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ABSTRACT 

PREDICTION OF CHEMICAL ACTIVITY AGAINST VARIOUS DISEASE-
RELATED TARGETS WITH MACHINE LEARNING METHODS 

Srilatha Sakamuru, Ph.D. 

George Mason University, 2020 

Dissertation Director: Dr. Iosif Vaisman 

 

High throughput screening (HTS) technologies led to the accumulation of large amount 

of biological data for a broad range of chemical compounds. The main goal of this study 

is to build machine learning models of chemical compounds activity against various 

disease related targets, including cytochrome P450 3A4 (CYP3A4), estrogen receptor 1 

(ESR1), adrenoceptor alpha 1A (ADRA1A), and opioid receptors (OPRs) like mu 

(OPRM), kappa (OPRK) and delta (OPRD). The training sets consist of ~3,000 

investigational and approved drugs for animal and human use with experimentally 

determined in vitro activity. For CYP3A4, ESR1, and ADRA1A targets, the compounds 

are represented both by their bioactivity and structural features and the models were 

validated using internal test set and the best performed models achieved an AUC-ROC of 

0.90 (ESR1), 0.89 (ADRA1A), and 0.81 (CYP3A4). For OPRM, OPRK, and OPRD 

targets the compounds are represented only by their structural features and the best 

performing models have AUC above 0.85. This approach produced robust OPR 
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prediction models that can be applied to prioritize compounds from large libraries which 

will match or exceed the opioid analgesic properties, but will have lower addiction 

potential. The models identified several novel potent compounds as activators/inhibitors 

of OPRs that were confirmed experimentally. This work can open novel ways to address 

important biomedical and public health needs. 
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BACKGROUND 

  High throughput screening (HTS) is a method especially used in drug discovery, 

which enables testing thousands of small molecule, or large-scale in silico designed 

compounds against various biological targets of interest in a 1,536-well microplate 

format on a fully automated robotic platform [1]. HTS has emerged as an efficient 

alternative to animal testing in recent years especially in reducing time and costs involved 

in traditional in vivo studies. HTS is useful for identifying ligands for receptors, 

pharmacological targets and profiling the relationship between chemical structures and 

biological activities etc. Many of the in vitro assays like testing compound’s activity on a 

particular biological target, pathway, disease, or cytotoxicity can be easily converted to 

HTS format [2]. The primary goal of HTS is to identify the active hits for the target of 

interest, and these hits are called as lead molecules that have a potential effect on the 

specific target at a very low concentration, to reduce the undesired chemical toxic effects. 

The raw reads from HTS are processed into a meaningful data for each compound 

whether it is active/inactive for a specific target/pathway.  

  One such HTS facility from National Institutes of Health (NIH) is at National 

Center for Advancing Translational Sciences (NCATS), which started more than a 

decade ago. NCATS runs HTS in a titration based approach called quantitative HTS 

(qHTS) methodology in which compound collection consists of compounds in serial 

dilutions and tests each compound at multiple concentrations against specific target [3]. 

Quantitative HTS generates a concentration-response curve for every compound from the 
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large chemical library in a single assay and these results can be used for profiling the 

compounds based on their end targets. Quantitative HTS data yields half maximal 

effective concentration (EC50), Hill coefficient, and maximal response for each 

compound in the entire library enabling the assessment of structure activity relationship 

(SAR) [4].  This quantitative methodology is mainly to produce high quality data by 

reducing the frequency of false positives and false negatives which is the limiting step in 

traditional HTS and will be a crucial in computational modeling. 

The qHTS platform has become a central aspect of the “Toxicology testing in the 

21st Century” (Tox21) program [5]. Tox21 program is a federal collaboration involving 

NCATS, the National Toxicology Program (NTP), the Environmental Protection Agency 

(EPA), and the Food and Drug Administration (FDA) and is mainly aimed at developing 

better toxicity assessment methods by advancing the toxicity testing of chemical 

compounds from traditional animal toxicology studies to high throughput in vitro assays 

[6]. The goal of Tox21 project is to quickly and efficiently test whether certain chemicals 

have the potential to disrupt processes in the human body that leads to the adverse effects. 

The Tox21 chemical library consists of around 10,000 structurally diverse compounds. 

Most of these chemicals are those to which humans are exposed through the environment 

including drugs, industrial chemicals, pesticides, household products, food additives, etc. 

[7]. The compound library has each compound in fifteen concentrations starting with 

~50µM final concentration and in 2-fold dilutions made in DMSO which results in a 

concentration range of four orders of magnitude.  Several in vitro cell-based assays like 

target-specific and mechanism-based have been screened against Tox21 chemical 
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libraries so far [8]. Initially all these assays have been optimized and miniaturized to a 

1,536-well plate format. Then the assays will be transferred to the primary screening 

against Tox21 collection on the robotic platform. 

A typical robotic platform (Fig. 1) consists of assay and compound plate 

incubators, micro-well plate dispensers, compound transfer station, and plate readers. In 

Fig. 1, the capabilities of the various detection technologies for the two readers are shown 

in the inserts. 

 

 

 

Figure 1. A robotic platform pictured here. Quantitative HTS assay results in producing a 
concentration-response curves of each compound, different classes of curves shown in 
the inserts. 
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From the primary screen results, concentration-response curves for each 

compound were analyzed [9].  The data analysis from primary screening yields potency 

and efficacy values of each compound. Based on the concentration response data, each 

compound is assigned an activity outcome in each assay [4]. Activities of a compound 

across different assays form an activity profile.  These activity profiles can be used to 

build models to predict compound target or mechanism of action. All quantitative HTS 

data from different primary screenings and follow-up studies are available and easily 

accessible from the NCATS in house database or publicly available on chemical 

databases like PubChem (https://pubchem.ncbi.nlm.nih.gov/), maintained by NCBI, a 

database for chemical compounds with their bioactivities. These publicly available big 

data have the potential to accelerate the drug discovery by incorporating machine 

learning methods. 

Till date we have concentration-response data available from screening the Tox21 

libraries against a large panel of cell based assays. From these entire cell based assay 

screenings, data can be aggregated for further analysis of the relationship between the 

drug activity profiles and their therapeutic indications or targets. In other words, models 

can be built using these in vitro activity profiles to predict other possible targets and/or 

indications of drugs from the collection across a broad array of human diseases.  

The models built can be validated in our lab by selecting a few drugs and designing 

assays to test them against their predicted, potentially novel drug targets. The novelty of 

this study is mainly using the Tox21 collection for numerous targets that have been 

screened so far at our lab for developing new predictive models. The study is feasible by 

https://pubchem.ncbi.nlm.nih.gov/
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accessing the data that is available from NCATS database or on the public domains 

(PubChem). For further confirmation studies, in vitro (cell based) assays can be 

performed in our lab as an experimental validation to test the predictive models. 
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CHAPTER 1: PREDICTIVE MODELING OF CHEMICAL ACTIVITY AGAINST 
VARIOUS GENE TARGETS 

Abstract 

High throughput screening (HTS) tests thousands of small molecule compounds 

on a fully automated robotic system in a high density microplate format. The HTS facility 

at National Center for Advancing Translational Sciences (NCATS/NIH) produced 

millions of data points in terms of concentration-response for each chemical compound 

that has been tested on different biological targets and pathways. Such quantitative HTS 

data for a compound library called as NCATS Pharmaceutical Collection (NPC), 

comprising of ~ 3000 small molecule investigational drugs that are approved for 

human/animal use were used to develop models for CYP3A4, ESR1, and ADRA1A. 

These compounds were represented by activity and structural features. Activity features 

consists of each compound’s bioactivity from HTS against a large panel of cell based 

assays, as the chemical compounds possess some moieties/patterns that make them active 

for a multi-targets. Structural features include molecular descriptors and fingerprints. 

Machine learning algorithms, including Naïve Bayes, Random Forest, Support Vector 

Machines, and Extreme Gradient Boosting were used to generate predictive models for 

three gene targets and the models were validated using internal test set. Models using the 

combination of in vitro activity-structural features performed better when compared to 

the activity or structural features alone.  
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Introduction 

  Using state-of-the-art HTS resources at NCATS, several thousands of small 

molecule compounds were screened on different cellular targets/pathways so far and thus 

resulted in generating millions of data points for all these small molecule compounds 

against different cellular targets/pathways. All these data will be uploaded in a timely 

manner on to the public databases like PubChem, from where the datasets on specific 

targets can be easily downloadable. In silico drug repurposing can be carried out in 

several potential ways in order to identify new indications of drugs, including drug 

(target-based), disease (knowledge-based) and treatment (pathway or network-based) 

oriented [10]. A drug target is usually a protein that is associated with a particular disease 

which could be addressed by a drug to produce a therapeutic effect. The most common 

drug targets include: G protein-coupled receptors, enzymes (like proteases, phosphatases, 

protein kinases, esterases etc.), ion channels, nuclear hormone receptors, and structural 

and membrane transport proteins. Target-based method is more significant for drug 

repurposing, as most targets link directly to disease mechanism. Several computational 

modeling studies were carried out to predict the structure activity relationship on target-

specific like androgen and estrogen receptors [11, 12].  

  The compound collection used is NPC, consisting of around 3,254 small molecule 

drugs [13] and has fifteen titration points of each compound starting from 3.0nM to 

~50µM final concentration and in 2-fold dilutions made in DMSO which results in a 

concentration range of four orders of magnitude. The NPCs comprises of small molecules 

(molecular weight < 1,500) (Fig. 2) which are soluble in DMSO. 
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Figure 2. Distribution of drugs in NPC collection based on the molecular weight. 
 

In this study, we propose the use of in vitro activity data from HTS of NPCs to 

build models for predicting the compounds activity on new targets. So, predicting the 

compound’s activity through computational modeling for a drug repurposing study, 

means discovering novel therapeutic indications of existing/approved drugs and this 

approach reduces risks in terms of safety as the drugs are pre-approved for human and 

animal use, and also significantly reduces cost by bypassing the initial steps of drug 

development that normally takes years [14]. As a proof-of-concept, for our current study 

we first attempted to build predictive models for three targets: Cytochrome P450 3A4 

(CYP3A4), Estrogen Receptor 1 (ESR1), Adrenoceptor Alpha 1A (ADRA1A), and the 

information for compounds to be active against these three targets was extracted from 

DrugBank [15].  

Cytochrome P450 Family 3 Subfamily A Member 4 (CYP3A4) gene encodes 

CYP3A4 enzyme, a member of the cytochrome P450 superfamily. The cytochrome P450 

(CYP) enzymes are membrane-bound hemeproteins that play a key role in metabolism of 
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majority of drugs, steroids, carcinogens, and xenobiotics [16, 17]. Identifying the 

compounds that effect on CYP isozymes is useful to minimize the adverse drug reactions 

and toxicities in drug development process. CYP3A4 is the most important of all 

CYP450 enzymes. It metabolizes about half of all the drugs and it is predominantly found 

in the liver. 

Estrogen receptor 1 (ESR1) gene encodes an estrogen receptor which is a nuclear 

receptor for estrogen hormone binding, and plays an important role in development, 

metabolic homeostasis and reproduction. Estrogen receptors (ERs) are involved in breast 

cancer and endometrial cancer [18]. Endocrine disrupting chemicals (EDCs) and their 

interactions with steroid hormone receptors like ER disrupts normal endocrine function. 

It is important to understand the effect of compound on ER. 

Adrenoceptor Alpha 1A (ADRA1A) encodes for alpha-1A-adrenergic receptor, 

which is a G protein-coupled transmembrane receptor that binds to the catecholamine, 

epinephrine and norepinephrine and mediates the actions of peripheral and central  

nervous system [19, 20]. The adrenergic receptors are the targets for many therapeutic 

drugs like those for cardiovascular diseases, prostatic hypertrophy, asthma etc. [21]. 

The Four classification algorithms: Random Forest, Support vector machines, 

Naïve Bayes, and Extreme Gradient Boosting methods were employed to fit models for 

predicting compound’s activity for the three targets (Fig. 3). 
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Figure 3. Flowchart of the study. 
 

Materials and Methods 

Datasets 

The dataset used for our current study comprises of the results from HTS of NPCs 

against cell-based assays [9]. These include a large panel of in vitro assays covering a 

broad-array of pathways, including nuclear receptor signaling, stress response pathways, 

and developmental toxicology with fluorescence and luminescence detection readouts. 

The raw reads from quantitative HTS are processed into concentration response curves 
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[4] and are deposited into the NCATS database. Compounds are classified to classes 1-4 

based on the type of concentration-response curves obtained. Curve classes are further 

converted to curve ranks, which are numeric measures of compound activity. For our 

current study, compounds with curve ranks > 0.5 are considered to be active. Each 

compound from the NPC collection shows its activity or inactivity in a particular assay 

and this in vitro assay data is termed as activity dataset in our current study and is of 

binaries (active/inactive) as shown in the data sheet of Table 1A. In addition to the in 

vitro activity data, structural features were extracted from Dragon 7 [22] software. This 

include Extended Connectivity Fingerprints (ECFP) in binaries with size 128 and 

molecular descriptors (constitutional indices, Table 2) in values with size 47. The 

structure dataset is represented in binaries (presence/absence of a particular structural 

feature) along with molecular descriptor values as shown in the data sheet of Table 1B. 

Also a combination of both activity and structure datasets were used to fit the models for 

predicting the compound’s activity on new targets. In summary a total of 156 assay 

readouts (curve ranks for each compound from different cell based assays) were included 

in the activity dataset, 175 structural features were included in the structure dataset, and 

331 combined features were included in the combination dataset. NPC collection consists 

of 3,254 small molecule compounds of which 817 were omitted due to missing in vitro 

assay data and in addition 61 were omitted due to missing structural molecular 

descriptors. A final of 2,376 compounds with activity, structure, and combination data 

were used in our current study. 
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Table 1. A subset of the activity (A) and structure (B) datasets. Each row represents a specific compound (given is IDs) and 
each column is categorical (active/inactive) from a particular assay (A) or values (molecular descriptors) and categorical 
(presence/absence of structure fingerprints) (B). The class (Outcome) variable is of binaries (compounds active/inactive) 
 

A. 

 

 
 

1 2 3 4 5 6 7 8 9 10 11 12 …. …. 151 152 153 154 155 156
CASRN elg1.luc.er.bla.mitotoxp53.bla.gh3.tre.ar.bla.aer.luc.bar.mda.kgr.hela. pparg.bl aromataahr.p1_ …. …. hse.bla. fxr.bla.afxr.bla. ppard.b vdr.bla.aap1.agonOutcome

1 313-06-4 0 1 1 1 1 1 1 1 1 0 1 0 …. …. 1 0 1 0 0 1 1
2 2439-07-8 0 1 0 0 1 0 1 0 0 1 1 0 …. …. 0 0 0 0 0 0 0
3 1948-33-0 0 0 1 1 1 1 0 0 1 1 1 1 …. …. 0 0 1 0 1 0 0
4 2437-29-8 1 1 1 1 1 1 1 0 1 1 1 1 …. …. 1 1 1 1 1 1 0
5 143-74-8 0 0 0 0 0 0 1 0 0 0 0 0 …. …. 0 0 0 0 0 0 0
6 5424-37-3 0 0 1 0 0 0 0 0 0 0 1 1 …. …. 1 0 0 0 0 1 0
7 328-50-7 0 0 0 0 0 0 0 0 0 0 0 0 …. …. 0 0 0 0 0 0 0
8 440-17-5 1 1 1 1 1 0 0 0 1 1 1 1 …. …. 1 1 1 1 1 1 0
9 146-48-5 0 0 0 0 1 0 0 0 0 0 1 1 …. …. 0 0 0 0 0 0 0

10 630-60-4 1 1 0 0 0 1 1 1 1 1 1 1 …. …. 0 1 1 1 1 1 0
11 59-40-5 0 0 0 0 1 0 0 1 0 0 1 1 …. …. 0 0 0 0 0 0 0
12 6893-02-3 0 0 1 0 1 0 1 0 1 0 0 1 …. …. 0 0 0 0 0 0 0
13 113-59-7 0 0 1 0 0 1 0 0 1 1 1 0 …. …. 0 0 0 1 0 1 0
14 51-56-9 0 0 0 0 0 0 0 1 0 0 0 0 …. …. 0 0 0 0 0 0 0
15 114-49-8 0 0 0 0 0 0 0 0 0 0 0 0 …. …. 0 0 0 0 0 1 0
16 155-41-9 0 0 0 0 0 0 0 0 0 0 0 0 …. …. 0 0 0 0 0 0 0
17 6202-23-9 0 1 0 1 1 0 1 0 0 1 0 0 …. …. 0 0 0 0 0 1 0
18 3562-84-3 0 0 1 1 1 0 1 0 1 1 1 1 …. …. 1 0 1 0 0 1 0
…. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. 0
…. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. 0

2372 57808-66-9 1 0 0 1 1 0 1 0 0 0 1 1 …. …. 0 0 0 1 1 1 1
2373 50892-23-4 0 1 0 0 0 1 0 0 1 1 0 0 …. …. 0 0 0 1 0 0 0
2374 21256-18-8 0 1 0 1 0 0 1 0 0 1 0 0 …. …. 0 0 0 0 0 0 0
2375 4880-88-0 0 1 0 0 0 1 0 0 1 0 1 0 …. …. 0 0 1 0 1 1 0
2376 30516-87-1 0 0 0 0 0 1 1 0 0 0 0 0 …. …. 0 0 0 1 0 0 0
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B. 

 

 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 …. …. 170 171 172 173 174 175
1 CASRN V1 V2 V3 V4 V5 MW AMW Sv Se Sp Si Mv Me Mp Mi H. C. N. …. …. nCsp3 nCsp2 nCsp nStructures totalchargeV6 Outcome
2 100-02-7 1 1 1 0 0 139.1 9.275 10.22 16 9.9 17 0.68 1.06 0.66 1.1 33 40 6.7 …. …. 0 6 0 1 0 0 0
3 100-19-6 1 1 1 0 0 165.2 8.693 12.75 20 13 21 0.67 1.04 0.67 1.1 37 42 5.3 …. …. 1 7 0 1 0 1 0
4 100-21-0 1 0 1 0 1 166.1 9.23 12.44 19 12 20 0.69 1.05 0.67 1.1 33 44 0 …. …. 0 8 0 1 0 0 0
5 100-37-8 0 1 0 0 1 117.2 5.097 11.42 23 13 27 0.5 0.98 0.56 1.2 65 26 4.3 …. …. 6 0 0 1 0 1 0
6 100-41-4 0 0 1 0 0 106.2 5.899 10.63 17 12 20 0.59 0.97 0.66 1.1 56 44 0 …. …. 2 6 0 1 0 0 0
7 100-46-9 0 0 1 0 0 107.2 6.304 10.13 17 11 19 0.6 0.98 0.65 1.1 53 41 5.9 …. …. 1 6 0 1 0 0 0
8 100-51-6 0 0 1 0 0 108.2 6.759 9.822 16 11 18 0.61 0.99 0.66 1.1 50 44 0 …. …. 1 6 0 1 0 0 0
9 100-55-0 0 0 1 0 0 109.1 7.276 9.317 15 9.7 17 0.62 1.01 0.65 1.1 47 40 6.7 …. …. 1 5 0 1 0 0 0

10 100-63-0 0 1 1 0 0 108.2 6.76 9.623 16 10 18 0.6 0.99 0.64 1.1 50 38 13 …. …. 0 6 0 1 0 0 0
11 100-75-4 0 1 0 0 0 114.2 6.343 9.865 18 11 21 0.55 1 0.58 1.2 56 28 11 …. …. 5 0 0 1 0 0 0
12 100-88-9 0 0 0 0 0 179.3 7.47 13.51 24 15 28 0.56 1.02 0.61 1.1 54 25 4.2 …. …. 6 0 0 1 0 0 0
13 100-97-0 0 0 1 0 0 140.2 6.374 12.19 22 13 26 0.55 1 0.59 1.2 55 27 18 …. …. 6 0 0 1 0 0 0
14 10016-20-3 1 1 1 1 1 973 7.722 73.25 132 72 145 0.58 1.05 0.58 1.1 48 29 0 …. …. 36 0 0 1 0 1 0
15 100286-90-6 1 1 1 0 1 623.2 7.509 51.68 84 54 94 0.62 1.01 0.65 1.1 47 40 4.8 …. …. 17 16 0 2 0 1 1
16 100299-08-9 0 1 1 0 1 266.3 10.65 21.34 25 42 28 0.85 1 1.66 1.1 28 40 24 …. …. 1 9 0 2 0 0 0
17 10030-73-6 1 0 1 0 0 254.5 5.301 25.33 47 28 55 0.53 0.98 0.59 1.1 63 33 0 …. …. 13 3 0 1 0 1 0
18 10034-93-2 0 0 0 0 0 130.2 10.01 7.143 14 7 16 0.55 1.1 0.54 1.2 46 0 15 …. …. 0 0 0 2 0 0 0
…. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. 0
…. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. 0

2373 101-21-3 1 1 1 0 0 213.7 8.218 16.44 26 17 29 0.63 1.02 0.67 1.1 46 39 3.8 …. …. 3 7 0 1 0 0 0
2374 101-26-8 1 0 1 0 0 261.1 9.672 16.66 27 18 31 0.62 1.01 0.66 1.1 48 33 7.4 …. …. 3 6 0 2 0 1 0
2375 101-77-9 0 1 1 0 0 198.3 6.838 18.2 29 20 32 0.63 0.98 0.68 1.1 48 45 6.9 …. …. 1 12 0 1 0 1 0
2376 101-83-7 1 0 0 0 0 181.4 5.038 18.82 35 21 41 0.52 0.97 0.59 1.1 64 33 2.8 …. …. 12 0 0 1 0 1 0
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Table 2. List of molecular descriptors included along with structural features 
 

 
 
 

No. Name Mean Std.dev. Maximum Minimum Not zero Description
1 MW 316.259 169.6026 2663.85 32.05 2437 molecular weight
2 AMW 8.368 3.82077 126.9 4.31 2437 average molecular weight
3 Sv 24.944 12.88803 109.035 2.768 2421 sum of atomic van der Waals volumes (scaled on Carbon atom)
4 Se 40.739 22.21555 195.227 2.022 2434 sum of atomic Sanderson electronegativities (scaled on Carbon atom)
5 Sp 27.259 14.80594 193.352 2.977 2437 sum of atomic polarizabilities (scaled on Carbon atom)
6 Si 45.645 25.12785 224.754 1.856 2437 sum of first ionization potentials (scaled on Carbon atom)
7 Mv 0.632 0.08853 1.794 0.461 2421 mean atomic van der Waals volume (scaled on Carbon atom)
8 Me 1.014 0.03275 1.304 0.85 2434 mean atomic Sanderson electronegativity (scaled on Carbon atom)
9 Mp 0.705 0.31629 6.983 0.46 2437 mean atomic polarizability (scaled on Carbon atom)
10 Mi 1.131 0.02437 1.36 0.899 2437 mean first ionization potential (scaled on Carbon atom)
11 GD 0.135 0.08477 1 0.015 2437 graph density
12 nAT 40.376 22.18571 196 2 2437 number of atoms
13 nSK 21.138 11.06353 110 2 2437 number of non-H atoms
14 nTA 4.903 3.35966 40 0 2383 number of terminal atoms
15 nBT 41.212 23.02974 196 1 2437 number of bonds
16 nBO 21.974 12.04486 109 1 2437 number of non-H bonds
17 nBM 9.085 6.34763 63 0 2287 number of multiple bonds
18 SCBO 27.501 14.73264 135 1 2437 sum of conventional bond orders (H-depleted)
19 RBN 4.518 4.02509 33 0 2121 number of rotatable bonds
20 RBF 0.104 0.07073 0.429 0 2121 rotatable bond fraction
21 nDB 1.86 1.83545 20 0 1876 number of double bonds
22 nTB 0.036 0.23092 6 0 74 number of triple bonds
23 nAB 7.189 6.1347 49 0 1732 number of aromatic bonds
24 nH 19.238 12.05375 111 0 2409 number of Hydrogen atoms
25 nC 15.1 8.54712 70 0 2417 number of Carbon atoms
26 nN 1.751 1.78139 20 0 1757 number of Nitrogen atoms
27 nO 3.192 3.13071 55 0 2104 number of Oxygen atoms
28 nP 0.037 0.21031 2 0 78 number of Phosphorous atoms
29 nS 0.285 1.0232 40 0 495 number of Sulfur atoms
30 nF 0.175 0.88072 24 0 197 number of Fluorine atoms
31 nCL 0.444 0.94071 10 0 681 number of Chlorine atoms
32 nBR 0.038 0.24267 4 0 73 number of Bromine atoms
33 nI 0.035 0.32798 6 0 34 number of Iodine atoms
34 nB 0.001 0.02864 1 0 2 number of Boron atoms
35 nHM 0.92 1.61268 50 0 1241 number of heavy atoms
36 nHet 6.038 4.31362 72 0 2414 number of heteroatoms
37 nX 0.692 1.33187 24 0 903 number of halogen atoms
38 H% 45.968 10.26065 70 0 2409 percentage of H atoms
39 C% 36.631 8.39871 61.538 0 2417 percentage of C atoms
40 N% 4.966 5.68005 75 0 1757 percentage of N atoms
41 O% 8.664 7.6996 75 0 2104 percentage of O atoms
42 X% 2.427 6.70519 100 0 903 percentage of halogen atoms
43 nCsp3 6.605 6.16383 56 0 2177 number of sp3 hybridized Carbon atoms
44 nCsp2 8.447 5.94185 49 0 2198 number of sp2 hybridized Carbon atoms
45 nCsp 0.046 0.27096 4 0 79 number of sp hybridized Carbon atoms
46 nStructures 1.372 1.04951 30 1 2437 number of disconnected structures
47 totalcharge 0.002 0.05357 2 0 4 total charge
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Rebalancing the classes 

The class variables are highly imbalanced because of the less percentage of 

compounds known to have activity against CYP3A4, ESR1 and ADRA1A targets and the 

percentages are at 7.9%, 1.1%, and 2.7% respectively (Table 3). For the initial model 

fitting, under sampling technique was used in order to rebalance the class variable, where 

a random subset of majority class for each target was selected equal to the size of the 

minority class. This process of random selection of majority class subset is repeated 50 

times so that the unknown class will be sufficiently sampled. 

 

Table 3. Distribution of different targets in the dataset 
 
 Known actives Unknowns 
CYP3A4 187 2189 

ESR1 25 2351 
ADRA1A 64 2312 

 

For the later part of model fitting in our current study, a combination of over- and 

under-sampling was carried out to rebalance the heavily skewed class variable of the 50% 

training set. This combination of sampling was done by random over-sampling of 

minority class (compounds known to have activity on these targets) and under-sampling 

of majority class (compounds with unknown activity for a given target) and thus leading 

to a more balanced dataset. So, the proportion of minority class in the resulting dataset 

was set to 0.5. 
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Machine learning methods 

  Four different classification algorithms namely, Random Forest, Support Vector 

Machines, Naïve Bayes, and Extreme Gradient Boosting have been employed to build the 

predictive models. The implementation of these algorithms were carried out using R 

3.4.2. 

  Random Forest (RF), an ensemble-based method focuses on ensemble of decision 

trees. This method combines the base principles of bagging with random feature selection 

to add additional diversity to the decision tree models [23]. RF adds an additional layer of 

randomness to bagging where each node is split with the best subset of randomly chosen 

predictors. RF can handle extremely large datasets, as the ensemble uses only a small, 

random portion of the full feature set. Also RF can tend to be easier to use and less prone 

to overfitting. In our current study for building the RF classifier on training set, the 

number of trees to grow were specified to 100, and the parameter for the number of 

features to randomly select at each split was left to default settings (by default uses 

√number of features in the data). For making predictions on the test set, the type 

parameter selected was predicted probabilities.  

Support Vector Machines (SVM) is a discriminative classifier defined by creating 

a flat boundary called a hyperplane, which divides the data points plotted in 

multidimensional representing feature values [24]. Like RF, SVM also deals well with a 

large number of features. For our current study, C-classification was implemented with 

cost of constraints violation set to 100 to build the models for calculating class 

probabilities and with rest all parameters set to default values.  
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Naïve Bayes (NB) is a simple probabilistic classification method based on the 

Bayes theorem given in eq. (1) and computes the conditional probabilities of a class 

(target) given independent features [25]. NB classifier assumes that all of the features in 

the dataset are equally important and independent and predicts the probability of the class 

based on the prior probability distribution of the class variable in training set. 

 

𝑃𝑃(𝐴𝐴|𝑋𝑋) =
𝑃𝑃(𝑋𝑋|𝐴𝐴)𝑃𝑃(𝐴𝐴)

𝑃𝑃(𝑋𝑋)  (1) 

 

Where P(A|X) is the posterior probability of target A for a given variable X, P(A) 

and P(X) are the prior probabilities of target and variable, P(X|A) is the likelihood which 

is the probability of a feature for a given target. For our current study, the NB model built 

was used to predict the probability that a compound from the test dataset represented by 

either activity or structural features is active or not and returned the conditional 

probabilities for each target. 

eXtreme Gradient Boosting (XGBoost) is also a tree-based technique, but differs 

from RF as this algorithm additionally tries to find optimal linear combination of trees 

(final model is the weighted sum of predictions of individual trees) in relation to given 

train data. This algorithm executes at faster speed resulting in excellent model 

performance. Most of the winning models in data mining competitions are built using 

gradient boosting algorithms [26]. For our current study, binary classification model was 

trained with a maximum depth of trees set at 2 and the number of cpu threads used were 2 

for hundred passes on the data.  
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Feature Selection 

 To improve the performance of the predictive models, feature selection method is 

incorporated in the current study. It is a preprocessing stage for building the predictive 

models which involves the selection of a subset of relevant features [27]. The number of 

features (predictors) are reduced in order to increase the prediction accuracies, and 

reducing the variabilities. 

A feature ranking and selection algorithm called Boruta, which is based on 

random forests is used to select the relevant features for a specific target [28]. It is a 

wrapper method that remove the predictors to find the optimal combination to maximize 

the model performance and selects features that are statistically significant. The strictness 

of the algorithm can be adjusted by adjusting the p value (default is 0.01) and maxRuns 

(number of times the algorithm is run, and the default value is 100). As shown in Figs. 

4A-B, the columns in green are ‘confirmed’ features to be included and the ones in red 

are not. There are two blue bars representing ShadowMax and ShadowMin, which are not 

actual features but are used by the algorithm to decide if a particular variable is important 

or not. For each specific target, the number of features that are considered to be important 

are varying as given in Table 4. 

 

Table 4. Number of features selected for each target 
 
 Activity data 

(156) 
Structure data 

(175) 
Combined data 

(331) 
CYP3A4 97 69 69 

ESR1 38 51 42 
ADRA1A 77 67 60 
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A. 

 
B. 

 
Figure 4. Plots reveal the importance of each of the features for Activity (A) and 
Structure (B) datasets of ESR1 target. 
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Evaluation of model performances 

  Internal test set was used for validation of the models. For our study the class of 

interest are the compounds known to have activity for the given target and termed as 

active compounds, while all others are inactive compounds. The predictions fall into the 

four categories: true positives (TP), false positives (FP), true negatives (TN), and false 

negatives (FN). All models were evaluated by sensitivity, specificity, and accuracy [29]. 

Sensitivity (true positive rate) measures the proportion of active compounds that were 

correctly classified as given in eq. (2) and specificity (true negative rate) measures the 

proportion of inactive compounds that were classified correctly in eq. (3). Accuracy in 

eq. (4) and Matthews Correlation Coefficient (MCC) in eq. (5) were calculated to 

evaluate the performance of the classification models. The calculation equations are: 

 

Sensitivity = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (2) 

Specificity = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (3) 

Accuracy = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

 (4) 

MCC = (𝑇𝑇𝑇𝑇 𝑋𝑋 𝑇𝑇𝑇𝑇)−(𝐹𝐹𝐹𝐹 𝑋𝑋 𝐹𝐹𝐹𝐹)
�(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)

 
(5) 

 
 
 
  In addition Area under the Receiver Operating Characteristic (ROC) Curve 

(AUC-ROC) were used to assess the performance of the classification models [30]. ROC 

curve is defined on a plot with proportion of TP on the vertical axis and the proportion of 

FP on the horizontal axis, as these values are equivalent to sensitivity and (1-specificity) 
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respectively. AUC-ROC ranges from 0.5 (classifier with no predictive value) to 1.0 

(perfect classifier). 

Results 

Two-fold cross validation 

In our current study as a preliminary step, four ML algorithms namely; RF, SVM, 

NB, and XGBoost were employed to build models for predicting the compounds activity 

for three targets (CYP3A4, ESR1 and ADRA1A). Both the in vitro activity and structural 

datasets were used for this preliminary study. The predictive performances were 

evaluated using a two-fold cross validation method by random sampling of the majority 

class for 50 times. A summary of the performances of the models, for the three targets are 

shown in the boxplots of Fig. 5A-C, which represents the averaged area under the curve 

(AUC) values of the 100 receiver operating characteristic (ROC) curves. RF and 

XGBoost classifiers slightly outperformed when compared to the other two models and 

of the three targets, ESR1 has resulted in higher AUC-ROC values. The average AUC-

ROC values for ESR1 target with RF model are 083±0.07 and 0.83±0.11 and with 

XGBoost model are 0.81±0.07 and 0.80±0.1 for activity and structure datasets 

respectively. Whereas the average AUC-ROC values for CYP3A4 target with RF model 

are 0.74±.0.3 and 0.78±0.03 and with XGBoost model are 0.71±0.04 and 0.76±0.03 for 

activity and structure datasets respectively. Though the CYP3A4 target has higher 

percentage of known active compounds, when compared to ESR1, but in terms of 

performances the predictions are biased towards the majority class due to heavily skewed 

data of ESR1 target variable. 
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A. 

 
 
B. 

 

C. 

 

Figure 5. Boxplots of 100 AUC-ROCs predicted for CYP3A4 (A), ESR1 (B), and 
ADRA1A (C) targets. The horizontal lines inside the boxes represent median values. 
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Label randomization 

The labels (active/inactive) for CYP3A4 target were randomly inter-replaced, 

such that the 50% actives were converted to inactives and 50% inactives were converted 

to actives. This label randomization procedure was carried out to check if our predictions 

were better than random predictions. The activity and structure datasets of CYP3A4 

target was subjected to label randomization and the results were shown as bar graphs in 

Figs. 6A-B with comparison to the original datasets. The AUC-ROC values are equal to 

~0.5 for the randomized datasets, which indicates that our models have an 

acceptable/excellent discrimination in classifying the two classes (active or inactive) of 

the three targets.  

 

A. 
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B. 

 
 
Figure 6. The bar graphs for activity (A) and structure datasets (B) of CYP3A4 target. 
The labels were randomized and decrease in AUC-ROC observed for randomized labels. 

  

External validation 

Further model fitting was carried out using chemical structural features 

with/without in vitro activity data and by using the XGBoost classification algorithm. All 

the three datasets (activity, structure, and combined) were divided into 50% train set and 

50% test set. The results provided in Table 5, shows the predictive powers of XGBoost 

classifier when predicted on their respective test sets. 

 

Table 5. Performance metrics of XGBoost classification algorithm for three targets 
 

  CYP3A4  ESR1  ADRA1A 
 AUC-

ROC 
MCC Accuracy  AUC-

ROC 
MCC Accuracy  AUC-

ROC 
MCC Accuracy 

Activity  0.75 0.40 0.81  0.85 0.10 0.93  0.73 0.23 0.89 
Structure  0.79 0.47 0.74  0.88 0.34 0.93  0.88 0.29 0.86 

Combined  0.81 0.48 0.75  0.90 0.35 0.94  0.89 0.34 0.86 
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A total of nine XGBoost classification models for three targets (CYP3A4, ESR1 

and ADRA1A) using three datasets (activity, structure and combined) were generated. 

For all three targets, sensitivity (true positive rate) and specificity values are varying 

proportionately based on the probability value cut-off. For positive predictions the cut-off 

value set for our current study is 0.5. The models built with activity data alone for 

CYP3A4 and ADRA1A yielded higher prediction accuracies of 0.81 and 0.89 

respectively. Whereas predictive accuracies are higher for the models built with 

combined dataset for ESR1 which yielded 0.94, and not much significant difference 

observed in the prediction accuracies for the models built using activity alone (0.93) or in 

combination with structure data (0.93) (Table 5). ROC curves generated from predictions 

made on internal test set for all these nine XGBoost classification models are shown in 

Fig. 7A-C.  The AUC-ROC values are higher for the models built with combined dataset 

except for ADRA1A target. The predicted models for CYP3A4 target yielded higher 

MCC values of 0.48 with the combination dataset of both activity and structural features. 

Whereas the predicted models for ESR1 and ADRA1A targets yielded an MCC of just 

0.35 and 0.34 respectively, and this low score of MCC is due to the high imbalance of the 

class variables.  
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A. 

 

 

B. 

 

C. 

 

Figure 7. ROC curves generated by XGBoost classifier for CYP3A4 (A), ESR1 (B), and ADRA1A (C) targets.



27 
 

In our current study, a predicted probability value of ≥ 0.5 is considered to be an 

active class for a particular target. The predicted activity for each model generated using 

all three datasets are clustered and shown in heat map (Fig. 8). Different clusters of 

compounds were predicted to be active for three targets and majority of those cluster 

compounds for each target were predicted to be active by three datasets, especially in 

CYP3A4 and ADRA1A. Whereas for ESR1, from different clusters were predicted to be 

active by activity-alone and structure alone datasets. So, in summary most of the 

compounds predicted by using structure dataset were also predicted to be active when 

activity data features are included (combination dataset). So, the classification models 

using structural features of the compounds along with in vitro activity features can help 

us to assess the impact of predictive modeling as a tool for drug repurposing.
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Figure 8. Predictions made for three targets. In the heat map, each row is a compound and each column is different dataset. The 
heat maps is colored by the probabilities of the predictions made. For a particular compound, dark red indicates the prediction 
to be ≥0.5. Compounds are grouped into clusters based on their active predictions. 
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Discussion 

Computational models are built for three targets, including CYP3A4, ESR1, and 

ADRA1A using the bioactivity and structural data for representing each compound. The 

class information (active/inactive) for each compound against the specific target is 

obtained from DrugBank [15].  The in vitro data for compound’s bioactivity included 

were from the assays against various targets like nuclear receptors, stress response 

signaling, phospholipidosis, DNA damage, cellular toxicity/apoptotic, ion channel and 

GPCR signaling pathways [7, 31]. The models performed slightly better when the 

structural data is combined with bioactivities (Fig. 7 and Table 5), rather than using 

activity or structure data alone. Hence using a wide-covered cell-based assay’s data along 

with structural features aid in improved predictive performances of the compound’s 

effect on new targets. The data generated from experimental screening of chemicals for 

biological activities were being used in computational modeling studies for rapid 

prioritization of chemicals [32, 33]. Using this in vitro assay data, studies on building 

predictive models for in vivo toxicity endpoints using a cluster-based approach [8] and on 

human toxicity based on drug adverse effects [34] were published from our center. 

CYP3A4 was one of the extensively studied target for building QSAR models for 

predicting compound’s effect on CYP inhibitions using quantitative HTS data and these 

models were built on of 5 different CYP isozymes (1A2, 2C9, 2C19, 2D6, and 3A4) by  

using molecular descriptors and SVM algorithms and also developed support vector 

classification (SVC) models for the 5 isozymes by a set of generic atom types and these 

both studies involved QSAR models [35, 36]. Prediction models have been developed for 
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accurately predicting the metabolism of xenobiotics mediated by CYP3A4, 2D6, and 2C9 

isozymes by using a novel concept of microsomal metabolic reaction system, which 

integrates the information for the site of metabolism and enzyme [37]. However our 

current study included the bioactivities data covering a large pool of cellular targets. 

Though the bioactivities data didn’t include any of the CYP assays, but CYP3A4 is 

induced via nuclear receptors like aryl hydrocarbon receptor (AHR), pregnane X receptor 

(PXR), constitutive androstane receptor (CAR), retinoid X receptor (RXR), estrogen 

receptor (ER), and glucocorticoid receptor (GR) [38]. Our current datasets include the 

bioactivities of each compound against all these nuclear receptors. The combined datasets 

for CYP3A4 has shown improved predictive performance when compared to structure 

dataset alone and therefore we hypothesize that the compounds inducing these 

aforementioned nuclear receptors can aid in predicting each compound’s effect on 

CYP3A4 activity. 

Majority of our datasets consists of the activity from the assays of nuclear 

hormone receptors, therefore our current dataset can help to predict ESR1 target and this 

answers the question of yielding high predictive performances for this particular target 

when compared to CYP3A4 and ADRA1A, even though the class variable is highly 

biased (very less percentage of active compounds, Table 4). Several in silico QSAR 

models have been developed using machine learning and deep learning methods to 

predict endocrine-disrupting chemical (EDCs) binding with AR/ER and their effect on 

human health [39, 40]. The ER has been implicated in breast/ovarian cancers and there 

are 2 subtypes of ER, α and β. Both have similar expression patterns with some 
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uniqueness in both types. EDCs and their interactions with steroid hormone receptors like 

ER disrupts the normal endocrine function. Therefore, it is important to understand the 

effect of environmental chemicals in ER signaling pathway. 

Also for ADRA1A target, high AUC-ROCs are obtained for combined dataset 

rather than the bioactivities or structural data alone. ADRA1A is the member of the 

GPCR superfamily and is mainly involved in cell growth and regulation and the diseases 

associated with it include Horner’s syndrome and benign prostatic hyperplasia (BPH) 

[41]. QSAR models have identified phthalimide-phenyl piperazines as a novel series of 

potent and selective ADRA1A antagonists [42]. In our bioactivities dataset, only GPCR-

cAMP assays included are thyroid stimulating hormone receptor (TSHR) and 

thyrotropin-releasing hormone receptor (TRHR), which are the receptors for thyrotropin 

(thyroid stimulating hormone) and tripeptide thyrotropin releasing hormone respectively. 

But the high predictive performances for ADRA1A target may be due to the fact that 

GPCR pathways involve with multiple signaling cascades and networks in the cells and 

these signal transductions can lead to several cellular responses including transcription, 

growth, modulation within the pathway through downstream and toxicities as well [43].  

The significance of our current study is that data from such wide covered cell-

based bioassays along with structural features can be leveraged for computational 

predictive modeling studies to provide a valuable information regarding the target-

specific and pathway based biological activities. Collective usage of data from such wide 

covered cell-based bioassays is primarily of a unique type of research when compared to 

the studies that have been published elsewhere [39, 44] and so can be of promising 
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especially in predicting the chemical’s effect on new targets and furthermore the 

predicted models have the potential to predict the novel chemicals and their effect against 

CYP3A4, ESR1, and ADRA1A activities. 
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CHAPTER 2: PREDICTIVE MODELING OF CHEMICAL ACTIVITY AGAINST 
OPIOID RECEPTOR TARGETS 

Abstract 

Opioid receptors (OPRs) are the main targets for the treatment of pain and related 

disorders. The opiate compounds that activate these receptors are effective analgesics but 

leads to adverse side effects and are highly addictive drugs of abuse. Search for 

alternative chemical structures that are analgesic, and reducing/avoiding the unwanted 

effects are urgent to relieve the public health crisis of opioid addiction. Here, we aim to 

develop models to predict the OPR activity of small molecule compounds based on 

chemical structure and apply these models to identify novel OPR active compounds. We 

used four different machine learning algorithms to build models based on quantitative 

high throughput screening (quantitative HTS) datasets of three OPRs in both agonist and 

antagonist mode. The best performing models were applied to virtually screen a large 

collection of compounds. The model predicted active compounds were experimentally 

validated using the same quantitative HTS assays that generated the initial training data. 

Random forest was the best classifier with the highest performance metrics and the 

OPRM-agonist model achieved the best performance with AUC-ROC (0.88) and MCC 

(0.7) values. The model predicted actives resulted in hit rates ranging from 2.3% (OPRD-

agonist) to 15.8% (OPRM-agonist) after experimental validation. Comparing to the 

original assay hit rate, all models enriched % active by ≥ 2-fold. Our approach produced 

robust OPR prediction models that can be applied to prioritize compounds from large 

libraries for experimental validation. The models identified several novel potent 
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compounds as activators/inhibitors of OPRs that were confirmed experimentally. The 

potent hits were further investigated using molecular docking to find the interactions of 

the novel ligands in the active site of the corresponding OPR. 

Introduction 

Opioid receptors (OPRs) belong to the superfamily of G protein-coupled receptors 

(GPCR), consisting of 3 main classical types: mu (OPRM), kappa (OPRK), and delta 

(OPRD). These receptors are important for expressing pain transmission and modulation 

pathways, and are largely distributed in the central nervous system, while to a less extent 

in the periphery including gastrointestinal tract, heart and immune system etc. [45]. OPRs 

are activated both endogenously and exogenously. The endogenous ligands include the 

peptides: endorphins, dynorphins, and enkephalins for OPRM, OPRK, and OPRD 

respectively [46]. Whereas the exogenous opioid drugs include codeine, fentanyl, 

hydrocodone, methadone, morphine, oxycodone, buprenorphine, naloxone, naltrexone 

etc. with varying effect on different receptor types [47]. Most of these drugs that are 

administered as analgesics have side effects leading to addiction and drug abuse [48, 49]. 

In recent years there is a statistically significant increase in drug overdose death rate. 

According to the Centers for Disease Control and Prevention (CDC), more than 67,000 

drug overdose deaths occurred in the United States in 2018 and opioid-involved overdose 

accounted for ~70% of the total drug overdose deaths [50]. Mainly the compounds 

targeting OPRM are known to produce several side effects that could be fatal. The search 

for analgesics with fewer side effects and/or for compounds targeting OPRK and OPRD 

has emerged as an alternative to produce safer drugs [51].  
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The vast amount of data generated from high-throughput screens are commonly 

used as training data for developing quantitative structure-activity relationship (QSAR) 

models to predict the activity of novel chemicals on biological targets using machine 

learning techniques [33, 52]. In order to build predictive models for the identification of 

novel activators/inhibitors of OPRs, we screened a collection of ~3000 approved drugs 

against three OPRs, OPRD, OPRK and OPRM, in a quantitative HTS format in both 

agonist and antagonist mode. Quantitative HTS generates a concentration-response for 

every compound in the primary screen producing high quality data that are ideal for 

training machine learning models. Several research works were published in the past 

using quantitative HTS data to build predictive models for various endpoints using 

machine learning algorithms and produced robust models [53-55]. In this study, we 

developed predictive models to identify activators/inhibitors of OPRs using the 

quantitative HTS assay data as training datasets. Six QSAR models were developed, 

which were trained with the experimental quantitative HTS datasets of agonist/antagonist 

modes of OPRM, OPRK, and OPRD. The models with good performance were applied to 

virtually screen our large in-house collections of 49,018 compounds to identify potential 

new OPR actives. The model predicted active compounds were validated experimentally. 

The potent actives were further evaluated by docking them to the crystal structures of the 

respective OPRs to study their interactions. Several independent research groups have 

identified novel hits through docking, such as discovery of active molecules against mu 

[56], and kappa [57] OPRs with new scaffolds that are unrelated to the known opioids. 

Through our current study (workflow shown in Fig. 9), we identified several potent 
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compounds with novel structures that have the ability to activate/inhibit OPRs. Our 

models can be applied to make predictions on large chemical libraries, which lack 

experimental data, to prioritize the rapidly increasing drug-like new compounds for 

further testing. 

 

 

 

 

Figure 9. The workflow of the study 
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Materials and Methods 

In vitro qHTS assay 

The CHO-K1 cells that express full-length human recombinant µ-, κ-, and δ-

OPRs (HMOR, HKOR, and HDOR respectively) were purchased from Multispan, Inc. 

(Hayward, CA). The cells were cultured in DMEM/F12, 10% FBS, 100U/ml penicillin-

100µg/ml streptomycin, and 10µg/mL puromycin (HMOR and HKOR) or 10µg/mL 

puromycin + 250µg/mL hygromycin (HDOR). The cell culture was maintained at 37°C, 

5% CO2, and 99% humidity. The cells were plated at 1,000/well in 3µL of the culture 

medium without the antibiotic marker in a 1,536-well white solid-bottom plates (Greiner 

Bio-One North America, NC) using Multidrop combi dispenser (Thermo Fisher 

Scientific Inc., Waltham, MA). The assay plates were incubated at 37°C for 18hr for cell 

adhesion to the plates, then 23nL of the positive control and test compounds were 

transferred to each well of the assay plates using Pintool station (Wako, San Diego, CA). 

The agonist positive controls used were DAMGO (Abcam, Cambridge, MA) for HMOR, 

and Dynorphin B peptide (Abcam) for HKOR and HDOR. The antagonist positive 

controls used were naloxone for HMOR and HKOR (Sigma-Aldrich, St. Louis, MO), and 

naltrindole (Sigma-Aldrich) for HDOR. Compound transfer was followed by the addition 

of 1µL of 0.5mM IBMX (3-Isobutyl-1-methylxanthine, Sigma-Aldrich) to each well of 

the assay plates using a Flying Reagent Dispenser (FRD, Aurora Discovery, Carlsbad, 

CA). Whereas for antagonist mode, 1µL of a mixture of 0.5mM IBMX and agonist 

positive control (2nM DAMGO for HMOR, 0.6nM or 2nM dynorphin B for HKOR or 

HDOR respectively) was added to each well of the assay plates using an FRD. The assay 
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plates were incubated at 37°C for 20min and followed by the addition of 1µL of 1.0µM 

NKH477 (Sigma-Aldrich) to each well of the assay plates using an FRD. The assay 

plates were incubated at 37°C for 30min. Then the detection reagents were added at 

2.5µL of cAMP-Cryptate (cAMP-Gi kit, Cisbio US, Inc., Bedford, MA), followed by 

2.5µL of Anti-cAMP-d2 (cAMP-Gi kit, Cisbio) to each well of the assay plates using an 

FRD. After 1hr incubation at room temperature, the fluorescence intensity was quantified 

using Envision plate reader (PerkinElmer, Waltham, MA) at excitation 340nm and 

emissions at 665 and 620 nm. Data were expressed as ratio of 665nm/620nm. 

qHTS data analysis 

For primary data analysis, raw plate reads for each titration point were first 

normalized relative to positive control (agonist mode: 100%, antagonist mode: 0%) and 

DMSO only wells (agonist mode: 0%, antagonist mode: -100%). Percent activity is then 

calculated as: % Activity = ((Vtest compound–VDMSO)/(Vpositive control–VDMSO)) × 

100, where Vtest compound are the values of compound wells, Vpositive control is the 

median value of the positive control wells, and VDMSO is the median value of DMSO-only 

wells, and then corrected by applying a pattern correction algorithm using compound-free 

control plates (DMSO plates). Concentration-response titration points for each compound 

were fitted to the Hill equation and concentrations of half-maximal activity (AC50) and 

maximal response (efficacy) values were calculated [9]. Compounds were designated as 

class 1–4 according to the type of concentration–response curve observed. Class 4 

compounds were considered inactive. Compounds with class 1.1, 1.2, 2.1 curves or 2.2 

curves with >40% efficacy in the agonist mode assays or >50% efficacy in the antagonist 
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mode assays, and inactive or >6-fold less potent in the wild type counter screen were 

considered active. All other classes of compounds were considered inconclusive and 

excluded from modeling [4]. 

 
Compound library and datasets for modeling 

The training set used in our study consists of 2805 compounds from the NCATS 

Pharmaceutical Collection (NPC) of approved and investigational drugs [13, 58]. The 

prediction set used in our study consists of 49,018 compounds from both Sytravon (a 

library of retired pharma screening collection containing a diversity of novel small 

molecules with an emphasis on medicinal chemistry-tractable scaffolds) and NPACT 

(NCATS Pharmacologically Active Chemical Toolbox; a library of annotated compounds 

that inform on novel phenotypes, cellular processes, and biological pathways) collections. 

The qHTS data obtained from in vitro assay of HMOR, HKOR, and HDOR cells 

screened against NPC were used to train and test models. In vitro qHTS assay data were 

randomly split into two sets, roughly two-thirds (1888) for model training and testing 

(cross-validation) and one-third (917) for external validation. Three different binary 

fingerprints: MACCS, PubChem, and ECFP were used to represent the compound 

structures, which are in 166, 881, and 1024-bit length, respectively. MACCS and 

PubChem fingerprints were generated from a workflow-based cheminformatics tool, 

KNIME-CDK [59] and ECFP from Dragon 7 software. 

Supervised machine learning algorithms 

Data processing was performed using R 3.5.3. QSAR models were developed 

using four machine learning algorithms: Random Forests (RF), Support Vector Machines 
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(SVM), Neural Networks (NN), and eXtreme Gradient Boosting (XGBoost) [23, 24, 26, 

60] to classify the compounds based on their chemical structures for a given target. The 

packages used in R were randomForest, kernlab, nnet, and xgboost for implementing RF, 

SVM, NN, and XGBoost methods respectively, to run a 5-fold cross validation for 20 

iterations. The key parameters chosen for RF were a default value of 500 for number of 

trees, and randomly selected variables for each split was set to the square root of the 

number of predictors. SVM algorithm implemented was a kernel-based method for 

classification with cost of constraints violation set to 100. A feed-forward NN with a 

single hidden layer of unit size 4 and decay of 0.1 were set as parameters. The boosting 

parameters for XGBoost were set to 0.05 (control the learning rate), 2 (maximum depth 

of trees) and the objective specified for the learning task was a logistic regression for 

binary classification, with 200 boosting iterations. For making predictions on the 

validation and prediction datasets, the Caret package was used for model fitting on the 

training set using RF algorithm and the hyper-parameters were selected based on the 

optimal model with the largest “ROC” metric [61]. 

Class rebalancing and feature selection 

Random under- and over-sampling methods were employed to the training set. 

Under-sampling was implemented by random selection of majority class at each iteration 

to balance with the active class compounds and over-sampling was implemented using 

Rose package in R [62]. Features that have zero variance were eliminated and the 

significant features that show bivariate relationships were identified via a chi-square test 

[63]. Only those features that has p-value <0.05 were used in our current study [64]. 
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Evaluation of model performances 

The 5-fold cross validation performance of the training set was evaluated by 

computing area under the ROC (receiver operating characteristic) curve (AUC-ROC) 

values and were computed using “ROCR” package in R. The models generated using the 

training set were validated on the hold-out test set. The predictions fall into the four 

categories: true positives (TP), false positives (FP), true negatives (TN), and false 

negatives (FN). The following measures were used to evaluate the model performances in 

addition to AUC-ROC [29, 65, 66]: 

Sensitivity = 
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹
 

Specificity = 
𝑇𝑇𝑇𝑇

𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇
 

Balanced Accuracy (BA) = 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆+𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

2
 

Matthews Correlation Coefficient (MCC) = 
(𝑇𝑇𝑇𝑇 𝑋𝑋 𝑇𝑇𝑇𝑇)−(𝐹𝐹𝐹𝐹 𝑋𝑋 𝐹𝐹𝐹𝐹)

�(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)
 

Positive Predictive Value (PPV) = 
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹
 

The boxplots and ROC curves were generated using “ggplot2” and “ggpubr” packages in 

R. Compounds represented by PubChem fingerprints (categorical data) were clustered 

using k-modes method, an extension to k-means algorithm especially developed for 

categorical datasets [67]. The clustering was performed in R using klaR package by a 

simple-matching distance method. The structural similarity between two compounds in 

our study was measured by the Tanimoto score [68, 69]. 
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Molecular docking 

The three dimensional structures of OPRs bound to a ligand molecule were 

retrieved from Protein Data Bank (PDB) with the following PDB codes: 5C1M (OPRM-

BU72 agonist), 4DKL (OPRM-βFNA antagonist), 6B73 (OPRK-MP1104 agonist), 4DJH 

(OPRK-JDTic antagonist), 6PT3 (OPRD-DPI287 agonist), and 4EJ4 (OPRD-naltrindole 

antagonist). Molecular docking was performed using Autodock Vina, an open source 

docking program [70]. Using AutoDock Tools, the ligands and the protein molecule 

(after the addition of hydrogen atoms) were saved in pdbqt format and the binding sites 

of the receptors were identified and a grid box was defined [71]. From the correctly 

aligned grid box that covers the entire active site of the receptor’s binding pocket, the 

coordinates were saved. The center coordinates are different for each target, but the size 

of the grid box for each target is same (size_x: 40, size_y: 40, and size_z: 40). The active 

site amino acid residues had been indicated in the published crystal structures of each 

protein-ligand complexes like OPRM-BU72 [72], OPRM-βFNA [73], OPRK-MP1104 

[74], OPRK-JDTic [75], OPRD-DPI287 [76], and OPRD-naltrindole [77]. The potent 

active (AC50 ≤ 2.5µM) compounds from each set were docked into the active site of the 

respective OPRs. The pose of the docked ligand with the least binding affinity (kcal/mol) 

was selected and the structures of the protein-ligand docked complexes were analyzed 

and visualized using PyMOL tool. 
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Results 

 
Assay performances and activity distribution 

The compounds from the NPC library were screened at 7 concentrations in 

agonist and antagonist modes against three cells-based assays (OPRM, OPRK, and 

OPRD) to identify activators/inhibitors of OPRs. All the assays performed well with 

coefficient of variances (CV) <7.0%, and the signal/background (S/B) ratios were ≥2.0 

for OPRM-agonist and OPRK-antagonist, and Z' factors were >0.40 for OPRM- & 

OPRD-agonists and OPRK-antagonist. The rest of the assays had lower S/B and Z' 

factors but the overall performances were compensated by the good CV values. The 

compound activity distributions in terms of active, inactive, or inconclusive for each OPR 

assay are shown in Fig. 10 [4]. The assays produced the highest active (hit) rates were 

OPRM-agonist (15%) and OPRK-antagonist (12%), and the OPRD-agonist (3%) assay 

yielded the lowest hit rate. 
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Figure 10. The class distribution of compounds in training set (in vitro assay data) 
 

Model training and cross-validation 

Four machine learning algorithms: RF, SVM, NN, and XGBoost were applied to 

develop QSAR models for the 6 OPR targets (agonist or antagonist of OPRM, OPRK, 

and OPRD) using the in vitro assay data. These models were trained using 3 different 

structural fingerprints for compounds representation: ECFP, MACCS, and PubChem. All 

6 datasets were severely unbalanced as the hit (active) rates were low (Fig. 10). An 

under-sampling technique was applied to balance the active/inactive classes by random 

selection of the majority class (inactive compounds) to maintain a ratio of 1:2 (active: 

inactive). A 5-fold cross-validation with 20 iterations was implemented on the training 

set and iterating ensures that the majority class was sufficiently sampled to cover the 
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whole inactive set of compounds. The model performances from the 5-fold cross-

validation with 20 iterations were reported as mean ± standard deviation of a total of 100 

AUC-ROC values (Table 6), and the summary of distributions are shown as box plots in 

Fig. 11. The RF classifier generated high AUC-ROC values, and the highest was 0.87 ± 

0.03 for OPRM-agonist with PubChem fingerprints. The next best scores were for 

OPRK-agonist (0.81 ± 0.07), and OPRK-antagonist (0.82 ± 0.04) with PubChem and 

ECFP fingerprints respectively. The next best classifier was SVM, which yielded an 

AUC-ROC value of 0.85 ± 0.04 for OPRM-agonist. 

 

Table 6. AUC-ROC values (mean ± standard deviation) for 20 iterations of a 5-fold 
cross-validation on training set. 
 

    
OPRM-
agonist 

OPRK-
agonist 

OPRD-
agonist 

OPRM-
antagonist 

OPRK-
antagonist 

OPRD-
antagonist 

RF 
ECFP 0.84 ± 0.03 0.81 ± 0.07 0.76 ± 0.10 0.78 ± 0.06 0.82 ± 0.04 0.77 ± 0.07 
MACCS 0.84 ± 0.04 0.79 ± 0.06 0.78 ± 0.11 0.67 ± 0.07 0.79 ± 0.05 0.71 ± 0.07 
PubChem 0.87 ± 0.03 0.81 ± 0.07 0.76 ± 0.10 0.69 ± 0.07 0.79 ± 0.04 0.73 ± 0.07 

SVM 
ECFP 0.83 ± 0.04 0.75 ± 0.09 0.77 ± 0.11 0.77 ± 0.07 0.81 ± 0.04 0.77 ± 0.06 
MACCS 0.79 ± 0.04 0.74 ± 0.08 0.75 ± 0.12 0.59 ± 0.09 0.74 ± 0.05 0.65 ± 0.07 
PubChem 0.85 ± 0.04 0.76 ± 0.07 0.72 ± 0.13 0.66 ± 0.08 0.76 ± 0.04 0.69 ± 0.07 

NN 
ECFP 0.74 ± 0.04 0.71 ± 0.07 0.64 ± 0.10 0.68 ± 0.06 0.72 ± 0.05 0.68 ± 0.06 
MACCS 0.71 ± 0.05 0.69 ± 0.7 0.67 ± 0.10 0.61 ± 0.07 0.66 ± 0.06 0.62 ± 0.07 
PubChem 0.75 ± 0.04 0.69 ± 0.07 0.69 ± 0.10 0.61 ± 0.08 0.68 ± 0.05 0.62 ± 0.07 

XGBoost 
ECFP 0.74 ± 0.04 0.70 ± 0.07 0.67 ± 0.09 0.65 ± 0.07 0.70 ± 0.05 0.66 ± 0.06 
MACCS 0.75 ± 0.04 0.69 ± 0.07 0.71 ± 0.09 0.64 ± 0.07 0.69 ± 0.05 0.64 ± 0.07 
PubChem 0.79 ± 0.04 0.72 ± 0.07 0.68 ± 0.09 0.63 ± 0.07 0.71 ± 0.04 0.65 ± 0.07 
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Figure 11. Box plots for the AUC-ROC values showing distributions of 4 machine 
learning algorithms for different fingerprint types. 

 

External validation and predictions 

Dealing with unbalanced classes, an over-sampling strategy was applied by 

random duplication of the minority class (active compounds) to maintain both classes at 

50% each for OPRK-agonist/antagonist or 30% for OPRM-agonist/antagonist, and 

OPRD-agonist/antagonist. Both ECFP and PubChem fingerprints were used as predictors 

to train the 6 models using two-thirds of the NPC compounds by the RF algorithm, and 

the models were applied to make predictions on the remaining one-third of the 

compounds that served as the external validation set. The predictive performances of all 6 
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models on the external validation set in terms of balanced accuracy, AUC-ROC and 

MCC were calculated (Table 7) and the ROC curves were plotted (Fig. 12). The ROC 

curves for agonist (Fig. 12.A) and antagonist modes (Fig. 12.B) for each fingerprint type 

showed slight variations at different thresholds of true positive and false positive rates. 

PubChem fingerprints produced slightly better performance metrics when compared to 

ECFP in terms of AUC-ROC and MCC values (Table 7). 

 

Table 7. Performance measures of sensitivity, AUC-ROC and MCC from the evaluation 
on the validation set with 6 models 
 
  PubChem fingerprints ECFP fingerprints 
  BA AUC MCC BA AUC MCC 

OPRM-agonist 0.73 0.88 0.7 0.67 0.84 0.59 
OPRK-agonist 0.62 0.76 0.33 0.61 0.76 0.31 
OPRD-agonist 0.58 0.8 0.17 0.52 0.78 0.07 

OPRM-antagonist 0.61 0.76 0.31 0.58 0.72 0.26 
OPRK-antagonist 0.62 0.79 0.39 0.61 0.78 0.39 
OPRD-antagonist 0.62 0.76 0.32 0.58 0.73 0.27 
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Figure 12. ROC curves for RF classifier testing on the validation set for agonists (A) and 
antagonists (B) of 3 opioid receptors. 

 

The training and external validation sets were combined, and only PubChem 

fingerprints were used, to build the final models, which were applied to make predictions 

on the larger prediction set of 49,018 compounds that have no experimental data. 

Compound selection and experimental validation 

Compounds with predicted probability of 0.5 or higher were classified as active 

(Fig. 13). The whole prediction set of compounds were clustered using the k-modes 

algorithm resulting in 2450 clusters, with cluster sizes ranging from one to 112 

compounds. The compounds from each dataset were ranked based on the probability 

score and the cluster size. For the current study, to reduce false positives from our 
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predictions, we implemented a precise prediction probability cutoff for selection of 

compounds from each dataset (OPRM-agonist > 0.7, OPRK-antagonist > 0.6, and others 

> 0.5). From each cluster, the compounds with the highest probability scores were 

selected if the cluster size was < 10, and the top two were selected if the cluster size was 

> 10. Based on the in-house availability, 2816 compounds, which fit exactly into two 

screening plates, were selected for experimental validation. 

 

 

Figure 13. Number of compounds predicted (probabilities > 0.5) to be active in a 
particular dataset. 

 

These predicted active compounds were tested in the same qHTS assays that 

generated the corresponding training data. Experimentally validated compounds were 

counted as true positive (TP) and false positive (FP) otherwise. The confusion matrices 
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describing the performance of the models based on the experimental validation results are 

given in Table 8. 

 
Table 8. Confusion matrices for the experimental validation of 6 models 
 
A. OPRM-agonist   

 Predicted: active Predicted: inactive 
Actual: active 164 369 

Actual: inactive 476 1807 
   

B. OPRM-antagonist   
 Predicted: active Predicted: inactive 

Actual: active 30 193 
Actual: inactive 245 2348 

   
C. OPRK-agonist   

 Predicted: active Predicted: inactive 
Actual: active 156 551 

Actual: inactive 380 1729 
   

D. OPRK-antagonist   
 Predicted: active Predicted: inactive 

Actual: active 100 183 
Actual: inactive 584 1949 

   
E. OPRD-agonist   

 Predicted: active Predicted: inactive 
Actual: active 40 207 

Actual: inactive 403 2166 
   

F. OPRD-antagonist   
 Predicted: active Predicted: inactive 

Actual: active 39 99 
Actual: inactive 464 2214 
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The performances were assessed by PPV measures, shown as histograms in Fig. 

14A. In our current study, the highest PPVs were obtained for OPRM-agonist (0.31), 

OPRK-agonist (0.30), and –antagonist (0.24), whereas OPRD-agonist and –antagonist 

obtained the lowest PPV of 0.18 and 0.15 respectively. To assess the applicability domain 

(AD) of the models, the Tanimoto similarity score was calculated between each predicted 

active compound and all active compounds in the training set for every model. The 

Tanimoto score (Tmax) between the predicted active and the compound most similar to it 

in the training set was recorded. The predicted actives with Tmax>0.8 (fall within the 

model AD) was selected to re-evaluate the PPV for each model. The histograms 

representing the PPV in comparison with the active hit rate from the original training set 

is shown with and without AD consideration in Figs. 14A and B respectively. From the 

initial analysis (Fig. 14A), only two models enriched the % active rate by ≥ 2-fold, which 

are OPRK- and OPRD-agonists, with 5- and 3.5-fold enrichment, respectively. When an 

AD was defined with a similarity of Tmax>0.8, all 6 models enriched the % active by ≥ 

2-fold and the enrichment by the OPRK- and OPRD-agonist models even increased up to 

6- and 7-fold, respectively (Fig. 14B). 
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A. 

 
 

B. 

 
 
Figure 14. Comparison of initial (A) and final (B: Tanimoto score consideration) data 
analysis of PPV with % active hit rate from the original training set. 
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Docking analysis 

To further evaluate the binding potential of the experimental hits to their 

respective OPR, all the novel potent active (AC50 ≤ 2.5µM) compounds were docked into 

the binding pocket of the respective active targets. All the ligands yielded binding 

affinities ranging from -6.7 to -11.1 kcal/mol (Table 9), and these values are comparable 

to the binding affinities of the known OPR ligands with their corresponding receptors, 

namely OPRM-BU72 agonist (-8.2 kcal/mol), OPRM-βFNA antagonist (-9.0 kcal/mol), 

OPRK-MP1104 agonist (-10.3 kcal/mol), OPRK-JDTic antagonist (-10.1 kcal/mol), 

OPRD-DPI287 agonist (-9.6 kcal/mol), and OPRD-naltrindole antagonist (-10.5 

kcal/mol) . From the experimental validation, the OPRM-agonist model produced the 

highest number of potent compounds and the docking interactions of these OPRM-

agonist positive compounds showed the highest affinities (majority of them are ≤ -9.5 

kcal/mol). The most potent compound for each target in complex with the protein is 

shown in Fig. 15A-F, and the active site amino acid residues are indicated as a single 

letter code followed by their positional number. All the potent compounds are well 

embedded in the binding pocket, except for ridaforolimus in the OPRK-agonist target, for 

which the second most potent compound NCGC00135974 is shown in the best docked 

pose (Fig. 15B). The interaction with the agonist targets are: the amide oxygen atom of 

LLY-507 forms hydrogen bond with His54 residue of OPRM, NCGC00135974 has three 

polar interactions with Tyr139, Ser211, and Tyr312 residues of OPRK, and 

NCGC00139128 forms a hydrogen bond with His301 residue of OPRD. Whereas for 

antagonist targets, the most potent ligand for all three targets is adenosine 3',5'-
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cyclothiophosphate, which showed interactions with Asp147, and a non-polar covalent 

bond with His297 of OPRM, three polar interactions with Thr111, Gln115, and Tyr320 

residues of OPRK, and forms a hydrogen bond with Lys108 and a non-polar interaction 

with Tyr129 residues of OPRD. The novel ligands were shown to have interactions with 

the amino acid residues present in the binding pockets of crystal structures of the opioid 

targets that are published [72-77]. 

 

Table 9. List of novel active compounds (AC50 ≤ 2.5 µM) 
 

ID Name AC50 
(µM) 

Binding 
affinity 
(kcal/mol) 

Target  Structure 

NCGC00356
417-05 

LLY-507 0.13 -9.5 OPRM-
agonist 

N
N

N

N

O

H
N N

 
NCGC00386
484-01 

LY 426965 0.18 -9.6 OPRM-
agonist 

O

N
N

O
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NCGC00378
719-01 

VUF-2274 0.41 -10.3 OPRM-
agonist 

OH

N
N

Cl
 

NCGC00118
549-01 

 0.46 -7.2 OPRM-
agonist N

N
N
H

O

 
NCGC00114
741-01 

 0.52 -9.6 OPRM-
agonist 

F

N

N
H
N

O

Cl

 
NCGC00370
807-05 

FIPI 0.58 -11.1 OPRM-
agonist 

F

HN

O
HN

N

N
O

N
H

 
NCGC00485
045-01 

N-
Methylspip
erone 

0.65 -9.5 OPRM-
agonist N

N
N

O

F

O

 
NCGC00247
751-02 

 0.65 -10.4 OPRM-
agonist 

HO O

OH
N

N
N
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NCGC00123
899-01 

 0.92 -10.2 OPRM-
agonist 

F
FF

H
N

O

N
N

 
NCGC00107
633-01 

 0.92 -7.5 OPRM-
agonist 

N

S

O

N

 
NCGC00114
743-01 

 1.64 -10.1 OPRM-
agonist 

Cl

N

N
H
N

O
 

NCGC00378
879-01 

NP-118809 1.83 -10.9 OPRM-
agonist 

O

N
N

 
NCGC00118
605-01 

 1.83 -8.3 OPRM-
agonist N

N
N
H

O
O

 
NCGC00141
762-01 

 2.06 -8.1 OPRM-
agonist 

N
NH

N

O
Br
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NCGC00346
481-02 

Ridaforoli
mus 

0.13 -8.1 OPRK-
agonist 

O

O
P

O
O

OH

O O

HO

O

O

ON
O

O

O

 
NCGC00135
974-01 

 1.16 -9.7 OPRK-
agonist 

O

H
N

N

N

O

O

 
NCGC00117
293-01 

 2.50 -9.1 OPRK-
agonist 

N

N
O

O
O

Cl

 
NCGC00139
128-01 

 2.06 -7.7 OPRD-
agonist 

N
S+

O
-

O

O

N
H

OO

N
S

 
NCGC00136
158-01 

 2.31 -7.9 OPRD-
agonist 

O
O

NH

O
S+

-
O

O

N
SN
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NCGC00485
585-01 

Adenosine 
3',5'-
cyclothioph
osphate 

0.06 
0.07 
0.04 

-6.7 
-7.2 
-6.8 

OPRM-
antagon
ist 
OPRK-
antagon
ist 
OPRD-
antagon
ist 

NH2

N

N

N

N

O

O P
SH

O

O

OH

 
NCGC00114
968-02 

 0.65 -8.5 OPRM-
antagon
ist 

O

N
N

OH
N

O

 
NCGC00485
288-01 

Tocladesin
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A. 

 
 

B. 

 

C. 

 D. 

 

E. 

 

F. 

  
Figure 15. Docked poses of the most potent active compounds. The target receptors are shown as grey helices, the active site 
amino acid residues are represented as lines in grey, the potent compounds shown as sticks with carbons colored in cyan, and 
the interactions are shown as black dashed lines.  Docked poses in top row are for opioid receptor agonists (A-OPRM; B-
OPRK; C-OPRD) and the bottom row is for antagonists (D-OPRM; E-OPRK; F-OPRD).
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Discussion 

The aim of this study was to develop QSAR models to predict a compound’s 

agonistic and/or antagonistic effect on OPRM, OPRK, and OPRD targets. A total of 6 

QSAR models were developed based on in vitro assay data. The active compounds 

constituted only a small percentage in all six qHTS datasets (Fig. 10). The HTS hit rates 

from a diverse compound library are typically ≤ 1%, unless there are some exceptions 

where the compounds selected are for multi-targets, for which the hit rates can go beyond 

or up to 10% [8]. Two approaches were used in our study to balance the classes: random 

under-sampling and over-sampling. For evaluating the model performances on a cross-

validation of training set, an under-sampling strategy was applied due to its 

computational inexpensiveness, and for the rest of the analysis over-sampling was 

applied. The two strategies showed comparable performances in terms of AUC-ROC 

(Tables 6 and 7). The classifiers that were generated without employing any class-

balancing strategy were more biased toward the majority class (inactive compounds), for 

example, a true-positive rate of 0.01 was observed for the OPRM-agonist model though it 

had the highest percentage of the minority class (active compounds). Based on the 

performance metrics given in Tables 6 and 7, the RF algorithm was adopted as the 

method of classification, and PubChem fingerprints were chosen to develop the final 

predictive models. 

The experimental validation of the predictions generated from the RF classifier, 

resulted in a large number of false positives (Table 8). Even though the QSAR models 

developed in our study were trained on a structurally diverse set of compounds, the 
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compounds in the NPC are all drugs whereas most of the compounds in the prediction set 

are novel synthetic molecules that may fall out of the model’s AD [78]. Predictions made 

outside of a model’s AD are often unreliable [79]. We found this to be true in this study 

as well. When the compounds that fell outside of the model AD were excluded based on 

a structure similarity cutoff, the models showed significant improvement in performance 

on the experimental validation set (Fig. 14B) [80]. 

Herein, the OPRM-agonist and OPRK-antagonist models predicted more active 

compounds than the other models, and the OPRM-agonist model predictions yielded the 

largest number of novel potent active compounds that were experimentally validated. 

Most opioids in use for pain treatment are OPRM agonists, and with some activity 

exerting on OPRK as well [81]. The lack of mu OPRs in mice has demonstrated that they 

are the sole receptors in mediating morphine’s analgesic and addictive properties [82]. 

From our study, 19 novel potent compounds were identified to have effect on the OPRs 

with the majority active against OPRM (Table 9), these compounds could be developed 

into new therapies to combat the opioid crisis. Only a few of these compounds have 

previously reported targets, for example, LLY-507 is a potent and selective inhibitor of 

protein-lysine methyltransferase SMYD2 [83]; LY 426965 is an aryl piperazine 

compound that acts as a serotonin1A (5-hydroxytryptamine1A) antagonist [84]; VUF 2274 

is a human cytomegalovirus encoded US28 (a GPCR) inhibitor [85]; FIPI (a halopemide 

derivative) is a potent phospholipase D inhibitor [86]; NP-118809 (39-1B4) is a potent N-

type calcium channel blocker [87]; and ridaforolimus (MK 8669) is a selective inhibitor 

of the mammalian target of rapamycin (mTOR) and has an anti-tumor activity [88]. 
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The OPR antagonist compounds compete with the agonists and block the receptor 

thus reverse the agonistic effects, so they are used in the clinic for partial/complete 

reversal of opioid toxicity, and to relieve opioid-related adverse effects etc. [89]. The 

most commonly used antagonists for reversing the opioid toxicity are naloxone, 

naltrexone (both compounds inhibit all types of OPRs), and naltrindole (OPRD specific) 

[47] . For our initial assay optimization, naloxone was used as a positive control 

compound, and the IC50 was 1.2nM and 0.22µM for OPRM and OPRK, respectively. Our 

models also identified novel compounds that exhibited similar potent inhibitory effect on 

OPRs. Two compounds that are analogs of cyclic adenosine monophosphate (cAMP) 

showed antagonistic effects on mu, kappa, and delta OPRs, and they are adenosine 3',5'-

cyclothiophosphate and 8-chloro cAMP (tocladesine, an anticancer drug). The first 

compound was the most potent against all three receptors (IC50 in range of 40-70nM) 

(Table 9). Another novel compound, NCGC00114968, that contains the 8-

hydroxyquinoline (8HQ) moiety, showed potent inhibition against OPRM (IC50 = 

0.65µM). 8HQ derivatives have been used as fungicides and a few of its derivatives with 

the piperazine ring (like in NCGC00114968) were reported to exert 

antineurodegenerative effect [90]. Two other novel compounds, which were shown to 

have a specific inhibitory effect on OPRK, both with IC50 of 2.06µM, are 

NCGC00106344, a quinazolineacetamide derivative with no known target reported yet 

and NCGC00386726 (IN-1130), a well-studied drug for its potency in inhibiting the 

TGF-beta signaling pathway [91]. 
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We performed docking to get insights on the interactions of the novel potent 

(AC50 ≤ 2.5µM) compounds that were validated experimentally, with the active sites of 

the respective crystal structures of OPRs. The experimentally validated, most potent 

compound for each OPR was shown to have interactions with residues in the active site 

(Fig. 15), except for ridaforolimus (EC50 = 0.13µM), which could not fit into the binding 

pocket of OPRK in the docking study. Ridaforolimus is a rapamycin analog, which are 

macrolides known to form complexes with the intracellular receptor FK506-binding 

protein (FKBP12), and interfere with the mTOR activity [92, 93]. The linkage of OPRK 

with mTOR system has not been well understood yet, but the OPRK-mediated mTOR 

signaling was shown in the mouse brain as the activation of the mTOR pathway occurs in 

neurons expressing the OPRK [94]. The research for safer drugs to alleviate pain without 

exerting severe adverse effects was mostly in silico driven, and these approaches have 

provided important information regarding the structural determinants that are responsible 

for binding affinity and selectivity of newly identified ligands [95]. Also through 

pharmacophore-based modeling, novel antagonists for the mu OPR were identified and 

evaluated in in vitro [96] and in vivo [97] for its significant inhibition of morphine-

induced antinociception. Docking approaches to predict the binding affinities of fentanyl 

derivatives to the mu-OPR have been developed recently [98, 99]. Thousands of fentanyl 

analogues were identified, and a strong correlation was found between the docking scores 

and experimental binding affinities. These approaches are exploited when in vitro data 

are not available and may facilitate temporary scheduling of those substances that pose 

risks to the public. Other studies included the design and synthesis of analogues of known 
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OPR agonists and antagonists, which were evaluated in in vitro pharmacological assays. 

Such efforts involved modifying the 6th position of the morphinan that plays a key role in 

the mu OPR activity [100], and replacing the hydroxyl groups with other groups in JDTic 

to see their effect on mu, kappa, and delta OPRs [101]. These target structure-based 

virtual screening approaches often have limited capacity in identifying novel chemical 

scaffolds, whereas models developed based on assay data may discover compounds with 

more diverse structures. Our study presented the first predictive models built on in vitro 

assay data, which were generated from a large, diverse set of known drugs against OPRs. 

These models could be applied to virtually screen large compound libraries to identify 

novel OPR active compounds. 

In summary, we developed models based on qHTS data for the prediction of 

compound activity on three different OPRs. The models identified a number of novel 

compounds, which were validated experimentally. The potent active compounds were 

shown to have interactions within the receptor’s binding pocket via molecular docking. 

All models were able to enrich active hit rate by ≥ 2-fold. These models have the 

potential to be used for larger collections to predict the compound’s effect on OPRs.  
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CONCLUSION AND FUTURE WORK 

We built different computational models for predicting the chemical activity on 

various disease targets and these targets are usually the proteins that are intrinsically 

associated with a particular disease. The chemicals involved in our study are the small 

drug-like molecules (molecular weight < 500 for majority of the chemicals) and they are 

synthesized with an aim that they represent all theoretically possible combinations of 

different scaffolds and their collections in large numbers are called as chemical or 

compound libraries that are ultimately used in high-throughput screening. For our study 

we included the targets like CYP3A4, ESR1, ADRA1A, OPRM, OPRD, and OPRK.  

For CYP3A4, ESR1, and ARA1A targets, the compounds were represented by 

their bioactivities (data obtained from various in vitro assays tested against numerous 

targets/endpoints) along with their structural features. The aim of using the bioactivity 

data of the compounds is to show that the small molecule drug-like compounds have a 

potential to activate new targets, and/or therapeutic indications across a broad array of 

human diseases and thus facilitates the discovery of novel therapeutic uses of approved 

drugs for repurposing. To the best of our knowledge, using bioactivity data for 

representing the compounds is the first of its kind in building computational predictive 

models.  

For OPRM, OPRK, and OPRD, a qHTS data was used to train the models for 

predicting compound’s effect on different ORs and these are QSAR models for finding 

the relationship between structure and activity of the compounds. For this study the 
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models built using RF algorithm were observed to have high performance rates and 

PubChem fingerprints were shown to have better predictability of the classes. The 

generated models were used for prediction of novel compounds and these predictions 

were validated experimentally. A molecular docking of the experimentally validated true 

positive compounds have shown to have interactions with in the receptor’s binding 

pocket. These models have the potential to be used for larger collections to predict the 

compound’s effect on ORs, taken into consideration if the external compounds share 

some extent of structural similarity to the training set.  

Drug discovery is a complex process which can take 12-15 years and costs more 

than $1 billion [102]. The identification and validation of each target in order to get 

prepared for HTS itself may take several years. The total time for target identification and 

lead optimization may take several years (3-5 years) [14]. Our current approach of 

developing computational predictive models for chemical activity against new targets can 

be leveraged to identify the leads at much faster speed and inexpensive when compared 

to running the HTS against all the existed targets. Whereas our study helped in rapid 

identification of the potential novel compounds that are capable of modulating the ORs. 

The comparison of the timelines in the traditional drug discovery process and our current 

approach in identifying the novel potent compounds right from the start of the target of 

interest and database (compound library) selection is shown in Fig. 16.  
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Figure 16. Traditional drug discovery process and with comparison of our current study 

 

Our current study which is mainly focused on a target-based approach aids in 

drug repurposing. But the drug discovery has been changing its focus for the last several 

years, by not only including target-based ways, but by giving ways to a system-based 

through omics studies [103]. So the individual targets are replaced by molecular 

pathways with cell-based or phenotypic responses. Such advancements in phenotypic 

screening offers several advantages over the original target-based approach such as 

providing a biological response that is physiologically more relevant. Using qHTS data 

the computational models for androgen receptor (AR) pathway have been developed and 

validated to predict the chemical activity against AR pathway [44]. Also binding of these 

chemicals to more than one target has been studied too, which refers to 

polypharmacology [104]. Unintended off-target binding results in adverse effects, 

whereas desirable off-target binding can lead to drug repurposing approach. 
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It is our expectation that the current studies outlined in this dissertation will help 

to predict the effect of environmental chemicals/drugs on various new targets and/or 

cellular and mechanistic pathways and aid in drug repurposing. Based on these 

predictions the chemicals can be further prioritized for human health and treatment as in 

vitro (HTS) assays are time-consuming, expensive and limited. 
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