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  ABSTRACT 

SCALABLE AGENT-BASED MODELING OF FORCED MIGRATION 

Melonie K Richey, Ph.D 

George Mason University, 2020 

Dissertation Director: Dr. Hamdi Kavak 

 

Migration studies have a long history in sociology and the social science though 

the discipline has matured in notable ways over the past several decades. One such way is 

the attention that has been paid to forced migration resulting from security and conflict 

events worldwide. The study of forced migration is distinct from the study of voluntary 

migration, the topic of most research in migration studies since the late 19th century. 

Another way the field has matured is in the application of computational modeling and 

simulation methods to the problem domain to augment or complement theoretical or 

statistical analysis of migration. Despite recent advancements in these two areas, there 

remains a dearth of research around computational modeling and simulation methods as 

applied to the study of forced migration. There are many gaps the scientific community 

of sociologists and computational social scientists must fill before empirical models can 

be generalized and used for predictive purposes by aid organizations to make decisions 

about the allocation of resources in response to forced migration events worldwide. For 

instance, many computational models have been applied to the modeling of voluntary 

migration but far fewer to forced migration. Of the models developed for forced 
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migration, many are only theoretical, few are empirical, and only one is designed to run 

at a scale applicable to ongoing forced migration events worldwide with tens of millions 

of migrants but does not consider social networks.  

The research presented in this dissertation fills some of these gaps by addressing 

limitations in theoretical knowledge and computational methodology with the application 

of an agent-based model to a real-world forced migration case study – forced Syrian 

migration into neighboring Turkey. This research makes the case that agent-based 

modeling is the appropriate social simulation approach to take for forced migration 

modeling and discusses recent developments in forced migration theory that have yet to 

be applied in empirical computational modeling contexts, including social networks. This 

research also addresses the scale issue, demonstrating an agent-based simulation that runs 

with up to 25M agents and applying this simulation to a real-world event with 4-6M at-

risk persons. The following chapters summarize a two-fold contribution to the sociology, 

social science, and computational modeling scientific communities: (1) the first 

empirically tested agent-based simulation to model forced migration that considers 

migrant social networks and (2) methodological advances to the state-of-the-art of 

computational forced migration modeling and publicly available computational tools and 

methods to facilitate future research for researchers in this domain. 
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1. INTRODUCTION 

What follows is an introductory chapter to this dissertation on the use of agent-

based modeling and simulation techniques to model and predict forced migration. It 

begins with an overview of the topic and motivation for the research in Section 1.1. 

Section 1.2 follows by presenting three distinct research questions. Section 1.3 briefly 

outlines my approach to investigating these three research questions, and Section 1.4 

concludes this introductory chapter with a review of the contributions the work presented 

herein contributes to both social science and the computational social sciences (CSS).  

1.1 Overview & Purpose 

Migration studies have a long history in the field of sociology dating back to the 

late 19th century when the German cartographer Ernst Georg Ravenstein first published 

his 11 laws of migration (Ravenstein, 1885). Since that time, migration studies have 

garnered substantial attention in the analytic and research communities, even more in the 

21st century given the prominence of displacement events worldwide over the last several 

decades. As of this writing, the amount of forcibly displaced persons worldwide is now a 

staggering 80 million according to the United Nations High Commissioner for Refugees 

(UNHCR, 2020a). Computational methods to model and predict these events are likewise 

increasing in prevalence and complexity (Klabunde & Willekens, 2016). Academic 

groups, interagency aid organizations, and migration researchers are devising analytic 
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methods and computational models to better understand and predict the movement of 

refugees (Hebert, Perez, & Harati, 2018; Frydenlund & De Kock, 2020), asylum-seekers 

(Hattle, 2016; Langley et al., 2016), internally displaced persons (IDPs) (Frydenlund et 

al., 2018; Naude, 2010b), returnees (Biondo, Pluchino, & Rapisarda, 2012; Haug, 2008; 

Rehm, 2012; Cassarino, 2004), and stateless persons worldwide (Disney et al., 2015).  

In 2020, the Syrian Arab Republic alone hosts 6 million IDPs (UNHCR, 2020c) 

while almost 4 million of its citizens seek refuge in neighboring Turkey, 800,000 in 

Lebanon, and 650,000 in Jordan (UNHCR, 2020d). Equally tragic though lesser 

magnitude circumstances can be found in places such as Burundi, Nigeria, Central 

African Republic (CAR), South Sudan, Democratic Republic of the Congo (DRC), 

Venezuela, Iraq, and Yemen (UNHCR, 2020e). I have personally walked through 

suburbs of Turkish cities Istanbul, Ankara, and Kayseri in the early days of the Syrian 

conflict, speaking with refugees, asylum-seekers, and stateless persons or persons without 

status about their migration experiences, their present locations, and their intentions to 

return to their country of origin. The stories were equally as revealing as they were 

heartbreaking, and all the more reason to continue this vein of research for provisioning 

aid to at-risk and stateless populations. I have separately worked with the National 

Geospatial-Intelligence Agency (NGA) in applying this type of research to populations in 

CAR (Richey, 2014b) where displacement occurred due to a type of religious genocide. 

My personal experiences in both places served as motivation to study migration – 

specifically, forced migration – in an effort to advance the body of knowledge around 
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forced migration modeling and develop computational methods that aid organizations 

could one day use to provision aid more efficiently and assist these at-risk populations.  

Previous research around migration has focused largely on voluntary migration 

(Stillwell, 1978; Sarra & Signore, 2010; Fotheringham & O’Kelly, 1989; Goodchild & 

Smith, 1980) and international migration patterns over time (Poot et al., 2016; Moore & 

Shellman, 2007; Karemera, Oguledo, & Davis., 2000). These efforts have relied heavily 

on macro-level statistical modeling from largely an economic vantage point (Harris & 

Todaro, 1970; Lee, 1966; Massey, 1993; Calvo, 1978; Espindola, Silveria, & Penna, 

2006; Bergstrand, 1985; Lewer & Van Den Berg, 2008). Out of this vein of study came 

many spatial interaction models (SIM) such as the gravity model (Wilson, 1970; Pumain 

et al., 1995; LeSage & Fischer, 2008). While SIMs appropriately model macro-level 

migration trends, they are incapable of capturing decisions at the individual level or 

modeling micro-scale phenomena while providing a construct to observe emergent 

aggregate behavior from the bottom-up (Gulden, Harrison, & Crooks, 2011). 

Additionally, much of the existing migration theory has been formulated around the 

drivers of voluntary migration, not forced migration. While many of the factors that 

influence migration may be similar across both types of migration, the weighting of these 

factors will differ (Richmond, 1993; Bohra-Mishra & Massey, 2011; Moore & Shellman, 

2006; Docquier, Peri, & Ruyssen, 2014; Dorigo & Tobler, 1983). 

The research community and aid organizations are left with a dearth of 

understanding and applicable modeling techniques around the drivers, patterns, and 

context of forced migration and the global displacement events referenced above. It was 
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over a decade prior that Scott Edwards encouraged the research community to continue 

developing and applying ever more advanced computational techniques to the forced 

migration domain (Edwards, 2008). Since then, throughout the past decade, a collection 

of one-off attempts have been made by researchers to model forced migration using 

agent-based models (ABMs) (Frydenlund & De Kock, 2020; Hattle, 2016; Hebert, Perez, 

& Harati, 2018; Frydenlund et al., 2018; Sokolowski, Banks, & Hayes, 2014; 

Sokowlowski et al., 2014; Frydenlund et al., 2018) and to understand more thoroughly its 

complexity in theoretical forms of inquiry before models are even developed (Gray, 

Hilton, & Bijak, 2017; Collins & Frydenlund, 2016). ABMs are a more attractive 

modeling alternative for forced migration as they provide a bottom-up approach to 

modeling migrant decision-making at the individual level without prior specification of 

system-level trends. Despite the diverse applications mentioned above, there remains 

only one large-scale empirical application of ABMs to forced migration – the FLEE 

model that can represent millions of migrants (Suleimenova, Bell, & Groen, 2017; Groen, 

2018). Applications of the FLEE model, while realistically scalable, have structural and 

design features that limit or prevent its applicability to some Areas of Interest (AOI), 

Therefore, it cannot model all forced migration scenarios and also limits its applicability 

to short term migration scenarios. Additionally, the single empirical ABMs developed for 

forced migration does not consider social networks. Recent research has shown that 

social networks greatly influence the decision making of refugees (Dekker et al., 2018; 

Borkert, Fisher, & Yafi, 2018; Hinsch & Bijak, 2019; Maitland & Xu, 2016).  
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In short, though substantive contributions have been made to the domain of forced 

migration in recent years, comprehensive understanding of and computational inquiry 

into the complexity of migrant decision-making in uncertain conditions, the influence of 

social factors and technology, and the ultimate drivers of movement as a result of conflict 

and security events remain to be challenging topics. This is the motivation for the 

research presented in this dissertation – to develop an empirical computational model that 

advances our understanding of forced migration to include the consideration of social 

networks. open-sourceAmong possible computational modeling techniques, which are 

discussed in Chapter 2, agent-based modeling is a suitable modeling paradigm because it 

can be used to explicitly represent forced migration populations’ decision-making 

mechanisms at the individual level inclusive of social factors. Finally, there are over 

600,000 refugees from CAR and an equal number of IDPs, over 2M refugees from South 

Sudan, over 1.8M refugees from the Sahel, 4.5M from Venezuela, and, of course, 4M in 

Turkey (UNHCR, 2020e). The magnitude of these events necessitates scalable 

computational modeling capabilities that appropriately capture the sizable number of 

migrants. These gaps in the forced migration research and CSS communities are the gaps 

that this dissertation intends to fill.     

1.2 Research Questions 

In satisfaction of the objective mentioned above, there are three primary research 

questions in this dissertation. They are written from the perspective of the CSS modeler 

and social scientist who desires to use the outcomes of this research to further their 

inquiry into forced migration. These questions address fundamental research gaps around 
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forced migration modeling, the application of ABMs to these contexts at scale, and also 

the most necessary and least understood aspect of migration – social influence. 

RQ1 To what extent does the consideration of social networks in forced migration 

models improve model accuracy?   

This research question represents the newest and least explored area of forced 

migration modeling endeavors. To date, no existing large-scale forced migration model 

includes social networks explicitly though numerous studies advocate for or lend 

credence to their inclusion (Reinhardt et al., 2019; Hinsch & Bijak, 2019; Dekker et al., 

2018; Simon, 2019; Frydenlund & De Kock, 2020; Borkert, Fisher, & Yafi, 2018; Gray, 

Hilton, & Bijak, 2017; Klabunde & Willekens, 2016; Maitland & Xu, 2015). A few 

studies include social networks in models of voluntary migration with encouraging 

results (Al-Khulaidy & Swartz, 2020; Epstein & Gang, 2006; Tranos et al., 2015; 

Havinga & Bocker, 1999; Robinson & Segrott, 2002). This research question exists to 

investigate a significant gap in the CSS literature in the domain of forced migration 

modeling and leverage new theory surrounding the influence social networks have on 

forced migrant decision-making.   

RQ2 How can ABMs of forced migration be designed and developed at scale to 

facilitate further investigation? 

Building off the previous question, computational techniques will be designed and 

developed during the course of the research that RQ1 necessitates. The purpose of this 

research question is to develop and provision computational resources and apply lessons 

learned in data processing, model design, and parallel computing for the model that will 
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be developed in response to RQ1. These resources will be shared with fellow researchers 

in support of future forced migration modeling efforts. The FLEE model framework 

(Suleimenova & Groen, 2017) contributes the first and only truly generalizable and 

scalable agent-based forced migration modeling framework to the research community, 

but it has several limitations in its design and application that call into question the utility 

of the computational methodologies provided within the framework for future research. 

Most notably, its simulation environment is limiting, and it does not include any way of 

modeling social influence. While RQ1 addresses the limitation concerned with social 

influence, RQ2 will address computational tools and techniques that may be used to 

create more representative simulation environments with less manual effort in support of 

future modeling efforts.   

RQ3 How can the model(s) developed in response to RQ1 and RQ2 be applied to 

predict where refugee populations are likely to move during a forced migration event in 

the context of a case study? 

This final research question is concerned with the application of the methods 

designed and developed under the previous two research questions to a case study. 

Statistical and computational modeling efforts applied to voluntary migration over the 

years have found predictive success and also yielded great insight into the drivers – 

economic and otherwise – of this phenomenon. The same cannot be said for forced 

migration. As mentioned above and discussed more thoroughly in Chapter 2, these 

traditional techniques are not best suited to modeling reactive, forced, or conflict-induced 

migration. To address these concerns, this question explores the application of a new 
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ABM of forced migration to a case study to test and validate it empirically against real-

world conditions. To date, the ABMs of forced migration which include social network 

components are theoretical (Reinhardt et al., 2019; Hisch & Bijak, 2019; Perez, & Harati, 

2018; Collins & Frydenlund, 2016) and none have been empirically tested – this study is 

the first.  

1.3 Approach 

To address the research objective and three research questions, a four-phased 

approach is taken: Define, Review, Develop, and Apply. These phases are based loosely 

on the approach to social simulation defined in Gilbert & Troitzsch, (2005) in that all 

steps are included yet re-imagined in a workflow that supports structured inquiry into the 

research questions outlined above. Subordinate phases capture relevant steps but, at a 

high level, the approach taken is to define the research objective, review relevant 

literature, design and develop an ABM, and apply that ABM to a relevant case study as 

depicted in Figure 1.  
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Figure 1 Methodology for approaching the research in this dissertation. 

 

The response to RQ1 exists within the Develop phase. During this phase, the 

ABM is also verified to ensure internal consistency. The final phase is the Apply phase, 

where the model is validated through application to a relevant case study in response to 

RQ3. Generalizable computational techniques and components are also extracted from 

the Apply phase in support of RQ2 to provide support to subsequent modeling efforts 

within the scientific community. This methodology is described in greater detail in 

Chapters 3 and 4. 

1.4 Contributions to Social Science 

The research presented herein contributes in several distinct ways to both social science 

and CSS. It advances upon the state of the art in computational modeling of a 
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sociocultural phenomenon that is only growing in importance as conflict and security 

events worldwide continue to affect the human geographic landscape of our globe. The 

eventual implications of this type of research for aid organizations such as the United 

States Agency for International Development (USAID), the United Nations High 

Commissioner for Refugees (UNHCR), and the United Nations Office for the 

Coordination of Humanitarian Affairs (UNOCHA) are clear. Accurate decision support 

tools such as generalizable ABMs will allow these organizations to model where refugees 

are likely to congregate so that new refugee camps may be considered and established, or 

alternative resources provisioned in support of local governments. More specifically, 

concerning the contribution to the scientific community, this research makes 

contributions in the following distinct areas: 

Contribution 1: the first large-scale ABM of forced migration to consider migrant 

social networks 

Current agent-based modeling and simulation efforts for predicting the movement 

of forced migrants are limited to one-off, non-generalizable models, only one of which is 

validated empirically and designed to computationally scale in support of mass migration 

events. The FLEE model is the most robust and empirically validated model to date 

tested in five separate AOIs: Burundi, Mali, CAR, Iraq, and South Sudan (Suleimenova, 

Bell, & Groen, 2017). Despite its claimed generalizability, however, it does not include a 

social component, which I have shown is essential to the modeling of forced migration in 

the previous section. The single most prominent contribution of this research is a model 
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of forced migration that is performant in its target AOI while introducing the 

consideration of social networks in the model design.  

Social network mechanics can be challenging to include in simulations at scale for 

two primary reasons: 1) authoritative social network data is lacking for migrant social 

networks and 2) large graphs and networks can be computationally intensive to include in 

modeling efforts. This research has overcome the second challenge by including a proxy 

social network in the presented model and parallelizing the model to the extent that 

intensive computation is possible in cloud environments and on virtual machines at the 

scale of tens of millions of refugee agents. The research has addressed the first challenge 

by using a stylized implementation of the social network. The result of this is a case study 

which reinforces the preliminary notion in the research community that social networks 

should be considered in forced migration models (Reinhardt et al., 2019; Hinsch & Bijak, 

2019; Dekker et al., 2018; Simon, 2019; Al-Khulaidy & Swartz, 2020; Frydenlund & De 

Kock, 2020; Borkert, Fisher, & Yafi, 2018; Hilton & Bijak, 2017; Blumenstock, Chi, & 

Tan, 2019; Garip, 2008). The inclusion of these social networks at scale paves the way 

for further modeling efforts in forced migration studies that can further explore the 

opaque and vastly unknown interplay of social dynamics in refugee movement.  

 

Contribution 2: methodological improvements on the state-of-the-art forced migration 

ABM to include publicly available computation tools and methods to facilitate the 

modeling community  

The model presented herein both improves upon state-of-the-art FLEE model 

accuracy and replicates FLEE’s computational speedup for modeling forced migration at 
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scale. The largest methodological improvement that can be made to the FLEE model (and 

other computational models of similar caliber but less extensibility), is the automated 

creation of a simulation environment that creates an architecture through which refugees 

can be simulated to move at will rather than an architecture which permits them only to 

move to pre-determined locations such as urban centers or refugee camps. The creation of 

such a simulation environment in this model is not reliant on any pre-existing refugee 

infrastructure in an AOI, meaning that the model is applicable at the inception of a forced 

migration event. It is also therefore applicable in any geographic locality worldwide 

regardless of pre-existing refugee presence or infrastructure. 

The computational models and methodologies developed as part of this research 

are made publicly available on GitHub at https://github.com/mrichey17/mig and the 

computational scalability aspects of this dissertation were presented via pre-recorded 

video at the Interservice/Industry Training, Simulation, and Education (I/ITSEC) 

conference held on 30 November – 4 December 2020 and are published in the conference 

proceedings (Richey & Mostowsky, 2020). ABMs and other sociocultural simulations are 

not trivial to develop for many reasons, one of which is timeliness (Frydenlund & De 

Kock, 2020). The research presented in this dissertation includes an automated 

methodology for the creation of a simulation environment referenced above which is 

publicly available on GitHub to jumpstart future modeling and simulation efforts for 

those who may wish to generate a simulation environment and use it to implement 

additional models.  
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1.5 Organization of Chapters 

The research presented in the following chapters advances the art and the science 

of forced migration studies in the CSS domain such that the extant body of knowledge is 

now several steps closer to the authoritative decision support tools described above. 

Chapter 2 of this dissertation provides a review of relevant literature in the forced 

migration modeling domain, to include recent advances in computational modeling 

efforts, the need for and theory behind the inclusion of social networks in forced 

migration models, and the challenges of scalability in such models. Chapter 3 presents 

the methodology used to approach these challenges and provides a comprehensive 

Overview, Design concepts, and Details (ODD) document which communicates model 

instantiation and logic. Chapter 4 details the computational implementation of the model. 

Chapter 5 presents the results of the application of this methodology to a particular case 

study – Syrian migration into Turkey resulting from the ongoing Syrian Civil War – 

international conflict event. It also includes two additional case studies of Lebanon and 

Jordan to generalize the model across the whole of the Syrian Civil Conflict. Finally, 

Chapter 6 reiterates the impact this research has on the social science and CSS 

communities, and how it can be leveraged for further analytic inquiry in the discipline of 

migration studies moving forward.  

 

 

 

 



14 

 

2. BACKGROUND 

This chapter provides a review of the relevant literature on migration that 

contributes to this research both theoretically and practically. Section 2.1 provides an 

overview of the taxonomy of migration literature reviewed in this dissertation. Section 

2.2 follows with a discussion of relevant migration theory. Section 2.3 reviews extant 

migration modeling methodologies. 

2.1 Introduction to Migration Literature 

Migration research dates back to the late 19th century (Ravenstein, 1885). Over 

the years, migration research has addressed a variety of aspects of migration and made 

use of the techniques and methodologies available to researchers at the time of writing. 

Over the last two decades, the CSS community has brought more sophisticated 

computational modeling techniques to bear on the issue of migration and has begun to 

produce the types of models addressed in this dissertation. For the purposes of 

understanding a general taxonomy of migration studies through the years, Figure 2 

presents a breakdown of the relevant areas of study to contextualize the research 

undertaken in Chapters 3 and 4. 
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Figure 2 General taxonomy of migration studies highlighting the areas of contribution of this dissertation in 

green. 

 

Taking into account the above taxonomy, the term migrant is interpreted to refer 

to anyone who moves from his or her location of origin to a new location. He or she can 

do so voluntarily, typically for reasons concerning livelihood or economic gain, or may 

be forced to move due to security, conflict, or environmental reasons (De Kock, 2019). If 

the migrant is forced to move, he or she may fall into the category of refugee, IDP, 

asylum seeker, or stateless person. The UNHCR defines a refugee as “someone who is 

unable or unwilling to return to their country of origin owing to a well-founded fear of 

being persecuted for reasons of race, religion, nationality, membership of a particular 

social group, or political opinion” (UNHCR, 2020a). This definition is meant to contrast 

that of an IDP, who has not yet crossed an international border as a result of 
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displacement. The factors that influence voluntary migrant decision-making and forced 

migrant decision-making must be kept separate regardless of modeling methodology 

(Adhikari, 2013; Richmond, 1993; Langley et al., 2016). In keeping, the primary type of 

migration is first distinguished as voluntary or forced. The topic of this dissertation is 

forced migration referred to in some literature as conflict-induced migration (Shackelford 

et al., 2020; De Kock, 2019; Echevarria & Gardeazabal, 2019).  

The second component of the migration taxonomy is the modeling methodology, 

which is divided broadly into SIMs, ABMs, and other modeling techniques. This 

literature review will focus on SIMs, the modeling methodology that dominates the 

migration studies literature, and ABMs, the modeling methodology chosen for this 

research. That said, this is not intended to discount the numerous other modeling 

techniques that have been applied to migration studies over the years; namely, 

probabilistic or statistical modeling (Cohen et al., 2008; Bayar & Aral, 2019; Azose & 

Raftery, 2019; Bijak, 2006; Flowerdew & Lovett, 1988; Simini et al., 2012), cellular 

automata (Portugali, 1995; Dabbaghian, et al. 2010; Benito-Ostolaza et al., 2015), or 

microsimulation (Ballas, Clarke, & Wiemers, 2005; O’Donoghue, Cathal, & Lennon, 

2010; Dekkers, 2015).  

In Section 2.3 SIMs are reviewed and in Section 2.4, I turn the attention to ABMs. 

Within the taxonomy of ABMs, two distinct elements are addressed: scale and social 

networks. In the domain of forced migration, there are several ABMs but only one that 

provides the scalability required to model present day refugee crises (millions of agents), 

as outlined in Chapter 1. In terms of ABMs of migration, the few that address the social 
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networking component are representing voluntary migration dynamics, and the two that 

address forced migration do so in a highly abstract, theoretical context without any 

empirical application or scalability. As the literature review dives more deeply into the 

taxonomy, it will arrive at the gap in the scientific community of migration studies that 

necessitates the research presented herein.    

2.2 Migration Theory 

Numerous behavioral and cognitive theories have influenced migration studies 

over the years, most notably the push/pull factor theory, the notion of herd behavior and 

network-assisted migration, the theory of destinations, and the theory of intervening 

opportunities. These theories are the product of sociological research into the factors that 

both influence and explain migration (Langley et al., 2016). These theories are influential 

in present-day modeling efforts as they reflect decades of sociological field and statistical 

research around why migrants migrate, how they decide where to go, the routes they 

ultimately devise, and the degree to which they interact with fellow migrants.  

Push and Pull Factors 

One of the most recognized theories pertaining to migration is the theory of push 

and pull factors that simultaneously repel and attract a migrant to a given location 

(Dorigo & Tobler, 1983; Langley et al., 2016). Lee (1966) once characterized spatial 

mobility as being influenced by factors associated with the origin, the destination, 

intervening obstacles, and personal factors, and this taxonomy became a cornerstone to 

many migration studies. The idea of push and pull factors makes a certain intuitive sense 

in the context of migration. Factors such as conflict, violence, threat of violence (Ibanez 
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& Velez, 2008; Shackleford et al., 2020; Bohnet, Cottier, & Hug, 2013; Naude, 2010), or 

loss of land (Adhikari, 2013) cause a person to consider moving, where factors such as 

greater economic prosperity (Durand & Massey, 2004; Massey et al., 1993) and a similar 

ethnolinguistic community in a destination (Barthel & Neumayer, 2015; Lin, Carley, & 

Cheng, 2016; Poot et al., 2016; Karemera, Oguledo, & Davis, 2000) might attract a 

person to a new area. The push and pull factor theory, however, is not without its 

criticisms with voices such as that of Castles (2003) observing that it fails to explain the 

null hypothesis, or lack of global migration given that the vast majority of people choose 

to remain in their countries of origin. 

Herd Behavior and Network-Assisted Migration 

The discussion of pull factors quickly leads to a discussion of herd behavior, or 

the tendency of migrants to go where others have gone before them (Epstein, 2008). Herd 

behavior is the early introduction in migration research to the inclusion of the social or 

network-based component within migration modeling (Epstein & Gang, 2006; Docquier, 

Peri, & Ruyssen, 2014; Arango 2000; Tranos, Gheasi, & Nijkamp, 2015; Havinga & 

Bocker, 1999; Robinson & Segrott, 2002). If people tend to go where others have gone, 

social networks and social media, then, are a migrant’s glimpse into not only where other 

migrants have gone but where other migrants currently reside, and the social, political, 

and economic climate of the target location. In this sense, the idea that migrant decision-

making should in some way incorporate social influence or social networks is not new 

(Klabunde & Willekens, 2016).  
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Dekker et al. (2018), Borkert, Fisher, and Yafi (2018), and Maitland and Xu 

(2015) make the case for the importance of social networks in papers detailing how 

Syrian refugees use smartphones to access social media and their social networks. Of the 

54 refugees interviewed in Dekker’s (2018) paper, smartphones were prevalent, and 

WhatsApp and Facebook groups were among the most prominent sources used to assist 

in the migration journey. Of the 150 Syrian refugees interviewed, WhatsApp groups were 

also among the most frequent means for identifying emergent and unofficial refugee 

populations in Turkey of similar ethnolinguistic background as the migrant – in the case 

of Syria, Kurdish or Arab (Richey, 2014a; Richey, 2014b). Dekker et al. (2018) note that 

two phenomena that result from a migrant using social networks to navigate a forced 

migration event are “the expansion of migration networks beyond existing ties and a 

diversification of available information on migration routes and destinations” (p. 2).  

This recent finding demands, at minimum, the consideration of Social Network 

Theory (SNT) in forced migration modeling efforts. SNT addresses systems relationally, 

representing actors, agents, or in this case refugees, as nodes in a network, and the 

interactions and interrelations among them as edges or links (Borgatti & Ofem, 2010). 

While the migration literature emphasizes strong ties over Granovetter’s (1977) seminal 

weak ties, it is precisely these weak ties recent research is showing plays a role in forced 

migration decision-making. The creation of new ties that Dekker et al. (2018) noted may 

very well be weak ties but may also be highly impactful to refugee decision-making in 

reactive, forced, and conflict-induced migrations scenarios. 



20 

 

Theory of Intervening Opportunities 

The theory of intervening opportunities is prominent in the migration literature 

and even made its way into Lee’s (1966) seminal characterization of migrant decision-

making. It states that a migrant’s decision where to migrate is proportional to the 

opportunities that exist in that candidate location and inversely proportional to the 

hazards of the journey or other candidate destinations that may present themselves along 

the way (Stouffer, 1940; Stouffer, 1960). In short, this theory suggests that both the 

security and opportunity afforded a refugee at the destination location is more important 

in the refugee’s decision-making than the hazards of the journey itself.     

Theory of Competing Destinations 

The theory of competing destinations was put forth largely to nuance the 

prevalence of the gravity model in migration studies (explained more deeply in Section 

2.3). This theory holds that the likelihood of a migrant moving to any one location cannot 

be calculated without assessing the likelihood of moving to all other possible locations 

(Fotheringham, 1983). Present-day models that include the theory of competing 

destinations should, then, incorporate a parameter or some other function that takes into 

account all possible destinations or, at minimum, an opportunity cost for choosing one 

destination over another.  

2.3 Migration Modeling Methodologies 

For simplicity and expediency, this review of migration models will address two 

primary categories of computational models: SIMs and ABMs. SIMs and seminal 

applications of the gravity model along with more nuanced competing destinations 
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models, comprise the bulk of the migration literature, particularly voluntary migration. 

There are only a handful of ABMs in the literature and fewer that address forced 

migration, but they are reviewed here with their relation to the topic of this dissertation.  

Spatial Interaction 

Traditional methods for modeling and, to a lesser extent, forecasting mass 

migration have made substantial use of the gravity model and SIMs (Goodchild & Smith, 

1980; LeSage & Fischer, 2010; Rae, 2009; Rogers et al., 2002; Sarra & Signore, 2010; 

Stillwell, 1978; Vernon-Bido et al., 2017). These models make use of international in- 

and out-migration statistics over the course of decades to quantify bilateral flows of 

migrants between locations. Perhaps one of the most well-grounded network-based SIMs 

is Simpop, which represents urban areas as multi-agent systems with nodes (cities) and 

edges (interactions between urban centers, e.g., the movement of people) (Pumain et al., 

1995; Bura et al., 1996; Bretagnolle & Pumain, 2010). Other more preliminary forms of 

spatial interaction are purely statistical, such as the fitting of regression models to 

bilateral migration flows (Flowerdew & Lovett 1988) or implementations of the power 

law, or Zipf’s law as in Simini et al. (2012).    

Initially conceived to explain physical movement, the gravity model was 

subsequently adapted to explain phenomena occurring in international trade (Matyas, 

1997; Bergstrand, 1985), linguistic diffusion (Trudgill, 1974, Nerbonne, 2010), and, 

eventually, migration (Karemera et al., 2000; Lewer & Van Den Berg, 2008; Lin, Carley, 

& Cheng, 2016). The gravity model stipulates that migration flows are related to the 

population sizes of both origin and destination locations, and, secondarily, the geographic 
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distances between them (Sarra & Signore, 2010). Simply put, the original gravity model 

is loosely specified in Equation (1) in which Mij is the interaction between location i and 

location j, Pi and Pj is the population of location i and location j, and dij is the distance 

between the two locations. 

Equation 1 Gravity Model 

𝑀𝑖𝑗 =
𝑃𝑖𝑃𝑗

(𝑑𝑖𝑗)2
 

The gravity model’s application to the field of migration studies and its evolution 

to more robust SIMs quickly led to a family of SIMs. These models were then applied to 

modeling voluntary migration as a spatial and econometric problem. Examples of these 

applications include those found in LeSage and Fischer (2008), and Poot et al. (2016).  

The group of SIM models includes: 1) the unconstrained model, 2) the 

production-constrained model, 3) the attraction-constrained model, 4) the production-

attraction-constrained model, and variations on these themes (Wilson, 1970). Briefly, the 

unconstrained model assumes transitivity in bilateral interaction and is specified within 

the original conceptualization of the econometric gravity model. The production-

constrained model assumes a known quantity at origin and an unknown distribution 

pattern. Such a model could be used to estimate retail sales in shopping centers or may 

very well apply to the problem of forced migration where there is a known quantity of 

refugee migrants at a point of origin such as a border crossing with unknown destinations 

in the target country. The attraction-constrained model assumes that destinations are 

known, such as workplaces, and origins are yet-to-be-determined, such as dwellings. The 

production-attraction-constrained model is largely employed in transportation studies and 
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focuses on estimating the interaction Mij given input on origin and destination locations 

(Wilson, 1970). Largely used to estimate interzonal migration (Stillwell, 1978; 

Fotheringham & Kelly, 1988), and at times international migration (Yano et al., 2000, 

Yano et al., 2003), but always voluntary migration, production-constrained models have 

dominated the migration literature. Sarra and Signore (2010), for example, implement an 

origin-constrained model in Poland capable of measuring the magnitude of pull factors at 

different time steps.  

As indicated in Section 2.2, competing destinations models were developed in 

response to and in critique of the gravity model. With this model, Fotheringham (1989 & 

1983) asserts that “gravity models are misspecified since they do not include a variable 

which explicitly measures the relationship between interaction and competition between 

destinations” (p. 21)  By adding a variable representative of competition between 

destinations (much as Trudgill (1974) added a variable to the gravity model 

representative of linguistic similarity), a new set of spatial interaction models were 

produced. These models were extended further still to incorporate various methods, such 

as eigenvector spatial filtering, to account for the spatial and network autocorrelation 

potential Fotheringham initially uncovered (Chun & Griffith, 2011). Finally, cell-space or 

cellular automata models were attempted as a means to contextualize migration within 

city planning, but these attempts were much less focused on the process of migration 

itself as the subject of study (Portugali et al., 1995). While the idea of herd behavior 

(reviewed in Section 2.2) introduced the idea of social networks conceptually to 

migration studies, gravity models levied the structural theory that migration flows were 
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not only spatial in nature, but network based. This led to a vein of research that applied 

network scientific methodologies to the understanding of migration.  

As both SIMs and Geographic Information Systems (GIS) matured in the late 80s 

and 90s, the ability to visualize migration (and spatial movement in general) using flow 

mapping techniques became more mainstream (Tobler, 1987 & Rae, 2009). During this 

time, “the convergence of data manipulation, visualization, and spatial analysis” gave rise 

to a new wave of spatially explicit simulations (Benenson & Torrens, 2004). These 

simulations included examples like modeling migration as the path of least resistance 

across a spatially explicit landscape filled with barriers to movement (Cushman et al., 

2006, Cushman et al., 2010; Aral et al., 2009). This slightly more robust take on an 

origin-constrained model marked the beginning of more advanced simulation efforts. 

Despite these efforts, SIMs of migration are insufficient for two primary reasons.  

First, traditional methods focus on voluntary versus forced migration. While 

voluntary migration is important, the methods and techniques used to model voluntary 

versus forced decision processes are not the same. Traditional voluntary migration 

models tend to be econometric in nature weighing economic factors more highly than 

other factors in the model if other factors are considered at all. Second, SIMs lack the 

granularity and control for modeling migrant decision-making at the individual level. The 

decision to migrate is a personal one undertaken either as an individual or as a family 

unit. As detailed in Section 2.2, increasingly migrants are using social media to monitor 

their social networks to identify candidate destinations identified by family members, 

acquaintances, or other refugees. SIMs do not account for the increasing importance of 
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social media and social networks in migration modeling, nor do they provide a 

computational environment where individual migrants can make non-deterministic 

decisions about the migration process. Most significantly, however, SIMs and system 

dynamics approaches are part of a macro-level, top-down conceptualization of systems 

and subsystems (Batty, 2008). Over the past several decades in CSS, our collective 

understanding of complexity in the social sciences and how to represent that complexity 

computationally has evolved tremendously (Miller & Page, 2009; Gilbert & Troitzsch, 

2005; Simon, 1996). SIMs, at least for the analytical inquiry surrounding forced 

migration, do not satisfy the desire for bottom-up understanding of sociocultural 

phenomena and the instantiation of environments from which complex social patterns 

and systems can emerge. Gray, Hilton, and Bijak (2017) call for three deeply considered 

constructs in agent-based spatial demography: time, uncertainty, and heterogeneity. SIMs 

cannot support at least two of the modeling constructs in this call. For this ability, we turn 

to ABMs.  

Agent-Based Models 

Given that migration, whether forced or voluntary, is a very personal decision 

taken either as an individual or as a family unit, ABMs are an ideal modeling technique 

for this particular sociocultural phenomenon. By allowing individual decision-making 

within a simulation environment, ABMs provide a construct for the emergence of non-

deterministic spatial and social patterns among refugee agents. ABMs provide a natural 

approach in the computational analysis of forced migration because they allow the 

simulation of behaviors of heterogenous agents while observing resultant system 
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evolution over time (Crooks et al., 2008). The ability to encode decision-making at the 

individual level into a model of forced migration is both important and possible because 

migrant decision-making is not random (Kennedy, 2012), though, as has been shown in 

recent research, it may, due to social influence, be sub-optimal (Simon, 2019; Hinsch & 

Bijak, 2019), discussed more thoroughly in Section 2.4. Another strength of ABMs is that 

they can be instantiated and tested with a variety of topologies; for example, network, 

spatially explicit or geospatial, Euclidian space, grid-cell (cellular automata), etc. (De 

Kock, 2019). When it comes to shorter term, though sometimes larger scale, reactive or 

forced migration events however, it is the general patterns of migration ABMs will excel 

at predicting, not the precise locations of specific refugee outflow (Edwards, 2008). 

There are many small-scale, one-off models have been applied to forced 

migration contexts; for example, Hebert, Perez, and Harati (2018); Collins and 

Frydenlund (2016); Hattle (2016); Frydenlund et al. (2018); Sokolowski, Banks, and 

Hayes 2014; and Sokowlowski et al. 2014). The FLEE model is the most robust of 

recently developed ABMs to model forced migration and the only one that approximates 

any kind of generalizable modeling framework (Suleimenova et al., 2017; Suleimenova 

& Groen, 2019; Suleimenova & Groen, 2020). The FLEE model has been run and tested 

empirically across five independent geographic areas most within the African continent 

and the Python 3 codebase is designed for parallel computing architecture (Groen, 2018; 

Groen, 2019). It is not, however, without its considerable limitations. First and most 

critically, the instantiation of the simulation environment relies on pre-existing official 

refugee camps. This limits the FLEE’s applicability to forced migration events in two 
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very important ways. Quite simply, the FLEE model cannot be applied at the beginning 

of a refugee crisis or conflict event before aid organizations have had the opportunity to 

establish any official temporary accommodation architecture in the region. This renders 

the model useless for predicting forced migration flows until a refugee crisis is well 

underway. The second limitation to the FLEE model is in spatial extent in that the model 

can only be applied to regions where refugee camps are present as these camps comprise 

the nodes in the network-based simulation architecture. This precludes FLEE from being 

applied in regions such as Eastern Europe where there is no official camp infrastructure. 

Additionally, in AOIs like Turkey, official camp infrastructure exists in a very limited 

spatial extent relative to the entire country although refugees are found across the nation. 

In this case, FLEE would only be able to model a fraction of the population – not the 

most important fraction given that the UNHCR reports that 98 percent of Turkey’s 

refugee population resides in urban or rural areas outside of official camps (UNHCR, 

2020b). Both of these limitations, in temporality and spatial extent, are derived from the 

methodology used to create the simulation environment. The creation of the simulation 

environment is additionally a highly manual process that requires many man-hours of 

effort to create even at constrained spatial extents. This manual data entry affects the 

timeliness of simulations, one of the biggest drawbacks to creating ABMs in response to 

crisis situations noted by Frydenlund and De Kock (2020).   

It has been noted previously that one of the primary limitations of ABMs in 

general is the lack of verification and validation methods that exist for simulations (De 

Kock, 2019). In the case of FLEE, another flaw in the simulation design is the fact that 
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the final refugee population in the simulation used for validation purposes of the model is 

also used as model input and as data within the model’s subsequent steps. This makes the 

model somewhat of a self-fulfilling prophecy insofar as the modeler prescribes the 

number of agents at model initiation, the number of agents at model termination, and the 

simulation then predicts where those agents are likely to go within a network 

infrastructure of official refugee camps. In all these ways, the FLEE model lacks 

granularity, practicality, applicability, and realism for modeling forced migration, though 

it is, as previously mentioned, the closest thing the CSS and migration studies 

communities have to a generalizable framework for forced migration modeling.  

Clearly, gaps remain in the application of scalable, realistic ABMs to forced 

migration contexts. While the body of work is expanding rapidly and this is very 

encouraging to the migration studies community, “without more investment from social 

scientists who study forced migration from a wide variety of perspectives, lenses, and 

methodological approaches, we have yet to tap the full power of simulation to advance 

forced migration theory, practice, and policy” (Frydenlund & De Kock, 2020, p. 63). The 

application of ABMs in this dissertation is one such lens. 

2.4 Background on the Consideration of Social Networks in Modeling 

When it comes to modeling forced migration populations, the consideration of 

social networks is scarce in recent scholarship. Recent theoretical research at the nexus of 

ABMs and forced migration suggests implications for how social networks are to be 

implemented in model design. For example, a notion featured prominently in ABM 

design and development is the idea of path-dependent variation, or the idea that multiple 
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paths all resulting from plausible causation must lead to the sociocultural event, pattern, 

or behavior in the context of simulation (Cioffi-Revilla, 2005). In this notion, Cioffi-

Revilla refers to conceptual paths, but in the context of forced migration, we can interpret 

it to mean literal paths and migration routes. Simon (2019) set out to create a small-scale 

ABM of Mexican migration that included policy implications and migration routes. She 

found that while SNT predicts path-dependence, new migration pathways still emerge 

despite the robust inclusion of social networking elements. Her findings concluded that 

once a critical mass of migrants has settled on a destination and method of arrival, 

migration corridors will be robust to policy fluctuations and other exogenous factors 

(Simon, 2019; De Haas, 2010; Massey et al., 1993).  

Recent theoretical research demonstrates how refugees using social networks and 

social ties in agent-based simulations may make less-than-optimal decisions and deviate 

from rational choice (Simon, 2019; Reinhardt et al., 2019; Hinsch & Bijak, 2019). This 

may explain why rational choice or utility/reward maximization theories are likely not the 

best decision theories to apply in forced migration contexts, unless the utility function 

includes a social element. Reinhardt et al. (2019), for example, demonstrated that 

migration routes are self-organized and predicated on social contracts. The highly 

abstracted and theoretical migration model in question was implemented simultaneously 

in two separate programming languages (Julia and ML3) with drastically different 

simulated results, yet both sets of results demonstrated migrants’ reliance on social 

contracts to make transit decisions. Hinsch & Bijak, (2019), in an extension of the 

abstracted model above, found that migration routes “are an emergent property of the 
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interactions between individuals” (p. 5), and that the more communication that exists 

between migrants, the more migrants concentrated on a few primary migration routes, 

and the less optimal those migration routes were. All of this work suggests that migrants 

are prone to use self-organized migration routes even if suboptimal when using their own 

social networks to determine where, how, and when to move. This concept is not unique 

to migration studies but is rooted in sociological analysis of social influence on group 

dynamics. Centola and Macy (2007) found that if agents only consider the actions of 

immediate neighbors, less-than-ideal norms can emerge and spread rapidly. In this way, it 

may be instructive for forced migrant agents to be more naïve than savvy, for example, 

operating with a limited or incomplete understanding of the surrounding simulation 

environment (DeAngelis & Diaz, 2019) and leveraging information passed through the 

weak ties social media and social networking tends to promote. 

Many studies have additionally addressed social network mechanics that are used 

either for information transmission (Klabunde, 2014; Barbosa Filho et al., 2011; Rehm 

2012 & Biondo et al., 2013; Al-Khulaidy & Swartz, 2020; De Haas, 2010) or for a more 

abstract exchange of social capital (Garcia-Diaz & Moreno-Monroy, 2012; Reichlova, 

2005; Massey & Senteno, 1999). All of this research, however, provides examples of 

social networks in models of voluntary migration. None of these social concepts have 

been applied to models of forced migration or to refugee decision-making until quite 

recently. Three recent theoretical ABMs explore the implications of social networks and 

social influence in the context of forced migration route formation (Reinhardt et al., 

2019; Hinsch & Bijak, 2019; Simon, 2019).  
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These recent findings demand, at minimum, the consideration of Social Network 

Theory (SNT) in forced migration modeling efforts. SNT addresses systems relationally, 

representing actors, agents, or in this case refugees, as nodes in a network, and the 

interactions and interrelations among them as edges or links (Borgatti & Ofem 2010). 

While the migration literature emphasizes strong ties over Granovetter’s (1977) seminal 

work of the strength of weak ties, it is precisely these weak ties recent research is 

showing plays a role in forced migration decision-making. The creation of new ties that 

Dekker et al. (2018) noted may very well be weak ties but may also be highly impactful 

to refugee decision-making in reactive, forced, and conflict-induced migrations scenarios.  

2.5 Summary of Findings 

In summary, the literature has shown that SIMs are not the best choice for 

modeling forced migration because it is a top-down modeling approach that does not 

allow for the capture of individual migrant decision-making and the emergence of 

migration patterns in aggregate. ABMs present a viable bottom-up modeling approach 

but the majority of ABMs developed within the migration studies literature have been 

applied to voluntary migration contexts. Of those that have been applied to forced 

migration contexts, only one is empirically validated and designed to scale to millions of 

migrant agents – the FLEE model. This singular ABM of forced migration does not 

include a social network component, which the literature has shown should be considered 

in forced migration modeling paradigms. Social networks have been considered in both 

models of voluntary migration and models of forced migration, the latter only in a 

theoretical and highly abstracted context. This then presents a gap in recent scholarship 
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that can be filled with an empirical and scalable ABM of forced migration which 

considers social networks. This dissertation constitutes this first empirical attempt and 

makes use of the theories around agent sensing and agent communication the theoretical 

considerations of SNT suggest, covered in more depth in Chapter 3, Section 3.2. 
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3. METHODOLOGY AND ODD 

This chapter provides details on the methodology used to approach the research 

objectives introduced in Chapter 1. Section 3.1 addresses the general methodology while 

Section 3.2 presents a comprehensive Overview, Design concepts, and Details document 

(Grimm et al., 2020) report for model design and implementation of the model and model 

logic.  

3.1 Methodology 

The methodology for approaching the three research questions and objective is 

outlined in Chapter 1 and available in Figure 1. It is based loosely on the methodology 

for social simulation presented in Gilbert and Troitzsch (2005, p. 18-25). Here the 

methodology departs from Gilbert and Troitzsch (2005) by conflating the conceptual 

design and development phase. It consists of four main phases: Define, Review, Develop, 

and Apply. A further departure is to include model verification as subordinate to the 

Develop phase and model validation as subordinate to the Apply phase.  

In the Define phase, the research objective is identified. In Chapter 1, the research 

objective was stated as developing an empirical computational model that advances our 

understanding of forced migration and considers social networks. open-sourceIn Chapter 

2, it was outlined that the computational model should be an ABM. Further, that this 

ABM would fill a gap in extant scholarly research by providing the first scalable 

computational model of forced migration to consider social networks. In the Review 

phase, the relevant literature is surveyed and techniques, design concepts, and 
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computational strategies are noted for possible inclusion within the model. This literature 

review is included in Chapter 2 and contains model design elements from forced 

migration theory such as the design of agent decision-making and awareness of the 

simulation environment. In the Develop phase, an ABM is first designed conceptually 

and then developed computationally. Verification is achieved by employing code 

reviews. RQ1 resides within the Develop phase in that a computational methodology is 

designed and developed to contribute to the body of social science knowledge. The final 

phase is Apply where the model is calibrated, applied to, and validated against a relevant 

case study – in this case, the Syria/Turkey, Syria/Lebanon, and Syria/Jordan forced 

migration events. Computational tools and techniques that can be repurposed for further 

modeling efforts are extracted from the Apply phase in satisfaction of RQ2. RQ3 entails 

the application of the model to the case study for validation purposes.   

3.2 ODD of Agent Behavior and Model Logic 

For the purposes of describing model functionality, model logic, and agent 

decision-making, an ODD protocol is provided below in addition to the Model Logic 

diagram found in Figure 3. The functionality of the model is important to understand 

such that the methods and results can be replicated across the research domain and in 

other research contexts. For this replication to be successful, a paper needs to describe not 

only the emergent behavioral patterns and results of the ABM, but also describe the 

design constructs from which that behavior arises. (Grimm et al., 2020). What follows is 

an in-depth description of the functionality and implementation of the ABM of forced 

migration described in this dissertation.  
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Overview 

Purpose 

The overall purpose of the model is to model and predict forced migration 

patterns considering the social context of the migration population within a given spatial 

extent during and directly following a forced migration event. The case study in question 

for this particular instantiation of the model is Syrian refugees migrating into and within 

Turkey. The model provides the research community with a tool that facilitates better 

understanding of forced migration and addresses all three RQs of this dissertation. The 

intended predictive window for the model is 30-90 days. The model described in detail 

below is referred to as the ‘full’ model, or Condition 1, throughout the remainder of the 

dissertation. 

Entities, State Variables, and Scale 

The model includes the following entities:  

• Refugee agents 

• Location nodes 

Refugee agent is a single agent class in the model that represents refugees, 

asylum-seekers, and stateless persons. They are naïve agents and, as such, do not have 

many attributes except their locations and their social networks, which are specified 

randomly using friendship and kinship ties as described in Table 1. 
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Table 1 State variables of each simulation agent. 

Variable Name 
Variable Type & 

Range 
Variable Meaning 

num_friends 
Dynamic integer range, 

0…n 

Suggested range: 0-5 

The number of friendship ties a migrant agent 

has in its social network 

num_kin 
Dynamic integer range, 

0…n 

Suggested range: 0-5 

The number of kinship ties a migrant has in its 

social network 

Location Latitude (not an 

editable parameter) 
Dynamic float 

Determined by simulation 

The latitude of the location node where the 

migrant agent is located at any given time step 

t 

Location Longitude (not 

an editable parameter) 
Dynamic float 

Determined by simulation 

The longitude of the location node where the 

migrant agent is located at any given time step 

t 

   

The number of friends and kin in the simulation are the simulation parameters that 

correspond to the implementation of social networks. Social ties are created randomly in 

the simulation design and the treatment of friendship ties and kinship ties is the same, 

though they can be weighted differently at such time as parameter weights are set  

Location nodes. Location nodes are points within a larger undirected geographical 

network comprising the simulation environment. Location nodes are created with the 

desired granularity of the researcher using the geographical centroids of typically the 

first, second, or third level administrative boundaries for the target AOI. For a country 

such as Turkey, it is recommended that either the first or second administrative levels be 

used, resulting in a location network of 81 nodes or 929 nodes, respectively. Location 

nodes are also connected using bidirectional links to every other location node within the 

network with which the target location node shares a geographic border. Some location 

nodes are additionally specified as border crossings, which represent nodes in the 
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geographical network where migrant agents can enter the simulation by crossing an 

international border. In the broader simulation architecture, agents can be seeded 

anywhere in the network, not just at border crossings. Additionally, nodes are 

characterized by hosting a violent event (conflict), an official refugee camp (asylum), 

both, or neither. 

The rationale for using the geographic centroids of administrative areas to create 

the geographical network that comprises the simulation environment is to provide the 

most organically derived movement options for forced migrant agents to transit terrain. 

Previous simulations have derived the simulation environment exclusively from pre-

existing refugee camp locations (Suleimenova et al., 2017), from urban centers (Pumain 

et al., 1995; Bura et al., 1996; Bretagnolle & Pumain, 2010), and from a grid-cell matrix 

overlay on the geographic terrain (Cushman & Chase, 2015). The use of pre-existing 

refugee camp locations as node locations within the network is necessary but not 

sufficient for realistic modeling. For instance, the UNHCR reported that 98 percent of 

Turkey’s refugee population resides in urban or rural areas outside of Temporary 

Accommodation Centers, or camps (UNHCR, 2020). If the majority of a country’s 

refugee population resides outside of official camps, and camps open and close over time, 

then the exclusive reliance on pre-existing official refugee camps as the candidate 

locations for migration in a simulation is not realistic as seen in the FLEE model 

(Suleimenova et al., 2017). The simulation’s observer state variables appear in Table 2. 
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Table 2 Observer state variables of the simulation environment. 

Variable Name 
Variable Type & 

Range 
Variable Meaning 

camp_move_probability 
Static float, 0-1 

Suggested range: 0.1-0.5 

Percent probability that a refugee agent will 

decide to move from its current location node 

if a refugee camp exists at that location node 

conflict_move_probability 
Static float, 0-1 

Suggested range: 0.5-1 

Percent probability that a refugee agent will 

decide to move from its current location node 

if a conflict event occurs at that location node 

other_move_probability 
Static float, 0-1 

Suggested range: 0.7-1 
Percent probability that a refugee agent will 

decide to move from its current location node  

seed_refs_per_node 

Static integer, 0…n, or 

dynamic integer range 

Suggested range: 

dependent on real-world 

conditions 

Number of refugees that enter the simulation 

through a border crossing at each time step 

seed_nodes 
Static list of integers 

Suggested input: dependent 

on real-world conditions 

A list of node locations designated as border 

crossings where migrant agents enter the 

simulation at each time step 

anchor_location 
Static float 

Suggested input: dependent 

on real-world conditions 

Latitude and Longitude of a general 

geophysical anchor point beyond the spatial 

extent of the simulation towards which the 

majority of migrant agents are moving  

num_steps 
Static Integer 

Suggested range: 30-90 
Number of desired simulated days. Each step 

is equivalent to one calendar day 

 

In addition to the observer state variables of the simulation, two variables affect 

the computational implementation of the simulation. These two variables described in 

Table 3 are editable and allow the simulation to be modified to fit the hardware 

constraints of the virtual or physical computational environment in which the simulation 

is to be run.  
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Table 3 Variables affecting implementation of the simulation on virtual or physical hardware. 

Variable Name 
Variable Type & 

Range 
Variable Meaning 

num_batches 
Static integer 

Suggested range: 1-16 

Number of batches of migrant agents to create 

for parallelization of the model. The number of 

batches of agents does not need to correspond 

to the number of CPU cores available for 

multiprocessing. 

num_processes 
Static integer 

Suggested range: 1-16 

Number of parallel processes provisioned for 

the movement of migrant agents. Notionally, 

the number of processes should correspond to 

the number of CPU cores on the provisioned 

virtual or physical simulation machine 

 

The first three observer state variables and the anchor_location are probabilistic 

mechanisms in the simulation for determining if and when agents will move decision-

making. Thresholds for these parameters are explored through sensitivity analysis, per 

Gilbert and Troitzsch’s (2005, p.24) design for social simulation. The remaining variables 

allow the researcher to adjust aspects of the simulation environment, to include the 

locations at which new refugee agents enter the simulation, the number of new refugee 

agents that enter the simulation at each time step, and the number of batches into which 

refugee agents are split for multiprocessing. The first two of these final three variables 

(seed_nodes and seed_refs) should be determined during calibration of the simulation to 

real-world conditions during the target time period through contextual research of the 

forced migration crisis in question. Location nodes are characterized by two 

endogenously calculated parameters that forced migrant agents calculate for each 

candidate move location once the decision has been made to migrate. The first 

dynamically calculated parameter is the node’s location score and the second is its 
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desirability score. Each score is calculated differently for each candidate location node by 

each migrant agent at each time step, so no single node will look the same from the 

vantage point of different agents. This is discussed further in the ODD section on 

stochasticity and an example of this calculation is provided in the following section. The 

presence of conflict events is presented as a push or deterring factor within the 

calculation of the desirability score (Langley et al., 2016; Ibanez & Velez, 2008; Naude, 

2010a & b). The presence of refugee camps is presented as a pull factor within the 

calculation of the desirability score. Factors are aggregated and the location node with the 

highest desirability score in the migrant’s range is the node to which the migrant agent 

moves at the given time step. The degree to which factors contribute to a location node’s 

desirability score is presented as editable parameter weights in Table 4 and detailed 

explanations of these calculations can be found in the following section. 

 

Table 4 Editable parameter weights to weight the influence each variable has on a location’s attractiveness to 

refugees. 

Variable Name 
Variable Type & 

Range 
Variable Meaning 

population_weight 
Static integer range, 0-1 

Suggested range: 0.5-1 

Normalized between 0 and 1 number of 

migrants at a given location node at each time 

step 

location_weight 
Static integer range, 0-1 

Suggested range: 0.5-1 

Normalized between 0 and 1 indexical score of 

how close the node location is to the Location 

variable relative to every other location node in 

the network 

kin_weight 
Static integer range, 0-1 

Suggested range: 0-0.3 
Normalized count * variable weight 

friend_weight 
Static integer range, 0-1 

Suggested range: 0-0.3 
Normalized count * variable weight 

conflict_weight 
Static integer range, 0-1 

Suggested range: 0.3-0.7 
Boolean presence of conflict * variable weight 
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Variable Name 
Variable Type & 

Range 
Variable Meaning 

camp_weight 
Static integer range, 0-1 

Suggested range: 0-0.5 
Boolean presence of camp * variable weight 

 

The spatial extent of this model is administrative level 0 of the country of Turkey 

encompassing approximately 300,000 square miles of geographic terrain. Though Syrian 

migrants are moving from Syria into all neighboring countries to include Jordan, 

Lebanon, Iraq, and Iran, over half of Syria’s refugees are migrating to Turkey with the 

final destination of Istanbul or on into Eastern or Central Europe (Icduygu, 2015). This 

model is focused on the Syria-Turkey migration use case and, as such, is focused on 

refugees and asylum seekers as opposed to IDPs. The model is currently configured using 

the spatial resolution of administrative level 2 which results in 929 individual district-

level location nodes in the network. The model could just as easily be configured to 

administrative level 1 with 81 provincial-level location nodes. In keeping with the theory 

of intervening opportunities (Stouffer, 1940; Stouffer, 1960), distance across or between 

location nodes (and therefore the time required to transit them), is not explicitly 

accounted for within the simulation. Additionally, the simulation environment is so 

granular that the largest transit distance between two nodes would not result in travel in 

excess of one day. The temporal resolution of this model is indefinite. One model time 

step t represents one day and the nature of model predictions are intended for 30-90 day 

future predictions of migration flows. 
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Process, Overview, and Scheduling 

The model is variable-based (Quigley & Marina, 1979) versus event-based 

(Cioffi-Revilla, 2005) in that agents are activated randomly at each time step and make 

decisions based on deterministic and stochastic variables, not catalyst events that occur at 

certain time steps. Forced migrant agents also do not directly interact in the simulation; 

rather, interact indirectly via the simulation environment and their social networks. This 

mediated interaction is ideal for computational reasons insofar as it eliminates the need 

for direct computational agent-to-agent interaction at every time step. Agents store the 

information they require from other agents in their social networks as indices and receive 

updates to these indices at every time step. Direct interactions would make read/write 

operations to the simulation environment and agent decision-making highly 

computationally complex. 

The model parallelization and logic processes that repeat each time step are: 

• Calculate: Calculate or re-calculate deterministic portion of node location 

score 

• Split: Calculate indices to batch migrant agents and into x number of 

groups for decision-making parallelization 

• Move: Execute agent decision-making and movement. For each migrant 

agent in group: 

▪ Activate: Decide whether or not to move from current location in 

accordance with percent move chance probabilities.  
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▪ Gather: Fetch neighboring location list as a list of move location 

candidates 

▪ Assess: Compute desirability scores for each candidate location 

based on environmental (location) and social (agent) state variables 

▪ Move: Create new agent at location with highest desirability score. 

▪ Return: From each process, return a list of new refugee objects 

and a dictionary to store the refugees at each node after moving 

• Update: Aggregate refugees from each process and overwrite refugee 

objects from previous timestep. Aggregate dictionaries of refugee 

locations. Calculate new weights from aggregated dictionaries and 

updated location entities in the graph. 

• Create: Create relationships between co-located refugees. 

These processes are represented visually in Figure 3. 
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Figure 3 Model logic overview and flow diagram depicting what occurs at each model step, inclusive of the 

actions that occur in parallel across multiple batches of agents. 

 

In the first parent process, Calculate, node location scores are determined for 

every location node in the simulation environment. This calculation is made as follows:  

Equation 2 Node location calculation 

E = (𝑝 × 𝑤1) + (𝑙 × 𝑤2) + (𝑐 × 𝑤3) + (𝑑 × 𝑤4) 

where p is the normalized existing refugee population in the candidate node 

location, l is the normalized proximity of the candidate node location to the general 

destination location, c is the presence of official refugee camps in the candidate node 

location, d is the presence of security-related or conflict events in the candidate node 
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location, and w1 through w4 are the respective variable weights as specified by the 

modeler at model initiation.  

In the second parent process, Split, agents are batched for parallel processing 

using the variables num_batches and num_processes. While the number of parallel 

processes should generally correspond to the number of CPU cores on the physical or 

virtual machine available for computation, the number of agent batches can equal or 

exceed this value. For example, on a physical machine with 8 CPU cores, an ideal 

number of parallel processes could be 6, reserving two CPU cores for other ongoing 

computer operations. The number of agent batches, however, could be anywhere from 6 

to 10. This is because batches of agents, while containing the same number of agents, will 

not necessarily require the same amount of parallel processing time. The size of an 

agent’s social network is one of the key drivers of latency in model calculations and, as 

such, agents with larger social networks (10-15 social ties) will take more time to execute 

decision-making logic than agents with smaller social networks (1-5 social ties). For this 

reason, two batches of 500,000 agents may yield different overall processing times. 

Having more agent batches than there are available CPU cores ensures that a given core, 

once execution is complete across its assigned batch of agents, can begin processing 

decision-making logic for a second batch of agents while other more complex batches of 

agents continue to be processed. The program will execute this selection automatically if 

the number of agent batches is higher than the number of parallel processes. The parallel 

processing model mechanics are only available in a Linux environment due to the 

challenges associated with multiprocessing in Python.  
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So far, all parent processes have been executed serially. In the third parent 

process, Move, parallel processing begins. Parallelization is achieved using 

multiprocessing techniques in Python 3, meaning that each parallel process maintains a 

separate or distributed memory environment. The simulation environment is copied over 

to each child process at the beginning of Move so a copy of the same simulation 

environment is available to each child process. Batches of agents, then, move to their 

assigned core to execute their model logic, bringing with them their geolocations and 

information pertaining to their social ties stored as indices.   

Agent decision-making logic is executed in parallel across the five child 

processes: Activate, Gather, Assess, Move, and Return. During Activate, agents follow a 

probabilistic activation, drawing from a normal distribution, in deciding whether or not to 

move from their origin location given the user-specified parameters 

conflict_move_probability, camp_move_probability, and other_move_probability. If an 

agent decides to move, the agent progresses to Gather, where it collects the node location 

scores for all candidate move locations one degree of separation away from the agent’s 

origin location node. In the child process Assess, agents then calculate and add the 

stochastic elements of their decision-making logic to the node location scores calculated 

previously. The result of this calculation, made by each agent for each candidate location 

node at each time step in parallel, is known as the desirability score, and is calculated as 

follows:    

Equation 3 Node desirability score calculation 

N = ((𝑘 × 𝑤5) + (𝑓 ×  𝑤6)) + E 
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where k is the normalized number of kinship ties belonging to a migrant agent in 

the candidate node location, f is the normalized number of friendship ties in the candidate 

node location, and w5 and w6 are the respective variable weights as specified by the 

modeler at model initiation. E is the output of Equation 2.  

For clarity, an example calculation is provided in Table 5.  

 

Table 5 Example calculation.  

 Location 1 Location 2 
Move 

Decision 

Agent 1 

E = 0.45  

N = ((0.1*0.5) + (0.9*0.5)) + 0.45 

N = 0.95  

E = 0.25  

N = ((0*0.5) + (0.5*0.5)) + 0.25 

N = 0.5 

Location 1 

Agent 2 

E = 0.45  

N = ((0.3*0.5) + (0*0.5)) + 0.45 

N = 0.6 

E = 0.25  

N = ((0.8*0.5) + (0.7*0.5)) + 0.25 

N = 1 

Location 2 

 

Two agents at the same origin location assess the same two move location 

candidates and reach different decisions. The deterministic elements will ensure that the 

result of the first equation is the same for both agents, assumed E = 0.45 for Location 1 

and E = 0.25 for Location 2, calculated per Equation 2. Agent 1 has friends and some 

family in Location 1 and some friends in Location 2. Agent 2 has many friends and 

family in Location 2 and some family in Location 1. For simplicity, all parameter weights 

are assumed to be equal at 0.5. 

In the child process Move, the agent then moves to the determined location, and 

in the child process Return, it reports its new location back to the master simulation 
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environment while simultaneously removing itself from its previous location. Parallel 

processing ends here. The child processes are represented visually in more detail in 

Figure 4. Equation 2 is the calculation that produces E in Table 5 and Equation 3 is the 

calculation that produces N in Table 5. Figure 4 depicts what occurs within the 

parallelized child processes and how agents reach move decisions. Gray boxes represent 

editable parameters in the simulation (move, friends, kin), variables derived from input 

data (proximity, camps, conflict), or derived variables calculated within the simulation 

(refugee population). Black arrow strength represents editable probability distributions in 

the Activate process. Black arrow strength represents different editable parameter 

weights in the Assess process. 
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Figure 4 Agent decision-making logic overview and flow diagram depicting what occurs within the parallelized 

child processes and how agents reach move decisions. Both equations are noted within the image. Gray boxes 

represent.  

 

In the subsequent parent process Aggregate, the resulting dictionaries from all 

child processes are merged back into the master simulation environment and the 

environment is thus updated, each location node now reflecting new refugee counts in 

accordance with the agent movement that has been executed during the parallel 

processes. The final parent process, Create, only applies if using more detailed social 

networking features not yet tested in this research. More information about these features 

is provided in Chapter 6, Conclusion and Future Work.   

The simulation generates output in shapefile format. Assuming the 

write_step_shapefile parameter is set to True, a shapefile will be created for every 

simulation step with the current agent locations throughout the simulation expressed in 

the field REFPOP. The simulation also generates a validation shapefile which has fields 
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additional to REFPOP, namely: valPop (the validation value representing real-world 

number of refugees in that administrative area at simulation end) and simEnd_nor (the 

Mean Absolute Error (MAE) calculated for every administrative area). For the error 

reporting presented in Chapter 4, additional statistics were calculated beyond those 

available in the validation shapefile.  

Design Concepts 

Basic Principles 

The design concepts that influence the model are the ideas of voluntary vs. forced 

migration, push/pull models of migration (Lee, 1966; Dorigo & Tobler, 2010), herd 

behavior (Epstein, 2008; Tranos et al., 2012; Adhikari, 2013; Moore and Shellman, 2006; 

Moore and Shellman, 2007, Docquier et al., 2014), the theory of competing destinations 

(Fotheringham, 1981; Fotheringham, 1983; Chun & Griffith, 2011), the theory of 

intervening opportunities (Stouffer, 1940; Stouffer, 1960), utility maximization decision 

theory (Arentze, Kowald, & Axhausen, 2013; DeAngelis & Diaz, 2019), decision theory 

formulated from direct observation (Klabunde & Willekens, 2016), and SNT (Borgatti & 

Ofem, 2010). This model exclusively addresses forced migration resulting from global 

conflict events affecting the physical security and wellbeing of displaced persons. Most 

traditional migration models (e.g., spatial interaction models) are focused on voluntary 

migration and make extensive use of gravity models, where stocks and flows of migrants 

are calculated based on the geographic distance between two locations, the population 

sizes of each location, and any intervening or influential variables that might otherwise 

affect movement (Lewer & Van Den Berg, 2008). These models neither model migration 
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flows at the individual level taking into account individual decision-making processes, 

nor do they address explicitly spatial patterns of flight beyond geographic origin and 

destination locations, typically at the country level (Edwards, 2008). For this reason, 

ABMs are an ideal tool for modeling and predicting forced migration patterns as they 

provide a mechanism to observe emergent spatial patterns from individual-level action. 

The basic principles applicable to this modeling method of forced migration include: 

Push/pull factor theory: the idea that migrant mobility is influenced by factors 

that both repel a migrant from a location (push) and attract a migrant to a location (pull) 

(Lee, 1966; Ravenstein, 1885; Dorigo & Tobler, 2010). This model incorporates both 

push factors (e.g., conflict events) and pull factors (e.g., official refugee camps, existing 

refugee population).  

Herd behavior and Social Network Theory: the idea that migrants will move to 

locations where they know others of the same sociocultural background have gone or are 

currently located (Epstein, 2008, Epstein & Gang, 2006; Tranos et al., 2015; Havinga & 

Bocker, 1999; Robinson & Segrott, 2002; Adhikari, 2013; Moore & Shellman, 2006; 

Moore & Shellman, 2007; Docquier et al., 2014; Rehm, 2012). Herd behavior appears in 

this model in dynamic pull factors. The factors are the presence of existing refugee 

populations, official refugee camps established by aid organizations, and members of an 

agent’s social network in a candidate migration location. The way the social network is 

specified within the model lends itself to the inclusion of Grannovetter’s (1977) seminal 

theory of the strength of weak ties within the broader domain of SNT. Given that agents 

form social ties randomly to both those agents who are entering the simulation at the 
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same time as a target agent and to agents who are pre-existing in the simulation 

environment, this represents refugee social connections derived from both familial links 

as well as newer connections made, for example, online, through social media, or through 

networking groups (Borkert, Fisher, & Yafi, 2018; Dekker et al., 2018; Richey, 2014b).  

Theory of competing destinations: the idea that the relationship between a 

migrant’s current location and candidate future location must be contextualized within 

the possibility of migrating to all other candidate locations (Fotheringham, 1981; 

Fotheringham, 1983; Chun & Griffith, 2011). The theory of competing destinations 

appears in this model insofar as migrant agents calculate candidate location desirability 

scores for all candidate node locations in the migrant’s view before making the decision 

to migrate to the most desirable location (or, as the case may be, remain in the current 

location). 

Theory of intervening opportunities: the idea that the key driver of migrant 

decision-making is opportunities available at the end destination, not any factor related to 

the length or potential danger of the journey itself, or other opportunities that might 

present themselves along the way (Stouffer, 1940; Stouffer, 1960; Effers et al., 2008). In 

keeping with this theory, the simulation environment and agent decision-making are 

agnostic to both distance of transit and means of transportation. Additionally, through 

structured interviews, it was revealed that refugee migrants originating in Syria and 

moving to Turkey leveraged a variety of modes of transportation (to include car, on foot, 

boats, buses, and, least commonly, air travel) without favoring one over the other 

(Richey, 2014a; Richey, 2014b). 
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These are the logical theories and basic principles that affect simulation design, 

per Gilbert and Troitzsch’s (2005) example. The decision theories that affect agent 

decision-making are discussed in the Objectives section of this ODD. 

Emergence and Adaptation 

Ideal social simulations will provide multiple paths to stochastic and probabilistic 

output, not singular paths to deterministic output (Cioffi-Revilla, 2005). In this vein, 

“emergence is an essential characteristic of social simulation,” without which a 

simulation may not actually be considered social (Gilbert, 2002, p. 1). Inherently, 

emergent properties of social simulations are not reducible to individual action though it 

is the aggregate of individual behavior that produces the emergent phenomena. (Sawyer, 

2001; Gilbert & Troitzsch, 2005; Miller & Page, 2009; Simon, 1996).  

Emergence is largely derived from the stochastic or probabilistic elements of a 

simulation – in the case of this ABM, the social network and the dynamically updating 

location of agents throughout. The creation of the social network in this model is random 

on model initiation. Hinsch and Bijak (2019) found migration routes to be an emergent 

property of agent-to-agent communication. In this model, decision-making and 

movement patterns are heavily influenced by the strength of the migrant’s social network, 

the relative sizes of those networks, and the respective geographic dispersion of those 

networks across the spatial extent, resulting in varying patterns of individual and 

collective agent movement. With this design, Hinsch and Bijak’s (2019) findings will be 

considered replicated if the spatial patterns of migrant movement when using social 

networks differs greatly from the spatial patterns generated without social networks. 
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Objectives 

Klabunde and Willekens (2016) contend that the agents or classes of agents in 

every simulation should adhere to some structured theory of decision-making, and further 

evaluate six types of decision theories for use within ABMs of forced migration. Most 

notably, the decision theory “should allow for the possibility that there is a gap between 

desires or intentions and actual behavior” (Klabunde & Willekens, 2016, p. 78). Gray, 

Hilton, and Bijak (2017) provide a very in-depth narrative around three elements that 

should play an important role in agent decision-making: time, uncertainty, and 

heterogeneity of decision logic. They argue that the more premeditated the migration 

event, the more extended the time horizon should be over which agents make decisions, 

the implications of which being that forced or reactive migrant decision-making should 

occur on the shortest time scale. The work of Dekker et al. (2018) further outlines the 

uncertainty migrants face during forced migration events, the lack of trust in both official 

and unofficial information sources, and the reliance on social media and the Internet to 

make decisions about where to go and how to arrive at the intended destination. 

Candidate decision theories for forced migrant agents include: 

Utility or reward maximation: Agents conduct behavior that results in maximum 

reward as defined by the simulation objectives (Arentze, Kowald, & Axhausen, 2013). 

While utility maximization may appear logical for forced migrants, Reinhardt et al. 

(2019) have shown that forced migrants often make sub-optimal decisions due to social 

influence; in other words, decisions that would not always maximize utility or reward. 
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Theory of Planned Behavior or Theory of Reasoned Action: Agents formulate 

attitudes towards certain behaviors largely based on the assessed probability of 

occurrence. From these attitudes, subjective norms, and perceived behavioral control, 

agents form intentions, and then enact behavior with some randomness (Ajzen, 1981; 

Ajzen, 1985). The theory of planned behavior, as its name implies, lends itself to strategic 

or reasoned action that occurs on a longer time scale than is appropriate for modeling 

forced migrants. An example of how the Theory of Planned Behavior has been applied in 

the context of voluntary migration is available in Klabunde, Willekens, and Leuchter 

(2017).  

Fast and Frugal decision heuristics: Agents maintain simple rules-based 

cognition that is easily influenced or overridden by social influence (Gigerenzer & Todd, 

1999; Gigerenzer & Gaissmaier, 2011).  

Decision theory formulated from direct observation: In many cases, the most 

accurate form of decision theory is the decision theory observed in empirical data 

collected through field research or surveys, with stylized facts the generated to reproduce 

the scenarios observed in the field (Klabunde & Willikens, 2016). This approach is 

relevant to migrant decision-making given the number of studies now available that 

provide results obtained from field surveys and structured of refugees (Haug, 2008; 

McAuliffe, 2013; Robinson & Segrott, 2002; Borkert, Fisher, & Yafi, 2018; Dekker et. 

Al, 2018; Maitland & Xu, 2015; Richey, 2014b). 
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Machine Learning: Agent decision-making logic will evolve over time in 

accordance with behavioral machine learning (ML) models such as Neural Networks 

(NN) or Genetic Algorithms (GA) (DeAngelis & Diaz, 2019; Rand, 2006). 

Hinsch and Bijak (2019) demonstrate, using a theoretical ABM of the impact of 

social networking and information exchange on migration routes, that migrants 

frequently settle on migration routes that are not optimal under present conditions due to 

SNT, meaning that Rational Choice theories such as the Theory of Planned Behavior or 

Theory of Reasoned Action may not be the most appropriate decision theories for forced 

migrants. Additionally, the Theory of Planned Behavior or Belief-Desire-Intention (BDI) 

frameworks in ABMs are most appropriate when the complexities governing the agent 

decision-making process are well-known (Wolfe, Sierhuis, & Jarvis, 2008). As social 

networks have only recently been considered in ABMs of forced migration, these more 

complex decision processes for the creation of intelligent agents are likely not ideal for 

forced migrant agents. The decision theory leveraged by migrant agents in this ABM is a 

combination of utility maximization theory and decision theory formulated from direct 

observation, operationalized as the dynamic calculations of node desirability score and 

stochasticity of agent decision-making as a result.  Agents making decisions exclusively 

based on a deterministic location score in the model would constitute utility 

maximization – move to the candidate move location that provides the highest reward. In 

this model, however, utility maximization can be overruled by the stochastic elements of 

the agent’s social network causing agents to choose a less optimal candidate move 

location for social reasons. This decision theory is informed by direct observation 
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(Richey, 2014b) and further substantiated by the recent work of Hinsch and Bijak (2019), 

Dekker et al. (2018), Borkert, Fisher, & Yafi (2018), and Maitland and Xu (2015).  

The decision theory to which an agent adheres facilitates the agent working 

towards the overarching simulation objective(s). In the case of this ABM, the objective 

could be considered movement itself as a result of push factors, all of which represent the 

driving factor of forced migration as threat to physical and personal security. Given the 

duration of the Syrian Civil War, however, migrants have had years to make more 

strategic calculations regarding movement patterns, and, in some cases, to move initially 

and move again later. For example, many migrants initially moved into Turkey to escape 

immediate threat, and then made longer-term and more calculated plans to migrate into 

Eastern and Western Europe (Baban et al., 2016; Yaylaci & Karakus, 2015). Given the 

popularity and perception of Europe as an ending destination, assuming migrants are 

unwilling to return home to Syria, a variable was explicitly included in the simulation 

representative of this overarching agent objective. The Location variable, currently set at 

model initiation to the geographic centroid of London, UK, is an exogenous factor that 

allows for the endogenous ranking of each candidate move location based on its 

proximity to a migrant’s ending objective of reaching Europe. 

Sensing 

The implementation of agent sensing is simple. Agents are aware of all 

environmental variables associated with all neighboring nodes one degree of separation 

from the agent’s current location. This awareness is provided in terms of the node 

location score and is in keeping with the theory of bounded rationality in agent awareness 
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(Edmonds, 1999). Agents also know the geographic locations of all their kin and friend 

agents within the simulation environment. This awareness, supported through direct 

observation and conversations with Syrian refugees in Turkey, is to replicate the effects 

of social media and virtual communication platforms such as Facebook, WhatsApp, and 

Instagram, all of which play host to informal migrant and refugee community pages that 

refugees use to assess candidate migration locations at a distance (Dekker et al., 2018; 

Borkert, Fisher, & Yafi, 2018; Brunwasser, 2015; Maitland & Xu, 2015; Richey, 2014b). 

Further, Simon (2019) has shown in an implementation of an ABM that a refugee 

operates in an incomplete information environment, represented computationally through 

bounded rationality, and resorts to a path dependence heavily influenced by social ties. 

This emergent path dependence is aligned with agent decision logic which satisfies rather 

than optimizes (Edmonds, 1999).   

Interaction 

Agent interaction in this ABM is mediated, meaning that agents interact with one 

another indirectly via the simulation environment. For example, an agent present in 

another agent’s social network moves and therefore updates the simulation environment 

with its most current location. The other agent then uses this location to make its decision 

in moving.  

Stochasticity 

Stochasticity in this model is present in the dynamic social network variables and 

endogenous calculations at each time step. Each agent initializes with a random number 

of friends and a random number of kin. Each agent then moves probabilistically 
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throughout the simulation based on its current environment and the locations of other 

agents, taking into account the locations of its social ties while moving. This dynamic and 

evolving social network among agents, the probability with which agents make the 

decision to move, and the random number of agents seeded at border crossings at each 

time step comprise the stochastic elements of the simulation, ensuring that the simulation 

predictions are non-deterministic and yield different results with every model run, even 

when calibrated to a specific real-world time period. 

Details 

Initialization 

The model is initialized with the base variable values represented in Table 6.  
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Table 6 Model initialization variables and respective values. 

Variable Name Initialization Value Description 

data_dir /data Directory where data are stored 

output_dir /final_model_run Name of run 

draw_geo_graph False Print base map network 

print_node_weights False Print node weights at each step 

write_step_shapefiles True Write out shapefiles at every time step 

num_steps 60 Number of simulation steps 

num_batches 16 

Number of batches to chunk refugees 

(typically same as number of CPU cores 

on machine) 

num_processes 16 

Number of parallel processes (typically 

same as number of CPU cores on 

machine) 

num_friends (1,5) 
Integer or range; number of friendship ties 

to create for each refugee 

num_kin (1,5) 
Integer or range; number of kinship ties to 

create for each refugee 

camp_move_probability 0.7 
Probability of movement if located in a 

node with an official refugee camp 

conflict_move_probability 1 
Probability of movement if located in a 

node with conflict 

other_move_probability 1 
Probability of movement if located in a 

node without camp or conflict 

anchor_location 
(51.5974, 

-0.1278) 

Lat/Long of general direction of 

movement beyond spatial extent of 

simulation (can be NULL) 

population_weight 0.3 
Weight of pre-existing refugee population 

variable 

location_weight 0.75 Weight of anchor location 

camp_weight 0.5 Weight of presence of camp 

conflict_weight 0.5 Weight of presence of conflict 

kin_weight 0.1 Weight of kinship ties 

friend_weight 0.1 Weight of friendship ties 

seed_refs_per_node (10,75) 

Integer or range; number of refugees to 

seed at each border crossing location at 

each step 

seed_nodes 
Kilis, Yayladagi, 

Hatay, Akcakale  

List of border crossing node IDs for 

seeding 

new_friends_lower 0 

Lower bound for the creation of new 

friendship ties when ties are created 

endogenous to the model (not used in base 

model) 

new_friends_upper 0 

Upper bound for the creation of new 

friendship ties when ties are created 

endogenous to the model (not used in base 

model) 
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The first part of model initialization is the creation of the simulation environment. 

Environment creation is part of the main python script but is also separated out into a 

second python script available for creating a simulation environment for any AOI:  

pre_process_basic.py. The simulation environment script takes as input vector data 

representing the administrative divisions at the level of granularity required for the 

simulation environment stored in the ‘data’ folder. The input shapefile will require at 

least four attributes: 

1. Name or ID field containing the name or ID (string or integer) attributed to 

each individual location node.  

2. Area field (a geometry field typical of all shapefiles) 

3. Perimeter field (a geometry field typical of all shapefiles) 

4. REFPOP field containing the pre-existing refugee population for each 

administrative area at time of real-world simulation initiation 

Upon opening the preprocessing script, the script can be pointed to the input 

shapefile on the local or virtual machine. New shapefiles will be written out to the 

working directory and can be visualized using QGIS or other geospatial visualization 

software. The simulation environment will display after the script runs as specified.  

For clarity, a simulation environment for CAR is provided below as an example. 

There are three primary administrative levels for CAR: administrative level 1 is the 

spatial extent of the entire country (n=1), administrative level 2 contains all prefectures 

which are similar in spatial extent to Turkish provinces (n=16 vs. n=81), and 

administrative level 3 contains subprefectures which are similar in spatial extent to 



62 

 

Turkish districts (n=48 vs n=929). The simulation environment for CAR, then, can be 

created with 16 or 48 location nodes respectively depending on the administrative level 

that the input shapefile represents. The two contrasting simulation environments are 

presented in Figure 5 and were created using the pre_process_basic.py script. These 

computational tools are provided in response to RQ2. 

 

  

Figure 5 Two simulation environments for Central African Republic (CAR) with different granularity: 16 

location nodes (left) and 48 location nodes (right). 

 

The model is calibrated to the real-world time period the simulation is designed to 

represent – this may be backdated to the past, or present day running into a future state 

for prediction. Calibration was achieved through sensitivity testing using the static 

simulation environment variables as reported in Chapter 5, Case Study, Verification and 

Validation. Briefly, a feature scaling technique was applied to the output of a controlled 

model run with base parameters. The same technique was applied to the output of many 

model variations both isolating specific model parameters to identify thresholds and 
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combining model parameters in distinct ways to determine the ideal calibration. The 

normalized output of each model variation was compared both to the control model and 

to real-world validation data with accuracy quantified as the normalized Mean Absolute 

Error (NMAE) of a target model condition to the control. The initial simulation 

environment is augmented after initialization using input data for existing refugee camps, 

and security or conflict events.  

Finally, agents are initialized in the simulation from the shapefiles which should 

contain the pre-existing refugee population in the AOI. If there are no pre-existing 

refugee populations in the simulation, this value does not need to be imported and the 

simulation will begin seeding with zero refugees in the AOI at the identified seed 

locations with the identified range or fixed number of agents. With this flexibility, the 

model can initiate with zero agents or millions. The social networks are formed randomly 

in the model with each agent initializing with a random or fixed number of ties, as 

specified in the model parameters, from pre-existing or recently seeded agents.   

Input Data 

The simulation environment is created organically using input shapefiles and open-source 

datasets. The open-source data sets used in this model are: 

1. The UNHCR’s current locations of refugee camps and open border crossings 

during an ongoing security crisis or event, frequently identified on the 

Humanitarian Data Exchange (HDX) portal or OCHA’s Relief Web (UNOCHA, 

2020; HDX, 2020)1  

 
1 https://data.humdata.org/dataset 
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2. The Armed Conflict Location & Event Data Project (ACLED) dataset for the 

appropriate time period filtered down to include only violent protest, terrorist, or 

other security-related events in the simulation spatial extent (Raleigh et al., 2010)2 

3. The UNHCR’s (or other source’s) existing refugee population by some 

administrative level above administrative level 0 (UNHCR, 2020) 

4. Open-source shapefiles representing the spatial extent of the simulation 

environment at the desired level of granularity for the simulation3  

The model must be temporally aligned to the target time period using these datasets 

because, for example, border crossings open and close and refugee camps are established 

and taken down by a variety of aid organizations. As such, ACLED, UNHCR, and other 

data must be pulled and pre-processed within the simulation for the month the researcher 

wishes to begin the simulation, whether this is present day or backdated for validation 

purposes.  

Submodels 

There are no submodels associated with the model documented above.  

 

 
2 https://acleddata.com/data-export-tool/ 
3 https://www.naturalearthdata.com/ 
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4. IMPLEMENTATION AND COMPUTATION 

The following is an adaptation of a paper accepted for publication and presented 

at the Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 

from 30 November 2020 – 4 December 2020. The work in this Chapter addresses RQ2. 

Section 4.1 addresses computational challenges and Section 4.2 covers code 

implementation details of this model. Section 4.3 details the parallelization techniques in 

the implementation of this model. Section 4.4 presents series of experiments that test the 

effects of parallelization on model runtime and Section 4.5 concludes with a discussion of 

the parallelization results. 

4.1 Computational Challenges 

As argued in Chapters 1 and 2, ABMs are the ideal type of model for modeling 

the patterns and flows of forced migrants. The development of such models has obvious 

practical implications for humanitarian crisis management (Frydenlund et al., 2018). 

Despite this powerful research potential, the use of ABM for simulation at scale – 

millions of agents – and inclusion of robust migrant social networks is still in its infancy. 

The ABMs that do exist for modeling forced migration and other sociocultural 

phenomena are increasing in size and scale, presenting an imminent need to model 

millions of individual agents over many simulation timesteps. Even with simple model 

logic and a minimal number of model parameters, the computational overhead quickly 

becomes unwieldy both in memory and processing power required. This computational 

overhead scales exponentially when social networks are included in agent decision logic. 
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Techniques have been proposed in the past that seek to aggregate groups of agents into 

meta-agents, known as agent compression (Wendel & Dibble, 2007) or the creation of 

super-agents (Parry & Bithel, 2012). Parry and Evans (2008) show, however, that these 

super-agents are sensitive to spatial tasks. Watts (2016) stipulates the need for modelers 

to test scale dependency in models through sensitivity testing to determine whether the 

model developed in this dissertation necessitates millions of agents. The sociocultural 

modeling and simulation community is also turning to the domain of high-performance 

computing (HPC) for parallelization methods such as multiprocessing and 

multithreading, with ABM packages such as MASON which facilitate social simulation 

at scale in Java (Luke et al., 2005). While the parallelization techniques and parallel 

computing experimentation described in this chapter and in Chapter 2 do not contribute 

to the broader parallel computing capabilities for running ABMs at scale (e.g., MASON), 

the parallel computing methods and results do offer insight into optimal computational 

architecture and instantiation for the forced migration model presented in this 

dissertation.   

To further demonstrate that scalability is required for this simulation, Watts’ 

(2016) advice was taken and a set of experiments of scale were each run for 60 time steps 

with 3,600, 36,000, 360,000, and 3.6M agents to determine if similar model results could 

be obtained simply through using a scaled down number of agents, alleviating the 

computational overhead required to process millions of agents simultaneously. The 

results of these experiments are provided in Table 7. 
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Table 7 Experiments of scale using different numbers of agents. Results demonstrate that model error is very 

high when fewer agents are used. 

 3k agents 36k agents 360k agents 3.6M agents 

nMAE 0.70 0.88 0.89 0.07 

 

The results suggest that in order to replicate real-world results, the model 

necessitates realistic numbers of agents, in this case, millions, not thousands. The ending 

spatial distributions of the first three scale conditions were also drastically different from 

the two spatial distributions observed in the full model results available in Chapter 4. In 

both cases, agents clustered in random districts in the middle of the country rather than 

near the Syrian border, in urban centers, or in the northwest area near Istanbul. These 

results further suggest that refugee movement is an emergent social phenomenon that is 

not replicable at smaller scales, commensurate with the observations of Hinsch and Bijak 

(2019). The fact that the model necessitates millions of agents to replicate real-world 

patterns requires that scalable and parallel computational architecture be in place to 

support millions or tens of millions of agents in a single simulation.  

4.2 Code Implementation Details 

The model is written in Python 3 and makes use of the following packages: json, 

os, sys, csv, copy, random, math, unidecode, numpy, pandas, geopandas, networkx, 

matplotlib, multiprocessing, and GDAL/Fiona. The model has two object classes: Ref 

and Sim. The Ref class represents refugee agents and contains two methods for creating 

social networks. The Sim class contains four methods: run, which runs the simulation; 

step, which executes agent decision-making logic; process_refs, which tracks agent 
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movement; and find_new_node, which calculates the desirability scores. The main 

simulation method also calls several miscellaneous methods that are responsible for 

preprocessing the data and creating the simulation environment, validating the simulation 

output, and running various computational experiments.  

The main model script is run_abm_shared_mem.py and is available on the public 

GitHub repo: https://github.com/mrichey17/mig. While data preprocessing is included in 

the main simulation script, it is also available in isolation: pre_proces_basic.py. 

4.3 Parallelization Techniques   

The model is parallelized by batching refugees at every time step using the 

parallelization logic described in Section 3.2 ODD, Processing, Overview, and 

Scheduling. Notionally the number of agent batches and parallel processes should 

correspond to the number of CPU cores on the provisioned virtual or physical simulation 

machine but, as described previously, the number of agent batches can exceed the 

number of parallel processes should a researcher be interested in optimizing model run 

time further. An optimal agent batch size and batch number can be found through 

hyperparameter testing. As an alternative to batching, drip feeding processes with agents 

assures that no one process stalls processing a large batch of refugees while other 

processes sit idle. The downside of this is the large overhead in communicating new data 

to the processes, so agent batching is the preferred method here.  

Once the number of parallel processes has been established, each child process 

receives a tuple containing start and stop indices with the agents for which the process is 

responsible. Each child process then works independently on its batch, pulling the agents 
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into its distributed memory environment and aggregating the results back up to the parent 

process after the parallel computation is complete. By leveraging multiple processes, a 

3.5X speed increase across experimental conditions is achieved through multiple 

computational experiments reported in subsequent sections.  

4.4 Parallelization Experiments 

The experiments in this section establish a baseline and identify thresholds for 

various parameters of the parallelization processes in the simulation. These include the 

effect the size and complexity of the simulation environment, number of refugee agents, 

and average size of an agent’s social network have on simulation step time. The results of 

all experiments are averaged over 10 runs using 1,000 location nodes with an average of 

5 location neighbors and 100,000 agents with static social networks containing 1 kin and 

1 friend unless otherwise indicated. All tests are run on a VM with 104GB of memory, 16 

virtual CPU cores, and use 4 parallel processes in Google Cloud Platform (GCP). For 

reference, an average full model run requires 30-90 time steps. 
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Table 8 Model step run times (in seconds) based on several structural factors: size of location network with 

agents that have both static and probabilistic social networks, location network with 10k nodes and varying 

numbers of adjacent location nodes, and number of agents in the simulation. 

# 

Location 

Nodes 

(static 

social 

network) 

Time 

per 

step 

# Location 

Nodes 

(probabilistic 

social 

network) 

Time 

per 

step 

Avg. # 

Location 

Node 

Neighbors 

(10k 

nodes) 

Time 

per 

step 

# Agents 

Time 

per 

step 

10 3.68 10 5.52 1 2.47 100 0.13 

50 3.75 50 5.62 5 2.55 1,000 0.13 

100 3.87 100 5.76 50 3.41 10,000 0.42 

500 4.46 500 6.24 100 4.51 100,000 3.42 

1,000 5.00 1,000 6.91 1,000 26.41 1,000,000 31.86 

10,000 17.43 10,000 19.25 5,000 144.66 10,000,000 330.96 

100,000 243.67 100,000 243.79 10000 287.45 20,000,000 nd 

 

Several experiments test how various structural elements of the model affect 

model run time. Table 8 presents the model step run time in seconds of the various 

conditions. The following structural elements were tested: effect number of simulation 

environment location nodes has on step time (refugees have a static social network with 2 

ties), effect number of simulation environment location nodes has on step time (refugees 

have a probabilistic social network with between 0 and 6 ties), effect average simulation 

environment location graph density has on step time, and effect number of total model 

refugees has on step time. The results indicate two primary observations. First, model 

step time increases linearly with the number of agents in the model, averaging 30 seconds 

per million refugees while using 4 parallel processes. By contrast, serial processing with 

the same parameters averages over 10 minutes per million refugees using only a small, 

static social network for each agent. Second, it is number of agents in the network and 



71 

 

number of social ties that most impact model step time, not size of the simulation 

environment or simulation environment location graph density.  

Additional experiments quantify step time speedup across varying conditions with 

different numbers of parallel processes, as presented in Table 9.  
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Table 9 Scalability results from representative model runs. 

# Agents # Social Ties # Processes Time to Completion Speedup 

1M 2 1 34.13 1.00 

1M 2 2 28.42 1.20 

1M 2 4 19.78 1.72 

1M 2 8 16.04 2.12 

1M 2 12 16.40 2.08 

1M 2 16 16.62 2.05 

 

5M 2 1 181.50 1.00 

5M 2 2 149.73 1.21 

5M 2 4 104.53 1.73 

5M 2 8 84.25 2.15 

5M 2 12 83.60 2.17 

5M 2 16 86.02 2.10 

 

10M 2 1 347.60 1.00 

10M 2 2 287.02 1.21 

10M 2 4 189.76 1.83 

10M 2 8 138.70 2.50 

10M 2 12 124.40 2.79 

10M 2 16 152.91 2.27 

     

25M 2 1 918.89 1.00 

25M 2 2 726.88 1.26 

25M 2 4 461.06 1.99 

25M 2 8 nd nd 

25M 2 12 nd nd 

25M 2 16 nd nd 

 

1M 50 1 249.61 1.00 

1M 50 2 172.68 1.44 

1M 50 4 106.55 2.34 

1M 50 8 76.26 3.27 

1M 50 12 72.26 3.45 

1M 50 16 70.46 3.54 
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Parallel processing tests were run using 1 million, 5 million, 10 million, and 25 

million agents comparatively, with a simulation environment size of approximately 1,000 

nodes and a static social network size of 2 social ties per agent. With these conditions, we 

observe up to a 2.8x speedup in total simulation step time using 12 parallel processes and 

a 2x speedup using only 4 processes. In the final parallel test condition, we use 10 million 

refugee agents with a social network size of 50 ties per agent, which, using serial 

processing, would slow the simulation to unusable levels. In this condition, we observe a 

3.5x speedup in total simulation step time. In even the most computationally intensive 

model conditions (i.e., millions of refugees with robust social networks of 50 other 

agents), speedup is significant and increases steadily with the more parallel processes that 

are used. 

4.5 Discussion of Parallelization Experiments 

Parallelization experiment results indicate a speed performance increase across all 

tested model conditions while multiprocessing with a batch size of between 2 and 16 

parallel processes. Up to 6 parallel processes are typically available on a consumer-grade 

computing machine where up to 16+ parallel processes are possible when provisioned on 

VMs in cloud environments. This holds true for models with large volumes of refugee 

agents, models where refugee agents have larger social networks, and models with larger 

simulation environments than that currently represented in the full model condition. 

Speed, however, does not increase linearly for each process as the overhead time spent on 

inter-process communication (IPC) at some point counteracts the speed increase obtained 

through parallel processing of agents or agent batches. This phenomenon is observed in 
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most model conditions in Table 10 around 12 parallel processes, where using 16 parallel 

processes does not produce additional speedup. In no model condition did using greater 

than 16 parallel processes generate any model speedup suggesting a parallelization 

threshold for ABMs of varying levels of decision logic complexity with under 25M 

agents.   

IPC time includes the time to copy the simulation environment to each child 

process and to write results back to the parent process. It is a relatively straightforward to 

parallelize an ABM with a few thousand agents, but as the number of agents, location 

nodes, and average graph density (i.e., number of edges) increases, the memory 

requirements to store the model parameters becomes very large (10s – 50s of GBs). For 

each child process across which computation is divided, it requires an individual copy of 

the simulation environment or, at the very least, access to variables that determine the 

stochastic portion of the node desirability score (i.e., the social variables). Eventually, the 

latency introduced by this copy overhead outweighs the speedup from parallelization and 

the constraint becomes total machine memory. This result can be observed in the 25M 

agent condition in Table 10 where maximum speedup achieved is 2X before memory 

errors occur.  

Groen (2018) reports speed increases ranging from 2.5x to 3.4x using up to four 

parallel processes for the FLEE model of forced migration. These results replicate 

Groen’s results with a 2x to 3.5x speed increase across several experimental conditions 

using between 4 and 16 parallel processes. While replicating the state-of-the-art ABM 

speedup results, this model also introduces static and stochastic elements not found in the 
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FLEE model, most notably a computationally intensive social network component. As 

shown in the initial experiments in Table 9, this is the most computationally intensive 

component of the model and therefore places the highest demands on parallel computing 

processes. The model also makes use of a simulation environment roughly 20 times the 

size of the FLEE model.  
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5. CASE STUDY 

Chapter 4 introduces the case study where the model described in Chapter 3 was 

applied, verified, and validated. The case study in question is Syrian migration into 

Turkey as a result of the ongoing Syrian civil war conflict event. The work presented in 

this chapter addresses RQs 1 and 3. In Section 5.1, a brief history and contextualization 

of the conflict are provided. In Section 5.2, results for two model runs are reported, and 

verification and validation of those model conditions are reviewed in detail in Section 

5.3. Section 5.4 provides a direct, one-to-one comparison of this model with the state-of-

the-art model and Section 5.5 presents two other supporting case studies. Section 5.6 

concludes this chapter with a discussion of all the observed results.   

5.1 Introduction to Syria-Turkey Case Study 

The Syria crisis has been ongoing since 2011 when political events subsequent to 

the Arab Spring escalated to violence. Sunni opposition groups called for the removal of 

Bashar al-Assad and his Shiite government and the events turned violent in March of 

2011. Since that time, upwards of 7 million people have been displaced within Syria’s 

borders and approximately that many outside of Syria’s borders, over half of which now 

reside in Turkey. Other countries of asylum include Lebanon, Jordan, and Iraq. From 

2011 to the date of writing, Syrian refugees have been migrating across the Turkish 

border either for asylum in Turkey itself or to transit Turkey en route to Eastern and 

Western Europe. At any given time, there have been 10-20 official border crossings open 

along the Syria/Turkey border maintained by officials from either country, though 
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refugees often cross at unofficial border locations. Some are apprehended by Turkish 

authorities and returned to Syria but some make it through and go on to seek asylum in 

Turkey undocumented. In January 2014, I traveled to Turkey with an unofficial Syrian 

guide fluent in Turkish, Kurdish, and Arabic. We traveled along, with his sister, from 

Istanbul down to just south of Kayseri identifying unofficial refugee populations and 

conducting structured interviews, asking questions pertaining to their origin, their transit 

routes, their destination, their decision-making, their means of transportation, and their 

intentions to return to Syria if at all (Richey, 2014a; Richey, 2014b). Of the 

approximately 150 refugees interviewed, the use of social media, smartphones, and social 

connections to keep in touch with familial ties as well as make new connections along the 

way was paramount. Along with serving as primary motivation for this research, this 

experience was informative in creating an ABM with appropriate parameters to address 

the Syria/Turkey case study.   

5.2 Results 

The two final representative runs of the model addressed Syrian refugees crossing 

the Turkish border and moving throughout Turkey beginning on 1 February 2019 and 

ending on 30 March 2019. The first model condition, the ‘full’ model, represents the 

model inclusive of its social network mechanics. The second model condition, the ‘base’ 

model, represents the model without these mechanics. The two models are run for 

comparative purposes in satisfaction of RQ1. Both models are validated using the 

UNHCR’s data from 31 March 2019 which details the refugee population, both within 

and outside of official refugee camps, at the district level or administrative level 2. The 
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models are initiated using the parameter values indicated in Section 3.2, Initialization. 

The models are run within GCP Cloud AI Jupyter notebooks on virtual machines 

provisioned with a 16 virtual CPU cluster, with 200GB of memory, running 16 parallel 

processes. The average total cost of the final model runs is $37.00, and the average final 

model runtime is 12.5 hours, or 96+ hours without using parallelization. All error 

reporting in this dissertation is based on the mean of 10 model runs. The error for both 

simulation conditions is presented in Figure 6. 

 

 
Figure 6 Error over time for both simulation conditions, representing full simulation runs with social networks 

(blue) and without social networks (red). Average error, measured as NMAE, is 0.07 for the condition with 

social networks and 0.11 for the condition without social networks indicating that the inclusion of social 

networks reduces model error.  

 

Condition 1 – Including Social Networks  

For the full model, inclusive of the social network mechanics, the number of 

refugees in-country at model initiation is 3,603,811 and the number of refugees after 60 
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days at the end of the simulation is 3,615,387, which is an addition of ~11,500 refugees 

in 60 days. The number of actual refugees in Turkey at simulation end, per the UNHCR, 

was 4,074,693. Model error for this condition is 0.07 as depicted in Figure 6, calculated 

as average NMAE over time per the description of error calculation below in Section 4.3. 

Using this statistic, it is clear that this model predicts forced migratory movement with an 

approximate error of 0.07 in satisfaction of RQ3, as depicted in Figure 6.  

  



80 

 

 

Time Step 0 – Model initiation 

 

Time Step 10 

 

Time Step 20 

 

Time Step 30 

 

Time Step 40 

 

Time Step 50 

 

Time Step 60 

 

Legend 

Figure 7 Spatial distribution of refugee agents every five time steps of the model condition with refugee social 

network mechanics. Refugees initially disperse correctly then retreat to the border crossing locations over time.  

 

Initially, refugees are dispersed throughout the country and then begin to follow 

corridors of migrant flow which spatially represent actual patterns of refugee movement 

as depicted in Figure 7. As the simulation progresses, however, refugees begin to move 

away from the northwest quadrant of the simulation (which contains the largest urban 

center, Istanbul) back down towards the Syrian border. Sensitivity testing, explained 

further in Section 4.3, reveals that this pattern is likely due to the social network 
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component in the model as this pattern is strongest when the social network component 

(represented through friendship and kinship ties) is active.  

The initial specification of social influence in the model is naïve assuming 

random, bidirectional ties which generate reciprocal decision logic. Social ties – both 

friendship and kinship – are initiated at random for each refugee in the simulation as 

described in Chapter 3. This means that refugees already in the simulation in the 

northwest corner randomly generate ties to refugees who are near the Syrian border or 

further east in Turkey.  It is likely acceptable that the ties themselves are bidirectional in 

that if Refugee 27 is friends with Refugee 30, Refugee 30 is also friends with Refugee 27. 

Reciprocity, however, should likely not manifest as reciprocal model logic, i.e., how 

refugees act on or use their social networks in deciding where to migrate. In practice, 

what occurs in the model is that refugees initiated in the northwest corner of the 

simulation environment actively seek to move closer to their kin and friends near the 

Syrian border. This results in a reverse migration of refugees towards the Syrian border. 

In reality, while refugees in Istanbul may have kinship and friendship ties closer to the 

border (in fact, it is known this is true), they are less likely to move towards these 

contacts, waiting instead for those contacts to migrate to their present location. That is the 

essence of the social network mechanic: that refugees in border regions likely have 

known (familial) or unknown (social media) contacts in other parts of the country that 

inform their decision-making and destination, but refugees that are already in camps, 

urban centers, or otherwise safe spaces do not necessarily move towards known or 

unknown social contacts even if these ties exist. This disconnect provides the most likely 
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explanation for long term model inaccuracy and levies the requirement for two classes of 

agent refugees: one for those refugees who have recently crossed the border or seeded in 

the simulation environment, and one for those refugees who have been in the simulation 

environment for a while. Each class of refugee agent could then implement different logic 

that would emphasize or de-emphasize the social network in the decision to migrate 

accordingly. The implementation of multiple agent classes as well as variations on the 

theme of additional social network models are discussed further in Chapter 6.   

Condition 2 – Excluding Social Networks  

For the model, exclusive of the social network mechanics, the number of refugees 

in-country at model initiation is 3,603,811 and the number of refugees after 60 days at the 

end of the simulation is 3,606,422, with an addition of ~2,600 refugees during the course 

of the simulation. The number of actual refugees in Turkey at the time of simulation end, 

per the UNHCR, was 4,074,693. Model error for this condition is 0.11 as depicted in 

Figure 6, calculated as average NMAE over time per the description of error calculation 

below in Section 4.3.  
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Legend 

Figure 8 Spatial distribution of refugee agents every five time steps of the model condition with refugee social 

network mechanics. Refugees initially disperse correctly then retreat to the border crossing locations over time.  

 

Model error is slightly higher in this condition where social networks are 

excluded and the spatial distribution of refugees at the end of 60 time steps is revealing. 

Where in Condition 1, it is evidence that the agents are collecting in certain areas due to 

social network mechanics, in this condition without social networks, higher path 

dependence is observed because agents are using structural features of the simulation 
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environment to devise migration routes. The districts producing the majority of the error 

in Condition 1 are the central and northwesternmost districts near Istanbul and Izmir 

where refugee populations exist but the model does not replicate them. In the second 

condition, after removing the social network component, the agents move more freely 

throughout the simulation and disperse much further into the country when unconstrained 

by remaining close to social ties seeding at districts with border crossings. The error, 

then, comes from the variability in predicted and actual refugee populations, as depicted 

in Figure 6 because, without social ties, the refugees also do not naturally migrate to 

urban centers or refugee camps. In response to RQ1, it is observed that the inclusion of 

social networks serves to reduce model error but produces spatial patterns that indicate 

the implementation of social network modeling mechanics should be developed further, 

as discussed in Chapter 5.       

 

5.3 Verification and Validation 

Verification 

As the first step of verification, a code walkthrough was performed with a 

qualified, master’s-level computer scientist and software developer. The code was 

reviewed line by line to ensure continuity of the codebase. Revisions were also made 

accordingly to consolidate lengthy lines of code that could be represented in single lines 

using lambda functions and similar techniques. The amount of for and while loops were 

also reduced, and global variables separated and stored upfront. Code test conditions 

were also added to provide baselines and benchmarks for model runs assessing 

computational speedup and model accuracy.  
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Validation 

To give the reader a clear understanding of the validation process, Table 7 

provides an example of a simulated (predicted) refugee population for three hypothetical 

districts which are compared to the exemplar real-world refugee population in those same 

districts. To obtain model error, the simulated population is subtracted from the real-

world population for each district, yielding the absolute value of the error. The absolute 

error is then normalized between 0 and 1 using the Min-Max Normalization feature 

scaling technique. NMAE is then calculated for each time step using the mean absolute 

error across all districts. This provides an NMAE score for each time step of the 

simulation. The average of NMAEs across the entire temporal window is considered the 

NMAE for the whole model. This can be done at the end of each simulation time step or 

at the end of the simulated run time. In the example provided in Table 10, the average 

model error is .35, though no averaging is required because this example assumes a single 

time step. 

 

Table 10 Exemplar simulated and real-world data used to illustrate method for calculating simulation accuracy. 

 District 1 District 2 District 3 

Simulated refugee population 785,627 21,524 8,780 

Real-world refugee population 880,951 19,723 1,857 

Absolute Error 95,324 1,801 6,923 

Absolute Error (normalized) 1.0000 0.0000 0.0548 

Model NMAE 0.35 
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Equally as important as the model’s statistical error is the spatial distribution of 

that error since the model’s main purpose is to predict the spatial distribution of refugees 

during a forced migration event. For this reason, it is useful for analysts and researchers 

to map the NMAE of each district to understand the spatial distribution of the deviations 

from real-world data as depicted in Figure 9. 

 

 

Figure 9 Exemplar Normalized Mean Absolute Error for each district within the full model condition after 60 

days, measured between 0 and 1 and represented geospatially. A score of 1 in a district indicates significant 

deviation from actual refugee populations at time of simulation end, where a score of 0 indicates no deviation 

from real-world conditions. Districts with a score of 1 are colored dark red. 

 

Additional validation and calibration of the model were achieved through robust 

sensitivity testing in keeping with Gilbert and Troitzsch’s (2005) methodology, numerous 

model runs of varying lengths, and analysis of model output at each time step. 29 

representative experiments, each run for 14 time steps, were selected to demonstrate the 

influence all model parameters have on model performance in addition to the thresholds 

for each parameter, displayed in Table 11.  
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Table 11 Results from several experimental conditions used for model verification. Experiments were run for 14 

time steps 10 times each with values averaged over these 10 representative runs.  

Experiment 

Number 
Experiment Name Experiment Description NMAE 

% change 

from base 

accuracy 

0 Base Parameters 

Parameter set used to establish 

baseline against which to 

compare all experimental 

conditions 

0.004220 NA 

1 Friends & Kin 1 

Generate between 0 and 5 

friendship and kinship ties per 

refugee 

0.005770 0.367286648 

2 Friends & Kin 2 

Generate between 5 and 10 

friendship and kinship ties per 

refugee 

0.003708 -0.357373859 

3 Camp Move 1 

Probability of moving if 

located at a refugee camp set to 

70% 

0.003715 0.001741822 

4 Camp Move 2 

Probability of moving if 

located at a refugee camp set to 

100% 

0.003671 -0.011792959 

5 Conflict Move 1 

Probability of moving if 

located in a conflict zone set to 

30% 

0.004220 0.149537324 

6 Conflict Move 2 

Probability of moving if 

located in a conflict zone set to 

70% 

0.004216 -0.000753598 

7 Other Move 1 
Probability of moving in the 

simulation set to 100% 
0.003806 -0.097276539 

8 Other Move 2 
Probability of moving in the 

simulation set to 30% 
0.006053 0.590212418 

9 Seed Refs 1 
25 refugees seed at each border 

crossing at each time step 
0.004216 -0.303381824 

10 Seed Refs 2 
75 refugees seed at each border 

crossing at each time step 
0.004213 -0.000805205 

11 Seed Refs 3 

100 refugees seed at each 

border crossing at each time 

step 

0.004214 0.000219789 

12 Seed Refs 4 

500 refugees seed at each 

border crossing at each time 

step 

0.004196 -0.004386259 

13 
Anchor Location 

Warsaw 

Anchor location moved from 

London to Warsaw 
0.004215 0.004535084 

14 
Anchor Location 

Moscow 

Anchor location moved from 

London to Moscow 
0.004213 -0.000308747 

15 Population Weight 1 

Importance of moving to 

locations with pre-existing 

refugee populations set to 0.75 

0.003418 -0.188781189 
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Experiment 

Number 
Experiment Name Experiment Description NMAE 

% change 

from base 

accuracy 

16 Population Weight 2 

Importance of moving to 

locations with pre-existing 

refugee populations set to 1 

0.003686 0.078440596 

17 Location Weight 1 

Importance of moving to 

locations closer to the anchor 

location set to 1 

0.005047 0.369336618 

18 Location Weight 2 

Importance of moving to 

locations closer to the anchor 

location set to 0.75 

0.005488 0.087348868 

19 Camp Weight 1 
Importance of locating a 

refugee camp set to 0.75 
0.003915 -0.286656232 

20 Camp Weight 2 
Importance of locating a 

refugee camp set to 1 
0.003912 -0.000864093 

21 Conflict Weight 1 
Importance of avoiding a 

conflict zone set to 0.75 
0.004216 0.07775006 

22 Conflict Weight 2 
Importance of avoiding a 

conflict zone set to 1 
0.004218 0.000478241 

23 Kin Weight 1 
Importance of kinship ties in a 

target location set to 0.75 
0.013124 2.111715642 

24 Kin Weight 2 
Importance of kinship ties in a 

target location set to 1 
0.013661 0.040898187 

25 Friend Weight 1 
Importance of friendship ties in 

a target location set to 0.75 
0.013201 -0.033710609 

26 Friend Weight 2 
Importance of friendship ties in 

a target location set to 1 
0.013703 0.038041608 

27 Location Weight 3 

Emphasize location score 

above all else (location score 

set to 1, all other parameters set 

to 0) 

0.013190 -0.037420822 

28 Social Network 1 

Emphasize social network 

(friends and kin) above all else 

(friends and kin score set to 1, 

all other parameters set to 0) 

0.003239 -0.754415182 

29 Population Weight 3 

Emphasize pre-existing refugee 

population above all else 

(population weight set to 1, all 

other parameters set to 0) 

0.003686 0.137898756 

 

There are several primary model parameters that affect agent movement 

throughout. They are the model’s anchor location, the pre-existing refugee population, 

official refugee camps, conflict events, the social network (comprised of friends and kin), 
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and the weights of each of these parameters respectively within internal model 

calculations. All experiments are run for 14 simulation steps (2 real-world weeks) and 

compared against Experiment 0 using a feature scaling technique. Min-Max 

Normalization was used for calculating base accuracy as the objective function. Z-Score 

Normalization was also considered due to the final distributions of refugees within the 

country which had numerous outliers in border districts, but Min-Max Normalization was 

ultimately chosen so direct comparisons and calculations could be made to calculate 

aggregated simulation accuracy. Experiment 0 is a base parameterized model specified as 

follows: num_friends = 1, num_kin = 1, camp_move_probability = 0.3, 

conflict_move_probability = 1, other_move_probability = 0.75, anchor_location = 

London, seed_refs_per_node = 50, and all weights = 0.25 (population_weight, 

location_weight, camp_weight, conflict_weight, friend_weight, and kin_weight).  

There are several experiments that show improvement (decrease) to overall model 

error. Notably, when other parameters are active in a model, emphasizing parameters that 

relate to social networks or other refugee agents in the simulation tend to reduce error 

(Experiments 2, 9, 15, 19, and 28). The same is true for the pre-existing refugee 

population, though the effect is not as extreme. This can be interpreted to mean that the 

model does, indeed, necessitate a variety of competing factors and adequate balance of 

each to replicate real-world results. Also, that inclusion of the stochastic model elements 

tied to agent social networks decreases model error and improves performance. 

Increasing the importance of official refugee camps in the simulation improves model 

accuracy (Experiments 19 and 20) though model error does not improve when movement 
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exclusively to pre-existing refugee camps is emphasized (Experiments 2 and 3) as is the 

case in the FLEE model. This further substantiates the use of an organic spatial network 

as the base layer of the simulation environments as opposed to a spatial network 

consisting of only official refugee camps or urban centers. Spatial distributions of 

refugees from the final three experiments appear in Figure 9. 

 

 

Location score only (Experiment 27) 

 

Existing refugee population only (Experiment 29) 

 

Social network only (Experiment 28) 

 

Mixed Parameters 

Figure 10 Spatial distribution of refugees after 14 time steps (2 weeks) isolating certain parameters. The highest 

accuracy spatial patterns occur in the mixed parameter mode run, but over time, the social network component 

(lower left and lower right) draws refugees towards the Syrian border. 

 

Finally, experiments 1-12 focused on sensitivity testing, or establishing 

appropriate thresholds for all model parameters. From these experiments, it is evident that 

including conflict events in the simulation has little effect on model accuracy 

(Experiments 5 and 6). This is likely because the majority of the conflict events were near 

the Syrian border, in areas away from which refugees are already moving, or in the 
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eastern part of the country, where few refugees tend to collect. Conflict events may be 

more relevant in other, less-stable geographies such as CAR. Finally, it is evident in 

experiments 13 and 14 that the specific location of the anchor location, while important 

to agent objectives and decision-making logic (Experiments 17, 18, and 27), does not 

impact model accuracy. This suggests that it is important merely to have an anchor 

location that represents the general direction of refugee movement (in this case, Europe). 

The anchor location will be trickier to implement in areas such as CAR where refugees 

and IDPs alike tend to move in all directions simultaneously without clear directionality. 

In these cases, the anchor location can be removed entirely. Additional models should 

explore establishing anchor locations based on urban centers or lack of conflict (as 

conflict is also likely to be higher in these areas as well). It is evident in experiments 9-12 

that it does not matter how many refugees are seeded at each time step. A separate set of 

experiments tested the scalability of model results the results of which are available in 

Section 4.1. 

5.4 Comparison with Other Models 

As discussed in previous chapters, the model that is most comparable model to the 

model presented in this work is the FLEE model, an open-source, parallelized model of 

forced migration written in the Python programming language4 (Suleimenova, Bell, & 

Groen, 2017). The FLEE model initially reported an overall 75 percent accuracy in 

predicting refugee movement to camps across three geographies. Accuracy is not well 

defined in the FLEE literature, though model error is calculated as the mean relative 

 
4 https://github.com/djgroen/flee-release 
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difference between simulated refugees in camps and actual refugees in camps (UNHCR 

data) at each time step. The initial paper reported an average model error of 0.5 across all 

test conditions that falls to 0.1-0.3 over time across several hundred simulated steps. In 

practical terms, this means that the FLEE model is not useful for making predictions in 

the first 30-90 days of a simulated period, the time period that is most critical for 

analysts, operators, and aid workers. In comparison, this dissertation reports an average 

model error of 0.07 across multiple models for the first 60 days of a simulated period. To 

establish a baseline and means of comparison between the two models, a one-to-one 

comparison of the two models was performed in the Turkey AOI. The FLEE model was 

constructed, parameterized, and run according to the tutorial available on the FLEE 

website and personal instruction from the FLEE model creators, Diana Suleimenova and 

Derek Groen. Below, the results of that side-by-side comparison are reported.  

Simulation Environments 

While the model documented in this dissertation uses a simulation environment 

comprised of 929 network nodes, the FLEE model, when implemented in Turkey, uses a 

simulation environment comprised of only 38 nodes, of which only 21 are available to 

refugees are destination locations. The FLEE model uses pre-existing official refugee 

camps as candidate destination locations within its model, which substantially constrains 

the locations to which refugees can freely choose to move and, as such, model realism as 

discussed in Chapter 2. A rendering of the spatial extent of the FLEE model as applied in 

Turkey appears in Figure 11. Other locations in the FLEE model include conflict 

locations, or locations in which refugees are seeded in the simulation, and towns, transit 



93 

 

hubs through which refugees can move to access camps if they are too geographically 

distant.  

 

 

   

Figure 11 Input to the FLEE simulation environment (top) and official refugee camps as observed in satellite 

imagery (bottom). Red diamonds (top) represent pre-existing official UNHCR or governmental refugee camps. 

Black circles (top) represent transit hubs or cities. 

 

All of the locations in the FLEE simulation environment and the network linkages 

between them must be created manually, by hand, by an analyst or researcher, which is 

both time-consuming and unrealistic for simulations of larger size. The simulation 

environment of the model presented in this dissertation is created from shapefile input 

and is generated automatically from the data pre-processing code, which creates both a 
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larger and more organic simulation environment in a fraction of the time required to 

construct the simulation environment of the FLEE model as described in Chapter 5. A 

representation of the simulation environment for this dissertation’s model is available in 

Figure 12. Both conflict zones and official refugee camps are still included in the 

simulation so no information is lost in the creation of the simulation environment using 

this method. 

  

 

Figure 12 Network-based simulation environment of the model presented in this dissertation. Data pre-

processing code automatically generates a simulation environment representative of any geography in under 20 

seconds. 

 

Given that approximately 98 percent of Syrian refugees reside in urban centers, it 

follows that using urban centers as location nodes is a viable option. Specifically, 

refugees in Turkey reside in three major urban centers: Istanbul, Izmir, and Ankara 

(International Crisis Group, 2018). Given the availability of data, however, and the 

prevalence of shapefiles at various administrative levels, the most flexible, realistic, and 

generalizable simulation environment employs the organic approach to creating a 
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location network described above. If emphasis should then be placed on urban centers 

given the UNHCR statistic, administrative areas containing urban centers can be 

weighted more heavily in the simulation than areas without urban centers.  

To create a one-to-one comparison of the FLEE model and the model presented 

herein, a model condition was created with the same spatial extent of the FLEE model. 

This model’s simulation environment was created by importing the Turkey shapefile 

(administrative level 2, districts), and eliminating districts that did not contain an official 

refugee camp (the geolocations for which were already available from other data input of 

the simulation). The resulting simulation environment contains 48 nodes, 21 of which 

contain refugee camps, and is depicted in Figure 13. The 27 nodes in the simulation 

environment that do not contain official camps remain in the simulation to serve as transit 

nodes between the camps; these nodes serve the same purpose as the transit hubs in the 

FLEE model.  
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Figure 13 Simulation environment of the reduced simulation model. This spatial extent matches that of the 

FLEE model represented in Figure 7 but was created using the data pre-processing code relevant to this 

dissertation. 

 

Results 

The FLEE model’s NMAE was 0.33 for the 60-day simulated time period 

compared with the reduced model’s reported NMAE of 0.09 for the same time period, 

both of which appear in Figure 14.  

 

 

Figure 14 Error over time for the FLEE model and the reduced model with the same spatial extent as the FLEE 

model. Error, reported as NMAE, is 0.33 for the FLEE model and 0.09 for the model.  
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The spatial distribution of the refugees in the model is presented in Figure 15. 

 

 

Time Step 0 – Model initiation 

 

Time Step 10 

 

Time Step 20 

 

Time Step 30 

 

Time Step 40 

 

Time Step 50 

 

Time Step 60 

 

Legend 

Figure 15 Spatial distribution of refugee agents every ten time steps of the model with reduced spatial extent. 
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5.5 Additional Case Studies 

The Syrian Civil War affects six countries: Turkey, Lebanon, Jordan, Israel, Iraq, 

and Iran. Of these, the top three refugee hosting countries are Turkey, Jordan, and 

Lebanon (UNHCR, 2020d). To test the generalizability of this model across the broader 

Syrian conflict, the model was run in both Jordan and Lebanon with similar set up to the 

Turkey case study. Each country model comprised two test conditions: Condition 1 

which includes social networks and Condition 2 which does not. The critical difference 

between Turkey and these other two countries during the study window (1 January 2019 

and 31 March 2019) is that, during this time, Turkey was still being flooded with new 

refugees where the mass migration to both Jordan and Lebanon was in decline with many 

refugees already in those countries becoming returnees and returning to Syria (Sewell, 

2020; Roggio, 2013; Eldawy, 2019). Additionally, there are no formal refugee camps in 

Lebanon per orders from the Lebanese government, so all refugee settlements are 

emergent (Cherri, Gonzalez, & Delgado, 2016; Blanchet, Fouad, & Pherali, 2016; Sewell, 

2020; Hijazi, Lovatt, & Iraqi, n.d.). In both Jordan and Lebanon, there are also many 

Palestinian refugees and 12 Palestinian refugee camps in Jordan, all of which were 

already present in the country at the time of the Syrian crisis (Hijazi, Lovatt, & Iraqi, 

n.d.).  

During the study window, Syria had five official border crossings into Lebanon 

(Jagarnathsingh, 2019) and Lebanon had 12 camps (Eldawy, 2019). Syria had one border 

crossing into Jordan (Roggio, 2013) and four known emergent refugee camps, which 

were used, in this case, in place of official camps (UNHCR, 2020f). The total number of 
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Syrian refugees in Lebanon on Day 1 of the study window was 948,849 (UNHCR, 

2020g) and 702,970 in Jordan (UNHCR, 2020h). On both counts, these numbers are 

smaller than Turkey. The study areas for both countries were also much smaller and 

much less granular than the Turkey case study. To better assess the model’s flexibility, 

the model was seeded with a fraction of the refugees in the case study country on Day 1 

of the simulation instead of the actual number of refugees. The number of refugees 

coming across the border, then, simulates a flood of refugees that were then free to 

disperse throughout the country to see if the model was capable of predicting migration 

patterns not wholly reliant on pre-existing refugee locations. This was also necessary 

because, as previously mentioned, during the time of the study window, there were not 

many new refugees entering the country and refugees were even beginning to return to 

Syria – a situation for which this model does not fully account.  

Lebanon 

In Lebanon, Administrative Level 2 shapefiles were used which produced a 

location graph with 30 nodes, as depicted in Figure 16.  
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Figure 16 Location graph of Lebanon with 30 location nodes. 

 

There were 12,092 refugee agents at initialization which grew to 1,294,855 

refugees in Condition 1 (with social networks) and 1,301,061 in Condition 2 (without 

social networks). The actual number of refugees used to validate the simulation was 

944,613 (UNHCR, 2020g) – this number is lower than the simulation numbers because 

approximately 4,200 refugees had returned to Syria during the study window. Model 

error (NMAE) is 0.15 for both conditions of the model, producing only a slight 

measurable difference between the condition with and the condition without social 

networks, per Figure 17.  
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Figure 17 Error over time for the Lebanon case study. In both conditions, model error is 0.15. 

 

The spatial distribution of refugee movement throughout the simulation in 

Condition 1 is available in Figure 18.  
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Time Step 0 – Model initiation 

 

Time Step 10 

 

Time Step 20 

 

Time Step 30 

 

Time Step 40 

 

Time Step 50 

 

Time Step 60 

 

Figure 18 Spatial distribution of refugee agents every ten time steps within the Lebanon case study.  

 

Jordan 

In Jordan, the same Administrative Level was used which resulted in a location 

graph with 52 nodes, as depicted in Figure 19.  
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Figure 19 Location graph of Lebanon with 30 location nodes. 

 

There were 21,984 refugee agents at initialization which grew to 712,400 refugees 

in Condition 1 (with social networks) and 789,088 in Condition 2 (without social 

networks). The actual number of refugees used to validate the simulation was 702,970 

(UNHCR, 2020h) – this number is lower than the simulation numbers because 

approximately 10,000 refugees had returned to Syria during the study window. Model 

error (NMAE) is 0.19 for Condition 1 with social networks and 0.21 for Condition 2 

without social networks, per Figure 20. 
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Figure 20 Error over time for the Jordan case study. Model error is 0.19 for Condition 1 with social networks 

and 0.21 for Condition 2 without social networks. 

 

The spatial distribution of refugee movement throughout the simulation in 

Condition 1 is available in Figure 21.  
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Figure 21 Spatial distribution of refugee agents every ten time steps within the Jordan case study. 
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5.6 Discussion 

The results presented here across the primary case study and two additional case 

studies, each run with two distinct test conditions, confirm that the inclusion of social 

networks serves to reduce model error across all study areas, as depicted in Table 12. 

Table 12 Table comparing strengths of each model alongside their equivalents in the other model. Bolded 

elements indicated strengths. 

 

Model error 

with social 

networks 

Model error 

without social 

networks 

Simulated 

number of 

refugee agents 

Actual number 

of refugee 

agents 

Turkey 0.07 0.11 3,615,387 4,074,693 

Lebanon 0.15 0.15 1,294,855 944,613 

Jordan 0.19 0.21 712,400 702,970 

 

Model error in Lebanon is also slightly lower with the social network condition.  

These results are presented in response to RQ1 affirming that the inclusion of social 

networks in agent-based simulations of forced migration positively affects the accuracy 

of bespoke models. In the case of Turkey, the model underestimated the number of 

refugees in the country as the rate of Syrian refugees entering the country during the 

study window was highly variable each day. In the cases of Jordan and Lebanon, during 

the study window, only a few refugees were entering the country while many were 

returning to their home state of Syria. For this reason, the model overestimates the 

number of refugee agents in the model because the model does not allow for refugee 

agents to leave the simulation environment once they have entered, thereby preventing 

the modeling of returnees. This topic is discussed in the following section.  

Considering that the inclusion of social networks reduces model error and the 

state-of-the-art FLEE model does not include social networks, this is considered the 
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primary methodological contribution of this model. There are several additional aspects 

of this model that can be compared to the FLEE model. Figure 22 presents a 

comprehensive annotation of the strengths and weaknesses of each model. 

 

 

Figure 22 Comparison chart of strengths and weaknesses of this model and the state-of-the-art FLEE model. 

 

 

Simulation Environment 

There are several notable design differences in the simulation environments of the 

two models. One very important difference is that the FLEE model addresses migration 

to and from known, official refugee camps. This is the framework’s single greatest 

deficiency for two reasons: 1) migration is modeled in a constrained area represented by 

official refugee camps and migration to any other location in an AOI is not possible, and 
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2) given the model’s need to initiate using official refugee camps, the model is not useful 

at the beginning of a refugee crisis when official camps have not yet been established. As 

such, the reporting of results is largely based on the population of refugees in camps as 

opposed to the spatial distribution of those refugees throughout a country. The FLEE 

model tackles a much more bounded analytic challenge than that addressed in this model. 

The model proposed here predicts refugee population movement throughout a county 

notwithstanding existing or planned refugee camp locations. This is the first improvement 

this model offers to the FLEE model. This model allows refugees to move more 

organically across geographic terrain by using a geospatial network base layer that is not 

confined to regions with hostile or friendly camp locations. The geospatial network in 

this model is of higher spatial fidelity than that of the FLEE model and yet is still flexible 

enough to replicate the spatial extent of the FLEE model easily. Furthermore, the FLEE 

model requires a highly manual analytic process to create the simulation environment 

which takes several hours even using a relatively constrained spatial extent. In contrast, 

this model creates a simulation environment from input shapefiles which are easily 

available in open sources in less than 20 seconds using a data pre-processing script.  

Additionally, in the FLEE model, refugees are seeded in the simulation at conflict 

zones. In the case of Turkey, the origin of refugee flows is a collection of official and 

unofficial border crossings, which are included in this model as seed locations so the 

FLEE model’s method of seeding is inadequate. In other locations, such as CAR or DRC, 

where refugees are likely seeded from conflict zones, not border crossings, the FLEE 

model’s method may be more appropriate, but still not extensible to other geographies 
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where this is not the case. Alternatively, this model specifies refugee seed locations using 

a global model parameter with string input, such that an analyst or researcher could 

specify the district nodes where refugees will seed regardless of whether they are district 

nodes that contain border crossings, district nodes that contain conflict events, both, or 

neither.      

Social Networks 

In comparing the two models, they roughly contain the same set of input 

parameters, despite the fact that these input parameters influence agent movement across 

different geographic areas. These parameters address variables such as existing refugee 

population, areas of conflict or threat, and areas of asylum, e.g. known refugee camps, 

with the notable exception that the FLEE model includes transit distance as a factor in the 

model where this model does not. The variable that is of paramount importance in a 

refugee’s decision-making process, however, is the influence of the refugee’s social 

network on deciding where to go. This can be ascribed to strong or weak ties who have 

sent direct messages to a refugee indicating a destination location. This variable can also 

be tied to social network groups or channels that represent unofficial collections of 

refugees or unofficial aid organizations, both of which indicate destination locations 

where groups of unregistered refugees reside that are not prior acquaintances of the 

migrant. The FLEE model does not include such a variable. Given that the comparison of 

the two model conditions of this model revealed that error was reduced when social 

networks were included in agent decision logic, perhaps this is the reason for the lower 

model error found in this model in comparison with the FLEE model.   
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Model Development, Testing, and Use 

In terms of model accuracy, a primary deficiency of the FLEE model is in the 

variability of its accuracy in the first 30-90 days of the simulation. In essence, the FLEE 

model’s performance is best over one year from the first day of the simulation, which is 

not as relevant in operational contexts where aid organizations may be attempting to 

decide where to place camps at the beginning of a conflict. In terms of visualization, the 

model presented in this dissertation outputs statistics and shapefiles. In dealing with 

shapefiles both for input and output purposes, resources are available in open sources 

without preliminary analysis and visualization is possible without further conversions 

when the simulation is complete. That said, the statistics that the FLEE model outputs are 

complete where the statistics that this model outputs require further interpretation. This 

does, however, allow an analyst or a researcher to calculate his or her desired error 

statistic instead of relying on that calculated endogenous to the model itself, e.g., NMAE, 

Mean Relative Error (MRE), Mean Root Square Error (MRSE), Mean Absolute Scaled 

Error (MASE), etc. Finally, although the results reported for this model are encouraging, 

the FLEE model is still a more mature, fully released ABM framework tested on 5+ 

AOIs. Subsequent sections will address the suggestions for maturation of this work.  
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6. CONCLUSION AND FUTURE WORK 

In Chapter 1, several research questions and contributions to migration studies, 

sociology, and CSS communities were put forth. Chapter 2 reviewed relevant background 

materials and scholarly literature to contextualize the research. The methodology 

discussion in Chapter 3, the discussion of computation in Chapter 4, and the case study 

presented in Chapter 5 contain substantive contributions to migration studies and CSS. In 

this chapter, those contributions are reviewed, and the initial research questions set forth 

in Chapter 1 are revisited. Section 6.1 addresses the contributions in the context of the 

research questions and Section 6.2 concludes this dissertation with a discussion of future 

work and how the research detailed herein can be further matured within the CSS and 

social science communities. 

6.1 Summary of Dissertation Results 

This dissertation has diligently explored three research questions, the 

contributions of which apply broadly to the social science and CSS communities. Below 

is a review of those research questions and the outcomes they contribute to forced 

migration studies.   

Research Question 1  

Research question 1 is steeped in the emerging theory within forced migration 

studies concerning migrant social networks. RQ1 To what extent does the consideration 

of social networks in forced migration models improve model accuracy? It has been 

shown in Chapter 2 why social networks are of paramount importance to forced 
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migration modeling efforts, yet it was also brought to light that no large-scale empirical 

ABM of forced migration to date has included an explicit refugee social network 

component. Preliminary theoretical modeling efforts around forced migration has shown 

that these social networks are both important and influential in forced migration 

modeling, and the outcomes from RQ1 take a step towards filling the research gap by 

designing and developing an ABM that considers migrant social networks in the 

modeling mechanics. The primary contribution put forth in this research is the first 

empirical ABM of forced migration to consider migrant social networks. In so doing, it 

was found that the inclusion of social networks improves model accuracy as implemented 

in this model. Substantially more research into mechanisms for the inclusion of social 

networks in forced migration ABMs is required before these models are tested thoroughly 

enough to be applied by aid organizations. This research is discussed further in Section 

5.2.  

To the theory of forced migration, the implications of these results substantiate 

the growing body of knowledge regarding the use of the SNT in forced migration 

modeling discussed in Hinsch and Bijak (2019), Reinhardt et al. (2019), Al-Khulaidy and 

Swartz (2020), Blumenstock, Chi, & Tan (2019), and Collins and Frydenlund (2016) and, 

for the first time, applies this theory to a real-world forced migration scenario at scale. 

The computational methods with which SNT has been applied are available for 

replication, maturation, and re-application to other forced migration scenarios in the 

future, constituting a methodological contribution. Finally, in practical applications of the 

model, the results in Chapter 4 demonstrate that including these social networks reduces 
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model error. Most importantly, however, the results of this application further support 

this vein of analytic inquiry by showing that refugees do, indeed, make different 

decisions and settle in different locations as a result of forced displacement when being 

influenced by social networks than when not.  

Research Question 2  

Research question 2 is intended to speak to the CSS modeler and researcher who 

aspires to create ABMs of his or her own. How can ABMs of forced migration be 

designed and developed at scale to facilitate further investigation? One of the primary 

contributions of this dissertation is the computational methodologies provided to assist a 

researcher in developing a simulation quickly, specifically concerning the simulation 

environment. While the FLEE model does provide a generalizable framework and an 

open-source codebase for creating a simulation in a new AOI, the process is manual, 

labor-intensive, and error prone, requiring hand calculations and use of open-source GIS 

and navigation technologies. The methodologies presented in Chapter 3 include a 

codebase separate from the full simulation code exclusively for the creation of a network-

based simulation environment in any AOI regardless of pre-existing refugee crisis 

response infrastructure or aid organization presence. This code is available at 

https://github.com/richey17/mig and is stored in the file pre_process_basic.py with 

associated README. Chapter 3 demonstrates how this code can be used to instantiate a 

new simulation environment in any AOI with varying levels of modeling granularity and 

control using different administrative levels in input shapefiles. This satisfies the aspect 

of the research question around how this research contributes to scalable simulation 
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design and development. The second part of the question is how this particular simulation 

can be deployed at scale given that a 60-day simulation run with 4M refugee agents takes 

96+ hours to run on standard consumer computing hardware. In response to this aspect of 

the question, the codebase is fully parallelized and designed to run in a Linux 

environment reducing full model runtime to just 10-13 hours. This makes testing, 

validation, and experimentation possible at scale – 2M-10M refugee agents. The 

computational experiments reported in Section 4.4. further report testing with up to 25M 

agents.  

Research Question 3  

Research question 3 addresses the application and validation of the model 

designed and developed under RQ1 to a prescient case study – the Syria/Turkey forced 

migration event. How can the model(s) developed in response to RQ1 and RQ2 be 

applied to predict where are refugee populations are likely to move during and directly 

following a forced migration event in the context of a case study? Confidently, from the 

case study presented in Chapter 4, it is shown that ABMs are, indeed, capable of 

empirically modeling and predicting forced migration flows at least insofar as the Syrian 

migration into Turkey is concerned. Model error is comparatively low (0.07 NMAE to 

the FLEE model’s 0.33 NMAE in the same AOI) and several structural and design 

improvements have been made to the state-of-the-art competitor model. Notably, the full 

spatial extent of the AOI in question is modeled here where the FLEE model is only 

capable of modeling a fraction of the country of Turkey. The implication here is that this 

will allow for a more organic modeling effort and for modeling the emergence of 
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unofficial refugee communities within the country – something the FLEE model is 

simply not designed to accomplish. With 98 percent of refugees in Turkey residing 

outside of camps, the ability to model the emergence of these unofficial communities is 

paramount to understanding the refugee crisis in Turkey. Additionally, model error is 

stable over time indicating that this model could reasonably be applied at the onset of a 

new Syrian refugee crisis and used for predictions 30-90 days in the future. These 

methodological improvements are a primary contribution of this research to the CSS 

community.  

In summary, the research developed in the answering of these research questions 

has provided two primary contributions to the scientific and modeling community: 

1. the first scalable ABM of forced migration to consider migrant social 

networks and the substantiation that the inclusion of these networks does, 

indeed, influence migrant decision-making in real-world conditions 

2. methodological improvements to the state-of-the-art FLEE model which 

contribute to the extensibility and applicability of the model to include 

publicly available computational tools and methodologies to facilitate 

replication of this model and other modeling efforts in the CSS community, 

suggestions for which are discussed in the following section.  

6.2 Future Work 

It is my hope that the data pre-processing pipelines created in response to RQ2 

will be used by other researchers to create simulation environments in a variety of AOIs 

quickly. This automation will simplify a large task for CSS modelers in the future who 
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may wish to pursue the development of an authoritative ABM framework for forced 

migration, making possible the creation of many simulation environments globally for 

testing and validation purposes. For this reason, these codebases are available publicly at 

https://github.com/mrichey17/mig to facilitate further development. The simulation 

environment codebase is bereft of any model logic (pre_process_basic.py and 

pre_process_conversion.py), so new model logic can be applied to that simulation 

infrastructure or the model logic presented in this dissertation matured and applied to 

other AOIs using the full ABM codebase (run_abm_shared_mem.py).  

The work presented herein necessitates application to other AOIs to assess its 

generalizability to other forced migration phenomena which would entail the possible 

addition of model design features and mechanics, such as additional agent classes. It is 

recommended to start with other AOIs for which historical data exist such as CAR and 

Colombia, though forced migration models for Eastern and parts of Western Europe 

would be prescient given current events. Regarding this specific model, the work of 

Reinhardt et al. (2019) sets a brilliant example of developing ABMs in pairs in different 

programming languages. This model could be implemented using another programming 

language for comparative purposes, or to facilitate greater scalability through MASON or 

another ABM parallelization or distributed computing framework.  

The most important area of further research, however, is that of the social 

influence component. While this dissertation has contributed greatly to that body of 

knowledge by creating the first ever ABM of forced migration to explicitly include social 

networks, there is still only one. Future research should develop and test a variety of 
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models around the implementation of social network and social media mechanics and 

build upon the model logic implemented here with those additions. There are several 

categories of social network dynamics within which several models could be developed 

for each to assess the impact of social influence on forced migration through a variety of 

lenses (Frydenlund & De Kock, 2020). Specifically, there are several social influence 

mechanics in voluntary migration models or that stem from the sociology literature that 

would be applicable here. The social network models recommended for future 

investigation are described in Table 14. 
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Table 13 Five suggested models for future work around social network and social influence mechanics 

Suggested Social Network 

Models 

Description Reference 

Dynamic social networks 

Social ties become stronger or 

weaker during the simulation 

depending on agent co-location 

or separation. Social ties can 

also be created. 

Reichlova, 2005 

Strong and weak ties 

Two kinds of social ties (strong 

and weak) are implemented in 

the model and agents’ reliance 

on each is assessed. Empirical 

literature favors strong ties in 

migration research but recent 

developments in forced 

migration research indicate weak 

ties may play a stronger role.  

Bakshy et al., 2012; Centola and 

Macey, 2007; Granovetter, 1977 

Multiple agent classes 

Agent classes with different 

model logic and priorities 

depending on length of time in 

the simulation. Agent classes 

with different model logic and 

priorities depending on 

migration intentions.  

Robinson and Segrott, 2002 

Explicit information exchange 

Develop more sophisticated 

information exchange 

mechanisms for agents to 

communicate in a more detailed 

way about the forced migration 

environment.  

Hinsch and Bijak, 2019; 

Reinhardt et al., 2019 

Structural assessments 

Analyze structures and 

substructures of migrant social 

networks to determine which 

types of social networks and 

what structural features of those 

networks are most realistic for 

modeling forced migrant social 

ties. 

Blumenstock, Chi, and Tan, 

2019; Garip, 2008 

 

 First, and likely the most computationally intensive of them all, is the dynamic 

evolution of social networks during model runs. Reichlova (2005) uses agents in a model 

of voluntary migration that have a strong preference for being in the same location as 

their social ties. These social ties also become stronger with every step that agents are co-

located and, conversely, degrade with spatial separation of agents. This model logic is 
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preliminarily included in the full codebase of this dissertation but was not implemented 

or tested fully. Along these same lines, this model could also allow for the creation of 

new social ties during simulation runtime; for example, if two agents are co-located in a 

refugee camp for more than 14 steps, a social tie would be created, and then strengthen or 

decay based on continued co-location or separation. This model would likely add realism 

to the model and it would be interesting to see if such a mechanic decreased overall 

model error.  

The second model should explore the influence of both strong and weak ties on 

agent decision-making and model error separately. When considering social networks in 

migration, intuition suggests that strong ties, or familial ties, are what impacts migrant 

decision-making the most. In voluntary migration this is likely true; family members 

migrating to locations where other family members have expatriated (Hanson, 2006). The 

empirical literature follows this intuition and emphasizes stronger ties (Simon, 2019; 

King, 2012). Research specifically into refugees’ use of social media, however, has 

shown that weak ties are just as important, if not more important, in forced migration 

contexts; for example, refugees exchanging phone numbers with unknown people to get 

live updates on a migration route from a group of people that departed a few hours prior 

(Dekker et al., 2018; Borkert, Fisher, & Yafi, 2018; Richey, 2014b). It is therefore 

relevant for a social networking model to study the effects of strong ties versus weak ties 

in agent decision-making, implementing these mechanics within a model in keeping with 

Grannovetter’s (1977) original theory (Bashy et al., 2012). This model could be 

implemented by expanding the model logic of this dissertation model around friendship 
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and kinship ties, which are distinguished as model parameters but do not lead to different 

agent logic or behaviors.  

A third model could propose multiple agent classes as a way to test different agent 

decision-making logic depending upon an agent’s progress through the migration 

journey. DeAngelis and Diaz (2019) review many implementations of evolutionary 

decision logic that could be applicable here, to include ML-based decision logic. Multiple 

agent classes are initially suggested to include an agent class comprised of refugees 

already in the target country at the time of simulation start and a second agent class 

comprised of refugees that have recently crossed a border or are seeded during the course 

of the simulation. Refugees in the first agent class would be more inclined to stay at their 

present location, provided their present location was sufficient in all other variables. 

These agents would serve as pull factors in the social network, attracting other agents to 

their present location. Their logic should be biased more strongly to remain in their 

present locations provided they are located in an urban center or otherwise outside an 

official refugee camp. The second agent class would require logic that is much more 

responsive to pull factors; specifically, the social network.  In short, movement of one 

refugee class needs to be less dependent on the social network than the movement of 

another refugee class. Multiple agent classes could also be explored to represent refugees 

with different goals, e.g., to return to the country of origin, to settle in the country of 

asylum, or to transit to another country. It would be difficult, however, to empirically 

justify how many of each type of refugee to initiate in the model as many refugees are 
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undecided at time of travel (Robinson & Segrott, 2002; Baban, Ilcan, & Rygiel, 2017; 

İçduygu, 2015; International Crisis Group, 2018; Richey, 2014b).  

The recent work of Hinsch and Bijak (2019) and Reinhardt et al. (2019) have 

explored the nature of information exchange and social capital in the context of a highly 

abstract migration ABM. This application presents ways in which agents can exchange 

information about their current statuses and the environment in much more detail than the 

naïve social networking agents implemented in this model. A new model should 

implement information exchange, social, influence, and social capital in a much more 

rigorous and explicit manner to evolve the sophistication of agent-to-agent 

communication regarding aspects of forced migration.  

The fifth and final suggested model is a model that explores the impact structural 

elements of the social network may have on agent decision-making and model error. The 

model presented in this dissertation creates agent social networks randomly without 

conforming to any known network creation logic such as preferential attachment or the 

deliberate creation of small world networks. No effort was put, in this dissertation, 

towards analyzing the structures and substructures of agent social networks and the 

impacts these may have on the model, e.g., average path length, network density, network 

transitivity, clustering, etc. Research around social networks is substantive and it is not 

lacking for theories of social influence and contagion and it is proposed that they be 

explored in the context of their impact on forced migrant social networks (Blumenstock, 

Chi, & Tan, 2019; Garip, 2008; McAuliffe, 2013; Herrera, Armelini, & Salvaj, 2015). 
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The work presented in this dissertation represents meaningful steps in the 

direction of considering a social networking component in forced migration modeling. It 

is the hope that this line of research will be continued leveraging many of the model 

design mechanics and computational methods outlined in the previous chapters, if not to 

the benefit of the CSS modelers, sociologists, and aid organizations charged with 

addressing refugee crises worldwide, then to the benefit of the refugees themselves who, 

in times of instability and insecurity, seek asylum and safety above all else. 
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