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Abstract

The AQ21 program seeks different types of patterns in dataegnesents them in human-oriented
forms resembling natural language descriptions. Because ddittbe feature it is called matural
induction program. This feature is achieved by employing a highly exXpeesgpresentation
language, Attributional Calculus, that combines aspects of prapw@itipredicate and multi-valued
logic for the purpose of supporting pattern discovery and inductivaihga This paper briefly
describes the pattern discovery mode in AQ21, and several roltts seamlessly integrated in it,
specifically, to discover different types of attributionaltpats depending on the parameter settings,
to optimize patterns according to a large number of differen¢rpatijuality criteria, to learn rules
with exceptions, to determine optimized sets of alternative hypothasesliEng the same data, and
to handle data with missing, irrelevant and/or not-applicable-waues. The discovered patterns
are expressed in the form of attributional rules that aretljirexterpretable in natural language and
are visualized using either general logic diagrams or eminassociation graphs. The described
program features are illustrated by a sample of pattern discorariems.
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1 INTRODUCTION

One of the limitations of the current data mining and machine teamiograms is that they
employ relatively simple representation languages, e.g., deciges, tBayesian nets, neural
nets, etc., which limit their abilities as to the range ofgpas they can discover. As a result,
such programs may not be able to discover patterns that are cdgrstimgle but not easily
representable by the program.

This paper concerns research on developing methodology for discodgffergnt types of
patterns represented in a highly expressive representation land\trgputional Calculus, that
combines features of propositional, predicate and multiple-valued kogicthe purpose
supporting pattern discovery and concept learning (Michalski, 200é)mBEthodology has been
implemented in AQ21, a program that performetural induction by which we mean an
inference process that strives to generate accurate indugpeghbses that are represented in
human-oriented forms resembling natural language descriptions, aoyl thist easy to interpret
and understand.

The rules learned by pattern discovery programs are ustaijynctions of atomic “attribute
relation value” conditions (e.g. Grzymala-Busse, 2003; Pawlak, 1991; SetakdPaton, 2005;
Van Zyl and Cloete, 2004). Because of this constraint, these prqgaamell as earlier ones,
such as C4.5 (Quinlan, 1993), RIPPER (Cohen, 1995), CN2 (Clark and Niblett, A@&88)ore
limited than AQ21 as to the type of patterns they can discovdatan The AQ21 program also
seamlessly integrates several new features either nstesixor present only individually and in
a more limited form in other programs.

An important feature of AQ21 is that it can discover differeniesypf regularities in data,
depending on its parameter setting, such a conjunctive patternsalgemes with exceptions,
consistent and complete data characterizations, and optimized alternativeebgpot

In addition to reporting new features in AQ21, we also illustitdeperformance and its
differences from some well-known tree or rule discovery pragrhy applying it and the other
programs to a simple problem. The AQ21 results are visualized @amgralized Logic
Diagrams (GLDs).

Sections 2 and 3 present the AQ21 pattern discovery and learning metlyodédatjon 4

describes methods of reasoning with meta-values present in AQ2leetmh$ describes how
AQ21 generates alternative hypotheses generated from the samne Sattion 6 describes
AQ21’s rule application and testing module, and Section 6 illustrat#hods for visualizing

AQ21-discoverd rules employing Concepts Association Graphs (CAGsktion 7 presents
selected experimental results.

2 AQLEARNING

The learning problem considered here is to determine gengratheges H1,...,Hk that describe
classes (or concepts) C1,...,Ck, respectively, on the basis ohtr@xamples drawn from these
classes. The AQ learning approach seeks hypotheses that opangzeen multi-criterion
measure of hypothesis quality and are expressed in the faattribtitional rulesetsdefined as
sets of attributional rules describing the same concept (Michalski, 2004).



A basic form of an attributional rule is:
CONSEQUENT <= PREMISE (2)

where both CONSEQUENT and PREMISE are conjunctions of attributcmmalitions (a.k.a.
selectors), which take the form:
[Lrel R : A] (2)

wherelL is an attribute, an internal conjunction or disjunction of attributesuating attribute,
or a compound attributeel is one of =, :, >, <, >, or £, Ris an attribute value, an internal
disjunction of attribute values, an attribute, or an internal conjunctiealoés of attributes that
are constituents of a compound attribute, Ansl an optional annotation that ligiandn values
for the condition, defined as the numbers of positive and negative examgssctively, that
satisfy the condition. Here is an example of an attributional rule:

[ Activity=runni ng_experi nment s]
<= [ Day = weekend] & [C ock_speed >= 2GHz] &
[Location = labl v | ab3] & [Weather: quiet & warm

which can be paraphrased: the activity is “running_experimenitsisib weekend day (a higher-
level concept of the structured attribute “day”), clock_speeith@fcomputer is at least 2 GHz,
the experiment takes place in labl or lab3, and the weather is&uierm. The attribute
“weather” is an example of eompound attributea new type of attribute introduced in AQ
learning that takes a conjunction of values of attributes thatypreally used to describe an
object or a component of an object (Michalski, 2004). Note that thbugithmal rule above
closely corresponds to its equivalent natural language interpretation.

As shown in this example, an attributional rule in AQ learning @seEher representation
language than in a typical rule learning program, in which conditare usually limited to the
form:

[<attr> <rel> <val> ] 3)

where <ttr> is an attribute, val> is an attribute value, andet> is a relation applicable to attr
and val.

21 AQ21 Modesof Operation

AQ21 can be executed in three modes of operation, naRatgrn Discovery(PD), Theory
Formation (TF), andApproximate Theory Formatio(ATF). In PD mode, the program seeks
strong patterns that do not have to be fully consistent with the datayldose union may only
partially cover the input data (may be partially incomplete). TF mode, the program learns
complete and consistent (CC) theories. This mode is used whem biecsafely assumed that
there are no errors in the data, and is applied usually tovetyasmall datasets. In ATF mode,
the program first learns a CC theory and then optimizecdrding to a given quality measure.
The result is an approximate theory that may be partially instens, and may not be fully
complete.



This paper concentrates on the pattern discovery mode of AQ21. Théwaheitl be discussed
and analyzed in a future paper.

2.2 Pattern Discovery Mode

In PD mode, the program searches for strong patterns thxamnima an assumed pattern quality
measure. The method takes as input a set of positive examplegtnfanegative examples N,
and a pattern quality measure, called LEF, defined by the u$eliows the general algorithm
presented in Figure 1.

Hypot hesis = nul |
VWiile Eis not enpty
Select a seed p fromE
CGenerate approximate star G p, N
Sel ect the best k rules from G according to LEF, and include in Hypothesis
Renove fromE all exanples covered by the selected rules
Optimze final rules
Select the final hypothesis fromall selected rules

Figure I The simplest form of PD mode in AQ21.
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Figure 2 Top-level algorithm for the PD mode in AQ21.




The method starts by focusing attention on one data point, callsee¢tleand then creates a set
of alternative approximate generalizations of the seed, callap@oximate star In PD mode,
the generalizations are approximate, because they do not have to be conglsteetdata; they
must optimize a pattern quality criterion. The basic operatotan generation iextension-
against (Michalski, 1983), which takes two data points and creates a sehagfmal
generalizations of one data point (“positive example”) that doesavetr the second data point
(a "negative example’). The result of such an operation istaofséocal stars. A logical
intersection of local stars creates a star of the given s€ednarrow down a possibly large
number of intermediate generalizations, AQ uses beam search ¢laahastep of star generation
keeps no more than a predefined number of best rules, as determthedgbyen pattern quality
measure.

The pattern quality measure, WQ( is defined by:

Q(w) = coV * consig™ (4)
where
cov=p/P (5)
and
consig=((p/ (p +n)) — (P /(P + N))) * (P +N) /N (6)

are measures of pattern (here, attributional rule) coverageoasistency gain, respectively, and

w is a user-defined parameter. Hgr@ndn are the numbers of positive and negative examples
covered by the rule, and andN are the numbers of positive and negative examples in the
training dataset (Michalski and Kaufman, 2001).

For selection of best rules AQ21 uses Lexicographical Evaluationtiboal (LEF), a user-
defined multicriterion measure of rule quality. The default f&Fselecting a rule from a set of
candidates is to maximize @), maximize the number of examples covered by the rule, and
minimize the number of conditions in the rule. A complete list of LEF critarg@lable in AQ21

is presented in (Wojtusiak, 2004). Several features of AQ21 argndesito improve its
efficiency and pattern quality. One feature is to use not justlmreseveral seeds for parallel
star generation (to avoid situations in which the selected seedsrars). In this case, the best
rule is selected from all stars. Other features inckelection of negative examples based on
their distributions, selection of most relevant attributes prioitdo generation, and optimized
discretization of continuous attributes. These features are,veowseyond the scope of this
paper.

It should be noted that other well-known rule learning methods, such RERIECohen, 1995)
and CN2 (Clark and Niblett, 1989), also seek strong patterns, but AQ21 teamide strong
patterns optimizing a wide range of different pattern qualitgra, depending on the setting of
its parameters. Because of its using a more expressivesegpation language, the patterns
learned by AQ21 can be significantly richer and of differepesy including complete and
consistent (CC) rulesets, rulesets with exceptions, approximate CC rulesangatterns.

To graphically illustrate patterns that AQ21 can discover, welQgseeralized Logic Diagrams
(GLD9s (Michalski, 1978), (Sniezynski, Szymacha and Michalski, 2005) that previglanar
representation of the multidimensional representation space spannednaltgie-valued



discrete attributes. By properly ordering attributes assigaeakes of the diagram, patterns can
be usually displayed in an easily understood form.

3 EXAMPLE PROBLEM

To illustrate AQ21 capabilities, we use a simple designed @mblit should be noted, however,
that the program can work with datasets containing thousands or moreapbides, each
represented by hundreds of multitype variables.

3.1 Problem Definition and Results

In this very simple example, datapoints (instances, examplesjedined using the attributes
described in Figure 3.

condi tion linear {rain, cloudy, sunny}

w nd nom nal {no, yes}

tenperature linear {very_low, |ow, nedium high}
dayt ype nom nal {workday, weekend}

activity nom nal {play, shop, read}

Figure 3 Attributes and their types and domains.

Suppose that our task is to determine strong patterns in exaimpiesich the output attribute,
activity, takes valuepglay”. A GLD visualizing the representation space spanned over the input
attributes and 22 input examples is presented in Figure 4.
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Decision classes? — Play, R — Read, S — Shop
Attributes:C — Condition, W — Wind, T — Temperature, D — Daw,
Attribute values:r —rain, ¢ — cloudy, s — sunny, n — no, y — yes very low,
| — low, m — medium, h — high, o — workday, e — el

Figure 4 GLD with the example problem.

To compare the AQ21 performance with that of other methods, wepjsied the well-known
tree and rule learning programs, such as C4.5 (Quinlan, 1993), RIPBEEN(A995), and CN2
(Clark and Niblett, 1989) to this dataset. Figure 5 shows decision tree determitiédbb



condition = rain: shop (7.0/3.4)

condition = cl oudy:

| t emper ature very low read (2.0/1.0)
| tenperature low. read (1.0/0.8)

| tenperature medi um play (3.0/1.1)

| t enperature hi gh: play (3.0/2.8)
condi tion = sunny:

| t emperature
| tenmperature
| tenmperature
| t emper ature

very low shop (2.0/1.0)
l ow. shop (1.0/0.8)

medi um play (1.0/0.8)
hi gh: play (2.0/1.0)

Figure 5 A decision tree determined by C4.5.

Figure 6 shows a set of rules derived by C4.5 for this problem. tBetdecision tree and the
rules learned by C4.5 were partially inconsistent with the. d&tee rules for the activity value
“play” are partially explicit (first two rules) and pattiaimplicit, defined by the “Default class:
play”, which means that if all rules fail, the chosen activity is “play.”

condi tion = cloudy &
tenperature = nedi um
-> class play [63.0%
condi tion = sunny
tenperature = high

-> class play [50.0%
condition = rain

-> class shop [51.2%
condi tion = sunny
tenperature = very_| ow
-> class shop [50.0%
tenperature = very_| ow
-> class read [35.2%
tenperature = | ow

-> class read [31.4%
Defaul t class: play.

Figure 6 Rules derived by c4.5.

The RIPPER program applied to the same dataset determined ébepresented in Figure 7.
These rules need to be evaluated sequentially, meaning thiatiaio the hypothesis for activity
“play”, it is necessary to evaluate rules for activity “read.”

read :- temperature=very_ |low (3/2).

read :- tenperature=low (2/1)

play :- condition=sunny (3/0).

play :- condition=cloudy, wi nd=no (2/0).

Pl ay :- condition=cl oudy, tenperature=medi um (2/0)
default shop (6/1).

Figure 7 Rules found by RIPPER.



Figure 8 presents rules determined by the CN2 program applied to the same problem.

| F condition = cloudy AND tenperature = nmedi um
THEN activity = play [3 0 0]

I F condi tion = sunny AND tenperature = high
THEN activity = play [2 0 0]

I F condition = sunny AND tenperature = medi um

THEN activity = play [1 0 0]
I F wind = no AND tenperature = high AND
daytype =weekend THEN activity =play[1 O O]

I F condition = rain AND tenperature = nmedi um
THEN activity = shop [0 3 0]
I F condi tion = sunny AND tenmp = very_| ow
THEN activity = shop [0 2 0]
I F condition = rain AND tenperature = high
THEN activity = shop [0 2 0]
I F wind = no AND tenperature = | ow
THEN activity = shop [0 1 0]
| F condition = cloudy AND wi nd = yes

AND t enperature = hi gh AND daytype = weekend
THEN activity = shop [0 1 O]
I F condition = cl oudy

AND tenmperature =very_| ow
THEN activity =read [0 0 2]
I F wind = yes AND tenperature = | ow
THEN activity =read [0 O 2]
I F condition = rain AND tenperature = very_| ow
THEN activity =read [0 0 1]
I F wind = yes AND tenperature = high

AND dayt ype = wor kday

THEN activity =read [0 O 1]
(DEFAULT) activity = shop [7 9 6]

Figure 8 Rules determined by CN2.

AQZ21 applied with default parameters to the same data determinexirong pattern presented
in Figure 9.

[activity=pl ay]
<= [condi tion=cloudy v sunny: 7,8] &
[temperature=nediumv high: 7,7]: p=7,n=2, Quality=0.67

Figure 9 The strong pattern found by AQ21.

This pattern consists of one rule stating that the activity is play, if thih@raa cloudy or sunny,

and the temperature is medium or high. The rule covers 7 positiversuhf?ve examples, and

its quality, q), is 0.67, wherev had the default value 0.5. Numbers inside conditions represent
positive and negative coverages of the conditions alone. The disc@atedh is graphically
illustrated in Figure 10 using a Generalized Logic Diagram.
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Decision classes? — Play, R — Read, S — Shop
Attributes:C — Condition, W — Wind, T — Temperature, D — Da,
Attribute values:r —rain, ¢ — cloudy, s — sunny, n — no, y — yes very low,
| — low, m — medium, h — high, o — workday, e — el

Figure 1Q GLD with the strong pattern discovered by AQ21

AQZ21 allows the user to control the tradeoff between completendssoasistency of patterns

by adjusting parametav in the pattern quality measurev@®( When setting thev parameter to
0.15, AQ21 found two rules presented in Figures 11 and 12. Note that settm@ value
smaller than 0.5 places higher emphasis on rule confidence (or enng)sthan on rule support
(coverage) and setting to a value greater than 0.5 has an opposite effect (Michalski and
Kaufman, 2001).

The pattern is consistent but almost complete — one exampledsvesed by the learned rules.
Note that further reduction @ to O leads to a complete and consistent ruleset, which can also be
obtained by executing AQ21 in Theory Formation mode.

[activity=pl ay]

<= [condition=cl oudy v sunny:. 7,8] &
[ tenperat ure=nedi um 4, 3]
p=4, n=0, Qual i t y=0. 919

<= [condi tion=sunny: 3,3] &
[tenperature=nediumv high:7,7]:
p=3, n=0, Qual i t y=0. 881

Figure 11 Rules found by AQ21 for w=0.15.
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Decision classes? — Play, R — Read, S — Shop
Attributes: C — Condition, W — Wind, T — Temperature, D — D@,
Attribute values:r —rain, ¢ — cloudy, s — sunny, n — no, y — yes,very low,
| — low, m — medium, h — high, o — workday, e — el

Figure 12 GLD with the pattern found by AQ21 for w=0.15.

3.2 Learning Ruleswith Exceptions

The concept of an “exception” is commonly used by human experts wisenbigg rarely
occurring anomalies in described phenomena. It is not unusual timaple theory may work
well for most cases, but turning it into a fully consistent and cetepheory would require
making it significantly more complex. In such cases, it is dbkrto learn rules with exceptions
e.g. (Michalski, 2004; Yao et al., 2004). AQ21 can be set to leagn with exceptions in the
following form:

CONSEQUENT <= PREMISE |_ EXCEPTION (7)

where EXCEPTION is either an attributional conjunctive descriptana list of examples
constituting exceptions to the rule. Note that exceptions in suels ark always negative
examples. The processes of learning exceptions in TF and P3 mreddifferent. In PD mode,
where inconsistency is allowed, the program learns standardngatted generates exceptions
representing covered negative examples by finding a conjunctiveipliescrof the negative
examples using AQ learning.

In TF mode, where consistency is guaranteed, the program adds negatvgles to the list of
exceptions if such examples are infrequent but would introduce isagrtifcomplexity to a
description that does not cover them. If all of the exceptions cachéecterized by one
conjunctive description, such a description is used as EXCEPTIONedlatise rule; otherwise,
an explicit list of exceptions is output.

AQZ21 applied to the same data produced the rule with an exception presented id&igure



[activity=pl ay]
<= [condition=cl oudy v sunny: 7,8] &
[temp= mediumv high: 7,7]
| _ [condition=cloudy] & [w nd=yes]& tenmp= high]
: p=7,n=0, Qual ity=1

Figure 13 The strong pattern with exception found by AQ21.

The rule states that activity is play if weather is cloodgunny and temperature is medium or
high, unless weather is cloudy, there is wind, and temperature is high.

Figure 14 shows a GLD representation of the rule presented ireFigur The two highlighted
examples representing “shop” (S) and “read” (R) activities teeated as exceptions to the
general pattern for the play activity.

AQ21 generalized the two exceptions into one conjunctive descriptioatjerecloudy] &
[wind=yes] & [temperature=high].

In the case that the two examples could not be generalized int@ojuactive description, the
program would have listed them explicitly:

cloudy, yes, high, yes, shop

cloudy, yes, high, no, read

This simple example shows that the introduction of rules with exeeptcan produce
descriptions that are simple, accurate and comprehensible, whitgptiess without exception
are more complex, less accurate, and less comprehensible.
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Decision classes? — Play, R — Read, S — Shop
Attributes: C — Condition, W — Wind, T — Temperature, D — D@,
Attribute values:r —rain, ¢ — cloudy, s — sunny, n — no, y — yes,very low,
| — low, m — medium, h — high, o — workday, e — el

Figure 14 GLD with the strong pattern with exception found by AQ21.

10



3.3 Discussion of Results

The C4.5-generated decision tree has 3 internal nodes and 11 branches,raagphé to the
training dataset (22 examples) gave 4 errors (18%). The C4.5(fuleses) gave 5 errors
(23%). RIPPER produced 6 rules that gave 4 errors (18%) on ihendgralataset. CN2
produced 13 rules the constituted a complete and consistent descriptiday, famtthe most
complex.

In PD mode using the default valuewf(0.5), AQ21 produced one strong pattern that covered
all positive examples and 2 examples of other classes (9%. evkthgn executed wittv=0.15,

it produced a consistent and nearly-complete description, as gdmsse example of activity
play (4.5% error). In TF mode, AQ21 generated three simples thkt were complete and
consistent with the training dataset (0% errors) (resuttpersented in Section 5). AQ21 with
exceptions found one strong pattern that was complete and consisterggeitd to the training
data (0% errors). It may additionally be noted that none of the cethgaograms, except
AQZ21, can determine patterns describing only one class.

In this simple example, AQ21 produced both more accurate and simpgngdahan the other

programs. This result was achieved due to the richer representahguage used by this

program. The AQ21’s more expressive representation languageatasilgeneration of simpler

hypotheses in forms that are easy to interpret in naturgliteye. AQ21 also allows the user to
control the type of output by parameters and the hypothesis qerétidyjon. The latter feature is

useful when different problems may require different criteria of pattermality.

4 HANDLING META-VALUESIN DATA

Another important new feature of AQ21 is its ability to learn from examihlat may haveeta-
values which can be of three typesnknown irrelevant andnot-applicable The unknown
meta-value means that the attribute is missing the corresponding m the example. The
irrelevant meta-value indicates that an expert has determined that treeofaihe corresponding
attribute in the example is not relevant for the given classidic task. For example, the last
name of the broker’'s barber, even if available in the data, can dieretk as irrelevant to
predicting the value of a stock tomorrow. Finally, it is posdilé¢ some attributes in the data
may apply to some, but not all the entities. For example, ibraryi inventory dataset, the
“number of pages” attribute applies to books, but not to the chairs in the library.

To represent these cases, the Attributional Calculus represangatiployed in AQ learning
assumes that the domain of every attribute includes the threevahats in addition to its
regular values (Michalski, 2004). These meta-values correspond topthssile answers to a
guestion requesting an attribute value in situations in which a regallae is not provided.
Specifically, these are “unknown” (?), “not applicable” (NA), ande€lgvant” (*) values.
Formally, to each attribute x whose domain is D, AQ21 assigns aiddd= DU {?, NA, *}.
These meta-values are handled by AQ21 appropriately for their type.

In the literature, the problem of handling meta-values is well-knemd described by many
authors. However, most authors do not distinguish between different dfpesta-values.
Typically, all missing values are treated as “Unknown.” Samt@ors investigated meta-values
other than “?.” For example, Grzymala-Busse (2003) presented a miethalkaling with

11



unknown and irrelevant values in rough sets. This method is diffemnttfrat in AQ21, as it
learns standard rules with (attribute rel value) conditions, and rimiesonsider not-applicable
values. It is based on internal operations used in rough sets avkichifferent than extension-
against used in AQ learning. Programs such as C4.5 and CN2 harsdiegnvalues by
replacing events with unknown and irrelevant (CN2 only) values by ¢bpies with filled all
possible values of the missing attributes. Below is a desuriti the methods for handling
these three meta-values in AQ21.

4.1 Handling Unknown Values

Unknown (a.k.a. “Don’t know” or “Missing”), denoted by a “?”, is given to #nlaute whose
value for a given entity exists, but is not available for sorasae. For example, the attribute
may not have been measured for this entity, or may have besanegabut not recorded in the
database. In such situations, the meta-value “?” in insert&e imaining and/or testing datasets
for this attribute in the event characterizing the given entity.

Filling (or preprocessing) methods for handling unknown values are applidatasets before
starting the learning process. After they have been apfitietk is no need for modifying the
regular AQ learning algorithm, and matching operators to handlengisneta-values. Three
preprocessing methods are used in AQ learning: (P1) ignorimgniyagvents with “?,” (P2)
replacing “?” by the average value (for numerical attributgsthe most frequent value (for
nominal attributes) in the s most similar training and/oringsévents, where s is a program
parameter, and (P3) learning rulesets for determining the vafube attributes with missing
values in the training dataset, and then using those rulesets ta pinedmissing values when
learning rules for other output attributes. Similar methods beaee widely investigated in the
literature (Burcha, 2004), (Ragel and Cremeilleux, 1999).

Two internal methods for handling Missing values are implementdd21: (L1) ignoring the
extension-against operation for attributes with missing valuesuah events during the star
generation, and (L2) treating “?” as a regular value in theteybut not using events with a “?”
for seeds. When extending a seed against a missing value,acsedgetor: [xiZ ?], regardless
of the value of attribute xi in the seed. Readers not famililr extension-against operation
used in AQ learning may refer to, for example, (Michalski, 1983).

For all events that cannot be matched with a rule with a spdei§ree of match because of the
presence of a missing attribute value in the event, determineatwes of p, pin and phax and
two values of n, gn and max respectively. g, and R, are computed by assuming that the
unknown value does not match the rule, anghx pand max are computed by assuming that it
does match. The positive rule coverage is characterized byanige pin .. pnay, and the
negative coverage by the ranggi{n. nmay. It should be noted that the TF algorithm usgs p
and max values to ensure completeness and consistency of learned hypotheses.

4.2 Handling Not-applicable Values

Not-applicable, denoted by an “NA,” is given to an attribute thatoisapplicable to a given
entity, because the value does not exist. For example in alibventory database a “number
of pages” attribute does not apply to a chair in the library, but it applies to the books.

12



If a dataset has “not-applicable” values for some attributesattributes are removed from all
events with that value, but not removed from other events when exehdiegtension-against
operator, regardless of whether they are positive or negativesevéhis operation is justified
by the “NA” semantics, according to which, asking for a valu¢ghefattribute of an entity for
which an attribute is not applicable is meaningless.

If a training event has a “not-applicable” value for somebaite, the attribute is removed from
the event when determining the rule coverage during the learningsgrod herefore, the event
does not match the rule if the rule references the NA attribute.

4.3 Handling Irrelevant Values

Irrelevant values, denoted by an “*”, indicate that an attrilisiteonsidered irrelevant to the
learning problem, or for the concept (class) to be learned, or inpdngcular event.

Consequently, three types of irrelevant attributes are distingljistask-irrelevant, class-
irrelevant, and event-irrelevant.

An attribute is task-irrelevant if it is irrelevant for thetiee learning problem. For example, a
student’s hair color can be declared as irrelevant for learnieg for classifying students into
groups representing their academic performance. An attigbotass-irrelevant if it is irrelevant
for a given class (value of the output attribute), but may aelefor other classes. For example,
the patient’s PSA (prostatic specific antigen) level isviaié for diagnosing prostate diseases,
but is irrelevant for diagnosing eye diseases.

Task-irrelevance and class-irrelevance of an attribute camhabeled in preprocessing by
removing columns from a dataset. An attribute is event-irrelafdinis irrelevant only for a
particular event in the class to be learned. For example,tthmitg “stock price” is relevant to
any event in the class “stocks_to_acquire,” but in a particulameetahen it is the stock of
company you work for and is given free to employees, it may bedmresli irrelevant. This
kind of irrelevance represents knowledge of an expert who for season decides that an
attribute should not be used to classify a particular event.

The task-irrelevance is handled by simply removing the até&ribujuestion from the training
and testing datasets. The class-irrelevance is handled loyirgnthe attribute from training
dataset for the given class, but it remains in dataset wheningalasses for which it is relevant.
Therefore, only the problem of handling event-irrelevant attributedsrieebe considered. If an
attribute is indicated as irrelevant in one or more events of a givenluldssdicated as relevant
for other events, that is, it is irrelevant for one or more combingaf values of other attributes,
but not for all combinations, then in executing the extension against apets program
ignores the attribute with the value “*” in events with thatuealbut does not ignore it in other
events.

If an event with some attributes indicated as irrelevant iehed against an attributional rule,
this attribute is removed from the event. This is equivalent &rtass that the irrelevant value
always matches a condition with this attribute.
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5 ALTERNATIVE HYPOTHESES

From any non-trivial set of concept examples, it is usually pessibyenerate many alternative
inductive generalizations of these examples. Such alternativaheges can be useful for a
variety of practical applications of computational learning esyst For example, in medical
decision making (diagnosis, drug prescription, or therapy assigpsente tests required by a
given diagnostic procedure may be unavailable, and an alternative pmceduid be
necessary.

Alternative hypotheses can also be used to increase the acotichagsification decisions. This
can be done through simple voting on decisions assigned by differenhéyps, or by weighted
voting, as is typically done in boosting (Schapire and Singer, 1999).

Formally, the problem of learning alternative hypotheses geterate a set of hypothese$, H

.., H* for class ¢ given the set of examples,e., g belonging to classes:C..., Gn.
Alternative hypotheses iH ..., H* are optimized according to user specified criteria. The
algorithm uses the idea that different alternative hypothesebecaelected from the final rules
(in the last step of the algorithm in Figure 1). AQ21 not onlksadternative hypotheses, but
also seeks hypotheses optimized according to user-defined ctitatianay reflect different
aspects of the problem.

To illustrate how AQ21 generates alternative hypothesesast applied in TF mode to the
example dataset presented in Figure 3. It found alternative hypstsleswn in Figures 15 and
16.

[activity=play]

<= [condition=cl oudy v sunny: 7,8] &
[tenperature=nedium 4,3] : p=4,n=0

<= [condi tion=sunny: 3,3] &
[tenperature=mediumv high: 7,7] : p=3,n=0

<= [condi tion=cloudy v sunny: 7,8] &
[wi nd=no: 3, 7] & t enper at ure=medi um v hi gh: 7, 7]

: p=3,n=0

Figure 15 First alternative hypothesis learned in TF mode.

[activity=play]
<= [condition=cl oudy v sunny: 7,8] &
[tenperature=nedium 4,3] : p=4,n=0
<= [condition=sunny: 3,3] &
[tenperature=mediumv high: 7,7] : p=3,n=0
<= [condi tion=cloudy v sunny: 7,8] &
[wi nd=no: 3, 7]
[tenperature=nediumv high: 7,7] : p=3,n=0

Figure 18 Second alternative hypothesis leaned in TF mode.

Because the program was executed in TF mode, both hypothesesrglete and consistent
with regard to the training data. The first two rules offtjgpotheses are the same and cover the
majority of the positive examples. The hypotheses differ in #nethe last example is covered
by the third rule.
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A simple example illustrating generation of alternative hyp@h s AQ learning is presented in
the IAQ program specifically developed for demonstrating patternoeisy and natural
induction. The program can be downloaded from http://www.mli.gmu.edu/msoftware.html.

6 TESTING OF RULESETS

For testing and application attributional rulesets AQ21 implemdsmethods: ATEST and
EPIC. The ATEST method (Reinke, 1984; Wojtusiak, 2004) is used for $hi@gteand
application of attributional rulesets to individual testing/applicatiwamples. EPIC (Wojtusiak,
2004) similarly applies attributional rulesetsdpisodesg that is, sequences of examples to be
classified as a whole. For example, in the application to compager profiling, we are not
interested in identifying the user responsible for each individualn@om in the database;
rather, we have been provided a sequence of commands bundled togethkicHore wish to
establish the responsible user. Thus, the sequence is considered together aden epis

The general methodology of ATEST and EPIC is as follows:

1) For each individual testing example, determine a degree of matisledreit and each
decision rule.

2) For each decision class, aggregate the degrees of match deteimstep 1, in order to
determine degrees of match between each testing example and each desmsion cla

3) If using EPIC, aggregate the degrees of match determinstép 2 for the examples in
each episode, in order to determine degrees of match betwderemaode and each
decision class.

4) Based on the calculated degrees of match and threshold and tolessaceters, output
a classification for each testing example (ATEST) or egd&PIC). Please note that
both methods, in addition to standard accuracy based on best matableat@ classify
an event (episode) to more than one class. In many real sgplctations it is more
appropriate to give an imprecise classification rather tharveawrong answer. For
example, when diagnosing diseases, the program may give ther am$ovren of a list of
possible diseases.

There are several matching and aggregation methods availabd@snlsB. Ones appropriate to
the task may be selected by the user (Wojtusiak, 2004).

7 VISUALIZING RULESETSBY CAG

An important aspect of a natural induction program is to be abdeaphically present learned
knowledge. Two methods of visualizing knowledge have proven particulesdyul for
representing rulesets learned by AQ21: Generalized Loggr&iss, described in Section 2 and
in, e.g., (Michalski, 1978), and Concept Association Graphs (CAGs) (Kaudm@mMichalski,
2000).

CAGs represent higher level concepts — the general relationampsg attributes and/or
features. The links can be annotated visually (by thickness @t @vld symbolically (through
abstract and numeric annotations). Such a multimode presentation dlaive transmission of
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a high quantity of knowledge in a relatively simple diagram. ekample of a CAG for the
pattern discussed earlier and shown in Figure 10 is presented in Figure 17.

activity=play
(7. 15)

=madium |=mc-:l:liu|mrhil_:JI'|
[4.3) (7.7}

=cloudyvsunny
(TE) SEUNNY
[2,3)

Figure 17 CAG with two rules found by AQ21.

8 SELECTED EXPERIMENTAL RESULTS

This section presents a selected results of applying AQ21, C4.54ahdR0Gles (Quinlan, 1993),
CN2 (Clark and Niblett, 1989), and RIPPER (Cohen, 1995) programs to digadtesns in two
real-world datasets and one designed dataset described below.

The Volcanoesdataset, provided by the Smithsonian institution, contains information about
20,000 volcanoes and their eruptions around the world. Goal of the learnmgliginguish
between volcanoes that cause fatalities from those which do nat. dathset was split into
13,757 training and 5,846 testing examples.

Provided with the Volcanoes dataset AQ21 in the PD mode learned 12selexted of which
are presented in Figure 18.

[Fatalities=present]
<= [ Al<>secondary_mudfl ow, none: 438,28] : p=438, n=28, Qual i ty=0. 83 (Rule 1)
<= [Pyrocl asti c=present: 311, 1573] &

[ Damage=present: 561, 1168] : p=299, n=215, Qual i ty=0.52 (Rule 3)
<= [ Evacuati on=present: 285, 365] : p=285, n=365, Qual i ty=0.417 (Rul e 10)

[Fatalities=absent]
<= [ Al=none: 13052, 203] : p=13052, n=203, Qual ity=0.778 (Rule 2)
Figure 18:Selected rules learned by AQ21 for the Volcanoes dataset.

Selected rules (out of 56) learned by c4.5 rules (from decisionftreine Volcanoes dataset are
presented in Figure 19. Selected rules (out of 32) learn€IRFER for the Volcanoes dataset
are presented in Figure 20. Selected rules (out of 190) learr@NDjor the Volcanoes dataset
are presented in Figure 21.
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Rul e 48:

Pyrocl astic = present
Evacuati on = present
Subr egi on =
-> class present

Rule 71:

Fl ank_vent = present
Damage = present
Latx > 38. 5667

Longx <= 106. 983
-> class present

Rul e 96:

Pyrocl astic = absent
Phreatic = absent
Lava_done = absent
Damage = present
Evacuati on = absent

Honshu- Japan
[70.7%4

[72. 2%

Subr egi on = Sul awesi -1 ndonesi a

Upperl > 600
-> class present

[ 50. 0%

Figure 19:Selected rules learned by c.4.5 for the Volcanoes dataset.

present_c :- Danmmge=present,
present _c :- Dammge=present,
present _c :- Al=indirect,

default absent_c (13074/57).
Figure 20:Selected rules learned by RIPPER for the Volcanoes dataset.

AND
THEN

I F
AND
THEN
I F
AND
AND
AND
AND
AND
THEN
I F
THEN

(DEFAULT) class =

Pyrocl asti c=present,
Al=rrudf | ow (64/0).

Longx<=- 86. 7019 (3/0).

submari ne_erupt = absent
al = tephra
class = present [154 0]

al = pyroclastic_flow
latx < 47.54

cl ass = present
danage = present
| ahars = absent
al = none
subregi on = Java
latx > -7.97
upperl > 1600. 00
cl ass = absent
subregion = Africa-W
class = absent [0 29]

absent

[81 0]

[0 28.67]

[661 13096]

Al=pyrocl astic_flow (55/1).

Figure 21:Selected rules learned by CN2 for the volcanoes dataset.
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TheWorld Factboolkdataset, downloaded from the CIA website, contains information about 266
countries around the world (2 classes of countries -- those withraieth above and below 20).
The dataset was split into 196 training and 70 testing examples.

For the World Factbook dataset AQ21 in TF mode learned 6 rules €ath class) shown in
Figure 22.

[Birth_rate<=20]
<= [Total fertility<=2.265: 71,0] : p=71,n=0 (Rule 1)
<= [l nports>=6. 745e+07 : 74,77] &

[Total fertility<=2.485 : 79,2] &

[ Unempl oyrment <=19.5 : 68,57] &

[ Tel ephones_cel | ul ar>=988 : 72,74] : p=59, n=0 (Rule 2)
<= [ GDP_per _capi ta>=5050 : 65, 16] &

[ Death_rate>=3. 005 : 80,80] &

[IInfant_nortality<=18.79 : 63,7] &

[ Labor _force>=1.925e+04 : 74,80] &

[I ntegerernet _users>=1.9e+04 : 56,51] : p=43,n=0 (Rule 3)

[Birth_rate>20]
<= [ GCDP_per _capi ta<=1.475e+04 : 80,41] &
[ Popul ati on>=3. 807e+04 : 81,74] &
[Total _fertility>=2.44 : 81,3] : p=78,n=0 (Rule 1)
<= [Total fertility>=2.76 : 75,0] : p=75,n=0 (Rule 2)
<= [Electricity_prod>=1. 854e+09 : 36,59] &
[ ndustrial _production_growth>=3.45 : 33,49] &
[Infant_nortality=48.6..57.94 : 9,1] : p=3,n=0 (Rule 3)

Figure 22:Rules learned by AQ21 for the World Factbook dataset.

Decision tree learned by C4.5 for the World Factbook datasetesenped in Figure 23. Rules
learned by C4.5rules for the World Factbook dataset are presarfégure 24. Rules learned
by RIPPER for the World Factbook dataset are presented in Figur@ss learned by CN2
for the World Factbook dataset are presented in Figure 26.

Total _fertility > 2.5 : yes (80.0/1.0)

Total fertility <= 2.5

| Total _fertility <= 2.25 : no (71.0)

| Total fertility > 2.25

| | GDP_per _capita <= 6500 : yes (4.0/1.0)
| | GDP_per _capita > 6500 : no (8.0)

Figure 23:Decision tree learned by C4.5 for the World Factbook dataset.

Rul e 1:
Total _fertility <= 2.25
-> class no [98.1%

Rul e 3:
CGDP_per _capita > 6500
Total fertility <= 2.5
-> class no [97.8%
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Rul e 4:
Total _fertility > 2.5
-> class yes [96.8%

Rul e 2:
CGDP_per _capita <= 6500
Total _fertility > 2.25
-> class yes [96.5%

Default cl ass: yes
Figure 24:Rules learned by C4.5rules for the World Factbook dataset.

no :- Total _fertility<=2.43 (78/1).
default yes (81/3).

Figure 25:Rules learned by RIPPER for the World Factbook dataset.

| F GDP_per _capita < 14750. 00
AND Total fertility > 2.51
THEN Birthrate gt20 = yes [77 0]

| F Infant _nortality < 16.61
AND | nflation < 3.10
AND Total fertility > 2.44
THEN Birthrate gt20 = yes [6.50 0]

I F GDP_growth_rate < 4.60
AND | nfant_nortality > 54.20
THEN Birthrate gt20 = yes [36 0]

I F GDP_growth_rate > 3.30
AND Total fertility > 2.49
THEN Birthrate _gt20 = yes [38 0]

I F Infant _nortality < 54.20
AND Total _fertility < 2.44
THEN Birthrate gt20 = no [0 75]

I F CGDP_per _capita > 8950. 00
AND Total fertility < 2.89
THEN Birthrate gt20 = no [0 54.50]

I F GDP_growth_rate > 4.60
AND Total fertility < 2.39
THEN Birthrate gt20 = no [0 26]

(DEFAULT) Birthrate_gt20 = yes [82 81]
Figure 26:Rules learned by CN2 for the World Factbook dataset.

The designeddataset consists of 2000 entities described by one structured¢-oaleed
nominal, and 12 binary, input attributes. The output attribute is birtaryalues denote two
classes, describing 1000 training and 1000 testing examples (500 pasitivBOO negative
examples in each set). The positive examples are of theptdtioe number of present Features
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is 2 or 3 and Shape is oval or Color is red.” Definitions of ate#and their domains in AQ21
format are presented in Figure 27.

AQ21 provided with the training data correctly learned the targatept by producing rules
presented in Figure 28. The second condition in the first rule usast@matically discovered
counting attribute meaning that the number of Features from FeatuFehturelO that are
present are between 2 and 3. Please note that the value “ovad finst condition is a higher
level concept of the attribute “Shape.”

Commpn donai ns

{

feature nom nal {absent, present}

}

Attributes
{
Featurel feature
Feature2 feature
Feature3 feature
Feature4 feature
Feature5 feature
Feature6 feature
Feature7 feature
Feature8 feature
Feature9 feature
Feat urelO feature
Shape structured {square, rectangle, ellipse, circle, right_triangle,
obtuse_triangle, accute_triangle, rectangular, oval,
triangul ar}

{ rectangular <-- right_triangle
rectangul ar <-- obtuse_triangle
rectangul ar <-- accute_triangle
oval <-- circle
oval <-- ellipse
rectangul ar <-- square
rectangul ar <-- rectangle }

Col or nom nal {red, green, blue, white, orange, bl ack}
Cl ass nom nal {positive, negative}

}
Figure 27:Definition of attributes for the designed problem.

[ A ass=positive]
<= [ Shape=oval : 422,121] &
[ Count (Featurel, Feature2, Feature3, Feature4, Fearureb5, Feature6,
Feature7, Feature8, Feature9, FeaturelO = present)=2..3: 415, 103]
: p=402, n=0
<= [Col or=red: 165, 0]
p=165, n=0

Figure 28:Rules learned by AQ21 for the designed problem.
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Selected rules learned from decision tree by c4.5 for the dedsygodlem are presented in
Figure 29. Selected rules learned by CN2 for the desigrddiepn are presented in Figure 30.
Rules learned by RIPPER for the designed problem are presented in Figure 31.

A summary of results in terms of accuracy on testing datasets®iumbers of rules is presented
in Table 1.

Rul e 29

Featurel = absent
Feat ure3 = absent
Feat ure4 = present

Shape = ellipse
-> class positive [95.8%

Rul e 39:
Feature2 = absent
Feat ure3 = absent
Feat ure4 = present
Feature6 = absent
Feat ure9 = absent

Shape = circle

-> class positive [94.4%
Rul e 51

Feat ure5 = absent

Feat ure8 = absent

Shape = circle

-> class positive [91.8%

Figure 29:Selected rules learned by c4.5 for the designed problem.

I F Feat ur e5 pr esent
AND Feat ur e6 pr esent
AND Feat urelO = absent
AND Shape circle
AND Col or bl ue
THEN cl ass positive [1 0]

I F Feat ure2 pr esent
AND Feat ure7 pr esent
AND FeaturelO = present
AND Shape = square
THEN class = negative [0 19]

I F Featurel = present
AND Feature2 = present
AND Featured4 = present
AND Feature6 = present
AND Feature8 = present
AND Feature9 = present

THEN class = negative [0 87]
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I F Feat ur e5 absent

AND Feat ure7 absent

AND Feat urelO0 = absent

AND Shape = obtuse_triangle
THEN class = negative [0 20]

Figure 30:Selected rules learned by c4.5 for the designed problem.

positive :- Color=red (165/0).

positive :- Shape=ellipse, Feature3=absent, Featurel=absent (89/3).

positive :- Shape=circle, Feature2=absent, Featured=absent (94/9).

positive :- Shape=ellipse, Featured=absent, Feature5=absent (56/4).

positive :- Shape=circle, Featureb5=absent, Feature8=absent (47/3).

positive :- Shape=circle, Feature6=absent, Feature9=absent, Feature7=absent
(19/0).

positive :- Shape=ellipse, FeaturelO=absent, Feature6=absent, Feature7=absent
(23/2).

positive :- Shape=circle, Featurel=absent, Feature9=absent, Feature3=absent
(4/1).

default negative (478/3).
Figure 31:Selected rules learned by c4.5 for the designed problem.

Accuracy % / Number of Rules
Dataset AQ21 C45 C45Rul. CN2 RIPPER
Volcanoes| 99.45 % 98.8 % 99 % 955 % 98.96 %
12 Rules Decision tree 66 Rules 190 Rules 33 Rules
with 120 nodes
World 94.29 % 91.9% 91.9 % 93.5 % 93.55 %
Factbook | 6 Rules Decision tree 5 Rules 7 Rules 2 Rules
with 6 nodes
Designed 100 % 92.1 % 92.7 % 91.7 % 92.8 %
2 Rules Decision tree 46 Rules 164 Rules 8 Rules
with 83 nodes

Table 1:Accuracies and numbers of rules of five methods on three datasets.

As shown in Table 1, AQ21 performed better in terms of both accuaad complexity
(numbers of rules). The main reason for this can be attributéldetaicher representation
language that allowed the program to determine a more accurate conceptidascri

9 SUMMARY

The paper presented several novel features seamlessly ietegrahe AQ21 pattern discovery
and rule learning program. These features extend the capabii®21 and aim at making it a
natural induction program that equally stresses the accunacgoanprehensibility of discovered
knowledge. The features include discovering attributional patterns wiinoivith exceptions,
discovering alternative hypotheses in the same data, and handimyahees. Additionally, the
KV and CAG methods for visualizing learned knowledge are designeark with knowledge
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learned by AQ21. The above features are either not present idezthreng programs or present
only separately in different programs.

Although we illustrated novel features of AQ21 on simple exampies,program is highly
efficient and has been applied to problems with thousands of exampldsiadreds of multi-
type attributes. AQ21 has also several other features notlEbdrere that were designed to
improve the efficiency of the AQ method.

Current research concerns systematic testing of the AQ2tapnpgs extension by adding new
features, and its experimental application to complex real-world data nprobfgms.
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