
To the special memory of Cecylia Rauszer—
an outstanding scientist, a magnanimous human being, and a dear friend.

On Learning Decision Structures

Ryszard S. Michalski* and Ibrahim F. Imam

George Mason University
Fairfax, VA. 22030

{michalski, iimam}@aic.gmu.edu

*Also with the Institute of Computer Science,
Polish Academy of Sciences, Warsaw, Poland

Abstract

A decision structure is a simple and powerful tool for organizing decision processes. It differs
from a conventional decision tree in that its nodes are assigned tests that can be functions of
the attributes, rather than single attributes; the branches stemming from a node can be
assigned a subset of attribute values rather than a single attribute value (test outcome); and
the leaves can be assigned one or more alternative decisions. This paper describes a
methodology for learning decision structures from declarative knowledge expressed in the
form of decision rules. The decision rules are generated by an expert, or by an AQ-type
inductive learning program (with or without constructive induction). From a given set of
rules, one can generate many different decision structures. The proposed methodology
generates the one that is most suitable for the given decision-making situation, according to a
multicriterion cost function. Experiments with a program implementing the methodology have
indicated many advantages of the proposed methodology.

Key words: machine learning, inductive learning, decision structures, decision trees, decision
rules, attribute selection, knowledge acquisition, data mining, knowledge discovery.

1 Introduction

To make a correct decision, a decision maker (a human or an intelligent system) needs to know

how the choice of decision depends on the characteristics of the decision-making situation. These

characteristics are determined by available observations, test results, or other information. A

simple structure for representing a decision process, which has been widely used in machine

2

learning and related areas, is a decision tree. In many real-life problems, however, a decision tree

that captures fully the decision process would be unnecessarily complex, because of the limited

representational power of decision trees. In addition, current machine learning methods for

determining a decision tree are inflexible, in the sense that they specify a decision process once

and forever, irrespective of the possible changes in the decision-making situation. For example, if

a test assigned to some node of the tree is not available in a given situation, the decision process

cannot proceed (unless some statistical technique is applied). This stands in contrast with

human decision-making, in which a decision maker would seek a substitute test.

The methodology presented in this paper helps to solve both of the above problems. It uses a

more powerful decision structure rather a decision tree for representing decision processes. To

solve the second problem, it creates a decision structure from declarative knowledge, expressed in

the form of decision rules, rather than from examples of decisions, as in methods for learning of

decision trees (e.g., Quinlan, 1993). The decision rules are learned by an inductive learning

program from examples, or supplied by an expert. The main advantage of this approach is that

from a single set of decision rules one can potentially generate a large number of alternative

decision structures, so the system is free to chose the structure that is most appropriate for a

given decision making situation.

2. Problem Definition

A decision structure is an acyclic graph that specifies an order in which tests are to be applied in

the given decision-making situation to arrive at a decision. The nodes of a decision structure are

assigned tests, which may involve determining a value of a single attribute, a function of

attributes, or a relation. The branches stemming from a node are assigned disjoint subsets of the

test’s possible outcomes, and the leaves are assigned a specific decision, or a set of candidate

decisions (in case of having insufficient information to drive a decision). A single decision

structure can represent in a simple and understandable way a very complex relationship between

the outcomes of the tests and the assigned decisions.

3

A decision structure reduces to a familiar decision tree when each node is assigned a single

attribute, the branches from each node are assigned single values of that attribute, and leaves are

assigned single. Thus, the problem of generating a decision structure is a generalization of the

problem of generating a decision tree. Decision trees are typically learned from a set of examples

of decisions. The essential characteristic methods for learning decision trees is an attribute

selection criterion employed for choosing attributes to be assigned to the nodes of the decision

tree being built. Such criteria include entropy reduction (e.g., Quinlan 1979 and 1983), the Gini

index of diversity (Breiman et al, 1984), and others (e.g., Mingers, 1989; Chestnik and Bratko,

1991; Chestnik and Karalic, 1991).

A decision tree/structure be an effective tool for describing a decision process if the required tests

can be measured, and the class of decision-making situations it was designed for remains constant.

A problem will arise when these assumptions do not hold; for example, in some situations,

measuring some attributes may be too difficult, too costly, or just impossible. In such

situations it is desirable to reformulate the decision structure so that the available and/or

“inexpensive” attributes are evaluated first (that is, are assigned to the nodes close to the root),

and the "expensive" attributes are evaluated only if necessary (that is, are assigned to the nodes

as far away from the root as possible). If a certain attribute cannot be measured, it is useful to

either modify the structure so that it does not contain that attribute, or—if this is impossible—to

indicate alternative candidate decisions with their probabilities. A restructuring may also be

desirable, if there is a significant change in the frequency of occurrence of different decisions.

Restructuring a decision structure (or a tree) in order to suit new requirements is usually quite

difficult. This is because a decision structure is a form of procedural knowledge representation,

which imposes an evaluation order of tests. In contrast, no evaluation order is imposed by a

declarative representation, such as a set of decision rules. Tests (conditions) of rules can be

evaluated in any order. Thus, for a given set of rules, one can usually build a large number of

logically equivalent decision structures (trees), which differ in the test ordering. Due to the lack of

order constraints, a declarative representation (e.g., a ruleset) is much easier to adapt to different

situations than a procedural one (e.g., a decision structure or a decision tree). On the other hand,

4

to apply decision rules to make a decision, one needs to decide the order in which tests are

evaluated, and thus, one needs a decision structure.

An attractive resolution of these opposite requirements is to acquire and store knowledge in a

declarative form, and transform it to a decision structure when it is needed for making a decision.

This method allows one to create a decision structure that is most appropriate for a given

decision-making situation. Because the number of decision rules per decision class is usually

small (much smaller than the number of training examples per class), the process of generating a

decision structure from decision rules can be potentially done much faster than generating it from

training examples (e.g., Quinlan, 1979; Breiman et al, 1984). This feature has been confirmed in

our experiments (see Section 3). Because the process of generating a decision structure from

decision rules can be done very quickly, it can be done at the time when a decision structure is

needed “on line,” without any delay noticeable to the user. In this way, a decision structure can

be tailored to any specific decision-making situation.

This approach allows one to generate a decision structure that avoids evaluating an attribute that

is difficult or costly to measure. Initial ideas on this approach, and the first system implementing

it, AQDT-2, have been described in [Imam and Michalski, 1993]. The original idea for this

methodology stems from the research presented in [Michalski, 1978].

This paper presents an extension of the earlier work and a new system, AQDT-2. The new

system generates a goal-oriented decision structure from decision rules learned by either the rule

learning system AQ15c [Michalski et. al, 1986; Wnek at al., 1995] or AQ17-DCI (Bloedorn et al,

1993; Bloedorn and Michalski, 1997]. By using AQ17-DCI, which has extensive constructive

induction capabilities, “oblique” decision structures can be generated (in which nodes

corresponding to tests are functions of the original attributes).

Other novel features of the system include a method for controlling the degree of generalization

needed during the development of the decision structure, new attribute selection criteria based on

decision rules, a new method for combining attribute selection criteria, the ability to generate

“unknown” nodes in situations in which there is insufficient information for generating a

5

complete decision structure, the ability to learn decision structures from discriminant decision

rules as well as characteristic rules (Michalski, 1983), and finally, the ability to provide the most

probably correct decision when the decision process stops due to the inability to measure an

attribute associated with some node. The following section describes details of this methodology.

3 Methodology

The methodology assumes that input to the process is in the form of decision rules in VL1

(variable-valued logic system one), which are generated by an AQ-type learning program. For the

sake of generality, the methodology can also accept as input a set of examples in the form of

sequences of attribute-value pairs. The decision rules may include original attributes, or derived

attributes, which are functions of the original ones. Derived attributes are generated by the

constructive induction program AQ17-DCI (Bloedorn and Michalski, 1997; Bloedorn et al.,

1993).

The top-level algorithm proceeds in a way similar to standard methods of building a decision tree

from examples. The major difference is that it assigns tests to the nodes using criteria based on

the properties of the decision rules, rather than criteria based on the coverage of individual

training examples. Other differences are that branches of the structure may be assigned not a

single test outcome, but a subset of possible outcomes (corresponding to the internal disjunction

of values in a condition of a rule). Individual tests are either single original attributes, or names

standing for logical or mathematical expressions involving these attributes. These names represent

derived attributes generated by the program for constructive induction AQ17-DCI. From now on,

we use terms a "test" and an "attribute" interchangeably.

At each step, the algorithm searches through a set of tests appearing in the working set of

decision rules, to select a test with the highest ranking according to a multicriterion test selection

procedure. The selected test is assigned to the node currently under consideration, initially, the

6

root. The node is expanded by generating branches from it, and assigning to them those values (or

groups of values) of the selected test that occur in the working ruleset. The working ruleset is

reduced by removing from the rules conditions that are satisfied by the test values on the path

from the root to the current node. If the reduced ruleset implies one specific decision, or no more

tests can be measured, then the endpoint becomes a leaf, and is assigned that specific decision, or

an undetermined decision “?”, respectively. Otherwise, the endpoint becomes a node to be

expanded in the nest step.

The test selection procedure is based on a combination of elementary criteria, each evaluating one

aspect of a test (the way the criteria are combined is explained below). These elementary criteria

measure the following aspects:

1) Cost, which reflects the difficulty of measuring a test in a given decision-making
situation.

2) Disjointness, which captures the effectiveness of the test in discriminating among
decision rules for different decision classes.

3) Importance, which determines a measure of importance of the test in the working set of
decision rules.

4) Value distribution, which characterizes the distribution of the test importance over all of
its of values.

5) Dominance, which measures the frequency of the test occurrence in the rules.

These criteria are explained in more detail below.

Cost: The cost of a test is defined by the user. It expresses the total effort (including the

measurement cost) needed to measure and apply the test in a given decision-making situation; if

the test cannot be measured in a given situation, the cost is infinite.

Disjointness: This criterion measures the degree to which values of a test are different in the

rulesets of different classes. Let us suppose that decision classes are C1, C2,..., Cm, and decision

rulesets for these classes are given. For a given test A, let V1, V2,....,Vm, denote sets of the

values (outcomes) of A that are present in the conditions of the rulesets for classes C1, C2,..., Cm,

7

respectively. If a ruleset for some class, say, Ci contains a rule that does not involve test A, then

V i is assumed to be the domain of A (the set of all possible values of A).

Definition 1. Class disjointness, D(A, Ci) of test A for the ruleset of class Ci, is the sum of the

degrees of disjointness, D(A, Ci, Cj), between the ruleset for Ci and rulesets for Cj, j=1, 2,...m, j ≠

i. The degree of disjointness between a ruleset for Ci and the ruleset for Cj is defined by:

D A Ci C j

0, if Vi Vj
1, if Vi Vj
2, if Vi Vj or Vi j
3, if Vi Vj

(, ,) =

⊆
⊃
∩ ≠
∩ =













φ
φ

 or V (1)

where φ denotes the empty set.

Definition 2. The disjointness of the test A for evaluating a given set of decision rules is the sum

of the degrees of class disjointness of each decision class:

 m m

Disjointness(A) = Σ D(A, Ci), where D(A, Ci) = Σ D(A, Ci, Cj) (2)
 i=1 i=1, i≠j

The disjointness of a test ranges from 0, when the same test values are in the rulesets of all

classes, to 3*m*(m-1), when every ruleset of a given class contains a different set of the test

values. Selecting a test with the maximum possible disjointness produces a node in the decision

structure whose children can be immediately assigned decision classes.

Importance: This criterion is based on the importance score (IS), introduced in [Imam et al.,

1993]. In the obtained rules, each test is assigned a “score” that represents the total number of

training examples that are covered by the rules involving this test. Decision rules learned by an

AQ-type learning program are accompanied with information on their strength.

The rule strength is characterized by its t-weight and u-weight. The t-weight (total-weight) of a

rule for some class is the number of examples of that class covered by the rule. The importance

score of a test is the sum of the t-weights of all rules that contain that test in their condition part

(u-weights are used for another purpose—see Sec. 3). Suppose that given is a set of decision

8

rules for decision classes C1,..,Cm, and tests A1,..,An involved in these rules. The number of rules

associated with class Ci is denoted by "ri".

Definition 3. The importance score, IS(Aj), of the test Aj is determined by:

 m ri

IS(Aj)= Σ IS(Aj, Ci), where IS(Aj, Ci.) = Σ Rik(A j) (3)
 i=1 k=1

and Rik, the weight of a test Aj in the rule Rk of class Ci is given by:

 R ik (A j) =
t − weight if A j belongs to rule R ik

0 otherwise




 (4)

where i=1,..,n; ik=1,..,ri; j=1,..,m.

Value distribution: This criterion represents the importance score normalized by the size of the

test’s domain (the number of legal values).

Definition 4. A value distribution, VD(A j) of a test Ai is defined by:

VD(A j) = IS(Aj) / vj (5)

where “v” is the number of legal values of Aj.

Experiments have shown that this criterion is especially useful when discriminant decision rules

(Michalski, 1983) are used as the source rules.

Dominance: This criterion measures the number of rules involving a test. Because rule conditions

may differ in the number of values linked by the internal disjunction to an attribute, to calculate

the dominance of a test, the rules are counted as if they were converted (multiplied out) to rules

without internal disjunction.

For example, multiplying out the rule [x3=1 v 3] & [x4=1] => C yields two rules [x3=1] &

[x4=1] => C and [x3=3] & [x4=1] => C.

A test selection procedure is based on one or more of the above elementary criteria. A user

selects elementary criteria that appear to be most relevant to a given application problem, and

arranges them into a lexicographic evaluation functional with tolerances (LEF) [Michalski, 1973].

9

LEF consists of a list of <elementary criterion--tolerance> pairs, where tolerance is in %. LEF is

used to select the best test in the following way. All available tests are evaluated on the first

elementary criterion in the LEF, and those that score within the tolerance range from the best

score are selected for an evaluation by the next elementary criterion, etc. This process continues

until only one test remains, or the criteria list is exhausted (in which case the test with the highest

score on the first criterion is chosen). The default LEF is :

 <Cost τ1; Disjointness, τ2; Importance, τ3;Value distr., τ4; Dominance, τ5> (6)

where tolerances τ1, τ2, τ3, τ4 and τ5 (in percentage) have default value 0, and the default value

of the cost of each test is 1. The default tolerance 0% means that only tests receiving the

maximum score on a given elementary criterion are passed to the evaluation by the next criterion.

4 Illustrative Applications

This section illustrates the method presented above by applying it to a practical problem. The

problem is to determine a decision structure for evaluating the structural quality of tall building

designs. The design quality is classified into four classes: High (C1), Medium (C2), Low (C3),

and Infeasible (C4).

Initial data were in the form of examples of designs classified by an expert into the above classes.

Each example was characterized by seven attributes: number of stories (x1), bay length (x2), wind

intensity (x3), number of joints (x4), number of bays (x5), number of vertical trusses (x6), and

number of horizontal trusses (x7). The data consisted of 335 examples, of which 220 (66%) were

randomly selected to serve as training examples, and 115 (34%) were used for testing the

obtained decision structures. In the first phase, general decision rules were determined by

applying inductive learning program AQ15c (a new version of AQ15 [Michalski, et al. 1986]

written in "C" [Wnek et al. 1995]). Figure 1 presents decision rules obtained.

10

Decision class C1 (High)
 1 [x1=1][x6=1][x4=1v3][x5=1,2][x7=1..3] (t :18, u :18)
 2 [x1=3][x2=1][x3=1][x5=1][x6=1][x4=1v3][x7=1v3v4] (t :3, u : 3)
 3 [x1=5][x2=2][x3=2][x5=2][x4=3][x6=1][x7=2v3] (t :2, u : 2)
 4 [x1=1][x6=1][x2=2][x4=3][x5=1v2][x7=4] (t :2, u : 2)
 5 [x1=3][x2=1][x4=1][x6=1][x7=1][x3=2][x5=1v2] (t :2, u : 2)
 6 [x1=1][x3=1][x6=1][x2=2][x4=1v3][x7=1v3][x5=3] (t :2, u : 2)
 7 [x1=2][x5=2][x2=1][x6=1][x4=3][x7=4] (t :2, u : 2)

 Decision class C2 (Medium)
 1 [x1=2..4][x4=3][x5=2,3][x6=1][x7=2v3] (t :28, u :19)
 2 [x1=2..4][x2=2][x4=3][x5=1,2][x6=1][x7=3,4] (t :17, u : 6)
 3 [x1=2v4][x4=3][x5=1][x6=1][x7=3v4] (t :10, u : 4)
 4 [x1=1v3v5][x4=3][x5=3][x6=1][x7=2v4] (t :10, u : 2)
 5 [x1=3v5][x4=3][x5=2v3][x6=1][x7=1v4] (t : 9, u : 4)
 6 [x1=2][x4=1][x6=1][x7=1] (t : 7, u : 6)
 7 [x1=3v4][x2=2][x3=2][x4=1v3][x5=1v3][x6=1][x7=1v2] (t : 6, u : 4)
 8 [x1=3v5][x2=2][x3=1][x7=1][x4=1v2][x6=1v3] (t : 5, u : 5)
 9 [x1=1][x2=1][x6=1][x4=3][x5=1,2][x7=4] (t : 4, u : 4)
 10 [x1=1][x5=1][x2=2][x4=2][x6=2][x7=1..3] (t : 4, u : 4)
 11 [x1=1v2][x2=1][x6=1][x4=1v3][x5=3][x7=1v4] (t : 4, u : 2)

 Decision class C3 (Low)
 1 [x1=2..5][x4=1v2][x5=1v3][x6=2v4] (t :41, u :32)
 2 [x1=1..4][x4=2][x5=2][x6=2v3][x7=2..4] (t :27, u :20)
 3 [x1=1v3][x2=1][x4=2][x5=1v2][x6=2,3] (t :19, u : 6)
 4 [x1=1v2v4][x4=2][x5=2v3][x6=3v4][x7=1] (t :13, u : 8)
 5 [x1=5][x2=2][x4=2][x5=2][x6=3][x7=2..4] (t : 5, u : 5)

 Decision class C4 (Infeasible)
 1 [x1=5][x2=2][x3=2][x4=1,3][x5=1][x6=1] (t : 4, u : 4)
 2 [x1=5][x2=2][x3=1][x5=1][x6=1][x4=3][x7=3] (t : 1, u : 1)

Concatenation of conditions means conjunction, t denotes the total weight of a rule, and u denotes the unique weight.

Figure 1: Decision rules learned by AQ15c from the wind bracing data .

As one can see in Figure 1, the first rule in each ruleset (set of rules for one class) is by far the

strongest rule for that class. Rules with a very small u-weight (the number of examples covered

by a given rule and no previous rule in the set) point out to rare, special cases, or errors in the

data. The study presented in (Bergadano et al., 1992) demonstrates that one can obtain a very

high predictive accuracy by selecting only the strongest rule from each class (and ignoring the

remaining rules), and then using it with a flexible matching procedure when determining the class

membership of a new example. In this study, to illustrate the methodology, all rules were

preserved.

Table 1 presents results (scores) from applying elementary criteria to each attribute (test) in the

rules from Figure 1. These scores were used to select the best test for the root of the decision

11

structure to be created from the rules. For each class, the row marked “Values” lists values

occurring in the ruleset for this class.

For evaluating the disjointness of an attribute, say A, each rule in the ruleset that does not contain

A is assumed to contain an additional empty condition [A= a v b ...k], where a, b, ...k are all the

legal values of A.

 Class Attributes
x1 x2 x3 x4 x5 x6 x7

 C1 Values 1,2,3,5 1,2 1,2 1,3 1,2,3 1 1..4
Class disjointness 1 1 0 2 1 3 0

 C2 Values 1..5 1,2 1,2 1,2,3 1,2,3 1,2,3 1..4
Class disjointness 2 1 0 3 1 4 0

 C3 Values 1..5 1,2 1,2 1,2 1,2,3 2,3,4 1..4
Class disjointness 2 1 0 4 1 8 0

 C4 Values 5 1 1,2 1,3 1 1 1..4
Class disjointness 0 0 0 2 0 3 0

Attribute Disjointness 5 3 0 11 3 18 3
Attribute Importance 245 82 25 245 233 245 181
Attribute value distribution 49 41 13 82 78 61 45
Attribute Dominance 45 34 42 33 40 30 54

Table 1: Values of selection criteria for each attribute for the wind bracing problem.

Assuming the default LEF, that is, <Cost 0%; Disjointness, 0%; Importance, 0%; Value distr.,

0%; Dominance, 0%>, and the Cost equal 1 for all attributes, attribute x6 is chosen for the root

(as it has the highest disjointness). Branches stemming from the root are marked by single values,

or groups of values of variable x6, according to the way in which they occur in the decision rules

(groups of values subsumed by other groups are removed; Imam and Michalski, 1993). The

nodes attached to the branches are assigned rules that satisfy conditions specified by the assigned

attribute values. If rules assigned to some node are all of the same class, then this node becomes a

leaf, and assigned the name of that class. This process is repeated for each node until all nodes

become leaves, or there is no more tests available. Figure 2 presents a decision structure generated

by AQDT-2 from decision rules shown in Figure 1 (using the default LEF).

12

x6
1 2..4x5

2 3
C3

1

 Complexity
No. of nodes: 5
No. of leaves: 9

C2
2..5

C1 C2C1 C4C2 x2
1 2

C1 C2

x1
12v4 3

x1

51

Figure 2: A decision structure determined by AQDT-2 for the wind bracing problem.

The decision structure was tested on testing examples, and the prediction accuracy was 88.7%

(102 testing examples were classified correctly and 13 were misclassified). For comparison, the

well known C4.5 program for decision trees was also applied to the same problem (Quinlan,

1990). C4.5 was used with the default window setting (maximum of 20% the number of

examples and twice the square root the number of examples), and the number of trials was set to

one. The decision tree produced by C4.5 was considerably more complex (it had 17 nodes and 43

leaves, as compared to 5 nodes and 9 leaves in the AQDT decision structure), and its prediction

accuracy was lower (84.3%, as compared to 88.7%; 97 testing examples were classified correctly

and 18 were misclassified). Thus, AQDT-2 generated decision structures were much simpler than

decision trees obtained from C4.5, and their predictive performance was higher.

5 Special Issues

5.1 Handling the Attribute Cost

As described in Section 2, the LEF criterion can take into consideration the cost of measuring

attributes (tests). If some attribute has high cost, or is impossible to measure (infinite cost), as

indicated in LEF, at each step the system tries to select a "cheaper” attribute among available

alternatives.

13

Figure 3 shows a decision structure obtained from the rules in Figure 1 under the condition that

x1 is unavailable (infinite cost). As one can see, although x1 is unavailable, a definite decision still

can be assigned in many cases. In some cases, however, a specific decision cannot be reached.

Such leaves, called indecision nodes , are marked by ?. In Figure 3, indecision nodes are those at

which a definite decision cannot be reached without knowing x1.

The decision tree was tested on 115 new examples, of which 71 were classified correctly, 14

incorrectly, and 30 were assigned the "?" decision.

x6
1 2..4x5

2 3
C3

1

 Complexity
No. of nodes: 5
No. of leaves: 7

1 2

x2

C2

41..3

x7

1 2

C2

x3

C2

? ?

?

Figure 3: A decision structure learned without x1.

5.2 Assigning Probability Estimates to Alternative Decisions

As illustrated above, when some attribute(s) cannot be measured, the decision structure may not

be able to assign a definite decision in some cases. In such cases, if no more information can be

obtained, but a decision must be made at an indecision node, it would be useful to know an

estimate of the probability distribution of different candidate decisions (Smyth, Goodman &

Higgins, 1990). We will present here a method for computing a data-based estimate of such

probabilities.

This estimate is based on the assumption that the probabilities of alternative decision classes at

an indecision node can be estimated by the frequency of training examples of these classes at that

node. Let us suppose that we have a complete decision structure in which leaves correspond to

specific decisions, but the structure was constructed in such a way that all the attributes from the

14

root to some node, IND, can be measured, and beyond that node cannot be measured. Thus, the

node IND is an indecision node. IND can be associated with a set of decision rules of different

classes that are satisfied by the values of attributes on the path from the root to that node. These

rules can be divided to two parts:

—the context part, which is a conjunction of conditions satisfied by the values of attributes along

the path from the root to IND (exclusively), and

—the free part, which contains one or more rules for each candidate class; each such rule contains

attributes assigned to a path from IND (inclusively) to one of the leaf nodes.

Suppose, without loss of generality, that IND can be assigned only class C1 or C2. Let N1

denote the number of known examples of C1 that are covered by the free part of the rules of class

C1, and N2 denote the number of known examples of C2 that covered by the free part of the

rules of class C2. If the free parts of rules of some class, say Ci, are disjoint, then Ni is simply

the sum of t-weights of these rules, otherwise, the sum must be reduced by the number of

examples in the intersection. A computationally simpler process is to compute Ni as the sum of

u-weights (unique-weights) of the rules. The data-based probability estimates p’(C1) and p’(C2)

that an event satisfying the context part of N is of class C1 or C2, respectively, is computed as:

p’(C1) = N1/(N1+ N2) and p’(C2) = N2/(N1+ N2) (7)

If node N is associated with a subset of possible classes, Ci, i ∈ I, then we have:

p’(Ci) = Ni/ S, i ∈ I (8)

where S is the total number of (seen) examples that satisfy the context part at IND.

Figure 4 presents a decision structure from Figure 3 in which indecision nodes (leaves marked by

? in Fig. 3) were assigned candidate decisions with data-based probability estimates computed

according to (8). Let us consider node x2. The number of examples of decision classes C1, C3,

and C4 that satisfy the context part of rules in Fig. 1, were N1=31, N2=11, and N4=5. Thus, the

data-based probability estimates according to (8), are p’(C1)= . 66, p’(C2) = .23, and p’(C4)

=.11.

15

x6
1 2..4x5

2 3
C3

1

 Complexity
No. of nodes: 5
No. of leaves: 7

1 2

x2

C2

41..3

x7

1 2

C2

x3

C2

C1 .66
C2 .23
C4 .11

C1 .63
C2 .37

C1 .53
C2 .47

Predictive accuracy : 88.7 %.

Figure 4: A decision structure from figure 3 with data-based estimates of class
probabilities at indecision nodes.

The data-based estimates p’(Ci), as defined in (8), are computationally simple, but cannot be

made if the decision rules have been obtained from an expert, so that one cannot determine

examples that satisfy the rules.

Another problem with these estimates is that they do not take into consideration the fact that

decision rules associated with IND are typically generalizations of training examples; thus they

cover unseen examples. The predictive accuracy of these generalizations, which can be estimated

experimentally, influences the value of the probabilities of candidate classes at indecision nodes.

This consideration calls for introducing another measure, p’’(Ci), in which the probability of an

arbitrary example belonging to class Ci (when it satisfies the context part of node IND), depends

on the degree of generalization represented by the rules and their predictive accuracy. If the

predictive accuracy of the rules associated with IND is guaranteed to be 100%, such a

generalization-based probability estimate could be computed as:

 p’’(Ci) = Pi/ P, i ∈ I (9)

where Pi is the number of all possible examples that satisfy the free part of the rules for class Ci,

and P is the number of all possible examples that satisfy any of the rules in the free part. The

predictive accuracy of decision rules is, however, normally less than 100%; therefore, the formula

16

(9) is only a rough approximation. A better approximation would be to take into consideration

the estimate of predictive accuracy for the portion of the rules that covers the unseen examples of

each class. There is also an issue of how to handle examples that are not covered by any rules.

We leave the problem of deriving the most adequate generalization-based class probability

estimates for future research.

5.3 Simplifying Decision Structures by Rule Truncation

As mentioned earlier, decision rules with a small weight (total and/or unique) may be indicative of

errors in the data. Studies presented in (Michalski et al., 1986; Bergadano et al., 1992; Imam and

Michalski, 1993) show that such rules can be truncated, and that such a truncation can be useful

even when “light” rules are not necessarily covering only noisy examples. Examples that are left

uncovered by truncating such rules can be often covered by applying a flexible matching

procedure to the remaining decision rules. Flexible matching is done by computing a degree of

match between an example and rules of candidate classes, and selecting decision corresponding

tot he best match (Michalski et al., 1986).

The default setting of AQDT-2 requires pruning decision rules with a support level of 3% or

less. The support level is the percentage of the total number of examples covered by a rule (called

the t-weight) to the total number of examples in the given decision class). Figure 5 shows a

decision structure obtained after pruning decision rules (that were used for determining decision

structure in Figure 2). In this case, rules with 10% or lower relative t-weight were removed. The

produced decision structure has a slightly lower predictive accuracy in comparison with the

decision structure in Figure 2 (88% vs. 88.7%); but it has only 3 nodes and 5 leaves vs. 5 nodes

and 9 leaves that are in the structure in Figure 2.

17

x6
1 2..4x1

2..4 5
C3

1 Complexity
No. of nodes: 3
No. of leaves: 5C4 C2

x5
2v31

C1 C2

Predictive accuracy: 88%.

Figure 5: A simplified decision structure due to the rule truncation for the same
problem as decision structure in Figure 2.

This example shows that the rule truncation may significantly simplify a decision structure,

without significantly affecting the prediction accuracy. In fact, in some experiments, such a rule

truncation not only simplifies decision rules (and thus leads a simpler decision structure), but

also improves their prediction accuracy (Bergadano et al., 1992).

6. Applying AQDT-2 to Congressional Voting 81 Problem

To test AQDT-2 on a real-world problem, it was applied to learning patterns in the U.S.

congressional voting (1981 Congress Voting Record). There are two decision classes:

“Democratic Voting Pattern” and “Republican Voting Pattern.” Each voting record of a democrat

or a republican in the U.S. congress was described in terms of 19 multivalued attributes. In the

experiment described here, 51 voting records were used (31 Democratic and 20 Republican).

The AQ15 inductive learning program generated four rules for the “Democratic Voting Pattern,”

and 7 rules for the “Republican Voting Pattern.” Only 10 of 19 original attributes were used in

the obtained rules. Table 2 lists attributes involved in the decision rules, and their legal values

(domains). For simplicity, original symbolic values have been mapped into isomorphic numerical

values. These numerical values correspond to the symbolic values listed in Table 2. The AQDT-2

program produced a decision tree with 20 nodes. The prediction accuracy of the tree on the

testing examples was 91.8%.

18

For comparison, C4.5, was also run on exactly the same data. It produced a decision tree with

23 nodes, and its prediction accuracy on the same testing examples was 85.7%. Both programs

were run under the assumption that they will produce a complete and consistent decision tree

with regard to the training examples.

Figures 6 and 7 present decision structures generated by AQDT-2 for the above Congressional

Voting-1981 problem. Figure 6 shows a decision structure, generated from AQ15 rules (without

constructive induction), and Figure 7 shows a compact decision tree, generated from AQ17-DCI

rules (with constructive induction). The compact decision tree contains some nodes that are

assigned constructed attributes: y20, y21 and y22. These attributes represent simple

mathematical relations on the initial attributes. The attribute y20 is defined by the relation

y7+y3=1 v 2 {The attribute takes value T (true) whenever the sum of the numeric values of y7

and y3 equals one or two, and value F (false), otherwise.} Attribute y21 is defined by the

relation y12+y9 ≤ 3, and attribute y22 is defined by the relation y12-y4= 0 v 1.

19

 Attribute Legal Values
y1- Food_stamp_cap 0 - no 1 - yes 2- not registered
y2- Occupation 0 - known 1 - unknown
y3- Gas_cont_ban 0 - no 1 - yes 2 - not registered
y4- Income 0 - low 1 - medium 2 - high
y5- Education 0 - no 1 - yes 2 - not registered
y6- Chrysler 0 - no 1 - yes 2 - not registered
y7- Draft 0 - no 1 - yes 2 - not registered
y8- State 0 - northwest 1 - northeast 2 - not registered
y9- Soc_sec_cut 0 - no 1 - yes 2 - not registered
y10- Alaska_parks 0 - no 1 - yes 2 - not registered
y11- Wind_tax_limit 0 - no 1 - yes 2 - not registered
y12- Nicaragua_ban 0 - no 1 - yes 2 - not registered
y13- Fair_housing 0 - no 1 - yes 2 - not registered
y14- Nuc_power 0 - no 1 - yes 2 - not registered
y15- Pac_limit 0 - no 1 - yes 2 - not registered
y16- Mx_cut 0 - no 1 - yes 2 - not registered
y17- Osha_cut 0 - no 1 - yes 2 - not registered
y18- Hosp_cost_cont 0 - no 1 - yes 2 - not registered
y19- Population 0 - small 1 - medium 2 - large

Table 2: The US Congressional voting attributes and their legal value sets.

20

y9

0 1 2

y3

0 1

RD

D R

y1

0 1 2

y7

0 1 2

y3

0 1

0 2

y3

0
1 2

R

R

D DR

y5

R D

D

Conventional Tree
 Complexity
No. of nodes: 7
No. of leaves: 13

y1 - Food_stamp_cap y5 - Education y9 - Soc_sec_cut D- Democrat
y3 - Gas_cont_ban y7 - Draft R- Republican

D

1

The predictive accuracy on testing examples: 91.8%.

Figure 6: A decision structure obtained by AQDT-2 for the Congressional Voting-1981 problem
without constructive induction.

D

0 1v2

D

RD

1v20

1v20

y7

y10

y8
y21

y6

R

0 1v2

D R D

0 1v2

y15

F T

y20

TF

 Complexity
No. of nodes: 7
No. of leaves: 8

y3 - Gas_cont_ban y7 - Draft y9 - Soc_sec_cut y12 - Nicaragua_ban D- Democrat
y6 - Chrysler y8 - State y10 - Alaska_park y15 - Pac_limit R- Republican
y20 = (y7 + y3 = 1,2) y21 = (y12 + y9 ≤ 3)

The predictive accuracy on testing examples: 91.8%.

Figure 7: A decision structure obtained by AQDT-2 for the Congressional Voting-1981 problem
with constructive induction.

For comparison, Figure 8 presents a decision tree generated by C4.5 for the same problem.

Comparing decision trees in Figures 6, 7 and 8, one can notice that decision structures generated

from decision rules (conventional and compact) had a considerably higher predictive accuracy

21

(91.8% vs. 85.7%) on testing examples, as well as were simpler than the tree generated directly

from examples (by C4.5).

R

y11

0 1 2

y2
0 12

y12

0 1 2

DD R

y4
DR

0 1 2

y6

y5

010 1 2y13

0 1 2

y10

0 1

R D

 Complexity
No. of nodes: 8
No. of leaves 15

DR

R

D

D D

D

y2 - Occupation y5 - Education y10 - Alska_parks y12 - Nicaragua_ban D- Democrat
y4 - Income y6 - Chrysler y11 - Wind_tax_limit y13 - Fair_housing R- Republican

The predictive accuracy on testing examples: 85.7%.

Figure 8: A decision tree obtained by C4.5 for the Congressional Voting-1981 problem.

7. Conclusion

The presented methodology advocates building decision structures (or decision trees) from

decision rules, rather than directly from examples. A justification for such an approach is that

decision rules are a form of declarative knowledge representation, and as such permit a greater

flexibility of interpreting knowledge they represent. One can also argue that such a process has

parallels to human decision making, because people mostly store declarative representations, and

from them derive decision procedures they need in any given situation.

From a rule representation, one can potentially derive many equivalent or example-set equivalent

decision structures. {By example-set equivalent decision structures are meant structures that

assign the same decisions to the examples in the training set}. In the presented methodology, the

above flexibility is exploited for deriving a decision structure that is most suitable for a given

decision-making situation.

22

The concept of decision structure has been demonstrated to have an advantage over conventional

decision trees in terms of the simplicity of representing the same decision function. The

methodology has been impelemented in AQDT-2 program. While the methodology is oriented

toward creating decision structures from decision rules, it can also be used for creating decision

structures from examples (since examples can be viewed as specific rules). In the experiments on

applying AQDT-2 to various problems, the obtained decision structures were significantly

simpler, sometimes by a wide margin, than decision trees obtained by program C4.5, while their

predictive accuracy was comparable or superior. Further research is needed to determine if these

findings were only for the problems we worked with, or represent a general pattern. The

methodology permits a user to employ several elementary criteria in determining a decision

structure that is most suitable for a given decision-making situation. The available elementary

criteria include cost, disjointness, importance, value distribution, and dominance.

A major advantage of the methodology is that it allows one to very efficiently create a decision

structure from decision rules that is optimized for any given decision-making situation. The time

of generating a decision structure from decision rules in the cases we investigated was negligible.

Therefore, it is easy to experiment with many different criteria for decision structure generation

in order to obtain the most desirable one for a given problem.

ACKNOWLEDGMENTS

The first author had the opportunity of presenting basic ideas contained in this paper at the 7th

International Symposium on Methodologies for Intelligent Systems in Trondheim, Norway in June

1993. Dr. Cecylia Rauszer was in the audience, and after the talk made complimentary comments

about the presentation. The memory of these comments will always stay in the heart of the

speaker. This was the last time he had the privilege to talk with Inka (as Dr. Rauszer was called

by her friends), with whom he has had previously many research discussions, and who was his

personal friend.

23

The authors thank Ken Kaufman and James Mitchell for his comments and criticism of earlier

versions of this paper. The material presented here is a substantial improvement and an

adaptation of the material presented by the authors at the 8th International Symposium on

Methodologies for Intelligent Systems in Charlotte, October 16-19, 1994.

This research was conducted in the Machine Learning and Inference Laboratory at George Mason

University. The Laboratory’s research activities are supported in part by the National Science

Foundation under grants IRI-9510644 and DMI-9496192, in part by the Office of Naval

Research under grant N00014-91-J-1351, in part by the Defence Advanced Research Projects

Agency under grant No. N00014-91-J-1854 administered by the Office of Naval Research, and in

part by the Advanced Research Projects Agency under grants F49620-92-J-0549 and F49620-95-

1-0462 administered by the Air Force Office of Scientific Research.

REFERENCES

Bergadano, F., Matwin, S., Michalski R. S. and Zhang, J., "Learning Two-tiered
Descriptions of Flexible Concepts: The POSEIDON System," Machine Learning, Vol. 8, No. 1,
pp. 5-43, January 1992.

Bloedorn, E. and R. S. Michalski, “DATA-DRIVEN CONSTRUCTIVE INDUCTION: A
Methodology and Experiments,” Reports of Machine Learning and Inference Laboratory,
George Mason University, 1997 (to appear).

Bloedorn, E., Wnek, J., Michalski, R.S., and Kaufman, K., "AQ17: A Multistrategy Learning
System: The Method and User’s Guide”, Report of Machine Learning and Inference Laboratory,
MIL-93-12, George Mason University, 1993.

Bohanec, M. and Bratko, I., “Trading Accuracy for Simplicity in Decision Trees”, Machine
Learning Journal, Vol. 15, No. 3, Kluwer Academic Publishers, 1994.

Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J., “Classification and Regression
Structures”, Belmont, California: Wadsworth Int. Group, 1984.

Cestnik, B. & Bratko, I., “On Estimating Probabilities in Structure Pruning”, Proceeding of
EWSL 91, (pp. 138-150) Porto, Portugal, March 6-8, 1991.

Cestnik, B. & Karalic, A., “The Estimation of Probabilities in Attribute Selection Measures for
Decision Structure Induction” in Proceeding of the European Summer School on Machine
Learning, July 22-31, Priory Corsendonk, Belgium, 1991.

24

Imam, I.F. and Michalski, R.S., "Learning Decision Structures from Decision Rules: A method
and initial results from a comparative study", in Journal of Intelligent Information Systems JIIS,
Vol. 2, No. 3, pp. 279-304, Kerschberg, L., Ras, Z., & Zemankova, M. (Eds.), Kluwer Academic
Pub., MA, 1993.

Imam, I.F., Michalski, R.S. and Kerschberg, L., “Discovering Attribute Dependence in
Databases by Integrating Symbolic Learning and Statistical Analysis Techniques", Proceeding of
the First International Workshop on Knowledge Discovery in Database, Washington, D.C., July,
11-12, 1993.

Michalski, R.S., “AQVAL/1-Computer Implementation of a Variable-Valued Logic System VL1
and Examples of Its Application to Pattern Recognition,” Proceeding of the First International
Joint Conference on Pattern Recognition, (pp. 3-17), Washington, DC, October 30- November 1,
1973.

Michalski, R.S., "A Theory and Methodology of Inductive Learning," Chapter in Machine
Learning: An Artificial Intelligence Approach, R. S. Michalski, J. Carbonell and T. Mitchell
(Eds.), TIOGA Publishing Co., Palo Alto, pp. 83-134, 1983.

Michalski, R.S, “Designing Extended Entry Decision Tables and Optimal Decision Trees Using
Decision Diagrams”, Technical Report No. 898, Urbana: University of Illinois, March 1978.

Michalski, R.S., Mozetic, I., Hong, J. & Lavrac, N., “The Multi-Purpose Incremental Learning
System AQ15 and its Testing Application to Three Dedical Domains”, Proceedings of AAAI-86,
(pp. 1041-1045), Philadelphia, PA, 1986.

Mingers, J., “An Empirical Comparison of Selection Measures for Decision-Structure
Induction”, Machine Learning, Vol. 3, No. 3, (pp. 319-342), Kluwer Academic Publishers,
1989a.

Quinlan, J.R., “Discovering Rules by Induction from Large Collections of Examples”, in D.
Michie (Edr), Expert Systems in the Microelectronic Age, Edinburgh University Press, 1979.

Quinlan, J.R., “Learning Efficient Classification Procedures and Their Application To Chess
End Games,” in R.S. Michalski, J.G. Carbonell and T.M. Mitchell, (Eds.), Machine Learning: An
Artificial Intelligence Approach. Los Altos: Morgan Kaufmann, 1983.

Quinlan, J. R. “Probabilistic Decision Structures,” in Y. Kodratoff and R.S. Michalski (Eds.),
Machine Learning: An Artificial Intelligence Approach, Vol. III , San Mateo, CA, Morgan
Kaufmann Publishers, (pp. 63-111), June, 1990.

Smyth, P., Goodman, R.M., and Higgins, C., “A Hybrid Rule-based/Bayesian Classifier”,
Proceedings of ECAI-90, Stockholm, 1990.

