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Abstract 
The AQ21 program seeks different types of patterns in data and represents them in human-oriented 
forms resembling natural language descriptions.  Because of the latter feature it is called a natural 
induction program. This feature is achieved by employing a highly expressive representation 
language, Attributional Calculus, that combines aspects of propositional, predicate and multi-valued 
logic for the purpose of supporting pattern discovery and inductive learning.  This paper briefly 
describes the pattern discovery mode in AQ21, and several novel abilities seamlessly integrated in it, 
specifically, to discover different types of attributional patterns depending on the parameter settings, 
to optimize patterns according to a large number of different pattern quality criteria, to learn rules 
with exceptions, to determine optimized sets of alternative hypotheses generalizing the same data, and 
to handle data with missing, irrelevant and/or not-applicable meta-values.  The discovered patterns 
are expressed in the form of attributional rules that are directly interpretable in natural language and 
are visualized using either general logic diagrams or concept association graphs.  The described 
program features are illustrated by a sample of pattern discovery problems. 

Keywords:  Pattern discovery, Data mining and knowledge discovery, Machine learning, AQ 
learning, Alternative hypotheses, Exceptions, Meta-values, Knowledge visualization 
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1 INTRODUCTION 

One of the limitations of the current data mining and machine learning programs is that they 
employ relatively simple representation languages, e.g., decision trees, Bayesian nets, neural 
nets, etc., which limit their abilities as to the range of patterns they can discover.  As a result, 
such programs may not be able to discover patterns that are cognitively simple but not easily 
representable by the program. 

This paper concerns research on developing methodology for discovering different types of 
patterns represented in a highly expressive representation language, Attributional Calculus, that 
combines features of propositional, predicate and multiple-valued logic for the purpose 
supporting pattern discovery and concept learning (Michalski, 2004). The methodology has been 
implemented in AQ21, a program that performs natural induction, by which we mean an 
inference process that strives to generate accurate inductive hypotheses that are represented in 
human-oriented forms resembling natural language descriptions, and are by that easy to interpret 
and understand. 

The rules learned by pattern discovery programs are usually conjunctions of atomic “attribute 
relation value” conditions (e.g. Grzymala-Busse, 2003; Pawlak, 1991; Setzkorn and Paton, 2005; 
Van Zyl and Cloete, 2004).  Because of this constraint, these programs, as well as earlier ones, 
such as C4.5 (Quinlan, 1993), RIPPER (Cohen, 1995), CN2 (Clark and Niblett, 1989), are more 
limited than AQ21 as to the type of patterns they can discover in data.  The AQ21 program also 
seamlessly integrates several new features either non-existent or present only individually and in 
a more limited form in other programs. 

An important feature of AQ21 is that it can discover different types of regularities in data, 
depending on its parameter setting, such a conjunctive patterns, general rules with exceptions, 
consistent and complete data characterizations, and optimized alternative hypotheses. 

In addition to reporting new features in AQ21, we also illustrate its performance and its 
differences from some well-known tree or rule discovery programs by applying it and the other 
programs to a simple problem. The AQ21 results are visualized using Generalized Logic 
Diagrams (GLDs). 

Sections 2 and 3 present the AQ21 pattern discovery and learning methodology. Section 4 
describes methods of reasoning with meta-values present in AQ21, and Section 5 describes how 
AQ21 generates alternative hypotheses generated from the same data.  Section 6 describes 
AQ21’s rule application and testing module, and Section 6 illustrates methods for visualizing 
AQ21-discoverd rules employing Concepts Association Graphs (CAGs).  Section 7 presents 
selected experimental results. 

2 AQ LEARNING 

The learning problem considered here is to determine general hypotheses H1,…,Hk that describe 
classes (or concepts) C1,…,Ck, respectively,  on the basis of training examples drawn from these 
classes. The AQ learning approach seeks hypotheses that optimize a given multi-criterion 
measure of hypothesis quality and are expressed in the form of attributional rulesets, defined as 
sets of attributional rules describing the same concept (Michalski, 2004).   
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A basic form of an attributional rule is: 

 CONSEQUENT <= PREMISE (1) 

where both CONSEQUENT and PREMISE are conjunctions of attributional conditions (a.k.a. 
selectors), which take the form: 
 [L rel R : A] (2) 

where L is an attribute, an internal conjunction or disjunction of attributes, a counting attribute, 
or a compound attribute; rel is one of =, :, >, <, ≤, ≥, or ≠, R is an attribute value, an internal 
disjunction of attribute values, an attribute, or an internal conjunction of values of attributes that 
are constituents of a compound attribute, and A is an optional annotation that lists p and n values 
for the condition, defined as the numbers of positive and negative examples, respectively, that 
satisfy the condition.  Here is an example of an attributional rule: 

 
 [Activity=running_experiments] 
  <=   [Day = weekend] & [Clock_speed >= 2GHz] & 

     [Location = lab1 v lab3] & [Weather: quiet & warm] 

 

which can be paraphrased: the activity is “running_experiments” if it is a weekend day (a higher-
level concept of the structured attribute “day”), clock_speed of the computer is at least 2 GHz, 
the experiment takes place in lab1 or lab3, and the weather is quiet & warm.  The attribute 
“weather” is an example of a compound attribute, a new type of attribute introduced in AQ 
learning that takes a conjunction of values of attributes that are typically used to describe an 
object or a component of an object (Michalski, 2004).  Note that the attributional rule above 
closely corresponds to its equivalent natural language interpretation. 

As shown in this example, an attributional rule in AQ learning uses a richer representation 
language than in a typical rule learning program, in which conditions are usually limited to the 
form: 
 [<attr> <rel> <val> ] (3) 

where <attr>  is an attribute, <val> is an attribute value, and <rel>  is a relation applicable to attr 
and val. 

2.1 AQ21 Modes of Operation 

AQ21 can be executed in three modes of operation, namely Pattern Discovery (PD), Theory 
Formation (TF), and Approximate Theory Formation (ATF). In PD mode, the program seeks 
strong patterns that do not have to be fully consistent with the data, and whose union may only 
partially cover the input data (may be partially incomplete).  In TF mode, the program learns 
complete and consistent (CC) theories.  This mode is used when it can be safely assumed that 
there are no errors in the data, and is applied usually to relatively small datasets.  In ATF mode, 
the program first learns a CC theory and then optimizes it according to a given quality measure.  
The result is an approximate theory that may be partially inconsistent, and may not be fully 
complete. 
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This paper concentrates on the pattern discovery mode of AQ21. The other two will be discussed 
and analyzed in a future paper.  

2.2 Pattern Discovery Mode 

In PD mode, the program searches for strong patterns that maximize an assumed pattern quality 
measure. The method takes as input a set of positive examples E, a set of negative examples N, 
and a pattern quality measure, called LEF, defined by the user. It follows the general algorithm 
presented in Figure 1. 

Hypothesis = null 

While E is not empty 

   Select a seed p from E 

   Generate approximate star G(p, N) 

   Select the best k rules from G according to LEF, and include in Hypothesis  

   Remove from E all examples covered by the selected rules  

Optimize final rules 

Select the final hypothesis from all selected rules 

Figure 1: The simplest form of PD mode in AQ21.  

Start

Select a seed p from E 

Generate approximate star G(p, N)

Select the best k rules from G
and include in Hypothesis 

Remove from E all examples 
covered by the selected rules  

E is 
Empty

Optimize final rules

Select the final hypothesis 
from all selected rules

Stop

No

Yes

 

Figure 2: Top-level algorithm for the PD mode in AQ21. 
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The method starts by focusing attention on one data point, called the seed, and then creates a set 
of alternative approximate generalizations of the seed, called an approximate star.  In PD mode, 
the generalizations are approximate, because they do not have to be consistent with the data; they 
must optimize a pattern quality criterion. The basic operator in star generation is extension-
against (Michalski, 1983), which takes two data points and creates a set of maximal 
generalizations of one data point (“positive example”) that does not cover the second data point 
(a “negative example’). The result of such an operation is a set of local stars. A logical 
intersection of local stars creates a star of the given seed.  To narrow down a possibly large 
number of intermediate generalizations, AQ uses beam search that at each step of star generation 
keeps no more than a predefined number of best rules, as determined by the given pattern quality 
measure. 

The pattern quality measure, Q(w),  is defined by: 

 Q(w) = covw * consig1-w (4) 

where 

 cov=p/P (5) 

and   

 consig=((p / (p + n)) – (P /(P + N))) * (P +N) /N (6) 

are measures of pattern (here, attributional rule) coverage and consistency gain, respectively, and 
w is a user-defined parameter.  Here, p and n are the numbers of positive and negative examples 
covered by the rule, and P and N are the numbers of positive and negative examples in the 
training dataset (Michalski and Kaufman, 2001). 

For selection of best rules AQ21 uses Lexicographical Evaluation Functional (LEF), a user-
defined multicriterion measure of rule quality.  The default LEF for selecting a rule from a set of 
candidates is to maximize Q(w), maximize the number of examples covered by the rule, and 
minimize the number of conditions in the rule.  A complete list of LEF criteria available in AQ21 
is presented in (Wojtusiak, 2004).  Several features of AQ21 are designed to improve its 
efficiency and pattern quality. One feature is to use not just one, but several seeds for parallel 
star generation (to avoid situations in which the selected seeds are errors). In this case, the best 
rule is selected from all stars.  Other features include selection of negative examples based on 
their distributions, selection of most relevant attributes prior to star generation, and optimized 
discretization of continuous attributes.  These features are, however, beyond the scope of this 
paper. 

It should be noted that other well-known rule learning methods, such as RIPPER (Cohen, 1995) 
and CN2 (Clark and Niblett, 1989), also seek strong patterns, but AQ21 can determine strong 
patterns optimizing a wide range of different pattern quality criteria, depending on the setting of 
its parameters.  Because of its using a more expressive representation language, the patterns 
learned by AQ21 can be significantly richer and of different types, including complete and 
consistent (CC) rulesets, rulesets with exceptions, approximate CC rules, and weak patterns. 

To graphically illustrate patterns that AQ21 can discover, we use Generalized Logic Diagrams 
(GLDs) (Michalski, 1978), (Sniezynski, Szymacha and Michalski, 2005) that provide a planar 
representation of the multidimensional representation space spanned over multiple-valued 
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discrete attributes. By properly ordering attributes assigned as axes of the diagram, patterns can 
be usually displayed in an easily understood form. 

3 EXAMPLE PROBLEM 

To illustrate AQ21 capabilities, we use a simple designed problem.  It should be noted, however, 
that the program can work with datasets containing thousands or more of datapoints, each 
represented by hundreds of multitype variables. 

3.1 Problem Definition and Results 

In this very simple example, datapoints (instances, examples) are defined using the attributes 
described in Figure 3. 

 
condition   linear  {rain, cloudy, sunny} 
wind        nominal {no, yes} 
temperature linear  {very_low, low, medium, high} 
daytype     nominal {workday, weekend} 
activity    nominal {play, shop, read} 

Figure 3: Attributes and their types and domains. 

Suppose that our task is to determine strong patterns in examples for which the output attribute, 
activity, takes value “play” .  A GLD visualizing the representation space spanned over the input 
attributes and 22 input examples is presented in Figure 4. 

 
Decision classes: P – Play, R – Read, S – Shop  

Attributes: C – Condition, W – Wind, T – Temperature, D – Daytype,  
Attribute values:  r – rain, c – cloudy, s – sunny, n – no, y – yes, v – very low,  

l – low, m – medium, h – high, o – workday, e – weekend 

Figure 4: GLD with the example problem.  

To compare the AQ21 performance with that of other methods, we also applied the well-known 
tree and rule learning programs, such as C4.5 (Quinlan, 1993), RIPPER (Cohen, 1995), and CN2 
(Clark and Niblett, 1989) to this dataset.  Figure 5 shows decision tree determined by C4.5. 
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condition = rain: shop (7.0/3.4) 
condition = cloudy: 
|   temperature = very_low: read (2.0/1.0) 
|   temperature = low: read (1.0/0.8) 
|   temperature = medium: play (3.0/1.1) 
|   temperature = high: play (3.0/2.8) 
condition = sunny: 
|   temperature = very_low: shop (2.0/1.0) 
|   temperature = low: shop (1.0/0.8) 
|   temperature = medium: play (1.0/0.8) 
|   temperature = high: play (2.0/1.0) 

Figure 5: A decision tree determined by C4.5. 

Figure 6 shows a set of rules derived by C4.5 for this problem. Both the decision tree and the 
rules learned by C4.5 were partially inconsistent with the data.  The rules for the activity value 
“play” are partially explicit (first two rules) and partially implicit, defined by the “Default class: 
play”, which means that if all rules fail, the chosen activity is “play.” 
 
 
condition = cloudy & 
temperature = medium  
->  class play  [63.0%] 

condition = sunny  
temperature = high 
->  class play  [50.0%] 

condition = rain  
->  class shop  [51.2%] 

condition = sunny  
temperature = very_low 
->  class shop  [50.0%] 

temperature = very_low 
->  class read  [35.2%] 

temperature = low  
->  class read  [31.4%] 
Default class: play. 

Figure 6: Rules derived by c4.5. 

The RIPPER program applied to the same dataset determined the rules presented in Figure 7.  
These rules need to be evaluated sequentially, meaning that to obtain the hypothesis for activity 
“play”, it is necessary to evaluate rules for activity “read.” 

 
read :- temperature=very_low (3/2). 
read :- temperature=low (2/1). 
play :- condition=sunny (3/0). 
play :- condition=cloudy, wind=no (2/0). 
Play :- condition=cloudy,temperature=medium (2/0) 
default shop (6/1). 

Figure 7: Rules found by RIPPER. 
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Figure 8 presents rules determined by the CN2 program applied to the same problem. 

 
IF    condition = cloudy AND temperature = medium 
THEN  activity = play  [3 0 0] 
IF    condition = sunny AND temperature = high 
THEN  activity = play  [2 0 0] 
IF    condition = sunny AND temperature = medium 
THEN  activity = play  [1 0 0] 
IF    wind = no AND temperature = high AND   
      daytype =weekend THEN activity =play[1 0 0] 
IF    condition = rain AND temperature = medium 
THEN  activity = shop  [0 3 0] 
IF    condition = sunny AND temp = very_low 
THEN  activity = shop  [0 2 0] 
IF    condition = rain AND temperature = high 
THEN  activity = shop  [0 2 0] 
IF    wind = no AND temperature = low 
THEN  activity = shop  [0 1 0] 
IF    condition = cloudy AND wind = yes 
  AND temperature = high AND daytype = weekend 
THEN  activity = shop  [0 1 0] 
IF    condition = cloudy  
  AND temperature =very_low 
THEN  activity = read  [0 0 2] 
IF    wind = yes AND temperature = low 
THEN  activity = read  [0 0 2] 
IF    condition = rain AND temperature = very_low 
THEN  activity = read  [0 0 1] 
IF    wind = yes AND temperature = high 
      AND daytype = workday 
THEN  activity = read  [0 0 1]  
(DEFAULT) activity = shop  [7 9 6] 

Figure 8: Rules determined by CN2. 

AQ21 applied with default parameters to the same data determined one strong pattern presented 
in Figure 9. 

 
[activity=play]  
<= [condition=cloudy v sunny: 7,8] &  
   [temperature=medium v high: 7,7]:  p=7,n=2,Quality=0.67 

Figure 9: The strong pattern found by AQ21. 

This pattern consists of one rule stating that the activity is play, if the weather is cloudy or sunny, 
and the temperature is medium or high.  The rule covers 7 positive and 2 negative examples, and 
its quality, q(w), is 0.67, where w had the default value 0.5.  Numbers inside conditions represent 
positive and negative coverages of the conditions alone.  The discovered pattern is graphically 
illustrated in Figure 10 using a Generalized Logic Diagram. 
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Decision classes: P – Play, R – Read, S – Shop  

Attributes: C – Condition, W – Wind, T – Temperature, D – Daytype,  
Attribute values:  r – rain, c – cloudy, s – sunny, n – no, y – yes, v – very low,  

l – low, m – medium, h – high, o – workday, e – weekend 

Figure 10: GLD with the strong pattern discovered by AQ21 

 

AQ21 allows the user to control the tradeoff between completeness and consistency of patterns 
by adjusting parameter w in the pattern quality measure Q(w).  When setting the w parameter to 
0.15, AQ21 found two rules presented in Figures 11 and 12. Note that setting w to a value 
smaller than 0.5 places higher emphasis on rule confidence (or consistency) than on rule support 
(coverage) and setting w to a value greater than 0.5 has an opposite effect (Michalski and 
Kaufman, 2001). 

The pattern is consistent but almost complete – one example is not covered by the learned rules.  
Note that further reduction of w to 0 leads to a complete and consistent ruleset, which can also be 
obtained by executing AQ21 in Theory Formation mode. 

 
[activity=play]  
<= [condition=cloudy v sunny: 7,8] & 
   [temperature=medium: 4,3] : 
   p=4,n=0,Quality=0.919 
<= [condition=sunny: 3,3] & 
   [temperature=medium v high:7,7]: 
   p=3,n=0,Quality=0.881 

Figure 11: Rules found by AQ21 for w=0.15. 
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Decision classes: P – Play, R – Read, S – Shop  

Attributes: C – Condition, W – Wind, T – Temperature, D – Daytype,  
Attribute values:  r – rain, c – cloudy, s – sunny, n – no, y – yes, v – very low,  

l – low, m – medium, h – high, o – workday, e – weekend 

Figure 12: GLD with the pattern found by AQ21 for w=0.15. 

3.2 Learning Rules with Exceptions 

The concept of an “exception” is commonly used by human experts when describing rarely 
occurring anomalies in described phenomena.  It is not unusual that a simple theory may work 
well for most cases, but turning it into a fully consistent and complete theory would require 
making it significantly more complex. In such cases, it is desirable to learn rules with exceptions 
e.g. (Michalski, 2004; Yao et al., 2004).  AQ21 can be set to learn rules with exceptions in the 
following form: 

 CONSEQUENT <= PREMISE |_ EXCEPTION (7) 

where EXCEPTION is either an attributional conjunctive description, or a list of examples 
constituting exceptions to the rule.  Note that exceptions in such rules are always negative 
examples.  The processes of learning exceptions in TF and PD modes are different.  In PD mode, 
where inconsistency is allowed, the program learns standard patterns and generates exceptions 
representing covered negative examples by finding a conjunctive description of the negative 
examples using AQ learning. 

In TF mode, where consistency is guaranteed, the program adds negative examples to the list of 
exceptions if such examples are infrequent but would introduce significant complexity to a 
description that does not cover them.  If all of the exceptions can be characterized by one 
conjunctive description, such a description is used as EXCEPTION clause in the rule; otherwise, 
an explicit list of exceptions is output. 

AQ21 applied to the same data produced the rule with an exception presented in Figure 13. 
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[activity=play] 
<= [condition=cloudy v sunny: 7,8] & 
   [temp= medium v high: 7,7] 
  |_ [condition=cloudy] & [wind=yes]&[temp= high] 
   : p=7,n=0,Quality=1 

Figure 13: The strong pattern with exception found by AQ21. 

The rule states that activity is play if weather is cloudy or sunny and temperature is medium or 
high, unless weather is cloudy, there is wind, and temperature is high. 

Figure 14 shows a GLD representation of the rule presented in Figure 13.  The two highlighted 
examples representing “shop” (S) and “read” (R) activities are treated as exceptions to the 
general pattern for the play activity. 

AQ21 generalized the two exceptions into one conjunctive description [weather=cloudy] & 
[wind=yes] & [temperature=high]. 

In the case that the two examples could not be generalized into one conjunctive description, the 
program would have listed them explicitly: 

cloudy, yes, high, yes,   shop 
cloudy, yes, high, no,    read 

This simple example shows that the introduction of rules with exceptions can produce 
descriptions that are simple, accurate and comprehensible, while descriptions without exception 
are more complex, less accurate, and less comprehensible. 

 

 
Decision classes: P – Play, R – Read, S – Shop  

Attributes: C – Condition, W – Wind, T – Temperature, D – Daytype,  
Attribute values:  r – rain, c – cloudy, s – sunny, n – no, y – yes, v – very low,  

l – low, m – medium, h – high, o – workday, e – weekend 

Figure 14: GLD with the strong pattern with exception found by AQ21. 
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3.3 Discussion of Results 

The C4.5-generated decision tree has 3 internal nodes and 11 branches, and when applied to the 
training dataset (22 examples) gave 4 errors (18%).  The C4.5 rules (7 rules) gave 5 errors 
(23%).  RIPPER produced 6 rules that gave 4 errors (18%) on the training dataset.  CN2 
produced 13 rules the constituted a complete and consistent description, but by far the most 
complex. 

In PD mode using the default value of w (0.5), AQ21 produced one strong pattern that covered 
all positive examples and 2 examples of other classes (9% error).  When executed with w=0.15, 
it produced a consistent and nearly-complete description, as it missed one example of activity 
play (4.5% error).  In TF mode, AQ21 generated three simple rules that were complete and 
consistent with the training dataset (0% errors) (results are presented in Section 5).  AQ21 with 
exceptions found one strong pattern that was complete and consistent with regard to the training 
data (0% errors).  It may additionally be noted that none of the compared programs, except 
AQ21, can determine patterns describing only one class. 

In this simple example, AQ21 produced both more accurate and simpler patterns than the other 
programs. This result was achieved due to the richer representation language used by this 
program. The AQ21’s more expressive representation language facilitates generation of simpler 
hypotheses in forms that are easy to interpret in natural language. AQ21 also allows the user to 
control the type of output by parameters and the hypothesis quality criterion. The latter feature is 
useful when different problems may require different criteria of pattern optimality. 

4 HANDLING META-VALUES IN DATA 

Another important new feature of AQ21 is its ability to learn from examples that may have meta-
values, which can be of three types: unknown, irrelevant, and not-applicable.  The unknown 
meta-value means that the attribute is missing the corresponding value in the example.  The 
irrelevant meta-value indicates that an expert has determined that the value of the corresponding 
attribute in the example is not relevant for the given classification task.  For example, the last 
name of the broker’s barber, even if available in the data, can be declared as irrelevant to 
predicting the value of a stock tomorrow.  Finally, it is possible that some attributes in the data 
may apply to some, but not all the entities.  For example, in a library inventory dataset, the 
“number of pages” attribute applies to books, but not to the chairs in the library. 

To represent these cases, the Attributional Calculus representation employed in AQ learning 
assumes that the domain of every attribute includes the three meta-values in addition to its 
regular values (Michalski, 2004). These meta-values correspond to three possible answers to a 
question requesting an attribute value in situations in which a regular value is not provided.  
Specifically, these are “unknown” (?), “not applicable” (NA), and “irrelevant” (*) values.  
Formally, to each attribute x whose domain is D, AQ21 assigns a domain D’ = D U {?, NA, *}.  
These meta-values are handled by AQ21 appropriately for their type. 

In the literature, the problem of handling meta-values is well-known and described by many 
authors.  However, most authors do not distinguish between different types of meta-values. 
Typically, all missing values are treated as “Unknown.”  Some authors investigated meta-values 
other than “?.” For example, Grzymala-Busse (2003) presented a method for dealing with 
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unknown and irrelevant values in rough sets.  This method is different from that in AQ21, as it 
learns standard rules with (attribute rel value) conditions, and does not consider not-applicable 
values.  It is based on internal operations used in rough sets which are different than extension-
against used in AQ learning.  Programs such as C4.5 and CN2 handle missing values by 
replacing events with unknown and irrelevant (CN2 only) values by their copies with filled all 
possible values of the missing attributes.  Below is a description of the methods for handling 
these three meta-values in AQ21. 

4.1 Handling Unknown Values 

Unknown (a.k.a. “Don’t know” or “Missing”), denoted by a “?”, is given to an attribute whose 
value for a given entity exists, but is not available for some reason.  For example, the attribute 
may not have been measured for this entity, or may have been measured, but not recorded in the 
database.  In such situations, the meta-value “?” in inserted in the training and/or testing datasets 
for this attribute in the event characterizing the given entity. 

Filling (or preprocessing) methods for handling unknown values are applied to datasets before 
starting the learning process.  After they have been applied, there is no need for modifying the 
regular AQ learning algorithm, and matching operators to handle missing meta-values.  Three 
preprocessing methods are used in AQ learning: (P1) ignoring training events with “?,” (P2) 
replacing “?” by the average value (for numerical attributes) or the most frequent value (for 
nominal attributes) in the s most similar training and/or testing events, where s is a program 
parameter, and (P3) learning rulesets for determining the values of the attributes with missing 
values in the training dataset, and then using those rulesets to predict the missing values when 
learning rules for other output attributes.  Similar methods have been widely investigated in the 
literature (Burcha, 2004), (Ragel and Cremeilleux, 1999). 

Two internal methods for handling Missing values are implemented in AQ21: (L1) ignoring the 
extension-against operation for attributes with missing values in such events during the star 
generation, and (L2) treating “?” as a regular value in the events, but not using events with a “?” 
for seeds.  When extending a seed against a missing value, create a selector:  [xi  ≠  ?], regardless 
of the value of attribute xi in the seed.  Readers not familiar with extension-against operation 
used in AQ learning may refer to, for example, (Michalski, 1983). 

For all events that cannot be matched with a rule with a specific degree of match because of the 
presence of a missing attribute value in the event, determine two values of p, pmin and pmax, and 
two values of n, nmin  and nmax, respectively.  pmin and nmin are computed by assuming that the 
unknown value does not match the rule, and  pmax  and nmax  are computed by assuming that it 
does match.  The positive rule coverage is characterized by the range (pmin .. pmax), and the 
negative coverage  by the range (nmin .. nmax).  It should be noted that the TF algorithm uses pmin 
and nmax values to ensure completeness and consistency of learned hypotheses. 

4.2 Handling Not-applicable Values 

Not-applicable, denoted by an “NA,” is given to an attribute that is not applicable to a given 
entity, because the value does not exist.  For example in a library inventory database a “number 
of pages” attribute does not apply to a chair in the library, but it applies to the books. 
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If a dataset has “not-applicable” values for some attributes, the attributes are removed from all 
events with that value, but not removed from other events when executing the extension-against 
operator, regardless of whether they are positive or negative events.  This operation is justified 
by the “NA” semantics, according to which, asking for a value of the attribute of an entity for 
which an attribute is not applicable is meaningless. 

If a training event has a “not-applicable” value for some attribute, the attribute is removed from 
the event when determining the rule coverage during the learning process.  Therefore, the event 
does not match the rule if the rule references the NA attribute. 

4.3 Handling Irrelevant Values 

Irrelevant values, denoted by an “*”, indicate that an attribute is considered irrelevant to the 
learning problem, or for the concept (class) to be learned, or in the particular event.  
Consequently, three types of irrelevant attributes are distinguished, task-irrelevant, class-
irrelevant, and event-irrelevant. 

An attribute is task-irrelevant if it is irrelevant for the entire learning problem.  For example, a 
student’s hair color can be declared as irrelevant for learning rules for classifying students into 
groups representing their academic performance.  An attribute is class-irrelevant if it is irrelevant 
for a given class (value of the output attribute), but may relevant for other classes.  For example, 
the patient’s PSA (prostatic specific antigen) level is relevant for diagnosing prostate diseases, 
but is irrelevant for diagnosing eye diseases.   

Task-irrelevance and class-irrelevance of an attribute can be handled in preprocessing by 
removing columns from a dataset.  An attribute is event-irrelevant if it is irrelevant only for a 
particular event in the class to be learned.  For example, the attribute “stock price” is relevant to 
any event in the class “stocks_to_acquire,” but in a particular instance when it is the stock of 
company you work for and is given free to employees, it may be considered irrelevant.  This 
kind of irrelevance represents knowledge of an expert who for some reason decides that an 
attribute should not be used to classify a particular event. 

The task-irrelevance is handled by simply removing the attribute in question from the training 
and testing datasets.  The class-irrelevance is handled by removing the attribute from training 
dataset for the given class, but it remains in dataset when learning classes for which it is relevant.  
Therefore, only the problem of handling event-irrelevant attributes needs to be considered.  If an 
attribute is indicated as irrelevant in one or more events of a given class, but indicated as relevant 
for other events, that is, it is irrelevant for one or more combinations of values of other attributes, 
but not for all combinations, then in executing the extension against operator, the program 
ignores the attribute with the value “*” in events with that value, but does not ignore it in other 
events. 

If an event with some attributes indicated as irrelevant is matched against an attributional rule, 
this attribute is removed from the event. This is equivalent to asserting that the irrelevant value 
always matches a condition with this attribute. 
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5 ALTERNATIVE HYPOTHESES 

From any non-trivial set of concept examples, it is usually possible to generate many alternative 
inductive generalizations of these examples. Such alternative hypotheses can be useful for a 
variety of practical applications of computational learning systems. For example, in medical 
decision making (diagnosis, drug prescription, or therapy assignment), some tests required by a 
given diagnostic procedure may be unavailable, and an alternative procedure would be 
necessary. 

Alternative hypotheses can also be used to increase the accuracy of classification decisions. This 
can be done through simple voting on decisions assigned by different hypotheses, or by weighted 
voting, as is typically done in boosting (Schapire and Singer, 1999). 

Formally, the problem of learning alternative hypotheses is to generate a set of hypotheses Hi
1, 

…, Hi
k for class Ci given the set of examples e1, .., en belonging to classes C1, …, Cm.  

Alternative hypotheses Hi
1, …, Hi

k are optimized according to user specified criteria.  The 
algorithm uses the idea that different alternative hypotheses can be selected from the final rules 
(in the last step of the algorithm in Figure 1).  AQ21 not only seeks alternative hypotheses, but 
also seeks hypotheses optimized according to user-defined criteria that may reflect different 
aspects of the problem. 

To illustrate how AQ21 generates alternative hypotheses, it was applied in TF mode to the 
example dataset presented in Figure 3.  It found alternative hypotheses shown in Figures 15 and 
16. 
 
 
[activity=play] 
<= [condition=cloudy v sunny: 7,8] & 
   [temperature=medium: 4,3] : p=4,n=0 
<= [condition=sunny: 3,3] & 
   [temperature=medium v high: 7,7] : p=3,n=0 
<= [condition=cloudy v sunny: 7,8] &  
   [wind=no:3,7]&[temperature=medium v high:7,7] 
    : p=3,n=0 

Figure 15: First alternative hypothesis learned in TF mode. 
 
[activity=play]  
<= [condition=cloudy v sunny: 7,8] & 
   [temperature=medium: 4,3] : p=4,n=0 
<= [condition=sunny: 3,3] &  
   [temperature=medium v high: 7,7] : p=3,n=0 
<= [condition=cloudy v sunny: 7,8] &  
   [wind=no: 3,7]  
   [temperature=medium v high: 7,7]  : p=3,n=0 

Figure 16: Second alternative hypothesis leaned in TF mode. 

Because the program was executed in TF mode, both hypotheses are complete and consistent 
with regard to the training data.  The first two rules of the hypotheses are the same and cover the 
majority of the positive examples.  The hypotheses differ in the way the last example is covered 
by the third rule. 
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A simple example illustrating generation of alternative hypotheses in AQ learning is presented in 
the iAQ program specifically developed for demonstrating pattern discovery and natural 
induction. The program can be downloaded from http://www.mli.gmu.edu/msoftware.html. 

6 TESTING OF RULESETS 

For testing and application attributional rulesets AQ21 implements two methods: ATEST and 
EPIC.  The ATEST method (Reinke, 1984; Wojtusiak, 2004) is used for the testing and 
application of attributional rulesets to individual testing/application examples.  EPIC (Wojtusiak, 
2004) similarly applies attributional rulesets to episodeş that is, sequences of examples to be 
classified as a whole.  For example, in the application to computer user profiling, we are not 
interested in identifying the user responsible for each individual command in the database; 
rather, we have been provided a sequence of commands bundled together, for which we wish to 
establish the responsible user.  Thus, the sequence is considered together as an episode. 

The general methodology of ATEST and EPIC is as follows: 

1) For each individual testing example, determine a degree of match between it and each 
decision rule. 

2) For each decision class, aggregate the degrees of match determined in step 1, in order to 
determine degrees of match between each testing example and each decision class. 

3) If using EPIC, aggregate the degrees of match determined in step 2 for the examples in 
each episode, in order to determine degrees of match between each episode and each 
decision class. 

4) Based on the calculated degrees of match and threshold and tolerance parameters, output 
a classification for each testing example (ATEST) or episode (EPIC).  Please note that 
both methods, in addition to standard accuracy based on best match, are able to classify 
an event (episode) to more than one class.  In many real world applications it is more 
appropriate to give an imprecise classification rather than to give a wrong answer.  For 
example, when diagnosing diseases, the program may give the answer in form of a list of 
possible diseases. 

There are several matching and aggregation methods available in steps 1-3.  Ones appropriate to 
the task may be selected by the user (Wojtusiak, 2004). 

7 VISUALIZING RULESETS BY CAG 

An important aspect of a natural induction program is to be able to graphically present learned 
knowledge.  Two methods of visualizing knowledge have proven particularly useful for 
representing rulesets learned by AQ21: Generalized Logic Diagrams, described in Section 2 and 
in, e.g., (Michalski, 1978), and Concept Association Graphs (CAGs) (Kaufman and Michalski, 
2000). 

CAGs represent higher level concepts – the general relationships among attributes and/or 
features.  The links can be annotated visually (by thickness or color) and symbolically (through 
abstract and numeric annotations).  Such a multimode presentation allows for the transmission of 



 

 16 

a high quantity of knowledge in a relatively simple diagram.  An example of a CAG for the 
pattern discussed earlier and shown in Figure 10 is presented in Figure 17. 

 

Figure 17: CAG with two rules found by AQ21. 

8 SELECTED EXPERIMENTAL RESULTS 

This section presents a selected results of applying AQ21, C4.5 and C4.5 Rules (Quinlan, 1993), 
CN2 (Clark and Niblett, 1989), and RIPPER (Cohen, 1995) programs to discover patterns in two 
real-world datasets and one designed dataset described below. 

The Volcanoes dataset, provided by the Smithsonian institution, contains information about 
20,000 volcanoes and their eruptions around the world.  Goal of the learning is to distinguish 
between volcanoes that cause fatalities from those which do not.  The dataset was split into 
13,757 training and 5,846 testing examples. 

Provided with the Volcanoes dataset AQ21 in the PD mode learned 12 rules, selected of which 
are presented in Figure 18. 

 
[Fatalities=present]  
<= [A1<>secondary_mudflow,none: 438,28] : p=438,n=28,Quality=0.83   (Rule 1) 
<= [Pyroclastic=present: 311,1573] & 
   [Damage=present: 561,1168] : p=299,n=215,Quality=0.52            (Rule 3) 
<= [Evacuation=present: 285,365] : p=285,n=365,Quality=0.417        (Rule 10) 
 
[Fatalities=absent]   
<= [A1=none: 13052,203] : p=13052,n=203,Quality=0.778               (Rule 2) 

Figure 18: Selected rules learned by AQ21 for the Volcanoes dataset. 

Selected rules (out of 56) learned by c4.5 rules (from decision tree) for the Volcanoes dataset are 
presented in Figure 19.  Selected rules (out of 32) learned by RIPPER for the Volcanoes dataset 
are presented in Figure 20.  Selected rules (out of 190) learned by CN2 for the Volcanoes dataset 
are presented in Figure 21. 
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Rule 48: 
     Pyroclastic = present 
     Evacuation = present 
     Subregion = Honshu-Japan 
 ->  class present  [70.7%] 
Rule 71: 
     Flank_vent = present 
     Damage = present 
     Latx > 38.5667 
     Longx <= 106.983 
 ->  class present  [72.2%] 
Rule 96: 
     Pyroclastic = absent 
     Phreatic = absent 
     Lava_dome = absent 
     Damage = present 
     Evacuation = absent 
     Subregion = Sulawesi-Indonesia 
     Upper1 > 600 
 ->  class present  [50.0%] 

Figure 19: Selected rules learned by c.4.5 for the Volcanoes dataset. 

 
present_c :- Damage=present, Pyroclastic=present, A1=pyroclastic_flow (55/1). 
present_c :- Damage=present, A1=mudflow (64/0). 
present_c :- A1=indirect, Longx<=-86.7019 (3/0). 
default absent_c (13074/57). 

Figure 20: Selected rules learned by RIPPER for the Volcanoes dataset. 

 
IF    submarine_erupt = absent 
  AND a1 = tephra 
THEN  class = present  [154 0] 
 
IF    a1 = pyroclastic_flow 
  AND latx < 47.54 
THEN  class = present  [81 0] 
IF    damage = present 
  AND lahars = absent 
  AND a1 = none 
  AND subregion = Java 
  AND latx > -7.97 
  AND upper1 > 1600.00 
THEN  class = absent  [0 28.67] 
IF    subregion = Africa-W 
THEN  class = absent  [0 29] 
 
(DEFAULT) class = absent  [661 13096] 

Figure 21: Selected rules learned by CN2 for the volcanoes dataset. 
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The World Factbook dataset, downloaded from the CIA website, contains information about 266 
countries around the world (2 classes of countries -- those with birth rates above and below 20).  
The dataset was split into 196 training and 70 testing examples. 

For the World Factbook dataset AQ21 in TF mode learned 6 rules (3 for each class) shown in 
Figure 22. 
 

[Birth_rate<=20]  
<= [Total_fertility<=2.265 : 71,0] : p=71,n=0             (Rule 1) 
<= [Imports>=6.745e+07 : 74,77] & 
   [Total_fertility<=2.485 : 79,2] & 
   [Unemployment<=19.5 : 68,57] & 
   [Telephones_cellular>=988 : 72,74] : p=59,n=0          (Rule 2) 
<= [GDP_per_capita>=5050 : 65,16] & 
   [Death_rate>=3.005 : 80,80] & 
   [Infant_mortality<=18.79 : 63,7] & 
   [Labor_force>=1.925e+04 : 74,80] & 
   [Integerernet_users>=1.9e+04 : 56,51] : p=43,n=0       (Rule 3) 
 
[Birth_rate>20]  
<= [GDP_per_capita<=1.475e+04 : 80,41] & 
   [Population>=3.807e+04 : 81,74] & 
   [Total_fertility>=2.44 : 81,3] : p=78,n=0              (Rule 1) 
<= [Total_fertility>=2.76 : 75,0] : p=75,n=0              (Rule 2)                  
<= [Electricity_prod>=1.854e+09 : 36,59] & 
   [Industrial_production_growth>=3.45 : 33,49] & 
   [Infant_mortality=48.6..57.94 : 9,1] : p=3,n=0         (Rule 3) 

Figure 22: Rules learned by AQ21 for the World Factbook dataset. 

Decision tree learned by C4.5 for the World Factbook dataset are presented in Figure 23.  Rules 
learned by C4.5rules for the World Factbook dataset are presented in Figure 24.  Rules learned 
by RIPPER for the World Factbook dataset are presented in Figure 25.  Rules learned by CN2 
for the World Factbook dataset are presented in Figure 26. 
 

Total_fertility > 2.5 : yes (80.0/1.0) 
Total_fertility <= 2.5 : 
|   Total_fertility <= 2.25 : no (71.0) 
|   Total_fertility > 2.25 : 
|   |   GDP_per_capita <= 6500 : yes (4.0/1.0) 
|   |   GDP_per_capita > 6500 : no (8.0) 

Figure 23: Decision tree learned by C4.5 for the World Factbook dataset. 
 
Rule 1: 
     Total_fertility <= 2.25 
 ->  class no  [98.1%] 
 
Rule 3: 
     GDP_per_capita > 6500 
     Total_fertility <= 2.5 
 ->  class no  [97.8%] 
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Rule 4: 
     Total_fertility > 2.5 
 ->  class yes  [96.8%] 
 
Rule 2: 
     GDP_per_capita <= 6500 
     Total_fertility > 2.25 
 ->  class yes  [96.5%] 
 
Default class: yes 

Figure 24: Rules learned by C4.5rules for the World Factbook dataset. 

 

no :- Total_fertility<=2.43 (78/1). 
default yes (81/3). 

Figure 25: Rules learned by RIPPER for the World Factbook dataset. 

 
IF    GDP_per_capita < 14750.00 
  AND Total_fertility > 2.51 
THEN  Birthrate_gt20 = yes  [77 0] 
 
IF    Infant_mortality < 16.61 
  AND Inflation < 3.10 
  AND Total_fertility > 2.44 
THEN  Birthrate_gt20 = yes  [6.50 0] 
 
IF    GDP_growth_rate < 4.60 
  AND Infant_mortality > 54.20 
THEN  Birthrate_gt20 = yes  [36 0] 
 
IF    GDP_growth_rate > 3.30 
  AND Total_fertility > 2.49 
THEN  Birthrate_gt20 = yes  [38 0] 
 
IF    Infant_mortality < 54.20 
  AND Total_fertility < 2.44 
THEN  Birthrate_gt20 = no  [0 75] 
 
IF    GDP_per_capita > 8950.00 
  AND Total_fertility < 2.89 
THEN  Birthrate_gt20 = no  [0 54.50] 
 
IF    GDP_growth_rate > 4.60 
  AND Total_fertility < 2.39 
THEN  Birthrate_gt20 = no  [0 26] 
 
(DEFAULT) Birthrate_gt20 = yes  [82 81] 

Figure 26: Rules learned by CN2 for the World Factbook dataset. 

The designed dataset consists of 2000 entities described by one structured, one 6-valued 
nominal, and 12 binary, input attributes.  The output attribute is binary; its values denote two 
classes, describing 1000 training and 1000 testing examples (500 positive and 500 negative 
examples in each set).  The positive examples are of the concept “the number of present Features 
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is 2 or 3 and Shape is oval or Color is red.”  Definitions of attributes and their domains in AQ21 
format are presented in Figure 27. 

AQ21 provided with the training data correctly learned the target concept by producing rules 
presented in Figure 28.  The second condition in the first rule uses an automatically discovered 
counting attribute meaning that the number of Features from Feature1 .. Feature10 that are 
present are between 2 and 3.  Please note that the value “oval” in the first condition is a higher 
level concept of the attribute “Shape.” 
 

Common domains 
{ 
  feature nominal {absent, present} 
} 
 
Attributes 
{ 
  Feature1 feature 
  Feature2 feature 
  Feature3 feature 
  Feature4 feature 
  Feature5 feature 
  Feature6 feature 
  Feature7 feature 
  Feature8 feature 
  Feature9 feature 
  Feature10 feature 
  Shape structured {square, rectangle, ellipse, circle, right_triangle,  
                    obtuse_triangle, accute_triangle, rectangular, oval, 
                    triangular} 
                { rectangular <-- right_triangle 
                  rectangular <-- obtuse_triangle 
                  rectangular <-- accute_triangle 
                  oval <-- circle 
                  oval <-- ellipse 
                  rectangular <-- square 
                  rectangular <-- rectangle } 
  Color nominal {red, green, blue, white, orange, black} 
  Class nominal {positive, negative} 
} 

Figure 27: Definition of attributes for the designed problem. 

[Class=positive]  
   <= [Shape=oval: 422,121] &  
      [Count(Feature1, Feature2, Feature3, Feature4, Fearure5, Feature6,    
            Feature7, Feature8, Feature9, Feature10 = present)=2..3: 415,103]   
     : p=402,n=0 
   <= [Color=red: 165,0]                        
     : p=165,n=0 

Figure 28: Rules learned by AQ21 for the designed problem. 
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Selected rules learned from decision tree by c4.5 for the designed problem are presented in 
Figure 29.  Selected rules learned by CN2 for the designed problem are presented in Figure 30.  
Rules learned by RIPPER for the designed problem are presented in Figure 31. 

A summary of results in terms of accuracy on testing datasets and numbers of rules is presented 
in Table 1. 

 
... 
Rule 29: 
     Feature1 = absent 
     Feature3 = absent 
     Feature4 = present 
     Shape = ellipse 
 ->  class positive  [95.8%] 
Rule 39: 
     Feature2 = absent 
     Feature3 = absent 
     Feature4 = present 
     Feature6 = absent 
     Feature9 = absent 
     Shape = circle 
 ->  class positive  [94.4%] 
Rule 51: 
     Feature5 = absent 
     Feature8 = absent 
     Shape = circle 
 ->  class positive  [91.8%] 
... 

Figure 29: Selected rules learned by c4.5 for the designed problem. 

 
... 
IF    Feature5 = present 
  AND Feature6 = present 
  AND Feature10 = absent 
  AND Shape = circle 
  AND Color = blue 
THEN  class = positive  [1 0] 
 
IF    Feature2 = present 
  AND Feature7 = present 
  AND Feature10 = present 
  AND Shape = square 
THEN  class = negative  [0 19] 
 
IF    Feature1 = present 
  AND Feature2 = present 
  AND Feature4 = present 
  AND Feature6 = present 
  AND Feature8 = present 
  AND Feature9 = present 
THEN  class = negative  [0 87] 
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IF    Feature5 = absent 
  AND Feature7 = absent 
  AND Feature10 = absent 
  AND Shape = obtuse_triangle 
THEN  class = negative  [0 20] 
... 

Figure 30: Selected rules learned by c4.5 for the designed problem. 

 

positive :- Color=red (165/0). 
positive :- Shape=ellipse, Feature3=absent, Feature1=absent (89/3). 
positive :- Shape=circle, Feature2=absent, Feature4=absent (94/9). 
positive :- Shape=ellipse, Feature4=absent, Feature5=absent (56/4). 
positive :- Shape=circle, Feature5=absent, Feature8=absent (47/3). 
positive :- Shape=circle, Feature6=absent, Feature9=absent, Feature7=absent 
(19/0). 
positive :- Shape=ellipse, Feature10=absent, Feature6=absent, Feature7=absent 
(23/2). 
positive :- Shape=circle, Feature1=absent, Feature9=absent, Feature3=absent 
(4/1). 
default negative (478/3). 

Figure 31: Selected rules learned by c4.5 for the designed problem. 

Accuracy % / Number of Rules Dataset 
AQ21 C4.5 C4.5 Rul. CN2 RIPPER 

Volcanoes 99.45 % 
12 Rules 

98.8 % 
Decision tree 
with 120 nodes 

99 % 
66 Rules 

95.5 % 
190 Rules 

98.96 % 
33 Rules 

World 
Factbook 

94.29 % 
6 Rules 

91.9 % 
Decision tree 
with 6 nodes 

91.9 % 
5 Rules 

93.5 % 
7 Rules 

93.55 % 
2 Rules 

Designed 100 % 
2 Rules 

92.1 % 
Decision tree 
with 83 nodes  

92.7 % 
46 Rules 

91.7 % 
164 Rules 

92.8 % 
8 Rules 

Table 1: Accuracies and numbers of rules of five methods on three datasets. 

 

As shown in Table 1, AQ21 performed better in terms of both accuracy and complexity 
(numbers of rules).  The main reason for this can be attributed to the richer representation 
language that allowed the program to determine a more accurate concept description. 

9 SUMMARY 

The paper presented several novel features seamlessly integrated in the AQ21 pattern discovery 
and rule learning program.  These features extend the capability of AQ21 and aim at making it a 
natural induction program that equally stresses the accuracy and comprehensibility of discovered 
knowledge. The features include discovering attributional patterns without and with exceptions, 
discovering alternative hypotheses in the same data, and handling meta-values. Additionally, the 
KV and CAG methods for visualizing learned knowledge are designed to work with knowledge 
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learned by AQ21. The above features are either not present in other learning programs or present 
only separately in different programs. 

Although we illustrated novel features of AQ21 on simple examples, the program is highly 
efficient and has been applied to problems with thousands of examples and hundreds of multi-
type attributes.  AQ21 has also several other features not described here that were designed to 
improve the efficiency of the AQ method. 

Current research concerns systematic testing of the AQ21 program, its extension by adding new 
features, and its experimental application to complex real-world data mining problems. 

REFERENCES 

Brucha, I., “Meta-Learner for Unknown Attribute Values Processing: Dealing with Inconsistency 
of Meta-Databases,” Journal of Intelligent Information Systems, 22:1, pp. 71-87. 2004. 

Clark, P. and Niblett, T., “The CN2 Induction Algorithm,” Machine Learning 3: pp. 261-289. 
1989. 

Cohen, W., “Fast Effective Rule Induction,” Proceedings of the 12th International Conference 
on Machine Learning. 1995. 

Grzymala-Busse J.W., “Rough Set Strategies to Data with Missing Attribute Values,” 
Proceedings of the Workshop on Foundation and New Directions in Data Mining. Melbourne, 
FL, USA. 2003. 

Kaufman, K. and Michalski, R.S., “A Knowledge Scout for Discovering Medical Patterns: 
Methodology and System SCAMP,” Proceedings of the Fourth International Conference on 
Flexible Query Answering Systems, FQAS'2000, Warsaw, Poland, pp. 485-496. 2000. 

Michalski, R.S., “Graphical Minimization of Normal Expressions of Logic Functions using 
Tables of the Veitch-Karnaugh Type,” Journal of the Institute of Automatic Control, (52). 1978 

Michalski, R.S., “A Theory and Methodology of Inductive Learning,” In R.S. Michalski, J. 
Carbonell and T.M. Mitchell (Eds.), Machine Learning: An Artificial Intelligence Approach, 
Palo Alto: Tioga Publishing Co. 1983. 

Michalski, R.S., “ATTRIBUTIONAL CALCULUS: A Logic and Representation Language for 
Natural Induction,” Reports of the Machine Learning and Inference Laboratory, MLI 04-2, 
George Mason University. 2004. 

Michalski, R.S. and Kaufman, K., “Learning Patterns in Noisy Data: The AQ Approach,” In G. 
Paliouras, V. Karkaletsis and C. Spyropoulos, (Eds.) Machine Learning and its Applications, 
Springer-Verlag, pp. 22-38. 2001. 

Pawlak, Z., “Rough Sets: Theoretical Aspects of Reasoning about Data,” Kluwer Academic 
Publishers. 1991. 

Quinlan, J.R. C4.5 Systems for Machine Learning. Morgan Kaufmann Publishers Inc. 1993. 

Ragel, B. and Cremilleux, B., “MVC - A Preprocessing Method to Deal with Missing Values,” 
Knowledge-Based Systems, 12, pp. 285-289. 1999. 



 

 24 

Reinke, R., “Knowledge Acquisition and Refinement Tools for the ADVISE META-EXPERT 
System,” Reports of the Intelligent Systems Group, ISG 84-6, UIUCDCS-F-84-926, Department 
of Computer Science, University of Illinois, Urbana, 1984. 

Schapire, R. and Singer, Y., “Improved Boosting Algorithms Using Confidence-rated 
Predictions,” Machine Learning. 37. Kluwer Academic Publishers, pp.297-336. 1999. 

Setzkorn C. and Paton R.C., “On the use of multi-objective evolutionary algorithms for the 
induction of fuzzy classification rule systems,” Biosystems, 81, 2. 2005. 

Sniezynski, B., Szymacha, R. and Michalski, R. S., “Knowledge Visualization Using Optimized 
General Logic Diagrams,” Proceedings of the Intelligent Information Processing and Web 
Mining Conference, IIPWM 05, Gdansk, Poland, June 13-16, 2005. 

Van Zyl, J. and Cloete, I., “Simultaneous Concept Learning of Fuzzy Rules,” Proceedings of the 
Fifteenth European Conference on Machine Learning, Pisa, Italy, pp. 548-559. 2004 

Wojtusiak, J. “AQ21 User’s Guide,” Reports of the Machine Learning and Inference Laboratory, 
MLI 04-5, George Mason University. 2004.  

Yao, Y., Wang, F., Zheng, D., and Wang, J., “Rule + Exception Strategies for Security 
Information Analysis,” IEEE Intelligent Systems, 20, pp. 52-57. 2004. 



 

 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A publication of the Machine Learning and Inference Laboratory 
College of Science 
George Mason University 
Fairfax, VA 22030-4444 U.S.A. 
http://www.mli.gmu.edu 
 
Editor:  R. S. Michalski 
Assistant Editor:  K. A. Kaufman 
 
The Machine Learning and Inference (MLI) Laboratory Reports are an official publication of the Machine Learning 
and Inference Laboratory, which has been published continuously since 1971 by R.S. Michalski’s research group 
(until 1987, while the group was at the University of Illinois, they were called ISG (Intelligent Systems Group) 
Reports, or were part of the Department of Computer Science Reports). 
 
Copyright © 2006 by the Machine Learning and Inference Laboratory. 


