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A THEORY AND
METHODOLOGY OF
INDUCTIVE LEARNING

Ryszard S. Michatiski
University of llinois
at Urbana-Champaign

ABSTRACT

The presented theory views inductive learning as a heuristic search through
a space of symbolic descriptions, generated by an application of various in-
ference rules to the initial observational statements. The inference rules include
generalization rules, which perform generalizing transformations on descriptions,
and conventional truth-preserving deductive rules. The application of the in-
ference rules to descriptions is constrained by problem background knowledge,
and guided by criteria evaluating the “quality” of generated inductive assertions.

Based on this theory, a general methodology for learning structural descrip-
tions from examples, called Star, is described and illustrated by a problem from
the area of conceptual data analysis.

4.1 INTRODUCTION

“..Scientific knowledge through demonstration’ is impossible unless a
man knows the primary immediate premises .. We must get to know the
primary premises by induction; for the method by which even sense-
perception implants the universal is inductive.”—Aristotle, Posterior
Analytics, Book II, Chapter 19 (circa 330 B.C.)

The ability of people to make accurate generalizations from a few scattered

'That is, what we now call “deduction”.
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84 CHAPTER 4: INDUCTIVE LEARNING

facts or to discover patterns in seemingly chaotic collections of observations is a
fascinating research topic of long-standing interest. The understanding of this
ability is now also of growing practical importance, as it holds the key to an
improvement of methods by which computers can acquire knowledge. A need
for such an improvement is evidenced by the fact that knowledge acquisition is
presently the most limiting “bottleneck” in the development of moder
knowledge-intensive artificial intelligence systems.

The above ability is achieved by a process called inductive learning, that
s, inductive inference from facts provided by a teacher or the environment. The
study and modeling of this form of learning is one of the central topics of
machine learning. This chapter outlines a theory of inductive learning and then
presents a methodology for acquiring general concepts from examples.

Before going further into this topic, let us first discuss the potential for
applications of inductive learning systems. One such application is an automated
construction of knowledge bases for expert systems. The present approach to
constructing knowledge bases involves a tedious process of formalizing experts’
knowledge and encoding it in some knowledge representation system, such as
production rules [Shortliffe, 1976; Davis & Lenat, 1981] or a semantic network

[Brachman, 1979; Gaschnig, 1980}. Inductive learning programs could provide
both an improvement of the current techniques and a basis for developing alter-
native knowledge acquisition methods.

In appropriately selected small domatns, inductive programs are already
able to determine decision rules by induction from examples of expert decisions.
This process greatly simplifies the transfer of knowledge from an expert into a
machine. The feasibility of such inductive knowledge acquisition has been
demonstrated in the expert systemi PLANT/DS, for the diagnosis of soybean dis-
eases. In this system, the diagnostic rules were developed in two ways: by
formalizing experts’ diagnostic processes and by induction from examples. In an
experiment where both types of diagnostic rules were tested on a few hundred
discase cases, the inductively-derived rules outperformed the expert-derived ones
[Michalski &-Chilausky, 1980]. Another example is an inductive acquisition of
deciston rules for a chess end-game [Michalski & Negri, 1977; Quinlan, 1979
Shapiro & Niblett, 1982; O’Rorke, 1982]. (See also Chapter 15 of this book.)

A less direct, but potentially promising, use of inductive learning is for the
refinement of knowledge-bases initially developed by human experts. Here, in-
ductive learning programs could be used to detect and rectify inconsistencies, to
remove redundancies, to cover gaps, and to simplify expert-derived decision
rules. By applying an inductive inference program to the data, consisting of
original rules and examples of correct and incorrect results of these rules’ perfor-
mance in new situations, the rules could be incrementally improved with little or
no human assistance.

Another important application of inductive programs is in various ex-
perimental sciences, such as biology, chemistry, psychology, medicine, and
genetics.  Here they could assist a user in detecting interesting conceptual pat-
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terns or in revealing structure in collections of observations. The widely used
traditional mathematical and statistical data analysis techniques, such as regres-
sion analysis, numerical taxonomy, or factor analysis, are not sufficiently power-
ful for this task. Methods for conceptual data analysis are needed, that generate
not merely mathematical formulas but logic-style descriptions, characterizing data
in terms of high-ievel, human-oriented concepts and relationships. An early ex-
ample of such an application is the META-DENDRAL program [Buchanan &
Feigenbaum, 1978], which infers cleavage rules for mass-spectrometer simulia-
tion. (See its analysis in Chapter 3 of this book.) :

There are two basic modes in which inductive programs can be utilized: as
interactive tools for acquisition of knowledge from specific facts or examples, or
as parts of machine-learning systems. In the first mode, a user supplies learning
examples and exercises strong control over the way the program is used (for ex-
ample, {Michalski, 975a; Quinlan, 1979; Michalski & Chilausky, 1980] and
Chapter 15 of this book).

In the second mode, an inductive program is a component of an integrated
learning system whose other components generate the needed learning examples
(Buchanan er al., 1979]. Such examples—positive and negative—constitute the
feedback from the system’s attempts to perform a desired task. An example of
the second mode is the learning system LEX for symbolic integration (see Chap-
ter 6 of this book), where a “genéralizer” module performs inductive inference
on instances provided by a “critic” module. Another example is discussed in
Chapter 5 of this book, in the context of analogy-based learning.

From the viewpoint of applications, such as aiding the construction of ex-
pert systems or conceptual analysis of experimental data, the most relevant is
concepiual inductive learning. We use this term to designate a type of inductive
learning whose final products are symbolic descriptions expressed in high-level,
liuman-oriented terms and forms (more details are given in Section 4.3.1). The
descriptions typically apply to real world objects or phenomena, rather than
abstract mathematical concepts or computations. This paper is concerned specifi-
cally with conceptual inductive learning.

The most frequently studied type of such learning is concept learning from
examples (called also concept acquisition), whose task is to induce general
descriptions of concepts from specific instances of these concepts. The early
studies of this subject go back to the fifties, for example, [Hovland, 1952;
Bruner er al., 1956; Newell et al., 1960; Amarel, 1960; Feigenbaum, 1963:
Kochen, 1960; Banerji, 1962; Simon & Kotovsky, 1963; Hunt er al., 1966;
Hajek er al., 1966; Bongard, 1970]. Among more recent contributions there are,
for instance, [Winston, 1970; Waterman, 1970; Michalski, 1972; Hayes-Roth,
1973; Simon & Lea, 1974; Stoffel, 1974; Vere, 1975; Larson & Michalski,
1977, Mitchell, 1978; Quinlan, 1979; Moraga, 1981]. An important variant of
concept learning from examples is the incremental concept refinement, where the
input information includes, in addition to the training examples, previously-
learned hypotheses, or human-provided initial hypotheses that may be partially
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incorrect or incomplete [Michalski & Larson, 1978]. Chapter 3 of this book dis-
cusses various evaluation criteria and several methods for concept learning from
examples.

Another type of conceptual inductive learning is concept learning from ob-
servation {or descriptive generalization), concerned with establishing new con-
cepts or theories characterizing given facts. This area includes such topics as
automated theory formation (for example, [Lenat, 1976] and Chapter 9 of this
book), discovery of relationships in data (for example, [Hdjek & Havrinek,
1978; Pokorny, 1980; Zagoruiko, 1981} and Chapter 10 of this book), or an
automatic construction of taxonomies {for example, Chapter 11 of this book).
Differences between concept learning from examples and concept learning from
observation are discussed in more detail in the next section.

Conceptual inductive learning has a strong cognitive science flavor. lis
emphasis on inducing human-oriented, rather than machine-oriented descriptions,
and its primary interest in nonmathematical domains distinguishes it from other
types of inductive learning, such as grammatical inference and program syn-
thesis. In grammatical inference, the task is to determine a formal grammar that
can generate a given set of symbol strings (for example, [Solomonoff, 1964;
Biermann & Feldman, 1972; Yau & Fu, 1978; Gaines, 1979]). In program syn-
thesis the objective is to construct a computer program from IO pairs or com- .
putational traces, or to transform a program from one form to another by apply-
ing correctness-preserving transformation rules (for example, [Shaw ef al., 1975;
Burstali & Darlington, 1977; Case & Smith, 1981; Biermann, 1978; Jouannaud
& Kodratoff, 1980; Smith, 1980; Pettorossi, 1980]). The final result of such
learning is a computer program, in an assumed programming language, destined
for machine rather than human “consumption”. For example, the method of
“mmodel inference” by Shapiro [1981] constructs a PROLOG program characterizing
a given set of mathematical facts.

Recent years have witnessed the development of a number of task-oriented
inductive learning systems that have demonstrated an impressive performance in
their specific domain of application. Major weaknesses, however, persist in
much of the research in this area. Most systems lack generality and exten-
sibility. The theoretical principles upon which they are built are rarely well ex-
plained. Lack of common terminology and an adequate formal theory makes it
difficult to compare different learning methods.

In the following sections we formulate logical foundations of inductive
learning, define various types of such learning, present inference rules for
generalizing concept descriptions, and finally describe a general methodology,
called Star, for learning structural descriptions from examples. To improve the
readability of this chapter, Table 4-1 provides a list of basic symbols used, with
a short explanation. The Appendix gives the details of the description language
used (the annotated predicate calculus).
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"Fable 4-1: A Table of Basic Symbois

m~ negation

& conjunction (logical product)

vV disjunction (logical sum)

= implication

== logical equivalence

« term rewriting

\ exception (symmetric difference)

F a set of facts (formally, a predicate that is true for ali the facts)
H a hypothesis (an inductive assertion)

|> specialization

|<< generalization

1= reformulation

dv existential quantifier over v;

D) v; numerical quantifier over v; (Lis a set of integers)

Vv, universal quantifier over v:

D a concept description

K; a predicate asserting the name of a concept (a class)

ol the implication linking a concept description with a concept name
e; an event (a description of an object or & situation)

E, a predicate that is true only for the training events of concept K,
X; an attribute (zero- or one-argument descriptor)

LEF a lexicographic evaluation functional

DOM(p) the domain of descriptor p.

4.2 TYPES OF INDUCTIVE LEARNING

4.2.1 Inductive Paradigm

As mentioned before, inductive learning is a process of acquiring
knowledge by drawing inductive inferences from teacher- or
environment- provided facts. Such a process involves operations of generalizing,
specializing, transforming, comecting and refining knowledge representations.
Although it is one of the most common forms of learning, it has one fundamen-
tal weakness: except for special cases, the acquired knowledge cannot, in prin-
ciple, be completely validated. This predicament, observed by the Scottish
philosopher David Hume in the 18th century, is due to the fact that inductively-
acquired assertions are hypotheses with a potentially infinite number of con-
sequences, while only a finite number of confirming tests can be performed.

Traditional inquiries into inductive ‘inference have therefore dealt with
questions of what are the best criteria for guiding the selection of inductive asser-
tions, and how these assertions can be confirmed. These are difficult problems,
permeating all scientific activities. The search for answers has turned inductive
inference into a battlefield of philosophers and logicians. " There was even doubt
whether it would ever be possible to formalize inductive inference and perform it
ot a machine. For example, philosopher Karl Popper [1968] believed that in-
ductive inference requires an irrational element. Bertrand Russell [1946] stated:
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“So far no method has been found which would make it possible to invent
hiypotheses by rule.” George Polya [1954] in his pioneering and now classic
treatise on plausible inference (of which inductive inference is a special case)
observed: “A person has a background, a machine has not; indeed, you can
build a machine to draw demonstrative conclusions for you, but I think you can
never build a machine that will draw plausible inferences.”

The above pessimistic prospects are now being revised. With the develop-
ment of modern computers and subsequent advances in artificial intelligence
research, it is now possible to provide a machine with a significant amount of
background information. Also, the problem of automating inductive inference
can be simplified by concentrating on the subject of hypothesis generation, while
ascribing to humans the question of how to adeguately validate them. Some suc-
cessful inductive mference systems have already been built and a body of
knowledge is emerging about the nature of this inference. The rest of this sec-
tion will analyze the logical basis for inductive inference, and then Section
4.5 will present various generalization rules, which can be viewed as inductive
inference rules. |

In contrast to deduction, the starting premises of induction are specific
facts rather than general axioms. The goal of inference is to formulate plausible
general assertions that explain the given facts and are able to predict new facts.
In other words, inductive inference attempts to derive a complete and correct
description of a given phenomenon from specific observations of that
phenomenon or of parts of it. As mentioned earlier, of the two aspects of induc-
tive inference—the generation of plausible hypotheses and their validation (the
establishment of their truth status)—only the first is of primary interest to induc-
tive learning research. The problem of hypothesis validation, a subject of
various philosophical inquiries (for example, [Carnap, 1962]) is considered to be
of lesser importance, because it is assumed that the generated hypotheses are
judged by human experts, and tested by known methods of deductive inference
and statistics.

As described in Chapter ! of this book, there are several different methods
by which a human (or a machine) can acquire knowledge, such as rote learning
{or learning by being programmed), learning from instruction (or learning by
being told), learning from teacher-provided examples (concept acquisition}, and
learning by observing the environment and making discoveries (learning from ob-
servation and discovery).

Although all of these ways except the first involve some amount of induc-
tive inference, in the last two, that is, in learning from examples and in learning
from observation, this inference is the central operation. These two forms are
therefore considered to be the major forms of inductive leaming. In order to
explain them, let us formulate a general paradigm for inductive inference:

Given:

® Observational  statements (facts), F, that represent specific
knowledge about some objects, situations, processes, and so on,
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s A tentative inductive assertion (which may be null),

o Background knowledge that defines the assumptions and constraints
imposed on the observational statements and generated candidate in-
ductive assertions, and any relevant problem domain knowledge.
The last includes the preference criterion characterizing the desirable
properties of the sought inductive assertion.

Find:

¢ An inductive assertion (hypothesis), H, that tautologically or weakly
implies the observational statements, and satisfies the background
knowledge.

A hypothesis H tautologically implies facts F if F is 2 logical consequence
of H, that is, if the expression H = F is true under all interpretations {*=>”
denotes logical implication). This is expressed as follows:

H 1> F (read: H specializes to F) (1)

or
F 1< H (read: F generalizes to H) (2)

Symbols > and 1< are called the specialization and generalization
symbols, respectively. If H = F is valid, and H is true, then by the law of
detachment (modus ponens) F must be true. Deriving F from H (deductive
inference), is, therefore, truth-preserving. In contrast, deriving H from F
(inductive inference) is not truth-preserving, but falsity-preserving; that is, if -
some facts falsify F, then they also must falsify H. (More explanation on this
topic is given in Section 4.5.)

The condition that H weakly implies F means that facts F are not certain
but only plausible or partial consequences of H. By allowing weak implication,
this paradigm includes methods for generating “soft” hypotheses, which hotd
only probabilistically, and partial hypotheses, which account for some but not ali
of the facts (for example, hypotheses representing “dominant patterns” or charac-
terizing inconsistent data). In the following we will limit our attention to
hypotheses that tautologically imply facts.

For any given set of facts, a potentially infinite number of hypotheses can
be generated that imply these facts. Background knowledge is therefore neces-
sary to provide the constraints and a preference criterion for reducing the infinite
choice to one hypothesis or a few most preferable ones.

A typical way of defining such a criterion is to specify the preferable
properties of the hypothesis—for example, to require that the hypothesis is the
shortest or the most economical description consistent with all the facts (as, for
example, in [Michalski, 1973]). Such a “biased-choice” criterion is necessary
when the description language is complete, that is, able to express any possible
hypothesis. An alternative is to use a “biased-language” criterion [Mitchell,
1978], restricting the description language in which hypotheses are expressed
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(that is, to use an incomplete description language). Although in many methods
the background knowledge is not explicitly stated, the authors make implicit as-
sumptions serving the same purpose. More details on the criteria for selecting
hypotheses are given in Section 4.4.7.

4.2.2 Concept Acquis'Ition versus Descriptive Generatization

As mentioned in the Introduction, one can distinguish between two major
types of inductive learning: learning from examples (concept acquisition) and
learning from observation (descriptive generalization). In concept acquisition,
the observational statements are characterizations of some objects (situations,
processes, and so on) preclassified by a teacher into one or more classes
(concepts). The induced hypothesis can be viewed as a concept recognition rule,
such that if an object satisfies this rule, then it represents the given concept. For
example, a recognition rule for the concept “philosopher” might be:

“A person who pursues wisdom and gains the knowledge of underlying
reality by intellectual means and moral self-discipline is a philosopher.”

In descriptive generalization the goal is to dctermine a general description (a law,
2 theory) characterizing a collection of observations. For example, observing
that the philosophers Aristotle, Plato, and Socrates were Greek, but that Spencer
was British, one might conclude:

“Most philosophers were Greek.”

Thus, in contrast to concept acquisition that produces descriptions for clas-
sifying objects into classes on the basis of the objects’ properties, descriptive
generalization produces descriptions specifying properties of objects belonging to
a certain class. Here are some example problems belonging to the above two
categories:

1. Concept Acquisition:

¢ Learning a characteristic description of a ciass of objects, that
specifies all common propetties of known objects in the class, and by
that defines the class in the context of an unlimited number of other
object classes (for example, [Bongard, 1967; Winston, 1970; Stoffet,
1974; Vere, 1975; Cohen, 1977; Hayes-Roth & McDermott, 1978;
Mitchell, 1978; Stepp, 1978; Michalski, 1980a] and Chapter 3 of this
book). :

® Learning a discriminant description of a class of objects that distin-
guishes the given class from a limited number of other classes (for
example, [Michalski, 1973; Quinlan, 1979; Michalski, 1980a] and
Chapter 15 of this book).

e Inferring sequence extrapolation rules (for example, [Simon &
Kotovsky, 1963; Dietterich, 1979]) able to predict the next clement
(a symbol, a number, an object, and so on) in a given sequence.
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2. Descriptive Generalization:

¢ Formulating a theory characterizing a collection of entities (for ex-
ample, a number theory, as in {Lenat, 1976] and Chapter 9 of this
book).

* Discovering patterns in observational data (for example, [Soloway &
Riseman, 1977; Hdjek & Havrinek, 1978, Pokorny, 1980; Zago-
ruiko, 1981] and Chapter 10 of this book).

¢ Determining a taxonomic description (classification) of a collection of
objects (for example, [Michalski, 980c; Michalski et al., 1981] and
Chapter 11 of this book).

This paper is concerned primarily with problems of concept acquisition. In
this case, the set of observational statements F can be viewed as a collection of
implications:

F: {eik > Ki}! i€l {3)

where e;, (a fraining event) denotes a description of the k! example of concept
(class) asserted by predicate K; (for short, class K;) and I is a set indexing
classes K;. It is assumed here that any given event represents only one concept.
Symbol ::> is used here, and will be used henceforth, to denote the implica-
tion linking a concept description with a predicate asserting the concept name (in
order to distinguish this implication from the implication between arbitrary
descriptions). The inductive assertion H can be characterized as a set of concept
recognition rules:

H: {D; > K}ic¢l 4

where D, is a concept description of class K,, that is, an expression of con-
ditions, such that when they are satisfied by an object, the object is considered
an instance of class K;.

According to the definition of inductive assertion, we must have:

H (> F (5)

By substituting (3) and (4) for F and H, respectively, in (5), and making ap-
propriate transformations, one can derive the following conditions to be satisfied
in order that (5) holds:

Viel(E > D) (6)
and

Vijel(D;> ~Ep, if j # i (7)
where E;, i ¢ I, is a description satisfied by all training events of class K;, and
only by such events (the logical disjunction of training events).

Expression (6) is called the completeness condition, and (7) the Cconsistency

condition. These two conditions are the requirements that must be satisfied for
an inductive assertion to be acceptable as a concept recognition rule. The com-
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pleteness condition states that every training event of some class must satisfy the
description D; of the same class (since the opposite does not have to hold, D, is
equivalent to, or more general than, E;). The consistency condition states that if
an eveni satisfies a description of some class, then it cannot be a member of a
training set of any other class. In learning a concept from examples and counter-,
examples, the latter constitute the “other” ¢lass.

The completeness and consistency conditions provide the logical foundation
of algorithms for concept learning from examples. We will see in Section 4.5
that to derive D; satisfying the completeness condition one can adopt some in-
ference rules of formal logic.

4.2.3 Characteristic versus Discriminant Descriptions

The completeness and consistency conditions allow us to clearly explain
the distinction between the previously mentioned characteristic and discriminant
descriptions. A characieristic description of a class of objects (also known as
conjunctive generalization) is an expression that satisfies the completeness con-
dition or is the logical product of such expressions. It is typically a conjunction
of some simple properties common to all objecis in the class. From the applica-
tions viewpoint,- the most interesting are maximal characteristic descriptions
(maximal conjunctive generalizations) that are the most specific (that is, the
longest) logical products characterizing all objects in the given class, using terms
of the given language. Such descriptions are intended to discriminate the given
class from all other possible classes (for illustration see Section 4.7.2).

A discriminant description is an expression that satisfies the completeness
and consistency condition, or is the logical disjunction of such expressions. It
specifies one or more ways to distinguish the given class from a fixed number of
other classes. The most interesting are minimal discriminant descriptions that
are the shortest (that is, have the minimum number of descriptors) expressions
distinguishing ail objects in the given class from objects of the other classes.
Such descriptions are intended to specify the minimum information sufficient to
identify the given class among a fixed number of other classes (for illustration
see Section 4.7.1).

4.2.4 Single- versus Muitiple-concept Learning |

It is instructive to distinguish between learning a single concept, and iearn-
ing a collection of concepts. In single concept learning, one can distinguish two
cases: (i) when observational statements are just examples of the concept to be
learned (learning from “positive” instances only); and (ii) when they are ex-
amples and counter-examples of the concept (learning from *“positive” and
“negative” instances).

In the first case, because of the lack of counter-examples, the consistency
condition (7) is not applicable, and there is no natural limit to which description
D; (here, i=1) can be generalized. One way to impose such a limit is to specify
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restrictions on the form and properties of the sought description. For example,
one may require that it be the maximal characteristic description, that is, the
longest conjunctive statement satisfying the completeness condition (for example,
[Vere, 1975; Hayes-Roth & McDermott, 1978]). Another way is to require that
the description not exceed a given degree of generality, measured, for exampie,
by the ratic of the number of all distinct events which could potentially satisfy
the description to the number of training instances [Stepp, 1978).

In the second case, when the teacher also provides counter-examples of the
given concept, the learning process is considerably simplified. These counter-
examples can be viewed as representing a “different class”, and the consistency
condition (7) provides an obvious limit on the extent to which a hypothesis can
be generalized. The most useful counter-examples are the so-called “near
misses” that only slightly differ from positive examples [Winston, 1970, 1977).
Such examples place stronger constraints on the generalization process than
randomly-generated examples.

In multiple-concept learning one can also distinguish two cases: (i) when
descriptions D; of different classes are required to be mutually disjoint, that is,
no event can satisfy more than one description; and (if) when they are overlap-
ping. In an overlapping generalization an event may satisfy more than one
description. In some situations this is desirable. For example, if a patient has
two diseases, his symptoms should satisfy the descriptions of both diseases, and
in this case the consistency condition is not appiicable.

An overlapping generalization can be interpreted in such a way that it al-
ways indicates only one decision class. For example, the concept recognition
rules, D; > K;, can be applied in a lincar order, and the first rule satisfied
generales the decision. In this case, if a concept description D for class K; con-
tains a conjunctively-linked condition A, and precedes the rule for class Kj that
contains condition ~A, then the condition ~A is superfluous and can be
removed. As a result, the linearly-ordered recognition rules can be significantly
stmplified. For example, the set of lincarly-ordered rules:

D, 2> K
Dy, > K,
Dy > Ky
is logically equivalent to the set of (unordered) rules:
D[ Pl Kl

~Dy & Dy > K,
"“"DI & """Dz & D3 sl K3
There are also other ways to derive a single decision from overlapping rules,
such as those given in [Davis & Lenat, 1981].
The above forms of multiple-concept learning have been implemented in

inductive programs AQVAL/I [Michalski, 1973] and AQ11 [Michalski & Larson,
19781,
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4.3 DESCRIPTION LANGUAGE

4.3.1 Bias Toward Comprehensibility

In concept acquisition, the main interest is in derivation of symbolic
descriptions that are human-oriented, that is, that are easy to understand and easy
to use for creating mental models of the information they convey. A tentative
criterion for judging inductive assertions from such a viewpoint is provided by
the following comprehensibility postulate:

The results of computer induction should be symbolic descrip-
tions of given entities, semantically and structurally similar to those
a human expert might produce observing the same entities. Com-
ponents of these descriptions should be comprehensible as single
“chunks” of information, directly interpretable in natural language,
and should relate quantitative and qualitative concepts in an in-
tegrated fashion.

As a practical guide, one can assume that the components of descriptions
(single sentences, rules, labels on nodes in a hierarchy, and so on) should be
expressions that contain only a few (say, less than five) conditions in a conjunc-
tion, few single conditions in a disjunction, at most one level of bracketing, at

most one implication, no more than two quantifiers, and no recursion (the exact
~ numbers may be disputed,? but the principle is clear). Sentences are kept within
sich limits by substituting names for appropriate subcomponents. Any operators
used in descriptions should have a simple intuitive interpretation. Conceptually
related sentences are organized into a simple data structure, preferably a shallow
hierarchy or a linear list, such as a frame {Minsky, 1975]. (See also Chapter
9 of this book.) |

The rationale behind this postulate is to ensure that descriptions generated
by inductive inference bear similarity to human knowledge representations
[Hintzman, 1978], and therefore, are easy to comprehend. This requirement is
very important for many applications. For example, in developing knowledge
bases for expert systems, it is important that human experts can easily and reli-
ably verify the inductive assertions and relate them to their own domain
knowledge. Satisfying the comprehensibility postulate will aiso facilitate debug-
ging or improving the inductive programs themselves. When the complexity of
problems undertaken by computer induction becomes very great, the comprehen-
sibility of the generated descriptions will likely be a crucial criterion. This
research orientation fits well within the role of artificial intelligence envisaged by
Michie [1977] 1o study and develop methods for man-machine conceptual inter-
face and knowledge refinement.

?The numbers mentioned seem to apply to the majority of human descriptive sentences.
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4.3.2 Language of Assertions

One of the difficulties with inductive inference is its open-endedness. This
means that when one makes an inductive assertion about some aspect of reality
there is no natural limit to the level of detail in which this reality may be
described, or to the richness of forms in which this assertion can be expressed.
Consequently, when conducting research in this area, it is necessary to cir-
cumscribe very carefully the goals and the problem to be solved. This includes
defining the language and the scope of allowed forms in which assertions will be
expressed, as well as the modes of inference which will be used. The descrip-
tion language should be chosen so that crucial features can be easily encoded
while peripheral or irrelevant information ignored.

An instructive criterion for classifying inductive leaming methods is there-
fore the type of language used to express inductive assertions. Many authors use
a restricted form of predicate calculus or closely related notation (for example,
[Plotkin, 1971; Fikes er al., 1972; Morgan, 1975; Vere, 1975; Banerji, 1980;
Michalski, 1980a; Sammut, 1981; Zagoruiko, 1981]). Some other formalisms
include decision trees [Hunt et al., 1966; Quinlan, 1979] (see also Chapter 15 of
this book), production rules (for example, [Waterman, 1970; Hedrick, 1974] (see
also Chapter 16 of this book), semantic nets (Chapter 13), and frames (Chapter
9). In his earlier work (for example, [Michalski, 1972, 1973, 1975a, 1975b]
this author used a multiple-valued logic propositional calculus with typed vari-
ables, called VL, (the variable-valued logic system one). Later on an extension
of the predicate calculus, called VI,, was developed, that was especially
oriented to facilitate inductive inference [Michalski, 980a].

Here we will use a somewhat modified and extended version of the latter
language, to be called the annotated predicate calculus (APC). The APC adds
to predicate calculus additional forms and new concepts that increase its expres-
sive power and facilitate inductive inference. The major differences between the
annotated predicate calculus and the conventional predicate calculus can be sum-
marized as follows:

1. Each predicate, variable and function (referred to collectively as a
descriptor) is assigned an annotation that contains relevant
problem- oriented information. The annotation may contain the definition
of the concept represented by a descriptor, a characterization of its relation-
ship to other concepts, a specification of the set over which the descriptor
ranges (when it is a variable or a function), a characterization of the struc-
ture of this set, and so on (see Section 4.4),

2. In addition to predicates, the APC also includes compound predicates. Ar-
guments of such predicates can be compound terms, composed of two or
more ordinary terms. -

3. Predicates that express relations =, ¥, =, >, < and < between terms or
between compound terms are expressed explicitly as relational statements,
also called selectors.
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4. In addition to the universal and existential quantifiers, there is also a
numerical quantifier that expresses guantitative information about the ob-
jects satisfying an expression.

The concept of annotation is explained in more detail in the next section.
Other aspects of the language are described in the Appendix. (The reader inter-
ested tn a thorough understanding of this work is encouraged to read the Appen-
dix at this point.)

4.4 PROBLEM BACKGROUND KNOWLEDGE

4.4.1 Basic Components

As we mentioned earlier, given a set of observational statements, one may
construct a potentially infinite number of inductive assertions that imply these
statements. It is therefore necessary to use some additional information, problem
background knowledge, to constrain the space of possible inductive assertions
and locate the most desirable one(s). In this section, we shall look at various
components of the problem background knowledge employed in the inductive
learning methodology called Star, described in Section 4.6. These components
include:

* Information about descriptors (i.e., predicates, variables, or functions) used
in observational statements. This information is provided by an annotation
assigned to each descriptor (Section 4.4.3).

e Assumptions about the form of observational and inductive assertions.

* A preference critericn that specifies the desirable properties of inductive
assertions sought.,

s A variety of inference rules, heuristics, and specialized procedures, general
and problem-dependent, that allow a learning system to generate logical
consequences of given assertions and new descriptors.

Before we examine these components in greater detail, let us first consider
the problem of how the choice of descriptors in the observational statements af-
fects the generated inductive assertions.

4.4.2 Relevance of the Initlal Descriptors

A fundamental problem underlying any machine inductive learning task is
that of what information is provided to the machine and what information the
machine is expected to produce or learn. As specified in the inductive paradigm,
the major component of the input to a learning system is a set of observational
staternents. The descriptors used in those statements are observable characteris-
tics and available measurements of objects under consideration. These descrip-
tors are selected as relevant to the learning task by a teacher specifying the
problem.
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Determining these descriptors is a major part of any inductive leamning
problem. If they capture the essential properties of the objects, the role of the
learning process is simply to arrange these descriptors into an expression con-
stituting an appropriate inductive assertion. If the selected descriptors are com-
pletely irrelevant to the learning task (as the color, weight, or shape of men in
chess is irrelevant to deciding the right move), no learning system will be able to
construct @ meaningful inductive assertion.

There is a range of intermediate possibilities between the above two ex-
tremes. Consequently, learning methods can be characterized on the basis of the
degree to which the initial descriptors are relevant to the learning problem.

Three cases can be distinguished:

1. Complete relevance—In this case all descriptors in the observational state-
ments are assumed to be directly relevant to the learning task. The task of
the learning system is to formulate an inductive assertion that is a math-
ematical or logical expression of some assumed general form that properly
relates these descriptors (for example, a regression polynomial).

2. Partial relevance—Observational statements may contain a large number
of irrelevant or reduridant descriptors. Some of the descriptors, however,
are relevant, The task of the learning system is to select the most relevant
ones and construct from them an appropriate inductive assertion.

3. Indirect relevance—QObservational statements may contain no directly-
relevant descriptors. However, among the initial descriptors there are
some that can be used to construct derived descriptors that are directly
relevant, The task of the learning system is to construct those derived
descriptors and formulate an appropriate inductive assertion. A simple
form of this case occurs, for example, when a relevant descriptor is the
volume of an object, but the observational statements contain only the in-
formation about the object’s dimensions (and various irrelevant facts).

The above three cases represent problem statements that put progressively
less demand on the relevance of the initial descriptors (that is, that require less
work from the person defining the problem) and more demand on the learning
system.  Early work on adaptive control systems and concept formation
represents case 1. More recent research has dealt with case 2, which is ad-
dressed in selective inductive learning. A method of such learning must possess
efficient mechanisms for determining combinations of descriptors that are
relevant and sufficient for the learning task. Formal logic provides such
mechanisms, and therefore it has become the major underlying formalism for
selective methods.

An example of a selective learning method is the one implemented in
program AQUI [Michaiski & Larson, 1978] that inductively determined soybean
disease diagnostic rules for the system PLANT/DS, mentioned in the Introduction.
A different type of selective method was implemented in program D3 (Chapter
15) that determines a decision tree for classifying a large number of events. A
comparison between these two programs is described by O'Rorke {1982].
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Case 3 represents the task of constructive inductive learning. Here, a
method must be capable of formulating new descriptors (that is, new concepts,
new variables, and the like), of evaluating their relevance to the learning task
and of using them to construct inductive assertions. There has been relatively
little dong in this area. The “automated mathematician” program AM (Chapter 9)
can be classified as a domain-specific system of this category. Some construc-
tive learning capabilities have been incorporated in system BACON that automati-
cally formulates mathematical expressions encapsulating chemical and other laws

[Langley et al., 1980] (see also Chapter 10). The general-purpose INDUCE
program for learning structural descriptions from examples incorporates several
constructive generalization techniques [Larson, 1977, Michaiski, 1980a]. Sec-
tions 4.5 and 4.6 give more details on this subject,

4.4.3 Annotation of Descriptors

An annotation of a descriptor (that is, of a predicate, variable, or function)
is a store of background information about this descriptor tailored to the léarning
problem under consideratior:. It may include:

¢ A specification of the domain and the type of the descriptor (see below).

e A specification of operators applicable to it.

» A specification of the constraints and the relationships between the descrip-
tor and other descriptors.

e For numerical descriptors, the mean, the variance, or the complete prob-
ability distribution of values for the problem under consideration.

e A characterization of objects to which the descriptor is applicable (such as
a characterization of its possible arguments).

o A specification of a descriptor class containing the given descriptor, that is,
the parent node in a generalization hierarchy of descriptors (for example,
for descriptors “length”, “width”, and *height”, the parent node would be
the “dimensions”).

s Synonyms that can be used to denote the descriptor.

s A definition of a descriptor {when it is derived from some other
descriptors).

e If a descriptor denotes a class of objects, typical examples of this class can
be specified. -

Let us consider some of the above components of the annotation in greater
detail.

4.4.4 The Domain and Type of a Descriptor

Given a specific problem, it is usually possible to specify the set of values
each descriptor could potentially adopt in characterizing any object in the popula-
tion under consideration. Such a set is calied the domain (or the value set) of
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the descriptor. The domain is used to constrain the extent to which a descriptor
can be generalized. For example, the information that the temperature of a
living human being may vary, say, only between 34°C and 44°C prevents the
system from considering inductive assertions in which the descriptor “body
temperature” would assume values beyond these limits.

Other important information for conducting the generalization process is
concerned with the structure of the domain, that is, with the relationship existing
among the elements of the domain. For numerical descriptors, such relationships
are specified by the measurement scale. Depending on the structure of the
descriptor domain, we distinguish among three basic types of descriptors:

1. Nominal (categorical) descriptors—The value set of such descriptors con-
sists of independent symbois or names, that is, no structure is assumed to
relate the values in the domain. For example, “blood-type(person)” and
“name(person)” are unary nominal descriptors. Predicates, that is, descrip-
tors with the value set {True, False}, and n-ary functions whose ranges are
unordered sets, are also nominal descriptors. An example of a two-
argument nominal descriptor is “license-plate-number(car, owner)”, which
denotes a function assigning to a specific car of the given owner a license
plate number.

2. Linear descriptors—The value set of linear descriptors is a totally ordered
sct. For example, a person’s military rank or the temperature, weight, or
number of items in a set is such a descriptor. Variables measured on or-
dinal, interval, ratio, and absolute scales are special cases of a linear
descriptor. Functions that map a set into a totally-ordered set are also
linear descriptors, for example, “distance(P;,P,)".

3. Structured descriptors—The value set of such descriptors has a tree-
oriented graph structure that reflects the generalization relation between the
values, that is, is a generalization hierarchy. A parent node in such a
structure represents a more general concept than the concepts represented
by its children nodes. For example, in the value set of descriptor “place”,
“U.S.A.” would be a parent node of the nodes “Indiana™, “Iilinois”,
“Towa”, and so on. The domain of structured descriptors is defined by a
set of inference mles specified in the problem background knowledge (see,
for exampie, descriptor “shape(B;)” in Section 4.7.

Structured descriptors can be further subdivided into ordered and unordered
structured descriptors (see Chapter 11).

Sometimes, descriptors themselves can also be organized into a generaliza-
tion hierarchy. For example, as already mentioned, the descriptors “length”,
“width”, and “depth” belong to a class of “dimensions”. Information about the
type of a descriptor is useful as it determines the operations applicable to a
descriptor.
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4.4.5 Constraints on the Description Space

For a given induction problem there may exist a variety of constraints on
the space of the acceptable concept descriptions, due to the specific properties
and relationships among descriptors. Here are a few examples of such relation-
ships:

e Interdependence among values—In many practical problems some vari-
ables specify a state of an object, and some other variables characterize the
state. Depending on the values of the state-specifying variables, the vari-
ables characterizing 2 state may or may not be needed. For example, if a
descriptor “state(plant’s leaf)” takes on value “diseased”, then a descriptor
“leaf discoloration” will be used to characterize the change of the teaf's
color. Whea the descriptor “state(plant’s leaf)” takes on value “normal”,
then obviously the “leaf discoloration” descriptor is irrelevant. Such infor-
mation can be represented by an implication:

[state(plant’s leaf) = normal] => [discoloration(plant’s leaf) = NA]

where NA is a special value meaning “not applicable”.

s Properties of descriptors—Descriptors that are relations between objects
may have certain general properties—they can be reflexive, symmetric,
transitive, and so on. All such properties are defined as assertions in the
annotated predicate calculus (see the Appendix). For example, the tran-
sitivity of relation “above(P;,P;)"” can be defined as:

VP 1 *PE'PS" (abOVC(P 1 ,Pz) & abGVE(Pz,Pj)) = above(P 1 ,Pa)

o Interrelationships among descriptors—In some problems there may exist
relationships between descriptors that constrain their values. For example,
the length of an object is assumed always to be greater than or equal to its
width:

Y P, length(P) = width(P)

Also, descriptors may be related by known equations. For example, the
area of a rectangle is the arithmetic product of its length and width:

¥V P, ([shape(P) = rectangle] = [area(P} = length(P) X width(P)])
The infix operator “X” is used to simplify notation of the term
multiply(length(P}, width(P)). :
4.4.6 The Form of Observational and Inductive Assertions
The basic form of assertions in the Star methodology is a c-expression,
defined as a conjunctive statement:
<quantifier' form><conjunction of relational statements> &)

where <quantifier form> stands for zero or more quantifiers, and <relational
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statements>> are predicates in a special form, as defined in the Appendix. The
following is an example of a c-expression:

3. Py,P,,P,.Py{[contains(Py,P,Py,P3)][ontop(Py &P, P4)][length(P ) =3..5]
[weight(Py) > weight(P;][color(P|)=red V blue][shape(P; & P, & P3)= box]

that can be paraphrased in English:

An object Py contains parts Py, P, and P4 and only these parts. Parts
P, & P, are on top of part P4, length of P, is between 3 and 5, the weight
of Py is greater than that of Py, the color of Py is red or blue, and the
shape of all three parts is box.

An important special case of a c-expression is an a-expression {an atomic
expression), in which there is no “internal disjunction™ (see the Appendix).

Note that due to the use of internal disjunction a c-expression represents a
more general concept than a universally quantified conjunction of predicates,
used in typical production rules. '

Progressively more complex forms of expressions are described below:

e A case expression is a logical produet of implications:
[L = a;] > Exp;, t = 1,2,..

where a; are single elements or disjoint subsets of elements from the
domain of descriptor L., and Exp; are c-expressions.

A case expression describes a class of objects by splitting it into
separate cases, each represented by a different value(s) of a certain descrip-
tor.

e An implicative expression (i-expression):
C&(C,; > Cy ©)

where C, C; and C, are c-expressions.

This form of description is very useful when the occurrence of some
properties {(defined in ;) depends on the occurrence of some other
properties {defined in C;). Typical production rules used in expert systems
are a special case of (9), where C is omitted and no internal logical
operators are used. When (C, = C,) is omitted, then the conditional ex-
pression becomes a c-expression.

e A disjunctive expression (d-expression), defined as a disjunction of im-
plicative expressions. ;

® An exception-based expression (e-expression). In some situations it is
simpler to formulate a somewhat overgeneralized statement and. indicate
exceptions than to formulate a precise statement. The following form is
used for such purposes:

D, \D,

where D) and D, are d-expressions. This expression is equivalent to (~D;
> D) & (D, > ~Dyp).
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Observational assertions are formulated as a set of rules:

{a-expression > K} (10)
Inductive assertions are expressed as a set of rules:
{EXP :> c-expression} (11)

where EXP 1s a c-expression or any of the more complex expressions
described above. It is also assumed that the left side and the right side of
(11) satisfy the principle of comprehensibility described in Section 4.2.

4.4.7 The Preference Criterion

In spite of the constraints imposed by the above components of the back-
ground knowledge, the number of inductive assertions consistent with obser-
vational statements may still be unlimited. The problem then arises of choosing
the most desirable inductive assertion(s). In making such a choice, one must
take into consideration the aspects of the particular inductive learning problem;
therefore the definitton of a *preference criterion” for selecting a hypothesis is a
part of the probiem background knowledge. Typically, the inductive assertions
are chosen. on the basis of some simplicity criterion (such as given in {Kemeni,
1953; Post, 19601). |

In the context of scientific discovery, philosopher Karl Popper [1968] has
advocated constructing hypotheses that are both simple and easy to refute. By
generating such hypotheses and conducting experiments aimed at refuting them,
he argues, one has the best chance of ultimately formulating the true hypothesis.
In order to use this criterion for automated inductive inference, it is necessary to
define it formally. This, however, is not easy because there does not seem to
exist any universal measure of hypothesis simplicity and refutability.

Among more specific measures for evaluating the “quality” of inductive
assertions one may list:

¢ An overall simplicity for human comprehension, measured, for example,
by the number of descriptors and number of operators used in an inductive
assertion,

e The degree of “fit” between the inductive and observational assertions
(measured, for example, by the degree of generalization, defined as the
amount of uncertainty that any given description satisfying the inductive
assertion corresponds to some observational statement [Michalski, 980c]).

¢ The cost of measuring values of descriptors used in the inductive assertion.

e The computational cost of evaluating the inductive assertion.

¢ The memory required for storing the inductive assertion.

e The amount of information needed for encoding the assertion using
predefined operators [Couton & Kayser, 1978].

The importance given to each such measure depends on the ultimate pur-
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pose of constructing the inductive assertions. For that reason, the Star methodol-
ogy allows a user to build a global preference criterion as a function of such
measures, tailored to a specific inductive problem. Since some of the above
measures are computationally costly, simpler measures are used, called efemen-
tary criteria. Among such criteria are: the number of c-expressions in the asser-
tion, the total number of relational statements, the ratio of possible but unseen
events implied by an assertion to the total number of training events (a simple
measure of generalization), and the total number of different descriptors. The
global preference criterion is formulated by selecting from the above list those
elementary criteria that are most relevant to the problem, and then arranging
them into a lexicographic evaluation functional (LEF). A LEF is defined as a
sequence of criterion-tolerance pairs:

LEF: (Cl, TI)’ {Cz,'l'z)... (12)

where ¢; is an elementary criterion selected from the available “menu”, and 7, is
a tolerance threshold for criterion ¢; (7; ¢ [0..100%)).

Given a set of inductive assertions, the LEF determines the most preferable
one(s) in the following way: ‘

In the first step, all assertions are evaluated from the viewpoint of criterion
c|, and those which score best, or within the range defined by the threshold 7,
from the best, are retained. Next the retained assertions are evaluated from the
viewpoint of criterion ¢, and reduced similarly as above, using tolerance 5.
This process continues until either the subset of retained assertions contains only
one assertion {the “best” one) or the sequence of criterion-tolerance pairs is ex-
hausted. In the latter case, the retained set contains assertions that are equivalent
from the viewpoint of the LEF.

An important and somewhat surprising property of such an approach is that
the same learning system can generate either characteristic or discriminant
descriptions of object classes by properly defining the preference criterion (see
Section 4.7).

4.5 GENERALIZATION RULES

4.5.1 Definitions and an Overview

Constructing an inductive assertion from observational statements can be
conceptually characterized as a heuristic state-space search [Nilsson, 1980],
where:

® states are symbolic descriptions; the initial state is the set of observational
statements.

& operators are inference rules, specifically, generalization, specialization
and reformulation rules, as defined below.

s the goal state is an inductive assertion that implies the observational state-
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ments, satisfies the problem background knowledge and maximizes the
given preference criterion.

A peneralization rule is a transformation of a description into a more
general description, one that tautologically implies the initial description. A
specialization rule makes an opposite transformation: given a description, it
generates a logical consequence of it. A reformulation rule transforms a descrip-
tion into another, logically-equivalent description. A reformulation rule can be
viewed as a special case of a2 generalization and a specialization rule.

Specialization and reformulation rules are the conventional truth-preserving
inference rules used in deductive logic. In confrast to them, the generalization
rules are not truth-preserving but falsity preserving. This means that if an event
falsifies some description, then it also falsifies a more general description. This
is immediately seen by observing that H = F is equivalent to ~F = ~H (the
law of contraposition). To illustrate this point, suppose that a statement “some
water birds in this lake are swans” has been generalized to *‘all water birds in
this lake are swans.” If there are no water birds in the lake that are swans, then
this fact falsifies not only the first statement but also the second. Falsifying the
second statement, however, does not imply the falsification of the first.

In concept acquisition, as explained in Section 4.2.2, transforming a rule
E 1> Kinto a more general rule D :> K means that description E must
imply description D

E>D (13)
(recall expression (6)). Thus, to obtain a generalization rule for concept acquisi-
tion, one may use a tautological implication of formal logic. The premise and

consequence of such an implication must, however, be interpretable as a descrip-
tion of a class of objects. For example, the known law of simplification:

P&Q>P (14)
can be turned into a generalization rule:
P&Q > K I< P > K (15)

If P stands for “round objects”, Q for “brown objects” and K for “balls”,
then rule (15) states that the expression “round and brown objects are balls” can
be generalized to “round objects are balls.” Thus, in concept acquisition, the
generalization operation has a simple set-theoretical interpretation: a description
is more general if it is satisfied by a larger number of objects. (Such an inter-
pretation does not apply, however, to descriptive generalization, as shown
below.)

In order to obtain a rule for descriptive generalization, implication (14) is
reversed, and P and Q are interpreted as properties of objects of some class K:

P(K) < P(K)&QK) (16)

If P(K) stands for “balls are round” and Q(K) for “balls are brown,” then
according to rule (16), the statement “balls are round and brown” is a generaliza-
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vion of the statement “balls are round” (because from the former one can deduce
the latter). We can see that the notion “the number of objects satisfying a
description” is not applicable here. Generalizing means here adding
(hypothesizing) properties that are ascribed to a class of objects.

After this informal introduction we shall now present various *ypes of
generalization rules, concentrating primarily on the rules for concept acquisition.
These rules will be expressed using the notation of the annotated predicate cal-
culus (see the Appendix). The reverse of these rules are specialization rules and,
as special cases, reformulation rules. With regard to other specialization and
reformulation rules we shall refer the reader to a standard book on predicate cal-
culus (such as [Suppes, 1957]). Some reformulation rules of the annotated
predicate calculus that do not occur in ordinary predicate calculus are given in
the Appendix.

We will restrict our attention to generalization rules that transform one or
more statements into a single more general statement:

D, => Ky < D> K (17)

Such a rule states that if an event (a symbolic description of an object or
situation) satisfies any description Dy, i ¢ 1, then it also satisfies description D
(the reverse may not be true). A basic property of the generalization transfor-
mation is that the resunlting description has “unknown” truth-status, that is, is a
hypothesis that must be tested on new data. A generalization rule does not
guarantee that the obtained description is useful or plausible.

We distinguish between two types of generalization rules, selective and
constructive. If every descriptor used in the generated concept description D is
among descriptors occurring in the initial concept descriptions Dy, i=1,2,.., then
the rule is selective, otherwise it is constructive. |

4.5.2 Selective Generalization Ruiles

In the rules presented below, CTX, CTX, and CTX, stand for some ar-
bitrary expression$ (context descriptions) that are augmented by additional com-
ponents to formulate a concept description.

¢ The dropping condition rule—This rule is a generalized version of the
previousty described rule (15}:

CTX &S ;> K I (CTX > K {18)

where S is an arbitrary predicate or logical expression.

This rule states that a concept description can be generalized by simply
removing a conjunctively-linked expression. This is one of the most commonly-
used rules for generalizing information.

e The adding alternative rule:
CTX, > K I< CTX,VCTX; > K (19)

A concept description can be generalized by adding, through the use of
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logical disjunction, an alternative to it. An especially useful form of this rule is
when the alternative is added by extending the scope of permissible values of
one specific descriptor. Such an operation can be expressed very simply by
using the internal disjunction operator of the annotated predicate calculus. For
example, suppose that a concept description is generalized by allowing objects to
be not only red but also blue. This can be expressed as follows:

CTX & [color=red] ::> K |< CTX&[color=red V blue] ::> K (20)

L]

(Forms in brackets are selectors; the expressions on the right of ‘=" are called
references—see the Appendix)
Because of the importance of this special case, it will be presented as a

separate general rule.
o The extending reference rule:

CTX & [L=R;] => K I< CTX&[L=R;] > K (21)

where R; € R, € DOM(L) and DOM(L) denotes the domain of L.

In this rule, L is a term, and R; and R, (references) are internal disjunc-
tions of values of L. References R; and R, can be interpreted as sets of values
that descriptor L can take in order to satisfy the concept description.

The rule states that a concept description can be generalized by enlarging
the reference of a descriptor (R, 2 R|). The elements added to R, must,
however, be from the domain of L.

If R, is extended to be the whole domain, that is, R, = DOM(L), then the
selector {L = DOM(L)] is always true, and therefore can be removed. In this
case, the exiending reference rule becomes the dropping condition rule. There
are two other special cases of the extending reference rule. They take into con-
sideration the type of the descriptor L. [defined by the structure of DOM(L)}].
They are presented as separate rules below.

¢ The closing interval rule:

CTX & [L al] > K
< CTX & [L=a..b] > K (22)
CTX & [L=b] > K

where L is a linear descriptor, and a and b are some specific values of descriptor
I.. The two premises are assumed to be connected by the logical conjunction
(this convention holds for the remaining rules as well).

The rule states that if two descriptions of the same class (the premises of
the rule) differ in the values of only one linear descriptor, then the descriptions
can be replaced by a single description in which the reference of the descriptor is
the interval linking these two values.

To illustrate this rule, consider as objects two states of a machine, and K
as a class of normal states. The rule says that if a machine is in the normal state
for two different temperatures, say a and b, then a hypothesis is made that ali
states in which the temperature falis into the interval [a,b] are also normal.
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Thus, this rule is not only a logically-valid generalization rule, but expresses also
some aspect of plausibility.

o The climbing generalization tree rule

CTX & [L=3a] > K

CTX & [L=b] ::> K
(one or : . <CTX & [L=s] => KX (23)
more ) .
statements)

CTX & [L=i] > K
where L is a structured descriptor, and s represents the lowest parent node whose
descendants include nodes a, b, .. and i, in the generalization tree domain of L.
The rule is applicable only to descriptions involving, structured descriptors,
and is used in various forms in, for example [Winston, 1977; Hedrick, 1974;
Lenat, 1976] (see also Chapters 11 and 6 of this book). The following example
iflustrates the rule:
A P, CTX & [shape(P)=triangle] :> K
< AP, CTX & [shape(P)=polygon] > K
d P, CTX & [shape(P)=rectangle] > K
Paraphrasing this rule in English: if an object of class K is triangular and
another object of this class is rectangular, then the rule generates a statement that
objects of class k are polygonal.

o The turning constraints into variables mile—This rule is best known for the
case of descriptive generalization:

Fia]
(one or F{b]
more ; < Vv, Fv] (24)
statements)

Fli]

where F[v] stands for some description (formula) dependent on variable v, and a,
b, .. are constants.

If some description F[v] holds for v being a constant ¢ or constant b, and
50 on, then the rule generalizes these observations into a statement that Fiv]
holds for every value of v. This is the rule used most often in methods of induc-
tive inference employing predicate calculus.

A corresponding rule for concept acquisition is:

Fla] & Fpl & .. => K I< Jv,Fy] > K | 25)

To illustrate this version, assume that a, b, and so on, are parts of an ob-
ject of class K that have a property F. Rule (25) generalizes these facts inte an
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assertion that if any part of an object has property F then the object belongs to
class K.

o The turning conjunction into disjunction rule:
F] & FZ w> K {2 Fl V Fz > K (26)

where F, and F, are arbitrary descriptions.
A concept description can be generalized by replacing the conjunction
operator by the disjunction operator. '

e The extending the gquantification domain rule—In the simplest case, the rule
changes the universal quantifier into the existential quantifier: '

Yv, Flx] o> K I< Av, Flvl > K (27)

This rule can be viewed as a generalization of the previous rule (26).
Using the concept of numerical quantifier (see the Appendix) this rule can be
expressed in an even more general way: -

3(d)v, Flivl > K I< 3 d,v, Flvl > K (28)

where I;, I, are the quantification domains (sets of integers) satisfying relation I;.
ch. |

For example, the statement “if an object has two parts (I;={2p with
property F, then it belongs to class K™ can be generalized by rule (28) to a state-
ment “if an object has two or more parts (I,=1{2,3,.}) with property F then it
belongs to class K.”

e The inductive resolution rile

(i) As applied to concept acquisition
The deductive inference rule, called the resolution principle, widely
used in automatic theorem proving, can be adopted as a rule of generaliza-
tion for concept acquisition. In propositional form, the resolution principle
can be expressed as:

P>FD&(~P>F) 1> FVE (29)

where P is a predicate and F, and F, are arbitrary formulas. By inter-
preting both sides of (29) as concept descriptions, and making appropriate
transformations we obtain:

P & Fl > K
< Fl VFZ > K (30)

~P & Fz > K
To illustrate this rule, assume that X is the set of situations when
John goes to a movie. Suppose that it has been observed that he goes to 2
movie when he has company (P) and the movie has high rating (F;), or
when he does not have company (~P), but has plenty of time (Fa). Rule
(30) generalizes these two observations to a statement “John goes to 2

movie when either the movie has high rating or he has plenty of time.”
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(ii) As applied to descriptive generalization
By applying logical equivalence (Q i> Py & (~P 1> ~Q) (the
law -of contraposition) to expression (29), then reversing the obtained rule
and substituting the negative literals by the positive, we obtain:

This version has been formulated by Morgan (1975).

Both versions, (i) and (i}, can be generalized by applying the full-fledged
resolution principie that uses predicates with arguments, and the unification algo-
rithm to unify these arguments (for example, [Chang & Lee, 1973]).

e The extension against rule:

CTX, & [L=R,] => K
< [L#R,] > K (32)
CTX, & [L=R,] => ~K -

where sets R and R, are assumed to be disjoint.

Given a description of an object belonging to class K (a posnwe example),
and a description of an object not belonging to this class (a negative exanple),
the rule produces the most general statement consistent with these two descrip-
tions. It is an assertion that classifies an object as belonging to class K if
descriptor L does not take any value from the set R,, thus ignoring context
descriptions CTX; and CTX,. This rule is the basic rule for learning dis-
criminant descriptions from examples used in the previously-mentioned inductive
program AQ!l [Michalski & Larson, 1978]. Various modifications of this rule
can be cobtained by replacing reference R, in the output assertion by some super-
set of it that does not intersect with R,.

4.5.3 Constructive Generalizatlon Rules

Constructive generalization rules generate inductive assertions that use
descriptors not present in the original observational statements. This means that
the rules perform a transformation of the original representation space. The fol-
lowing is a general constructive rule that makes such a transformation by apply-
ing the knowledge of a relationship between different concepts. It is assumed
that this relationship is known to the learning system as background knowiedge,
as a previously-learned concept, or that it is computed according to user-defined
procedures.

CTX&F, > K
< CTX &F, > K (33)
Fi=2F |
The rule states that if a concept description contains a part F; (a concept, a

subdescription, and so on) that is known to imply some other concept F,, then a
more general description is obtained by replacing F; by F,. For example, sup-
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pose a leaming system is told that if an object is black, wide and long, then it
belongs to class K (for example, it is a blackboard). This can be expressed in
the annotated predicate calculus:

3 P, [color(P) = black][width(P) & length(P) = large] > K
Suppose the leamner already knows that:
Y P, ([width(P) & length(P) = large] = [area(P) = large])
Then rule (33) produces a generalization:
3 P, [color(P) = black][area(P) = large] ::> K

As another example, suppose the systemn is given a description of an object
classified as an arch. This description states that a horizontal bar is on top of
two equal obiects placed apart, B, and B,, having certain color, weight, shape,
and so on. Suppose now that characterizations of B, and B, in this description
satisfy a previously-learned concept of a block. Then rule (33) generates an
assertion that an arch is a bar on top of two blocks placed apart. This rule is the
basis for an interactive concept learning system developed by Sammut [1981].

Specific constructive generalization rules can be obtained from (33) by
evoking procedures computing new descriptors in expression F, as functions of
initial or previously-derived descriptors (contained in F;). Here are some ex-
amples of rules for generating new descriptors.

e Counting arguments rules

(i) The CQ rule (count quantified variables)—If a concept description is in the
form:

5. VY2301 Vs F[VI,Vz,...,Vk]

then the rule generates descriptors “#v-COND” representing the number of
v;’s that satisfy some condition COND. This condition expresses selected
properties of v.’s specified in the concept description. Since many such
COND’s_can usually be formulated, the rule allows the system to generate
a large number of such descriptors. :

For example, if the COND is “[attribute;(v;} = R]", then the
generated descriptor will be “#v;-attribute;-R” counting the number of v;’s
that satisfy this condition. If the attribute, is, for instance, length, and R
is [2..4], then the derived descriptor is “#v;-length-2..4” (that is, it
measures the number of v;’s whose length is between 2 and 4, inclusively).

(ii) The CA-tule (count arguments of a predicate)}—If a descriptor in a
description is a relation with several arguments, REL(v,,v,,.), the rule
generates descriptors “#v-COND”, measuring the number of arguments in
REL that satisfy some condition COND. As above, many such descriptors
can be generated, each with different COND.

The annotation of a descriptor provides information about its
properties. Such a property may be that a descriptor is, for instance, a
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transitive relation, such as relation “above”, “inside”, “left-of’, and
“before”. For example, if the relation is “contains(A,B,,B,,.)”, stating
that object A contains objects By,B,,.., and COND is “large and red”, then

the derived descriptor “#B-large-red-A-contains” measures the number of
Bi-s contained in A that are large and red.

o The generating chain properties rule~If the arguments of different occur-
rences of a transitive relation in a concept description form a chain (that is, form
a sequence of consecutive objects ordered by this relation), the rule generates
descriptors characterizing some specific objects in the chain. Such objects may.

be:

LST-object the “least object”,or the object at the beginning of the chain (for
example, the bottom object inf the case of the relation “above”).

MST-cbject the object at the end of the chain (for example, the top object).

MID-object the objects in the middle of the chain.

Nt.object the object in the Nt position in the chain (starting from LST-
obiect).

After identifying these objects, the rule investigates all known properties of them
(as specified in the observational statements) in order to determine potentially
relevant new descriptors. The rule also generates a descriptor characterizing the
chain itself, namely: |

REL-chain-length: the length of the chain defined by relation REL.

For example, if the REL is ON-TOP, then descriptor ON-TOP-chain-length
would specify the height of a stack of objects. When a new description is
generated and adopted, an annotation for it is also generated and filled out, as in
Lenat {1976]. This rule can be extended to a partial order relation. In such a
case it becomes the “find extrema of a partial order” rule.

¢ The detecting descriptor interdependence rule—Suppose that given is a set of
objects exemplifying some concept, and that attribute descriptions are used to
characterize these objects. Such descriptions specify only attribute values of the
objects; they do not characterize the objects’ structure. Suppose that the values a
linear descriptor x takes on in all descriptions {(events) are ordered in increasing
order. If the corresponding values of another linear descriptor y exhibit an in-
creasing or decreasing order, then a two-place descriptor:

M(x,y)

is created, signifying that x and y have a monotonic relationship. This descriptor
has value 17 when y values are increasing and value | when they are decreas-
ing.

The idea of the above M-descriptor can be extended in two directions.
The first is to create M-descriptors dependent on some condition COND that
must be satisfied by the events under consideration:
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M(x,y-COND
For example, descriptor:
M(length,weight)-red
states that length and weight have a monotonic relationship for red objects.

The second direction of extension is to relax the requirement for the
monotonic relationship; that is, not to require that the order of y values is strictly
increasing (or decreasing), but only approximately increasing (or decreasing).
For example, the coefficient of statistical correlation between X and y can be
measured, and when its absolute value is above a certain threshold, a descriptor
R(x,y} is created. The domain of this R- descriptor can aiso be {1, |}, in-
dicating the positive or negative correlation, respectively, or it can have values
representing several subranges of the correlation coefficient. Similarly, as in the
case of M- descriptors, R-descriptors can be extended to R-COND descriptors.

The M- or R-descriptors can be used to generate new descriptors. For ex-
ample, if [M(x,y} = 1], then a new descriptor z = X/y can be generated. If z
assumes a constant or nearly-constant value, then an important relationship has
been discovered. Similarly, if [M{x,y) = !] then a new descriptor z = xXy
can be generated. These two techniques for generating new descriptors have
been successfully used in the BACON system for discovering mathematical ex-
pressions representing physical or chemical laws, as described in Chapter 10 of
this book.

The above ideas can be extended to structural descriptions. Such descrip-
tions involve not only global properties of objects, but also properties of objects’
parts and the relationships among the parts. Suppose that in a structural deserip-
tion of an object, existentially-quantified variables P,,FP,,..P, denote its parts.
If x(P;} and y(P;) are linear descriptors of P; (for example, numerical attributes
characterizing parts P,, i=1,2,..), the above-described techniques for generating
M- and R- descriptors can be applied.

4.6 THE STAR METHODOLOGY

4.6.1 The Concept of a Star

The methodology presented here for learning structural descriptions from
examples receives its name. from the major concept employed in it, that of a
star. In the most general sense, a star of an event ¢ under constraints E is a set
of all possible alternative non-redundant descriptions of event e that do not vio-
late constraints E. A somewhat more restrictive definition of a star will be used
here. Let e be an example of a concept to be learned and E be a set of some
counterexamples of this concept. A star of the event e against the event set E,
denoted G(elE), is defined as the set of all maximally general c-expressions that
cover (that is, are satisfied by) event e and that do not cover any of the negative
events in E.
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The c-expressions in a star may contain derived descriptors, that is,
descriptors not present in the observational statements. In such a case, testing
whether event e satisfies a given description requires that appropriate transfor-
mations be applied to the event. Such a process can be viewed as proving that
the event implies the description, and therefore methods of automatic theorem
proving could be used.

In practical problems, a star of an event may contain a very large number
of descriptions. Consequently, such a theoretical star is replaced by a bounded
star G(elE,m) that contains no more than a fixed number, m, of descriptions.
These m descriptions are selected as the m most preferable descriptions, among
the remaining ones, according to the preference criterion defined in the problem
background knowledge. Variable m is a parameter of the learning program,
defined either by the user or by the program itself, as a function of the available
computational resources.

Chapter 11 of this book gives an illustration and an algorithm for generat-
ing a bounded star with c-expressions restricted to attribute expressions (that
is,expressions involving only object attributes). Section 4.6.3 presents an algo-
rithm for generating a bounded star consisting of regular c-expressions. The
concept of a star is useful because it reduces the problem of finding a complete
description of a concept to subproblems of finding consistent descriptions of
single positive examples of the concept.

Since any single example of a concept can always be characterized by a
conjunctive expression {a logical product of some predicates), elements of a star
can always be represented by conjunctive descriptions. One should also notice
that if the concept to be leamed is describable by a c-expression, then this
description ciearly will be among the elements of a (non-bounded) star of any
single positive example of the concept. Consequently, if there exists a positive
example not covered by any description of such a star, then the complete concept
description must be disjunctive, that is, must include more than one c-
expression.

4.6.2 Outline of the General Algorithm

It is assumed that every observational statement is in the form:
a-expression > K (34)

where a-expression is an atomic expression describing an object (recall Section
4.4.6).and K is the concept exemplified by this object.

It is also assumed that inductive assertions are in the form of a single c-
expression or the disjunction of c-expressions. For simplicity we will restrict our
attention to only single-concept learning. In the case of multiple-concept learn-
ing, the algorithm is repeated for each concept with modifications depending on
the assumed interdependence among the concept descriptions (Section 4.2.4).

Let POS and NEG denote sets of events representing positive and negative
examples of a concept, respectively. A general and simplified version of the
Star methodology can be described as follows:
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1. Randomly select an event ¢ from POS.

2. Generate a bounded star, G(eINEG,m), of the event e against the set of
negative examples NEG, with no more than m elements. In the process of
star generation apply generalization rules (both selective and constructive),
task-specific rules, heuristics for generating new descriptors supplied by
problem background knowledge, and definitions of previously-learned con-
cepls.

3. In the obtained star, find a description D with the highest preference ac-
cording to the assumed preference criterion LEF.

4. If description D covers set POS completely, then go to step 6.

5. Otherwise, reduce the set POS to contain only events not covered by D,
and repeat the whole process from step 1.

6. The disjunction of all generated descriptions D is a complete and consistent
concept description. As a final step, apply various reformulation rules
(defined in the problem background knowledge) and “contracting” rules
[equations (B) and (9) in the Appendix] in order to obtain a possibly
simpler expression.

This algorithm is a simplified version of the general covering algorithm A%
[Michalski, 1975b]. The main difference is that algorithm A9 selects the initial
events (if possible) from events not covered by any of the descriptions of
generated stars, rather than not covered by only the selected descriptions D. This
way the algorithm is able to determine a bound on the maximum number of
separate descriptions in a disjunction needed to define the concept. Such a
process may, however, be computationally costly.

The above algorithm describes only single-step learning. If, after generat-
ing a concept description, a newly-presented training event contradicts it,
specialization or generalization rules are applied to generate a new consistent
concept description. A method for -such incremental learning is described in
[Michalski & Larson, 1978]. (See also Chapter 8 of this book.)

The central step in the above methodology is the generation of a bounded
star. This can be done using a variety of methods. Thus, the above Siar
methodology can be viewed as a general schema for implementing various learn-
ing methods and strategies. The next section describes one specific method of
star generation.

4.6.3 Star Generation: The INDUCE Method

This method generates a bounded star G{eiNEG,m) by starting with a set
of expressions that are single selectors, either extracted from the event for which
the star is generated or inferred from the event by applying constructive
generalization rules or inference rules provided by background knowledge.
These expressions are then specialized by adding other selectors until consistency
is achieved (that is, until each expression does not intersect with set NEG).
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Next, the obtained consistent expressions are generalized so that each achieves
the maximum coverage of the remaining positive training examples. The best
consistent m so obtained and the generalized c-expressions (if some are also
complete, then they are alternative solutions) constitute the bounded star sought,
G(eINEG,m). Specifically, the steps of the procedure are:

1. In the first step individual selectors of event e are put on the list called PS.
This list is called a partial star, because its elements may cover some
events in NEG. These initial elements of PS (single selectors from €) can
be viewed as generalizations of event e obtained by applying in all possible
ways the dropping condition generalization rule (each application drops ail
selectors except one). Elements of the partial star PS are then ordered
from the most to the least preferred according to a preference criterion: |

LEF, = <(-negcov,T), (poscov, 15)> (35)

where negcov and poscov are numbers of negative and positive examples,
respectively, covered by an expression in the star, and 7, and 7, are
tolerances (recall Section 4.4.7).

The LEF; minimizes the negcov (by maximizing the -negcov) and
maximizes poscov.

2. The list PS is then expanded by adding new selectors obtained by applying
the following inference rules to the event e:

a. the constructive generalization rules {Section 4.5.3)
b. the problem-specific heuristics defined in the background knowledge

c. the definitions of the previously-learned concepts (to determine
whether parts of e satisfy some already known concepts)

3. Each new selector is inserted in the appropriate place in list PS, according
to preference criterion LEF,. The size of PS is kept within the limit
defined by parameter m by removing from PS all but the m most preferred
selectors.

4. Descriptions in PS are tested for consistency and completeness. A descrip-
tion is consistent if negcov = 0 (that is, if it covers no events in NEG)
and is complete if poscov is equal to the total number of positive ex-
amples. Consistent and complete descriptions are removed from PS and
put on the list called SOLUTIONS. If the size of the list SOLUTIONS is
greater than a parameter #SOL, then the algorithm stops. Parameter
#SOL determines the number of desired alternative concept descriptions.
Incomplete but consistent descriptions are removed from the list PS and put
on the list called CONSISTENT. If the size of the CONSISTENT list is
greater than a parameter #CONS, then control is transferred to step 6.

5. Each expression in PS is specialized in various ways by appending to it a
single selector from the original list PS. Appended selectors must be of
lower preference than the . last selector in the conjunctive expression
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(initially, the expression has only one selector). Parameter %2BRANCH
specifies the percentage of the selectors ranked lower (by the preference
criterion) than the last selector in the current conjunction. If %BRANCH
= 100%, all lower preference selectors are singly appended—that is, the
number of new expressions generated from this conjunction will be equal
to the total number of selectors having lower preference than the last selec-
tor in the conjunction. All newly-obtained expressions are ranked by LEF,
and only the m best are retained. This “expression growing” process is
illustrated in Figure 4-1.

Steps 4 and 5 are repeated until the CONSISTENT list contains the number of
expressions specified by parameter #CONS, or until the time allocated for this
process is exhausted.

6. Each expression on the CONSISTENT list is generalized by applying the

extension against, closing the interval, and climbing generalization tree
generalization rules. An efficient way to implement such a process is o
transform the original structural-description space into an attribute-
description space. Attributes (that is, descriptions with zero arguments)
defining this space are created from the descriptors in the given expression
on the CONSISTENT list in a manner such as that described in Section
3.2.3.2 of Chapter 3 in this book. The generalization of the obtained at-
tribute descriptions is accomplished by the star generation procedure,
analogous to the one described in Chapter 11 of this book. Details of this
process of transforming structural descriptions into atiribute descriptions are
described by Larson [1977]. The reason for such a transformation is that
structural descriptions are represented as labeled graphs while attribute
descriptions are represented as binary strings. It is computationally much
more economical to handle binary strings than labeled graphs.

. The obtained generalizations are ranked according to the global preference

criterion LEF defined in the background knowledge. To obtain a dis-
criminant description, a typical LEF is to maximize the number of events
covered in POS set and to minimize the complexity of the expression
(measured, for example, by the number of selectors it contains). The m
best expressions so determined constitute the bounded star G{eiINEG,m).

The Star algorithm and a somewhat restricted version of the above-

described star generation algorithm has beén implemented in various incarnations
of the INDUCE learning program [Larson, 1977; Dietterich, 1978; Michalski,
1980a; Hoff et al, 1982]. '

4.7 AN EXAMPLE

To illustrate the inductive learning methodology just presented, let us con-

sider a simple problem in the area of conceptual data analysis. Suppose we are
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B, - adisregarded rule
@ - an active rule

@ - 2 terminal node denoting a consistent c-expression

- a terminal node denoting a consistent and complete c-expression (a
solution)

The nodes in the first column are selectors extracted from the event e or
derived from e by applying inference rules. Each arc represents an
operation of adding a new selector ta the current c-expression.

Figure 4-1: IHustration of the process of generating & reduced star RG(eINEG,m).
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Figure 4-2: “Cancerous” and "Normal™ cells.
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given exampies of “cancerous” and ‘“normal™ celis, denoted DNC and DNN,
respectively, in Figure 4-2, and the task of the analysis is:

o to determine properties differentiating the two classes of cells (that is, to
find discriminant descriptions of each class)

e to determine important common properties of the cancerous and the normal
celts (that is, to find characteristic descriptions of each class).

An assumption is made that the properties to be discovered may involve
both quantitative information about the cells and their components, and qualita-
tive information, expressed by nominal variables and relationships existing.
among the components.

The solution to the problem posed (or similar problems) can be obtained by
a successive repetition of the “focus attention—>hypothesize—test” cycle
described below.

The “focus attention™ phase is concermned with defining the scope of the
problem under consideration. This includes selecting descriptors appearing to be
relevant, specifying underlying assumptions, and formulating the relevant
problem knowledge. This first phase is performed by a researcher; it involves
his/her technical knowledge and informal intuitions. The third, the “test” phase,
examines the hypotheses and tests them on new data. This phase may require
collecting new samples, performing laboratory experiments, and/or critically
analyzing the hypotheses. This phase is likely to involve knowledge and abilities
that go beyond currently-feasible computer systems.

It is the second, the “hypothesize” phase, in which an inductive learning
system may play a useful role: the role of an assistant for conducting a search for
the most plausible and/or most interesting hypotheses. This search may be a for-
midable combinatorial task for a researcher, if the data sample is large and if
each item of the data (in this case, a cell) is described by many variables and/or
relations,

Individual steps are as follows:

1. The user determines the set of initial descriptors and provides an annotation
for each descriptor. We will assume that the annotation specifies the type, the
domain, and any special propertics of each descriptor (for example, the tran-
sitivity of a relation). In the case of structured descriptors, the annotation also
specifies the structure of the domain. The specification of the annotation con-
stitutes the first part of the problem background knowledge.

Suppose that for our simple example problem, the following descriptors are
selected:

a. Global descriptors (those characterizing a whole cell)

e circ—the number of segments in the circumference of the cell
Type: linear Domain: {1..10}

e pplasm—the type of protoplasm in the cell (marked by encircled
capital letters in Figure 4-2)
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Type: structured

Domain: a tree structure with a set of leaves {triangle, circle, ellipse,
heptagon, square, boat, spring}

Non-leaf nodes are defined by rules:
[shape = circle V ellipse] = [shape = oval]
[shape = triangle \V square V heptagon] 2> [shape = polygon]
[shape = oval V polygon] > [shape = regular]
fshape = spring V boat] > [shape = imregular]

i

o texture(B;)—the texture of body B;

Type: nominal
Domain: {blank, shaded, solid-black, solid-grey, stripes, crossed,
wavy}

e weight (B;,)>—the weight of body B;
Type: linear Domain: {1,2...,5}
e orient (B;)—the orientation of B,

Type: linear-cyclic (the last element is followed by the first)
Domain: {N, NE, E, SE, S, SW, W, NW}
Condition of applicability: if [shape (B;) = boat]

e contains (C, By, B,, .)—C contains By, B, ..

Type: nominal Domain: {True,False}
Properties: transitive relation

o hastails (B, Ly, L,, -)—a body B has tails Ly, L, ..

Type: nominal Domain: {True,False}
Condition of applicability: if [shape (B) = boat]

Note that the descriptors “contains” and “hastails” are predicates with a
variable number of arguments. Descriptor “contains” is characterized as a tran-
sitive relation. Descriptors “hastails” and “orient” are applicable only under cer-
tain conditions. '

2. The user formulates observational staternents which describe cells in terms of
selected descriptors and specify the class to which each cell belongs. For ex-
ample, the following is an observational statement for the DNC ceil 1:
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3.CELL,, B|,B,,...B¢ [contains(CELL,,B,,..,Bg)] [circ(CELL;)=8] &
[pplasm(CELL )= Al[shape(B ) =ellipse] [texture(B ) =stripes] &
[weight(B,) =4} [orient(B ;) = NW][shape(B,) =circle} &
{contains(B,,By)][texture(B,) = blank{ weight(B,)=3].. &
[shape(Bg) = circle][texture(Bg) = shaded][weight(Bg) = 5]
2> [class =DNC(]

3. To specify the second part of the problem background knowledge the user
indicates which general rules of constructive induction (Section 4.5.3) are ap-
plicable, and also formulates any problem-specific rules.

The constructive rules will generate various derived descriptors. For ex-
ampie, the counting rule CQ will generate, among others, a descriptor:

s #B-black-boat—the number of bodies whose shape is “boat” and texture is
“solid-black™ (that is, assuming COND:
[texture(B) = solid-black] & [shape(B)=boat])

(For simplicity of notation, the name of this descriptor, as well as other
descriptors below, has been abbreviated, so it does not follow strictly the naming
convention described in Section 4.5.3.) The counting rule CA will generate such
descriptors as:

s total-B—the total number of bodies in a cell (no COND is used)

¢ indep-B—the number of independent bodies in a cell (assuming the COND
“bodies not contained in another body™)

e #contained-in-B—the number of smaller bodies contained in the body B
® #tails-boat-B—the number of tails in a body B, whose shape is “boat”

As advice to the systemn, the user may formulate arbitrary arithmetic ex-
pressions for generating possibly relevant descriptors. For example, the user
may suggest a descriptor:

weight(CELL) = ; weight(B;)

where B;, i = 1,2,.. denote bodies in a cell.

The backpground knowledge may also contain special concepts, such as
even or odd numbers, the definitions of the area and perimeter of a circle or
rectangle, and so on. -

4. Finally, as the last part of the background knowledge, the user specifies the
type of description sought and the hypothesis preference criterion. Let us as-
sume that both characteristic descriptions and discriminant descriptions are
sought. We therefore choose as the preference criterion for constructing charac-
teristic descriptions “maximize the length of the complete c-expressions,” and for
constructing discriminant descriptions, “minimize the length of consistent and
complete c-expressions.”

As illustration, we shall present here samples of discriminant descriptions
and characteristic descriptions of the DNC “cells”, obtained by the INDUCE

program.
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4.7.1 Discriminant Descriptions of DNC Cells

Each of these descriptions is sufficient to discriminate all DNC celis from
DNN cells. A concept description for class DNC can thus be any one of these
descriptions or the disjunction of two or more of these descriptions.

e J3(1)B [texture(B) = shaded][weight{(B) > 3]
Paraphrasing in English: “Every DNC cell, as opposed to DNN, has ex-
actly one body with ‘shaded’ texture and weight at least 3.”

e Jcirc = even] '
“The number of segments in the circumference of every DNC cell is
even.” (The concept of “even” was determined by “climbing the
generalization tree” ruie.)

¢ (> 1)B [shape(B)=boat][orient(B)=N \ NE]
“Every DNC cell has at least one ‘boat’ shape body with orientation N or
NE.”

 3(> 1)B [#tails-boat-B=1)
“Every DNC cell has at least one body with number of tails equal to 1.”

e 3(1)B [shape(B) =circle]{ #contains-B= 1]
“Every DNC cell has a circle containing a single object.”

Underscored descriptors are derived descriptors obtained through construc-
tive generalization rules.

4.7.2 Characteristic Descriptions of DNC Celis

Every description below is a characterization of some pattern common to
all DNC celis. Some of these patterns taken separately may cover one or more
DNN cells. The length of each description has been maximized, rather than
minimized, as in the case of discriminant descriptions.

e 3(1)B {weight(B) = 5]
Paraphrasing in English: “In every DNC cell there is one and only one
body with weight 5.” -

¢ 3.B;, B, [contains(B,, B;)] [shape(B,) & shape(B,)=circle] &
[texture(B )= blank] [weight(B ;) =odd] [texture(B,)=solid-black] &
fweight(B,)=even] {#contained-in-B,=1]
“In every cell there are two bodies of circle shape, one contained in
another, of which the outside circle is blank and has ‘odd’ weight, the in-
side circle is solid-black and has ‘even’ weight. The number of bodies in
the outside circle is only one.” (This is also a non-minimal discriminant
description.)

¢ 3(1)B [shape(B) = circle]{texture(B) = shaded][weight(B) > 3]
“Every cell contains a circle with ‘shaded’ texture, whose weight is at least
3.” (This is also a non-minimal discriminant description.)
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e J(> 1)B [shape(B)=boat][orient(B) = N V MNE]{#tils-boat(B)=1]
“Every cell has at least one body of ‘boat’ shape with N or NE orientation,
which has one tail.” (This is also 2 non-minimal discriminant description.)

e 3(2)B  {shape(B)=circle][texture(B) =solid-black], or, altemnatively,
[#B-circle-solid-black = 2]
“Each cell has exactly two bodies that are solid black circles.” (This is also
a non-minimal discriminant description.)

o [pplasm=A V D]
“The protoplasm of every cell i is of type Aor D.”

The above example is too simple for really unexpected patterns to be dis-
covered. But it illustrates well the potential of the learming program as a tool for
searching for patterns in complex data, especially when the relevant properties
involve both numerical and structural information about the objects under con-
sideration. An application of this program to a more complex problem
[Michalski, 1980a] did generate unexpected patterns.

4.8 CONCLUSION

A theory of inductive learning has been presented that views such leaming
as a heuristic search through a space of symbolic descriptions, generated by an
application of certain inference rules to the initial observational statements
(teacher-generated examples of some concepts or environment-provided facts).
The process of generating the goal description—the most preferred inductive
assertion—relies on the universally intertwined and complementary operations of
specializing or generalizing the cumrently-held assertion in order to accommodate
new facts. The domain background knowiege has been shown to be a necessary
component of inductive learning, which provides constraints, guidance, and a
criterion for selecting the most preferred assertion.

Such a characterization of inductive learning is conceptually simple, and
constitutes a theoretical framework for describing and comparing learning
methods, as well as developing new methods. The Star methodoiogy for learn-
ing structural descriptions from examples, described in the second part of this
chapter, represents a general approach to concept acquisition which can be im-
plemented in 2 variety of ways and applied to different problem domains.

There are many important topics of inductive leaming that have not been
covered here. Among them is learning from incomplete or uncertain infor-
mation, learning from descriptions containing errors, learning with a multitude of
forms of observational statements, as well as multimodel-based inductive asser-
tions, and leaming general rules with exceptions. The problem of discovering
new concepts, descriptors and, generally, various many-level transformations of
the initial description space (that is, the problem of constructive inductive
learning) has been covered only very superficially.
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These and related topics have been given little attention so far in the field
of machine learning. There is no doubt, however, that as the understanding of
the fundamental problems in the field matures, these challenging topics will be
given increasing attention.
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APPENDIX: ANNOTATED PREDICATE CALCULUS {APC)

This appendix presents definitions of the basic components of the annotated
predicate calcuius and some rules for equivalence-preserving transformations of
APC expressions (rules that are nonexistent in the ordinary calculus).

1. Elementary and Compound Terms—Terms can be clementary or compound,
An elementary term (an eterm) is the same as a term in predicate calculus, that
is, a constant, a variable, or a function symbol followed by a list of arguments
that are eterms. A compound ferm (cterm) is a composite of elementary terms or
is an eterm in which one or more arguments are such composites. The com-
posite of eterms is defined as the internal conjunction (&) or internal disjunction
(V) of eterms. (The meaning of these operators is explained later.) The follow-
ing are examples of compound terms:

RED V BLUE (1)
height(BOX, & BOX,) @)

where RED, BLUE, BOX,, BOX, are constants. Expression (1) and the form
in parentheses in (2) ar: composites. Note that expressions (1) and (2) are not
logical expressions that have a truth-status (that is, can be true or false); they are
terms to be used only as arguments of predicates. A compound term in which
arguments are composites can be transformed (expanded) into a composite of
elementary terms. Let f be an n-argument function whose n-1 arguments are
represented by hist A, and let t; and t, be elementary terms. The rules for per-
forming such a transformation, that is, term rewriting rules, are:

f(t, V t2,A) « f(t,A) V f(t5,A) (3)

f(t; & t3,A) < f(t,A) & f(t3,A) CY)
Thus, term (2) can be transformed into a composite:

height(BOX,,) & height{(BOX,) - (5)

If list A itself contains composites, then it is assumed that the internal dis-
junction is expanded first, followed by the internal conjunction (that is, the con-
junction binds stronger than the disjunction).

2. Elementary and Compound Predicates—Predicates also can be elementary
or compound. An elementary predicate is the same as a predicate in the predi-
cate calculus, that is, a predicate symbol followed by a list of arguments that are

eterms. In a compound predicate one or more arguments is a compound term.
For example, the following are compound predicates:

Went(Mary & Mother(Stan),Movie \V Theater) (6)
Inside(Key, Drawer(Desk; \ Desk,)) (N

The meaning of a compound predicate is defined by rules for transforming
it into an expression made of elementary predicates and ordinary “external™ logic
operators of conjunction (&) and disjunction (V). We denote the intermnal and
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external operators identically, because they can be casily distinguished by the
context {(note that there is no distinction between them in natural language). If
an operator connects predicates, then it is an external operator; if it connects
terms, then it is an internal operator.

Let t; and t; be eterms and P an n-ary predicate whose last n-1 arguments
are represented by a list A. We have the following reformulation rules (that is,
equivalence-preserving transformations of descriptions):

P(t; & t,,A) 1=  P(t;,A) & P(t,A) (%)

If an argument of a predicate is a compound term that is not a composite
of elementary terms, then it is transformed first into a composite by rules (3) and
(4). If A contains a composite of terms, then the disjunction is expanded first
before conjunction (similarly as in expanding compound terms).

Rules (3), (4), (8) and (9) can be used as bidirectional transformation
rules. By applying them forward (from left to right), a compound predicate can
be expanded into an expression containing only elementary predicates, and by
applying them backward, an expression with elementary predicates can be con-
tracted into a compound predicate.

For example, by applying forward rule (8) and then (9), one can expand
the compound predicate (6} into

Went{Mary,movie) & Went(Mother(Stan), movie) V/
Went{Mary,thecater) & Went(Mother(Stan),theater) (10}

Comparing logically-equivalent expressions (6) and (10), one can notice
that expression (6) is considerably shorter than (10), and in contrast to (10),
represents explicitly the fact that Mary & Mother(Stan) went to the same place.
Also, the structure of (6) is more similar to the structure of the corresponding
natural language expression.

3. Relational Statements—A simple and often used way of describing objects
or situations is to state the values of selected attributes applied to these objects or
situations. Although such information can be represented by predicates, this s
not the most readable or natural way. The APC uses for this purpose a state-
ment:

Ctﬂl’fﬂi = a (11)

stating that eterm; evaluates to a constant a. Such a statement is called an atomic
relational statement (or an atomic selector). Expression (11) is a special case of
a relational statement (also called selector), defined as:

Termy rel Term, (12)

where Term| and Term, are elementary or compound terms, and rel stands for
one of the relational symbols: =, =, >, =, <,

If Term; and Term, are both elementary, then expression (12) states that
the value of the function represented by Term, is in relation rel to the value of
function represented by Term,. For example, the expression:
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distance(Boston, Tampa) = distance(Washington,Dallas) (13

states that the distance between Boston and Tampa is the same as the distance
between Washington and Dallas. If Term, is a constant, then it evaluates to
itself.

Expression (12) can be represented by a predicate:

FEI(TGI'ITI] » Termz) (14)

If Term; and/or Term, is compound, then the meaning of expression (12)
is defined by expanding it into-a form containing only relational statements with
elementary terms. The expansion is performed by transforming expression (12)
into (14), applying transformation rules (3), (4), (8), and (9), and then convert-
ing the elementary predicates into relational statements,

For example, a relational statement:

color(P, V P,) = Red V Biue (15)
can be expanded into an expression:
(color(P)) = Red V Blue) V (color(P;) = Red V Blue) (16)

and finally to an expression consisting of only atomic selectors:
(color(P|) = Red) V (color(P;) = Blue) V
{color(P,) = Red) V (color(P;) = Blue) (17)
The two selectors in the disjunction (16) are examples of a referential
selector, defined as a form!
Term; rel Term, (18)

where Term, (called referee) is a nonconstant elementary term and Term, (called
reference) is a constant or the internal disjunction of constants from the domain
of Term;. If relation rel is “="" and Term; is the disjunction of some constants,
then the referential selector (18) states that the function represented by Term,
evaluates to one of the constants in Term;. The referential selector is very use-
ful for representing concept descriptions.

If the reference of a referential selector contains a sequence of consecutive
constants from the domain of a linear descriptor, then the range operator *..” is
used to simplify the expression. For example:

size Py =2V 3iV4
can be written:
size (P) = 2..4
The negation of a selector:
~(Term; = Term,)
can be equivalently written:
Term; # Term, (20)
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An arbitrary predicate P(t(,t;,..) can be written in the form of a referential selec-
tor:

P(t.t5,..) = True .

Therefore, for the uniformity of terminology, a predicate will be considered a
special form of a selector.

To facilitate the interpretation and readability of individual selectors in ex-
pressions, they are usually surrounded by square brackets and their conjunction is
expressed by concatenating the bracketed forms (see Section 4.7).

APC expressions are created from selectors (relational statements) in the
same way as predicate calculus expressions are created from predicates, that is,
by using logic connectives (~, &, V, 2>, ¢ ) and quantifiers. One additional
useful connective is the exception operation (“\"), defined as:

S/ASy I= (~5,>8)& (5,3~ §) 1)

where S| and S, are APC expressions. (S; \ S, reads: 8, except when S;.) It
is easy to see that the exception operator is equivalent to the symmetrical dif-
ference.

In addition to ordinary quantifiers there is also a numerical quaniifier, ex-
pressed in the form:

() v, S[v] (22)

where 1, the index set, denotes a set of integers, and S[v] is an APC expression
having v as a free variable.

Sentence (22) evaluates as true if the number of values of v for which ex-
pression S[v] is true is an element of the set 1. For example, formula:

3(2..8) v, S[v] (23)

states that there are two to eight values of v for which the expression S[v} is
true. The following equivalences hoid:

v, S[v] is equivalent to d(=1) v, S[v]
and
Vv, S{v] is equivalent to (k) v, S[v]
where k is the number of possible values of variable v.
To state that there are k and only k distinct values for variables v,vq,.., vy
for which expression S[v{,v,,..,v] is true, we write:
H.V[,Vz,...,vk, S[Vl...,vk] (24)
For example, the expression:

3 ‘PU’PI "PZ [CﬂntainS(Po,Pl &Pz)] & [CGIOI'(PI&.PE) = [Cd.]'—'}
[two-red-parts(Pg)]

states that predicate two-red-parts(Py) holds if Py has two, and only two, distinct
parts in it that are red.
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Section 4.7 presents an example of the usage of the APC for formulating
observational statements and concept descriptions.



