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Abstract

A decision structure is a simple and powerful tool for organizing decision procksdiiers
from a conventional decision tree in that its no@esassignedeststhat canbe functionsof
the attributes, rather than single attributes;the branchesstemmingfrom a node can be
assigned subsetof attribute valuesratherthan a single attribute value (test outcome);and
the leaves can be assignedone or more alternative decisions. This paper describesa
methodologyfor learning decisionstructuresfrom declarativeknowledge expressedn the
form of decisionrules. The decisionrules are generatedoy an expert,or by an AQ-type
inductive learning program (with or without constructiveinduction). From a given set of
rules, one can generatemany different decision structures. The proposed methodology
generates the one that is mesttablefor the given decision-makingsituation,accordingto a
multicriterion cost function. Experiments with a program implementing the methodioéogy
indicated many advantages of the proposed methodology.

Key words. machinelearning,inductive learning,decisionstructures,decisiontrees, decision
rules, attribute selection, knowledge acquisition, data mining, knowledge discovery.

1 Introduction

To makea correctdecision,a decisionmaker(a humanor an intelligent system)needsto know
how the choice of decision depends on the characteristtbg decision-makingituation. These
characteristicsaare determinedby availableobservationstest results, or other information. A

simple structurefor representinga decisionprocess,which has beenwidely usedin machine



learning and related areasaislecisiontree.In many real-life problems,however,a decisiontree
that capturedully the decisionprocesswould be unnecessarilgomplex,becausef the limited
representationapower of decisiontrees. In addition, current machine learning methods for
determining a decision tremeinflexible, in the sensethat they specify a decisionprocessonce
and forever, irrespective of the possible changélearecision-makingsituation. For example,if
a test assigned to some node ofttlee is not availablein a given situation,the decisionprocess
cannot proceed(unless some statistical techniqueis applied). This standsin contrast with

human decision-making, in which a decision maker would seek a substitute test.

The methodologyresentedn this paperhelpsto solve both of the aboveproblems. It usesa
more powerful decisionstructurerathera decisiontree for representinglecisionprocesses.To
solve the second problem, it creates a decision structure from decl&raawkedge expressedn
the form ofdecisionrules, ratherthan from examplesof decisionsasin methodsfor learningof
decisiontrees (e.g., Quinlan, 1993). The decisionrules are learnedby an inductive learning
program from examples, auppliedby anexpert. The main advantagef this approachis that
from a single set of decisionrules one can potentially generatea large number of alternative
decisionstructures so the systemis free to chosethe structurethat is most appropriatefor a

given decision making situation.

2. Problem Definition

A decision structurés an acyclic graph that specifies an ordewch testsareto be appliedin
the given decision-making situation to arraea decision. The nodesof a decisionstructureare
assignedtests, which may involve determininga value of a single attribute, a function of
attributes, or a relatior he branchesstemmingfrom a nodeare assignedlisjoint subsetsof the
test’s possibleoutcomesandthe leavesare assigneda specific decision,or a set of candidate
decisions(in caseof having insufficient information to drive a decision). A single decision
structure can represent in a simple and understandatyl@ very complexrelationshipbetween

the outcomes of the tests and the assigned decisions.



A decisionstructurereducesto a familiar decisiontree when eachnode is assigneda single
attribute, the branches froeachnodeare assignedsingle valuesof that attribute,andleavesare
assignedsingle. Thus, the problem of generatinga decisionstructureis a generalizationof the
problem of generating a decision tree. Decision teeesypically learnedfrom a set of examples
of decisions.The essentialcharacteristicmethodsfor learning decision trees is an attribute
selectioncriterion employedfor choosingattributesto be assignedo the nodesof the decision
tree beingbuilt. Suchcriteriainclude entropy reduction(e.g.,Quinlan 1979 and 1983), the Gini

index of diversity (Breimanet al, 1984),andothers(e.g.,Mingers, 1989; Chestnikand Bratko,

1991; Chestnik and Karalic, 1991).

A decision tree/structure be an effective tool for describing a decision protiessdafjuiredtests
can be measured, and the class of decision-making situations it was designed foraqensian.
A problemwill arisewhentheseassumptionsdo not hold; for example,in some situations,
measuringsome attributes may be too difficult, too costly, or just impossible. In such
situationsit is desirableto reformulate the decision structure so that the available and/or
“inexpensive’attributesare evaluatedirst (that is, areassignedo the nodescloseto the root),
and the "expensivedttributesare evaluatedonly if necessarythat is, areassignedo the nodes
asfar away from the root aspossible).If a certainattribute cannotbe measuredit is useful to
either modify the structure so that it does not contain that attribute, or—i$ tinpossible—to
indicate alternative candidatedecisionswith their probabilities. A restructuringmay also be

desirable, if there is a significant change in the frequency of occurrence of different decisions.

Restructuringa decisionstructure(or atree)in orderto suit new requirementds usually quite
difficult. This is because decisionstructureis a form of proceduralknowledgerepresentation,
which imposesan evaluationorder of tests. In contrast,no evaluationorder is imposedby a
declarativerepresentationsuch as a set of decisionrules. Tests (conditions) of rules can be
evaluatedn any order.Thus, for a given set of rules, one can usually build a large number of
logically equivalent decision structures (trees), which differ in the test ordering. Due to tlo¢ lack
order constraints, a declarative representation (ergleaet)is mucheasierto adaptto different

situations than a procedural one (e.gdeaisionstructureor a decisiontree).On the other hand,



to apply decisionrulesto make a decision,one needsto decidethe orderin which tests are

evaluated, and thus, one needs a decision structure.

An attractiveresolutionof theseoppositerequirementss to acquireand store knowledgein a
declarative form, and transform it to a decision structure \ithismneededor makinga decision.
This methodallows oneto createa decision structure that is most appropriatefor a given
decision-makingsituation. Becausethe numberof decisionrules per decisionclassis usually
small (much smaller thathe numberof training exampleger class),the processof generatinga
decision structure from decision rules can be potentially done fagtdrthan generatingt from
training examplegqe.g.,Quinlan,1979; Breimanet al, 1984). This featurehasbeenconfirmedin
our experimentgsee Section3). Becausethe processof generatinga decision structure from
decisionrulescanbe donevery quickly, it canbe doneat the time whena decisionstructureis
needed “on line,” without angielay noticeableto the user.In this way, a decisionstructurecan

be tailored to any specific decision-making situation.

This approach allows one to generate a decision structure that avaldatingan attribute that
is difficult or costly to measure. Initial ideas on this approach thafirst systemimplementing
it, AQDT-2, have beendescribedin [Imam and Michalski, 1993]. The original idea for this

methodology stems from the research presented in [Michalski, 1978].

This paperpresentsan extensionof the earlierwork and a new system,AQDT-2. The new
system generates a goal-orientiEtisionstructurefrom decisionruleslearnedby eitherthe rule
learning system AQ15c [Michalski et. al, 1986; Wnek at al., 1995] or AQ17(BIGédornet al,
1993; Bloedornand Michalski, 1997]. By using AQ17-DCI, which has extensiveconstructive
induction capabilities, “oblique” decision structures can be generated(in which nodes

corresponding to tests are functions of the original attributes).

Other novel featuresof the systeminclude a methodfor controlling the degreeof generalization
needed during the development of the decision structureattatwte selectioncriteria basedon
decisionrules, a new methodfor combining attribute selectioncriteria, the ability to generate

“unknown” nodesin situations in which there is insufficient information for generatinga



completedecisionstructure,the ability to learn decisionstructuresfrom discriminantdecision
rules as well as characteristic rules (Michalski, 1983), and firtakyability to provide the most
probably correctdecisionwhen the decisionprocessstops due to the inability to measurean

attribute associated with some node. The following section describes details of this methodology

3 Methodology

The methodologyassumeghat input to the processis in the form of decisionrules in VL1
(variable-valued logic system one), which are generated by an AQeqéngprogram.For the
sakeof generality,the methodologycanalsoacceptas input a set of examplesin the form of
sequences of attribute-value paifhe decisionrules may include original attributes,or derived
attributes which are functions of the original ones. Derived attributes are generatedby the
constructiveinduction program AQ17-DCI (Bloedorn and Michalski, 1997; Bloedorn et al.,

1993).

The top-level algorithm proceeds in a way similar to standard metiduislding a decisiontree
from examplesThe major differenceis that it assigngeststo the nodesusing criteria basedon
the propertiesof the decisionrules, rather than criteria basedon the coverageof individual
training examples.Other differencesare that branchesof the structuremay be assignednot a
single test outcome, but a subsepotsibleoutcomegcorrespondindo the internal disjunction

of valuesin a conditionof arule). Individual testsare either single original attributes,or names
standing for logical or mathematical expressions involving these attributes. Theseaeprassnt
derived attributes generated by the program for constructive induction AQ17-DCI. Froonpow

we use terms a "test" and an "attribute” interchangeably.

At eachstep, the algorithm searcheshrough a set of tests appearingin the working set of
decision rules, to select a test with tiighestrankingaccordingto a multicriterion test selection

procedureThe selectedest is assignedo the nodecurrently underconsiderationjnitially, the



root. The node is expanded by generating branches from it, and assigning tbdkewalues(or
groupsof values)of the selectedest that occurin the working ruleset. The working rulesetis
reducedby removingfrom the rules conditionsthat are satisfiedby the test valueson the path
from the root to the current node. If the reduced ruleset implies one specific demigionmore
tests can be measured, then the endpoint becomes a leafaasidmedhat specific decision,or
an undetermineddecision“?”, respectively. Otherwise,the endpointbecomesa node to be

expanded in the nest step.

The test selection procedure is based on a combination of elemeritiznig, eachevaluatingone
aspect of a test (the way the criteria are combined is explained below).€ldrasatarycriteria

measure the following aspects:

1) Cost, which reflects the difficulty of measuringa test in a given decision-making
situation.

2) Disjointness which capturesthe effectivenessof the test in discriminating among
decision rules for different decision classes.

3) Importancewhich determines a measure of importance of thdridsie working set of
decision rules.

4) Value distribution which characterizes the distribution of the test importancealvef
its of values.

5) Dominancewhich measures the frequency of the test occurrence in the rules.

These criteria are explained in more detail below.

Cost: The cost of atestis definedby the user. It expressedhe total effort (including the
measurement cost) neededhteasureand apply the testin a given decision-makingsituation; if

the test cannot be measured in a given situation, the cost is infinite.

Disjointness: This criterion measureshe degreeto which valuesof a test are different in the
rulesets of different classdset us supposethat decisionclassesareC,, C,,..., C,, anddecision

rulesetsfor theseclassesare given. For a giventest A, let V1, V2,....,Vm, denotesetsof the

values (outcomes) of A that are present in the conditions of the ruleseladse<C,, C,,..., C,,



respectively. If a ruleset for some class, sago@tains a rulehat doesnot involve test A, then

Vi is assumed to be the domain of A (the set of all possible values of A).

Definition 1. ClassdisjointnessD(A, C; ) of testA for the rulesetof classC,, is the sum of the
degrees of disjointness, D(A;, @), between the ruleset fo @nd rulesets for,Cj=1, 2,...m,j #

i. The degree of disjointness between a ruleset fan@the ruleset for;@& defined by:

D, itV OV,
3, itV OV,

D(A'Ci*cj)‘%, TV A V) 2@ or\iorV, 1)
EB, if V; mVj=(p

where@ denotes the empty set.

Definition 2 The disjointnesf the test Afor evaluatinga given set of decisionrulesis the sum

of the degrees of class disjointness of each decision class:

Disjointness(A) = E D(A, C), where D(A, C) = Zm D(A, G, G) (2)

i=1 i=1%
The disjointnessof a test rangesfrom 0, when the sametest valuesare in the rulesetsof all
classesto 3*m*(m-1), wheneveryrulesetof a given classcontainsa different set of the test

values.Selectinga test with the maximumpossibledisjointnessproducesa nodein the decision

structure whose children can be immediately assigned decision classes.

Importance: This criterion is basedon the importancescore (IS), introducedin [Imam et al.,
1993]. In the obtainedrules, eachtestis assigned “score” that representghe total numberof
training exampleghat are coveredby the rulesinvolving this test. Decisionruleslearnedby an

AQ-type learning program are accompanied with information on their strength.

The rule strengthis characterizedy its t-weightand u-weight. The t-weight (total-weigh} of a
rule for some class the numberof examplesof that classcoveredby the rule. The importance
score of a test is the sum of the t-weights of all rulesdbiatainthat test in their conditionpart

(u-weightsare usedfor anotherpurpose—se&ec.3). Supposethat given is a set of decision



rules for decision classes,C,G,, and tests A..,A, involvedin theserules. The numberof rules

associated with class G denoted by it.

Definition 3 Theimportance scorelS(A)), of the test Ais determined by:

m U
IS(A)= Z__lls(Aj, G), where IS(A;, G.) = zk_lfik(Aj) (3)
and Rk, the weight of a testjAn the rule K of class Gis given by:
[t — weight if A, belongstoruleR,
Ri(A)=0 - “ (4)
0o otherwise

where i=1,..,n; \=1,..,5; j=1,..,m.

Value distribution: This criterionepresentghe importancescorenormalizedby the size of the

test’'s domain (the number of legal values).
Definition 4 A value distribution VD(A) of a test Ais defined by:

VD(A)) = IS(A) / v, (5)
where “v” is the number of legal values gf A

Experiments have shown that this criterion is especiagful whendiscriminant decisionrules

(Michalski, 1983) are used as the source rules.

Dominance: This criterion measures the number of linkedving a test. Becauseule conditions
may differ in the numbeof valueslinked by the internaldisjunctionto an attribute,to calculate
the dominance of a test, the rubeg countedasif they were converted(multiplied out) to rules

without internal disjunction.
For example multiplying out therule [x3=1v 3] & [x4=1] => C yields two rules [x3=1] &
[x4=1] => C and [x3=3] & [x4=1] => C.

A test selectionprocedureis basedon one or more of the aboveelementarycriteria. A user
selectselementarycriteria that appearto be mostrelevantto a given application problem, and

arranges them intolexicographic evaluation functional witilelerances(LEF) [Michalski, 1973].



LEF consists of a list of <elementary criterion--tolerance> pairs, where toleranc#isLEF is
usedto selectthe besttestin the following way. All availabletests are evaluatedon the first
elementarycriterion in the LEF, andthosethat scorewithin the tolerancerangefrom the best
score are selected for awaluationby the next elementarycriterion, etc. This processcontinues
until only one test remains, or the criteria list is exhausted (in which case the tetstetiiphest

score on the first criterion is chosen). The default LEF is :
<Costrl; Disjointnesst2; Importancer3;Value distr.14; Dominancer5> (6)

where tolerancegl, 12, 13, 14 andt5 (in percentage) have default value 0, dhd defaultvalue

of the cost of eachtestis 1. The default tolerance0% meansthat only tests receiving the

maximum score on a given elementary criterion are passed to the evaluation by the next criterion
4 l1llustrative Applications

This sectionillustratesthe methodpresentecaboveby applyingit to a practical problem. The
problemis to determinea decisionstructurefor evaluatingthe structuralquality of tall building
designs.The designquality is classifiedinto four classesHigh (C1), Medium (C2), Low (C3),
andInfeasible(C4).

Initial data were in the form of examples of designs classified lexpartinto the aboveclasses.
Each example was characterized by seven attributes: number of stories (x1), bay lengihdx2),
intensity (x3), numberof joints (x4), numberof bays (x5), numberof vertical trusses(x6), and
number of horizontal trusses (x7). The data consisted of 335 examplaschf220 (66%) were
randomly selectedto serve as training examples,and 115 (34%) were used for testing the
obtaineddecision structures.In the first phase, general decision rules were determinedby
applying inductive learning programAQ15c (a new version of AQ15 [Michalski, et al. 1986]

written in "C" [Wnek et al. 1995]). Figure 1 presents decision rules obtained.



Decision class C1 (High)

1 [x1=1][x6=1][x4=1v3][x5=1,2][x7=1..3] (t:18, u :18)
2 [x1=3][x2=1][x3=1][x5=1][x6=1][x4=1v3][x7=1v3Vv4] (t:3, u: 3
3 [x1=5][x2=2][x3=2][x5=2][x4=3][x6=1][x7=2V3] t:2, u:2
4 [x1=1][x6=1][x2=2][x4=3][x5=1v2][x7=4] (t:2, u:2
5 [x1=3][x2=1][x4=1][x6=1][x7=1][x3=2][x5=1Vv2] t:2, u: 2
6 [x1=1][x3=1][x6=1][x2=2][x4=1v3][x7=1v3][x5=3] t:2, u: 2
7 [x1=2][x5=2][x2=1][x6=1][x4=3][x7=4] t:2, u: 2
Decision class C2 ( Medium)
1 [x1=2..4][x4=3][x5=2,3][x6=1][x7=2V3] (t:28, u :19)
2 [x1=2..4][x2=2][x4=3][x5=1,2][x6=1][x7=3,4] (t:17, u : 6)
3 [x1=2v4][x4=3][x5=1][x6=1][x7=3v4] (t:10, u : 4)
4 [x1=1v3v5][x4=3][x5=3][x6=1][x7=2v4] (t:10, u : 2
5 [x1=3v5][x4=3][x5=2v3][x6=1][x7=1v4] t: 9, u: 4
6 [x1=2][x4=1][x6=1][x7=1] t: 7, u: 6)
7 [x1=3v4][x2=2][x3=2][x4=1v3][x5=1v3][x6=1][x7=1Vv2] (t: 6, u: 4
8 [x1=3v5][x2=2][x3=1][x7=1][x4=1v2][x6=1v3] (t: 5 u : b5
9 [x1=1][x2=1][x6=1][x4=3][x5=1,2][x7=4] (t: 4, u: 4
10 [x1=1][x5=1][x2=2][x4=2][x6=2][x7=1..3] (t: 4, u: 4
11 [x1=1v2][x2=1][x6=1][x4=1v3][x5=3][x7=1v4] (t: 4, u: 2
Decision class C3 (Low)
1 [x1=2..5][x4=1v2][x5=1v3][x6=2v4] (t:41, u :32)
2 [x1=1..4][x4=2][x5=2][x6=2v3][x7=2..4] (t:27, u :20)
3 [x1=1v3][x2=1][x4=2][x5=1v2][x6=2,3] (t:19, u : 6)
4 [x1=1v2v4][x4=2][x5=2v3][x6=3v4][x7=1] (t:13, u : 8)
5 [x1=5][x2=2][x4=2][x5=2][x6=3][x7=2..4] (t: 5 u : b5
Decision class C4 (I nfeasible)
1 [x1=5][x2=2][x3=2][x4=1,3][x5=1][x6=1] (t: 4, u : 4
2 [x1=5][x2=2][x3=1][x5=1][x6=1][x4=3][x7=3] t: 1, u:1l

Concatenation of conditions means conjunction, t denotes the total weight of a rule, and u denotes the unique weight

Figure 1 Decision rules learned by AQ15c from the wind bracing data .

As one carseein Figurel, the first rule in eachruleset(setof rulesfor oneclass)is by far the
strongest ruldor that class.Ruleswith a very small u-weight(the numberof examplescovered
by a given ruleandno previousrule in the set) point out to rare,specialcases, or errorsin the
data. The study presentedn (Bergadancet al., 1992) demonstrateshat one canobtaina very
high predictiveaccuracyby selectingonly the strongestrule from eachclass(and ignoring the
remaining rules), and then using it witflexible matching procedurewhen determiningthe class
membershipof a new example.In this study, to illustrate the methodology,all rules were

preserved.

Table 1 presents results (scores) frapplying elementarycriteriato eachattribute (test) in the

rulesfrom Figure 1. Thesescoreswere usedto selectthe besttest for the root of the decision

10



structureto be createdfrom the rules. For eachclass,the row marked “Values” lists values

occurring in the ruleset for this class.

For evaluating the disjointness of an attribute,Sagach rule in the ruleset that does cmttain
A is assumed to contain an additional empty condi#iond vb ...k], wherea, b, ...k areall the

legal values oA.

Class Attributes
x1 X2 X3 x4 X5 X6 X7
C1 Values 1,2,35 |1,2 1,2 1,3 1,231 1.4
Class disjointness 1 1 0 2 1 3 0
C2 Values 1.5 1,2 1,2 1,2,3/1,2,3/1,2,31..4
Class disjointness 2 1 0 3 1 4 0
C3 Values 1.5 1,2 1,2 1,2 1,2,312,3,41..4
Class disjointness 2 1 0 4 1 8 0
C4 Values 5 1 1,2 1,3 1 1 1.4
Class disjointness 0 0 0 2 0 3 0
Attribute Disjointness 5 3 0 11 3 18 3
Attribute Importance 245 82 25 245 [233 |245 ]181
Attribute value distribution 49 41 13 82 78 61 45
Attribute Dominance 45 34 42 33 40 30 54

Table 1 Values of selection criteria for each attribute for the wind bracing problem.

Assumingthe defaultLEF, that is, <Cost 0%; Disjointness,0%; Importance,0%; Value distr.,

0%; DominanceQ%>, and the Cost equalftr all attributes, attributex6 is chosenfor the root

(as it has the highest disjointness). Branches stemming from the rooakedby singlevalues,
or groups of values of variable x6, according to the imayhich they occurin the decisionrules

(groupsof valuessubsumedoy other groupsare removed;Imam and Michalski, 1993). The

nodes attached to the branches are assigned rules that satisfy conditions spettiBedsigned
attribute values. If rules assigned to some node are all of the same clasisisthedebecomesa

leaf, and assignedhe nameof that class.This processis repeatedor eachnodeuntil all nodes
become leaves, or there is no more tests available. Figure 2 presents a decisioregenerated
by AQDT-2 from decision rules shown in Figure 1 (using the default LEF).

11



Complexity
No. of nodes; 5
No. of leaves: 9

Figure 2 A decision structure determined by AQDT-2 for the wind bracing problem.

The decisiorstructurewas testedon testingexamplesand the predictionaccuracywas 88.7%
(102 testing examplesere classifiedcorrectly and 13 were misclassified). For comparisonthe
well known C4.5 programfor decisiontreeswas also appliedto the sameproblem (Quinlan,
1990). C4.5 was used with the default window setting (maximum of 20% the number of
examples and twice the square root the number of examaieshe numberof trials was setto
one. The decision tree produced by C4.5 was considerably more complex (it madesand 43
leaves, as compared to 5 nodes areavesin the AQDT decisionstructure),andits prediction
accuracy was lowdB4.3%, as compared to 88.7%; @stingexampleswvere classifiedcorrectly
and 18 were misclassified). Thus, AQDT-2 generated decision structures wersimplgrthan

decision trees obtained from C4.5, and their predictive performance was higher.

5 Special Issues
5.1 Handling the Attribute Cost

As describedn Section2, the LEF criterion can take into considerationthe cost of measuring
attributes(tests).If someattribute hashigh cost, or is impossibleto measurdinfinite cost), as
indicatedin LEF, at eachstep the systemtries to selecta "cheaper”attribute amongavailable

alternatives.

12



Figure 3 shows decisionstructureobtainedfrom the rulesin Figure 1 underthe conditionthat
x1 is unavailable (infinite cost). As one can see, although wtasailable a definite decisionstill

canbe assignedn many casesln somecaseshowever,a specific decisioncannotbe reached.
Such leaves, calleddecision nodesare markedby ?. In Figure 3, indecisionnodesarethoseat

which a definite decision cannot be reached without knowing x1.

The decisiontree was testedon 115 new examples,of which 71 were classifiedcorrectly, 14

incorrectly, and 30 were assigned the "?" decision.

Comgexity
> : No. of nodes 5
No. of leaves 7

Figure 3 A decision structure learned without x1.

5.2 Assigning Probability Estimates to Alternative Decisions

As illustrated above, when some attribute(s) catweaheasuredthe decisionstructuremay not
be ableto assigna definite decisionin somecaseslin suchcasesjf no moreinformationcanbe
obtained,but a decisionmust be madeat an indecisionnode, it would be useful to know an
estimateof the probability distribution of different candidatedecisions(Smyth, Goodman&
Higgins, 1990). We will presentherea methodfor computinga data-based estimateof such

probabilities.

This estimate idasedon the assumptionthat the probabilitiesof alternativedecisionclassesat
an indecision node can be estimated by the frequency of training examiiesesflassesat that
node. Let usupposethat we havea completedecisionstructurein which leavescorrespondo

specific decisions, but the structure was constructed in such a way that all the affirdootde

13



root to some node, IND, care measuredandbeyondthat nodecannotbe measuredThus, the
nodeIND is anindecisionnode.IND canbe associatedvith a setof decisionrulesof different
classes that are satisfied by the values of attributes on the path from tteetr@itnode. These

rules can be divided to two parts:

—thecontext partwhich is a conjunction of conditions satisfied by aduesof attributesalong

the path from the root to IND (exclusively), and

—thefree part which contains one or more rules for each candidate classseelthule contains

attributes assigned to a path from IND (inclusively) to one of the leaf nodes.

Supposewithout loss of generality,that IND can be assignedonly classC1 or C2. Let N1
denote the number of known examples of C1 that are covered by the free part of thealakes of
C1, andN2 denotethe numberof known examplesof C2 that coveredby the free part of the
rules of class CAf the free parts of rulesof someclass,say Ci, aredisjoint, thenNi is simply
the sum of t-weights of theserules, otherwise,the sum must be reducedby the number of
examples in the intersection. A computationally simpl&rcessis to computeNi asthe sum of
u-weights (unique-weights) of the rules. The data-based probability estipdE) andp’(C2)

that an event satisfying the context part of N is of class C1 or C2, respectively, is computed as:
p’(Cl) = N1/(N1+ N2) and p’(C2) = N2/(N1+ N2) (7

If node N is associated with a subset of possible classed,|Tithen we have:

p'(Ci) = Ni/S,i0l (8)
where S is the total number of (seen) examples that satisfy the context part at IND.
Figure 4 presents a decision structure from Figurev@hich indecisionnodes(leavesmarkedby
?1in Fig. 3) were assignedcandidatedecisionswith data-basegrobability estimatescomputed
accordingto (8). Let us considemodex2. The numberof examplesof decisionclassesC1, C3,
and C4 that satisfy the context part of rules in Fig. 1, were N1=31, N2=11, and NsHthe
data-basegbrobability estimatesaccordingto (8), arep’(C1)=. 66, p’(C2) = .23, andp’(C4)
=.11.
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X6

Compkxity
2 % g:;’ No. of nodes 5
No. of leaves 7

C1, 583
C2/) 47

Predictive accuracy : 88.7 %.

Figure 4: A decision structure from figure 3 with data-based estimates of class
probabilities at indecision nodes.

The data-base@stimatesp’(Ci), as definedin (8), are computationallysimple, but cannotbe
madeif the decisionrules have beenobtainedfrom an expert, so that one cannotdetermine

examples that satisfy the rules.

Another problemwith theseestimateds that they do not take into considerationthe fact that
decisionrulesassociatedvith IND aretypically generalization®f training examplesthus they
cover unseen examples. The predictive accuchdliesegeneralizationsywhich canbe estimated

experimentally, influences the value of the probabilities of candidate classes at indecision nodes.

This consideratiorealls for introducinganothermeasurep”(Ci), in which the probability of an
arbitrary example belonging to class Ci (when it satisfies the context part ofitidjle depends
on the degreeof generalizatiorrepresentedy the rules and their predictive accuracy. If the
predictive accuracy of the rules associatedwith IND is guaranteedto be 100%, such a

generalization-basegrobability estimate could be computed as:

p”(Ci) = Pi/P,iOI 9
where Pi is the number of gdbssible examples that satisfy the free part of the riveslassCi,
andP is the numberof all possibleexampleghat satisfy any of the rulesin the free part. The

predictive accuracy of decision rules is, however, normally less than 100%; thetteddozmula
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(9) is only aroughapproximationA betterapproximationwould be to take into consideration
the estimate of predictive accuracy for the portion of the rules that covers the unseen esbmples
eachclass.Thereis alsoanissueof how to handleexampleghat are not coveredby any rules.
We leave the problem of deriving the most adequategeneralization-basedlass probability

estimates for future research.

5.3 Simplifying Decision Structures by Rule Truncation

As mentioned earlier, decision rules with a small weight (total and/or unique) niagidagive of
errors in the data. Studies presented in (Michaski., 1986; Bergadancet al., 1992; Imam and
Michalski, 1993) show that such rules canthecated,andthat sucha truncationcan be useful
even when “light” rules are not necessarily covering ardisy examples. Examplesthat are left
uncoveredby truncating such rules can be often covered by applying a flexible matching
procedure tahe remainingdecision rules. Flexible matchingis doneby computinga degreeof
match betweenan exampleandrulesof candidateclassesand selectingdecisioncorresponding

tot he best match (Michalski et al., 1986).

The defaultsettingof AQDT-2 requirespruning decisionrules with a support level of 3% or
less. The support level is the percentage of the total number of examples coveratt ligadied
the t-weigh) to the total numberof examplesin the given decision class). Figure 5 shows a
decisionstructureobtainedafter pruning decisionrules (that were usedfor determiningdecision
structure in Figure 2). In this case, rules with 10% or lower relaiveght wereremoved.The
produceddecisionstructurehas a slightly lower predictive accuracyin comparisonwith the
decision structure in Figure 2 (88% vs. 88.7% ); but itdrdg 3 nodesand5 leavesvs. 5 nodes

and 9 leaves that are in the structure in Figure 2.

16



Complexity
No. of nodes. 3
No. of leaves 5

Predictive accuracy: 88%.

Figure 5 A simplified decision structure due to the rule truncation for the same
problem as decision structure in Figure 2.

This exampleshows that the rule truncationmay significantly simplify a decision structure,
without significantly affecting the prediction accurady fact, in someexperimentssucha rule
truncationnot only simplifies decisionrules (andthus leadsa simpler decisionstructure), but

alsoimprovestheir prediction accuracy (Bergadano et al., 1992).

6. Applying AQDT-2 to Congressional Voting 81 Problem

To test AQDT-2 on a real-world problem, it was applied to learning patternsin the U.S.
congressionalvoting (1981 Congress Voting Record). There are two decision classes:
“Democratic Voting Pattern” and “Republican Voting Pattern.” Each voting remfoadiemocrat
or arepublicanin the U.S. congressvas describedn termsof 19 multivaluedattributes.In the

experiment described here, 51 voting records were used (31 Democratic and 20 Republican).

The AQ15 inductivdearningprogramgeneratedour rulesfor the “DemocraticVoting Pattern,”
and7 rulesfor the “RepublicanVoting Pattern.”Only 10 of 19 original attributeswere usedin
the obtainedrules. Table 2 lists attributesinvolved in the decisionrules, and their legal values
(domains). For simplicity, original symbolic values hdeznmappedinto isomorphicnumerical
values. These numerical values correspond to the symbolic values listed in TablARDhe2
programproduceda decisiontree with 20 nodes.The prediction accuracyof the tree on the

testing examples was 91.8%.
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For comparison, C4.5wasalsorun on exactlythe samedata.lt produceda decisiontree with
23 nodes, and itpredictionaccuracyon the sametestingexamplesvas 85.7%. Both programs
wererun underthe assumptiorthat they will producea completeand consistentdecisiontree

with regard to the training examples.

Figures6 and 7 presentdecisionstructuresgeneratedy AQDT-2 for the above Congressional
Voting-1981 problem. Figuré showsa decisionstructure,generatedrom AQ15 rules (without
constructive induction), and Figuleshowsa compactdecisiontree,generatedrom AQ17-DCI
rules (with constructiveinduction). The compactdecision tree containssome nodesthat are
assigned constructed attributes: y20, y21 and y22. These attributes represent simple
mathematicarelationson the initial attributes. The attribute y20 is defined by the relation
y7+y3=1 v 2 {The attribute takeglueT (true) wheneverthe sumof the numericvaluesof y7
and y3 equalsone or two, andvalue F (false), otherwise.} Attribute y21 is defined by the

relation y12+y% 3, and attribute y22 is defined by the relation y12-y4=0 v 1.

18



Attribute Legal Values

y1l- Food stamp cap |0 - no 1-yes 2- not registered
y2- Occupation 0 - known 1 - unknown

y3- Gas cont_ban 0-no 1-yes 2 - not registered
y4- Income 0 - low 1 - medium 2 - high

y5- Education 0-no 1-yes 2 - not registered
y6- Chrysler 0-no 1-yes 2 - not registered
y7- Draft 0-no 1-yes 2 - not registered
y8- State 0 - northwest |1 - northeast |2 - not registered
y9- Soc sec cut 0-no 1-yes 2 - not registered
y10- Alaska parks 0-no 1-vyes 2 - not registered
y11- Wind tax limit |0 -no 1-yes 2 - not registered
y12- Nicaragua ban |0 - no 1-yes 2 - not registered
y13- Fair_housing 0-no 1-yes 2 - not registered
y14- Nuc _power 0-no 1-yes 2 - not registered
y15- Pac_limit 0-no 1-yes 2 - not registered
y16- Mx_cut 0-no 1-yes 2 - not registered
y17- Osha cut 0-no 1-yes 2 - not registered
y18- Hosp cost cont |0 - no 1-yes 2 - not registered
y19- Population 0 - small 1 - medium 2 - large

Table 2: The US Congressional voting attributes and their legal value sets.
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Conventional Tree
Complexity

No. of nodes: 7

No. of leaves: 13

y1 - Food_stamp_cap y5 - Education y9-Soc sec cut  D- Democrat
y3- Gas_cont_ban y7 - Draft R- Republican

The predictive accuracy on testing examples: 91.8%.

Figure 6: A decision structure obtained by AQDT-2 for the Congressional Voting-1981 problem
without constructive induction.

y20

Complexity
No. of nodes: 7
No. of leaves: 8

y3 - Gas cont_ban y7 - Draft Y9 - Soc_sec_cut y12 - Nicaragua _ban D- Democrat
y6 - Chrysler y8 - State y10 - Alaska park y15 - Pac_limit R- Republican
y20 = (y7 +y3=1,2) y21 = (y1l2 +y9 < 3)

The predictive accuracy on testing examples: 91.8%.

Figure 7: A decision structure obtained by AQDT-2 for the Congressional Voting-1981 problem
with constructive induction.

For comparison Figure 8 presentsa decisiontree generatedby C4.5 for the sameproblem.
Comparing decision trees in Figur@s7 and 8, one cannoticethat decisionstructuresgenerated

from decisionrules (conventionaland compact)had a considerablyhigher predictive accuracy
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(91.8% vs.85.7%)on testingexamplesas well aswere simplerthanthe tree generatedlirectly

from examples (by C4.5).

yll
0 1 2
® y> ©
0
2
yl2 y2
¢ 1 2 ® 1 0
y13 y6
0 [ ® © 0 1 ©
y10 y4
G ¢ ® @ ®
0 0 1 Complexity
No. of nodes: 8
@ Q Q Q e No. of leaves 15
y2 - Occupation y5 - Education y10 - Alska parks y12 - Nicaragua _ban D- Democrat
y4 - Income y6 - Chrysler y11 - Wind_tax_limit y13 - Fair_housing R- Republican

The predictive accuracy on testing examples: 85.7%.

Figure 8: A decision tree obtained by C4.5 for the Congressional Voting-1981 problem.

7. Conclusion

The presentedmethodologyadvocatesbuilding decision structures (or decision trees) from
decisionrules,ratherthandirectly from examplesA justification for suchan approachis that
decisionrulesarea form of declarativeknowledgerepresentationand as such permit a greater
flexibility of interpretingknowledgethey representOne canalsoarguethat sucha processhas
parallels to human decision making, because paopkly store declarativerepresentationsand

from them derive decision procedures they need in any given situation.

From a rule representation, one can potentially demniaay equivalentor example-seequivalent
decisionstructures.{ By example-setquivalent decisionstructuresare meantstructuresthat
assign the same decisions to the examples itrdiveng set}. In the presentednethodology the
aboveflexibility is exploitedfor deriving a decisionstructurethat is most suitablefor a given

decision-making situation.
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The concept of decision structure has been demonstateean advantagever conventional
decisiontreesin terms of the simplicity of representingthe same decision function. The
methodologyhasbeenimpelementedn AQDT-2 program.While the methodologyis oriented
toward creatingdecisionstructuresfrom decisionrules, it canalsobe usedfor creatingdecision
structures from examples (since examples can be viasggecificrules).In the experimentson
applying AQDT-2 to various problems,the obtaineddecision structures were significantly
simpler, sometimes by a wideargin,than decisiontreesobtainedby programC4.5, while their
predictive accuracy was comparable or supeFRartherresearchs neededo determinef these
findings were only for the problemswe worked with, or representa general pattern. The
methodologypermits a user to employ severalelementarycriteria in determininga decision
structurethat is most suitablefor a given decision-makingsituation. The availableelementary

criteria include cost, disjointness, importance, value distribution, and dominance.

A major advantagef the methodologyis that it allows oneto very efficiently createa decision
structure from decision rules that is optimiZed any given decision-makingsituation. The time
of generating a decisiastructurefrom decisionrulesin the casesve investigatedvas negligible.
Therefore, itis easyto experimentwith many different criteria for decisionstructuregeneration

in order to obtain the most desirable one for a given problem.
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