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Abstract

CONTROLLED FLIGHT OF HIGH DOF HUMANOID ROBOTS

Gowtham Tummala

George Mason University, 2021

Thesis Director: Dr. Daniel M. Lofaro

This work aims to expand the abilities of humanoid robots, by implementing flying

capabilities to the robot. Humanoid robots are designed to mimic the kinematics of a

human, i.e. two arms, two legs, and a head. With this structure, humanoid robots can

be designed and programmed to perform a variety of tasks. Some examples of full-body

humanoid robots include Hubo [1], NAO [2], iCub [3] [4] (an open-source cognitive humanoid

robotic platform), Atlas [5] by Boston dynamics, Honda’s ASIMO [6], and Valkyrie [7] from

NASA. Some examples of upper body humanoid robots, humanoid robots with wheels and

tracks instead of legs, include Handle [8] by Boston Dynamics and Mitra [9] by Invento

Robotics. Increasing mobility options for humanoid robot makes them more versatile.

In this work, we focus on adding a mobility option of flying to the humanoid robot.

This was done by adding thrusters to the end-effectors of its high Degrees of Freedom

(DoF) robotic arms and using control methodology for stabilization. Specifically, in this

work, we study the ability of the latter robot to stabilize over the rotation in the x-axis. To

test our algorithms, we built the physical robot via additive and subtractive manufacturing

methods. We utilized computer-aided design (CAD) as well as computer-aided machining

(CAM) for manufacturing the robot. This resulted in a 6-DOF upper body of a humanoid

robot with ducted fans on its end-effectors that operates in the coronal plane. A test fixture



that allows for full motion of the robot and ground truth measurement was also created.

We used system identification to create a mathematical model of the dynamics of the robot.

This model was then used to design a controller for stabilization over the x-axis. We applied

this controller in a simulation, then confirmed our results with the physical robot. In the

results, we were able to achieve stability over the x-axis with an overshoot of about 30%

and a settling time of approximately 1.12 seconds in simulation. On the robot the settling

time is about 8 secs with no overshoot.
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Chapter 1: Introduction

Robotics is not only a combination of science and engineering, but also psychology, anthro-

pology, economics, etc. Robotics also involves a variety of tasks that include designing,

operating, constructing, learning, controlling, feeding back data, processing data, and ac-

tuating. Its main objective is to make an intelligent machine.

The field of Robotics is becoming wider and wider with multi-department groups such

as mechatronics, and the concentration of each group is further becoming multidimensional.

In the past couple of decades, there has been a huge spike in research on humanoid robots.

Researchers spend a lot of time in studying the behavior and structure of the human body

while building humanoid robots. The main reason for developing these types of robots is

they are able to work in the human environment without additional requirements. On the

other hand, flying robots are also complex control systems in the huge 3-D world. There

are a number of state-of-the-art flying robots which provide flying capabilities, for example,

producing thrusts by rotating blades (helicopters, quad copters), propellers (aeroplanes),

flapping-wing robots etc. Here, we are mainly focusing on the systems like quad rotors

because of their position and functionality provided for the robot. Aerial vehicles such

as Unmanned Aerial Vehicle (UAV), Urban Air Mobility (UAM), and drones are being

used in a wide range of real-time industries such as e-commerce, surveillance, agriculture,

military, photography, toys, and first responders. For these systems, more agility and/or

more intelligence are incorporated by the researchers by implementing non-linear control

laws that are capable of controlling the system with partial state measurements. To take

a step forward in the complexity, there are robots with multiple modes of operation and

multiple modes of mobility. Here we will see few examples of these specific robots. Robots

with multiple mobility options are: aerial robots that can swim(loon copter) [10], walk [11],

and roll [12]; humanoids that can swim (Swumanoid) [13], fly (iCub) [3] [4] [14] [15]. In

1



[16] and [17], the robots have different modes of operation. Researchers are building such

models to improve versatility, portability, and to switch between energy-efficient mode of

operation and performance operations. Such designs are not generic but used for special

situations to overcome slow traverse in terrains and operate for long intervals. This paper

takes a step forward in understanding and demonstrating the humanoid locomotion with

additional flying capabilities.

Figure 1.1: Introduction to the robot. (Left) Designed CAD Model of the 6 DOF robotic
arm in coronal plane with thrusters at the end effectors and angle feedback sensor system
at the center of the robot (green colored block). (Right) Real-world robot with 3-D printed
links and joint actuators attached. Thrusters as the end effectors with a casing for them.
Power and communication cables to all the electrical and electronic components.

This work is focused on building a robot that is similar to the humanoid robots upper

body. This robot consists of two arms with a pivot in the middle supporting the arms

on a gear system encapsulated with the aluminum structure that helps in balancing and

hanging the whole system. Each arm has 3 joints namely; a shoulder joint, an elbow joint,

and a wrist joint. The scope of this project is aimed at the coronal plane; that is, all the

joints have single angle of rotation. For each arm, at the end effector, an electric ducted

brushless DC motor is attached and used to provide thrust. The thrust generated helps the

flight of the robotic arms, to control the roll angle and to balance the robot. The whole

robotic arm structure is held by a rigid frame at a pivot point, which helps in performing

2



the experiments. The overall configuration of the robot is symmetric over the sagittal plane

so that balancing the weight distribution should not be an additional task. Here, we will

analyze the flight dynamics of this robot’s structure in detail by creating a system equation

and developing a controller in the forthcoming chapters.

Figure 1.2: (Left) Front view of the CAD model of the robot hanging to support structure.
This structure helps in testing the robot with different arm positions. Designing the robot
model is clearly explained in the Chapter 3. (Right) Front view of the real-world system
with the supporting structure with the power and communication cables. The whole robot
is hanged to the support structure to measure the roll angle from the sensor system that is
placed in between the two arms.

There are very less resources, simulations and experiments available on flying humanoid

robots. The work done in [3] and [4] were simulations of the iCub robot with jet propellers

attached to the limbs of humanoid. In this paper, we understand the control theory of

the humanoid’s stability and flight dynamics of aerial vehicles such as quadcoptors. We

will also focus on improving the mobility of the humanoid by designing a stable controller

using the PID control. The objective of this paper is to demonstrate the stable control of

those systems while in flight. Here, the robot is designed using CAD tool and built using

additive and subtractive manufacturing methods. With this robot, we first implemented

PID controller and the gains are choosen by trail and error method until the response of

the output is expected, we call this implementation a naive implementation of the PID
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controller. This method is not feasible in the long run, if the arms’ positions are changed

we need different PID gain values. So, we gave a complicated task to the system, in finding

the proper gains for the controller. For that, we need the system equation. To get the

system equation, we used systems identification methods. To be more specific, we used

black box modelling to get the system TF. First, we measured system response with an

input u. Then using model matching, assuming the system is a second-order system we

calculated the plant equation Gp(S). This second order system equation to be calculated

using damping co-efficient ζ and natural frequency ωn terms of the system response; this is

discussed in detail in the Systems Identification section in this document. Then, a lead-lag

compensator is designed with the desired transient responses; this compensator adds a pole

and a zero to the present system for the expected behaviour of the system. Finally, with the

compensator TF the PID controller gains are calculated; as the PID TF and compensator

TF are same. Thus, we achieve a smooth control with the desired transient responses.

These calculated gains are tested both in the simulation platform and on the real robots to

analyze the results.

Different experiments were performed to stabilize the system using PID gains at different

maneuvers. In simulator the results shows that system reaches the stable state within 5

seconds with a percent overshoot of about 30% and a rise time less than 2 seconds. Tests

on the robot shows a bit different from expected as this is approximated system. It took

around 8 seconds to settle with no overshoot and less rise time.

1.1 Organization of Thesis

The rest of this thesis document consists of the following chapters. Chapter 2, Background,

with the literature review on the base papers, humanoids, and aerial vehicles. Next, Chapter

3 Consists of the system construction and design. Chapter 4 System Identification, methods

used to find the system equation. Chapter 5 designs the control system for the identified

system. Chapter 6 is the complete set-up of the system used for this experiment. Chapter

7 has the results of tests performed.
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Chapter 2: Background

Flying humanoids are the combination of humanoid robots and aerial systems. Humanoids

and aerial vehicles such as quad rotors, drones, etc. are built with more elaborate control

systems. In this chapter, we will go through papers on flying humanoids and go through

the important concepts in building one from them. A conceptual design for the flying

humanoid was developed by Ruangwiset in [14]. There he constructed a mathematical

model on humanoids with two rotors on shoulders. This mathematical model helps in

steering the flying humanoid robot, with the Center of Gravity (CG) shifting mechanism.

They used the control laws of the Tommy i-SOBOT humanoid robot and developed the CG

shifting model on it, using PID control laws. Performed number of numerical computations

for the feasibility of the concept. The other flying humanoid is the simulation on iCub robot

by Pucci, et. al. in [3] and Nava, et. al. in [4], it is powered by 4 thrusters on the limbs of an

iCub humanoid robot, an open source robot developed by the researchers of Italian Institute

of Technology to achieve flying capabilities. The iCub robot is made up of n joints and n+1

rigid body parts called links for its structure. This robot’s whole body control laws are

capable of stabilizing the overall system dynamics in both humanoid operations and aerial

robot operations. These papers shows the simulation approach to the whole humanoid body.

As the iCub is an open source project, it is available as a research material. To be more

specific about the simulations performed by these researchers, the robot is attached with

four thrusters on the four limbs, two on its arms and the other two on its legs. They used

turbo engines for thrust force to lift the humanoid with a wide range of control objectives

and error dynamics; centroidal momentum asymptotic stability and the ability to track

the reference trajectory, setting error boundaries between reference orientation and robot

frame. In addition to these objectives, the moment control, velocity, position control,and

orientation control laws were defined and explained which provided stable results. For
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optimization, stabilization, and controllability of the system, they assumed the humanoid

system to be a VTOL (Vertical Takeoff and Landing) system. Here, with an under-actuated

robot these equations are built based on Newton-Euler formalism. But in the simulation,

errors were not resolved with the proposed control laws. Considering the results of the [3]

that produced more errors, they designed a new approach in [4]; Task-based control. Task-

based control’s main objective is global tracking of desired Center of Mass (CoM) location.

The results in this case [4] were much better than in previous paper’s [3]. Using this control

in the iCub, it could perform complex tasks but there are additional assumptions like

omitting aerodynamic effects, not considering take-off and landing phases. Overall paper

shows an approach to design and simulate the flying humanoid concept with certain laws

into account. In the following sections we will focus on different control laws, performance,

and implementations in detail for both humanoids and aerial vehicles.

2.1 Humanoid papers

Proper performance for a humanoid robot can be explained as the capability to traverse

without falling on the ground. In this sense, the fundamental target of the control in a

humanoid robot is to ensure a reasonable ground response strength to keep the dynamic

balance explained in [18]. However, for better performance, the robot must adjust to unseen

forces from outside called disturbances and noise for better performance. In general, the

robot must follow desired trajectories that include actuation of basic position regulators

which can be attained by utilizing dynamics based walking pattern generation. Because of

the limited foot area, pure position control is lacking for executing these trajectories it can

be a problem in defining the control laws. In this section, we will research a bit deeper to

understand the structure of humanoids, different control laws to make the system stable

and work on practical implementation of it.

In general, humanoids are divided into upper body and lower body [19]. The upper

body consists of upper limbs (hands), sensors such as inertial measurement units, position,
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lidar, proximity, etc. The lower body consists of legs used for locomotion with a different set

of control strategies than the upper body for balancing [20], walking [21] [22], whole-body

control [23], and trajectory planning [24]. Each limb, hand or leg, will be a robotic arm

in a perspective with different end effectors explained in [25]. For example, if you take a

hand, the origin will be at the shoulder and the end effector is fingers. In order to move a

particular location, it uses inverse kinematics and maps the trajectory to the destination.

While this operation is in progress the dynamics of the humanoid changes but whole robot

should be stable. For all that to happen smoothly, a lot of control is involved. Kim, et. al.

in [26] solves the major difficulties faced by the inverse kinematics solutions developed for

humanoids scaling the design, motion postures and motor capabilities in detail.

In [27] the effects of uneven surface on humanoid robots are explained in detail. Each

humanoid robot consists of an Inertial Measurement Unit (IMU) or a group of sensors

that provide data of the system required to achieve horizontal motion, stability from high-

frequency vibrations, and attitude stability[19]. Louis et. al. in [28] used Force Sensitive

Resistors (FSR) while pushing the cart using humanoid robot. A few authors also proposed

the Linear Inverted Pendulum Model (LIPM) [28] [29] [30] [31]; in this model they proposed

a cascade controller design to withstand external disturbances that minimizes the vibra-

tions. This model also follows the predefined trajectories of the Center of Mass (CoM) and

horizontal motion with small variations and external disturbances. In addition, General

State Equation (GSE) [32] and Zero Moment Point (ZMP) [21] [23] [32] [28] approaches

are used for dynamic analysis for humanoids. Stephen, et. al.[31] proposed control equa-

tions that contains ZMP and LIPM to follow desired CoM using Dynamic Balance Force

Controlling.

Control laws with a prediction method; Model-based Predictive Control (MPC) is used

to predict the future trajectory of CoM [33] [34] and a layer of PID controller is cascaded

that helps in modifying the ZMP reference [35]. Ivancevic, et. al. in [36] uses a different

control model, the fuzzy-stochastic–Hamiltonian model and developed the humanoid as a

3 stages non-linear dynamic system. In the book [37], they proposed momentum-based
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strategies for the stability of the humanoid robot and also tested it on the iCub robot and

shown some satisfying results yet they need to compromise in the effectiveness in balancing.

In [38], Hyon demonstrates the contact force control framework for humanoids on the rough

terrain that does not require any prior knowledge of the terrain and frictional force. This

is based on the torque exerted on the humanoid robot at the joints. In the paper [39], the

robot performs dance motions satisfying dynamical consistency and mechanical constraints.

Here is one more example for the application based development of humanoid robots, in

the papers [40] and [41] illustrates an approach to throw an object using Jaemi Hubo robot

and they are successful in achieving it.

2.2 Aerial Vehicles

Recently, the advancement of flying robots has rapidly evolved. Aerial vehicles such as

UAV, UAM, and drones are used in a wide range of real-time applications. A few of such

industries are as follows e-commerce [42], surveillance [43] [44], agriculture [45] [46], military,

photography [47], toys [48], first responders [49] and etc. These applications have agility

and intelligence incorporated in building them. The complexity is increasing version after

another by implementing the finest non-linear control laws that are capable of controlling

the system with partial state measurements [50], actuators saturation [51], robustness with

variations of CoM [52], parametric uncertainties [53], aerodynamic pressure differences [54].

Aerial robots that fly can produce thrust in different ways, such as thrust produced by

rotating blades [55] [56] [57] [54], and by flapping-wing robots [58] [59] [60] [61]. Some of

the engineering milestones are as follows; quadrotor ball juggling[62], trajectory tracking

[63], and so on. The control systems in such robots are getting more and more complex and

performing tasks with more precision, accuracy, and without performance degradation. We

are focusing on the actuators that produce thrust using rotating blades; that are made of

plastic run on brushless motors [54]. In addition, the system of the quadrotors is also not

quite the same as the usual robot controllers; these are very sensitive to slight disturbances.
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Just 4 actuators, thrusters, in quadrotor be able to control 6 DOF movement. In such a

case, four state variables of the quadrotor can simultaneously be balanced out into a steady-

state position smoothly with a static feedback method. Azzam et. al. in [64] presented

non-linear control law based on Newton-Euler formalism for the quadrotor.

In general, the quadrotor system is highly under-actuated as it performs number of

maneuvers. The basic quadrotor system is capable of having 6 DoF with only four actuators

and this may extend up to 18 in the real-time system. The Control system of such systems

is complicated. There are two types of approaches: Centralized and Decentralized approach

based on the task aerial system was built for [65]. In a centralized approach , the whole

body is considered as a single system so as the control laws for stability and performance.

In a decentralized approach, the aerial system and a manipulator are considered as two

independent systems. The effects made by manipulators are considered as the external

disturbances on the aerial system and vice versa.

Though there are different methods to lift the system into air, this type of application

requires VTOL for its manipulation capabilities, versatility, agility. Both the approaches

have their advantages and disadvantages based on the application. With all the above

knowledge, we use a decentralized approach for our system in building the robot. We will

see in detail in the further chapters.
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Chapter 3: System Design

In this chapter, we will discuss the design and the construction of the robot. This robot

is mainly built on 4 types of links; first piece, second piece, middle piece and thruster

structure. The construction of the robot is the group of structures embedding actuators

and sensors into 3-d printed parts. This is discussed in detail in the following sections. The

scope of this project is limited to the coronal plane and the roll motion of the robot, so each

link and joint is constructed with constrained movements.

To design the system with real-world metrics, we use CAD (Computer-Aided Design);

it is a software tool to create, analyze, modify, and optimize a design. The CAD tool is used

to increase the quality and productivity of the work. There are a lot of such CAD tools in

the market. In this project, we are using Autodesk Fusion 360 to aid our robot with precise

measurements. The design aim is to build two 3 DOF arms that resemble human upper limbs

but operate only in the coronal plane. For the actuation, at the joints, we are using smart

actuators (Dynamixels) to control the movement of the hands. While designing, certain

things should be considered; the dimensions of the actuators, the freedom of actuation,

designing the compatibility between the parts, room for power and communication cables

between the actuators and the single board computer or micro controller. Dimensions of

the actuators and sensors were taken from the website to build our robot[66].

3.1 Design of the robotic arms

For a human arm, we have 3 joints; the wrist joint, the elbow joint, and the shoulder joint.

To join them we need two links. Here the first piece is used in two places as shown in Fig.

3.1; one between the shoulder joint and the middle piece, another between the elbow joint

and the second piece (wrist joint link). The actuators are placed inside the first piece at
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the top and screwed to hold it firmly. The first piece also has the space needed to connect

the cables. Another important characteristic of it is the actuation freedom; actuators have

200o of actuation freedom. With all these in consideration we designed the link that is best

fit for this robot.

Figure 3.1: First piece: Holds the actuator with 200◦ actuation freedom and also provides
slots for communication links for the actuator. This acts as the link between the angle
feedback structure and the shoulder joint and also between the elbow joint and the second
piece. Arrows indicate the location on the robot on one arm; it is also located on the same
spot for another arm.

The first piece is good for its purpose.Now we will see the design of the second piece

that could form the shape of an arm. The Fig. 3.2 is the second piece this acts as a link

between the first piece and the wrist joint actuator. To design this part, we make sure

the first part works with the actuators because the body of the first piece was used. The

modifications were applied to the bottom part of the piece: this piece was made longer than

the first piece; a square shape with a perimeter bigger than the piece that was added so it

could hold the first piece and the actuator at the wrist joint. In addition, some holes were

added so it could be screwed to the first piece. As the actuator part wasn’t modified the

properties of actuation remain the same.

Fig. 3.3 represents the manufactured parts using the additive manufacturing method
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Figure 3.2: Second piece: This is developed from the first piece, so, this doesn’t change
the actuation properties that it provides 200◦ actuation freedom and also provides slots for
communication and power links for the actuator. It acts as a link between the first piece
and the wrist joint. The arrow indicates the location on the robot on one arm; it is also
located on the same spot for another arm.

that is using 3D printing technology. The links are connected together using the FR12-

H101 set from Robotis[66]. The white parts correspond to the first piece and the black part

corresponds to second piece. This structure made the complete robotic arm with 3 DOF on

single axis. Two of such arms completes our system i.e., 6 DOF robotic arms in the coronal

plane. On the top, there is a gear system that balances both the sides and the arms on the

bottom are fixed with a thruster actuator that has the thruster casing to hold it.

3.2 Connecting a angle feedback sensor (potentiometer) to

the robot

In this section, we are going to discuss the middle structure; it is used to join both the

arms of the robot and also holds the sensor. The Robot is an upper body structure with

a total of 6 DOF robotic arms that are operated in the x-axis or the coronal plane. The

middle piece is designed in such a way that it should be able to hold both the arms (the

left and the right arms). So, for the strength it was made out of aluminum blocks using
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Figure 3.3: Using the additive manufacturing method, the single robotic arm with the 2 first
pieces (printed with a white filament) and 1 second piece (printed with a black filament)
are connected with joint actuators. Two of such arms were used to complete our robot. A
middle structure helps to connect the two arms.

the subtractive manufacturing method. It not only holds the whole robot intact and also

hanged to the support structure to perform the tests with different maneuvers (the support

structure is discussed in Section. 3.4).

Figure 3.4: Middle piece: Used to hold the gear system that is attached to the angle
feedback sensor. The two arms are attached on either side to complete the two robotic
arms structure. This middle piece stays inside the middle structure.

The main goal of the middle piece is to measure the roll angle, the tilt in the x-plane.

The sensor (Potentiometer) measures the roll angle of the robot and sends it to the micro-

controller (Arduino) then control law is applied to generate the thrust value. That way

it is feasible to know how the robot would behave with different input values. To get the
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appropriate roll angle by the sensor, the middle structure is designed in such a way that

the potentiometer is integrated with a couple of gears, made of PLA, which translate the

rotational movement of the robot to the sensor.

One of the most important aspects of the design is how to let the potentiometer rotate

freely while it is attached to the middle piece. We made a design with two gears, shown in

Fig. 3.6, one that is attached to the bar that would go through the middle piece (robot),

and another one is connected to the potentiometer to replicate the movement. The next

step in the design process is to maintain the potentiometer and the gears in position while

doing operations. To achieve that, the middle piece is placed in between two aluminum

plates. These plates are not directly connected to middle piece but to provide support for

hanging the robot and also to connect the whole robot to the support structure.

Figure 3.5: (LEFT) CAD model design of the aluminum pieces. These are used to hold
the robots’ middle piece, angle feedback sensor and gear system that connects firmly to
the support structure. (RIGHT) The Computer Numerical Control (CNC) machine cut of
aluminum pieces that is used to hold the robot to the support structure. It uses a number
of operations like screwing, pocketing and contouring to get the appropriate finishing to the
piece.

As mentioned earlier, the design of the structure was made in Auto desk Fusion 360;

the plates, the gear system, the static parts and the relation between all of them were

modeled and simulated. Three aluminum plates were cut off in the workshop; the following

design is also created in the CAD software. In order to cut the aluminum pieces, a CNC

(Computer Numerical Control) machine is used. Before doing operations on the CNC
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machine, the aluminum block should be screwed to a metallic base so it would not move

while the operations were in process. Different tools are used for this design, as we choose

Aluminum the following are the operations to get the final design: screwing, pocketing, and

contouring. Before the first operation, screwing, we defined some points in the design so

that the CNC machine would punch little holes where the screw holes would be created

later. Punching helps the CNC machine to not slip the bit while screwing. Then from the

screwed holes the bit cuts the aluminum in sideways. The next step is pocketing; this takes

large chunks of aluminum for the final shape if the design has big holes. Finally, contouring

is done for the fine finishing with a different bit than the one used for pocketing. With all

the components that are manufactured using both additive and subtractive manufacturing

methods, now it is time to join the aluminum pieces (aluminum plates) with the 3D printed

piece (middle piece) and the support structure. Here standoffs were used to connect the

aluminum plates, leaving the 3D printed piece in the middle. In Fig. 3.6 the aluminum

pieces are shown in green and the standoffs are in silver color and the middle piece (3D

print piece) in black. This whole process of designing and manufacturing is an iterative

process until we are satisfied with the design.

Figure 3.6: Middle Structure: Holds the middle piece, angle feedback sensor and, gear
system to the support structure. The roll angle is captured by the sensor with the help of
this gear system. Stand offs were used to provide enough space for the components to move
freely.
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3.3 Motor thrusters casing

The motors section for this system divided the work done in two different parts; one is

selecting the motor with the correct specifications to be able to lift the robot, another is

designing the structure that would keep the motors connected to the robot arms as the end

effectors.

3.3.1 Selection of the motors

Selecting the right motor for the project requires some research about some important

parameters and their definitions. Kv rating is the constant velocity of the motor, it is

defined as the speed at which the motor would spin if 1 volt is supplied to it without

applying the additional load. For projects like this, a motor that is small and has high Kv

is selected. The revolution per minute (RPM) and amperes graph of each motor in the data

sheet provides us a good estimation of how it would behave. Next, the thrust provided

by the motor is also an important aspect to consider. After calculating the part’s weights,

selected a motor with eleven 50mm blades that can lift up to 770 grams of weight. The

details of the motor are discussed in the chapter Experimental Setup.

3.3.2 Designing the thruster structure

The objective of this structure is to connect the motors to the robotic arms as the end

effectors produce lift force to manipulate the roll angle. All the measurements of the thruster

were taken manually as we could not get a datasheet. With these measurements we designed

a model in CAD software that would fit the robotic arm. Also, the design should be narrow

at the bottom and wide at the top so it could be able to hold the motors. The designed

piece is separated from the arm at a fixed distance so the air flows through the motors to

produce thrust. Screws were used to join the arm with the structure firmly. The Fig. 3.7

shows the final design of the piece responsible of holding the robot.
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Figure 3.7: Thruster structure: Holds the electric ducted fan. The structure is designed in
a way it has room to draw the air and create thrust. This is connected to Wrist joint to
manipulate the direction of thrust. This figure also highlights the location of the structure
on the robot.

3.4 Creating the support structure

For the support structure, we choose to use a hot rolled one-inch square aluminum rod. This

structure was meant to hang the robot arms and balance them over a pivot. The height

at which we hanged the robot is around one meter from the ground so that the system

would be accessible for anyone. In the workshop using the metal saw these rods were cut

into required sizes as per the design. We also used a CAD model for the support structure

as you can see in the Fig. 3.8. Once the parts are ready we welded the bars to make the

structure as per design. We used shielded metal arc welding machine to join the aluminum

rods. Shielded metal arc welding creates an electric arc in which the temperature reaches

around 6500 Fo. Additionally, corner joints were placed for extra support (triangulating

the corners). The below Fig. 3.8 and 3.9 shows three views of the whole designed structure

in CAD and the real time model respectively. Leftmost is the front view, the middle figure

is the side view and the rightmost figure is the top view of the overall structure.
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Figure 3.8: CAD model of the robot with support structure in different views (a) Front
View, (b) Side view, (c) Top view. It is rigidly attached to the support structure at a
height around 1 meter from the ground. The robot is freely able to rotate around x-axis.

Figure 3.9: Physical robot with support structure in different views a) Front View, (b) Side
view, (c) Top view. It is rigidly attached to the support structure at a height around 1
meter from the ground. The robot is freely able to rotate around x-axis.
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Chapter 4: Systems Identification

In this chapter, we will discuss the Systems Identification concept in detail. The main ob-

jective is to develop suitable mathematical model for our dynamic system. Mostly, systems

identification is experimental, which requires basic knowledge of the experimental setup and

time to build good low-order systems. We can still develop models with unknown physical

parameters for a complex dynamical system. In this project, we generated a model to build

a controller for manipulating a few parameters like peak overshoot, rise time and settling

time.

4.1 Introduction to Systems Identification

Systems Identification is a field of study in the control systems. This branch finds parameters

or system equations of the dynamical system with only inputs and outputs from the system.

It also incorporates ideal test plans for creating data effectively. A typical methodology is to

begin from estimations of the behavior of the system with outside noises and try to decide

a numerical connection between them without going into high precision details[67]. The

progress and use of models are extraordinary in all objectives and purposes.

When exploring practical models with external disturbances, or models for fluid dynam-

ics of definite fluids under explicit conditions, or models for a mechanical creation process

in some robotized condition, the models are stressed on a variety of tests. When in un-

certainty, designing the systems have one basic trademark: they are stressed over relations

between parts and are described in physical quantities which can constantly be assessed

by some appropriate implementations. One can measure force, speed, temperature, time,

pressures etc., and this possibility of assessing gives the expert a huge information during

the time spent while creating and operating the models.
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While designing the control system model the following strategies are taken into con-

sideration: system is treated as dynamical design, and determined to use in a couple of

domains. Here are different types of models that can be used while designing one:

1. Mental models

These are the same as the common idea that people have of the system in their minds.

2. Programming models

These reflect structural representation that are in programming, mostly if-else condi-

tions, discrete-event sorts of operations, and lookup tables.

3. Graphical models

System representations as (nonlinear) characteristics and outlines, unit step, and step

responses.

4. Logical models

Structure delineations as logical relations as (partial) differential and qualification

conditions

In this, we will concentrate on models of the last two arrangements, and explicitly on

logical models, while the essential focus will be on direct time-invariant models as differ-

entiation conditions. Inside the control block, one will adapt the strategy with models of

dynamic systems, having different sorts of usages as a principle need. Some ordinary model

applications are:

1. System design

Learning about the (dynamic/static) system can be used for optimizing. In case a

system isn’t generally controllable, it must be redesigned to improve controllability

and, accordingly, on achieving performance.

2. Control design
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The Control system design should establish stability, controllability, reference track-

ing, etc.; or a control system that improves or redesigns the efficiency/performance of

a dynamical system.

3. Simulation

Testing the system under different data circumstances, getting ready for implementa-

tion, etc.

4. Estimation

Measuring the output that are not naturally quantifiable; redoing the state of a system.

5. Diagnosis

Detecting the system that it has any faults or errors.

In general, models are of three types, 1. White box, 2. Black box and, 3. Grey box.

1. White box

A physical/logical representation of the dynamical system for which a lot of data such

as parameters or system equation is known.

Once the model description is chosen, system identification includes estimating the

unknown parameters of the transfer function directly or performing tests to gather

the parameters indirectly.

2. Black box

An observational representation of the dynamics of a system for which no data is

known. The system model is created from the responses when a variety of inputs

provided to the system.

Our system in this project is designed on this concept.

3. Grey box

A mix of the two. If the ”known” white-box part can be deducted out, the unknown

part might be recognized by utilizing a few techniques.
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4.2 System Modeling

The system is designed in the CAD software that resembles human’s upper limbs, built on

six actuators called joints that are connected with seven 3-D printed parts called links and

two thrusters called end effectors. For 3-D printing, we used polylactic acid (PLA) filament

that is biodegradable and environmentally friendly material. Here, the whole system is

considered as a 6 DoF system and the origin is at the center. The system is symmetrical

over the X-Z plane also known as the sagittal plane can see in Fig. 4.1.

Figure 4.1: Three versions of the 6 DoF Robot: (Left) CAD Model, (Middle) Kinematic
Model, (Right) Real Model. This model is symmetrical to Sagittal plane. We are focusing
on the roll motion of the robot. Assuming our system is a second-order system to calculate
the plant equation Gp(S). Robot has 6 actuators at joints, a sensor to measure the roll
angle with reference to ground at the center and the thrusters at the end effectors of each
arm.

We assume our system as a whole is a second order system as it reacts around the x

axis with the data from the system model above. Using transient specifications we can

find the plant equation. The transient specifications are: rise time (tr), peak time (tp), 2%

steady state time (ts2%), percent overshoot (PO(%)). The pictorial representation of these

transient specifications can be seen and in Fig. 4.2 [68].

The following is the Second-order system Equation,

Gp(S) =
1

S2 + 2ωnζS + ω2
n

(4.1)
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Figure 4.2: Transient specifications response of a second order system with natural fre-
quency ωn and damping coefficient ζ. From the response plot we can find the following
transient specifications;delay time (td), rise time (tr), peak time (tp), settling time (ts),
percent overshoot (Mp or PO(%)).

Transient specification Equations

PO(%) = 100 e

(
−ζπ√
1− ζ2

)
(4.2)

tp =
π

ωn
√

1− ζ2
(4.3)

tr =
π − tan−1

(√
1−ζ2
ζ

)
ωn
√

1− ζ2
(4.4)
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ts(2%) =
4

ζωn
(4.5)

With the above equations (4.2) (4.4) (4.3) (4.5), using two or more specifications to

compute the damping factor (ζ) and the resonant frequency (ωn), we developed a second

order system model Eq. (4.1).

The Fig. 4.3 represents the system for modelling, while the input u to the system Gp(S)

will provide the response of the system for the given input. The time and theta values are

recorded to know the system response. Here, we now know the inputs and outputs but not

the system equation. Finding a system equation based on input and outputs is known as a

black-box model.

Figure 4.3: System response Model. With a step input u to the system we get the system
response as shown in Fig. 4.2 to calculate the transfer function using the transient spec-
ifications from the system response. The second order system transfer function Gp(S) is
referenced Eq. 4.6. The calculated values for the plant equation is in Eq. 7.1.

For example, in order to model the system a step input signal, u, is given to the plant,

Gp(S), in this case, 50% duty cycle that produces 280 grams of thrust is given to only one

thruster either left or right in the coronal plane as shown in Fig. 4.4. The potentiometer

which is an analog sensor that is located at the pivot measures the rotation of the system in

the coronal plane. Then the measured data of the system is recorded from the potentiometer.

This data is the system response for a given amount of thrust shown in Fig. 4.5.
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Figure 4.4: Kinematic model demonstrates the robot posture when a step input given to a
single thruster of the 6 DoF robotic arm. As the robot has its free rotation in the x-axis,
the actuation of the robot is shown. The sensor in the middle structure records the data of
the angle feedback to create the plant model.

4.3 System Matching

We have a real system model with a higher-order, to get the plant equation for simulating

we have to match the system model to the real system. By manual tuning with the addition

of gain (K) and slight changes in damping coefficient and natural frequency gives the best

matching case for the system model. With the final system equation Gp(S) we can simulate

the controller.

Gp(S) =
K

S2 + 2ωnζS + ω2
n

(4.6)
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Figure 4.5: This plot is an example for the system response when a step input u is given to
the robot. This plot represents the roll angle of the robot w.r.t. time from t = 0 when the
step input u given. The system has lot of noise because of its long wires. For this plot, a
50% Duty cycle is fed to the system as input u.

Figure 4.6: Blue color line represents the step response of the calculated second-order
mathematical equation of the system response from Fig. 4.5 represented in red. Matched
system (blue line) is having approximated natural frequency ωn and damping coefficient ζ
as of the system response in Fig. 4.5.
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Chapter 5: Control System

In this chapter, we will discuss the design and implementation of the control system for our

robot. The main objective here is to design the controller for the dynamic system that we

developed using Systems Identification. We will discuss about the compensators and PID

controller in detail and the necessary equations to build a control law.

5.1 Introduction

A controller is added to the system to improve the performance, decrease the unwanted

noise and properties that enhances the final result. To design a controller the following

properties need to be considered: the steady-state error, the maximum overshoot, the rise

time, the peak time, etc. We have a variety of controllers to enhance the system, depending

on the specifications and cost we have to choose the right one.

The advancements in technology and engineering, just as the synergetic combination of

various principal engineering areas made the engineering issues get more earnestly, more

extensive, and more profound. Issues that are in different fields and require a multidisci-

plinary engineering system, such methodology is called mechatronics approach, and such

multidisciplinary systems are called mechatronics systems. It is characterized as a multi-

disciplinary idea, it is a synergistic joining of mechanical engineering, electrical engineering,

electronic systems, control systems. To manage vulnerability, communication through the

structure, and assembling of items from the beginning planning the process is important.

In this manner empowering complex dynamic system, outstanding degrees of exactness and

speed of cutting edge gear including the capacity to perform complicated and high-quality

movements is part of developing a mechatronics system. Mechatronics systems work with

high precision and speed inspite of unfavorable consequences of system nonlinearities and
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vulnerabilities. Since accomplishing and confirming precision in mechatronics systems’ ex-

hibition is of concern, the most basic choice in the mechatronics configuration process is the

selection and design of both control unit and control algorithm which are directly related to

one another. There could be many alternative control methodologies for a particular sce-

nario but the designer should choose the best controller based on the application use-case.

For our mechanical system, a controller designed with expected behavior from the sys-

tem response parameters such as the steady-state error, maximum overshoot, rise time,

peak time, etc. that are determined while designing the controller.Controllers alternatives

including yet not constrained to: Micro-controller, Programmable Logic controller (PLC),

Computer control, Digital Signal Processing (DSP) integrated circuits. Following are some

types of controllers

- Bang-Bang (ON-OFF) Controller - Neural network control

- PID Controller - Model Predictive Controller (MPC)

- Compensators - Model Reference Adaptive Control (MRAC)

- Fuzzy Controller - Optimal Control

- Adaptive control

5.2 PID Control

PID control is one of the most well-known methods in control systems. PID controllers are

regularly utilized in various fields such as industries, educational institutes, automobiles,

etc. and a huge industrial facility may have a huge number of them, in machines, lab

hardware etc. In system applications built for engineering tasks, the controllers show up in

a wide range of areas.

In this subsection, we will discuss about the fundamentals of PID control, and many

parts of control can be comprehended dependent on linear analysis discussed in [69]. And

also, we will see the implementation of PID controllers, similar techniques can be utilized
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to execute numerous different controllers shown in detail by Jadoon et. al. in[70].

In the PID controller, kp, ki, kd as the proportional, integral and derivative gains of the

controller respectively where, e(t) is the error between the desired and actual value. The

proportional part contains linear variation of the error e(t), provides stable operation but

gives steady state error. The integral part,
∫ t
0 e(τ)dτ , is the sum of the present error and

the leftover error taken from the previous time steps when the error is zero the integral

part stops growing this value gives the necessary action to decrease the steady state error.

The derivative part,
de

dt
, is the rate of change of error as the input for the controller. It

predicts the future error of the system and makes the system operate smooth and within

the bounds. In general, systems with very low time constant and system that is less effect

with the noise don’t use derivative constant because it is designed to react to the rate of

change of error.

This equation is represented in both time domain and laplace domain. Eq. 5.2 is the

parallel form and Eq. 5.3 is the ideal form representation of the PID control system equa-

tion[71].

u(t) = kpe(t) + ki

∫ t

0
e(τ)dτ + kd

de

dt
(5.1)

Also written as,

G(S) = KP +KI
1

S
+KDS (5.2)

G(S) = KP

(
1 +

1

TIS
+ TDS

)
(5.3)

where,
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e(t) = d(t) − y(t) d(t) = desired output

u(t) = input y(t) = output

kp = Proportional Gain ki = Integral Gain

kd = Derivative Gain
de

dt
= rate of change of error

TI = Integral time constant TD = Derivative time constant

These constant gains differ from system to system and also varies with different require-

ments for the same system. These gains are calculated before the system is released for

the tests or practical implementation. The table 5.1 shows the effects of the gains on the

system. In general, derivative gain is used when system should be settle faster and system

overshoot is reduced.

Table 5.1: Effects on response of the system of a PID controller with the respective gains

Response Rise time Overshoot Settling time Steady state error

kp Decrease Increase No trend Decrease

ki Decrease Increase Increase Eliminate

kd No trend Decrease Decrease No trend

This paper provides a PID controller design based on the natural frequency of the

system and damping coefficient of the system. The effectiveness of the control system

design depends on the location of poles and zeros on the real-imaginary plot, and also on

the gain of the system. To reach all the desired specifications with accuracy and to know the

reach of the system we will use the root-locus method and the graphical method to analyse

the system stability in the complex S-Plane. O’Brien et. al.[72] explained the concepts

root-locus and bode compensator design in detail.

5.3 Control Design

We build the compensator based on the following specifications.
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• Percentage overshoot or maximum overshoot (PO)% for the step input

• Rise time tr for the step input

With the above transient specifications that our plant should behave we will design a

compensator. We know tr & (PO)%, using (4.4) and (4.2) respectively to find ζ and ωn

with the following steps we can design the compensator. A controller is designed with a

desired rise time, overshoot and settling time

Compensator design:

Sd = −ζωn ± jωn
√

1− ζ2 (5.4)

φ = ∠Gp(Sd) (5.5)

φc = −180− φ (5.6)

Computing poles and zeros of the transient compensator

φzc = ∠(Sd − Zc) (5.7)

φpc = φzc − φc (5.8)

Pc = Re(Sd)−
Im(Sd)

tan(φpc)
(5.9)

Computing gain of the compensator

Gct(S) = Kct
S − Zc
S − Pc

(5.10)

Result of product of magnitude of Gp and Gct should be equal to one.

|Gct(Sd)||Gp(Sd)| = 1 (5.11)
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Kct =
|Sd − Pc|

|Sd − Zc||Gp(Sd)|
(5.12)

Matching compensator to the PD control

Gpd =
Kp + SKd

τS + 1
(5.13)

Here to find the Kp and Kd values we are matching lead compensator and PD control

equation

Kct
S − Zc
S − Pc

=
Kp + SKd

τS + 1
(5.14)

After solving the (5.14)

τ =
−1

Pc

Kp =
KctZc
Pc

Kd = Kctτ

(5.15)

where,

τ = time constant

Using the above Kp & Kd values the controller C(S) is designed

The below Fig. 5.2 is the simulink implementation of the system. The output of

this contains how the system reaches steady state and be stable based on the calculated

proportional, derivative and integral constants in using above method. And the Fig. 5.3 is

the PID control box of the whole system.
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Figure 5.1: Block diagram of closed loop system with PID controller in the loop. This
system continuously calculates the error value (e) which is the difference between set value
(θd) and process variable (θ). For this we are considering integral gain Ki is 0 because the
lead compensator and PD gain equations matches.

Figure 5.2: Simulink model for the system Gp(S) with PID control system. This functional
block is designed to see the simulated response of the whole system using the calculated Kp,
Kd gains are used. Fig 7.6 is the plot captured from the simulated output that is generated
using the calculated gains.
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Figure 5.3: Simulink model of the PID control system with the error (e) as the input and
control variable (u) as the output. Here error (e) is the difference between set point/desired
angle (θd) and process variable/current theta (θ). The gains calculated for this block are
from the Eq. 5.15
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Chapter 6: Robot Component Set-Up

In this chapter, we will go through all the electronic and electrical components that we

used to build our robot. Also, results of the component testing that we performed to check

whether it is functioning as per the datasheet or the way it should behave. We will also

go through the pseudo code, the flow charts of the brains of the robot, designed functional

blocks to get a better understanding of the set up.

Figure 6.1: Block diagrams (a) communication block diagram (b) power supply block di-
agram. Communication block diagram provides the details of communication channel be-
tween two components. Power supply block diagram provides the details of the input voltage
that the components work. We will discuss about each component in this chapter.
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6.1 Introduction to Components

The robot contains 6 dynamixels as joint actuators, 2 Electric Ducted Fans (EDF) as

thrusters at end effectors and a potentiometer as an angle feedback sensor. Each component

should be working fine to generate the expected results. So, to make sure, we performed

component testing. In this section we are also going through the list of hardware and

software used to make our functional robot.

6.1.1 Electric Ducted Fan

The thrusters used for this system are Electric Ducted Fan (EDF) made by Powerfun. These

thrusters are cleverly engineered, the unit is pre-balanced and properly positioned with a

machine. The following are the features of this product.

Figure 6.2: Electric Ducted Fan: Used as thrusters. It is a 3 phase brushless DC motor
used to control the flight of the robot. It is controlled by Electronic Speed Controller(ESC)
for variable thrust using PWM signals. Used 2 EDF’s as end effector.

• It has new design and high performance with 50 mm 11 blades.

• Light weight, with overall weight of 77g

• The motor used is high performance 4300 Kv Brush-less Motor.
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• With an operating Voltage of 11.1V(3S) - 14.8V(4S).

• While working the static thrust is up to 770 gms (can lift an object of up to 770 gms)

6.1.2 Actuators

We used Dynamixels, XH430-W350-R, as joints of the robotic arm. The Fig. 6.3 is Dy-

namixel and arrows in the figure indicates the physical location of dynamixels on the robot.

Figure 6.3: Joint Actuators: Used 6 Dynamixel X-series smart actuator as joints. This is
used to manipulate the arm posture. Arrows represents the locations of the actuators in
the robot. It is controlled by single board computer using RS485 communication system at
1 Mbps baudrate.

We have chosen these smart actuators because of their high performance when they are

connected in a network. Following are the features of the Dynamixels.

• ARM CORTEX-M3 (72 [MHz], 32Bit) MCU (Micro Controller Unit)

• Position sensor with 12 Bit (4096 steps for 360◦) (0.088◦/step)

• Modes of Operation

– Torque Control

– Position Control

– Velocity Control
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– PWM Control

– Extended Position Control

– Current based Position Control

Robotis[[66] has developed good GUI interface for Dynamixels in wide range of platforms

and developed SDK’s in C, C++, Python, LabView, Matlab, JAVA, C#. In a network,

communications takes place via RS-485 and TTL links, RS485 is a D+ and D- 2-wire half

duplex serial communication type. As they are half duplex, it can be a multi tap system

which means all devices can communicate on a single line. This simplifies the communication

network but the disadvantage is, it uses more bandwidth. It is an Asynchronous Serial

Communication with 8bit, 1stop, No Parity with an adjustable Baudrate up to 4.5Mbps.

6.1.3 Angle feedback Sensor

A potentiometer is used as an angle feedback sensor that is located inside the middle

structure attached to a gear system to measure the roll angle of the system. It is an 1kΩ

3/4” single turn potentiometer. A 5 Volts power supply is given to the potentiometer to

operate and at approximately 2.5 Volts it is set to give a 0◦ angle. The data generated

by the feedback sensor is read by microcontroller, Arduino, to calculate the control law.

Arduino uses 10-bit ADC to convert an analog value to a digital value. To calculate the

error sign, we used the right-hand thumb rule to represent the roll angle. When it tilts left

side potentiometer output will be less than 2.5 Volts then in Arduino the error value is a

negative value and vice versa.

θ =
k − kr

kr − kmin
(θref − θmin) (6.1)

where,

k is value recorded at particular position in arduino varies from 0 to 1024

kr is reference value

kmin is the minimum value
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Figure 6.4: Potentiometer: Used as an angle feedback sensor to get the roll angle of the
robot. It is placed inside the middle structure with a gear system that translates the rotation
of the robot to sensor. It is an analog device connected to Arduino. Data generated is used
in control law for desired output curve.

θref is theta reference

θmin is the theta minimum

6.1.4 Electronic Speed Control

The Electronic Speed Controllers (ESC’s) are used to control the thrusters (EDF). For this

system Castle Creations Multi-Rotor 35 ESCs are used. This has a lot of features to list

but the following are the main features that made to choose this ESC [73].

• Linear throttle response

• Low latency throttle response (<75µs)

• Adaptive Timing system for Increased power and efficiency

• Low internal resistance ( 1.40 mΩ)

• Auto Detecting Servo PWM

Adaptive Timing System dynamically adjusts the motor timing while performing an

operation to maintain the efficiency. In general, ESC’s have fixed motor timing set by the
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user, which means it produces optimized results only for specific RPM and load. Adaptive

Timing System makes the motor to operate in peak efficiency at any RPM and load. This

system always leads to the increase in power output, flight times and reduces the ESC

tuning when compared to general configuration.

A traditional servo PWM signal can also be used to control ESC. The pulse width signal

varies from 1.0 ms to 2.0 ms that is between 0% and 100% throttle. The operating frequency

of the signal is 50Hz but can be increased upto 490Hz. The throttle curve the motor created

is a linear curve with a reduced noise. This significantly shows the improved flight stability,

flight times and simplifies flight controller PID tuning.

6.1.5 Single board Computer

Raspberry Pi is a single-board credit-card-sized computer developed in the United King-

dom by the Raspberry Pi Foundations, used in the fields of development, research, and

educational institutes in areas like robotics, computer science, computer, and electrical en-

gineering. They have been releasing a series of generations by integrating complexity in

different areas such as computational power, protocols, updating hardware to the present

world needs, etc.

Algorithm 1: Pseudo code for Single Board Computer ’Raspberry Pi’

Result: Change the End effector (wrist joint) position based on Theta θ

initialization;

declaration;

while True do
if Data Waiting then

GET theta θ from micro controller;

Compute Position ;

SET both the end-effector values;

end

end

We choose Raspberry Pi 3 B+ in this project because of its computational power with

higher speeds, RAM of 1 GB to install Robot Operating System for the Dynamixels to
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Figure 6.5: Flowchart of a Single Board Computer, Raspberry Pi: It reads data from the
Arduino and calculates and commands the actuators’ location. Used one serial communi-
cation channel to talk with dynamixels at 1Mbps baudrate and another with communicate
with Arduino. Simultaneously, all the data is logged into the .txt file.

compute parallel tasks and download DynamixelSDk from ROS community, inbuilt Wi-Fi

for connectivity for updates and operating remotely without additional setup with low power

consumption. It also has a lot of other peripherals for different types of communication like

serial communications, that we have relied more on this project.

Role of Raspberry Pi in this project, it controls the actuators, and receives data from

microcontroller(Arduino). We used dynamixelsdk for set up and data transfer over RS485.

And received current theta from Arduino over USB. The Fig. 6.5 is the flowchart of the

raspberry pi functionalities how it performs the tasks and control the actuators. First it

initializes, declares, set up takes place. In this state sets ID to the actuators, enabling serial

communication ports, torque for actuators to hold the position and set up min and max

limits of actuators as we are using position controlled mode of operation. Then it checks for

the data in the serial buffer and wait for the data. On receiving the data it evaluates the
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theta and computes the required step value of the actuators. This is to make the thrusters

face down all the time. This process is repeated, and data is recorded. We are connected

through the command line interface that is SSH interface of raspberry pi for updating the

code. we also used GIT a version control tool for reliability.

6.1.6 Micro controller

Arduino is open-source hardware and software which produces single-board micro controllers

for developing digital systems like Embedded Systems, IoT systems and also used in edu-

cational institutes, research, and development fields for the new addition to the knowledge.

Arduino products are licensed under Creative Commons (CC-BY-SA) license and software

are under the GNU General public License (GPL).

Algorithm 2: Pseudo code for micro controller ’Arduino NANO’

Result: Calculate control variable and send theta to single board computer

initialization;

declaration;

SET desired theta θd;

GET theta θ;

while error (θd - θ) < threshold do
Compute proportional error e(t) ;

Compute integral error
∫ t
0 e(τ)dτ ;

Compute derivative error
de

dt
;

Compute control variable u(t) = kpe(t) + ki
∫ t
0 e(τ)dτ + kd

de

dt
;

if u(t) > 0 then
PWM value← get PWM(u(t)) ;

Left Motor ← PWM value ; // PWM value should be in range

else
PWM value← get PWM(u(t)) ;

Right Motor ← PWM value ; // PWM value should be in range

end

GET theta θ;

SEND theta θ => single board computer;

end
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We will see the role of Arduino Nano microcontroller in this project. It is used to

read the analog data from angle sensor(potentiometer) and calculates the thrust required

to reach the desired roll angle. Arduino has on board ADC to digitalize the analog output

of potentiometer and Servo PWM signal generator libraries to control the thrusters.

The Fig. 6.6 is the flowchart of the operations and functionalities. Initialization, Decla-

ration of the data pins, desired theta is the first step then it gets the theta from the sensor,

simultaneously theta is sent to raspberry pi to calculate the wrist joint’s actuation. Next

error value is calculated to check whether the angle is below the threshold or not; if it is

lesser than the threshold no action is needed because it reached the required angle but if

it is greater than threshold it computes the error. After that error value is sent to the

control law i.e., to PID control equations to generate the control variable. Finally, with

the resulted control variable u(t) the thrust required is calculated. Here, it also calculates

to which arm thrust should be provided and generates the necessary PWM signal value to

produce enough thrust. Until it reaches the desired angle this process is repeated.

6.1.7 MATLAB and Simulink

Matrix Laboratory, in short, is called MATLAB, which is a multi-paradigm programming

language, which means it is built on more than one programming styles such as procedure-

oriented, object-oriented, function-oriented, etc. and also a proprietary programming lan-

guage developed MathWorks Corporation. On the other hand, Simulink is also a Math-

Works product based on the graphical-programming environment that can be used for

modeling, simulating, analyzing a dynamical system from multiple domains. MathWorks

provides multiple toolboxes such as Control Systems Toolbox, System Identification Tool-

box, Predictive Maintenance, etc..

In this project, we are using MATLAB and Simulink for modeling the system with the

available data then simulating the system by adding a control system and analyzing the

results, understanding the system behavior, testing with multiple scenarios.
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6.2 Communication

Communication among devices is significant to transfer the valuable data they contain to

serve the whole system on the right path and desired results. There is a wide range of

protocol stack to serve this purpose depending on the necessity and in which layer the

communication is taking place. The Fig. 6.7 below shows the communication layout for

the system, the on-board computer, Raspberry Pi 3B+, used to take commands from the

user with a different OS through Secured Shell (SSH) scripting.

Raspberry Pi is installed with Raspbian-Jessie operating system and Robot Operating

System (ROS) to get the dynamixelSDK running. To communicate with dynamixels we

used RS 485 based serial communication using 4P connectors. And also connected to the

Arduino nano board to operate the ducted fans that control the roll motion of the system

based on the input sensor, Potentiometer, placed at the center of the system on which

the whole system hanging on. Started a serial communication through USB port between

Arduino and Raspberry pi.

6.3 Power Supply

Powering the system is also an important part of the designing phase, there should not be

any device which is provided with less than what it needs and over than what it is capable

of else situation will be out of control. To power the joints and thrusters we used Switched-

Mode Power Supply (SMPS) to convert the 110V AC voltage from the regular power socket

to 12V DC. Also powered Raspberry pi with sufficient power that can run with and provide

also to Arduino Nano. The rest of the components are provided with 5V to run such as

ESC’s, potentiometer.
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Figure 6.6: Flowchart diagram represents the operations and functionalities performed by
arduino microcontroller. It gets input from the position sensor, calculates the PID control
variable and provides the appropriate PWM signal to generate enough thrust to maintain
design angle.
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Figure 6.7: Overall block diagram of the system. Single board computer controls joint
actuators through RS485 communication system. Micro controller gets the input from the
angle sensor then calculates the appropriate thrust to be produced using some control laws.
Single Board Computer and Micro controller communicates using serial port to share the
current angle used to manipulate end effectors, wrist joints, to face down all the time.
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Chapter 7: Experiments

In this chapter, we will see the results of the robot’s response at different positions with

different inputs. We considered four arm positions and recorded data at each position.

Fig. 7.1 represents the natural responses, without any input u, that are recorded for the

respective position. Though we are not using this data for our experiments, they have clear

responses of how the system behaves. We compared the robot’s response with a simple

pendulum response and assumed the system is a second order system. In the later section

we will see the experiments with an input u.

The first position: the shoulder joints are at 90◦ angle facing down and all the cor-

responding elbow and wrist are also following the same that is normal human attention

position. In the Fig. 7.1 top - left plot represents the response for this position.

The second position: the shoulder joints and elbow joints are wide open i.e., parallel

to the ground plane and wrist joints are facing ground for the thrust. In this position, the

system is at maximum length open out widely. In the Fig. 7.1 top - right plot represents

the response for this position.

The third position: the shoulder joints are horizontal and the elbow joints are at 90◦

angle facing down and the wrist joints are also following downwards. In this position, the

system will be in the medium range not too wide and not too short. In the Fig. 7.1 bottom

- left represents the response for this position.

The fourth position: the shoulder joints and the elbow joints are at 45◦ angle that results

in facing down the wrist joint. In the Fig. 7.1 bottom - right represents the response for

this position.
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Figure 7.1: System’ natural responses at four different positions. First picture (Top-Left)
is the natural response data and matched system response of first position. Second picture
(Top-Right) is the natural response data and matched system response of second position.
Third picture (Bottom-Left) is the natural response data and matched system response of
third position. Fourth picture (Bottom-Right) is the natural response data and matched
system response of fourth position.

7.1 Results - Simulation Experiments

In this section, we will discuss the experiment in detail. We recorded the system response

when input is constant from a thruster. Here, for this experiment, input u i.e., the thrust

produced was 280 grams at 50% duty cycle (The thruster didn’t produce enough thrust as

mentioned in the specifications, it should produce around 335 grams). The system response

for this input u at position 1 is shown in the Fig. 7.2

Manually calculated the rise time, peak overshoot and settling time from the generated

system response in the Fig. 7.2. With these values from transient specifications equations
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Figure 7.2: (Left) Represents the system response at 50% duty cycle to ESC as a step input
that produces 280 grams of thrust, (Right) Step response of the calculated model system
Gp(S) that matches system response on the left. As the data from the feedback sensor has
more noise for this experiment we added a basic LPF circuit( RC circuit)

with the calculated natural frequency ωn and damping coefficient ζ, approximated and

calculated second order transfer function of the system using the gain term and manual

tuning of the ωn and ζ. The Fig. 7.2 also represents the step response plot with the

matched system that is the step response of the calculated second order equation.

Following plant Equation 7.1 is evaluated using calculated gain (K), natural frequency

(ωn) and damping coefficient (ζ) as 435, 2.0662 and 0.3000 respectively.

Gp(S) =
435

S2 + 1.24S + 4.269
(7.1)

The above table 7.1 is the step function info of the modeled system or the second order

transfer function. This table has the information of the system response specifications, like

rise time, settling time, percent overshoot etc. these specifications are modified by adding

a pole and a zero to the system we will look into that in detail later. The Fig. 7.3 is the

pole zero plot of the model system or second order transfer function. It has 2 poles on the

left side of the real axis and they are symmetrical to real axis. If the poles are on left side

of real axis the system stable, if the poles are near to imaginary axis it is over damped and
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Table 7.1: Step Info of the second order model system that is equivalent to the real system

Step info

RiseTime : 0.6406

SettlingTime : 5.4352

SettlingMin : 23.1272

SettlingMax : 36.8207

Overshoot : 37.1410

Undershoot : 0

Peak : 36.8207

PeakTime : 1.5602

if they are symmetrical and far from the real axis it takes more time to settle. But this is

not the response we are expecting for a system. So, next we want to create a compensator

that adds a pole and a zero on the left half of real axis so that system will be stable and it

should have quick rise time, less settling time and less percent overshoot.

The following steps are to design a lead compensator with the desired rise time as 3

seconds and the percentage overshoot of 10%. Using transient specifications Equations 4.2

4.3 4.4 & 4.5, any two out of four that can provide results of ζ, damping coefficient, and

ωn, resonant frequency. From the steps in the chapter 5 we compute poles of the desired

system. From the calculated ζ and ωn, using Equation 5.4 the poles of the desired are

-5.4494 ± 5.7147i. From these poles we find the compensator phase from Equation 5.6.

Finally we will calculate the gain of the compensator, a pole and a zero of the compensator

for the model system Gp(S) to reach the desired transient responses for our current system

model. Computing the steps for the compensator design, section 5.3, the control design

section. The final lead compensator Gct(S) equation is given as follows with the gain of the

compensator (Kct), a pole Pc and a zero Zc of the compensator as 1.298, 63.34 and 5.449

respectively.

Gct(S) = 1.298
( S + 5.449

S + 63.34

)
(7.2)
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Figure 7.3: Pole-Zero plot of the plant Gp(S). This gives an idea of poles and zero location
and can see the system is stable or not. The system is a stable system as the poles lie in
the left side of the real axis. Fig. 7.4 represents an added pole and a zero to the system to
have the desired rise time and overshoot.

Our final goal is to find the PD gains for the PD controller. Here, we know the equation

of PD controller Gpd(S) mentioned in the section 5.3. We designed the lead lag compensator

Gct(S) in such a way that it matches the PD controller Gpd(S) to find the PD gains. Here,

we compare both the equations Gct(S) and Gpd(S) to find the gain constants kp, kd and

the time period τ . In this PID controller Ki is 0.

Gpd(S) =
( 0.01687 S + 0.09191

0.01299 S + 1

)
(7.3)

After evaluating Equation 7.2 and Equation 5.13 the PD gain values are,

kp = 0.0919,

kd = 0.0169,

τ = 0.0130

The above table 7.2 is the step function info of the system with implemented PD control

to the modeled system. We can see there is an improvement in the rise time, settling time,

overshoot, peak time.
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Table 7.2: Step Info of the system with PID controller

Step info

RiseTime: 0.1272

SettlingTime: 0.6958

SettlingMin: 0.8351

SettlingMax: 1.1200

Overshoot: 23.9642

Undershoot: 0

Peak: 1.1200

PeakTime: 0.3425

After implementing the designed PID control to the system with integral part as zero,

the pole zero plot is changed as shown in the Fig. 7.4. We can see the results with an extra

pole and a zero were introduced to make the system more stable and improve the settling

time, percentage overshoot.

The expected behavior of the system after implementing the PID controller to the

present system with the evaluated gain constants with a unit step function as input should

be as the Fig. 7.5. There produces some steady state error because its a PD control that

does not eliminate steady state error.

Fig. 7.6 is the output of the plant with PD control implemented in simulation using

Simulink software. From the plant model 5.2, a step input of, desired theta θd, 15◦ is given

as an input to the system that is at 0◦. Initially, at time t = 0, there is a lot of error

between the θ and θd system produces enough thrust to put the arms at desired value θd.

The output in fig. 7.6 is the response of the system. It is satisfying with the conditions and

met the requirements. It also has the steady state error because the PD control does not

eliminate steady state error for the step input.
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Figure 7.4: Pole-Zero plot of the system Gp(S) with PID controller C(S) that is designed
with the desired transient specifications. These values are derived using the equations in
the Chapter 5: Control System. An extra pole and a zero are added to make the system
more stable and improve the settling time, percentage overshoot

7.2 Results - Hardware in the Loop Experiment

When the calculated PID gain constants are introduced to the real system, Fig. 7.7 shows

the results of the theta (θ) when desired theta θd is 15◦. The results show the robot took

about 8 seconds to reach a steady state with less rise time and no overshoot. The data read

from the sensor is too much noisy.

As there is much noise in the output shown in the Fig. 7.7, that’s due to the long

cables travelling from the potentiometer to the arduino between power cables and other 4P

wires that contains information to the Dynamixels and brushless DC motors. Introducing

a moving median filter to that output gives the better result without the heavy spikes in

the plot. The following Fig. 7.8 contains the results of filtered output with moving median

filter.

An high level definition of Moving-median filter, it is a non-linear digital filter, mostly

used to reduce the noise from a signal. For the plot we generated we only want to remove

the spike of the noise, this will be better solution. The output of the plot after using the

Moving-median filter is shown in Fig. 7.8. We used the ”smoothdata” function to smooth
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Figure 7.5: Expected system response with PID control (integral gain Ki = 0 in this case).
The plot represents the system has very less rise time, less percentage overshoot and settled
fast. We can also see steady state error for the system because PD controller don’t eliminate
the error.

out the noisy data[74] in MatLab. In smoothdata function, we have a number of filters like

Gaussian, moving-median, Savitzky-Golay, Linear regression, Robust linear regression, etc.

When the window size is not specified in this function, smoothdata, computes a default

window size based on a heuristic.

There are few take away points here: the output on the implemented results has more

steady state error than the simulation results, the system has very low rise time and percent

overshoot is not so high as resulted in the simulation. This is because of the few assumptions

made initially, from the system response it is clear that the system is not the second order

system but we assumed it as a second order system. Lack of integral error produces more

steady state error. For more accurate results: the integral gain can be introduced, designing

the system model with higher order transfer function.
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Figure 7.6: The plot represents the simulation result of the plant Gp(S) with calculated
PID gains using equations in the chapter Control Design. The input, desired angle θd is set
to 15◦ (Blue line). The output, system response is shown in red line. As this controller is
the PD controller we expect small steady state error.

Figure 7.7: Plot shows the system’s response when implemented using the calculated PID
gains on the real robot for the same desired angle θd is 15◦used in simulation, Fig. 7.6. This
signal has a lot of noise because of the long cables and the magnetic interference produced
by high speed EDF. The plot shows it reached steady state about 8 secs after the test and
less rise time.
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Figure 7.8: System response after passing the noisy output of Fig. 7.7 through the moving
median filter. This filter is a ’smoothdata’ function from Matlab software to analyze the
clean data. The steady state error is more compared to simulation results. The transient
responses of desired output are not met on the real robot.
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Chapter 8: Conclusion

8.1 Summary

This paper presented how we developed an extra mobility option, gives the advantage of

operating the robot in multiple modes. With many options for locomotion, a method

with thrusters on humanoids’ upper body in the coronal plane, helps the robot commute

faster in difficult terrains and operate efficiently in specific research applications. Overall,

the skeleton of the system was designed using CAD software, built using additive and

subtractive methods. The robot is hanged to a support system it was built using CAM

and CNC machines in the DASL (Drones and Autonomous Systems Lab) workshop at

GMU. Built the robot with the following assumptions: the system is a second-order system,

all the experiments are performed in the laboratory setup. The equations are developed

using systems identifications, PID controller and lead-lag compensator concepts. As the

system’s equation is 4.1 the fundamental variables in developing the system equation are

natural frequency ωn and damping coefficient ζ. Developed a PID controller to control the

overshoot, rise time, and steady-state for this system. To ensure the system is performing

we did component testing, unit testing for the hardware and software and also integration

testing between actuators, sensors, arduino and raspberry pi. Calculating the pole-zero

locations to know the stability information of the system and compared with different

scenarios.

With the completed simulation model and real robot we performed tests, results are as

follows, the simulated results show there is an overshoot of 30% with a rise time of 0.12 secs

and reaches the steady-state within 1.12 secs. On the real robot the tests show that it took

8 seconds to reach the steady-state with no peak overshoot. The following reasons might

be the reasons in the noisy system: the long wires that carry analog and digital data, noise
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due to power cables around signal wires. The reason for the non responsive system is that

the gear system developed has more friction to operate on the coronal plane as the gears

were made of plastic (PLA material).

8.2 Suggestions for future work

From the observations of the test results on the robot, the system is not 100% identical

for designing more accurate system, considering the system to be a MIMO (Multi Input

Multi Output) system as the machine has two thrust vectors. To take the complexity of the

robot to next level we can extend the dynamics of the system to the sagittal and transverse

planes with 6 DOF actuation for the system, which helps in traversing in 3 dimensional

space. For such a complex system advanced algorithms, control methods such as altitude

and attitude control laws need to be implemented to the system. A better arm design: that

provides space to multiple actuators, gives more flexibility to the joints and more actuation

freedom can be built with sophisticated design using CAD software. With the complex arm

design the complexity of the actuation also increases, we can use inverse kinematics concept

manipulate the end effector location.
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Appendix A: Parts used in the project

Table A.1: Parts List

Part Name Model

Single Board Computer Raspberry Pi 3 B+

Micro Controller Arduino Nano

Joint Actuators Dynamixel XH430-W350-R

Thruster Powerfun 50mm EDF with 4300KV/4S

Sensor Potentiometer WH148

ESC Castle Multi-Rotor35

Actuator Cable Cable 4P Cable
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Appendix B: Code

B.1 Single Board Computer (Raspberry Pi) code

This code used to control the joint actuators (Dynamixels) over RS485 links through serial

communication to set their position based on the the serial data received from micro con-

troller (Arduino NANO). Simultaneously it records the necessary data in the .txt file in the

local directory.

from __future__ import print_function
import os
import ctypes
import time
import serial

if os.name == ’nt’:
import msvcrt

def getch():

return msvcrt.getch().decode ()
else:

import termios , fcntl , sys , os
from select import select

fd = sys.stdin.fileno ()

old_term = termios.tcgetattr(fd)

new_term = termios.tcgetattr(fd)

def getch():

new_term [3] = (new_term [3] & ~termios.ICANON & ~

termios.ECHO)

termios.tcsetattr(fd , termios.TCSANOW , new_term)
try:

ch = sys.stdin.read (1)
finally:

termios.tcsetattr(fd , termios.TCSADRAIN , old_term)
return ch

def kbhit():

new_term [3] = (new_term [3] & ~( termios.ICANON |

termios.ECHO))

termios.tcsetattr(fd , termios.TCSANOW , new_term)
try:

dr ,dw ,de = select ([sys.stdin], [], [], 0)

if dr != []:
return 1

finally:
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termios.tcsetattr(fd , termios.TCSADRAIN , old_term)

sys.stdout.flush()
return 0

from dynamixel_sdk import * # Uses Dynamixel SDK
library

# Control table address
ADDR_OPERATING_MODE = 11 # Control table address is

different in Dynamixel model
ADDR_TORQUE_ENABLE = 64
ADDR_GOAL_POSITION = 116
ADDR_PRESENT_POSITION = 132

# Protocol version
PROTOCOL_VERSION = 2.0 # See which protocol

version is used in the Dynamixel

# Default setting
DXL1_ID = 91 # theta 1
DXL2_ID = 92 # theta 2
DXL3_ID = 93 # theta 3
DXL4_ID = 94 # theta 4
DXL5_ID = 95 # theta 5
DXL6_ID = 96 # theta 6
BAUDRATE = 1000000 # Dynamixel default

baudrate : 1000000

DEVICENAME = ’/dev/ttyUSB0 ’ # Check which
port is being used on your controller

TORQUE_ENABLE = 1 # Value for enabling the
torque

TORQUE_DISABLE = 0 # Value for disabling the
torque

DXL_MOVING_STATUS_THRESHOLD = 10 # Dynamixel will rotate
between this value

ESC_ASCII_VALUE = 0x1b
SPACE_ASCII_VALUE = 0x20

#index = 0
dxl1_goal_position = 2560 # Goal position
dxl2_goal_position = 1536 # Goal position
dxl3_goal_position = 1536 # Goal position
dxl4_goal_position = 2560 # Goal position
dxl5_goal_position = 2048 # Goal position
dxl6_goal_position = 2048 # Goal position

THETA_MAX , THETA_MIN = 45, -45
dxl_MIN , dxl_MAX = 1024, 3072

# Initialize PortHandler instance # Set the port path
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# Get methods and members of PortHandlerLinux or
PortHandlerWindows

portHandler = PortHandler(DEVICENAME)

# Initialize PacketHandler instance # Set the protocol
version DXL1_ID

# Get methods and members of ProtocolPacketHandler or
Protocol2PacketHandler

packetHandler = PacketHandler(PROTOCOL_VERSION)

# Open port

if portHandler.openPort ():

print("Succeeded to open the port")
else:

print("Failed to open the port")

print("Press any key to terminate ...")

getch()

quit()

# Set port baudrate

if portHandler.setBaudRate(BAUDRATE):

print("Succeeded to change the baudrate")
else:

print("Failed to change the baudrate")

print("Press any key to terminate ...")

getch()

quit()

# Function to enable DXL Torque

def enableTorque(DXL_ID):

dxl_comm_result , dxl_error = packetHandler.write1ByteTxRx(

portHandler , DXL_ID , ADDR_TORQUE_ENABLE , TORQUE_ENABLE)
if dxl_comm_result != COMM_SUCCESS:

print("%s" % packetHandler.getTxRxResult(

dxl_comm_result))
elif dxl_error != 0:

print("%s" % packetHandler.getRxPacketError(dxl_error)

)

else: print(DXL_ID ,"has been successfully connected")

# Calling the function to enable torque on all DXL

enableTorque(DXL1_ID)

enableTorque(DXL2_ID)

enableTorque(DXL3_ID)

enableTorque(DXL4_ID)

enableTorque(DXL5_ID)

enableTorque(DXL6_ID)

## Setting Static goal position for DXL 1,2,3,4,5,6
# Function to Write goal position
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def setGoalPosition(DXL_ID ,dxl_goal_position):

dxl_comm_result , dxl_error = packetHandler.write4ByteTxRx(
portHandler , DXL_ID , ADDR_GOAL_POSITION ,

dxl_goal_position)
if dxl_comm_result != COMM_SUCCESS:

print("%s" % packetHandler.getTxRxResult(

dxl_comm_result))
elif dxl_error != 0:

print("%s" % packetHandler.getRxPacketError(dxl_error)

)

# Calling the function to set the initial position for DXL

setGoalPosition(DXL1_ID ,dxl1_goal_position)

setGoalPosition(DXL2_ID ,dxl2_goal_position)

setGoalPosition(DXL3_ID ,dxl3_goal_position)

setGoalPosition(DXL4_ID ,dxl4_goal_position)

setGoalPosition(DXL5_ID ,dxl5_goal_position)

setGoalPosition(DXL6_ID ,dxl6_goal_position)

## Getting the current position for DXL
# Function to read the current position

def getPosition(DXL_ID):
# Read present position DXL1
dxl_present_position , dxl_comm_result , dxl_error =

packetHandler.read4ByteTxRx(portHandler , DXL_ID ,

ADDR_PRESENT_POSITION)
if dxl_comm_result != COMM_SUCCESS:

print("%s" % packetHandler.getTxRxResult(

dxl_comm_result))
elif dxl_error != 0:

print("%s" % packetHandler.getRxPacketError(dxl_error)

)
return dxl_present_position

# Calling the function to read the current position of the DXL

dxl1_present_position = getPosition(DXL1_ID)

dxl2_present_position = getPosition(DXL2_ID)

dxl3_present_position = getPosition(DXL3_ID)

dxl4_present_position = getPosition(DXL4_ID)

dxl5_present_position = getPosition(DXL5_ID)

dxl6_present_position = getPosition(DXL6_ID)

print("  [ID:%03d] : %03d, [ID:%03d] : %03d, [ID:%03d] : %03d,

 [ID:%03d] : %03d, [ID:%03d] : %03d, [ID:%03d] : %03d" % (

DXL1_ID , dxl1_present_position , \
DXL2_ID , dxl2_present_position ,DXL3_ID ,

dxl3_present_position , DXL4_ID , dxl4_present_position ,
DXL5_ID , dxl5_present_position , DXL6_ID ,

dxl6_present_position))
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# Initializing port settings for Arduino

port = "/dev/ttyUSB1"

ser = serial.Serial(port ,115200)

ser.flushInput ()

while 1: # Getting data from Arduino and record to the *.
txt file

with open(’Data.txt’, mode=’a’) as data:

if ser.inWaiting () >0: # Reading serial input

theta = float(ser.readline ().strip ())

print(theta)

endtime = time.time()

data.write("%f, %f\n" % (endtime ,theta)) #
Write data to a txt file

if kbhit ():

c = getch()

if c == chr(ESC_ASCII_VALUE):

print("STOPPED !!!!")
break

# Function to Disable Dynamixel Torque DXL

def disableTorque(DXL_ID):

dxl_comm_result , dxl_error = packetHandler.write1ByteTxRx(
portHandler , DXL_ID , ADDR_TORQUE_ENABLE , TORQUE_DISABLE

)

if dxl_comm_result != COMM_SUCCESS:

print("%s" % packetHandler.getTxRxResult(

dxl_comm_result))
elif dxl_error != 0:

print("%s" % packetHandler.getRxPacketError(dxl_error)

)

else: print(DXL_ID ,"has been successfully disconnected")

disableTorque(DXL1_ID)

disableTorque(DXL2_ID)

disableTorque(DXL3_ID)

disableTorque(DXL4_ID)

disableTorque(DXL5_ID)

disableTorque(DXL6_ID)

# Close port

portHandler.closePort ()
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B.2 Micro controller (Arduino NANO) code

Micro controller gets the input from the sensor (potentiometer) and the desired value given

in the program with those as system inputs it calculated the PID control value, with that

control value we calculate the amount of thrust to be generated to each motor to reach the

desired roll angle. It also updates the raspberry pi the current angle using serial communi-

cation.

#include <Servo.h>

// Desired Values

double theta_D = 15.0; // angle in degree
int timer = 1000;

const int mot[] = {5 ,10}; // Initializing motor pins

const int mot_L = 0; // mot[mot_L] is to control left

motor. (yellow wire)

const int mot_R = 1; // similarly for right motor (white

wire)

const double mot_PWM_offset [] = {60 ,60}; // Motor offset value
.

Servo left; // Creating 2 servos left and right
Servo right;

const double servoMin = 0.0; // servo PWM min value

const double servoMax = 100.0; // servo PWM max value

int potentiometerPin = A1;

const int potRefVal = 550; // Refereance Value

const int potMinVal = 250; // Left most value -45 degree

const int potMaxVal = 850; // Right most value +45 degree

// Gain constants
const double kp = 0.0919;
const double ki = 0.0;
const double kd = 0.0169;
double p_err = 0.0;
double i_err = 0.0;
double d_err = 0.0;
double prev_error = 0.0;
int const dt = 1000;

double getAngle () {

int potentiometerValue = analogRead(potentiometerPin);

double degree = enc2deg(potentiometerValue);
return degree;
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}

double enc2deg(double enc){

double deg = (enc - potRefVal)/( potRefVal - potMinVal)*30;
return deg;

}

int val2PWM(double val){

double thrustInPWM = val * (servoMax - servoMin) + servoMin
;

if( thrustInPWM > servoMax ) thrustInPWM = servoMax;

if( thrustInPWM < servoMin ) thrustInPWM = servoMin;

return (int)thrustInPWM;

}

int setMotor(double val){

double absVal = abs(val);

val = min(val , 1.0);

val = max(val ,-1.0);

if (val > 0.0){

setMotorThrust(mot[mot_L],absVal);

setMotorThrust(mot[mot_R],servoMin);
return 0;

}

else{

setMotorThrust(mot[mot_R],absVal);

setMotorThrust(mot[mot_L],servoMin);
return 0;

}
return 1;

}

int setMotorThrust(int servo , double err){

if (servo == mot[mot_L]){

int thrust = val2PWM(err);

thrust = min(thrust , servoMax + mot_PWM_offset[mot_L]);

thrust = max(thrust + mot_PWM_offset[mot_L] ,

mot_PWM_offset[mot_L]);

left.write(thrust);
return 0;

}

else{ // (servo == mot[mot_R]){

int thrust = val2PWM(err);

thrust = min(thrust , servoMax + mot_PWM_offset[mot_R]);

thrust = max(thrust + mot_PWM_offset[mot_R] ,

mot_PWM_offset[mot_R]);

right.write(thrust);
return 0;

}
return 1;
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}

int startUp (){

left.write (45); // Left Motor start up value

right.write (45); // Right Motor start up value

delay (2000);
return 0;

}

void setup () {

Serial.begin (115200);

pinMode(mot[mot_L],OUTPUT);

pinMode(mot[mot_R],OUTPUT);

left.attach(mot[mot_L]);

right.attach(mot[mot_R ]);

startUp ();

left.write (65);

right.write (65);

delay (1000);

}

void loop() {

double theta = getAngle ();
double error = theta_D - theta;

i_err += (dt /1000)*error;

d_err = (error -prev_error)/(dt /1000);
double c = kp*error + ki*i_err + kd*d_err;
prev_error = error;

// Adding threshold

c = max(min(c ,0.411) ,0.0);

setMotor(c);

Serial.print(c);

Serial.print("\t");

Serial.println(theta);

/*

// Code for oscillating between +20 and -20 degrees

Serial.print(’ ’);

// Serial.println(c); // Control Value

if ( timer < 0 ){
timer = 1000;
theta_D = -theta_D;

}
timer --;

*/

delay (10);

}
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B.3 Matlab code

B.3.1 Systems Identification equations

We used MATLAB for some mathematical computation in calculating the Systems Identi-

fication Equations

syms a;

%% Peak overshoot def

eq = 100* exp((-a*pi)/sqrt(1-a^2)) == 25;

ep = eval(solve(eq));

zeta = ep(1,1)

%% peak time def
syms b;

eq2 = pi/(b*sqrt(1-zeta ^2)) == 1.363;

wn = eval(solve(eq2))

%% rise time def
syms c;

%eps = 1.504;

%wn = 2.6424;

eq3 = (pi -atan(sqrt(1 - zeta ^2)/zeta))/(wn*sqrt(1-zeta ^2))==c;

eval(solve(eq3))

%% settling time
syms a,b;

eq4 = 4/(wn*zeta) == b;

eval(solve(eq4))

%% Closed loop poles
zeta = 0.0709;
wn = 0.4511;

Sd1 = (-zeta*wn + i*wn*sqrt(1-zeta ^2))

Sd2 = (-zeta*wn - i*wn*sqrt(1-zeta ^2))

%% Calculating Phase

% Current phase phi = Gp(Sd)

phi = phase(evalfr(Gp , sd))

%% system

zeta = 0.2660 ;%- 3.0727i;
wn = 1.7400;

sys = tf([120] ,[1 2*zeta*wn wn^2])

step(sys)

[z,gain] = zero(sys)

stepinfo(sys)
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B.3.2 PID Gain Calculation

Here, we used MATLAB for the PID gain calculation and analysing the controller output

when implemented the gains to the plant.

close all;clear all;

%% Plant Equations

load(’normalPosData3.mat’) % Data

% Initialization
iniForce = 0.0901;
zeta = 0.3;
wn = 2.0662;
gain = 435;

pos5_x = normalPosData3 (:,1);

pos5_y = normalPosData3 (:,2);

% Plant equation

Gp = tf(gain ,[1 2*zeta*wn wn^2]);

[gpnum ,gpden] = tfdata(Gp)

figure (5);

plot(pos5_x ,pos5_y - pos5_y (1,1),’-r’)

%hold on

%step(iniForce*Gp)

%% Designing a compensator 1

% Poles of the desired systems
syms a b;
rt = 3;
po = 5;

[a,b]= solve(pi-atan(sqrt(1 - a^2)/a)/(b*sqrt(1-a^2))-rt ,

100* exp((-a*pi)/sqrt(1-a^2))-po);

zetaDes = double(a);

wnDes = double(b);

Sd1 = (-zetaDes*wnDes + 1i*wnDes*sqrt(1-zetaDes ^2));

Sd2 = (-zetaDes*wnDes - 1i*wnDes*sqrt(1-zetaDes ^2));

%Sd1=Sd2;

phi = phase(freqresp(Gp ,Sd1))*180/pi -360;
phiC = -180 - phi;

zc = real(Sd1);

phiZc = phase(Sd1 -zc)*180/ pi;
phiPc = phiZc - phiC;

pc = real(Sd1) - imag(Sd1)/tand(phiPc);

% Gain

K = abs(Sd1 -pc)/(abs(Sd1 -zc)*abs(freqresp(Gp,Sd1)));

% Lead compensator

Gct = K*tf([1 -zc],[1 -pc]);
essDes = 1;

KvDes = 1/ essDes;
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KvCurr = abs(freqresp(Gp*Gct ,essDes));

alphaLag = KvDes/KvCurr;

Zc = real(Sd1);

Pc = Zc/alphaLag;

% Compensator for steadystate

%Gcss = tf([1 -Zc],[1 -Pc]);

%Gc = Gct*Gcss;

% System

%G = Gc*Gp;

%% PD Controller system

T = -1/Pc; // Time constant

Kp = K*Zc/Pc; // Proportional gain

Kd = K*T; // Derivative gain

C = tf([Kd Kp],[T 1]);

%% Plotting

%C1 = pid (0.01 ,0 ,0.005); // alternative testing method PID
implementation

TT = feedback(C*Gp ,1);

CF = feedback(C,Gp);

opt = stepDataOptions(’StepAmplitude ’ ,15);

figure (2)

step(TT)

stepinfo(TT)
hold on;

%plot(impData1 (:,1),impData1 (:,2) ,’r-’,impData1 (:,1),impData1

(:,3) ,’-b’)
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Appendix D: List of Abbreviations and Symbols

D.1 Abbreviations

3D 3 Dimensional

AC Alternating Current

ADC Analog to Digital Converter

ARM Advanced RISC Machines

CAD Computer Aided Design

CAM Computer Aided Machining

CG Center of Gravity

CNC Computer Numerical Control

CoM Center of Mass

DASL Drones and Autonomous Systems Lab

DC Direct Current

DOF Degrees of Freedom

DSP Digital Signal Processing

EDF Electric Ducted Fans

ESC Electronic Speed Controller

Fo Fahrenheit

FSR Force Sensitive Resistors
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Gb Giga bits

GPL General public License

GSE General State Equation

GUI Graphical User Interface

IMU Inertial Measurement Unit

IoT Internet of Things

LIPM Linear Inverted Pendulum Model

LPF Low Pass Filter

MCU Micro Controller Unit

MIMO Multi Input Multi Output

MPC Model-based Predictive Control

MRAC Model Reference Adaptive Control

OS Operating System

PID Proportional Integral Derivative

PLA Poly Lactic Acid

PLC Programmable Logic controller

PWM Pulse Width Modulation

RISC Reduced Instruction Set Computing

ROS Robot Operating System

RPM Revolution Per Minute

SDK Software Development Kit
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SMPS Switched-Mode Power Supply

SSH Secured SHell

TF Transfer Function

TTL Transistor-Transistor Logic

UAV Unmanned Aerial Vehicle

UAM Urban Air Mobility

USB Universal Serial Bus

VTOL Vertical Takeoff and Landing

ZMP Zero Moment Point

D.2 Symbols

Gp(S) Plant Model

C(S) Control system

Gct(S) Compensator TF

ζ Damping Co-efficient

ωn Natural Frequency

Kv Constant Velocity of the motor

tr Rise Time

tp Peak Time

ts Settling Time
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PO% Percentage Overshoot

kp Proportional gain in PID controller

kd Derivative gain in PID controller

ki Integral gain in PID controller

φ phase of the pole

φc phase of the compensator

τ Time constant

θ Actual/present angle of the system

θd Desired angle of the system

kr Reference value

u input of the system

K Gain of the system

e(t) error between the desired and actual value at time t

d(t) desired output of the system

y(t) output of the system

Gct Compensator TF

Kct Gain of the compensator TF

Zc Zero of the compensator TF

Pc Pole of the compensator TF
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