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ABSTRACT 

QUANTIFICATION OF NEURON TYPES IN THE RODENT HIPPOCAMPAL 

FORMATION USING COMPUTATIONAL METHODS 

Sarojini Manjusha Attili, Ph.D. 

George Mason University, 2021 

Dissertation Director: Dr. Giorgio A. Ascoli 

 

Computational biology is a powerful means to achieve a deeper understanding of the 

brain through modeling and simulations. To accomplish such a task, it is crucial to have 

the necessary data from all relevant components. Hippocampome.org is a mature 

knowledge repository that is aimed at understanding the hippocampus which is largely 

implicated in learning and memory. It has classified neurons in the hippocampal 

formation – Dentate Gyrus, CA3, CA2, CA1, Subiculum and Entorhinal Cortex into 122 

types based on morphological patterns and neurotransmitters. Hippocampome.org houses 

a wealth of information on neuronal properties such as morphology, electrophysiology, 

biomarkers, circuitry, and axonal and dendritic densities for 122 neuron types. The 

ultimate goal of Hippocampome.org is to create biologically plausible computational 

models of the hippocampus. A key component needed to achieve this objective is the 

quantification of the population size of the classified neuron types. The addition of these 

data will enrich the knowledgebase and allow for modeling the hippocampal formation. 

The goal of my doctoral project is to provide the quantification data for the 122 neuron 

types classified by Hippocampome.org. Work includes three distinct studies: (1) Cell 
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numbers, distribution, shape, and regional variation throughout the murine hippocampal 

formation from the adult brain Allen Reference Atlas, (2) Operations research methods 

for estimating the population size of neuron types, and (3) Quantification of neuron types 

in the rodent hippocampal formation by data mining and numerical optimization. 
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INTRODUCTION 

The brain has been an enigma for centuries; the Egyptians first coined a word for brain in 

hieroglyphic script (Kandel et al., 2013) in the sixteenth century BC. Ever since, there 

have been several theories and concepts about the mechanism and functionality of the 

brain. It is during the twentieth century AD that Neuroscience was recognized as a 

distinct unified academic discipline (GM Shepherd, 2010). Today, we have progressed in 

leaps and bounds in understanding the brain. Yet, we do not have a clear understanding 

of how the interaction of neurons produce specific behaviors such as thinking, acting, 

perceiving, or learning (Kandel et al., 2013). Connectivity of these cells into elaborate 

circuits underlies cognitive function but also susceptibility to dysfunction. Elucidating the 

properties of nerve cells and their circuits is critical in understanding disease and in the 

development of drug targets (Ecker et al., 2017). This requires a comprehensive 

characterization of the components or cell types of the brain which is the primary goal of 

the Brain Initiative Cell Census Network (BICCN). The BICCN is one of the seven high 

priority areas of the Brain Research through Advancing Innovative Neurotechnologies 

(BRAIN) Initiative which was Launched on April 2, 2013. The key goal of the BRAIN 

Initiative is to develop innovative technologies to interrogate how the brain’s cells and 

circuits interact at the speed of thought and, ultimately, to reveal the complex links 

between brain function and behavior (Mott et al., 2018). 
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The present work aims to fulfill a small part of that goal – estimating population size of 

neuron types for the rodent hippocampal formation. This dissertation is a collection of 

three projects with that common goal. Each study has been conducted and documented in 

the form of a chapter with a specific aim as follows. 

 

Chapter 1 describes the first aim which is the quantification of hippocampal cells from 

the Allen mouse brain reference atlas. The goal of this work is to report the cell-by-cell 

soma segmentation in every sub-region and layer of the left hippocampal formation 

through the full rostral-caudal extent, except for the (already well characterized) principal 

layers of Cornu Ammonis (CA) and Dentate Gyrus (DG). These numbers, although not 

sufficient, are necessary for the quantification of distinct neuronal types classified on 

Hippocampome.org. In Chapter 1, we solve the problem using image analysis and 

computational techniques. The project involves extraction of the data (Nissl stained 

images) from the Allen mouse brain reference atlas, transformation of these images into 

readable data, applying the necessary corrections on the data to obtain accurate numbers, 

comparing our numbers to stereological counts, conducting analysis on the resultant data 

and reporting results/trends. The overall cell numbers (~600k cells in entorhinal cortex, 

~200k in DG, ~430k in CA1-3, and ~300k in subiculum) and other details have been 

reported as results. Our results were further analyzed to understand trends related to cell 

numbers, spatial distributions, shape, size, and bimodality. Bimodal distributions were 

observed in the 30 different parcels of the hippocampal formation with respect to the cell 

size. We speculated that this bimodality in cell size could be attributed to cell type mainly 
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corresponding to neurons and glia. We list the proportion of small cells and misclassified 

proportions for all 30 parcels in table 3. Large cell proportions have been used to 

calculate neuronal estimates from total cell counts. 

 

Having obtained the neuronal population estimates using total cell counts and bimodality 

proportions, we went ahead and used these data in the second chapter which aims at 

devising a methodology to estimate neuronal types using numerical optimization. This 

study was conducted to develop a generic solution to obtain population estimates for 

specific neuron types. Acknowledging the fact that our methodology primarily relied on 

the research data available, we studied the ways in which we could efficiently put 

together a solution to the problem. At a high level, a three-step process was followed that 

consisted of literature search, equation generation, and numerical optimization. We 

assessed six different numerical optimization algorithms and chose two which resulted in 

lowest residual errors. This study was crucial as it led to the origination of the method 

needed to be able to achieve the ultimate goal of this thesis. Chapter 2 provides an in-

depth detail of the process for the sample area, dentate gyrus. 

 

We next moved on to using our methodology on the entire hippocampal formation to find 

the counts for 122 neuronal types. Chapter 3 is the central objective of the thesis. The 

number of neurons and corresponding ranges for every type identified by 

Hippocampome.org have been computationally quantified using data from the existing 

scientific literature and applying the methodology devised in the previous study. 
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Improvements were made on the previously devised methodology during the research 

phase; the use of biomarker data was applied to the numerical optimization process which 

included the addition of inequalities. We could successfully extend our method to the 

entire hippocampal formation. We estimated the counts and ranges for all 122 neuron 

types as classified by Hippocampome.org. We examined the proportions of neuronal 

counts in the six subregions and twenty-six layers, distribution of interneurons expressing 

19 types of biomarkers and neuron types with 23 firing phenotypes. Analysis was 

conducted to investigate the variation of population distributions and numerical densities 

with respect to volumes. Significant decline was observed in the numerical density of 

dendritic targeting neurons with increasing volume. Estimated counts of dendritic 

targeting neuron types were constant across subregions with respect to corresponding 

volumes indicating that these numbers are independent of the size of the subregion they 

belong to. 

 

The results from Chapter 3 were consolidated into the updated version of 

Hippocampome.org. Figure 14 shows a prototype with the quantification matrix. This is a 

new feature that provides population estimates for the neuron types along with the related 

evidence and ranges for both rat and mouse. In conclusion, the methodology has been an 

effective solution to this problem and can be applied across several areas to obtain 

estimated populations of different cell types given the availability of credible scientific 

data. 
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CHAPTER ONE: CELL NUMBERS, DISTRIBUTION, SHAPE, AND REGIONAL 

VARIATION THROUGHOUT THE MURINE HIPPOCAMPAL FORMATION 

FROM THE ADULT BRAIN ALLEN REFERENCE ATLAS (SAROJINI M. 

ATTILI, ..., GIORGIO A. ASCOLI*) 

Quantifying the distribution of cells in every brain region is fundamental to 

attaining a comprehensive census of distinct neuronal and glial types. Until recently, 

estimating neuron numbers involved time-consuming procedures that were practically 

limited to stereological sampling. Progress in open-source image recognition software, 

growth in computing power, and unprecedented neuroinformatics developments now 

offer the potentially paradigm-shifting alternative of comprehensive cell-by-cell analysis 

in an entire brain region. The Allen Brain Atlas provides free digital access to complete 

series of raw Nissl-stained histological section images along with regional delineations. 

Automated cell segmentation of these data enables reliable and reproducible high-

throughput quantification of regional variations in cell count, density, size, and shape at 

whole-system scale. While this strategy is directly applicable to any regions of the mouse 

brain, we first deploy it here on the closed-loop circuit of the hippocampal formation: the 

medial and lateral entorhinal cortices; dentate gyrus (DG); areas Cornu Ammonis 3 

(CA3), CA2, and CA1; and dorsal and ventral subiculum. Using two independent image 

processing pipelines and the adult mouse reference atlas, we report the first cellular-level 

soma segmentation in every sub-region and non-principal layer of the left hippocampal 

formation through the full rostral-caudal extent. It is important to note that our techniques 

excluded the layers with the largest number of cells, DG granular and CA pyramidal, due 

to dense packing. The numerical estimates for the remaining layers are corroborated by 
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traditional stereological sampling on a data subset and well match sparse published 

reports.  

Introduction 

Neuronal and glial numbers are an important attribute in the characterization of 

distinct functional regions of the nervous system. Cell counts and densities vary 

considerably between and within brain areas as well as across species and life-span 

development (Bayer et al. 1982; Herculano-Houzel et al. 2011; Long et al. 1998; Meyer 

et al. 2010). These numbers are moreover susceptible to pathologies, pharmacological 

treatment, and genetic alterations (Fitting et al. 2009; A.M. Insausti et al. 1998; Malberg 

et al. 2000; Rajkowska 2000). While the ratio between neurons and glial cells is still 

actively debated (Bahney and Bartheld 2017; Herculano-Houzel et al. 2013; Sherwood et 

al. 2006), the numbers of neurons in two inter-connected areas relate to circuit 

convergence and divergence, which are essential design elements of computational 

processes. Thus, determining the total number of cells in every brain region is 

fundamental to attaining a comprehensive census of distinct neuronal and glial types 

(Insel et al. 2013; Kandel et al. 2013; Kim et al. 2017). 

 

The vast majority of reports of cell counts in the neuroscience literature are based 

on stereological methods (Grady et al. 2003; Schmitz and Hof 2005; West et al. 1991). In 

these approaches, the number of cells is accurately measured in a small but unbiased 

proportion of the volume of interest. The numbers for the whole target region can then be 

extrapolated under the assumption that the sample be representative. Since stereological 
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neuron counting requires the involvement of a human operator to identify cells in the 

stained tissue (Schmitdz et al. 2014), the procedure is inherently labor-intensive, time-

consuming, and, in particular for cell-sparse regions, impractically inefficient (Boyce and 

Gundersen 2018). Until recently, the only alternative method that could afford routine 

comprehensive cellular counting in an entire brain region relied on nuclear identification 

from homogeneous suspensions (Herculano-Houzel and Lent 2005). While this relatively 

newer technique distinguishes neurons and glia, it makes it necessary to physically 

dissect each area of interest and cannot measure geometrical features such as cellular 

size, shape, or spatial distribution within the tissue. 

Continuous growth in computing power and parallel progress in image recognition have  

substantially altered this status quo (Bhanu and Peng 2000; Peng et al. 2013). 

Specifically, several algorithms were recently designed to enable high-throughput soma 

detection and analysis (Hu et al. 2017; Kayasandik and Labate 2016; Luengo-Sanchez et 

al. 2015; Tapias and Greenamyre 2014; Zhang et al. 2018; Quan et al. 2013). Fully 

automatic cell segmentation modules are also implemented in freely available 

mainstream software programs such as ImageJ (Schindelin et al. 2015; Schneider et al. 

2012) and CellProfiler (Bray et al. 2015; Lamprecht et al. 2007), allowing robust 

quantification of soma count, location, and geometry in large-scale applications. In 

parallel with these computational advances, the public availability of the Allen Brain 

Reference Atlas (Jones et al. 2009; Lau et al. 2008; Sunkin et al. 2012) provided 

unprecedented digital access to complete image series of Nissl-stained sections along 

with regional and laminar delineations. 
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These new neuroinformatics developments offer a potentially paradigm-shifting 

alternative to stereological sampling. Taken together, automated cell segmentation and 

comprehensive online sharing of raw histological datasets provide the opportunity for 

reliable and reproducible quantification of regional variations in cellular number, size, 

shape, and spatial distribution at whole-system scale. While this strategy is directly 

applicable to all regions of the mouse brain, we first deploy it here on the closed-loop of 

the hippocampal formation, consisting of the six layers of medial and lateral entorhinal 

cortices and the (three-to-five-layered) dentate gyrus (DG), Ammon’s Horn areas CA3, 

CA2, and CA1, and dorsal and ventral subiculum. 

 

On the one hand, the initial focus on the hippocampal formation reflects the great interest 

in this structure by the broad neuroscience community (Hasselmo and Stern 2015; Kandel 

2004; Moser et al. 2017). On the other, most unbiased stereology techniques have 

historically been tested on the hippocampus (Boss et al. 1985; Miki et al. 2005; West et 

al. 1991), and the relative wealth of published information provides a useful validation 

benchmark. At the same time, even relatively basic questions on the number and density 

of cell in the mouse hippocampal formation, such as their medial-lateral, anterior-

posterior, and laminar distribution in the entorhinal cortex or in the subiculum, remain 

unanswered. 

 

Using publicly available software and the full images series of Nissl-stained 

coronal sections from the standard adult mouse brain Allen Reference Atlas, we present 



9 

 

the first complete cell-by-cell soma segmentation in all sub-regions and non-principal 

layers through the full rostral-caudal extent of the left hippocampal formation. Note that 

our estimates exclude the bulk of neurons in DG and CA, which are in the densely 

packed granular and pyramidal layers. A recent estimate for these regions in the mouse 

placed the total cell numbers (bilateral values) at about 1,250,000 for dentate gyrus, 

870,000 for CA1, and 570,000 for CA3 (Murakami et al. 2018; cf. Amaral et al. 1990 for 

rat). We validate our computational counting approach in all other sub-regions and layers 

in three ways: by reproducing the analysis with two independent image segmentation 

pipelines; by confirming the results with traditional stereological estimates on a 

substantial tissue sample (~10% of total); and by comparing our findings to available data 

in the published literature. In addition to comprehensive cell counts, the reported 

quantitative analysis reveals definitive regional variation of soma geometry and spatial 

occupancy. With this study, we also release open-source all segmented images, the entire 

database of raw measurements, and our analysis scripts for further community mining.  

Materials and methods 

Image acquisition. Nissl-stained coronal section images of the adult (8-week old 

C57Bl/6J male) mouse brain containing any part of the hippocampal formation (sections 

64 through 104) were downloaded from the Allen Institute for Brain Science’s Mouse 

Reference Atlas (RRID:SCR_002978) at the highest available resolution (90 dpi). The 

hippocampal formation is composed of the hippocampus proper, which consists of the 

dentate gyrus and Cornu Ammonis areas 1-3 (CA1, CA2, CA3), the medial and lateral 

entorhinal cortices, and the dorsal and ventral portion of the subiculum. The Allen Brain 
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Atlas further delineates these regions into sub-areas and layers, giving rise to 45 

hippocampal structures: strata lacunosum-moleculare, radiatum, pyramidale, and oriens 

of Cornu ammonis 1 and Cornu ammonis 2 (CA1slm, CA1sr, CA1sp, CA1so, CA2slm, 

CA2sr, CA2sp, CA2so); strata lacunosum-moleculare, radiatum, lucidum, pyramidale, 

and oriens of Cornu ammonis 3 (CA3slm, CA3sr, CA3slu, CA3sp, CA3so); the 

molecular, granular, and polymorphic layers of the dentate gyrus (DGmo, DGsg, DGpo); 

layers 1, 2, 2a, 2b, 2/3, 3, 4, 4/5, 5, 6a, and 6b of the lateral entorhinal cortex (ENTl1, 

ENTl2, ENTl2a, ENTl2b, ENTl2-3, ENTl3, ENTl4, ENTl4-5, ENTl5, ENTl6a, ENTl6b); 

layers 1, 2, 2a, 2b, 3, 4, 5, and 6 of the dorsal zone of the medial entorhinal cortex 

(ENTm1, ENTm2, ENTm2a, ENTm2b, ENTm3, ENTm4, ENTm5, ENTm6); layers 1, 2, 

3, and 5/6 of the ventral zone of the medial entorhinal cortex (ENTmv1, ENTmv2, 

ENTmv3, ENTmv5-6); and strata moleculare, pyramidale, and radiatum of both the 

dorsal and ventral parts of the subiculum (SUBd-m, SUBd-sp, SUBd-sr, SUBv-m, SUBv-

sp, SUBv-sr). We omitted the pyramidal layers of Cornu ammonis and the granular layer 

of dentate gyrus from analysis since their cells are too densely packed for effective 

segmentation with our automated pipeline, leaving 41 structures of the hippocampal 

formation. 

 

Next, the scalable vector graphic (svg) plates corresponding to each structure and section 

(654 in total) were retrieved through the Allen Brain Atlas Application Programming 

Interface (RRID:SCR_005984) to use as masks for cropping individual structures from 

the entire coronal brain images.  Using the freeware program Inkscape.org 
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(RRID:SCR_014479), each svg mask was sequentially pasted directly on top of the 

corresponding Nissl-stained image. The two were then clipped together so that the Nissl 

image was cropped in the shape of the svg mask and exported. This operation was 

repeated for every downloaded coronal section and svg plate, so that each of the resulting 

654 cropped images represented one cross-section of an individual hippocampal 

formation structure (Fig. 1).  

 

Image processing. We utilized two distinct image segmentation pipelines in parallel for 

independent processing and analysis of the acquired images: ImageJ 

(RRID:SCR_003070) and CellProfiler (RRID:SCR_007358). Both software tools read 

each of the 654 images and followed a series of steps that resulted in object-by-object 

segmentation of each image (Fig. 1). The ImageJ pipeline involved increasing contrast by 

0.3% (ImageJ-suggested value) and enhancing sharpness (unspecified default parameter), 

conversion to binary image, and setting the minimum size threshold for object detection 

to the recommended value of 3 pixels. The CellProfiler pipeline involved using four 

modules: ‘UnmixColors’ to convert into grey scale and ‘IdentifyPrimaryObjects’ for 

optimal object identification (Otsu 1979; Sankur 2004) with the default thresholding 

factor of 3, ‘MeasureObjectSizeShape’ for specifying the objects to be measured, and 

‘ExportToSpreadsheet’ for saving the results in the desired format. Altogether, this 

process generated a segmentation file and a .csv spreadsheet for each of the 654 Nissl 

stained images. The data processing scripts, related calibration files, and segmented 
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images are all released in open source 

(hippocampome.org/php/data/ABA_Counts_Database.zip). 

 

 

 

 
 

Figure 1 Image source and processing 

 

a. Coronal section of hippocampus areas CA1, CA2, CA3, and Dentate Gyrus (sections 

illustrated: 74_CA1SR, 74_CA3SLU, 74_CA2SLM and 74_DGmo). b. Coronal section 

of the entorhinal cortex and the ventral subiculum (sections illustrated: 85_SUBvm and 

85_SUBvsp). In both panels, arrows point to the corresponding sample Nissl stained 

sections as labeled and the shorter arrows point to the segmented images obtained from 

ImageJ software. Figure was created using ImageJ, Microsoft PowerPoint, and Adobe 

Photoshop. 
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Although ImageJ and CellProfiler were remarkably accurate in identifying and 

segmenting objects from the 2D images as evaluated by visual inspection, the counts 

could not be taken to reflect cell numbers directly due to four well-known deviations. 

First, several sections exhibited substantial cell clumping, which results in overestimating 

cell size and underestimating cell count, as each multi-cell clump is generally segmented 

as a single object. To solve this issue, we applied the corrective watershed algorithm 

(LaTorre et al. 2013) for separating the clumped cells (Fig. 2a). Second, the process of 

delineating the hippocampal structures within each coronal section splits every border-

crossing cell into two, which yields overestimated cell counts and underestimated cell 

sizes. To alleviate this problem, bordering objects for each section were sorted by area 

and only the top half were included in the total count for that section, excluding the 

bottom half (Fig. 2b). Third, physical slicing of histological sections inevitably cuts all 

cells that intersect the surfaces.  Since fragments of the dissected cells end up in an 

adjacent section, cell counts tend to be overestimated and cell sizes underestimated. To 

address this so-called ‘lost caps’ scenario (Hedreen 1998a), we applied the Abercrombie 

(Abercrombie 1946) correction (Fig. 2c). Fourth, the use of maximum intensity 2D 

projections through the slice depth risks missing the occluded cells located under those 

visible from the top view. To adjust the final counts accordingly, we derived a formula by 

extending Schellart’s theory on count estimates in case of coinciding particles (Hader et 

al. 2001). Specifically, the tissue can be considered as if divided into “layers” each as 

thick as the average cell diameter; the number of observed cells (O) then equals the sum 

of the visible cells in all layers. In the top layer, where there is no occlusion, the number 
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of visible cells equals the real total number of cells (N) divided by the number of layers. 

In the second layer, the expected fraction of occluded cells corresponds to the areal 

occupancy of the top layer (the sum of the areas of all cells in the top layer, A, divided by 

the area of the section (S); thus the number of visible cells equals the real total number of 

cells (N) divided by the number of layers discounted by that areal occupancy. In the case 

of two layers, the above reasoning can be summarized in the following equations: 𝑂 =

𝑁

2
+

𝑁

2
(1 −

𝐴

𝑆
) =

𝑁

2
(2 −

𝐴

𝑆
), which can be easily solved as: 𝑁 = 2𝑂 ∗

𝑆

2𝑆−𝐴
. In the case of 

three layers (Fig. 2d), the expected fraction of occluded cells in the third layer 

corresponds to the summed areal occupancy of the first and second layers. In this 

scenario, the formula relating the number of observed cells O to the real number of cells 

N based on the areal occupancy 𝐴/𝑆 is:  

𝑂 =
𝑁

3
+

𝑁

3
(1 −

𝐴

𝑆
) +

𝑁

3
(1 −

2𝐴

𝑆
+

𝐴2

𝑆2), which can be solved as: 𝑁 = 3𝑂 ∗ 𝑆2/(3𝑆2 −

3𝐴 ∗ 𝑆 + 𝐴2). 

 

Shape analysis, bimodality, and spatial distributions. Total cell counts were 

quadrupled since every fourth section from the coronal brain series of Allen’s brain map 

was Nissl stained and all extracted measurements were converted into metric units 

multiplying by the reported pixel size of 1.047 µm on each side (Allen Data Production 

2011). For each processed image, we extracted two measurements with ImageJ and 

CellProfiler from every segmented cell:  the section area in squared micrometers; and the 

circularity, defined as 4𝜋 ∗
𝑎𝑟𝑒𝑎

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2, where perimeter is the length of the cell 
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segmentation. While the area quantifies the cell size, circularity characterizes its shape, 

with a value of 1.0 corresponding to a perfect circle and values closer to 0 indicating 

increasingly elongated or tortuous shapes. 

 

 

 

 

Figure 2 Computing cell counts from segmented object 

 

a. Segmentations were de-clumped using the watershed algorithm (illustrated section: 

70_CA2SLM). b. Bordering cells were sorted based on cell area and only upper half was 

counted for that section while lower half was considered to belong to neighboring areas. 

c. Cut cells due to sectioning were accounted for using Abercrombie formula: 𝑁 = 𝑛 ∗

[
𝑇

𝑇+𝑑
], where N is the number of cells after correction, n is the number of all detected 

objects before correction, T is the section thickness, and d is the mean diameter. d. 

Section thickness is divided into equal layers where height of each layer equals mean cell 

diameter; occluded cells in the depth of the tissue were accounted for using the formula 
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for count estimates of aligned particles (see Methods). Figure was created using ImageJ, 

Microsoft PowerPoint, and Adobe Photoshop. 

 

 

 

Analysis was conducted on all cells counted to understand the presence of multimodal 

distributions in the cell populations based on the size attribute. Kernel density estimation 

(KDE) plots were generated for each of the 30 parcels of the hippocampus. The KDE 

plots were fitted with a mixture of two Gaussian distributions, yielding for every parcel a 

mean and a standard deviation for each of the Gaussians and the relative weight between 

the two. The proportions of small and large cells per parcel as well as their Gaussian 

overlap were calculated from these parameters. Hartigan’s Dip test (Maechler 2016) was 

run on all parcels to test for bimodality/multimodality. 

 

Furthermore, for each processed image we computed three parameters capturing the 

overall spatial distribution of the cells: the first was volumetric density, defined as the 

total number of cells in the section divided by the section volume (the product of the 

mask area by the nominal thickness). The second parameter was the real occupancy 

(utilized in the occlusion correction described above), defined as the summed area of 

cells divided by the mask area. The third parameter defines the tiling or clustering 

tendency of the cells using two-tailed t-test statistics of the nearest neighbor distance 

(NND) distribution against the null hypothesis (Andrey et al. 2010). Specifically, we 
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randomly distributed within each mask area a number of points identical to that measured 

in the corresponding section. We then extracted the NND for every point using both the 

real and random locations. Lastly, we t-tested the real NND distribution against the 

random NND distribution. A significantly greater NND than random after Bonferroni 

correction indicates spatial tiling, while a significantly smaller NND than random 

indicates spatial clustering. 

 

We computed the average and coefficient of variation of the individual cell-level 

measurements (size and shape) within each section and used the section average in 

subsequent analyses. We then analyzed all measurements section-by-section rostro-

caudally within each hippocampal structure as well as compared the combined sections 

across structures. The 23 Allen Brain Atlas subdivisions of the medial and lateral regions 

of the entorhinal cortex were collated into 12 parcels to match the standard nomenclature 

of Hippocampome.org (Wheeler et al. 2015) as it follows: 

 

• ENTl1 was re-termed LEC I 

• ENTl2, ENTl2a, ENTl2b and half the number of cells of ENTl2-3 were combined 

into LEC II 

• ENTl3 and half the number of cells from ENTl2-3 were combined into LEC III 

• ENTl4 and half the number of cells from ENTl4-5 were combined into LEC IV 

• ENTl5 and half the number of cells from ENTl4-5 were combined into LEC V 

• ENTl6a and ENTl6b were combined into LEC VI 
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• ENTm1 and ENTmv1 were combined into MEC I 

• ENTm2, ENTm2a, ENTm2b and ENTmv2 were combined into MEC II 

• ENTm3 and ENTmv3 were combined into MEC III 

• ENTm4 was re-termed MEC IV 

• ENTm5 and half the number of cells from ENTmv5-6 were combined into MEC 

V 

• ENTm6 and half the number of cells from ENTmv5-6 were combined into MEC 

VI 

 

Stereological sampling. In order to compare our computational pipeline to traditional 

stereological measurements, we counted an unbiased sample of cells in 65 sections (10% 

of total) using the 2D probe ‘MBF Fractionator’ of the standard commercial software 

MicroBrightField StereoInvestigator (RRID:SCR_004314). The 65 images were selected 

randomly by picking 1-2 from each hippocampal structure. For each image, we traced the 

contour of interest and adjusted the size of the counting frame to allow reliable object 

identification and accurate marking (this varied for each image depending on the size and 

distribution of cells). We then specified the size of the Systematic Random Sampling grid 

based on the section size to ensure a representatively large sample, which is necessary for 

accurate statistical estimates. Once the grid was placed on the section, we marked each 

visible object inside the frame or on the inclusion line; after marking all objects in the 

grid, the process was moved to the next sampling site where the grid was placed. Once all 

the sampling sites were marked, the process was completed, and the probe run list 
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displayed the estimated population for the section. The data files and results were 

exported and are included in the shared database 

(hippocampome.org/php/data/ABA_Counts_Database.zip).  

 

Results 

Quantitative validation of overall approach. The cell identification process described 

in the “Methods” was critically assessed in three distinct ways: by cross-examining the 

segmentation results from the two independent software frameworks (ImageJ and 

CellProfiler); by comparing the count results to available data published in the peer-

reviewed literature; and by repeating the analysis on a representative subset of the images 

with traditional unbiased stereology. 

 

Visual inspection of the ImageJ and CellProfiler segmentations against the original 

images revealed remarkable consistency between the two programs as well as with 

intuitive evaluation. Specifically, the majority of the objects we would have manually 

classified with high confidence as cells upon visual inspection were identified as such by 

both automated pipelines, which also accurately and similarly delineated the body 

perimeters. When we reviewed a sample of the cells segmented by only one of the two 

programs and ‘missed’ by the other, most were difficult calls that we could classify as 

cells only with low confidence. We found no cases of objects identified and segmented 

by both ImageJ and CellProfiler, which we did not consider to be likely cells. On 

quantitative analysis, the discrepancy in overall cells count between the two programs in 
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the bulk of individual images was within 10%, with an overall difference of less than 

103,000 out of a total over 1.5 million. Table 1 reports a summary of these comparisons 

by anatomical area along with data from published studies (see below). At the level of 

whole hippocampal formation (excluding the granule cell layer of the dentate gyrus and 

the pyramidal cell layers of CA1-3), the overall count difference between the two 

software programs was minimal, with an average absolute difference of 7% at the sub-

region level. The exact image-by-image counts for both ImageJ and CellProfiler are 

included in the shared database. 

 

Table 1 Validation of two independent image segmentation methods with previous 

studies  

(Fitting et al. 2009; Mulders et al. 1997; Ramsden et al. 2003; Lister et al. 2006; Sousa et 

al. 1998; Rasmussen et al. 1996; Kim et al. 2017; Long et al. 1998; Kaae et al. 2012; 

Murakami et al. 2018; Erö et al. 2018; Bezaire et al. 2016; Andrade et al. 2000; 

Herculano-Houzel et al. 2013; Grady et al. 2003) 

 

 

 

Region Source Counts 
% Difference from 

ABA (ImageJ) 

DG (except 

granule layer) 

ABA (ImageJ) 196,067   

ABA (CellProfiler) 176,748 -9.85 

Literature 253,286 29.18 

ABA (ImageJ) 173,200   
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CA2+CA3 

(except 

pyramidal 

layers) 

ABA (CellProfiler) 154,733 -10.66 

Literature 176,728 2.04 

CA1 (except 

pyramidal layer) 

ABA (ImageJ) 252,533   

ABA (CellProfiler) 247,169 -2.12 

Literature 227,388 -9.96 

SUB 

ABA (ImageJ) 294,294   

ABA (CellProfiler) 279,333 -5.08 

Literature 289,171 -1.74 

EC (lateral & 

medial) 

ABA (ImageJ) 602,400   

ABA (CellProfiler) 557,569 -7.44 

Literature 684,990 13.71 

Total 

ABA (ImageJ) 1,518,495   

ABA (CellProfiler) 1,415,552 -6.78 

Literature 1,631,563 7.45 

 

 

 

 

Comparing the counts obtained with our approach to existing data in earlier scientific 

studies (mostly using unbiased stereology or nuclear counts) requires a series of 

assumptions to pool results from a variety of diverse experimental procedures. First, the 

vast majority of reports on cell counts in the rodent hippocampal formation to date 

investigated rats rather than mice. In order to relate numerical values between species, we 

applied the linear scaling parameters reported for cortical structures (Herculano-Houzel et 

al. 2006): namely, the number of mouse cells in the cerebral cortex (including the 

hippocampus) equals approximately 34% of the number of rat cells; the number of mouse 

neurons equals approximately 41% of the number of rat neurons; and the number of 

mouse glial cells equals approximately 29% of the number of rat glial cells. A summary 
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of the derivation of these scaling rules from the source data is included in the 

Supplementary Material (Table S1). We utilized the same scaling factors across all sub-

regions of the hippocampal formation. 

 

We compiled all other additional assumptions, each specific to the interpretation of 

individual reports or handling of missing data, in the Supplementary Material as well 

(Table S2).  Lastly, the Supplementary Material (Table S3) also summarizes the step-by-

step computations to derive the literature values utilized in Table 1 for each separate sub-

region (DG: Table S3a; CA2/3: Table S3b; CA1: Table S3c; subiculum: Table S3d; and 

entorhinal cortex: Table S3e). 

 

The cell counts obtained with the above-described workflow from both image processing 

software programs were compared against literature-reported values (Table 1) sourced 

from 15 distinct studies (Fitting et al. 2009; 

Mulders et al. 1997; Ramsden et al. 2003; Lister et al. 2006; Sousa et al. 1998; 

Rasmussen et al. 1996; Kim et al. 2017; Long et al. 1998; Kaae et al. 2012; Murakami et 

al. 2018; Erö et al. 2018; Bezaire et al. 2016; Andrade et al. 2000; Herculano-Houzel et 

al. 2013; Grady et al. 2003). The overall differences between our approaches and the 

average literature data for the whole hippocampal formation overall is remarkably 

contained (~8% for ImageJ and ~15% for CellProfiler). The average absolute difference 

at the sub-region level (<15%) was considerably smaller (less than half) than the typical 

variability between experimental studies (Fitting et al. 2009; Mulders et al. 1997; 
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Ramsden et al. 2003; Lister et al. 2006; Sousa et al. 1998; Herculano-Houzel et al. 2013; 

Grady et al. 2003). 

 

As additional validation of our approach, we subjected a representative subset of the data 

(~10% of the images) to unbiased stereology (Fig. 3).  This dataset spanned every parcel 

and ranged from very sparse (<20 cells per image) to considerably dense (>1000 cells per 

image). Stereological estimates very strongly correlated with our comprehensive counts 

on the same images (R > 0.99, p < 10-6). The overall counts between the two methods 

differed by less than 5%, and the absolute deviation on an image-by-image case averaged 

less than 10%. The section-by-section stereological counts are also included in the shared 

database. 
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Figure 3 Comparing image processing methods to stereological methods 

 

Figure was created using Microsoft Excel and Adobe Photoshop 

 

 

 

Cell numbers, spatial distributions, shape, and size. After validating the analysis 

pipeline, we collated the measurements of cell count, spatial distribution, shape, and size 

for each of 30 anatomical parcels (Table 2) to reveal differences and similarities across 

hippocampal sub-regions and layers.  
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Table 2 Numbers, density, spatial occupancy, size, and shape.  

Area and circularity are reported as averages (values in parenthesis are the coefficients of 

variation). 

Parcel Counts 
Density 

(mm-3) 

Tiling 

Ratio 

Circularity 

Avg (CV) 

Area (µm2) 

Avg (CV) 

DGmo 155,548 75,610 3/30 0.70 (0.28) 69.52 (1.16) 

DGpo 40,519 111,556 5/23 0.65 (0.28) 122.08 (0.97) 

CA3slm 2,665 72,650 0/13 0.71 (0.25) 49.65 (0.72) 

CA3sr 53,065 67,964 0/24 0.73 (0.26) 61.65 (0.98) 

CA3slu 22,348 114,525 0/22 0.59 (0.36) 82.95 (1.16) 

CA3so 75,530 84,499 0/24 0.68 (0.28) 67.63 (0.93) 

CA2slm 5,656 75,103 0/15 0.74 (0.24) 50.04 (0.72) 

CA2sr 7,136 71,148 0/16 0.72 (0.26) 64.33 (0.97) 

CA2so 6,800 81,953 0/16 0.73 (0.26) 62.14 (0.95) 

CA1slm 94,865 80,619 2/24 0.74 (0.23) 56.64 (0.77) 

CA1sr 82,744 58,478 0/24 0.67 (0.29) 84.79 (0.93) 

CA1so 74,924 84,020 0/24 0.69 (0.26) 67.08 (0.84) 

SUBdm 11,283 93,639 0/13 0.73 (0.26) 59.11 (0.85) 

SUBdsr 10,203 73,840 1/13 0.72 (0.26) 63.61 (0.84) 

SUBdsp 53,216 108,550 13/13 0.66 (0.25) 133.30 (0.69) 

SUBvm 33,832 84,815 0/11 0.74 (0.25) 51.15 (0.92) 

SUBvsr 21,273 81,799 0/10 0.70 (0.27) 62.96 (0.95) 

SUBvsp 164,487 119,233 14/14 0.66 (0.25) 140.13 (0.70) 

LEC I 77,508 100,409 0/35 0.63 (0.38) 55.59 (1.12) 

LEC II 98,750 87,268 17/53 0.65 (0.26) 154.50 (0.82) 

LEC III 62,936 77,518 9/32 0.68 (0.24) 131.62 (0.77) 

LEC IV 28,113 63,647 7/28 0.69 (0.26) 109.69 (0.75) 

LEC V 59,488 73,429 13/29 0.70 (0.23) 118.16 (0.77) 

LEC VI 77,690 109,712 22/54 0.69 (0.23) 122.04 (0.66) 

MEC I 37,217 99,948 0/19 0.69 (0.29) 47.21 (1.11) 

MEC II 66,365 126,570 13/21 0.66 (0.25) 134.05 (0.90) 

MEC 

III 45,397 121,965 13/17 0.67 (0.25) 
134.78 (0.98) 

MEC 

IV 7,251 132,969 2/10 0.66 (0.28) 
91.63 (0.67) 

MEC V 15,585 139,513 4/14 0.67 (0.26) 104.85 (0.69) 

MEC 

VI 26,101 140,819 10/13 0.67 (0.24) 
111.90 (0.68) 
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The number of cells in each parcel varies widely from less than 2700 in stratum 

lacunosum-molecular of CA3 to more than 160,000 in stratum pyramidale of ventral 

subiculum. This broad range primarily reflects the known overall volumes of each parcel 

(for rat hippocampus proper, see e.g. Ropireddy et al. 2012). In addition, we analyzed the 

results at the individual section-by-section level to investigate any trends in the data 

within each parcel along the rostro-caudal direction. The relative distribution of cells 

along the rostro-caudal extent was considerably non-uniform, but tightly corresponded to 

each relative section area, with a tendency for relatively higher values towards the caudal 

end for most parcels (Fig. 4). In quantitative terms, the number of cells within each 

section significantly correlated with that section’s mask area (R=0.9, p<10-6). This 

indicates that volume accounts for more than 80% of the within-parcel rostro-caudal 

variance in cell numbers. In other words, the volumetric cell density is essentially 

constant within each parcel throughout the rostro-caudal extent. Between parcels, in 

contrast, the volumetric cell density ranged broadly from 58,478 mm-3 in CA1 stratum 

radiatum to 140,000 mm-3 in layer 6 of medial entorhinal cortex. 
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Figure 4 Rostro-caudal gradients of relative cell counts (N) and mask areas (MA) 

 

Figure was created using Microsoft Excel, R, and Adobe Photoshop 
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Our statistical analysis of the spatial distributions of cell locations within each parcel was 

designed to identify two opposite types of deviations from the null hypothesis of random 

distribution: cell clustering (whereas distances from the nearest neighbors are typically 

smaller than random) and cell tiling (whereas distances from the nearest neighbors are 

typically larger than random). None of the 654 sections in our study displayed evidence 

of clustering (Table 2): 152 (23%) revealed significant tiling (Fig. 5)  
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Figure 5 Spatial distributions 

 

a. Nissl stained image (left) for a representative image (79_ENTl4-5), segmentation 

centroids (center), and randomized points (right); b. Frequency histograms and 

corresponding probability density functions for real and randomized nearest distances. 

Figure was created using Microsoft Excel, Microsoft PowerPoint, R, and Adobe 

Photoshop. 
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after Bonferroni correction and 502 (77%) could not be distinguished from random. Only 

the pyramidal layer in dorsal and ventral subiculum consistently featured cell tiling in all 

sections. The other subicular layers as well as layer 1 in medial and lateral entorhinal 

cortex and all CA2 and CA3 parcels had nearly no tiling in any section. The other 

entorhinal layers and dentate gyrus had an intermediate proportion of tiling sections, 

ranging from 10% in the dentate molecular layer to 76% in medial entorhinal layer 3, 

with no observable rostro-caudal trend. Interesting, the proportion of tiling section was 

significantly correlated to density across the 30 parcels (R=0.72, p<10-5), suggesting a 

greater pressure for optimal space occupancy in cell-denser areas. 

 

Cell shape was remarkably uniform throughout the hippocampal formation, with the 

average circularity only ranging between 0.59 (CA3 lucidum) and 0.74 (stratum 

lacunosum-moleculare CA1 and CA2, and molecular layer of ventral subiculum) and 

contained within-parcel coefficients of variations between 0.23 (CA1 lacunosum-

moleculare, lateral entorhinal cortex layers V and VI) and 0.38 (lateral entorhinal cortex 

layer I). Circularity values were very consistent between image analysis pipelines 

(ImageJ vs CellProfiler) and did not vary along the rostro-caudal axis. 
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In contrast, cell size varied considerably from parcel to parcel, ranging in section area 

from less than 50 µm2 in medial entorhinal layer 1 to more than 150 µm2 in lateral 

entorhinal layer 2. As a general observation, cells in all layers of areas CA1-3 except 

CA3 lucidum and CA1 radiatum were twice as small as cells in all layers of the 

entorhinal cortex with the stark exceptions of both medial and lateral layers 1. The 

situation was more varied within the dentate gyrus, with cells in the polymorphic layer on 

average twice as large as in the molecular layer, and in the subiculum, with cells in the 

pyramidal layers two-and-a-half the size of those in the molecular layer. Cell size was 

moderately variable within parcel, with coefficient of variations contained between 0.66 

and 1.16. No rostro-caudal gradients in cell size were observed in any parcel possibly 

with the sole exception of lateral entorhinal layer 3, in which rostral cells were 

marginally larger than caudal ones (similar to micrographs published in R. Insausti et al. 

1998), though the trend was not statistically significant. 

 

Parallel lines of evidence point to functional (Brun et al. 2008), physiological (Giocomo 

and Hasselmo 2008), and developmental (Ray and Brecht 2016) differences between the 

dorsal and ventral regions of the medial entorhinal cortex. Thus, we analyzed the cell size 

in the 10 sections of the Allen Reference Atlas that separately delineate dorsal and ventral 

MEC. We found that layer 2 cells (a large portion of which are spiny stellate neurons) 

were 40% larger and twice more variable in ventral than in dorsal MEC 

(181.71±229.20µm2, N=544 vs. 129.41±97.40µm2, N=605; p<10-8). Interestingly, the 

opposite relation was observed in layers 3 (dorsal: 136.0±89.59µm2, N=225; ventral: 
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106.67±58.98µm2, N=70; p<0.0006) and 5-6 (dorsal: 117.03±71.65µm2, N=292; ventral: 

84.98±57.10µm2, N=45; p<10-7), which are all dominated by pyramidal neurons. In 

contrast, we observed no dorsal-ventral gradients in the rest of the hippocampal 

formation. 

 

Visual inspection of the Nissl images and corresponding processed segmentations 

suggested that the cell size distribution within a given parcel and section was typically 

not regular or uniform, but often skewed, with a substantial number of smaller cells 

within a more restricted size range and a broader right-tail distributed population of larger 

cells. Dip test multimodality analysis (Maechler 2016) revealed statistically significant 

bimodal distributions in a majority of parcels (23/30: Table 3).  
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Table 3 Small cell proportion, misclassified proportion, average areas of small and large 

cells.  

(values in parenthesis are the coefficients of variation). * denotes significant dip test 

results. 

Parcel 

Proportion 

of small 

cells % 

Misclassifie

d proportion 

Small Cells 

Area (µm2) 

Avg (CV) 

Large Cells 

Area (µm2) 

Avg (CV) 

DGmo* 61.24 0.14 37.46 (0.33) 85.81 (0.50) 

DGpo* 55.18 0.11 49.78 (0.54) 187.17 (0.57) 

CA3slm 65.45 0.14 35.54 (0.30) 74.46 (0.55) 

CA3sr* 73.56 0.07 37.20 (0.39) 110.13 (0.51) 

CA3slu* 60.00 0.13 37.15 (0.70) 139.15 (0.64) 

CA3so* 60.70 0.11 35.78 (0.34) 105.19 (0.67) 

CA2slm 69.00 0.10 33.96 (0.32) 76.26 (0.46) 

CA2sr 68.18 0.11 37.27 (0.37) 95.82 (0.52) 

CA2so 58.26 0.15 32.96 (0.34) 73.50 (0.48) 

CA1slm* 62.00 0.14 37.77 (0.24) 72.43 (0.50) 

CA1sr* 56.00 0.15 42.83 (0.42) 120.97 (0.54) 

CA1so* 57.74 0.08 34.84 (0.31) 102.76 (0.53) 

SUBdm* 59.03 0.14 35.60 (0.25) 71.70 (0.46) 

SUBdsr* 67.06 0.10 37.33 (0.34) 100.78 (0.51) 

SUBdsp* 21.61 0.16 47.19 (0.44) 153.32 (0.64) 

SUBvm* 58.19 0.15 33.03 (0.32) 75.07 (0.71) 

SUBvsr* 52.00 0.15 35.47 (0.40) 100.46 (0.75) 

SUBvsp* 19.73 0.17 54.02 (0.46) 147.51 (0.58) 

LEC1* 62.30 0.14 28.26 (0.44) 72.26 (0.54) 

LEC2* 20.00 0.14 46.37 (0.42) 174.73 (0.63) 

LEC3* 23.99 0.14 42.98 (0.41) 148.94 (0.59) 

LEC4* 39.58 0.12 41.77 (0.46) 148.37 (0.51) 

LEC5* 41.42 0.11 47.54 (0.44) 151.35 (0.46) 

LEC6* 75.53 0.14 92.07 (0.57) 202.30 (0.48) 

MEC1* 67.18 0.13 27.21 (0.50) 73.16 (0.68) 

MEC2* 62.91 0.17 75.51 (0.62) 181.78 (0.43) 

MEC3 76.01 0.12 91.36 (0.58) 223.74 (0.47) 

MEC4 19.02 0.16 33.53 (0.40) 100.05 (0.55) 

MEC5 53.00 0.20 63.78 (0.51) 138.33 (0.46) 

MEC6* 76.43 0.14 77.19 (0.58) 164.28 (0.42) 
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The kernel density estimate (KDE) of all distributions could be well fitted with a 

Gaussian mixture model (Fig. 6), allowing the determination for every anatomical parcel 

of the mean and variance of smaller and larger cells, their relative proportion, and the 

fraction of cells that would be assigned to the incorrect group based on a sharp size 

threshold (“misclassified” area under the cross-over of the two Gaussians). Small cell 

areas varied considerably between parcels, from less than 30 µm2 in medial entorhinal 

layer 1 to more than 90 µm2 in lateral entorhinal layer 6. Similarly, large cell areas also 

varied over 3-fold between ~72 µm2 in the molecular layer of the dorsal subiculum to 

~224 µm2 in layer 3 of the medial entorhinal cortex. The fraction of small cells was 

balanced overall (average 55%) but ranged widely even across adjacent parcels from 

more than three-quarters in medial entorhinal cortex layer 3 to less than one-fifth in layer 

4. The proportion of misclassified cells was relatively modest, ranging from 7% in CA3 

radiatum to 20% in medial entorhinal cortex layer 5 (average over all parcels: 13.4%). 
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Figure 6 Bimodal cell size distributions of CA1slm (left), LEC I (top right), and SUBdsr 

(bottom right) with kernel density estimates (KDE) fitted by a Gaussian mixture model. 

 

The representative Nissl sections in the insets highlight small and large cells in blue and 

red, respectively. The gray area under the Gaussian curves represents the proportion of 

‘small’ and ‘large’ cells that would be misclassified if selected based on a hard size 

threshold. Figure was created using Microsoft Excel, Microsoft PowerPoint, and Adobe 

Photoshop. 
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Data availability. The hippocampome.org/php/data/ABA_Counts_Database.zip archive 

contains all project files and scripts associated with this report, namely: masked 

segmented images (output files from ImageJ and CellProfiler) for each individual parcel 

and slice; scripts for corrections and spatial analysis in R; ImageJ scripts for processing, 

corrections and mask area calculations; CellProfiler calibration files; and stereology data 

and results files. The accompanying ‘readme’ document describes each folder and file in 

detail with instructions on usage. This content is freely available for further research or 

re-analysis. 

DISCUSSION 

The advent of high-throughput histology, accelerating progress in image processing, 

continuous increase in computing power, and the pervasive accessibility of informatics 

tools have ushered the era of whole brain cell-by-cell comprehensive analyses into the 

changing world of neuroscience research. Although there are valid reasons to still favor 

stereological sampling for certain applications (Schmitz et al., 2014), several recent 

applications have demonstrated the feasibility of systematically identifying all cell bodies 

in a mouse brain (Kim et al. 2017; Murakami et al. 2018). Most criticisms of “biased” 

sampling estimates such as in the Abercrombie formula (Hedreen 1998b) do not apply 

when considering comprehensive counts across the entire cellular population in a system. 

Here we show that one of the most popular and widely adopted resources in modern 

neuroscience, the adult mouse brain Allen Reference Atlas, can be used to obtain 

cellular-level segmentations throughout entire anatomical formations from the original 

Nissl stained images. After appropriate corrections to account for sectioning distortions, 
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cell agglomerates, border crossings, and tissue occlusion, we demonstrate that this 

approach is reproducible across independent image processing pipelines, accurate as 

matched against unbiased stereology, and reliable in comparison to available published 

values in the scientific literature. As a notable exception, dentate granule layer and Cornu 

Ammons pyramidal layers were excluded from this process as individual cells cannot be 

reliably identified in densely packed Nissl stained images. However, the total cell counts 

for these areas can be estimated by various other methods and have been reported for 

both rat and mouse in seminal studies over the past three and half decades (e.g. Bayer et 

al. 1982; Amaral et al. 1990; West et al. 1991; Rapp and Gallagher 1996; Rasmussen et 

al. 1996; Baldwin et al. 1997; Mulders et al. 1997; Calhoun et al. 1998; A.M. Insausti et 

al. 1998; Sousa et al. 1998; Lister et al. 2006; Hosseini-Sharifabad and Nyengaard 2007; 

Fitting et al. 2009; Kaae et al. 2012; Murakami et al. 2018). 

 

A key advantage of comprehensive cell segmentation is that, in addition to providing 

complete counts in each anatomical parcel, it also enables quantitative analysis of cell 

shape, spatial occupancy, and size. We discovered that, while cross-section circularity (a 

simple shape measure) is relatively invariant throughout the hippocampal formation, 

spatial occupancy differs considerably across different parcels, but remains essentially 

constant within parcels along the entire rostro-caudal extent. Layers 2, 3, 5 and 6 of the 

medial entorhinal cortex exhibit the highest numerical densities (as also noted in Canto et 

al. 2008) along with the pyramidal layer of ventral subiculum. This is not surprising since 

these parcels are especially rich in principal cells, though not in the extreme packing 
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fashion of the dentate granule layer and CA1-3 pyramidal layers, which were excluded 

for that reason from analysis. Interestingly, higher occupancy correlated significantly 

with the fraction of images that demonstrated cell tiling, possibly indicative of pressure 

towards optimal placement. In contrast, we never observed statistically significant cell 

clustering. At first, this fact may seem at odd with reports describing cell islands or 

studies distinguishing island and ocean cells, especially in layer 2 of medial entorhinal 

cortex. At closer inspections, however, the existing experimental evidence is limited to 

primates (Goldenberg et al. 1995) or molecularly segregated (Sun et al. 2015) or 

projection defined (Kitamura et al., 2014) cell populations. Seminal studies in rats 

mention cell clusters, but only in a subset of sections (R. Insausti et al. 1998). It will be 

interesting for future studies to ascertain the extent of species specificity for this 

phenomenon. 

 

Cell size also changed substantially among parcels but was additionally non-uniform 

within parcels, though again without a discernible rostro-caudal trend. Neuroscientists 

have maintained a long-standing interest in attempting to distinguish major cell classes on 

the basis of their somatic sizes. Unfortunately, however, GABAergic cortical 

interneurons span almost an order of magnitude of cell body areas from approximately 80 

µm2 to more than 700 µm2 (Ascoli et al. 2008), while hippocampal pyramidal neurons 

fall well within that range with typical somatic areas of the order of 200 µm2 (Nakatomi 

et al. 2002). Thus, it remains untenable to distinguish projection excitatory and local 

inhibitory neurons in the rodent hippocampal formation solely based on their soma 
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dimension. However, the main classes of glial cells are generally characterized by smaller 

cell bodies, from microglia in the 20-40 µm2 range (Long et al. 1998) to oligodendrocyte 

and astrocytes in the 40-80 µm2 range, respectively (Fitting et al. 2009). Thus, it may be 

possible at least in principle to separate neurons and glia on the basis of cell size.  

 

The size bimodality analysis presented in this study revealed average areas of 45 µm2 and 

122 µm2 for the “small” and “large” cells, respectively, across the 30 anatomical 

subdivisions of the hippocampal formation. These values are approximately consistent 

with the previously reported sizes of glia and neurons; moreover, the overall fraction of 

small cells (~55%) is also in line with the expected proportion of glial cells (Herculano-

Houzel et al. 2006). Despite these convergent indications, extreme caution needs to be 

exercised in this interpretation, and the assignment of neurons and glia based on cell size 

should be deemed tentative at best. With these caveats in mind, it is still worth noting 

that, based on our segmentation results, layer 1 in medial entorhinal cortex has the 

smallest cell area across the hippocampal formation. Interestingly, independent 

experimental evidence suggests that this anatomical parcel is nearly devoid of neurons, 

whereas the glial density is approximately uniform across layers (Wu et al. 2005; Witter 

2011). It is thus tempting to speculate that the number of cells we counted from those 

sections might correspond mostly or entirely to glia. Glial distribution is also known to 

vary across the hippocampus: in particular, stratum lacunosum-moleculare displays a 

higher density of both oligodendrocytes (Vinet et al. 2010) and microglia (Jinno et al. 

2007). Intriguingly, this layer also displayed the smallest cell area in all three CA areas.  
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Direct quantification of distinct cell types (neurons and the three main classes of glia) 

from Nissl stained images is possible in principle but requires a higher resolution than 

currently available in public repositories to enable the examination of physical features of 

individual cells. At high resolution, specific rules can be applied to identify different cell 

types such as neurons, astrocytes, and microglia based on size, intensity, or texture 

(Garcia-Cabezas et al. 2016; Rajkowska et al. 2016).  Appropriate thresholds for these 

characteristics can thus be incorporated in existing image processing software tools to 

efficiently classify objects directly upon segmentation. Similar methodologies can be 

adapted to quantify any cell type in biological sections as long as appropriate labels are 

available to mark them. Nonetheless, it is also important to consider that post-mortem 

handling may alter neuron numbers, stain absorption and selectivity, and other 

characteristics relevant to the above approach (Gonzalez-Riano et al. 2017). 

Notwithstanding these caveats, the general method presented here of cell-by-cell 

segmentation from comprehensive series of stained sections based on readily available 

image processing software is potentially paradigm-shifting and should be extensible to 

most of the remaining 700 distinct parcels of the Allen Brain Atlas. 
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CHAPTER TWO: OPERATIONS RESEARCH METHODS FOR ESTIMATING 

THE POPULATION SIZE OF NEURON TYPES (SAROJINI M. ATTILI … 

GIORGIO A. ASCOLI1) 

Understanding brain computation requires assembling a complete catalog of its 

architectural components. Although the brain is organized into several anatomical and 

functional regions, it is ultimately the neurons in every region that are responsible for 

cognition and behavior. Thus, classifying neuron types throughout the brain and 

quantifying the population sizes of distinct classes in different regions is a key subject of 

research in the neuroscience community. The total number of neurons in the brain has 

been estimated for multiple species, but the definition and population size of each neuron 

type are still open questions even in common model organisms: the so called “cell 

census” problem. We propose a methodology that uses operations research principles to 

estimate the number of neurons in each type based on available information on their 

distinguishing properties. Thus, assuming a set of neuron type definitions, we provide a 

solution to the issue of assessing their relative proportions. Specifically, we present a 

three-step approach that includes literature search, equation generation, and numerical 

optimization. Solving computationally the set of equations generated by literature mining 

yields best estimates or most likely ranges for the number of neurons in each type. While 

this strategy can be applied towards any neural system, we illustrate its usage on the 

rodent hippocampus.  
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Introduction 

A quantitative description of the brain’s machinery is essential to understand the 

mechanisms of nervous system functions. The brain encompasses an extraordinary 

quantity and diversity of cells. The human brain contains nearly 100 billion neurons 

(Herculano-Houzel 2009) and the rodent brain contains around 100 million neurons 

(Herculano-Houzel et al. 2011). Neurons can be grouped into many distinct types based 

on their structural, physiological, and molecular features (Bota and Swanson 2007; 

Shepherd et al. 2019). The composition of balanced proportions of neuron types into 

elaborate networks enables the brain’s many specific computations. Estimated counts of 

neuronal types, i.e. a “neuronal census,” would enable more accurate and complete 

models of brain circuits. Towards this goal, the National Institutes of Health launched the 

BRAIN Initiative Cell Census Network (BICCN), a consortium of research projects 

tasked with generating a comprehensive molecular and anatomical cellular “parts list” 

within a three-dimensional reference mouse whole-brain atlas (Ecker et al. 2017).  

 

Counting the neurons of each type in a region requires establishing the identity of 

millions of individual neurons. Rapid progress in genetic phenotyping is on the verge of 

enabling a comprehensive cell-level classification of neurons throughout the mouse 

cortex (Tasic et al. 2018). However, linking these growing molecular data to anatomical 

connectivity requires the analysis of the neuronal input and output elements, namely 

dendritic and axonal arbors. Full morphological characterization of axons and dendrites 

involves physical or optical tissue sectioning to follow the complex branching structures 
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in the dense three-dimensional space. This is a labor-intensive and error-prone procedure 

for a human to perform manually, underscoring the need for increasingly automated 

machine-learning approaches (Peng et al. 2015; Januszewski et al. 2018). Experimentally, 

the problem is exacerbated by the large disproportion between the total length of an 

individual axon (hundreds of millimeters) and its branch thickness (tens of nanometers), 

resulting in a very small ratio (∼ 10−7) between the volume of a neuronal projection and 

the territory it spans. This major obstacle will likely keep the acquisition of 

comprehensive structural data at single-neuron resolution below full-brain scale for many 

years. Therefore, indirect estimation of neuron type population counts is an important and 

useful endeavor.  

 

The neuroscience literature contains a great deal of data relevant to the census problem. 

These include stereological sampling of neuronal densities in specific anatomical areas, 

morphological characterizations of collections of neurons from the same brain region, 

slice imaging of neurons stained for a particular molecular marker, and more (Hamilton 

et al. 2012; White et al. 2019). Each of these data types expresses facts about absolute or 

relative neuronal population sizes. Integrating such diverse sources of information for a 

neuronal census poses two primary challenges: formatting all relevant observations in 

terms of a common neuronal classification scheme; and inferring population sizes from 

the properly formatted evidence.  
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Solving the first challenge will ultimately require a broad consensus in the neuroscience 

community on how to define neuron types objectively and reproducibly (Armañanzas and 

Ascoli 2015). For the purpose of illustration, in this study we tentatively adopt a recent 

circuit-based classification proposal (Ascoli and Wheeler 2016) for which relatively 

abundant data are available for parts of the rodent brain such as the hippocampus. 

Solving the second challenge entails a workflow for integrating contrasting 

measurements and interpolating through missing data points. Operations research offers 

many techniques for leveraging inconsistent and/or incomplete information to achieve an 

optimal estimate for a set of target parameters. These techniques fall under the broad 

umbrella of mathematical optimization. Here we describe the use of mathematical 

optimization to obtain an estimated neuronal census. The neuronal population counts to 

be estimated are represented as free parameters. Data relating neuron types to their 

properties (e.g. from literature search or experiment) are formatted as equations in terms 

of these parameters. These equations are composed into an objective function, which can 

be optimized by a variety of algorithms. Thus, the novelty of this work consists of 

applying, for the first time, established operations research strategies to the open 

neuroscience problem of the brain cell census. The present study illustrates the proposed 

approach with a concrete application to a subregion of the hippocampal formation of the 

mammalian brain.  
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Methods 

In order to describe the operations research aspects of our approach, we first explain how 

it is possible to derive a system of equations encoding constraints for a neuronal census. 

In the most general sense, every neuron type is associated with a distinct collection of 

properties (e.g. morphological, physiological or molecular) through a many-to-many 

relationship. In other words, no single property uniquely identifies a neuron type, and any 

property is typically associated with multiple neuron types. However, the full set of 

properties of a given neuron type is indeed different from that of all other neuron types. 

Useful constraints consist of measurements, observations or reports on neuronal 

properties that can link combinations of neuron types to specific numerical values. 

 

Consider for instance a brain region with only two neuron types, A and B, and 

corresponding counts nA and nb. If a stereology experiment determines the total number 

of neurons in that region to be 1000, this provides a useful constraint (and corresponding 

equation) by setting the sum of the two target counts to the measured value (nA + nB = 

1000). Now suppose that only neuron type A expresses a particular protein and an article 

reports that, out of 20 cells tested in that region, 15 were found to be positive for that 

protein while 5 were negative. This provides another useful constraint (and a second 

equation) by indicating a ratio (3:1) between the two target values (nA/nB =3). In this 

simple case the number of equations equals the number of unknown counts, yielding a 

well-constrained system with a single exact solution (nA = 750, nB = 250). 

 



46 

 

In a more general sense, a system of equations is overdetermined if there are more 

constraints (equations) than parameters and underdetermined if there are fewer 

constraints than parameters. In the census problem, overdetermined systems may arise 

from multiple experiments measuring the same variable (e.g. the total number of neurons 

in a region) and yielding inconsistent results. Unless the equations are trivially redundant, 

overdetermined systems are inconsistent and thus do not have exact solutions. In this case 

numerical optimization may find a best estimate that minimizes the discrepancy from all 

available constraints. Underdetermined systems arise when insufficient constraints are 

available for one or more of the target unknowns. If none of the constraints are mutually 

inconsistent, an underdetermined system typically has an infinite number of solutions. In 

this case numerical optimization may find the range of values defining the possible 

solutions.  

 

Classification and analysis framework 

As a pilot study, we applied our methodology to estimate the population size of each 

known neuron type in the hippocampal subregion of the dentate gyrus (DG). This 

required a neuronal classification scheme for the dentate gyrus. We defined DG cell types 

based on the knowledge base Hippocampome.org, an online repository containing 

morphological, molecular, and physiological information on neurons of the rodent 

hippocampal formation (Wheeler et al. 2015). Hippocampome.org classifies neurons 

primarily by neurotransmitter released and the presence of axons and dendrites in the 

distinct subregions and layers of the rodent hippocampus (Fig. 7). It also includes 
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molecular biomarker (Hamilton et al. 2017) and electrophysiological properties 

(Komendantov et al., 2019) for each type. Hippocampome.org identifies 18 distinct 

neuron types in DG: 14 with cell bodies exclusively present in a single layer and 4 with 

cell bodies distributed across two layers. Thus, the target unknowns or decision variables 

for this neuronal census consist of the population counts for 22 layer-wise types, which 

we represent here with parameters x1, x2, … x22 (Table 4). 

 

 

 

 

Figure 7 Hippocampome.org neuron type classification 

 

A Layer organization of the rodent hippocampus, highlighting the dentate gyrus and 

surrounding regions. b A dentate gyrus granule cell (cell body and dendrites: black, axon: 

red) with color-coded properties (neurotransmitter and axonal-dendritic distributions: 

blue; molecular expression and electrophysiology: green). Label abbreviations: CB 
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calbindin, CR calretinin, H Hilus, PV parvalbumin, SG stratum granulosum, SLM 

stratum lacunosum-moleculare, SLU stratum lucidum, SM/SMi/SMo stratum moleculare 

(inner/outer), SP stratum pyramidale, SR stratum radiatum, Vrest resting voltage 

potential. (Color figure online). 

 

 

 

Table 4 Layer-specific neuron types (left) and decision variables representing 

corresponding counts (right) 
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Our methodology in estimating the neuron type counts consists of three steps: (1) 

searching for actionable information regarding neuronal counts from the peer reviewed 

literature, (2) assembling a set of equations by mapping the extracted information to the 
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chosen neuron type classification scheme, and (3) numerically optimizing these equations 

by minimizing an objective function (discrepancy from empirical evidence) to derive 

type-specific counts (Fig. 8). 

 

Literature Search 

Our literature mining protocol began with an analysis of the bibliography of 

Hippocampome.org v.1.7 (hippocampome.org/php/Help_Bibliography.php). 

Hippocampome.org lists 496 publications used as evidence for the definition of neuronal 

types. Each of the dentate gyrus neuron types that are the subject of this study is 

associated with at least one, but typically several, such publication(s). The full text of 

each DG publication was evaluated for relevance and selected for further mining if it 

contained at least one of four kinds of data: stereology-based measurements of cell counts 

or densities; counts or densities derived from image processing techniques; 

morphological ratios obtained from studies that reconstructed small samples of neurons 

for electrophysiological analysis; and inferences based on volumetric estimates and 

indirect evidence.  

 

Stereology aims to obtain unbiased estimates of cell numbers by inferring population 

sizes in three dimensions from two-dimensional slice images. A traditional stereological 

technique is the “optical dissector” (Russ and Deho 2001), which uses a varying focal 

plane to obtain many optical “slices” of an intact piece of tissue. A relatively newer 

method, the optical fractionator, transforms the highly anisotropic tissue into a 
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homogeneous suspension of free-floating nuclei which can then be counted 

microscopically or by flow cytometry and identified morphologically or 

immunocytochemically (Herculano-Houzel et al. 2015). 

 

 

 

 

Figure 8 Methodological pipeline to estimate neuron type counts through three sequential 

phases 

 

Literature mining, data processing, and numerical optimization. HCO: 

Hippocampome.org. 
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In general, stereology requires specific training, equipment, and histological processing, 

as well as appropriate sampling strategies, careful calibration, and rigorous statistical 

analysis (Bartheld 2001). Recently, newer image processing techniques for automated 

object segmentation have enabled cell counting from an entire brain region of interest 

without need of sampling (Bhanu and Peng 2000; Peng et al. 2013; Attili et al. 2019). 

Morphological ratios are derived from electrophysiological experiments, such as patch 

clamp recordings, designed to understand the cell properties in a specific neural system. 

Unlike stereology, electrophysiological cell sampling is not optimized for counting. 

Papers from the Hippocampome.org bibliography containing any of the above 

information were further mined for any reference cited in the context of the above 

information; moreover, all references citing the selected papers were also mined if their 

title explicitly referred to relevant neuron type data. Stereology-based measurements and 

image-processing calculations were considered more reliable than morphological ratios 

and indirect inferences. This is because stereology and image processing are designed to 

obtain accurate population counts, while morphological ratios typically come from 

experiments that use unclear sampling methodologies and inferences are based on 

uncertain assumptions. Therefore, stereology/image-processing constraints were 

weighted 10:1 against morphological ratios and indirect inference constraints. Rodent 

scaling rules (Herculano-Houzel et al. 2006) were used to integrate mouse data with most 

of the available information that is specific to rats. 

 

Data processing 
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The sets of neurons described by the authors of the identified articles typically did not 

directly align with the Hippocampome.org classification scheme. Thus, constraint 

formation required mapping the literature-defined neuron types (literature types) to 

Hippocampome.org types. Since each Hippocampome.org type has a unique set of 

morphological, electrophysiological, and biochemical properties, we translated the 

description of each literature type into a similarly formalized set of properties, which we 

then used to match one or more Hippocampome.org types. The literature type could next 

be assigned the variable(s) xi associated with the matching type(s). When a literature type 

had properties matching multiple Hippocampome.org types, the sum of the variables 

representing the corresponding Hippocampome.org types was used. As an example of an 

equation generated from an electrophysiological experiment, one of the mined articles 

(Ceranik et al. 1997) states:  

 

“Neurons from dentate gyrus outer molecular layer were recorded and filled with biocytin 

for video microscopy. 40 neurons were adequately stained. Out of these, 6 neurons were 

identified as displaced granule cells, 14 neurons had a local axonal arborization that was 

confined mainly to the OML, 3 projected to the stratum lacunosum moleculare of the 

CA1 region, and 17 neurons projected to the subiculum via the hippocampal fissure.” 

 

In this description, the author defines four different groups of neurons having somata in 

the DG outer molecular layer (SMo in Fig. 7 and Table 4 above). Based on the 

descriptions of their axons, the groups of 14 and 17 neurons were matched to unique 
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Hippocampome.org types MOPP and DG Neurogliaform, respectively. This allowed us 

to construct the equation 
𝑥19

𝑥20
 = 

14

17
 , where x19 and x20 are the parameters representing the 

respective outer molecular layer counts of MOPP and Neurogliaform cells. Equations 

were converted to a percent-error format for optimization ( 
17𝑥19

14𝑥20
 – 1 = Ɛ), where Ɛ is the 

error term (residual). The “displaced granule cells” and “3 projecting to the stratum 

lacunosum moleculare” represented groups with no corresponding Hippocampome.org 

types, so similar equations could not be constructed for these groups. 

 

Optimization 

Let a vector containing population counts x1, x2, … xn be a “count vector” x. Then, given 

a set of constraints c1, c2, . . . cm and corresponding weights w1, w2, . . . wm, our goal is to 

find a count vector 𝑥̂ that best satisfies the weighted constraints. There are multiple 

plausible ways to formulate this optimization problem. One approach is to express our 

constraints as a linear system of equations. This presents a linear least squares problem 

that can be easily solved with popular methods. Unfortunately, constraints are implicitly 

weighted in this formulation by the magnitudes of the known parameters they contain. 

The resultant massive and arbitrary weight disparities undesirably bias optimization 

results. Below we demonstrate this fact and present an alternative formulation that 

minimizes the weighted percent errors of each constraint. 

 

Linear formulation 
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To formulate the problem as linear least squares, we need to derive from each constraint 

ci a linear equation in x. Our constraint set consists of two kinds of constraints: sums and 

ratios: 

𝑥6 + 𝑥11 + 𝑥13 + 𝑥15 = 16,801 (sum) 

𝑥19

𝑥20
=  

6

11
 (ratio) 

Sum constraints are already linear equations in x. Ratio constraints can be converted into 

linear equations in x: 

𝑥19

𝑥20
=  

6

11
→ 11𝑥19 − 6𝑥20 = 0 

Thus, all constraints have a corresponding linear equation. This allows us to formulate 

the matrix equation Ax = b, with A an m ×n matrix with rows corresponding to the left-

hand side coefficients for each equation, and b a vector containing the right-hand-side 

constants or known parameters. The equation has no solution because our linear system is 

overdetermined and inconsistent, but there exists a best fit 𝑥̂ that minimizes the sum of 

squared errors. We need to place boundary conditions on 𝑥̂, since neuron counts cannot 

be too small or large. We also wish to differentially weight the constraints arising from 

different source experiments. Now let Li and Ui be lower and upper bounds for xi, and let 

W be an m ×m diagonal matrix with weights w1, w2, … wm the diagonal. Then we can 

define the problem as follows: 

Ɛ𝑖
𝐿(𝑥) =  ∑(𝐴𝑖𝑗𝑥𝑗) −  𝑏𝑖

𝑛

𝑗=1
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∑ 𝑤𝑖 (Ɛ𝑖
𝐿(𝑥))

2

=  ||𝑊
1
2(𝐴𝑥 − 𝑏)||2

𝑚

𝑖=1

 

𝑥̂ =  𝑎𝑟𝑔𝑥𝑚𝑖𝑛||𝑊
1
2(𝐴𝑥 − 𝑏)||2 

subject to Li ≤ xi ≤ Ui for xi ∈ x 

This is a constrained, weighted, linear least squares optimization problem. Most 

numerical programming environments provide off-the-shelf routines that can efficiently 

solve this type of problem (e.g. scipy.optimize.lsq_linear in Python, bvls in R). 

Unfortunately, this formulation has an undesirable property for count estimation. Our 

constraints contain known parameters of widely varying magnitudes. Consider the error 

terms Ɛ (𝑥)𝑎
𝐿  and Ɛ (𝑥)𝑏

𝐿 for two of our sum constraints: 

Ɛ (𝑥)𝑎
𝐿 = (𝑥1 + 𝑥7 +  𝑥8 + 𝑥9 +  𝑥12 + 𝑥14 + 𝑥16 + 𝑥17 + 𝑥21 + 𝑥22) − 1,200,000 

Ɛ (𝑥)𝑏
𝐿 = (𝑥6 + 𝑥11 +  𝑥13 + 𝑥15) − 16,801 

Now suppose we have a count vector x∗ such that both constraints a and b are violated 

by some common factor F. Then Ɛ (𝑥∗)𝑎
𝐿  and Ɛ (𝑥∗)𝑏

𝐿  are: 

Ɛ (𝑥∗)𝑎
𝐿 = 1,200,000𝐹 − 1,200,000 = 1,200,000(𝐹 − 1) 

Ɛ (𝑥∗)𝑏
𝐿 = 16,801 𝐹 − 16,801 =  16,801(𝐹 − 1) 

The ratio of the errors is: 

Ɛ (𝑥)𝑏
𝐿

Ɛ (𝑥)𝑏
𝐿 =  

1,200,000(𝐹 − 1)

16,801(𝐹 − 1)
=

1,200,000

16,801
 ≈ 71 

Thus, when constraints ca and cb are equally violated in percentage terms, our squared 

error objective function penalizes the deviation from ca approximately 712 = 5041 times 

more than the deviation from cb. Thus, constraints are implicitly weighted according to 
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the size of the known parameters (constants) they contain. This property is undesirable, 

since there is no reason to expect the precision of the source measurements to increase 

with their magnitude. One could eliminate the implicit weighting for sum constraints by 

normalizing with respect to the measured count. However, no equivalent operation is 

available for ratio constraints. Therefore, the linear formulation is a poor choice for 

application to counts estimation. 

 

Percent error formulation 

We can avoid the implicit weighting in the linear formulation by directly optimizing the 

percent errors of each constraint. Let LHSi(x) and RHSi be the left and right sides of the 

measurement form of constraint ci (all xi on left, measured constant on right; see 

‘Equations’ in supplementary materials). Incorporating weights and boundary constraints, 

minimization of the squared percent errors gives the optimization problem: 

Ɛ (𝑥) =  
𝐿𝐻𝑆𝑖(𝑥)− 𝑅𝐻𝑆𝑖

𝑅𝐻𝑆𝑖
=  

𝐿𝐻𝑆𝑖(𝑥)

𝑅𝐻𝑆𝑖
𝑖

𝑃 − 1 

𝑥̂ =  𝑎𝑟𝑔𝑥 min ∑ 𝑤𝑖(𝜀𝑖
𝑃(𝑥))2

𝑚

𝑖=1

 

Subject to 𝐿𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝑖 𝑓𝑜𝑟 𝑥𝑖 ∈ 𝑥 

This formulation does not suffer from the implicit constraint weighting of the linear 

approach. Equations constructed in this manner have been listed in Table 5. 

 

Algorithms and implementations 
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A diverse array of algorithms exists for numerical optimization. The relative performance 

of different algorithms depends on the characteristics of the objective function and the 

tuning of algorithm hyperparameters, e.g. learning rates and boundary/initial conditions. 

A comprehensive review of available algorithms is beyond the scope of the present 

article. Instead we only describe the algorithms we applied to the DG neuronal census  

 

 

 

Table 5 Representative equations and scientific meaning with original source, type of 

experimental evidence, and corresponding weights (wt.). 
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problem. Some of these algorithms require boundary and/or initial conditions for x. 

Where required, we chose a lower bound of 0 for all neuron types, an upper bound of 1.2 

million for granule cells (the principal cells of the DG), and an upper bound of 1 million 

for all other neuron types. We chose initial conditions to be consistent with estimates 

from an early modeling proposal (Morgan et al. 2007): 800,000 for granule cells, 90 for 

hilar ectopic granule cells, 15,000 for mossy cells, 5000 for mossy Molden cells, and 

1000 for all other neuron types.  

 

The non-negative least squares algorithm solves the linear least squares problem 

𝑎𝑟𝑔𝑥𝑚𝑖𝑛||Ax − b||2 with the constraint x ≥ 0 (Lawson and Hanson 1995). This algorithm 

does not take any hyperparameters. The bounded-variable least squares variant (Stark 

and Parker 1993) minimizes the same objective function, but subject to explicit boundary 

conditions. We used the respective R implementations nnls (Mullen and van Stokkum 

2015) and bvls (Mullen 2015). Boundary conditions for bvls were set as described above. 

The interior point algorithm is popular for solving large nonlinear programming 

problems (Byrd et al. 2000). This algorithm requires boundary and initial conditions in 

addition to other hyperparameters. We used the MATLAB implementation fmincon 

(Mathworks, Natwick, MA, USA). Boundary and initial conditions were set as described 

above. The following hyperparameters were set to their default values: maximum number 

of iterations (1000), variable tolerance (10-6), function tolerance (10-6), constraint 

tolerance (10-6), and unboundedness threshold (10-20). The maximum number of function 
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evaluations was set to 100,000 and the derivative approximation was calculated by 

forward differences with LDL factorization and an initial barrier of 0.1. 

 

Simulated annealing is a popular optimization method for complex non-linear objective 

functions with multiple local minima (Van Laarhoven and Aarts 1987; Xiang et al. 2013). 

This algorithm requires boundary and initial conditions in addition to other 

hyperparameters. We used two different implementations: MATLAB’s simulannealbnd 

(fast annealing option) and R’s optim_sa (Husmann et al. 2017). Boundary and initial 

conditions were set as described above. All other hyperparameters were set to their 

default values: function tolerance (10−6), maximum number of inner loop iterations 

(100,000), reannealing interval (100), outer loop temperature reduction (0.99), maximum 

function evaluations per variable (3000), stall iterations per variable (500), and initial 

temperature (100).  

 

The pattern search method finds a sequence of points that approach an optimal point 

based on an adaptive mesh (Audet and Dennis 2003; Conn et al. 1997). The value of the 

objective function either decreases or remains the same from each point in the sequence 

to the next. This algorithm requires boundary and initial conditions in addition to other 

hyperparameters. We used the MATLAB implementation patternsearch. Boundary and 

initial conditions were set as described above. The polling method was set by two 

parameters: poll order algorithm (“Consecutive”) and search function 

(“GPSPositiveBasis2N”). All other hyperparameters were set to their default values: 
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initial mesh size (1), expansion factor (2), contraction factor (0.5), initial penalty (10), 

penalty factor (100), bind tolerance (10-3), size tolerance (10,000), mesh tolerance (10-6), 

maximum number of iterations per variable (100),maximum function evaluations per 

variable (2000), variable tolerance (10-6), function tolerance (10-6), and constraint 

tolerance (10-6). 

 

Each of the algorithms returns an estimated count vector 𝑥̂. The population counts for 

the 18 DG neuron types of Hippocampome.org can then be obtained simply by summing 

the layer-specific vector elements for each type (e.g. the count of Basket CCK+ cells 

equals 𝑥̂9 + 𝑥̂10) and rounding to the closest integer. 

 

Results 

The literature search and data processing procedures described above yielded 50 

independent pieces of information (constraints) extracted from 32 distinct peer-reviewed 

scientific sources pertinent to the cell census of the unilateral (i.e. one hemisphere only) 

dentate gyrus of the adult rat. The experimental evidence for 22 constraints was based on 

stereology, for 6 on image processing, for 13 on morphological ratios, and for 9 on 

indirect inferences, resulting in a total sum of weights of 302. These constraints were 

formulated as mathematical equations (Table 5) and assigned weights based on the 

reliability of each source. Here we only present representative examples for each type of 

evidence for illustrative purposes. The full set of 50 equations used in the optimization, 
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their scientific interpretations, and source quotations are included in the ‘Equations’ tab 

of the supplementary materials at hippocampome.org/php/data/ANOR_suppl_mat.xlsx. 

 

We tested three algorithms (interior point, pattern search, and simulated annealing) on 

the percent-error optimization problem and two (non-negative least squares and bounded 

variable least squares) on the linear least squares problem. Though non-negative and 

bounded variable least squares optimized the linear least squares objective, we scored 

their solution vectors using the percent-error objective for comparison with the other 

algorithms (Table 6). Interior point and pattern search had equivalent performance, 

superior to simulated annealing. Simulated annealing performance depended on the 

implementation (MATLAB was superior to R). Non-negative and bounded-variable least 

squares performed equivalently, indicating a lack of sensitivity to upper bounds for this 

problem. 

 

 

 

Table 6 Optimization algorithms and their percent-error objective function values 
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Although interior point and pattern search converged to the same objective value, their 

solution vectors were different. Individual vector elements (i.e. population counts) varied 

substantially (>30%) between the two vectors for 8 out of 18 neuron types (Table 7).  

 

 

 

Table 7 Estimated dentate gyrus cell counts by neuron type for the two best-performing 

algorithms 
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Interestingly, the midpoint of the vectors yielded the same objective value. This suggests 

that the two vectors exist within a continuous solution space. Non-negative and 

bounded-variable least squares yielded qualitatively different results, with many low 

population neuron types set to their lower bound. This is explained by the above analysis 

of implicit weighting in the linear least squares problem formulation. Solution vectors for 

all algorithms are provided in the ‘Results’ tab of the supplementary materials at 

hippocampome.org/php/data/ANOR_suppl_mat.xlsx. 

 

These results cannot be validated directly due to the unavailability of independent neuron 

type count data, with the exception of granule cells and hilar ectopic granule cells. 

Nevertheless, the objective value for the two best-performing algorithms corresponded to 

a total residual error of 7.8% of the weight sum (302). This number may be interpreted 

as a measure of the residual deviation from published estimates and the existing 

disagreement within the literature. On the one hand, the results are most strongly 

determined by the stereological and image analysis data, since we weighted those sources 

ten times more than the evidence from morphological ratios and indirect inferences. On 

the other hand, in the absence of alternative approaches to determine neuron type counts, 

stereology and image analysis counts provide the most reliable indirect evidence to 

evaluate the plausibility of these estimates on a layer-by-layer basis. Specifically, we 
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summed the averages of the neuronal counts obtained from the interior point algorithm 

and pattern search across each of the three dentate gyrus layers: granular (SG), hilar (H), 

and molecular (SM). We then compared these values against the distributions of the 

corresponding estimates available in the literature (Fig. 9). Our results fall within one 

standard deviation of the mean in all three cases (SG: 988,759 vs. 1,115,971 ± 260,218, 

N = 13; H: 46,610 vs. 69,484 ± 39,079, N = 10; SM: 158,846 vs. 289,031 ± 124,334, N = 

3). The values of all data points for this analysis are included in the ‘stereology 

visualization’ tab of the supplementary data at 

hippocampome.org/php/data/ANOR_suppl_mat.xlsx. 
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Figure 9 Layer-by-layer comparison of the average neuron counts: 

From interior point and pattern search (red asterisks: layer totals from Table 7) against 

literature-based stereological and image analysis estimates in hilus (Grady et al. 2003; 

Fitting et al. 2009;Mulders et al. 1998; Ramsden et al. 2003; Lister et al. 2006; Sousa et 

al. 1998; Rasmussen et al. 1996; Erö et al. 2018; Murakami et al. 2018; Attili et al. 2019), 

granule layer (West et al. 1991; Hosseini-Sharifabad and Nyengaard 2007; Bayer et al. 

1982;Mulders et al. 1998; Rasmussen et al. 1996; Kaae et al. 2012; Rapp and Gallagher 

1996; Fitting et al. 2009; Sousa et al. 1998; Calhoun et al. 1998; Insausti et al. 1998; Erö 

et al. 2018; Murakami et al. 2018), and molecular layer (Erö et al. 2018; Murakami 

et al. 2018; Attili et al. 2019). The bottom and top of the boxes represent first and third 

quartiles respectively, the bold midline is the median, the whiskers indicate the span of 
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data within one and a half inter-quartile ranges from the box, and the circles are the 

remaining points. H hilus, SG Stratum granulare (granule layer), SM stratum moleculare 

(molecular layer). 

 

 

 

Conclusions 

This work demonstrates that the proposed pipeline of annotation, conversion into 

equations, and optimization can yield a viable solution to the neuronal census problem. 

Previous approaches to this open problem in neuroscience in another hippocampal region 

(area CA1) entailed deriving estimates for interneuron type populations from the 

literature chiefly based on expression of neurochemical markers (Bezaire et al. 2016). 

However, due to the extant sparsity of neurochemical marker data, that effort relied on a 

very large number of forced assumptions that are still awaiting empirical validation 

(Bezaire and Soltesz 2013). More recently, the positional mapping of distinct inhibitory 

subtypes in the developing somatosensory cortex was algorithmically inferred by 

combining cellular and molecular constraints from protein tissue stains and genetic 

expression profiles (Keller et al. 2019). Here we use a variety of relevant data from the 

literature to derive the resultant neuron type populations. Our use of optimization 

algorithms allows one to solve the cell census problem by leveraging all suitable 

information relating reported counts to neuronal properties, including location and 
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transcriptomics, but also electrophysiology, morphology, and any other available 

empirical evidence. The DG neuron type counts reported is this study should only be 

considered as preliminary results presented for the sole purpose of providing an in-depth 

illustration of this methodology. Further research must be conducted before finalizing the 

appropriate choice of algorithms for each specific use case. The use of simulated 

annealing for convex optimization is actively investigated (Kalai and Vempala 2006; 

Abernethy and Hazan 2015). Restricted Newton step methods such as nonlinear least 

squares (More 1978) and the Trust-Region-Reflective Algorithm (Coleman and Li 1996; 

Gill et al. 1981) may also be used to optimize overdetermined systems. Exploring 

multiple algorithms with different parameter settings is essential to identify the 

combination of implementation details yielding the best results. 

 

Ultimately, however, the robustness of results will depend on the quality and quantity 

of the available data. Producing more complete and useful results will thus require 

feeding further constraints to the optimization algorithms. Possible sources of additional 

constraints include forthcoming results of ongoing experiments, more thorough data 

mining of existing literature, and assumptions based on domain expert knowledge. The 

amount of relevant empirical evidence in neuroscience has been increasing over the years 

and this growth is widely expected to continue in the foreseeable future. For the time 

being, the presented count estimates are likely inflated due to the exclusion of as-yet 

undiscovered neuron types as well as of types too vaguely described in publications for 
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inclusion in Hippocampome.org. Future analyses could account for these neurons by 

including additional decision variables representing unknown types in each layer.  

 

It is noteworthy that two distinct solutions were found in the case of dentate gyrus neuron 

types counts with equal objective value but considerable differences in population sizes. 

The fact that the midpoint of these two solution vectors also constitutes a solution of 

equal objective value suggests the existence of an infinite set of optimal solutions. A 

possible approach to better selecting a solution within this set would be to add a 

regularization term (Hoerl and Kennard 1970; Tibshirani 1996; Wang et al. 2006) on the 

cell counts and bias them towards zero. Here we simply interpret the results as possible 

ranges of plausible values, in line with the multiple animal strains and varied age groups 

corresponding to the various constraints utilized in the optimization. As a positive side 

effect, even an underdetermined system can be useful in identifying the most under-

constrained target unknowns in need of additional experimental evidence. Researchers 

can leverage this information to design specific experiments for revealing the missing 

information. 

 

In this study, we assessed the reliability of available data at the level of experimental 

categories (e.g. stereology vs. morphological ratios) and employed this information in 

assigning weights. Certain source articles, however, may contain useful information to 

quantify the reliability of individual datasets, such as a standard error for their 

measurements (e.g. Buckmaster and Jongen-Relo 1999). Such an analysis also provides a 
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method to weigh the constraints and corresponding equations in the optimization. Out of 

the 32 publications utilized in the presented application to the dentate gyrus neuron type 

census, 14 reported a standard error or similar estimates of variance. While here we 

simply utilized averages from all information sources, a future improvement might 

consist of quantifying the uncertainty in the morphological 

ratios with a statistical model. 

 

In summary, operations research offers a powerful approach to generating quantitative 

estimates and a measurable error for the unknown counts of cell types. Although we 

illustrated this method to estimate neuronal counts in the dentate gyrus, this technique can 

be extended to quantify the neuron type population size in any region of the brain. In 

future work, we aim to extend this methodology for estimating populations of neuronal 

types beyond the dentate gyrus and throughout the entire hippocampal formation, 

including areas CA1, CA2, CA3, the subiculum, and the entorhinal cortex. 
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CHAPTER THREE: QUANTIFICATION OF NEURON TYPES IN THE 

RODENT HIPPOCAMPAL FORMATION BY DATA MINING AND 

NUMERICAL OPTIMIZATION (SAROJINI M. ATTILI … GIORGIO A. 

ASCOLI) 

Quantifying the population sizes of distinct neuron types in different anatomical regions 

is an essential step towards the goal of building a brain map. Although there are estimates 

for the total neuronal populations in different species today, the distinct number as well 

as the definition of each neuron type is still a subject for research in the scientific 

community. Hippocampome.org is an open-source knowledge base with morphological, 

physiological, and molecular information for 122 neuron types in the rodent hippocampal 

formation. Although this framework effectively identifies all known neuron types in this 

system, in conjunction with their molecular and electrophysiological properties, their 

population sizes remain largely unknown. The goal of this study is to contribute 

quantified estimates for the distinct neuron types of Hippocampome.org by leveraging 

data from existing literature and using numerical optimization. We report the total 

neuronal estimates for the six subregions – dentate gyrus, CA1-3, subiculum, and 

entorhinal cortex to be 2,958,500. The highest numbers are from dentate gyrus at 

1,197,548, and the lowest are from the subregion CA2 at 29,493. In addition to fulfilling 

this goal, we conducted sensitivity analysis to obtain ranges and examine the reliability of 

our estimates, studied the distribution of biomarkers and firing patterns, and analyzed 

population estimates and numerical densities of four broad groups with respect to 

volumes across the hippocampal formation. Our analysis indicated that dendritic 

targeting neuron densities significantly decreased with increasing volume. Population 
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estimates and related code including mined data have been made available on the current 

version of Hippocampome.org. 

Keywords: Hippocampus, Neuron types, Rodent, Numerical optimization, Operations 

Research  

Introduction 

The brain is a highly complex organ encompassing an extraordinary quantity and 

diversity of cells, for which there is still a substantial amount of knowledge needed to 

fully understand the brain functionality. For instance, despite having information on the 

different anatomical parcels, cell types, and molecular and electrophysiological 

mechanisms of the brain (H Damasio, 1995), compared to the anatomical characterization 

and research on the different high-level parcels in the brain (Nolte 1993; Taubert et al., 

2010; Lange et al., 1997), the knowledge on low-level components such as neuron types 

is limited. As an example, we still lack a complete census or taxonomy of brain cell types 

(Mukamel and Ngai, 2019), even though there is notable progress in recent times with 

developments in a single cell transcriptome, epigenome profiling, and anatomical 

methods. 

Attaining a comprehensive census of distinct neuron types is fundamental to 

understanding the functionality of the brain and generating working models. 

Mathematical modeling, statistical analysis, and exploratory data mining are powerful 

techniques necessary to understand the general principles of brain function (Mott et al., 

2018). Building upon this notion, the US Brain Research through Advancing Innovative 

Neurotechnologies (BRAIN) Initiative aims to develop new tools to accelerate and 
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deepen our understanding of the human brain function in health and disease (The BRAIN 

Initiative, 2014). In addition, the National Institutes of Health launched the BRAIN 

Initiative Cell Census Network (BICCN), a consortium of research projects tasked with 

generating a comprehensive molecular and anatomical cellular “parts list” within a three-

dimensional common reference mouse whole-brain atlas (Ecker et al., 2017).  

 

The knowledge repository Hippocampome.org, which contains the beginnings of a parts 

list for the hippocampal formation, accumulates information on the anatomical, chemical, 

and biophysical properties of rodent hippocampal neurons (Wheeler et al., 2015). The 

resource primarily defines neuron types from the six hippocampal formation subregions, 

dentate gyrus (DG), CA3, CA2, CA1, subiculum (SUB), and entorhinal cortex (EC), 

based on their neurotransmitter and the spatial distributions of their axons and dendrites 

(Hamilton et al., 2016). As of version 1.9 (Sanchez-Aguilera, et al., 2021), 122 neuron 

types have been identified and new neuron types will be added as knowledge increases in 

the field. The ultimate goal of Hippocampome.org is to create biologically plausible 

computational models of the hippocampus. To achieve this goal, one of the key pieces of 

information needed is the quantified estimates of the classified neuronal types. The 

present study aims at obtaining these estimates using computational methods, while also 

relying on values obtained from the existing scientific literature. The addition of 

numerical estimates for the 122 neuron types would substantially enhance the already 

rich Hippocampome.org knowledge repository and would help the community advance 
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towards the first biologically plausible simulation of a whole functional region of the 

mammalian brain. 

 

In terms of attempts to understand the brain, extensive research has been conducted in 

understanding principal neurons in some regions but relatively fewer interneurons 

(Cembrowski et al., 2016; ESL Faber et al., 2001; Canto and Witter, 2012; S Goebbels et 

al., 2006; B Tahvildari and Alonso, 2005; Suzuki and Bekkers, 2011; Ehrlich et al., 2012; 

Rasmussen et al., 1996) have been studied. Among the six hippocampal subregions of 

interest, the DG and area CA1 have been most widely researched (Armstrong et al., 2011, 

Buckmaster et al., 1992, Ceranik et al., 1997, Han et al., 1994, Lubke et al., 1998, Mott et 

al., 1997, Grady et al. 2003, Fitting et al. 2009, Mulders et al. 1997, Ramsden et al. 2003, 

Mcbain et al., 1994, Sik et al., 94, vida et al., 1998, Svoboda et al., 1999, Bezaire et al., 

2016, West et al., 1991, Hosseini-Sharifabad and Nyengaard, 2007) followed by CA2, 

CA3 and the EC (Rapp and Gallagher, 1996, Kaae et al., 2012, Lister et al., 2006, Fitting 

et al., 2009, Kohus et al, 2016; Szabo et al., 2014; Losonczy et al., 2004; Gulyas et al., 

2010; Szabadics et al., 2010; Mercer et al., 2007). The SUB is the least researched area 

(Harris and Stewart, 2000; Mulders et al., 1997, Lister et al., 2006, Andrade 2000, Fitting 

et al., 2009, Kim et al., 2017, Bjerke et al., 2021) among the six subregions and has only 

three neuron types classified on Hippocampome.org. Although the other areas have a 

higher number of neurons classified, there is no neuronal quantification reported for 

many of these classified types.  
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Traditional methods of quantification, such as stereology and modern methods that use 

computation, are generally used to report layer based total counts or principal cell counts 

(Grady et al. 2003, West et al., 1991, Murakami et al., 2018, Ero et al., 2018, Attili et al., 

2019). Individual interneuron counts have been scarcely reported (Jiao et al., 2007, Ero et 

al., 2018, Bezaire et al., 2016). However, there are abundant electrophysiological studies 

that experiment with a wider variety of neuron types and many of these results can be 

used to derive ratios between the quantities of individual cell types (McBain et al., 1994; 

Sik et al., 1994, Buhl et al., 1994, Hajos and Mody 1997, Kohus et al., 2016; Szabo et al., 

2014). Apart from these studies, there are computational modeling papers that report the 

number of principal cells and other well studied interneurons such as basket cells, 

neurogliaforms, etc. (Bezaire et al., 2016). Another important sources of data are papers 

that report proportions or quantities of neurons from hippocampal layers that are positive 

to certain biomarkers of interest (Jinno and Kosaka, 2006; Kim et al., 2017, Kosaka et al., 

1987, Bezaire et al., 2016). Every such relevant piece of evidence has been transformed 

into linear equations and numerically optimized to arrive at the population estimates in 

this study. 

Methods 

This work is focused on computing numerical estimates of the 122 neuron types 

classified by Hippocampome.org. We made use of scientific data from the existing 

literature to come up with the population estimates. Our methodology includes heavy 

data mining, data transformation, and numerical optimization. On a high level, we can 

divide the work into a three-step approach that includes data mining or literature search; 
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equation generation, which entails the transformation of the mined data; and numerical 

optimization, which finally produces the estimated counts for each neuron type of 

interest. 

 

To begin with, we relied heavily on the existing scientific literature that was available 

from credible sources. Hundreds of journal articles were mined to identify any references 

to one or more neuron types that corresponded to the ones defined on the 

Hippocampome.org. As there is no standardization of nomenclature of the hippocampal 

neurons, it is common that two different researchers give different names to the same 

‘type.’ Hence, during the data mining phase, the first step was to identify the neuron type 

in the article and map it to the appropriate type on Hippocampome.org, where the 

locations of the soma, axon, and dendrites were the primary factors in mapping the cell 

type. In rare cases, where the morphological patterns were identical, understanding 

biomarker reactivity was important in the identification/mapping process. 

 

The data mining process began with a structured search. Every neuron type on 

Hippocampome.org contains the list of scientific sources or ‘evidence’ information, 

figures, other names it has been referred to as, its electrophysiological properties, and 

connectivity patterns. We reviewed each article listed under the ‘evidence’ page for each 

neuron type on Hippocampome.org. A search was conducted through the reference 

articles for each of these papers for any relevant sources. Another search was conducted 

to find relevant articles that cited these papers of our interest. Thus, a ‘cited search’ and a 
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‘citing search’ were performed. Apart from this structured method, articles of interest 

were searched for on Google scholar or other credible sources.  

 

Identification of neuron types 

The 122 neuron types have further been divided into 198 types based on their somatic 

location. In order to translate research data into a computable format, we assigned a 

variable for each neuron type with exclusive soma/axon/dendrite location and biomarker 

reactivity in every subregion of the hippocampus. In other words, we divide one neuron 

type into multiple types if it has somata in more than one location/layer. For example, 

Hippocampome.org defines Basket cells in the CA1 with somata in stratum pyramidale 

(SP) or stratum oriens (SO). In this case, we divide the cell type into two types – SP-

Basket and SO-Basket. During the data mining process, it was noted that information 

regarding neuronal groups in some layers that were not classified on Hippocampome.org, 

was available in the literature (Ero et al., 2018). Nine additional neuronal groups were 

added to our study – CA2 SLM excitatory, CA2 SLM inhibitory, CA2 SO inhibitory, 

CA2 SR inhibitory, CA3 SLM excitatory, interneurons in the polymorphic layer of the 

subiculum, deep layer interneurons of the entorhinal cortex, medial entorhinal cortex 

layer I interneurons, and lateral entorhinal layer I interneurons. Upon dividing the types 

by soma as described earlier and adding the 9 additional neuronal groups, we ended up 

with 207 neuron types and corresponding variables for numerical optimization. The list 

of variables assigned for neuronal types based on our classification system can be found 

in the supplementary table. A total of 207 types have been categorized from six 
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hippocampal subregions as follows: 22 types in the DG, 37 types in area CA3, 9 types in 

area CA2, 64 types in area CA1, 5 types in the SUB and 70 types in the EC. 

 

Leveraging existing scientific literature 

Leveraging existing scientific literature: Data mined from various sources were recorded 

in a structured format that included low level details, such as the location of the text of 

interest, species information, interpretation of the text, author, source name, and so on. 

Rodent scaling rules (Herculano-Houzel et al., 2006) were used to integrate mouse data 

with most of the available information that is specific to rats – a multiplier of 2.44 was 

used to convert mouse data to rat. Each of the interpretations was converted into a linear 

algebraic equation that was later normalized and used as part of an objective function. 

 

We added weights to each equation based on the experimental method described in the 

source. Stereology-based measurements and image-processing calculations were 

considered more reliable than morphological ratios and indirect inferences. This is 

because stereology and image processing are designed to obtain accurate population 

counts, while morphological ratios typically come from experiments, which use unclear 

sampling methodologies, and inferences are based on uncertain assumptions. Therefore, 

stereology/image-processing constraints were weighted 10:1 against morphological 

ratios, indirect inference constraints, and biomarker data. 

 

Data transformation 
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Each equation is transformed into a normalized least squared form, to which a weight 

was added, i.e., 𝑟 = ∑ (𝑤𝑖(𝑥𝑖
𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 − 𝑥𝑖

𝑑𝑎𝑡𝑎)/𝑥𝑖
𝑑𝑎𝑡𝑎)

2
𝑛
𝑖 , where r is residual, i is the 

equation number, n is the total number of equations, w is the weight, and x is the neuron 

count. These weighted least squared residuals for each subregion are composed into an 

objective function, which would then be optimized to obtain estimates for the unknown 

variables – neuron types. We describe the low-level details of equation construction – 

linear formulation and transformation into normalized form in the ‘Methods’ section of 

our previously published work (Attili et al., 2020). Table 8 lists the number of neuron 

types for each subregion, number of equations generated from the different sources and 

the corresponding residual errors. 

 

 

 

Table 8 The number of neuron types (including the 9 neuronal groups added), variables, 

equations by type and the residual errors for the six subregions of the hippocampal 

formation.  

Subregion 

Number of 

neuron 

types 

Number 

of 

variables 

Total Number of equations Residual 

Error 
Sum Ratio Inequality 

DG 18 22 
115 11.44% 

37 28 50  

CA3/CA2 30 45 
166 18.65% 

37 31 98  

CA1 42 64 
208 21.47% 

41 77 90  
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SUB 3 5 
30 11.45% 

18 1 11  

EC 31 70 
126 

22.02% 
47 39 40 

 

 

 

 

Algorithm selection and optimization  

After a careful study and testing of several optimization algorithms, we decided to use 

PSwarm (Vaz and Vicente, 2007) for this work. PSwarm is a global optimizer that 

combines pattern search (Lewis and Torczon, 2002) and particle swarm (Kennedy and 

Eberhart, 1997;  Shi, 2001) algorithms for bound and linear constrained problems. We 

used a lower bound of ten and an upper bound of a million for each neuron type variable. 

Once the algorithm was finalized and tested, the weighted least squared residuals for each 

subregion were used to develop an objective function that would undergo optimization. 

Results from 200 iterations of optimizations were examined and iterations with the lowest 

error were selected for analysis. In some cases, we saw that multiple neuron types had 

constant sum; we equally divided this sum and attributed the amount to each of the 

neuron types.  For example, in the multiple iteration report, an interdependency was 

found between three neuron types from CA3 - Interneuron Specific Oriens, O-LMs in 

SO, Trilaminars in SO. Their sum was a constant of 6,350 in every iteration. We equi-

divided this sum to assign a value of 2117 to each of the three neuron types. The 

http://www.norg.uminho.pt/aivaz
http://www.mat.uc.pt/~lnv
https://scholar.google.com/citations?user=hdoSFx0AAAAJ&hl=en&oi=sra
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complete list of variables, equations, interpretations, and sources can be found in the 

supplementary material. 

 

Ranges  

To assess the reliability of results, sensitivity analysis was conducted to determine the 

range of each neuron type’s numerical estimate. Lower and upper bounds were 

programmatically computed at 5% of the residual error for the subregion for every 

neuron type. Based on the optimum and ranges, the reliability for each neuron type was 

determined. 

P-values were calculated using Pearson’s coefficient and the number of data points to 

understand significance. During the analysis phase, all p-values in this study have been 

corrected using the Bonferroni method (Napierala, 2012). 

 

Results 

The primary goal of this work is to obtain estimated populations of neuron types from the 

six subregions of the rodent hippocampus as defined on Hippocampome.org. Our work 

consists of leveraging results from existing scientific literature and the knowledge 

contained on Hippocampome.org to compute numerical estimates for the defined neuron 

types. We made use of applied mathematics and operations research methods for this 

effort. We described an overview of our methodology in a previous publication (Attili et 

al., 2020), where we estimated neuronal numbers for the neuron types in the DG. Here 

we added the use of biomarker data to improve our estimates.  
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Data sources containing neuron type information needed for this work could be 

categorized as follows – Stereology, Electrophysiological Ratios, Computational, Marker 

Inequalities, and Others. Research results yielded quantified estimates of neuron types, 

where the numbers could be totals per hippocampal subregion, per layer, for a subset of 

neuron types, or for the neuron type itself. For example, Coulin et al report 1,130 Cajal-

Retzius cells in the CA1 region (Coulin et al., 2001), and Murakami and colleagues 

report 178,123 cells in the CA1 stratum lacunosum-moleculare (SLM) (Murakami et al., 

2018). These types of data come from diverse sources including stereology (Grady et al. 

2003), computational methods (Murakami et al., 2018), modeling papers (Bezaire et al., 

2016), immunohistochemistry-based work (Fuentealba et al., 2008), etc. For example, 

Bezaire et al estimate the CA1 pyramidal cells to be around 311,500 (Bezaire et al., 

2016).  

 

Another type of source are electrophysiological experiments conducted on the rodent 

hippocampal formation. Often, researchers record from the different subregions or layers 

of the hippocampus, identify the resultant cell types, and study their properties. From this 

identification, we derive possible proportions of the neuron types in that location. For 

example, the following is the text from an experiment that was used to extract an 

electrophysiological ratio (Gulyas et al., 2010): “From a total number of 61 PV-EGFP 

cells recorded in different sets of experiments, in 30 cases the biocytin-filled boutons 

were localized to st. pyramidale and only rarely approached ankyrin G-stained profiles 
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(Fig. 1c 1–3) suggesting their FSBC [fast-spiking Basket cell] origin. Conversely, in the 

remaining 31 cases the axonal arbor was densest in st. pyramidale and neighboring st. 

oriens border, and the boutons formed close appositions with ankyrin G-immunoreactive 

segments, often in climbing-fiber manner, similar to the axon terminals of AAC [Axo-

axonic cells].” 

 

As a first step in determining counts from this quotation, the neuron types were mapped 

to Hippocampome.org neuron types. As per the description and figures in the paper being 

mined, it was determined that the neuron types of interest were Basket cells and Axo-

axonic cells in the area CA3. The cited paragraph provides further information about the 

proportions from the recorded results. Here, we interpret that the ratio of Basket to Axo-

axonic cells is 30:31. We mined several such electrophysiology based experimental 

sources for each subregion. 

 

Hippocampome.org provides a list of neuron types that are either positive or negative, or 

in other cases, ‘undetermined’ for 20 different biomarkers. We used information from a 

few articles that published neuronal counts or densities of the neuron types positive to the 

biomarker/s of interest. These numbers were used to construct linear inequalities in 

conjunction with biomarker data on Hippocampome.org. For example, Jinno and Kosaka 

report numerical densities of GABAergic neuron types for eight different biomarkers in 

the mouse hippocampus (Jinno and Kosaka, 2006).  
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The biomarker page of Hippocampome.org marks the 122 neuron types as ‘positive,’ 

‘negative,’ or ‘undetermined’ for twenty biomarkers (White et al., 2019). These 

molecular expression profiles are a result of existing evidence from multiple sources of 

scientific literature and relational inferences. There are several instances with conflicted 

results regarding biomarker reactivity. In some cases, the neuron type has both positive 

and negative subtypes to the biomarker of interest – for example, the horizontal Basket 

cells of region CA1 have mixed reactivity towards parvalbumin (Tricoire et al., 2010; 

Losonczy et al., 2002; Maccaferri et al., 2000). In other cases, there is no known evidence 

of reactivity to a biomarker, in which case reactivity to the biomarker is labeled as 

‘unknown.’  

 

Since there are a significant proportion of ‘undetermined’ neuron types (positive-negative 

subtypes, unresolved subtypes, and unknown subtypes) on the Hippocampome.org 

biomarker page, we could not directly translate data from the literature into an equation, 

as in the case of sums and ratios. In the case of biomarkers, we translated the data into 

inequalities, such as the evidence for biomarker reactivity that has been reported by Kim 

et al. and Jinno and Kosaka (Kim et al., 2017; Jinno and Kosaka, 2006). Kim et al. 

studied mouse neuron numbers that are positive for parvalbumin, somatostatin, and 

vasoactive intestinal polypeptide, and Jinno and Kosaka (Jinno and Kosaka, 2006) 

reported, also in mouse, the numerical densities of neurons in the hippocampus positive 

for eight different biomarkers by layer. In addition, a few inequalities describing 

parvalbumin and calbindin reactivity were reported by Bjerke (Bjerke et al., 2021).  
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These numerical densities for the mouse were converted into neuronal numbers for rat by 

first multiplying with volumes (Ero et al., 2018) and then applying rodent scaling rules 

(Herculano Houzel et al., 2006). For example – after conversion into rat neurons, the 

number of parvalbumin positive neurons in the granule layer of the dentate gyrus is equal 

to 3,680. As per Hippocampome.org, the relevant neuron types include Axo-axonic, DG 

SG PV+ Basket cells, and MOLAX, whereas Total Molecular Layer and Outer Molecular 

Layer neuron types have an undetermined status. Using data from Jinno and Kosaka, we 

propose that the number of PV positive neurons in the granule layer is no more than 

3,680, and the number of PV positive and undetermined neurons combined is no less than 

3,680 (Table 9). In total, 290 biomarker inequalities were constructed for the six 

subregions using existing scientific data. Table 9 provides examples of the three types of 

equations constructed as part of the data transformation process – sums, ratios, and 

inequalities. 

 

 

 

Table 9 Three types of equations obtained from the data transformation process 

 

Equation 

Type 

Sum Ratio Inequality 

Region CA1 CA3 Dentate Gyrus 

Source Coulin, 2001 Gulyas, 2010 Jinno and Kosaka, 2006 

Interpretation CA1 Cajal-Retzius 

= 1130 

Ratio between 

axoaxonic and 

basket cells is 

30:31 

Number of parvalbumin 

positive neurons in granule 

layer is less than 3680 
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Equation 𝑥3 =  1130 𝑥6

𝑥8
=

31

30
 

𝑥7 + 𝑥8 ≤  3680 

𝑥7 + 𝑥8 + 𝑥17 + 𝑥21 + 𝑥22

≥  3680 

Normalized 

form 

𝑥3

1130
− 1 =  0 

30𝑥6

31𝑥8
− 1 =  0 

𝑥7 + 𝑥8

3680
 −  1 ≤  0 

𝑥7 + 𝑥8 + 𝑥17 + 𝑥21 + 𝑥22

3680
 

−  1 >=   0 
Least squares 

form 
(

𝑥3

1130
 −  1)

2

= 0 (
30𝑥6

31𝑥8
− 1)

2

= 0 𝑚𝑎𝑥 (0,
𝑥7 + 𝑥8

3680
−  1)

2

 

𝑚𝑎𝑥 (0, 1

−
𝑥7 + 𝑥8 + 𝑥17 + 𝑥21 + 𝑥22

3680
)

2

 

With weights 𝑟

= 10 (
𝑥3

1130
− 1)

2

 
𝑟 = 1 (

30𝑥6

31𝑥8
− 1)

2

 𝑟 = 1 × 𝑚𝑎𝑥 (0,
𝑥7 + 𝑥8

3680

−  1)
2

 

𝑟
= 1

× 𝑚𝑎𝑥 (0, 1

−
𝑥7 + 𝑥8 + 𝑥17 + 𝑥21 + 𝑥22

3680
)

2

 

 

 

 

 

Based on this broad classification of literary sources, we mined several hundreds of 

papers for relevant information on neuron type numbers, ratios, or biomarkers. We used 

data from 155 out of 500 journal articles that were mined to construct 645 equations. As 

expected, we saw that there was high amount of evidence and, hence, the largest number 

of equations for the subregion CA1, which is known to be extensively researched. Many 

sources reported combined results for subregions CA3 and CA2, which prompted us to 
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design our equations together for these areas. The least number of papers and 

subsequently equations happen to be for the SUB.  

 

The compiled equations were used to construct an objective function for each subregion. 

We then applied the optimization algorithm, PSwarm (Vaz and Vicente, 2007), to obtain 

estimated populations for 207 neuron types in the hippocampal formation. The obtained 

results are the optimum (minimized residuals) produced by the algorithm, after 

considering the data from the 155 research studies. The cell populations of the 207 

neuron types, along with ranges and layer specific information, are available in the 

supplementary data.  

 

The total number of neurons from all subregions was estimated to be 2,958,500. The 

highest numbers are from the DG at 1,197,548, and the lowest are from the subregion 

CA2 at 29,493 (Fig. 10A). EC has been divided into the lateral and medial areas. 

Surprisingly, the lateral EC has a higher number of neurons at 583,002 compared to the 

medial EC population size at 196,452. Interestingly, in CA1 and CA3, SO had the highest 

ratio of interneurons, while in CA2, it was SLM. 

 

As a next step after obtaining estimates of the neuron type populations, we conducted 

sensitivity analysis to determine ranges and examined the proportions across different  

 

 

http://www.norg.uminho.pt/aivaz
http://www.mat.uc.pt/~lnv
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Figure 10 High-level statistics for 122 neuron types and 9 additional neuron groups  

A. Proportions of neurons by subregions (EC is divided into lateral (LEC) and medial 

(MEC) areas in all subpanels of the figure). Total Counts: DG – 1197548, CA3 – 293278, 

CA2 – 29493, CA1 – 435735, SUB – 222992, LEC – 583002, MEC – 196452; B. Totals 

and ranges for glutamatergic (left) and GABAergic (right) neurons; Y-axis: Counts in log 

scale. C. Percentages of neurons in the corresponding layers for excitatory and inhibitory 

types. Y-axis represents Counts. Layer abbreviations: outer stratum (s.) moleculare 

(SMo), inner s. moleculare (SMi), s. granulosum (SG), hilus (H); s. lacunosum-

moleculare (SLM), s. radiatum (SR), s. lucidum (SL), s. pyramidale (SP), s. oriens (SO); 

SUB s. moleculare (SM),  polymorphic layer (PL); and EC layers I–VI; D. Distribution 

of high-level groups of neuron types – principal cells vs. other glutamatergic cells and 

dendritic-targeting vs perisomatic cells; Y-axis represents Counts. 
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layers and high-level groups. Ranges were estimated for each neuron type as an outcome 

of our sensitivity analysis (Fig. 10B). Our estimates for interneurons had a wider range 

indicating a higher error margin. Also, the wider ranges could be due to the fact that the 

principal cells, which comprise a major portion of the glutamatergic population, are 

extensively researched compared to the GABAergic populations. Overall, the total 

GABAergic estimate is 297,803, which is 10% of the total population, although this 

proportion varies in individual subregions. We examined the proportions of excitatory 

and inhibitory neuron type populations from individual layers for each subregion (Fig. 

10C). As expected, the principal cell layers occupied the highest proportion of cells in the 

excitatory category. In the inhibitory category, however, an uneven distribution of 

proportions of the different layers was observed among subregions. To further analyze 

the population distributions, we divided the neurons into four high level categories – 

principal cells and all other glutamatergic cells and perisomatic and dendritic-targeting 

interneurons. Initially, we studied the population distribution of these categories among 

glutamatergic and GABAergic types (Fig. 10D). There are no non-principal 

glutamatergic cells classified for the areas - CA2 and the SUB on Hippocampome.org. 

There is no known evidence regarding the distinction of the GABAergic cell types for the 

SUB, as of Hippocampome.org v1.8. Thus, the bar plots of Fig. 10D show the 
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distributions of neuronal numbers for the rest of the subregions, excluding the SUB and 

glutamatergic CA2. 

 

We saw a wide range between the estimates of interneurons across the subregions. The 

DG MOCAPs , CA3 QuadD-LMs, CA2 SLM inhibitory types, CA1 Neurogliaforms, 

SUB SP interneurons, and deep layer interneurons from the EC had the highest estimates. 

The DG Hilar Ectopic Granule cells CA3 MFA ORDEN , CA2 Bistratified, CA1 

Perforant Path-Associated Quad, SUB PL interneurons, and MEC LIII Superficial 

Trilayer interneurons have the lowest population estimates from their respective 

subregions.  

 

Figure 11 illustrates neuron type counts and their upper and lower bound ranges for all 

subregions. Based on the reliability of the numbers, we marked the types in 3 different 

colors – blue, orange and pink. The blue types hold a higher reliability, these are neuron 

types that are extensively researched and, in most cases, stereologically or  
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Figure 11 Sensitivity analysis 

Neuron type counts and ranges for 122 types. X-axis: Neuronal counts in log scale; Y-

axis: Neuron type names. Green text – Excitatory neurons; Red text – Inhibitory neurons; 

Green bolded text – Principal cells; Red Inhibitory – Perisomatic cells; Green unbolded 

text – Other glutamatergic cells; Red unbolded text – Dendritic-Targeting cells. Blue dot 

– High reliability count; Orange dot – Medium reliability count; Pink dot – Low 

reliability count. 

 

 

 

computationally counted. We observed that for some of the neuronal types, the lower 

bound is reaching 0, which makes the range wider. These are usually the neuron types for 

which there is no direct evidence, and information from electrophysiological ratios and 
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layer specific totals were used. Based on these factors, we label these neuron types with a 

lower level of reliability (these neuron types are labeled orange). Four neuron types are 

labeled pink as the estimates were the lower bound values provided to the optimization 

algorithm. These are the DG HIPROMs and DG Outer Molecular Layer interneurons, 

CA3 Lucidum ORAX, and CA1 Quadrilaminar. We suggest the existence of these neuron 

types to be further investigated in future studies, considering the sparse evidence for these 

types in the literature. In all other subregions, the principal cells and the dendritic 

targeting cells outweigh their excitatory and inhibitory counterparts with respect to 

quantities. 

 

Hippocampome.org has collated information about 20 biomarkers (White et al., 2019) 

and 23 firing pattern phenotypes of neuronal types (Komendantov et al., 2019). We 

plotted this information as a function of our neuron type census data to observe the 

distributions (Fig. 12). We illustrated interneuron reactivity for nineteen biomarkers (Fig. 

12A). We categorized neuron type population distributions layer-wise. The highest 

number of interneurons in the hippocampal formation are positive to Neuropeptide Y, 

and the lowest number are positive to enkephalin. Among firing patterns, the adapting 

spiking (ASP) described the majority of the neuron types. Transient stuttering pattern 

(TSTUT.SLN, silence preceded by transient stuttering) is exhibited by the least number 

of neurons. Most of the information for Figs. 12A and 12B comes from the DG and CA1, 

which are the two most studied areas of the rodent hippocampus. CA2 and the SUB are 

the least studied areas among the 6 subregions, which is reflected in the figure. 
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Figure 12 Distribution of neuron counts for biomarker reactivity and firing patterns 

A. Distribution of 19 biomarker reactive interneurons in the 26 layers of the six 

hippocampal subregions; B. Distribution of neurons from the 26 layers of the 

hippocampal formation pertaining to the 23 firing phenotypes. Firing pattern 

abbreviations: ASP. – adapting spiking, ASP.ASP. – adapting spiking followed by 

(slower) adapting spiking, ASP.NASP. – non-adapting spiking preceded by adapting 

spiking, ASP.SLN – silence preceded by adapting spiking, D. – delayed spiking, D.ASP. 

– delayed adapting spiking, D.RASP.NASP – non-adapting spiking preceded by delayed 

fast-adapting spiking, D.NASP – delayed non-adapting spiking, D.PSTUT – delayed 

persistent stuttering, D.TSWB.NASP – non-adapting spiking preceded by delayed 
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transient slow-wave bursting, RASP. – fast-adapting spiking, RASP.ASP. – fast-adapting 

spiking followed by adapting spiking, RASP.NASP – non-adapting spiking preceded by 

fast-adapting spiking, RASP.SLM – silence preceded by fast adapting spiking, NASP – 

non-adapting spiking, PSTUT – persistent stuttering, PSWB – persistent slow-wave 

bursting, TSTUT. – transient stuttering, TSTUT.ASP. – transient stuttering followed by 

adapting spiking, TSTUT.NASP – non-adapting spiking preceded by transient stuttering, 

TSTUT.SLN – silence preceded by transient stuttering, TSWB. NASP – non-adapting 

spiking preceded by transient slow-wave bursting, TSWB.SLN – silence preceded by 

transient slow-wave bursting. 

 

 

 

Next, we investigated the variation of the population counts for the main excitatory and  

inhibitory families (principal neurons, other glutamatergic cells, perisomatic 

interneurons, and dendritic-targeting interneurons) as a function of the volumes of each 

anatomical parcel (subregion and layer) in the hippocampal formation. If each neuronal 

population has (approximately) constant density across parcels, the population count 

should be proportional to the anatomical volumes. If, in contrast, the population counts 

themselves were approximately constant, then the densities should be inversely 

proportional to the anatomical volumes. We tested these alternative hypotheses by 

plotting the population counts against parcel volumes and the densities against the inverse 

of the volumes for each of the four populations (Fig. 4). As general trends, neuron counts 
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were proportional to anatomical volumes for other (non-principal) glutamatergic neurons 

and for perisomatic interneurons. In those two cases the densities did not vary with the 

inverse of volumes. In contrast, in the other populations, principal cells and dendritic-

targeting interneurons, the counts did not vary with volumes. Instead, for the dendritic-

targeting interneurons, the densities were inversely proportional to the volume with high 

statical significance (p<10-4 after multiple testing correction). The analysis results were 

the same when analyzing either rat or mouse data. Thus, we conclude that dendritic-

targeting interneurons have constant counts independent of the volume of the anatomical 

parcel in which their somata reside. 

 

 

 

 

Figure 13 Neuron types counts/densities vs volume 
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Numerical estimates (A) and numerical densities (B) of principal cells (left Y axis) and 

other glutamatergic (right Y axis) with respect their corresponding layer-specific volumes 

(X axis); Numerical estimates (C) and numerical densities (D) of dendritic-targeting (left 

Y axis) and perisomatic (right Y axis) with respect their corresponding layer-specific 

volumes (X axis). Number in the parenthesis is n value. 

 

 

 

We have made all the code and mined data available through the supplementary material 

for further research and analysis. The numerical estimates have been made available on 

the Hippocapome.org site for each neuron type on the neuron specific page (Fig. 14). The 

‘quantification browse matrix’ page displays numerical estimates for both rat and mouse 

along with the lower and upper bounds of ranges upon hovering over a number. Since 

these estimates are a result of multiple sources, they will be linked to the evidence page, 

where the different source and excerpts will be displayed for the corresponding neuron 

type. Apart from this, the neuron type quantities and ranges are also displayed on the 

neuron type specific page, which can be accessed from all the Hippocampome.org pages. 

It should be noted that the estimates are a result of optimization performed using multiple 

sources and, hence, the displayed counts may not be equal to those on the evidence 

reported. 
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Figure 14 Quantification matrix on Hippocampome.org  

Displaying the list of neuron type quantified estimates for rats and mice (left), 

corresponding neuron type page (top right) and evidence page (bottom right). 

 

 

 

Discussion 

Estimates for neuron type populations were obtained through the described computational 

methods. However, it must be noted that the results are largely a reflection of the amount 

of research conducted on the specific cell types. Since our method heavily relies on the 
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existing scientific literature, we considered the data mining phase as an important 

beginning. A careful step by step process was followed for the literature search, with the 

goal of obtaining every single relevant journal article or scientific report for all the 

neuron types of interest. It was clear from our data mining process that some areas of the 

brain, like the CA1 stratum pyramidale and the DG granule layer, for instance, were 

extensively studied by multiple teams and, hence, there were several results or evidence 

for neurons from these regions. In contrast, areas such as the SUB and CA2, which is a 

relatively small area of the hippocampus between CA1 and CA3, have been less studied 

compared to the rest of the hippocampal areas. 

 

Principal cells being the pathways of communication between the different subregions 

are well studied (Wang et al., 2006; Barkai and Hasselmo, 1994; Yang et al., 1996; 

Hestrin et al., 1990). Interneurons that reside in the principal cell layers, such as Basket 

and Axo-axonal cells, which provide synapses to the principal cells, have also been well 

researched compared to interneurons that reside in non-principal layers. Through the data 

mining process, we obtained many results from the principal cell layer neuron types and 

fewer results from non-principal cell layer types for the six subregions.  

 

Neurons in the principal cell layers were mostly counted using stereology (Hossieni-

Sharifabad and Nyengaard, 2007; Fitting et al., 2009, Grady et al., 2003) and more 

recently using computational methods (Murakami et al., 2018, Ero et al., 2018, Attili et 

al., 2019). These types of results were used to put together layer sum equations, which 

https://scholar.google.com/citations?user=AQhrNOIAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=quuUO9AAAAAJ&hl=en&oi=sra
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were important for the optimization process, since they helped create an estimated upper 

bound for that set of neuron types. In some cases though, we ended up with multiple layer 

sums that had a wide range. For example, West et al. report 380,000 CA1 principal layer 

neurons (West et al., 1991) , whereas Fitting et al. report 262,181 (Fitting et al., 2009). 

Yet another study reports 650,000 CA1 principal cell layer neurons for non-impaired 

aged rats and 570,000 from select young control rats (Rasmussen et al., 1996). It should 

be noted that the rat species, age, or experimental conditions vary between the studies. 

Similarly, we found that the ratios between the same set of neurons, from two different 

studies, were never the same. For example, the ratio between DG SMo MOPP and 

Neurogliaform cells has been derived to be 6:11 (0.54) as per Armstrong (Armstrong et 

al., 2011) and 14:17 (0.82) as per Ceranik (Ceranik et al., 1997). 

 

Considering the diversity in the results reported in the literature, we aimed to find an 

optimum using mathematical optimization methods. In cases where we had evidence for 

certain neuron types but no corresponding neuron type on Hippocampome.org, we added 

a variable for the unknown and integrated it into the optimization process. For example, 

there is no known type for excitatory neurons in the SLM layer of CA3, but Ero et al. 

give a numerical estimate for these cells (Ero et al., 2018). Dividing Hippocampome.org 

cell types by layers and adding non-existent neuron types where evidence was found, we 

came up with a total of 207 neuron types and 645 equations (Table 8).  
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For each of the six subregions, 200 iterations of optimization were run, and those with the 

lowest residual were chosen for analysis. Analysis led to the discovery of 

interdependences between some neuron types. Whenever there were such dependencies  

between neuron types, their sums always remained constant. We equally divided their 

sums by the number of neuron types that have dependencies to arrive at their population 

estimates. The complete set of results including data from multiple iterations is made 

available in the supplementary material. 

 

Sensitivity analysis let us examine the reliability of our estimates based on how the upper 

and lower limits ranged with respect to the optimum. Biomarker (White et al., 2019) and 

firing pattern data (Komendantov et al., 2019) were used to map the neuronal estimates 

derived from the numerical optimization. This gave is an overview of the proportions of 

neuron types that exhibited reactivity to certain biomarkers or certain firing pattern/s. 

Hippocampal cell population distributions (neurons and glia together) were observed to 

be proportional to the layer specific areas from images in our previous work (Attili et al., 

2019). It was interesting to discover that the dendritic targeting numerical densities were 

significantly decreasing with increasing layer-specific volumes, after undergoing 

statistical correction. It should be noted that this group is the largest among the four 

groups (principal cells, other glutamatergic, perisomatic interneurons and dendritic 

targeting) with 111 neuron types. 
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The results from this research project - estimates for the 122 neuronal types, as classified 

by the Hippocampome.org, and any associated source code, are being released to the 

public for free. We anticipate that our results will be used by future projects that involve 

the development of computational working models of the rodent brain. Our methodology 

can be extended to obtain any cell type populations across the different brain regions and 

species. 
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