model have been proposed

including one by Athreya, Sethuraman and Ghosh [3] which is constructed as follows. At

time n = 0 initialize a graph consisting of two vertices connected by a single edge, denoted

G0. Then, given the graph Gn at time n ≥ 0, add a new vertex and have it connect Xn+1

times to the ith vertex, 1 ≤ i ≤ n+ 2, with probability equal to,

dn(i) + β∑n+2
j=1 (dn(j) + β)

,

where di(n) is the degree of vertex i at time n, and β ≥ 0 is a constant. The {Xi}∞i=1 are

taken to be i.i.d. positive integer-valued random variables with distribution {pj}∞j=1, and

m ≡
∑∞

j=1 jpj <∞.

Their main result is the following.

Theorem 1.1. Set θ ≡ m/(2m+ β) and suppose that
∑∞

j=1 j log(j) pj <∞. Then,

(i) For each i ≥ 1 there exists a random variable γi ∈ (0,∞) such that,

lim
n→∞

dn(i)

nθ
a.s.
= γi.

(ii) If we denote by Mn the maximal degree at time n, and In the index at which this

maximum is attained (i.e., dn(In) = Mn), then so long as
∑∞

j=1 j
rpj for some r > 1/θ we

have In
a.s.−→ I ∈ N+ as n→∞ and,

lim
n→∞

Mn

nθ
a.s.
= max

i≥1
γi. �

This states that the degree sequence of each vertex grows at an asymptotic rate of nθ so

long as
∑∞

j=1 j log(j)pj <∞ (if
∑∞

j=1 j log(j)pj =∞ then γi
a.s.
= 0 for every i ≥ 1), and that

under a slightly stronger moment condition the same holds true of the maximal degree. In
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particular, under the pure preferential attachment regime where β = 0 the degree sequences

grow at a rate of
√
n. In addition, they show that the parameter θ is related to the scaling

exponent of the asymptotic power law distribution, with larger values corresponding to

degree distributions with heavier tails. Hence, θ contains significant amounts of information

about the nature of the process, and an ability to estimate this parameter is of much value.

Athreya [2] also considered what happens when the attachment function is not neces-

sarily a simple linear function of the degree, but rather that the probability of attachment

is proportional to some more general function f : N+ 7→ R+ applied to the degree of a

given vertex. He showed that certain features of the process such as polynomial growth

of the degrees and power law asymptotics for the degree distribution no longer hold when

the attachment function deviates from the simple linear setting. Specifically, when the at-

tachment is asymptotically sublinear, defined as limn→∞ f(n)/cnp → 1 for some c > 0 and

1/2 < p < 1, the degrees now grow roughly at a rate of log(n)q, where q ≡ 1/(1 − p). In

the asymptotically superlinear case, defined as
∑∞

n=1 f(n)−1 < ∞, then either all degree

sequences converge almost surely if the preference function is not too strong, or each ver-

tex will with positive probability eventually receive all edges from newly arriving vertices.

However, in the latter case he leaves open the question as to whether or not the probability

that this happens for some vertex is one.

The primary tool used to analyze the model with linear weight function is that of

continuous time Markov branching processes, and pure birth Markov processes in the case

of preferential attachment with general weight function. These tools are the topics of the

next two sections.

1.2 Branching processes

A Markov branching process {Z(t) : t ≥ 0} is a continuous time Markov chain with state

space S = {0, 1, 2, . . .}, lifetime parameter 0 < α <∞, and sojourn time parameter αi = iα.

The process can be imagined as a population initialized by a single founder at time t = 0 who
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lives for an exponential(α) length of time and at death produces a number of descendants

according to the distribution {pj}j≥0, typically referred to as the offspring distribution.

After splitting, each descendent is an i.i.d. copy of the parent, and the process continues

as t → ∞. If we set λ ≡ α(m − 1), then it can be shown that E[Z(t)] = eλt [6] and one

immediately gets the following theorem.

Theorem 1.2. {Z(t)e−λt : t ≥ 0} is a non-negative martingale and hence limt→∞ Z(t)e−λt ≡

W exists and is finite almost surely.

Proof: First for any t ≥ 0, E[|Z(t)e−λt|] = E[Z(t)e−λt] = 1 < ∞. Now letting {Z(i)}

denote i.i.d. copies of Z we have by the branching property [6] that for 0 < s < t,

E
[
Z(t)e−λt |Z(s)

]
= e−λtE

Z(s)∑
i=1

Z(i)(t− s) |Z(s)


= e−λtZ(s)E

[
Z(1)(t− s)

]
= e−λtZ(s)eλ(t−s)

= Z(s)e−λs, w.p. 1.

That limt→∞ Z(t)eλt ≡ W exists and is finite a.s. follows from Doob’s first convergence

theorem [13] and the non-negativity of Z(t) (Z(t) ≥ 0 implies E[|Z(t)e−λt|] is constant, and

hence supt≥0 E[|Z(t)e−λt|] <∞). �

While the previous theorem establishes the existence of W , it may be that W
a.s.
= 0.

This issue is addressed by the following theorem (found in [6]), which provides a necessary

and sufficient condition for the uniform integrability of {Z(t)e−λt}t≥0.

Theorem 1.3. Let W be as above and assume λ > 0. If
∑∞

j=1 j log(j) pj < ∞ then

E(W ) = 1, otherwise E(W ) = 0. �

Notice that it can occur that Z(t′) = 0 for some t′ ∈ R+, and if this is the case

5



then Z(t) = 0 for all t ≥ t′. This is referred to as the extinction of the process, and

whenever p0 > 0 this event has positive probability. To deal with this issue, one may

choose to introduce an auxiliary immigration component into the process. That is, we

imagine that there exists an infinite collection {Zi(t)}∞i=0 of i.i.d. copies of Z(t) which are

combined with the original population according to a Poisson process with rate 0 < β <∞.

A Markov branching process with immigration {D(t) : t ≥ 0} can then be written as

D(t) =
∑∞

i=0 Zi(t − Ti)I(Ti ≤ t), where {Ti}∞i=1 are given by the sums Ti =
∑i

j=1 Lj , the

{Li}∞i=1 being i.i.d. exponential(β), and T0 := 0.

The idea behind the proofs in [3] is to construct a collection of branching processes

which have the same distribution as the collection of degree sequences within a preferential

attachment tree, and thus many results which hold for the former will also hold for the

latter. The embedding works by first initializing two i.i.d. Markov branching processes

D1(t) and D2(t) with D1(0), D2(0) := 1. These processes have lifetime and immigration

time parameters λ = 1 and β ∈ [0,∞) respectively, and immigration and offspring particle

distributions {pj}∞j=1 and {p′j}∞j=2 where p′j = pj−1 for j ≥ 2. (That is, regardless of whether

the event is immigration or the death of a particle, the net addition to the process where

the event occurs is distributed according to {pj}∞j=1.) Next we wait for an event to happen

in D1(t) or D2(t) (immigration or the death of a particle), let τ1 denote the random time

at which this event occurs, and start the new process D3(t) with D3(0) = X1 at time τ1,

where X1 is the net addition of particles to the process within which the event occurred.

Continue in this manner for n ≥ 2 and construct the collection {Dk(t)}∞k=1 along with the

increasing sequence of event times {τn}∞n=1. (It will also be notationally convenient to set

τ−1 = τ0 = 0.)

Before reproducing the embedding theorem, we first prove two useful properties of the

exponential distribution on which this result will depend.

Lemma 1.1. Let {Yi}ni=1 be independent exponential random variables with respective rates

{λi}ni=1. Then min{Y1, Y2, . . . , Yn} is distributed exponential with rate
∑n

i=1 λi.

6



Proof: We can assume without loss of generality that n = 2 since the general case

follows from this by repeatedly taking pair-wise minima; i.e., min{Y1, . . . , Yn} =

min{min{Y1, Y2}, . . . , Yn}, etc. Now for t ≥ 0,

P (min{Y1, Y2} ≤ t) = 1− P (min{Y1, Y2} > t)

= 1− P (Y1 > t)P (Y2 > t)

= 1− [1− P (Y1 ≤ t)][1− P (Y2 ≤ t)]

= 1− e−λ1te−λ2t

= 1− e−(λ1+λ2)t. �

Lemma 1.2. Let {Yi}ni=1 be independent exponential random variables with rates {λi}ni=1.

Then, for 1 ≤ i ≤ n P (min{Y1, . . . , Yn} = Yi} = λi/
∑n

j=1 λj.

Proof: Since min{Y1, . . . , Yn} = min{min{Yj}j 6=i, Yi} and min{Yj}j 6=i ∼ exponential(
∑

j 6=i λj)

we again only need to consider the case n = 2.

P (min{Y1, Y2} = Y1) = P (Y1 ≤ Y2)

= E[P (Y1 ≤ Y2 |Y2)]

= E
(

1− e−λ1Y2
)

= 1−
∫ ∞
0

e−λ1xλ2e
−λ2x dx

= 1− λ2
λ1 + λ2

∫ ∞
0

(λ1 + λ2)e
−(λ1+λ2)x dx

=
λ1

λ1 + λ2
. �

Theorem 1.4. (Embedding theorem 1.) For all n ∈ N+ the collections {dj(n) : 1 ≤ j ≤

7



n+ 2} and {Dj(τn − τj−2) : 1 ≤ j ≤ n+ 2} have the same distribution.

Proof: First we note that both collections have the Markov property and initial values

so it will be sufficient to show that the conditional transition probabilities are the same.

Therefore, for k ≥ 1 consider the collection {Dj(τk − τj−2) : 1 ≤ j ≤ k + 2} and note that

when the (k + 1)th event occurs Dk+3(0) is initialized at Xk+1 and the process in which

the event occurred is incremented by Xk+1. (This is analogous to a new vertex joining

a connecting Xk+1 times to its chosen neighbor.) The probability that this event occurs

within process i ∈ {1, 2, . . . , k + 2} is the probability that the minimum of
∑k+2

j=1 Dj(τk −

τj−2) exponential(λ = 1) and k + 2 exponential(β) random variables was among one of the

Dj(τk − τj−2) exponential(λ = 1) random variables or the single exponential(β) random

variable corresponding to process j. By lemmas 1.1 and 1.2 this is equal to,

Di(τk − τi−2) + β∑k+2
j=1(Dj(τk − τj−2) + β)

,

and these are the transition probabilities corresponding to {dj(k) : 1 ≤ j ≤ k + 2}. �

1.3 Pure birth Markov chains

In the general weight function model the construction of the tree is similar to that under

the model with linear weights, with the exception that each new vertex connects exactly

once to its neighbor, and the weight of the ith vertex at time n is given by f [dn(i)], where

dn(i) denotes the degree, and f : N+ 7→ R+ is increasing. In this model, the proofs rely on

an embedding in general pure birth Markov chains.

Specifically, initialize pure birth processes Z1(t) and Z2(t) with Z1(0), Z2(0) := 1, and

exponential sojourn times with rate function f(i), i ∈ N+. Wait for a birth to occur in

either Z1(t) or Z2(t), let τ1 denote the random time of this event, and simultaneously

initialize Z3(t) with Z3(0) := 1. Continue this process exactly as before and one gets the

next theorem [2].
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Theorem 1.5. (Embedding theorem 2.) The collections {dn(i) : 1 ≤ i ≤ n + 2} and

{Zi(τn − τi−2) : 1 ≤ i ≤ n+ 2} have the same distribution.

Proof: As in the case of the previous embedding theorem, we only need to show that

the conditional transition probabilities are equal. Now, when the (k+ 1)th process is started,

one of the existing processes {Zi(τk − τi−2 : 1 ≤ i ≤ k + 2)} will be incremented by one,

and the probability that this process is the ith for 1 ≤ i ≤ k + 2 is equal to the probability

that the minimum of k + 2 exponential random variables with rates {f [Zj(τk − τj−2)]}k+2
j=1

corresponds to the one with rate f [Zi(τk − τi−2)] and by Lemma 1.2 this is equal to,

f [Zi(τk − τi−2)]∑k+2
j=1 f [Zi(τk − τj−2)]

.

As before, these are the transition probabilities associated with the collection {dn(i) : 1 ≤

i ≤ n+ 2}. �

Using this embedding, Athreya [2] established the following results.

Theorem 1.6. (Superlinear case.) Let,

∞∑
n=1

1

f(n)
<∞.

(a) If in addition,

∞∑
n=1

n

n+ f(n)
=∞,

then for all i ≥ 1, limn→∞ dn(i) ≡ ξi <∞ exists almost surely.

(b) If on the other hand,

∞∑
n=1

n

n+ f(n)
<∞,

9



then ∀ i ≥ 1, the ith vertex will with positive probability be the recipient of all but finitely-

many edges from newly joining vertices as n → ∞. (c) Let πj(n) denote the proportion of

vertices with degree j at time n. Then whenever
∑∞

n=1 f(n)−1 <∞ holds, πn(1)
a.s.−→ 1, and

πj(n)
a.s.−→ 0 for j > 1 as n→∞. �

The last part of this theorem says that the asymptotic degree distribution is degenerate

at one.

Theorem 1.7. (Sublinear case.) Suppose that,

lim
n→∞

f(n)

cnp
→ 1,

for some c > 0 and 1/2 < p < 1. Then there is a deterministic sequence {c(n)}∞n=1 and a

constant 0 < α <∞ such that for every i ≥ 1, dn(i)/c(n)q → α w.p. 1, where q ≡ 1/(1−p).

In addition,

0 < lim inf
n→∞

c(n)

log n
≤ lim sup

n→∞

c(n)

log n
<∞. �

Theorem 1.8 characterizes the so-called non-explosion criterion for the process Z(t),

which helps to illuminate the relevance of the conditions in the above theorems (we assume

for convenience that Z(0) = 1, but an identical argument works if the process begins in any

of the other states). Before proving this theorem, we first prove a useful lemma which will

also be used in subsequent sections.

Lemma 1.3. Let {xn}∞n=1 be a sequence of numbers such that xn ∈ (0, 1) for each n, xn → 0

as n → ∞, and let {yn}∞n=1 be a sequence of positive numbers. Then
∏∞
n=1(1 − xn)yn > 0

if and only if
∑∞

n=1 ynxn <∞.

Proof: Note that
∏∞
n=1(1− xn)yn = e

∑∞
n=1 yn log(1−xn) and hence

∏∞
n=1(1− xn)yn > 0 if

and only if −
∑∞

n=1 yn log(1− xn) <∞. However, since xn → 0, − log(1− xn)/xn → 1 as

n→∞ and thus −
∑∞

n=1 yn log(1− xn) <∞ if and only if
∑∞

n=1 ynxn <∞ as claimed. �
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Theorem 1.8. Let {Li}∞i=1 be independent random variables representing the sojourn times

for states i ∈ {1, 2, . . .}, with Li distributed exponential with rate f(i). Also denote Tn ≡∑n
i=1 Li, the total time spent in the first n states, and T∞ ≡ limn→∞ Tn, the explosion time

of the process. Then if
∑∞

n=1 f(n)−1 = ∞, P (T∞ = ∞) = 1, and if
∑∞

n=0 f(n)−1 < ∞,

P (T∞ =∞) = 0.

Proof: For γ > 0,

E(e−γT∞) = lim
n→∞

E(e−γTn)

= lim
n→∞

n∏
i=1

E(e−γLi)

=

∞∏
i=1

f(i)

f(i) + γ

=

∞∏
i=1

(
1− γ

f(i) + γ

)
.

Now, if
∑∞

n=1 f(n)−1 = ∞, then by the above lemma this product is zero for all γ >

0, implying T∞
a.s.
= ∞. If

∑∞
n=1 f(n)−1 < ∞, then by an application of the dominated

convergence theorem we can conclude that the limit of the right hand side is one as γ →

0, and since limγ↓0 E(e−γT∞) = limγ↓0 E(e−γT∞ ;T∞ < ∞) = P (T∞ < ∞) we have that

P (T∞ <∞) = 1. �

1.4 Outline

The remainder of the dissertation is structured as follows. In Chapter 2 we will develop our

framework for conducting inference on preferential attachment graphs, which will depend

on the embedding of Athreya, Sethuraman and Ghosh described above. Then in Chapter 3

we will describe the extension of our model to random effects and prove our main results.

Finally, in Chapter 4 we give results concerning cascades on preferential attachment trees.

11



Chapter 2: Inference for preferential attachment models

Figure 2.1: Preferential attachment tree with θ = 1/2.

2.1 Introduction

Determining the precise nature of the attachment mechanism in preferential attachment

models is an important question in network inference. We will explore the question of how

12
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Figure 2.2: Log-log plot of the empirical degree distribution of a preferential attachment
tree. θ = 1/2, n = 1, 000, 000. The solid line is the true asymptotic distribution.

to measure the strength of this mechanism through estimation of the parameter θ. We begin

by proposing two strongly consistent estimators and looking at their performance through

simulation. Then we will prove the asymptotic normality for a special case of our primary

estimator, and use this result to construct confidence intervals and perform hypothesis tests.

Figures 2.1 and 2.3 show how the features of the graph change for different values of

θ ≡ m/(2m + β). In particular, values close to 1/2 (which correspond to more “pure”

preferential attachment) lead to heavier tail degree distributions, and values closer to zero

correspond to lighter tails and fewer hubs. Figures 2.2 and 2.4 show log-log plots of the

empirical degree distribution of preferential attachment trees with 1,000,000 vertices for

13



Figure 2.3: Preferential attachment tree with θ = 1/5.

θ = 1/3 and θ = 1/5. These are helpful in visualizing power laws since if a random variable

D follows a power law with scaling exponent η, then − log[P (D = j)] = − log(c) + η log(j),

for some constant c, and so the scaling exponent is simply the slope of the plot. We see

from these plots that not only does the graph with θ = 1/2 have vertices with significantly

higher degree, but both clearly have power law tails with a larger scaling exponent in the

case θ = 1/5.

Since we are making inferences about the evolution of the process, the statistics that we

propose will require information about the state of the tree at more than one point in time.

The first requires only knowledge of the state of the tree at two time points, whereas the

14
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Figure 2.4: Log-log plot of the empirical degree distribution of a preferential attachment
tree. θ = 1/5, n = 1, 000, 000. The solid line is the true asymptotic distribution.

second takes an average over the state of the tree at many time points in the past. Before

introducing and proving the consistency of our estimators we state an analysis result found

in the paper of Athreya, et al. [3] which we will extend and use in our first proof.

Lemma 2.1. Let {an,i : 1 ≤ i ≤ n, n ≥ 1} be a double array of nonnegative numbers such

that (i) for all i ≥ 1, limn→∞ an,i = ai, and (ii) denoting bi ≡ supn≥1 an,i, bi → 0 as i→∞.

Then max1≤i≤n an,i → maxi≥1 ai as n→∞, and if in addition the ai are all distinct, then

max1≤i≤n ai = maxi≥1 ai for almost all n. �

15



This lemma is useful since a Borel-Cantelli argument shows that under a mild moment

condition the double array of appropriately-scaled degree sequences will satisfy the above

conditions almost surely. Since our estimator will be based on degree maxima, this fact will

help us to guarantee consistency.

2.2 Log max estimator

Our first estimator involves looking at the logarithm of the empirical growth rates of vertices

with maximal degree viewed across a particular time interval. It is intuitive to look at

logarithms of empirical growth rates since we know from previous results that the degree

sequences grow at an asymptotic rate that is exponential in θ. The reason for looking

at maxima is not so obvious, and is based primarily on having obtained good simulation

results compared to other estimators. One plausible explanation for this phenomenon is

that θ represents asymptotic growth rates of degree sequences, and it may be that the

vertex with maximal degree has the greatest chance of its empirical growth rate being well-

approximated by its asymptotic rate. (In what follows we use the notation that τk is the

time when the kth process is initialized with τ1, τ2 := 0.)

Theorem 2.1. Let r ∈ N+, and let In,r denote the r-vector whose elements {I(i)n,r}1≤i≤r are

the indices corresponding to the r most connected vertices of the graph at time n. Then so

long as E(Xp) <∞ for some p > 1/θ we have ∀ k ∈ {2, 3, 4, . . .} that,

1

r

r∑
i=1

min

logk

 dn(I
(i)
bn/kc,r)

dbn/kc(I
(i)
bn/kc,r)

 , 1

2

 a.s.−→ θ.

Proof: It will be argued that for a triangular array of real numbers {an,i : 1 ≤ i ≤ n}n≥1

satisfying all the hypotheses of the above proposition, the vector comprised of the indices

corresponding to the r maximal entries of the nth row of this array converges to some vector

16



in Nr+. This will be used to establish that,

1

r

r∑
i=1

logk

 dn(I
(i)
bn/kc,r)

dbn/kc(I
(i)
bn/kc,r)

 a.s.−→ θ,

and from this the claim will follow since θ ∈ (0, 1/2]. To establish the first claim, note

that max1≤i≤n an,i → maxi≥1 ai, denote the index of this maximal column i∗, and note also

that the index of max1≤i≤n an,i equals i∗ for almost all n. Now consider the reduced array

{an,i : 1 ≤ i ≤ n, i 6= i∗}n≥1. (This is simply the original array with column i∗ deleted.)

Since we have for large n that an,i∗ > an,i, ∀ i 6= i∗, finding the second largest entry in this

row is the same as finding the largest entry of {an,i}1≤i≤n,i 6=i∗ for all such n. But the array

{an,i : 1 ≤ i ≤ n, i 6= i∗}n≥1 satisfies the same conditions on {an,i : 1 ≤ i ≤ n}n≥1 which

ensure the convergence of the index of the maximal element, and so this sequence converges

as well to maxi≥1,i 6=i∗ ai. The convergence of the remaining r − 2 terms then follows in the

same fashion.

Now if E(Xp) < ∞ for some p > 1/θ, the array of random variables {Di(τn − τi)/nθ :

1 ≤ i ≤ n}n≥1 satisfies the hypotheses of the proposition a.s., and hence the r-vector of

maximal indices freezes for large n. Further, for any fixed j,

Dj(τn − τj)
nθ

a.s.−→ γj ∈ (0,∞),

and thus ∀ i ∈ N+,

logk

[
Di(τn − τi)

Di(τbn/kc − τi)

]
= logk

[
Di(τn − τi)

nθ
· (n/k)θ

Di(τbn/kc − τi)

]
+ θ

a.s.−→ θ,

and by the embedding theorem the same holds for the scaled degree sequences. That the

truncated and untruncated estimators are asymptotically equivalent is evident since θ ∈

17



(0, 1/2]. �

The reason for truncating is simply to force estimates to lie within the parameter space

(0, 1/2].

2.3 Mean log max estimator

Our next estimator involves looking at the tree at several snapshots in the past, and can

be viewed as a kind of Cesàro average of the log max estimator with r = 1.

Theorem 2.2. Let In be the index of the maximal vertex at time n and suppose E(Xp) <∞

for some p > 1/θ. Then for any k ∈ {2, 3, . . .},

1

bn/kc

bn/kc∑
j=1

min

(
logk

[
dkj(Ij)

dj(Ij)

]
,
1

2

)
a.s.−→ θ.

Proof: Since E(Xp) < ∞ for some p > 1/θ we have that logk[dkj(Ij)/dj(Ij)]
a.s.−→ θ as

j → ∞ for all k ∈ {2, 3, . . .}. Thus for any ε > 0 there a.s. exists a random j∗ ∈ N+ such

that | logk[dkj(Ij)/dj(Ij)]− θ| ≤ ε for all j > j∗. Therefore with probability 1,

∣∣∣∣∣∣ 1

bn/kc

bn/kc∑
j=1

logk

[
dkj(Ij)

dj(Ij)

]
− θ

∣∣∣∣∣∣ ≤ 1

bn/kc

∣∣∣∣∣∣
j∗∑
j=1

(
logk

[
dkj(Ij)

dj(Ij)

]
− θ
)∣∣∣∣∣∣+ ε

→ ε,

and hence,

1

bn/kc

bn/kc∑
j=1

logk

[
dkj(Ij)

dj(Ij)

]
a.s.−→ θ.

18



Now, since again logk[dkj(Ij)/dj(Ij)]
a.s.−→ θ ∈ (0, 1/2],

∣∣∣∣∣∣ 1

bn/kc

bn/kc∑
j=1

logk

[
dkj(Ij)

dj(Ij)

]
− 1

bn/kc

bn/kc∑
j=1

min

(
logk

[
dkj(Ij)

dj(Ij)

]
,
1

2

)∣∣∣∣∣∣ a.s.−→ 0. �

Of course, one could combine the ideas behind both of these estimators and compute

averages across time for several maxima, and this would likely improve efficiency. It is also

natural to ask why we aren’t averaging over all vertices. The reason is that this estimator

actually performs poorly in practice, which is likely due to the fact that it involves taking

an average over new vertices whose empirical growth rates are not yet well-approximated

by their asymptotic growth rates, which is also the reason why the above proof breaks down

in this setting. (Specifically, consider a double array {cij : i ≥ 1, j ≥ i} where for each i,

cij → c as j → ∞. Then although one can take an average of the cij ’s over finitely-many

i’s, let j → ∞ and the quantity will still converge to c, this need not be the case for the

overall average n−1
∑n

i=1 cin, and this is why the argument fails.)

2.4 Distributional results

In addition to guaranteeing consistency, it is important that we also characterize the speed

of convergence and be able to assess the quality of our estimator. The following theorems

address this issue, establishing that the rate of convergence is of order n−θ/2, while also

providing us with a means through which to construct confidence intervals and perform

hypothesis tests.

It is useful to first cast the problem in terms of estimation of kθ, and then apply the

delta method to obtain central limit theorems for estimators of θ.

Theorem 2.3. Consider the preferential attachment graph where each new vertex connects

once to its chosen neighbor, and let dn(i) denote the degree of the ith vertex at time n. Then

19



for any i, k ∈ N+, k > 1,

√
dbn/kc(i)

(
dn(i)

dbn/kc(i)
− kθ

)
d−→ normal

(
0, kθ(kθ − 1)

)
.

Proof: As before, we will prove the corresponding result for {Di(τn− τi) : n ≥ 1, i ≤ n}

and then the theorem will follow by an appeal to the embedding theorem. (For convenience

we take n/k to equal bn/kc whenever n/k is not an integer.)

First, note by the branching property that Di(τn − τi)
d
=
∑Di(τn/k−τi)

j=1 D
(n)
j (τn − τn/k),

where the
{
D

(n)
j (τn − τn/k)

}Di(τn/k−τi)
j=1

are i.i.d. Markov branching processes with D
(n)
j (0) :=

1, unit splitting rate and immigration rate β/Di(τn/k − τi). Thus,

√
Di(τn/k − τi)

(
Di(τn − τi)
Di(τn/k − τi)

− kθ
)

d
=

∑Di(τn/k−τi)
j=1

{
D

(n)
j (τn − τn/k)− µn,k

}
√
Di(τn/k − τi))

+
√
Di(τn/k − τi)

(
µn,k − kθ

)
,

where µn,k ≡ E[D(n)(τn−τn/k)]. Next, note that τn−τn/k
a.s.−→ α log(k), Di(τn/k−τi)

a.s.−→∞

as n → ∞ and so D
(n)
j (τn − τn/k)

d−→ Z(α log(k)), where Z(t) is a Yule process (i.e.,

a Markov branching process with offspring distribution degenerate at 2) with unit lifetime

parameter and Z(0) := 1. By the Lindeberg-Feller central limit theorem the first term

converges to a normal(0, σ2k) where σ2k ≡ Var[Z(α log(k))] = kθ(kθ−1), and so we only need

to show that
√
Di(τn/k − τi)

(
µn,k − kθ

) p−→ 0, which holds if nθ/2
(
µn,k − kθ

)
→ 0 since

Di(τn/k − τi) is almost surely of order nθ. Now write,

n
θ/2
(
µn,k − kθ

)
= n

θ/2
(
µn,k − E

(
eτn−τn/k

) )
+ n

θ/2
(

E
(
eτn−τn/k

)
− kθ

)
,

20



and note that,

E
(
eτn−τn/k

)
= E

(
e
∑n−1
j=n/k

(τj+1−τj)
)

=
n−1∏
j=n/k

(
j

j − θ

)

=
Γ(n) Γ(n/k − θ)
Γ(n− θ) Γ(n/k)

.

Since Γ(t+ a)/Γ(t) = ta(1 +O(1/t)) as t→∞ [10] we see after a few manipulations that,

n
θ/2

(
Γ(n) Γ(n/k − θ)
Γ(n− θ) Γ(n/k)

− kθ
)

= n
θ/2kθ

(
1 +O(1/n)

1 +O(1/n)
− 1

)

= kθ

(
O(1/n1−θ/2)−O(1/n1−θ/2)

1 +O(1/n)

)

→ 0.

Also, letting {Zj(t)}∞j=0 denote i.i.d. Yule processes initialized by a single particle and

{T (n)
j }∞j=1 the jump times of a Poisson process with rate βn ≡ β/Di(τn/k − τi) and T0 := 0

we have,

µn,k = E

 ∞∑
j=0

Zj(τn − τn/k − T
(n)
j )I(T

(n)
j ≤ τn − τn/k)



= E

 ∞∑
j=0

eτn−τn/k
(

βn
βn + 1

)j
P (Yn ≥ j | τn − τn/k, βn)

 ,

21



where Yn|βn ∼ Poisson(λn ≡ β(τn − τn/k)/Di(τn/k − τi)). This yields,

n
θ/2
∣∣µn,k − E

(
eτn−τn/k

)∣∣ = n
θ/2E

eτn−τn/k ∞∑
j=1

(
βn

βn + 1

)j
P (Yn ≥ j | τn − τn/k, βn)



≤ nθ/2E

eτn−τn/k ∞∑
j=1

P (Yn ≥ j | τn − τn/k, βn)


= n

θ/2E

[
eτn−τn/kβ

τn − τn/k
Di(τn/k − τi)

]

= β n
−θ/2E

[
eτn−τn/k(τn − τn/k)

nθ

Di(τn/k − τi)

]
.

Now, using results from [5] and [11] it can be shown that E[supn≥1 e
2(τn−τn/k)(τn −

τn/k)
2] < ∞ and supn≥1 E[n2θ/Di(τn/k − τi)

2] < ∞, and so after an application of the

Cauchy-Schwarz inequality it follows that the above bound converges to zero as n→∞.

We can now establish the limiting distribution of the log max estimator for the special

case of an edge distribution degenerate at one.

Theorem 2.4. Let dn(i) denote the degree of the ith vertex of a preferential attachment

graph at time n. Then for any i, k ∈ N+, k > 1,

√
dbn/kc(i)

(
logk

[
dn(i)

dbn/kc(i)

]
− θ
)

d−→ normal

(
0,

1− k−θ

log2(k)

)
.

Proof: By expanding logk(x) in a Taylor series about kθ, rearranging terms and setting

x := dn(i)/dbn/kc(i) we have,

logk

[
dn(i)

dbn/kc(i)

]
− θ =

dn(i)/dbn/kc(i)− kθ

kθ log(k)
+ δn,
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where δn = oa.s.(dn(i)/dbn/kc(i)− kθ) as n→∞. Hence,

√
dbn/kc(i)

(
logk

[
dn(i)

dbn/kc(i)

]
− θ
)

=
√
dbn/kc(i)

(
dn(i)/dbn/kc(i)− kθ

kθ log(k)

)
+ δn

√
dbn/kc(i)

d−→ normal

(
0,

1− k−θ

log2(k)

)
,

by Theorem 2.3 above. �

Theorem 2.5. Let In denote the index of the vertex with maximal degree at time n ∈ N+.

Then,

√
dbn/kc(Ibn/kc)

(
logk

[
dn(Ibn/kc)

dbn/kc(Ibn/kc)

]
− θ
)

d−→ normal

(
0,

1− k−θ

log2(k)

)
.

Proof: Since E(Xr) <∞ for an r > 1/θ holds trivially under this model we have that

In
a.s.−→ I ∈ N+, and the result now follows from Theorem 2.4. �

2.5 Interval estimation

Using the previous results one can also obtain interval estimates for θ. One small dif-

ficulty that arises is that the asymptotic variance depends on the parameter being es-

timated, but this can be addressed by simply plugging in an estimate of θ. Setting

θ̂n,k ≡ logk[dn(Ibn/kc)/dbn/kc(Ibn/kc)] our confidence interval then takes the form,

θ̂n,k ± zα/2
1

log(k)

√
1− k−θ̂n,k

dbn/kc(Ibn/kc)
,

where zα/2 denotes the α/2 quantile of the standard normal distribution. Tables 2.1 and 2.2

show the performance of this interval (with confidence level 0.95) using various graph sizes

for θ = 1/3, 1/4. (Monte Carlo sample sizes of 10,000 were used.)
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Number of vertices Coverage proportion Average length

1,000,000 0.9470 0.1614

500,000 0.9432 0.0.1812

250,000 0.9464 0.2040

100,000 0.9414 0.2372

50,000 0.9458 0.2669

25,000 0.9453 0.3004

10,000 0.9365 0.3520

5,000 0.9345 0.3961

Table 2.1: Confidence interval performance. θ = 1/3.

Number of vertices Coverage proportion Average length

1,000,000 0.9405 0.2057

500,000 0.9400 0.2252

250,000 0.9409 0.2464

100,000 0.9363 0.2775

50,000 0.9324 0.3037

25,000 0.9299 0.3333

10,000 0.9269 0.3772

5,000 0.9212 0.4148

Table 2.2: Confidence interval performance. θ = 1/4.
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We see that the interval is not quite covering with proper frequency, but nearly so. The

expected length appears to be somewhat high, but this could be corrected by including

more vertices in the calculation of θ̂n,k. (Of course, this would require an extension of the

existing proof.)

2.6 Simulations

Figures 2.5-2.7 show the results of a simulation study of our estimators with k = 2 for

various edge distributions and values for θ. In these simulations our estimators are based

on only a single maximum. Monte Carlo sample sizes of 10,000 were used, and the yellow,

tan and red density estimates use graph sizes of 250, 10,000 and 1,000,000 respectively. The

edge distributions were taken to be Poisson, geometric and discrete Pareto; that is, with

probability mass function,

P (X = j) =
1

jτ
− 1

(j + 1)τ
,

τ ≥ 1, j ∈ N+.

We see that the convergence rate is directly related to the value of θ, with smaller values

corresponding to slower rates of convergence in the Poisson and geometric cases (this was

also verified for the case of an edge distribution degenerate at one), but the Pareto case

seems to be an anomaly, with smaller values of θ corresponding to more rapid convergence.

The fact that it converges at all is interesting in itself, since in our experiments the Pareto

edge distribution has infinite variance, even though our proofs require at least finite variance

to guarantee consistency. This suggests that the condition in the theorems could be relaxed

somewhat.

2.6.1 Computational challenges

The simulation of very large preferential attachment trees involves some computational dif-

ficulties since it requires sampling from a multinomial distribution whose probabilities are
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being iteratively updated. The usual method of doing so is to generate a uniform(0, 1) vari-

ate u and taking F−1M (u) ≡ min{c : FM (c) ≥ u}, where FM is the distribution function of a

multinomial random variable M assuming values in {1, 2, . . . , r} for an integer r. To apply

this method here we must iteratively update the cumulative distribution function corre-

sponding to the preferential attachment tree, or equivalently a cumulative weight function

u 7→ min{c :
∑c

i=1(dn(i) + β) ≥ u}, which becomes very computationally expensive if we

wish to simulate a large graph.

Instead, we work around this by still using a probability transform as above, only based

on a function Hn which is initialized at,

H2(s) =

 1 if 0 < s < 1 + β

2 if 1 + β ≤ s < 2 + 2β
,

and is undefined elsewhere. To construct H3 one generates a uniform(0, 2 + 2β) variate u,

a positive integer-valued variate x3 and sets H3(s) := H2(s) for s < 2 + 2β, H3(s) = 3 for

2 + 2β ≤ s < 2 +x3 + 3β and H3(s) = H2(u) for 2 +x3 + 3β ≤ s < 2 + 2x3 + 3β. This gives

us the updated function,

H3(s) =



1 if 0 < s < 1 + β

2 if 1 + β ≤ s < 2 + 2β

3 if 2 + 2β ≤ s < 2 + x3 + 3β

H2(u) if 2 + x3 + 3β ≤ s < 2 + 2x3 + 3β

,

and is similarly undefined for s /∈ (0, 2 + 2x3 + 3β). This is a function that “jumps down”

to the index of the neighbor chosen by the newly-joining vertex rather than extending the

length of that interval and shifting the positions of the intervals that follow, as would be

necessary in order to calculate the inverse distribution function. If we continue this process,

the total lengths of the intervals over which Hn(s) = i for i ∈ {1, 2, . . . , n} will be the
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total weight assigned to vertex i, and we can then apply the probability transform to the

function Hn, thereby avoiding a significant amount of unnecessary calculation involved in

the iterative updates of the cumulative distribution function.
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Figure 2.5: Performance of estimators for various edge distributions. θ = 1/3. (Note the
change of scale in the Pareto density plots.)
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Figure 2.6: Performance of estimators for various edge distributions. θ = 1/5. (Note the
change of scale in the Pareto density plots.)
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Figure 2.7: Performance of estimators for various edge distributions. θ = 1/7. (Note the
change of scale in the Pareto density plots.)
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Chapter 3: Preferential attachment with random effects

3.1 Introduction

The standard model of preferential attachment takes the connection probability to be pro-

portional to a linear function of the degree, but this function does not take into account

any other features that vertices might possess. In reality this is a fairly unreasonable

assumption, since generally nodes in real world networks with the same degree are not in-

distinguishable in terms of attractiveness. For instance, in a social network an individual’s

personality might render that individual more appealing independent of their popularity.

In this chapter we will consider one way to introduce this heterogeneity into the process,

which is to consider the model of Athreya, Sethuraman and Ghosh and allow the additive

component β to be random and differ across vertices. We investigate how properties of the

graph generalize to this setting.

3.2 Main results

The embedding works as in Athreya, Sethuraman and Ghosh [3] only now we associate

with each process a random immigration parameter which is initialized at the start of the

process. That is to say, at time n = 2 (starting at this time is for notational convenience)

begin with two processes D1(0), D2(0) := 1 with respective immigration parameters β1

and β2 (the collection {βi}∞i=1 are taken to be i.i.d. nonnegative random variables) and

unit lifetime parameters. Set τ1, τ2 := 0 and let τ3 denote the random time at which the

first event (either immigration or the splitting of a particle) occurs in either of the two

processes. Once this occurs we initialize a third process with D3(0) := X3, where X3 is the

net addition of particles in the process where the event occurred, this time with unit lifetime
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parameter and immigration parameter β3, and so on. We then have a generalized form of

the embedding theorem which we can use to extend the results of Athreya, Sethuraman and

Ghosh.

Theorem 3.1. The collections {Di(τn − τi) : i ≤ n, n ≥ 1} and {dn(i) : i ≤ n, n ≥ 1} have

the same distribution.

Proof: Since by construction both collections are Markov with the same state space, it

will be sufficient to show that the transition probabilities are the same. Within the prefer-

ential attachment random graph, given Gk and (β1, β2, . . . , βk) exactly one vertex will have

its degree incremented by Xk+1 and all others will remain constant at time k + 1. The

probability that this vertex is the ith for 1 ≤ i ≤ k is (dk(i) + βi)/
∑k

j=1(dk(j) + βj).

Similarly, if we consider the collection {Di(τn− τi) : i ≤ n, n ≥ 1} and condition on the

states of all processes at time k as well as (β1, β2, . . . , βk), then at time k + 1 again only

one process will have its value incremented by Xk+1, and the probability that this process is

the ith one is the probability that the minimum of
∑k

j=1Di(τk − τj) unit exponential and

k exponential random variables with rates {βj}kj=1 is among the Dk(τn − τi) unit exponen-

tial and exponential(βi) random variables associated with process i, and this probability is

(Di(τn − τi) + βi)/
∑k

j=1(Dj(τn − τj) + βj). �

To investigate this more general model we start by studying the asymptotics of the

random sequence {τn}∞n=1.

Theorem 3.2. Let Sn ≡ 2+β1+β2+
∑n

j=3(2Xj+βj) and α ≡ 1/(2m+µ), where µ ≡ E(β).

Then
∑∞

j=1(1/Sj −α/j) converges almost surely if and only if E[(X + β) log(X + β)] <∞.

Proof: Set S∗n ≡ Sn − β1 − β2 and write,

n∑
j=1

(
1

Sj
− α

j

)
=

n∑
j=1

(
1

Sj
− 1

S∗j

)
+

n∑
j=1

(
1

S∗j
− α

j

)
.

For the first sum note that the inequality S∗j ≥ j holds for all j and since x 7→ 1/x−1/(x+c)
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is decreasing for c > 0 we have,

sup
n

∣∣∣∣∣∣
n∑
j=1

(
1

Sj
− 1

S∗j

)∣∣∣∣∣∣ =
∞∑
j=1

(
1

S∗j
− 1

S∗j + β1 + β2

)

≤
∞∑
j=1

(
1

j
− 1

j + β1 + β2

)

<∞,

for any β1, β2 ∈ [0,∞). Therefore, being bounded and monotone, the sum converges as

n→∞. As for the second, Theorem III.9.4 on reciprocal sums from “Branching Processes”

by Athreya and Ney states that for sums of the form Tn ≡ t + U1 + U2 + . . . + Un where

t is a non-negative constant and the {Ui}∞i=1 are i.i.d. non-negative random variables with

η ≡ E(U), limn→∞
∑n

i=1(1/Ti − 1/η i) exists and is finite almost surely if and only if

E(U log |U |) < ∞, provided that t > 0 or E(1/U) < ∞. In our case, Ui = 2Xi + βi,

c = 2, η = 2m + µ, and hence
∑∞

j=1(1/S
∗
j − α/j) converges almost surely if and only if

E[(2X + β) log(2X + β)] <∞⇔ E[(X + β) log(X + β)] <∞. �

We also consider the sequence {τn−
∑n

j=1 1/Sj−1}∞n=3 and letting Fn ≡ σ({Xi}ni=3, {βi}ni=1)

note that for n ≥ 2 and given Fn the random variable τn+1− τn is exponentially distributed

with rate Sn. In addition, we have the following theorem.

Theorem 3.3. The family {τn−
∑n

j=1 1/Sj−1;Fn−1}∞n=3 is a martingale uniformly bounded

in L2 and hence converges almost surely and in L2.
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Proof: First, for n ≥ 2 we have,

E

τn+1 −
n+1∑
j=1

1

Sj−1

∣∣∣ Fn
 = E

n+1∑
j=1

(
τj − τj−1 −

1

Sj−1

) ∣∣∣ Fn


= τn −
n∑
j=1

1

Sj−1
+ E

[
τn+1 − τn −

1

Sn

∣∣∣ Fn]

= τn −
n∑
j=1

1

Sj−1
,

almost surely. Also,

sup
n

E

τn − n∑
j=1

1

Sj−1

2 = sup
n

E


 n∑
j=1

(
τj − τj−1 −

1

Sj−1

)2
= sup

n

n∑
j=1

E

[(
τj − τj−1 −

1

Sj−1

)2
]

=
∞∑
j=0

E

(
1

S2
j

)

≤ 1

4
+

∞∑
j=1

1

j2
(S0 ≥ 2 and Sj ≥ j for j ≥ 1.)

<∞,

and hence the martingale is uniformly bounded in L2. The almost sure and L2 convergence

follow from Doob’s martingale convergence theorems. �

The next result establishes the almost sure growth rates of the degree sequences within

this model. Interestingly, the rate is similar to the original model only with β replaced by

its expectation. This is due to a law of large numbers for reciprocal sums related to the

sequence {τn}∞n=1 that occurs in the embedding.
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Theorem 3.4. Suppose that E[(X+β) log(X+β)] <∞. Then for any i ∈ N+, limn→∞ dn(i)n−θ

exists, is finite and positive almost surely, where θ ≡ m/(2m+µ), m ≡ E(X), and µ ≡ E(β).

Proof: It is known under the hypothesis E(X log(X)) < ∞ that there exists a ran-

dom variable ζi ∈ (0,∞) for which P (limt→∞Di(t)e
−mt = ζi) = 1. Note also that∑n

j=1 1/Sj−1
a.s.−→ ∞ as n→∞ by the strong law of large numbers and therefore τn

a.s.−→ ∞

as well by Theorem 3.3 above.

Hence, setting θ ≡ m/(2m+ µ) we have ∀ i ≥ 1,

Di(τn − τi)
nθ

=
Di(τn − τi)
em(τn−τi)

×

exp

m
τn − n∑

j=1

1

Sj−1
+

n∑
j=1

(
1

Sj−1
− α

j

)
+ α

 n∑
j=1

1

j
− log(n)

− τi


a.s.−→ ζie
m(Y ′′+Y ′+αγ−τi) ∈ (0,∞),

where γ is the Euler-Mascheroni constant, and Y ′′ and Y ′ are random variables. Hence by

the embedding theorem the same holds for the sequence {dn(i)n−θ}∞n=1. �

Next we shift our focus to the vertex with maximal degree and study its growth rate.

We will require the use of three lemmas in order to prove our main results.

Lemma 3.1. For any c > 0, p > 1 and ε ∈ (0, 1),
∑∞

i=1(
i1−ε

i1−ε+c)
i/p <∞.

Proof: Take 0 < η < c and write,

∞∑
i=1

(
i1−ε

i1−ε + c

)i/p
=
∞∑
i=1


(

1− c
i1−ε+c

)
e−η

i1−ε

iε/p

e−i
εη/p.

Now (1 − c
i1−ε+c)

i1−ε ↓ e−c as i → ∞ and hence (1 − c
i1−ε+c)

i1−ε ≤ e−η for almost all i,

ensuring that the first factor of each summand remains bounded for large i. In addition, for
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any α > 0, ε ∈ (0, 1) we have,

∫ ∞
1

e−αx
ε
dx =

1

α1/εε

∫ ∞
α

u
1/ε−1e−u du

<
Γ(1/ε)

α1/εε

<∞,

and thus
∑∞

i=1 e
−iεη/p <∞. �

Lemma 3.2. Let β be a nonnegative random variable, p > 1, and suppose E(βp+δ) < ∞

for some δ > 0. Then for any c > 0,

∞∑
i=1

E1/p

[(
β

β + c

)i]
<∞.

Proof: Let δ > 0 be such that E(βp+δ) < ∞ and take ε > 0 so small that (p + δ)(1 −

ε)/p > 1. Then,

∞∑
i=1

E1/p

[(
β

β + c

)i]
=
∞∑
i=1

{
E

[(
β

β + c

)i
; β ≤ i1−ε

]
+ E

[(
β

β + c

)i
; β > i1−ε

]}1/p

≤
∞∑
i=1

(
i1−ε

i1−ε + c

)i/p
+
∞∑
i=1

P (β > i1−ε)1/p

≤
∞∑
i=1

(
i1−ε

i1−ε + c

)i/p
+ E1/p(βp+δ)

∞∑
i=1

1

i(p+δ)(1−ε)/p

<∞,

by Lemma 3.1 along with the assumption E(βp+δ) <∞. �

Lemma 3.3. Let {Yi}∞i=1 be a collection of independent random variables with φi ≡ E(Yi) <
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∞. Then n−1
∑n

i=1(Yi − φi)
a.s.−→ 0 whenever supi≥1 E[(Yi − φi)4] <∞.

Proof: Let ε > 0. By Markov’s inequality we have,

P

(
|
∑n

i=1(Yi − φi)|
n

≥ ε
)
≤

E
{

[
∑n

i=1(Yi − φi)]4
}

n4ε4
.

Setting c ≡ supi≥1 E[(Yi − φi)4] <∞,

E


[

n∑
i=1

(Yi − φi)

]4 =
∑∑∑∑

1≤i,j,k,l≤n
E [(Yi − φi)(Yj − φj)(Yk − φk)(Yl − φl)]

=
∑

1≤i≤n
E
[
(Yi − φi)4

]
+

(
4

2

)∑∑
1≤i<j≤n

E
[
(Yi − φi)2(Yj − φj)2

]

≤ nc+ 3n(n− 1)c

< 4n2c,

where E
[
(Yi − φi)2(Yj − φj)2

]
≤ c holds by the Cauchy-Schwarz inequality. Hence,

∞∑
n=1

P

(
|
∑n

i=1(Yi − φi)|
n

≥ ε
)
<
∞∑
n=1

4c

n2ε4

<∞,

so that P ({n−1|
∑n

i=1(Yi − φi)| ≥ ε i.o.}) = 0 and n−1
∑n

i=1(Yi − φi)
a.s.−→ 0 since ε was

arbitrary. �

We can now prove the main theorem of this section.

Theorem 3.5. If for an integer r > θ−1 we have E(Xr) <∞ and E(βr+δ) <∞ for some

δ > 0, then In
a.s.−→ I ∈ N+ and Mn/n

θ a.s.−→ maxi≥1 γi.

Proof: Consider the double array of random variables {Di(τn− τi)e−mτn : i ≥ 1, n ≥ i}
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and note that Di(τn− τi)e−mτn
a.s.−→ ζie

−mτi and supn≥iDi(τn− τi)e−mτn ≤ D̃ie
−mτi, where

D̃i ≡ supt≥0Di(t)e
−mt. If we can show that D̃ie

−mτi a.s.−→ 0 as i→∞, then the hypotheses

of Lemma 2.1 would be satisfied with probability one for this particular array, and hence

argmaxi≤nDi(τn− τi)e−mτn would almost surely be constant for large n. Now for ε > 0 and

r > θ−1,

∞∑
i=1

P

(
D̃i

iθ
≥ ε

)
≤ E(D̃r)

εr

∞∑
i=1

1

irθ

<∞,

so long as E(D̃r) <∞, and note that this implies D̃ie
−mτi a.s.−→ 0 since iθe−mτi = e−m(τi−α log(i))

converges almost surely. Also, from Jensen’s inequality we can deduce that,

E(D̃r) ≤ E(W̃ r)
∞∑
i=0

E

e−mTi
 ∞∑
j=0

e−mTj

r−1 .

Since E(Xr) < ∞ it follows that E(W̃ r) < ∞. In addition, by Hölder’s inequality we have

for p, q > 1 with 1/p+ 1/q = 1 that,

E

e−mTi
 ∞∑
j=0

e−mTj

r−1 ≤ E1/p(e−pmTi) E1/q


 ∞∑
j=0

e−mTj

q(r−1)
 .

Now setting q := r/(r − 1) we have,

E


 ∞∑
j=0

e−mTj

q(r−1)
 = E

E

 ∞∑
j=0

e−mTj

r ∣∣∣ β
 ,
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and note that conditional on β,

E

 ∞∑
j=0

e−mTj

r = r!
∑

0≤j1≤...≤jr

E

[
r∏
i=1

e−mTji

]

= r!
∑

0≤j1≤...≤jr−1

E

[
r−2∏
i=1

e−mTjie−2mTjr−1

](
β

m+ β

)jr−jr−1

≤ r!
(
m+ β

m

) ∑
0≤j1≤...≤jr−1

E

[
r−2∏
i=1

e−mTji

]

≤ r!
(
m+ β

m

)r
.

Therefore,

E


 ∞∑
j=0

e−mTj

q(r−1)
 ≤ r! E

[(
m+ β

m

)r]

<∞,

since E(βr) <∞. Also, q = r/(r − 1)⇒ p = r and so,

∞∑
i=0

E1/p(e−pmTi) =
∞∑
i=0

E1/r
[
E(e−pmTi) |β

]

=
∞∑
i=0

E1/r

[(
β

β +mp

)i]

<∞,

by Lemma 3.2 and the hypothesis that E(βr+δ) <∞, and hence E(D̃r) <∞. �

Next we consider the asymptotics of the degree distribution. For this we will use another

39



lemma.

Lemma 3.4. Let X be a nonnegative random variable and c > 0. Then,

E

[
Γ(X + c)

Γ(X)

]
<∞,

if and only if E(Xc) <∞.

Proof: Letting ε > 0 we have by Stirling’s formula that there is an Mε such that

x−cΓ(x + c)/Γ(x) ∈ (1 − ε, 1 + ε) whenever x ≥ Mε. Therefore, setting aε ≡ E[Γ(X +

c)/Γ(X) ; X < Mε] <∞ we have,

aε + (1− ε)E(Xc;X > Mε) ≤ E

[
Γ(X + c)

Γ(X)

]
≤ aε + (1 + ε)E(Xc;X > Mε),

and from this the claim follows since E(Xc;X > Mε) <∞⇔ E(Xc) <∞ for any ε > 0. �

Theorem 3.6. Consider the random effects preferential attachment model where each

newly-joining vertex connects once to its chosen neighbor, suppose E(β log(β)) < ∞, set

α ≡ 1/(2 + µ), and let πj(n) denote the proportion of vertices with degree j ≥ 1 at time n.

Then πj(n)
p−→ πj as n→∞ where,

πj ≡ E

[(
1/α

j + β + 1/α

)
Γ(j + β)

Γ(j + β + 1/α)

Γ(1 + β + 1/α)

Γ(1 + β)

]
.

Proof: Let pj(t) ≡ P (D(t) = j) and write,

πj(n)
d
=

1

n

n∑
i=1

I[Di(τn − τi) = j]
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=
1

n

n∑
i=1

{I[Di(τn − τi) = j]− I[Di(α log(n/i)) = j]}

+
1

n

n∑
i=1

{I[Di(α log(n/i)) = j]− pj(α log(n/i))}

+
1

n

n∑
i=1

pj(−α log(i/n))−
∫ 1

0
pj(−α log(x)) dx

+

∫ 1

0
pj(−α log(x)) dx

≡ T1(n) + T2(n) + T3(n) +

∫ 1

0
pj(−α log(x)) dx.

Now through a change of variables we note that,

∫ 1

0
pj(−α log(x)) dx =

1

α

∫ ∞
0

pj(t)e
−t/α dt,

and so it will be enough to show that the integral above is equal to πj as defined in the

statement of the theorem, and that T1(n), T2(n)
p−→ 0 and T3(n)→ 0.

Now,

E(|T1(n)|) ≤ 1

n

n∑
i=1

E (|I[Di(τn − τi) = j]− I[Di(α log(n/i)) = j]|)

=
1

n

n∑
i=1

P (|I[Di(τn − τi) = j]− I[Di(α log(n/i)) = j]| = 1)

≤ 1

n

n∑
i=1

P (|I[Di(τn − τi) = j]− I[Di(α log(n/i)) = j]| ≥ 1).

Since supi≥n(τn − τi − α log(n/i))
a.s.−→ 0 as n → ∞ we conclude that this bound converges

to zero as n → ∞, and thus T1(n)
p−→ 0 by Markov’s inequality. Next we note that the
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hypotheses of Lemma 3.3 hold for the summands in T2(n), and hence T2(n)
a.s.−→ 0. Finally,

since pj(t) is bounded and continuous and therefore Riemann integrable, T3(n)→ 0.

Turning our attention to πj, let Aj denote the time at which D(t) enters state j, Bj the

total time spent in state j and write,

∫ ∞
0

1

α
pj(t)e

−t/α dt =

∫ ∞
0

1

α
E[P (D(t) = j|Aj , Bj)]e

−t/α dt

= E

[∫ Aj+Bj

Aj

1

α
e
−t/α dt

]

= E
[
e
−Aj/α

(
1− e−Bj/α

)]
= E

{
E
[
e
−Aj/α

(
1− e−Bj/α

)
| β
]}

= E
{

E
[
e
−Aj/α| β

]
E
[(

1− e−Bj/α
)
| β
]}

.

Now using that (conditional on β) Bj is exponential with rate j+β and Aj
d
=
∑j−1

i=1 Ci where

the Ci are each independently distributed as exponential with respective rates {i+ β}j−1i=1 we

have,

E
[(

1− e−Bj/α
)
| β
]

=
1/α

j + β + 1/α
,

and,

E
[
e
−Aj/α| β

]
=

j−1∏
i=1

(
i+ β

i+ β + 1/α

)

=
Γ(j + β)

Γ(j + β + 1/α)

Γ(1 + β + 1/α)

Γ(1 + β)
,

which together yield the theorem. �

Theorem 3.7. Let πj be defined as above. If E(β1/α) <∞, then limj→∞ j
1/α+1πj exists, is
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finite and positive.

Proof: By Lemma 3.4 and the dominated convergence theorem,

j
1/α+1πj = E

[(
j/α

j + β + 1/α

)
j
1/α Γ(j + β)

Γ(j + β + 1/α)

Γ(1 + β + 1/α)

Γ(1 + β)

]

→ 1

α
E

[
Γ(1 + β + 1/α)

Γ(1 + β)

]
∈ (0,∞),

as j →∞. �

This last theorem provides a sufficient condition for {πj}∞j=1 to exhibit power law be-

havior. It is interesting perhaps to note that the condition E(β1/α) < ∞ becomes stronger

as the expected value µ increases, and one could speculate as to possible reasons for this.

However, it should also be kept in mind that this may not actually be a property of the

model itself since the condition could turn out to be unnecessary.

Finally, as a consequence of Theorem 3.6 we see that if the random variables {βi}∞i=1

are taken to be degenerate at b ∈ [0,∞) then the probabilities become,

πj =

(
2 + b

j + 2 + 2b

)
Γ(j + b)

Γ(j + 2 + 2b)

Γ(3 + 2b)

Γ(1 + b)
,

which for b = 0 reduces to,

πj =
4

(j + 2)(j + 1)j
,

and this is the corresponding result for the standard Barabasi-Albert model.
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Chapter 4: Cascades on trees

Figure 4.1: Preferential attachment tree with cascade.

4.1 Introduction

Often in real applications we are not concerned only with the evolution of the graph itself,

but also with how information or activity spreads over that graph. The spread of ideas

or diseases amongst people are both examples of such processes. In this chapter we will

consider preferential attachment models which form a stage for cascading activity. The
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basic model we will consider is as follows. Begin with a simple Barabasi-Albert model

initialized by two nodes, one active and one inactive. When a new node connects to an

active node, it activates with probability p, otherwise it becomes inactive, and it becomes

inactive whenever it connects to an inactive node. We could view these events as either

the transmission of an idea or an infection event. One question we might ask about such

a process is, what happens to the proportion of active nodes in the tree as the size of the

tree tends to infinity? To address this question it will be useful to make use of a certain

equivalence between preferential attachment trees and Pólya urns.

We first state a special case of an important theorem concerning exchangeable random

variables (for a proof see Hofstad [10]):

Theorem 4.1. (De Finetti’s theorem.) Let {Xi}∞i=1 be an infinite sequence of exchangeable

Bernoulli random variables. Then there exists a random variable U ∈ [0, 1] such that for

all 1 ≤ k ≤ n,

P (X1 = . . . = Xk = 1, Xk+1 = . . . = Xn = 0) = E[Uk(1− U)n−k]. �

This states that an infinite sequence of exchangeable Bernoulli random variables has

the same distribution as an i.i.d. sequence with a random success probability U . An

immediate consequence of this is that if we set Sn ≡
∑n

i=1Xi, then Sn/n
a.s.−→ U by the

strong law of large numbers. Note that it is crucial that the sequence be infinite, otherwise

one has trivial counterexamples such as X1 ∼ Bernoulli(1/2) and X2 ≡ 1 − X1. The pair

(X1, X2) is exchangeable, but if we had a random variable U satisfying the above, then

0 = P (X1 = 1, X2 = 1) = E(U2), so that U
a.s.
= 0 and hence P (X1 = 0, X2 = 0) = 1, which

is obviously not true.

A famous model where we encounter an infinite sequence of exchangeable random vari-

ables is the Pólya urn process. This is a process where one begins at time n = 1 with

an urn containing some number of white balls and some number of black balls, which we

denote W1 and B1 respectively. Then at time n ≥ 1, a ball is drawn from the urn where the
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probability that it is black is equal to ωB(Bn)/[ωB(Bn) + ωW (Wn)], with ωB(k) = k + aB,

ωW (k) = k+ aW aB, aW ≥ 0 constants, and Wn and Bn denoting the number of white and

black balls in the urn before the nth ball is selected. Once a ball is drawn, it is replaced along

with another ball of the same color. It turns out one can show that the Bernoulli random

variables {Bn+1 − Bn}n≥1 are indeed exchangeable, and we can then by an application of

de Finetti’s theorem obtain the next result (a proof of which is also found in Hofstad [10]):

Theorem 4.2. Let {(Bn,Wn)}∞n=1 be a Pólya urn process with weight functions ωW (k) =

k + aW and ωB(k) = k + aB. Then,

Bn
Bn +Wn

a.s.−→ U,

where U ∼ beta(α = B1 + aB, β = W1 + aW ). �

4.2 Preferential attachment trees

To understand the proportion of active vertices in our model we use a decomposition of the

tree into an infinite sequence of nested Pólya urns, a procedure which we will now describe.

Fix nonnegative integers {xi}∞i=1 and consider constructing a sequence of Pólya urns

{Uj}∞j=1 (with arbitrary weight functions) as follows. Initialize U1 with one black and one

white ball and allow it to evolve as usual. After the (x1 + 1)th black ball has been added to

the urn, initialize a second urn U2 with one white ball, and a number of black balls equal to

the number of black balls in U1 minus one. The second urn now represents a decomposition

of the black balls in the first urn into white and black balls (think of the last black ball

added as being counted as white in the newly generated urn), and a ball is drawn from U2

when and only when a black ball is drawn from U1. Now after the (x2 + 1)th black ball

within U2 is selected, initialize U3 as in the case of U2, with one white ball and a number

of black balls equal to the number of black balls in U2 minus one, and again drawing a ball

from U3 only when a black ball is drawn from U2. Continue this process for j ≥ 4 and in
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this way generate the collection {Uj}∞j=1. Denote by Bj,n the proportion of black balls in

urn j at time n, and Bj,∞ ≡ limn→∞ Bj,n.

It turns out that the random variables {Bj,∞}∞j=1 defined above are independent. (This

may seem fairly obvious, but it is still nontrivial since for j < k and each n ∈ N the

random variables Bj,n and Bk,n are certainly not independent since a change in Bk,n is

always accompanied by an increase in Bj,n, and hence also a decrease in Bj,n implies that

Bk,n remains constant.) To see this, consider generating an independent collection of Pólya

urns {U∗}∞j=1 where the U∗ have the same starting allocations as the {U}∞j=1, and so by

construction the associated {B∗j,∞}∞j=1 are independent random variables. Now interleave

the processes {U∗j }∞j=1 in such a way that they obey the mechanism described above (which

only requires adjusting event times) and the resulting collection will be a realization of

{Uj}∞j=1 so that in particular Bl,∞ = B∗l,∞ for every l ≥ 1, and hence {Bj,∞}∞j=1
d
= {B∗j,∞}∞j=1.

We can now prove the following.

Theorem 4.3. Let An denote the number of active vertices within the tree at time n. If

p = 1, An/n
a.s.−→ Y ∼ beta(α = 1/2, β = 1/2), and if p < 1, An/n

a.s.−→ 0.

Proof: Let T0,n be the tree rooted in the initial active vertex, and for j ≥ 1 at the time

of the jth failed activation let Tj,n contain all those vertices within Tj−1,n which are not

rooted in the unique inactive vertex, and denote Tj,n ≡ |Tj,n|, the number of nodes in tree

Tj,n. Then, after k failed activations we obtain a nested decreasing sequence of subtrees

T0,n ⊃ T1,n ⊃ . . . ⊃ Tk,n with Tk,n = An and can write,

An
n

=
T0,n
n
· T1,n
T0,n

· T2,n
T1,n
· · ·

Tk,n
Tk−1,n

.

Next we observe that the sequences {T0,n, n − T0,n} and {Tj,n, Tj−1,n − Tj,n} for j ≥ 1 are

in fact equivalent to a collection of nested Pólya urn processes as above. To see this, note

that after the jth failed activation of a vertex connecting to an active one, the total degree
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of the active cluster is 2Tj,n + j − 1 (each vertex other than the root contributes two to the

degree while the initial root vertex contributes one, and each inactive vertex connected to

the cluster contributes one as well) and increases by two with each addition of a new vertex.

For the initial inactive vertex in this subtree, the total degree is one and increases by two

with each additional vertex. Therefore, conditional on a vertex falling within Tj−1,n, the

probability that it connects to Tj,n is,

2Tj,n + j − 1

2Tj,n + j − 1 + 2(Tj−1,n − Tj,n)− 1
=

Tj,n + (j − 1)/2

Tj,n + (j − 1)/2 + Tj−1,n − Tj,n − 1/2
.

However, these are the transition probabilities of a Pólya urn process with weight functions

ωA(k, j) = k + (j − 1)/2 and ωI(k) = k − 1/2, and so the processes are equivalent since

both have the Markov property. Using also that for j ≥ 0 the initial allocation of the two

corresponding urns is 1 +
∑j

i=1Xi active balls, with {Xi}∞i=1
i.i.d.∼ geometric(1− p), and one

inactive ball, we have that Tj,n/Tj−1,n (with the interpretation that T−1,n ≡ n) converges

a.s. to a random variable with distribution beta(α = 1 +
∑j

i=1Xi + (j− 1)/2, β = 1/2). We

have now established the first claim since when p = 1 we have no failures and only one such

process for which j = 0 and α = β = 1/2. Returning to the product formula above and the

case p < 1 we have,

An
n

a.s.−→
∞∏
j=0

Bj ,

where Bj ∼ beta(α = 1+
∑j

i=1Xi+(j−1)/2, β = 1/2). In addition, the Bj are conditionally
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independent given {Xi}∞i=1 and so we compute,

E

 ∞∏
j=0

Bj

 = E

E

 ∞∏
j=0

Bj

∣∣∣ {Xi}∞i=1



= E

 ∞∏
j=0

E (Bj | {Xi}∞i=1)



= E

 ∞∏
j=0

1 + j + 2
∑j

i=1Xi

2 + j + 2
∑j

i=1Xi

 .

However, by the strong law of large numbers we have,

j

2 + j + 2
∑j

i=1Xi

a.s.−→ 1

1 + 2p/(1− p)
> 0,

and so we conclude that,

∞∑
j=1

1

2 + j + 2
∑j

i=1Xi

=
∞∑
j=1

1

j
· j

2 + j + 2
∑j

i=1Xi

a.s.
= ∞,

which by Lemma 1.3 implies that,

∞∏
j=0

1 + j + 2
∑j

i=1Xi

2 + j + 2
∑j

i=1Xi

a.s.
= 0.

Therefore E(
∏∞
j=0Bj) = 0, and it follows that

∏∞
j=0Bj

a.s.
= 0. �

Note that the distribution of X was irrelevant in the previous argument aside from the

fact that it had finite first moment. This suggests the following model and theorem which

can be proven in an identical manner, and of which the former result is a special case.
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Figure 4.2: Proportion of active vertices in a Barabasi-Albert model with cascade and
p = 9/10. Even with a large probability of transmission the cascade eventually dies.

Theorem 4.4. Let {Xi}∞i=1 be i.i.d. nonnegative integer-valued random variables and con-

sider the model where instead of vertices activating with probability p after connecting to an

active vertex, for i ≥ 1 a random number of vertices Xi are activated before the ith failed

activation, followed by Xi+1 more activations and then the (i+1)th failure, and so on. Then

An/n
a.s.−→ 0 so long as E(X) <∞. �

This raises the question as to what happens when E(X) = ∞. For instance, is this

enough to give us a nonnegligible proportion of active vertices in the limit? Can anything

else be said about the sequence {An}∞n=1?
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Figure 4.3: Several generations of a binary tree with cascade. (Red nodes are active, blue
inactive.)

4.3 b-nary trees

Another cascade model we wish to study is as follows: consider a b-nary tree which at time

zero consists of a single active root node, and at time i ≥ 1, each of the leaf nodes at time

i − 1 branches into b additional nodes, and the probability that a new leaf node becomes

active is inversely proportional to some increasing function ω : N+ 7→ (1,∞) applied to that

node’s distance from it’s most recent active ancestor, with all events being independent

given these distances (hereafter referred to as a node’s “depth”). We are interested in

which functions ω will cause the number of active nodes to remain bounded with positive

probability as the size of the tree tends to infinity. In particular, can this probability be

one?

Let us denote by Λ the event that the cascade “dies out,” and by Λ0 the event that the

last active vertex is the root. In addition, we note that P (Λ) > 0 if and only if P (Λ0) > 0

since when P (Λ0) = 0 it’s almost surely the case that we have at least one activation in the

tree, whereupon there will almost surely be another activation in the subtree rooted in the

activated vertex, and so on ad infinitum, implying P (Λ) = 0 (that P (Λ0) > 0⇒ P (Λ) > 0

is clear since Λ0 ⊂ Λ). Further, P (Λ0) can be calculated directly as,

P (Λ0) =

∞∏
k=1

(
1− 1

ω(k)

)bk
,
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since Λ0 occurs if and only if at time one each node (of which there are b, all with depth

one) fails to become active, then at time two all b2 vertices fail to activate given that the

nodes at time one are inactive, and so forth. From this we obtain the following result.

Theorem 4.5. P (Λ) > 0 if and only if,

∞∑
k=1

bk

ω(k)
<∞.

Proof: This follows from the fact that P (Λ) > 0⇔ P (Λ0) > 0, and the product formula

above is nonzero if and only if
∑∞

k=1 b
k/ω(k) <∞. �

4.4 Galton-Watson trees

Figure 4.4: Several generations of a Galton-Watson tree with cascade.

A natural generalization of the previous development is to allow the evolution of the

tree to be random rather than deterministic. Towards this end, set Z0 = 1 and for n ≥ 1

Zn =
∑Zn−1

j=1 ζn−1,j , where {ζn,j : n ≥ 0 , 1 ≤ j ≤ Zn} is a double array of i.i.d. strictly

positive integer-valued random variables with m ≡ E(ζ) < ∞. Now consider the model

which is as above only the node structure is that of a Galton-Watson tree, and note that

the previous argument which established P (Λ) > 0 ⇔ P (Λ0) > 0 applies to this model
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without modification. Similar to before we have,

P (Λ0) = E [P (Λ0 | {Zn}∞n=1)]

= E

[ ∞∏
k=1

(
1− 1

ω(k)

)Zk]

> 0,

if and only if
∏∞
k=1(1−ω(k)−1)Zk can be positive with positive probability, and note again

that this product is positive or zero according to whether
∑∞

k=1 Zk/ω(k) converges or di-

verges. Now,

∞∑
k=1

Zk
ω(k)

=
∞∑
k=1

mk

ω(k)
· Zk
mk

,

and if E(ζ log(ζ)) <∞ we have Zk/m
k a.s.−→ W ∈ (0,∞) [6], so that the convergence of the

above series coincides almost surely with that of
∑∞

k=1m
k/ω(k). If E(ζ log(ζ)) = ∞, then

it is known that there is a sequence {ck}∞k=1 such that ck+1/ck → m and ck/m
k → 0 as

k →∞ for which Zk/ck
a.s.−→ W ′ ∈ (0,∞), and so in this case we obtain the same result as

before with mk replaced by ck. Summarizing these ideas:

Theorem 4.6. Set m ≡ E(ζ) <∞. If E(ζ log ζ) <∞, then P (Λ) > 0 if and only if,

∞∑
k=1

mk

ω(k)
<∞.

If on the other hand E(ζ log ζ) = ∞, then there exists a sequence of constants {ck}∞k=1

satisfying ck+1/ck → m and ck/m
k → 0 as k →∞ such that P (Λ) > 0 if and only if,

∞∑
k=1

ck
ω(k)

<∞. �
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This subsumes the result for b-nary trees since the latter is a special case of the Galton-

Watson tree model with ζ degenerate at b, so that m = b and E(ζ log(ζ)) = b log b <∞.

We also have an interesting conjecture: consider the Galton-Watson tree model and

assume that E(ζ log(ζ)) <∞. Then P (Λ) is zero or one according to whether
∑∞

k=1m
k/ω(k)

diverges or converges. An intuitive argument for this is as follows. That
∑∞

k=1m
k/ω(k) =

∞ ⇒ P (Λ) = 0 under the assumption E(ζ log(ζ)) < ∞ has already been proven so we

focus on the case
∑∞

k=1m
k/ω(k) < ∞. Let An denote the number of active nodes in the

tree other than the root at time n and A∞ ≡ limn→∞An, so that Λ occurs if and only if

A∞ < ∞. Now letting I
(j)
k be a Bernoulli random variable equal to one if the jth node

within generation k is active we can write An =
∑n

k=1

∑Zk
j=1 I

(j)
k , and using also that the

I
(j)
k are identically distributed over j and independent of Zk we have,

E(An) = E

 n∑
k=1

Zk∑
j=1

I
(j)
k



=
n∑
k=1

E

E

 Zk∑
j=1

I
(j)
k | Zk



=
n∑
k=1

E
[
Zk E

(
I
(1)
k

)]

=

n∑
k=1

mk E
(
I
(1)
k

)
.

In addition, letting Di denote the depth of the first node in generation i we arrive at,

E
(
I
(1)
k

)
= E

[
E
(
I
(1)
k |Dk−1

) ]
= E

(
1

ω(Dk−1 + 1)

)
,
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and thus by monotone convergence,

E(A∞) = lim
n→∞

E(An)

=

∞∑
k=1

mk E

(
1

ω(Dk−1 + 1)

)
.

Therefore, if it were the case that
∑∞

k=1m
k/ω(k) <∞ implies the convergence of the above

series, then the conjecture would be proven since E(A∞) < ∞ ⇒ P (A∞ < ∞) = 1. One

would expect this to hold since it can shown that with probability one Dk−1 increases by

one at each step for large k, so that the behavior of ω(Dk−1 + 1) is eventually like that of

ω(k). Unfortunately, calculating or even approximating this expectation is still not easy.

One approach may be to use T ≡ max{i : Di = 0, i ≥ 1} (which is an almost surely finite

random variable) by noting that Di = i− T whenever T ≤ i and thus,

E

(
1

ω(Dk−1 + 1)

)
= E

(
1

ω(Dk−1 + 1)
; T < k

)
+ E

(
1

ω(Dk−1 + 1)
; T ≥ k

)

≤ E

(
1

ω(k − T )
; T < k

)
+ P (T ≥ k).

Therefore if we can understand the distribution of T (in particular obtaining tail bounds

of order ω(k − l)−1 for some l ∈ N+ as k → ∞), then it may be possible to prove the

conjecture.

55



Chapter 5: Conclusion

In this dissertation we have proposed a new methodology for performing statistical inference

on preferential attachment networks which begins to fill a gap in the existing literature. We

made the following contributions: proposed two strongly consistent estimators which are

capable of measuring the strength of preferential attachment based on graph data, and also

established the asymptotic normality for a special case of these estimators. We generalized

the model of Athreya, Sethuraman and Ghosh to one which allows for random effects,

thereby including added heterogeneity into the process which is not represented in the

existing model.

While our inferential approach has many attractive features, it has some drawbacks

as well. First, it makes fairly stringent assumptions about the nature of the attachment

mechanism. For instance, the probability of attachment need not be a linear function of the

degree. Second, it ignores much of the information contained in the graph by only looking at

small numbers of vertices. Finally, the proposed statistics require not only knowledge of the

graph at the present time, but also information on past states as well. If this information

is not available, then these methods cannot be used.

To address the first issue, we might instead wish to model the probability of attachment

as being proportional to some increasing function f : N+ → R+ of the degree and treat the

problem as one of function estimation. Another area for future research is how one might

test the assumption of preferential attachment. Might it be possible to devise a goodness

of fit test for this purpose? Regarding the last question, it could be argued that without

information from multiple time points these types of inferences could not be made at all,

since they pertain to the evolution of the graph itself.
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